1 //===- llvm/lib/Target/ARM/ARMCallLowering.cpp - Call lowering ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMCallLowering.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMISelLowering.h" 18 #include "ARMSubtarget.h" 19 #include "Utils/ARMBaseInfo.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/CodeGen/GlobalISel/Utils.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/LowLevelTypeImpl.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <utility> 49 50 using namespace llvm; 51 52 ARMCallLowering::ARMCallLowering(const ARMTargetLowering &TLI) 53 : CallLowering(&TLI) {} 54 55 static bool isSupportedType(const DataLayout &DL, const ARMTargetLowering &TLI, 56 Type *T) { 57 if (T->isArrayTy()) 58 return isSupportedType(DL, TLI, T->getArrayElementType()); 59 60 if (T->isStructTy()) { 61 // For now we only allow homogeneous structs that we can manipulate with 62 // G_MERGE_VALUES and G_UNMERGE_VALUES 63 auto StructT = cast<StructType>(T); 64 for (unsigned i = 1, e = StructT->getNumElements(); i != e; ++i) 65 if (StructT->getElementType(i) != StructT->getElementType(0)) 66 return false; 67 return isSupportedType(DL, TLI, StructT->getElementType(0)); 68 } 69 70 EVT VT = TLI.getValueType(DL, T, true); 71 if (!VT.isSimple() || VT.isVector() || 72 !(VT.isInteger() || VT.isFloatingPoint())) 73 return false; 74 75 unsigned VTSize = VT.getSimpleVT().getSizeInBits(); 76 77 if (VTSize == 64) 78 // FIXME: Support i64 too 79 return VT.isFloatingPoint(); 80 81 return VTSize == 1 || VTSize == 8 || VTSize == 16 || VTSize == 32; 82 } 83 84 namespace { 85 86 /// Helper class for values going out through an ABI boundary (used for handling 87 /// function return values and call parameters). 88 struct OutgoingValueHandler : public CallLowering::ValueHandler { 89 OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 90 MachineInstrBuilder &MIB, CCAssignFn *AssignFn) 91 : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 92 93 Register getStackAddress(uint64_t Size, int64_t Offset, 94 MachinePointerInfo &MPO) override { 95 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 96 "Unsupported size"); 97 98 LLT p0 = LLT::pointer(0, 32); 99 LLT s32 = LLT::scalar(32); 100 Register SPReg = MRI.createGenericVirtualRegister(p0); 101 MIRBuilder.buildCopy(SPReg, Register(ARM::SP)); 102 103 Register OffsetReg = MRI.createGenericVirtualRegister(s32); 104 MIRBuilder.buildConstant(OffsetReg, Offset); 105 106 Register AddrReg = MRI.createGenericVirtualRegister(p0); 107 MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg); 108 109 MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset); 110 return AddrReg; 111 } 112 113 void assignValueToReg(Register ValVReg, Register PhysReg, 114 CCValAssign &VA) override { 115 assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); 116 assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); 117 118 assert(VA.getValVT().getSizeInBits() <= 64 && "Unsupported value size"); 119 assert(VA.getLocVT().getSizeInBits() <= 64 && "Unsupported location size"); 120 121 Register ExtReg = extendRegister(ValVReg, VA); 122 MIRBuilder.buildCopy(PhysReg, ExtReg); 123 MIB.addUse(PhysReg, RegState::Implicit); 124 } 125 126 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 127 MachinePointerInfo &MPO, CCValAssign &VA) override { 128 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 129 "Unsupported size"); 130 131 Register ExtReg = extendRegister(ValVReg, VA); 132 auto MMO = MIRBuilder.getMF().getMachineMemOperand( 133 MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(), 134 /* Alignment */ 1); 135 MIRBuilder.buildStore(ExtReg, Addr, *MMO); 136 } 137 138 unsigned assignCustomValue(const CallLowering::ArgInfo &Arg, 139 ArrayRef<CCValAssign> VAs) override { 140 assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet"); 141 142 CCValAssign VA = VAs[0]; 143 assert(VA.needsCustom() && "Value doesn't need custom handling"); 144 assert(VA.getValVT() == MVT::f64 && "Unsupported type"); 145 146 CCValAssign NextVA = VAs[1]; 147 assert(NextVA.needsCustom() && "Value doesn't need custom handling"); 148 assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); 149 150 assert(VA.getValNo() == NextVA.getValNo() && 151 "Values belong to different arguments"); 152 153 assert(VA.isRegLoc() && "Value should be in reg"); 154 assert(NextVA.isRegLoc() && "Value should be in reg"); 155 156 Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), 157 MRI.createGenericVirtualRegister(LLT::scalar(32))}; 158 MIRBuilder.buildUnmerge(NewRegs, Arg.Regs[0]); 159 160 bool IsLittle = MIRBuilder.getMF().getSubtarget<ARMSubtarget>().isLittle(); 161 if (!IsLittle) 162 std::swap(NewRegs[0], NewRegs[1]); 163 164 assignValueToReg(NewRegs[0], VA.getLocReg(), VA); 165 assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); 166 167 return 1; 168 } 169 170 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 171 CCValAssign::LocInfo LocInfo, 172 const CallLowering::ArgInfo &Info, CCState &State) override { 173 if (AssignFn(ValNo, ValVT, LocVT, LocInfo, Info.Flags, State)) 174 return true; 175 176 StackSize = 177 std::max(StackSize, static_cast<uint64_t>(State.getNextStackOffset())); 178 return false; 179 } 180 181 MachineInstrBuilder &MIB; 182 uint64_t StackSize = 0; 183 }; 184 185 } // end anonymous namespace 186 187 void ARMCallLowering::splitToValueTypes( 188 const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs, 189 MachineFunction &MF, const SplitArgTy &PerformArgSplit) const { 190 const ARMTargetLowering &TLI = *getTLI<ARMTargetLowering>(); 191 LLVMContext &Ctx = OrigArg.Ty->getContext(); 192 const DataLayout &DL = MF.getDataLayout(); 193 MachineRegisterInfo &MRI = MF.getRegInfo(); 194 const Function &F = MF.getFunction(); 195 196 SmallVector<EVT, 4> SplitVTs; 197 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, nullptr, nullptr, 0); 198 199 if (SplitVTs.size() == 1) { 200 // Even if there is no splitting to do, we still want to replace the 201 // original type (e.g. pointer type -> integer). 202 assert(OrigArg.Regs.size() == 1 && "Regs / types mismatch"); 203 auto Flags = OrigArg.Flags; 204 unsigned OriginalAlignment = DL.getABITypeAlignment(OrigArg.Ty); 205 Flags.setOrigAlign(OriginalAlignment); 206 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 207 Flags, OrigArg.IsFixed); 208 return; 209 } 210 211 if (OrigArg.Regs.size() > 1) { 212 // Create one ArgInfo for each virtual register. 213 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 214 for (unsigned i = 0, e = SplitVTs.size(); i != e; ++i) { 215 EVT SplitVT = SplitVTs[i]; 216 Type *SplitTy = SplitVT.getTypeForEVT(Ctx); 217 auto Flags = OrigArg.Flags; 218 219 unsigned OriginalAlignment = DL.getABITypeAlignment(SplitTy); 220 Flags.setOrigAlign(OriginalAlignment); 221 222 bool NeedsConsecutiveRegisters = 223 TLI.functionArgumentNeedsConsecutiveRegisters( 224 SplitTy, F.getCallingConv(), F.isVarArg()); 225 if (NeedsConsecutiveRegisters) { 226 Flags.setInConsecutiveRegs(); 227 if (i == e - 1) 228 Flags.setInConsecutiveRegsLast(); 229 } 230 231 // FIXME: We also want to split SplitTy further. 232 Register PartReg = OrigArg.Regs[i]; 233 SplitArgs.emplace_back(PartReg, SplitTy, Flags, OrigArg.IsFixed); 234 } 235 236 return; 237 } 238 239 for (unsigned i = 0, e = SplitVTs.size(); i != e; ++i) { 240 EVT SplitVT = SplitVTs[i]; 241 Type *SplitTy = SplitVT.getTypeForEVT(Ctx); 242 auto Flags = OrigArg.Flags; 243 244 unsigned OriginalAlignment = DL.getABITypeAlignment(SplitTy); 245 Flags.setOrigAlign(OriginalAlignment); 246 247 bool NeedsConsecutiveRegisters = 248 TLI.functionArgumentNeedsConsecutiveRegisters( 249 SplitTy, F.getCallingConv(), F.isVarArg()); 250 if (NeedsConsecutiveRegisters) { 251 Flags.setInConsecutiveRegs(); 252 if (i == e - 1) 253 Flags.setInConsecutiveRegsLast(); 254 } 255 256 Register PartReg = 257 MRI.createGenericVirtualRegister(getLLTForType(*SplitTy, DL)); 258 SplitArgs.push_back(ArgInfo{PartReg, SplitTy, Flags, OrigArg.IsFixed}); 259 PerformArgSplit(PartReg); 260 } 261 } 262 263 /// Lower the return value for the already existing \p Ret. This assumes that 264 /// \p MIRBuilder's insertion point is correct. 265 bool ARMCallLowering::lowerReturnVal(MachineIRBuilder &MIRBuilder, 266 const Value *Val, ArrayRef<Register> VRegs, 267 MachineInstrBuilder &Ret) const { 268 if (!Val) 269 // Nothing to do here. 270 return true; 271 272 auto &MF = MIRBuilder.getMF(); 273 const auto &F = MF.getFunction(); 274 275 auto DL = MF.getDataLayout(); 276 auto &TLI = *getTLI<ARMTargetLowering>(); 277 if (!isSupportedType(DL, TLI, Val->getType())) 278 return false; 279 280 SmallVector<EVT, 4> SplitEVTs; 281 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 282 assert(VRegs.size() == SplitEVTs.size() && 283 "For each split Type there should be exactly one VReg."); 284 285 SmallVector<ArgInfo, 4> SplitVTs; 286 LLVMContext &Ctx = Val->getType()->getContext(); 287 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 288 ArgInfo CurArgInfo(VRegs[i], SplitEVTs[i].getTypeForEVT(Ctx)); 289 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); 290 291 SmallVector<Register, 4> Regs; 292 splitToValueTypes(CurArgInfo, SplitVTs, MF, 293 [&](Register Reg) { Regs.push_back(Reg); }); 294 if (Regs.size() > 1) 295 MIRBuilder.buildUnmerge(Regs, VRegs[i]); 296 } 297 298 CCAssignFn *AssignFn = 299 TLI.CCAssignFnForReturn(F.getCallingConv(), F.isVarArg()); 300 301 OutgoingValueHandler RetHandler(MIRBuilder, MF.getRegInfo(), Ret, AssignFn); 302 return handleAssignments(MIRBuilder, SplitVTs, RetHandler); 303 } 304 305 bool ARMCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, 306 const Value *Val, 307 ArrayRef<Register> VRegs) const { 308 assert(!Val == VRegs.empty() && "Return value without a vreg"); 309 310 auto const &ST = MIRBuilder.getMF().getSubtarget<ARMSubtarget>(); 311 unsigned Opcode = ST.getReturnOpcode(); 312 auto Ret = MIRBuilder.buildInstrNoInsert(Opcode).add(predOps(ARMCC::AL)); 313 314 if (!lowerReturnVal(MIRBuilder, Val, VRegs, Ret)) 315 return false; 316 317 MIRBuilder.insertInstr(Ret); 318 return true; 319 } 320 321 namespace { 322 323 /// Helper class for values coming in through an ABI boundary (used for handling 324 /// formal arguments and call return values). 325 struct IncomingValueHandler : public CallLowering::ValueHandler { 326 IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 327 CCAssignFn AssignFn) 328 : ValueHandler(MIRBuilder, MRI, AssignFn) {} 329 330 bool isArgumentHandler() const override { return true; } 331 332 Register getStackAddress(uint64_t Size, int64_t Offset, 333 MachinePointerInfo &MPO) override { 334 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 335 "Unsupported size"); 336 337 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 338 339 int FI = MFI.CreateFixedObject(Size, Offset, true); 340 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 341 342 unsigned AddrReg = 343 MRI.createGenericVirtualRegister(LLT::pointer(MPO.getAddrSpace(), 32)); 344 MIRBuilder.buildFrameIndex(AddrReg, FI); 345 346 return AddrReg; 347 } 348 349 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 350 MachinePointerInfo &MPO, CCValAssign &VA) override { 351 assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) && 352 "Unsupported size"); 353 354 if (VA.getLocInfo() == CCValAssign::SExt || 355 VA.getLocInfo() == CCValAssign::ZExt) { 356 // If the value is zero- or sign-extended, its size becomes 4 bytes, so 357 // that's what we should load. 358 Size = 4; 359 assert(MRI.getType(ValVReg).isScalar() && "Only scalars supported atm"); 360 361 auto LoadVReg = MRI.createGenericVirtualRegister(LLT::scalar(32)); 362 buildLoad(LoadVReg, Addr, Size, /* Alignment */ 1, MPO); 363 MIRBuilder.buildTrunc(ValVReg, LoadVReg); 364 } else { 365 // If the value is not extended, a simple load will suffice. 366 buildLoad(ValVReg, Addr, Size, /* Alignment */ 1, MPO); 367 } 368 } 369 370 void buildLoad(Register Val, Register Addr, uint64_t Size, unsigned Alignment, 371 MachinePointerInfo &MPO) { 372 auto MMO = MIRBuilder.getMF().getMachineMemOperand( 373 MPO, MachineMemOperand::MOLoad, Size, Alignment); 374 MIRBuilder.buildLoad(Val, Addr, *MMO); 375 } 376 377 void assignValueToReg(Register ValVReg, Register PhysReg, 378 CCValAssign &VA) override { 379 assert(VA.isRegLoc() && "Value shouldn't be assigned to reg"); 380 assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?"); 381 382 auto ValSize = VA.getValVT().getSizeInBits(); 383 auto LocSize = VA.getLocVT().getSizeInBits(); 384 385 assert(ValSize <= 64 && "Unsupported value size"); 386 assert(LocSize <= 64 && "Unsupported location size"); 387 388 markPhysRegUsed(PhysReg); 389 if (ValSize == LocSize) { 390 MIRBuilder.buildCopy(ValVReg, PhysReg); 391 } else { 392 assert(ValSize < LocSize && "Extensions not supported"); 393 394 // We cannot create a truncating copy, nor a trunc of a physical register. 395 // Therefore, we need to copy the content of the physical register into a 396 // virtual one and then truncate that. 397 auto PhysRegToVReg = 398 MRI.createGenericVirtualRegister(LLT::scalar(LocSize)); 399 MIRBuilder.buildCopy(PhysRegToVReg, PhysReg); 400 MIRBuilder.buildTrunc(ValVReg, PhysRegToVReg); 401 } 402 } 403 404 unsigned assignCustomValue(const ARMCallLowering::ArgInfo &Arg, 405 ArrayRef<CCValAssign> VAs) override { 406 assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet"); 407 408 CCValAssign VA = VAs[0]; 409 assert(VA.needsCustom() && "Value doesn't need custom handling"); 410 assert(VA.getValVT() == MVT::f64 && "Unsupported type"); 411 412 CCValAssign NextVA = VAs[1]; 413 assert(NextVA.needsCustom() && "Value doesn't need custom handling"); 414 assert(NextVA.getValVT() == MVT::f64 && "Unsupported type"); 415 416 assert(VA.getValNo() == NextVA.getValNo() && 417 "Values belong to different arguments"); 418 419 assert(VA.isRegLoc() && "Value should be in reg"); 420 assert(NextVA.isRegLoc() && "Value should be in reg"); 421 422 Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), 423 MRI.createGenericVirtualRegister(LLT::scalar(32))}; 424 425 assignValueToReg(NewRegs[0], VA.getLocReg(), VA); 426 assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA); 427 428 bool IsLittle = MIRBuilder.getMF().getSubtarget<ARMSubtarget>().isLittle(); 429 if (!IsLittle) 430 std::swap(NewRegs[0], NewRegs[1]); 431 432 MIRBuilder.buildMerge(Arg.Regs[0], NewRegs); 433 434 return 1; 435 } 436 437 /// Marking a physical register as used is different between formal 438 /// parameters, where it's a basic block live-in, and call returns, where it's 439 /// an implicit-def of the call instruction. 440 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 441 }; 442 443 struct FormalArgHandler : public IncomingValueHandler { 444 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 445 CCAssignFn AssignFn) 446 : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {} 447 448 void markPhysRegUsed(unsigned PhysReg) override { 449 MIRBuilder.getMBB().addLiveIn(PhysReg); 450 } 451 }; 452 453 } // end anonymous namespace 454 455 bool ARMCallLowering::lowerFormalArguments( 456 MachineIRBuilder &MIRBuilder, const Function &F, 457 ArrayRef<ArrayRef<Register>> VRegs) const { 458 auto &TLI = *getTLI<ARMTargetLowering>(); 459 auto Subtarget = TLI.getSubtarget(); 460 461 if (Subtarget->isThumb1Only()) 462 return false; 463 464 // Quick exit if there aren't any args 465 if (F.arg_empty()) 466 return true; 467 468 if (F.isVarArg()) 469 return false; 470 471 auto &MF = MIRBuilder.getMF(); 472 auto &MBB = MIRBuilder.getMBB(); 473 auto DL = MF.getDataLayout(); 474 475 for (auto &Arg : F.args()) { 476 if (!isSupportedType(DL, TLI, Arg.getType())) 477 return false; 478 if (Arg.hasByValOrInAllocaAttr()) 479 return false; 480 } 481 482 CCAssignFn *AssignFn = 483 TLI.CCAssignFnForCall(F.getCallingConv(), F.isVarArg()); 484 485 FormalArgHandler ArgHandler(MIRBuilder, MIRBuilder.getMF().getRegInfo(), 486 AssignFn); 487 488 SmallVector<ArgInfo, 8> SplitArgInfos; 489 unsigned Idx = 0; 490 for (auto &Arg : F.args()) { 491 ArgInfo OrigArgInfo(VRegs[Idx], Arg.getType()); 492 setArgFlags(OrigArgInfo, Idx + AttributeList::FirstArgIndex, DL, F); 493 494 splitToValueTypes(OrigArgInfo, SplitArgInfos, MF, [&](Register Reg) { 495 llvm_unreachable("Args should already be split"); 496 }); 497 498 Idx++; 499 } 500 501 if (!MBB.empty()) 502 MIRBuilder.setInstr(*MBB.begin()); 503 504 if (!handleAssignments(MIRBuilder, SplitArgInfos, ArgHandler)) 505 return false; 506 507 // Move back to the end of the basic block. 508 MIRBuilder.setMBB(MBB); 509 return true; 510 } 511 512 namespace { 513 514 struct CallReturnHandler : public IncomingValueHandler { 515 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 516 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 517 : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 518 519 void markPhysRegUsed(unsigned PhysReg) override { 520 MIB.addDef(PhysReg, RegState::Implicit); 521 } 522 523 MachineInstrBuilder MIB; 524 }; 525 526 // FIXME: This should move to the ARMSubtarget when it supports all the opcodes. 527 unsigned getCallOpcode(const ARMSubtarget &STI, bool isDirect) { 528 if (isDirect) 529 return STI.isThumb() ? ARM::tBL : ARM::BL; 530 531 if (STI.isThumb()) 532 return ARM::tBLXr; 533 534 if (STI.hasV5TOps()) 535 return ARM::BLX; 536 537 if (STI.hasV4TOps()) 538 return ARM::BX_CALL; 539 540 return ARM::BMOVPCRX_CALL; 541 } 542 } // end anonymous namespace 543 544 bool ARMCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 545 CallingConv::ID CallConv, 546 const MachineOperand &Callee, 547 const ArgInfo &OrigRet, 548 ArrayRef<ArgInfo> OrigArgs) const { 549 MachineFunction &MF = MIRBuilder.getMF(); 550 const auto &TLI = *getTLI<ARMTargetLowering>(); 551 const auto &DL = MF.getDataLayout(); 552 const auto &STI = MF.getSubtarget<ARMSubtarget>(); 553 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); 554 MachineRegisterInfo &MRI = MF.getRegInfo(); 555 556 if (STI.genLongCalls()) 557 return false; 558 559 if (STI.isThumb1Only()) 560 return false; 561 562 auto CallSeqStart = MIRBuilder.buildInstr(ARM::ADJCALLSTACKDOWN); 563 564 // Create the call instruction so we can add the implicit uses of arg 565 // registers, but don't insert it yet. 566 bool IsDirect = !Callee.isReg(); 567 auto CallOpcode = getCallOpcode(STI, IsDirect); 568 auto MIB = MIRBuilder.buildInstrNoInsert(CallOpcode); 569 570 bool IsThumb = STI.isThumb(); 571 if (IsThumb) 572 MIB.add(predOps(ARMCC::AL)); 573 574 MIB.add(Callee); 575 if (!IsDirect) { 576 auto CalleeReg = Callee.getReg(); 577 if (CalleeReg && !TRI->isPhysicalRegister(CalleeReg)) { 578 unsigned CalleeIdx = IsThumb ? 2 : 0; 579 MIB->getOperand(CalleeIdx).setReg(constrainOperandRegClass( 580 MF, *TRI, MRI, *STI.getInstrInfo(), *STI.getRegBankInfo(), 581 *MIB.getInstr(), MIB->getDesc(), Callee, CalleeIdx)); 582 } 583 } 584 585 MIB.addRegMask(TRI->getCallPreservedMask(MF, CallConv)); 586 587 bool IsVarArg = false; 588 SmallVector<ArgInfo, 8> ArgInfos; 589 for (auto Arg : OrigArgs) { 590 if (!isSupportedType(DL, TLI, Arg.Ty)) 591 return false; 592 593 if (!Arg.IsFixed) 594 IsVarArg = true; 595 596 if (Arg.Flags.isByVal()) 597 return false; 598 599 splitToValueTypes(Arg, ArgInfos, MF, [&](Register Reg) { 600 llvm_unreachable("Function args should already be split"); 601 }); 602 } 603 604 auto ArgAssignFn = TLI.CCAssignFnForCall(CallConv, IsVarArg); 605 OutgoingValueHandler ArgHandler(MIRBuilder, MRI, MIB, ArgAssignFn); 606 if (!handleAssignments(MIRBuilder, ArgInfos, ArgHandler)) 607 return false; 608 609 // Now we can add the actual call instruction to the correct basic block. 610 MIRBuilder.insertInstr(MIB); 611 612 if (!OrigRet.Ty->isVoidTy()) { 613 if (!isSupportedType(DL, TLI, OrigRet.Ty)) 614 return false; 615 616 ArgInfos.clear(); 617 splitToValueTypes(OrigRet, ArgInfos, MF, [&](Register Reg) { 618 llvm_unreachable("Call results should already be split"); 619 }); 620 621 auto RetAssignFn = TLI.CCAssignFnForReturn(CallConv, IsVarArg); 622 CallReturnHandler RetHandler(MIRBuilder, MRI, MIB, RetAssignFn); 623 if (!handleAssignments(MIRBuilder, ArgInfos, RetHandler)) 624 return false; 625 } 626 627 // We now know the size of the stack - update the ADJCALLSTACKDOWN 628 // accordingly. 629 CallSeqStart.addImm(ArgHandler.StackSize).addImm(0).add(predOps(ARMCC::AL)); 630 631 MIRBuilder.buildInstr(ARM::ADJCALLSTACKUP) 632 .addImm(ArgHandler.StackSize) 633 .addImm(0) 634 .add(predOps(ARMCC::AL)); 635 636 return true; 637 } 638