1 //===- llvm/lib/Target/ARM/ARMCallLowering.cpp - Call lowering ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMCallLowering.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMISelLowering.h" 18 #include "ARMSubtarget.h" 19 #include "Utils/ARMBaseInfo.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/CodeGen/GlobalISel/Utils.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/LowLevelTypeImpl.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <utility> 49 50 using namespace llvm; 51 52 ARMCallLowering::ARMCallLowering(const ARMTargetLowering &TLI) 53 : CallLowering(&TLI) {} 54 55 static bool isSupportedType(const DataLayout &DL, const ARMTargetLowering &TLI, 56 Type *T) { 57 if (T->isArrayTy()) 58 return isSupportedType(DL, TLI, T->getArrayElementType()); 59 60 if (T->isStructTy()) { 61 // For now we only allow homogeneous structs that we can manipulate with 62 // G_MERGE_VALUES and G_UNMERGE_VALUES 63 auto StructT = cast<StructType>(T); 64 for (unsigned i = 1, e = StructT->getNumElements(); i != e; ++i) 65 if (StructT->getElementType(i) != StructT->getElementType(0)) 66 return false; 67 return isSupportedType(DL, TLI, StructT->getElementType(0)); 68 } 69 70 EVT VT = TLI.getValueType(DL, T, true); 71 if (!VT.isSimple() || VT.isVector() || 72 !(VT.isInteger() || VT.isFloatingPoint())) 73 return false; 74 75 unsigned VTSize = VT.getSimpleVT().getSizeInBits(); 76 77 if (VTSize == 64) 78 // FIXME: Support i64 too 79 return VT.isFloatingPoint(); 80 81 return VTSize == 1 || VTSize == 8 || VTSize == 16 || VTSize == 32; 82 } 83 84 namespace { 85 86 /// Helper class for values going out through an ABI boundary (used for handling 87 /// function return values and call parameters). 88 struct OutgoingValueHandler : public CallLowering::ValueHandler { 89 OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 90 MachineInstrBuilder &MIB, CCAssignFn *AssignFn) 91 : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 92 93 bool isIncomingArgumentHandler() const override { return false; } 94 95 Register getStackAddress(uint64_t Size, int64_t Offset, 96 MachinePointerInfo &MPO) override { 97 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 98 "Unsupported size"); 99 100 LLT p0 = LLT::pointer(0, 32); 101 LLT s32 = LLT::scalar(32); 102 auto SPReg = MIRBuilder.buildCopy(p0, Register(ARM::SP)); 103 104 auto OffsetReg = MIRBuilder.buildConstant(s32, Offset); 105 106 auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg); 107 108 MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset); 109 return AddrReg.getReg(0); 110 } 111 112 void assignValueToReg(Register ValVReg, Register PhysReg, 113 CCValAssign &VA) override { 114 assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); 115 assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); 116 117 assert(VA.getValVT().getSizeInBits() <= 64 && "Unsupported value size"); 118 assert(VA.getLocVT().getSizeInBits() <= 64 && "Unsupported location size"); 119 120 Register ExtReg = extendRegister(ValVReg, VA); 121 MIRBuilder.buildCopy(PhysReg, ExtReg); 122 MIB.addUse(PhysReg, RegState::Implicit); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 128 "Unsupported size"); 129 130 Register ExtReg = extendRegister(ValVReg, VA); 131 auto MMO = MIRBuilder.getMF().getMachineMemOperand( 132 MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(), 133 Align(1)); 134 MIRBuilder.buildStore(ExtReg, Addr, *MMO); 135 } 136 137 unsigned assignCustomValue(const CallLowering::ArgInfo &Arg, 138 ArrayRef<CCValAssign> VAs) override { 139 assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet"); 140 141 CCValAssign VA = VAs[0]; 142 assert(VA.needsCustom() && "Value doesn't need custom handling"); 143 assert(VA.getValVT() == MVT::f64 && "Unsupported type"); 144 145 CCValAssign NextVA = VAs[1]; 146 assert(NextVA.needsCustom() && "Value doesn't need custom handling"); 147 assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); 148 149 assert(VA.getValNo() == NextVA.getValNo() && 150 "Values belong to different arguments"); 151 152 assert(VA.isRegLoc() && "Value should be in reg"); 153 assert(NextVA.isRegLoc() && "Value should be in reg"); 154 155 Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), 156 MRI.createGenericVirtualRegister(LLT::scalar(32))}; 157 MIRBuilder.buildUnmerge(NewRegs, Arg.Regs[0]); 158 159 bool IsLittle = MIRBuilder.getMF().getSubtarget<ARMSubtarget>().isLittle(); 160 if (!IsLittle) 161 std::swap(NewRegs[0], NewRegs[1]); 162 163 assignValueToReg(NewRegs[0], VA.getLocReg(), VA); 164 assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); 165 166 return 1; 167 } 168 169 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 170 CCValAssign::LocInfo LocInfo, 171 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags, 172 CCState &State) override { 173 if (AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State)) 174 return true; 175 176 StackSize = 177 std::max(StackSize, static_cast<uint64_t>(State.getNextStackOffset())); 178 return false; 179 } 180 181 MachineInstrBuilder &MIB; 182 uint64_t StackSize = 0; 183 }; 184 185 } // end anonymous namespace 186 187 void ARMCallLowering::splitToValueTypes(const ArgInfo &OrigArg, 188 SmallVectorImpl<ArgInfo> &SplitArgs, 189 MachineFunction &MF) const { 190 const ARMTargetLowering &TLI = *getTLI<ARMTargetLowering>(); 191 LLVMContext &Ctx = OrigArg.Ty->getContext(); 192 const DataLayout &DL = MF.getDataLayout(); 193 const Function &F = MF.getFunction(); 194 195 SmallVector<EVT, 4> SplitVTs; 196 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, nullptr, nullptr, 0); 197 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 198 199 if (SplitVTs.size() == 1) { 200 // Even if there is no splitting to do, we still want to replace the 201 // original type (e.g. pointer type -> integer). 202 auto Flags = OrigArg.Flags[0]; 203 Flags.setOrigAlign(Align(DL.getABITypeAlignment(OrigArg.Ty))); 204 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 205 Flags, OrigArg.IsFixed); 206 return; 207 } 208 209 // Create one ArgInfo for each virtual register. 210 for (unsigned i = 0, e = SplitVTs.size(); i != e; ++i) { 211 EVT SplitVT = SplitVTs[i]; 212 Type *SplitTy = SplitVT.getTypeForEVT(Ctx); 213 auto Flags = OrigArg.Flags[0]; 214 215 Flags.setOrigAlign(Align(DL.getABITypeAlignment(SplitTy))); 216 217 bool NeedsConsecutiveRegisters = 218 TLI.functionArgumentNeedsConsecutiveRegisters( 219 SplitTy, F.getCallingConv(), F.isVarArg()); 220 if (NeedsConsecutiveRegisters) { 221 Flags.setInConsecutiveRegs(); 222 if (i == e - 1) 223 Flags.setInConsecutiveRegsLast(); 224 } 225 226 // FIXME: We also want to split SplitTy further. 227 Register PartReg = OrigArg.Regs[i]; 228 SplitArgs.emplace_back(PartReg, SplitTy, Flags, OrigArg.IsFixed); 229 } 230 } 231 232 /// Lower the return value for the already existing \p Ret. This assumes that 233 /// \p MIRBuilder's insertion point is correct. 234 bool ARMCallLowering::lowerReturnVal(MachineIRBuilder &MIRBuilder, 235 const Value *Val, ArrayRef<Register> VRegs, 236 MachineInstrBuilder &Ret) const { 237 if (!Val) 238 // Nothing to do here. 239 return true; 240 241 auto &MF = MIRBuilder.getMF(); 242 const auto &F = MF.getFunction(); 243 244 auto DL = MF.getDataLayout(); 245 auto &TLI = *getTLI<ARMTargetLowering>(); 246 if (!isSupportedType(DL, TLI, Val->getType())) 247 return false; 248 249 ArgInfo OrigRetInfo(VRegs, Val->getType()); 250 setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F); 251 252 SmallVector<ArgInfo, 4> SplitRetInfos; 253 splitToValueTypes(OrigRetInfo, SplitRetInfos, MF); 254 255 CCAssignFn *AssignFn = 256 TLI.CCAssignFnForReturn(F.getCallingConv(), F.isVarArg()); 257 258 OutgoingValueHandler RetHandler(MIRBuilder, MF.getRegInfo(), Ret, AssignFn); 259 return handleAssignments(MIRBuilder, SplitRetInfos, RetHandler); 260 } 261 262 bool ARMCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, 263 const Value *Val, 264 ArrayRef<Register> VRegs) const { 265 assert(!Val == VRegs.empty() && "Return value without a vreg"); 266 267 auto const &ST = MIRBuilder.getMF().getSubtarget<ARMSubtarget>(); 268 unsigned Opcode = ST.getReturnOpcode(); 269 auto Ret = MIRBuilder.buildInstrNoInsert(Opcode).add(predOps(ARMCC::AL)); 270 271 if (!lowerReturnVal(MIRBuilder, Val, VRegs, Ret)) 272 return false; 273 274 MIRBuilder.insertInstr(Ret); 275 return true; 276 } 277 278 namespace { 279 280 /// Helper class for values coming in through an ABI boundary (used for handling 281 /// formal arguments and call return values). 282 struct IncomingValueHandler : public CallLowering::ValueHandler { 283 IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 284 CCAssignFn AssignFn) 285 : ValueHandler(MIRBuilder, MRI, AssignFn) {} 286 287 bool isIncomingArgumentHandler() const override { return true; } 288 289 Register getStackAddress(uint64_t Size, int64_t Offset, 290 MachinePointerInfo &MPO) override { 291 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 292 "Unsupported size"); 293 294 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 295 296 int FI = MFI.CreateFixedObject(Size, Offset, true); 297 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 298 299 return MIRBuilder.buildFrameIndex(LLT::pointer(MPO.getAddrSpace(), 32), FI) 300 .getReg(0); 301 } 302 303 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 304 MachinePointerInfo &MPO, CCValAssign &VA) override { 305 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 306 "Unsupported size"); 307 308 if (VA.getLocInfo() == CCValAssign::SExt || 309 VA.getLocInfo() == CCValAssign::ZExt) { 310 // If the value is zero- or sign-extended, its size becomes 4 bytes, so 311 // that's what we should load. 312 Size = 4; 313 assert(MRI.getType(ValVReg).isScalar() && "Only scalars supported atm"); 314 315 auto LoadVReg = buildLoad(LLT::scalar(32), Addr, Size, MPO); 316 MIRBuilder.buildTrunc(ValVReg, LoadVReg); 317 } else { 318 // If the value is not extended, a simple load will suffice. 319 buildLoad(ValVReg, Addr, Size, MPO); 320 } 321 } 322 323 MachineInstrBuilder buildLoad(const DstOp &Res, Register Addr, uint64_t Size, 324 MachinePointerInfo &MPO) { 325 MachineFunction &MF = MIRBuilder.getMF(); 326 327 auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOLoad, Size, 328 inferAlignFromPtrInfo(MF, MPO)); 329 return MIRBuilder.buildLoad(Res, Addr, *MMO); 330 } 331 332 void assignValueToReg(Register ValVReg, Register PhysReg, 333 CCValAssign &VA) override { 334 assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); 335 assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); 336 337 auto ValSize = VA.getValVT().getSizeInBits(); 338 auto LocSize = VA.getLocVT().getSizeInBits(); 339 340 assert(ValSize <= 64 && "Unsupported value size"); 341 assert(LocSize <= 64 && "Unsupported location size"); 342 343 markPhysRegUsed(PhysReg); 344 if (ValSize == LocSize) { 345 MIRBuilder.buildCopy(ValVReg, PhysReg); 346 } else { 347 assert(ValSize < LocSize && "Extensions not supported"); 348 349 // We cannot create a truncating copy, nor a trunc of a physical register. 350 // Therefore, we need to copy the content of the physical register into a 351 // virtual one and then truncate that. 352 auto PhysRegToVReg = MIRBuilder.buildCopy(LLT::scalar(LocSize), PhysReg); 353 MIRBuilder.buildTrunc(ValVReg, PhysRegToVReg); 354 } 355 } 356 357 unsigned assignCustomValue(const ARMCallLowering::ArgInfo &Arg, 358 ArrayRef<CCValAssign> VAs) override { 359 assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet"); 360 361 CCValAssign VA = VAs[0]; 362 assert(VA.needsCustom() && "Value doesn't need custom handling"); 363 assert(VA.getValVT() == MVT::f64 && "Unsupported type"); 364 365 CCValAssign NextVA = VAs[1]; 366 assert(NextVA.needsCustom() && "Value doesn't need custom handling"); 367 assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); 368 369 assert(VA.getValNo() == NextVA.getValNo() && 370 "Values belong to different arguments"); 371 372 assert(VA.isRegLoc() && "Value should be in reg"); 373 assert(NextVA.isRegLoc() && "Value should be in reg"); 374 375 Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), 376 MRI.createGenericVirtualRegister(LLT::scalar(32))}; 377 378 assignValueToReg(NewRegs[0], VA.getLocReg(), VA); 379 assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); 380 381 bool IsLittle = MIRBuilder.getMF().getSubtarget<ARMSubtarget>().isLittle(); 382 if (!IsLittle) 383 std::swap(NewRegs[0], NewRegs[1]); 384 385 MIRBuilder.buildMerge(Arg.Regs[0], NewRegs); 386 387 return 1; 388 } 389 390 /// Marking a physical register as used is different between formal 391 /// parameters, where it's a basic block live-in, and call returns, where it's 392 /// an implicit-def of the call instruction. 393 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 394 }; 395 396 struct FormalArgHandler : public IncomingValueHandler { 397 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 398 CCAssignFn AssignFn) 399 : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {} 400 401 void markPhysRegUsed(unsigned PhysReg) override { 402 MIRBuilder.getMRI()->addLiveIn(PhysReg); 403 MIRBuilder.getMBB().addLiveIn(PhysReg); 404 } 405 }; 406 407 } // end anonymous namespace 408 409 bool ARMCallLowering::lowerFormalArguments( 410 MachineIRBuilder &MIRBuilder, const Function &F, 411 ArrayRef<ArrayRef<Register>> VRegs) const { 412 auto &TLI = *getTLI<ARMTargetLowering>(); 413 auto Subtarget = TLI.getSubtarget(); 414 415 if (Subtarget->isThumb1Only()) 416 return false; 417 418 // Quick exit if there aren't any args 419 if (F.arg_empty()) 420 return true; 421 422 if (F.isVarArg()) 423 return false; 424 425 auto &MF = MIRBuilder.getMF(); 426 auto &MBB = MIRBuilder.getMBB(); 427 auto DL = MF.getDataLayout(); 428 429 for (auto &Arg : F.args()) { 430 if (!isSupportedType(DL, TLI, Arg.getType())) 431 return false; 432 if (Arg.hasPassPointeeByValueAttr()) 433 return false; 434 } 435 436 CCAssignFn *AssignFn = 437 TLI.CCAssignFnForCall(F.getCallingConv(), F.isVarArg()); 438 439 FormalArgHandler ArgHandler(MIRBuilder, MIRBuilder.getMF().getRegInfo(), 440 AssignFn); 441 442 SmallVector<ArgInfo, 8> SplitArgInfos; 443 unsigned Idx = 0; 444 for (auto &Arg : F.args()) { 445 ArgInfo OrigArgInfo(VRegs[Idx], Arg.getType()); 446 447 setArgFlags(OrigArgInfo, Idx + AttributeList::FirstArgIndex, DL, F); 448 splitToValueTypes(OrigArgInfo, SplitArgInfos, MF); 449 450 Idx++; 451 } 452 453 if (!MBB.empty()) 454 MIRBuilder.setInstr(*MBB.begin()); 455 456 if (!handleAssignments(MIRBuilder, SplitArgInfos, ArgHandler)) 457 return false; 458 459 // Move back to the end of the basic block. 460 MIRBuilder.setMBB(MBB); 461 return true; 462 } 463 464 namespace { 465 466 struct CallReturnHandler : public IncomingValueHandler { 467 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 468 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 469 : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 470 471 void markPhysRegUsed(unsigned PhysReg) override { 472 MIB.addDef(PhysReg, RegState::Implicit); 473 } 474 475 MachineInstrBuilder MIB; 476 }; 477 478 // FIXME: This should move to the ARMSubtarget when it supports all the opcodes. 479 unsigned getCallOpcode(const ARMSubtarget &STI, bool isDirect) { 480 if (isDirect) 481 return STI.isThumb() ? ARM::tBL : ARM::BL; 482 483 if (STI.isThumb()) 484 return ARM::tBLXr; 485 486 if (STI.hasV5TOps()) 487 return ARM::BLX; 488 489 if (STI.hasV4TOps()) 490 return ARM::BX_CALL; 491 492 return ARM::BMOVPCRX_CALL; 493 } 494 } // end anonymous namespace 495 496 bool ARMCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const { 497 MachineFunction &MF = MIRBuilder.getMF(); 498 const auto &TLI = *getTLI<ARMTargetLowering>(); 499 const auto &DL = MF.getDataLayout(); 500 const auto &STI = MF.getSubtarget<ARMSubtarget>(); 501 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 502 MachineRegisterInfo &MRI = MF.getRegInfo(); 503 504 if (STI.genLongCalls()) 505 return false; 506 507 if (STI.isThumb1Only()) 508 return false; 509 510 auto CallSeqStart = MIRBuilder.buildInstr(ARM::ADJCALLSTACKDOWN); 511 512 // Create the call instruction so we can add the implicit uses of arg 513 // registers, but don't insert it yet. 514 bool IsDirect = !Info.Callee.isReg(); 515 auto CallOpcode = getCallOpcode(STI, IsDirect); 516 auto MIB = MIRBuilder.buildInstrNoInsert(CallOpcode); 517 518 bool IsThumb = STI.isThumb(); 519 if (IsThumb) 520 MIB.add(predOps(ARMCC::AL)); 521 522 MIB.add(Info.Callee); 523 if (!IsDirect) { 524 auto CalleeReg = Info.Callee.getReg(); 525 if (CalleeReg && !Register::isPhysicalRegister(CalleeReg)) { 526 unsigned CalleeIdx = IsThumb ? 2 : 0; 527 MIB->getOperand(CalleeIdx).setReg(constrainOperandRegClass( 528 MF, *TRI, MRI, *STI.getInstrInfo(), *STI.getRegBankInfo(), 529 *MIB.getInstr(), MIB->getDesc(), Info.Callee, CalleeIdx)); 530 } 531 } 532 533 MIB.addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv)); 534 535 bool IsVarArg = false; 536 SmallVector<ArgInfo, 8> ArgInfos; 537 for (auto Arg : Info.OrigArgs) { 538 if (!isSupportedType(DL, TLI, Arg.Ty)) 539 return false; 540 541 if (!Arg.IsFixed) 542 IsVarArg = true; 543 544 if (Arg.Flags[0].isByVal()) 545 return false; 546 547 splitToValueTypes(Arg, ArgInfos, MF); 548 } 549 550 auto ArgAssignFn = TLI.CCAssignFnForCall(Info.CallConv, IsVarArg); 551 OutgoingValueHandler ArgHandler(MIRBuilder, MRI, MIB, ArgAssignFn); 552 if (!handleAssignments(MIRBuilder, ArgInfos, ArgHandler)) 553 return false; 554 555 // Now we can add the actual call instruction to the correct basic block. 556 MIRBuilder.insertInstr(MIB); 557 558 if (!Info.OrigRet.Ty->isVoidTy()) { 559 if (!isSupportedType(DL, TLI, Info.OrigRet.Ty)) 560 return false; 561 562 ArgInfos.clear(); 563 splitToValueTypes(Info.OrigRet, ArgInfos, MF); 564 auto RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, IsVarArg); 565 CallReturnHandler RetHandler(MIRBuilder, MRI, MIB, RetAssignFn); 566 if (!handleAssignments(MIRBuilder, ArgInfos, RetHandler)) 567 return false; 568 } 569 570 // We now know the size of the stack - update the ADJCALLSTACKDOWN 571 // accordingly. 572 CallSeqStart.addImm(ArgHandler.StackSize).addImm(0).add(predOps(ARMCC::AL)); 573 574 MIRBuilder.buildInstr(ARM::ADJCALLSTACKUP) 575 .addImm(ArgHandler.StackSize) 576 .addImm(0) 577 .add(predOps(ARMCC::AL)); 578 579 return true; 580 } 581