1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Base ARM implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMBaseInstrInfo.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMRegisterInfo.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "llvm/Constants.h" 22 #include "llvm/Function.h" 23 #include "llvm/GlobalValue.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/SelectionDAGNodes.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/Support/BranchProbability.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/ADT/STLExtras.h" 38 39 #define GET_INSTRINFO_CTOR 40 #include "ARMGenInstrInfo.inc" 41 42 using namespace llvm; 43 44 static cl::opt<bool> 45 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 46 cl::desc("Enable ARM 2-addr to 3-addr conv")); 47 48 static cl::opt<bool> 49 WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true), 50 cl::desc("Widen ARM vmovs to vmovd when possible")); 51 52 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 53 struct ARM_MLxEntry { 54 unsigned MLxOpc; // MLA / MLS opcode 55 unsigned MulOpc; // Expanded multiplication opcode 56 unsigned AddSubOpc; // Expanded add / sub opcode 57 bool NegAcc; // True if the acc is negated before the add / sub. 58 bool HasLane; // True if instruction has an extra "lane" operand. 59 }; 60 61 static const ARM_MLxEntry ARM_MLxTable[] = { 62 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 63 // fp scalar ops 64 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 65 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 66 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 67 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 68 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 69 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 70 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 71 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 72 73 // fp SIMD ops 74 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 75 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 76 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 77 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 78 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 79 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 80 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 81 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 82 }; 83 84 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 85 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 86 Subtarget(STI) { 87 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 88 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 89 assert(false && "Duplicated entries?"); 90 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 91 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 92 } 93 } 94 95 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 96 // currently defaults to no prepass hazard recognizer. 97 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 98 CreateTargetHazardRecognizer(const TargetMachine *TM, 99 const ScheduleDAG *DAG) const { 100 if (usePreRAHazardRecognizer()) { 101 const InstrItineraryData *II = TM->getInstrItineraryData(); 102 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 103 } 104 return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG); 105 } 106 107 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 108 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 109 const ScheduleDAG *DAG) const { 110 if (Subtarget.isThumb2() || Subtarget.hasVFP2()) 111 return (ScheduleHazardRecognizer *) 112 new ARMHazardRecognizer(II, *this, getRegisterInfo(), Subtarget, DAG); 113 return TargetInstrInfoImpl::CreateTargetPostRAHazardRecognizer(II, DAG); 114 } 115 116 MachineInstr * 117 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 118 MachineBasicBlock::iterator &MBBI, 119 LiveVariables *LV) const { 120 // FIXME: Thumb2 support. 121 122 if (!EnableARM3Addr) 123 return NULL; 124 125 MachineInstr *MI = MBBI; 126 MachineFunction &MF = *MI->getParent()->getParent(); 127 uint64_t TSFlags = MI->getDesc().TSFlags; 128 bool isPre = false; 129 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 130 default: return NULL; 131 case ARMII::IndexModePre: 132 isPre = true; 133 break; 134 case ARMII::IndexModePost: 135 break; 136 } 137 138 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 139 // operation. 140 unsigned MemOpc = getUnindexedOpcode(MI->getOpcode()); 141 if (MemOpc == 0) 142 return NULL; 143 144 MachineInstr *UpdateMI = NULL; 145 MachineInstr *MemMI = NULL; 146 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 147 const MCInstrDesc &MCID = MI->getDesc(); 148 unsigned NumOps = MCID.getNumOperands(); 149 bool isLoad = !MI->mayStore(); 150 const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0); 151 const MachineOperand &Base = MI->getOperand(2); 152 const MachineOperand &Offset = MI->getOperand(NumOps-3); 153 unsigned WBReg = WB.getReg(); 154 unsigned BaseReg = Base.getReg(); 155 unsigned OffReg = Offset.getReg(); 156 unsigned OffImm = MI->getOperand(NumOps-2).getImm(); 157 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm(); 158 switch (AddrMode) { 159 default: llvm_unreachable("Unknown indexed op!"); 160 case ARMII::AddrMode2: { 161 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 162 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 163 if (OffReg == 0) { 164 if (ARM_AM::getSOImmVal(Amt) == -1) 165 // Can't encode it in a so_imm operand. This transformation will 166 // add more than 1 instruction. Abandon! 167 return NULL; 168 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 169 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 170 .addReg(BaseReg).addImm(Amt) 171 .addImm(Pred).addReg(0).addReg(0); 172 } else if (Amt != 0) { 173 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 174 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 175 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 176 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 177 .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc) 178 .addImm(Pred).addReg(0).addReg(0); 179 } else 180 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 181 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 182 .addReg(BaseReg).addReg(OffReg) 183 .addImm(Pred).addReg(0).addReg(0); 184 break; 185 } 186 case ARMII::AddrMode3 : { 187 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 188 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 189 if (OffReg == 0) 190 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 191 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 192 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 193 .addReg(BaseReg).addImm(Amt) 194 .addImm(Pred).addReg(0).addReg(0); 195 else 196 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 197 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 198 .addReg(BaseReg).addReg(OffReg) 199 .addImm(Pred).addReg(0).addReg(0); 200 break; 201 } 202 } 203 204 std::vector<MachineInstr*> NewMIs; 205 if (isPre) { 206 if (isLoad) 207 MemMI = BuildMI(MF, MI->getDebugLoc(), 208 get(MemOpc), MI->getOperand(0).getReg()) 209 .addReg(WBReg).addImm(0).addImm(Pred); 210 else 211 MemMI = BuildMI(MF, MI->getDebugLoc(), 212 get(MemOpc)).addReg(MI->getOperand(1).getReg()) 213 .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); 214 NewMIs.push_back(MemMI); 215 NewMIs.push_back(UpdateMI); 216 } else { 217 if (isLoad) 218 MemMI = BuildMI(MF, MI->getDebugLoc(), 219 get(MemOpc), MI->getOperand(0).getReg()) 220 .addReg(BaseReg).addImm(0).addImm(Pred); 221 else 222 MemMI = BuildMI(MF, MI->getDebugLoc(), 223 get(MemOpc)).addReg(MI->getOperand(1).getReg()) 224 .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); 225 if (WB.isDead()) 226 UpdateMI->getOperand(0).setIsDead(); 227 NewMIs.push_back(UpdateMI); 228 NewMIs.push_back(MemMI); 229 } 230 231 // Transfer LiveVariables states, kill / dead info. 232 if (LV) { 233 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 234 MachineOperand &MO = MI->getOperand(i); 235 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 236 unsigned Reg = MO.getReg(); 237 238 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 239 if (MO.isDef()) { 240 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 241 if (MO.isDead()) 242 LV->addVirtualRegisterDead(Reg, NewMI); 243 } 244 if (MO.isUse() && MO.isKill()) { 245 for (unsigned j = 0; j < 2; ++j) { 246 // Look at the two new MI's in reverse order. 247 MachineInstr *NewMI = NewMIs[j]; 248 if (!NewMI->readsRegister(Reg)) 249 continue; 250 LV->addVirtualRegisterKilled(Reg, NewMI); 251 if (VI.removeKill(MI)) 252 VI.Kills.push_back(NewMI); 253 break; 254 } 255 } 256 } 257 } 258 } 259 260 MFI->insert(MBBI, NewMIs[1]); 261 MFI->insert(MBBI, NewMIs[0]); 262 return NewMIs[0]; 263 } 264 265 // Branch analysis. 266 bool 267 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 268 MachineBasicBlock *&FBB, 269 SmallVectorImpl<MachineOperand> &Cond, 270 bool AllowModify) const { 271 // If the block has no terminators, it just falls into the block after it. 272 MachineBasicBlock::iterator I = MBB.end(); 273 if (I == MBB.begin()) 274 return false; 275 --I; 276 while (I->isDebugValue()) { 277 if (I == MBB.begin()) 278 return false; 279 --I; 280 } 281 if (!isUnpredicatedTerminator(I)) 282 return false; 283 284 // Get the last instruction in the block. 285 MachineInstr *LastInst = I; 286 287 // If there is only one terminator instruction, process it. 288 unsigned LastOpc = LastInst->getOpcode(); 289 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 290 if (isUncondBranchOpcode(LastOpc)) { 291 TBB = LastInst->getOperand(0).getMBB(); 292 return false; 293 } 294 if (isCondBranchOpcode(LastOpc)) { 295 // Block ends with fall-through condbranch. 296 TBB = LastInst->getOperand(0).getMBB(); 297 Cond.push_back(LastInst->getOperand(1)); 298 Cond.push_back(LastInst->getOperand(2)); 299 return false; 300 } 301 return true; // Can't handle indirect branch. 302 } 303 304 // Get the instruction before it if it is a terminator. 305 MachineInstr *SecondLastInst = I; 306 unsigned SecondLastOpc = SecondLastInst->getOpcode(); 307 308 // If AllowModify is true and the block ends with two or more unconditional 309 // branches, delete all but the first unconditional branch. 310 if (AllowModify && isUncondBranchOpcode(LastOpc)) { 311 while (isUncondBranchOpcode(SecondLastOpc)) { 312 LastInst->eraseFromParent(); 313 LastInst = SecondLastInst; 314 LastOpc = LastInst->getOpcode(); 315 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 316 // Return now the only terminator is an unconditional branch. 317 TBB = LastInst->getOperand(0).getMBB(); 318 return false; 319 } else { 320 SecondLastInst = I; 321 SecondLastOpc = SecondLastInst->getOpcode(); 322 } 323 } 324 } 325 326 // If there are three terminators, we don't know what sort of block this is. 327 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) 328 return true; 329 330 // If the block ends with a B and a Bcc, handle it. 331 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { 332 TBB = SecondLastInst->getOperand(0).getMBB(); 333 Cond.push_back(SecondLastInst->getOperand(1)); 334 Cond.push_back(SecondLastInst->getOperand(2)); 335 FBB = LastInst->getOperand(0).getMBB(); 336 return false; 337 } 338 339 // If the block ends with two unconditional branches, handle it. The second 340 // one is not executed, so remove it. 341 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) { 342 TBB = SecondLastInst->getOperand(0).getMBB(); 343 I = LastInst; 344 if (AllowModify) 345 I->eraseFromParent(); 346 return false; 347 } 348 349 // ...likewise if it ends with a branch table followed by an unconditional 350 // branch. The branch folder can create these, and we must get rid of them for 351 // correctness of Thumb constant islands. 352 if ((isJumpTableBranchOpcode(SecondLastOpc) || 353 isIndirectBranchOpcode(SecondLastOpc)) && 354 isUncondBranchOpcode(LastOpc)) { 355 I = LastInst; 356 if (AllowModify) 357 I->eraseFromParent(); 358 return true; 359 } 360 361 // Otherwise, can't handle this. 362 return true; 363 } 364 365 366 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 367 MachineBasicBlock::iterator I = MBB.end(); 368 if (I == MBB.begin()) return 0; 369 --I; 370 while (I->isDebugValue()) { 371 if (I == MBB.begin()) 372 return 0; 373 --I; 374 } 375 if (!isUncondBranchOpcode(I->getOpcode()) && 376 !isCondBranchOpcode(I->getOpcode())) 377 return 0; 378 379 // Remove the branch. 380 I->eraseFromParent(); 381 382 I = MBB.end(); 383 384 if (I == MBB.begin()) return 1; 385 --I; 386 if (!isCondBranchOpcode(I->getOpcode())) 387 return 1; 388 389 // Remove the branch. 390 I->eraseFromParent(); 391 return 2; 392 } 393 394 unsigned 395 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 396 MachineBasicBlock *FBB, 397 const SmallVectorImpl<MachineOperand> &Cond, 398 DebugLoc DL) const { 399 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 400 int BOpc = !AFI->isThumbFunction() 401 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 402 int BccOpc = !AFI->isThumbFunction() 403 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 404 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 405 406 // Shouldn't be a fall through. 407 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 408 assert((Cond.size() == 2 || Cond.size() == 0) && 409 "ARM branch conditions have two components!"); 410 411 if (FBB == 0) { 412 if (Cond.empty()) { // Unconditional branch? 413 if (isThumb) 414 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0); 415 else 416 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 417 } else 418 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) 419 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); 420 return 1; 421 } 422 423 // Two-way conditional branch. 424 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) 425 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()); 426 if (isThumb) 427 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0); 428 else 429 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 430 return 2; 431 } 432 433 bool ARMBaseInstrInfo:: 434 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 435 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 436 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 437 return false; 438 } 439 440 bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const { 441 if (MI->isBundle()) { 442 MachineBasicBlock::const_instr_iterator I = MI; 443 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 444 while (++I != E && I->isInsideBundle()) { 445 int PIdx = I->findFirstPredOperandIdx(); 446 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 447 return true; 448 } 449 return false; 450 } 451 452 int PIdx = MI->findFirstPredOperandIdx(); 453 return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL; 454 } 455 456 bool ARMBaseInstrInfo:: 457 PredicateInstruction(MachineInstr *MI, 458 const SmallVectorImpl<MachineOperand> &Pred) const { 459 unsigned Opc = MI->getOpcode(); 460 if (isUncondBranchOpcode(Opc)) { 461 MI->setDesc(get(getMatchingCondBranchOpcode(Opc))); 462 MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm())); 463 MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false)); 464 return true; 465 } 466 467 int PIdx = MI->findFirstPredOperandIdx(); 468 if (PIdx != -1) { 469 MachineOperand &PMO = MI->getOperand(PIdx); 470 PMO.setImm(Pred[0].getImm()); 471 MI->getOperand(PIdx+1).setReg(Pred[1].getReg()); 472 return true; 473 } 474 return false; 475 } 476 477 bool ARMBaseInstrInfo:: 478 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, 479 const SmallVectorImpl<MachineOperand> &Pred2) const { 480 if (Pred1.size() > 2 || Pred2.size() > 2) 481 return false; 482 483 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 484 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 485 if (CC1 == CC2) 486 return true; 487 488 switch (CC1) { 489 default: 490 return false; 491 case ARMCC::AL: 492 return true; 493 case ARMCC::HS: 494 return CC2 == ARMCC::HI; 495 case ARMCC::LS: 496 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 497 case ARMCC::GE: 498 return CC2 == ARMCC::GT; 499 case ARMCC::LE: 500 return CC2 == ARMCC::LT; 501 } 502 } 503 504 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI, 505 std::vector<MachineOperand> &Pred) const { 506 bool Found = false; 507 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 508 const MachineOperand &MO = MI->getOperand(i); 509 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 510 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 511 Pred.push_back(MO); 512 Found = true; 513 } 514 } 515 516 return Found; 517 } 518 519 /// isPredicable - Return true if the specified instruction can be predicated. 520 /// By default, this returns true for every instruction with a 521 /// PredicateOperand. 522 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const { 523 if (!MI->isPredicable()) 524 return false; 525 526 if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) { 527 ARMFunctionInfo *AFI = 528 MI->getParent()->getParent()->getInfo<ARMFunctionInfo>(); 529 return AFI->isThumb2Function(); 530 } 531 return true; 532 } 533 534 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing. 535 LLVM_ATTRIBUTE_NOINLINE 536 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT, 537 unsigned JTI); 538 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT, 539 unsigned JTI) { 540 assert(JTI < JT.size()); 541 return JT[JTI].MBBs.size(); 542 } 543 544 /// GetInstSize - Return the size of the specified MachineInstr. 545 /// 546 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 547 const MachineBasicBlock &MBB = *MI->getParent(); 548 const MachineFunction *MF = MBB.getParent(); 549 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 550 551 const MCInstrDesc &MCID = MI->getDesc(); 552 if (MCID.getSize()) 553 return MCID.getSize(); 554 555 // If this machine instr is an inline asm, measure it. 556 if (MI->getOpcode() == ARM::INLINEASM) 557 return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI); 558 if (MI->isLabel()) 559 return 0; 560 unsigned Opc = MI->getOpcode(); 561 switch (Opc) { 562 case TargetOpcode::IMPLICIT_DEF: 563 case TargetOpcode::KILL: 564 case TargetOpcode::PROLOG_LABEL: 565 case TargetOpcode::EH_LABEL: 566 case TargetOpcode::DBG_VALUE: 567 return 0; 568 case TargetOpcode::BUNDLE: 569 return getInstBundleLength(MI); 570 case ARM::MOVi16_ga_pcrel: 571 case ARM::MOVTi16_ga_pcrel: 572 case ARM::t2MOVi16_ga_pcrel: 573 case ARM::t2MOVTi16_ga_pcrel: 574 return 4; 575 case ARM::MOVi32imm: 576 case ARM::t2MOVi32imm: 577 return 8; 578 case ARM::CONSTPOOL_ENTRY: 579 // If this machine instr is a constant pool entry, its size is recorded as 580 // operand #2. 581 return MI->getOperand(2).getImm(); 582 case ARM::Int_eh_sjlj_longjmp: 583 return 16; 584 case ARM::tInt_eh_sjlj_longjmp: 585 return 10; 586 case ARM::Int_eh_sjlj_setjmp: 587 case ARM::Int_eh_sjlj_setjmp_nofp: 588 return 20; 589 case ARM::tInt_eh_sjlj_setjmp: 590 case ARM::t2Int_eh_sjlj_setjmp: 591 case ARM::t2Int_eh_sjlj_setjmp_nofp: 592 return 12; 593 case ARM::BR_JTr: 594 case ARM::BR_JTm: 595 case ARM::BR_JTadd: 596 case ARM::tBR_JTr: 597 case ARM::t2BR_JT: 598 case ARM::t2TBB_JT: 599 case ARM::t2TBH_JT: { 600 // These are jumptable branches, i.e. a branch followed by an inlined 601 // jumptable. The size is 4 + 4 * number of entries. For TBB, each 602 // entry is one byte; TBH two byte each. 603 unsigned EntrySize = (Opc == ARM::t2TBB_JT) 604 ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4); 605 unsigned NumOps = MCID.getNumOperands(); 606 MachineOperand JTOP = 607 MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2)); 608 unsigned JTI = JTOP.getIndex(); 609 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 610 assert(MJTI != 0); 611 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 612 assert(JTI < JT.size()); 613 // Thumb instructions are 2 byte aligned, but JT entries are 4 byte 614 // 4 aligned. The assembler / linker may add 2 byte padding just before 615 // the JT entries. The size does not include this padding; the 616 // constant islands pass does separate bookkeeping for it. 617 // FIXME: If we know the size of the function is less than (1 << 16) *2 618 // bytes, we can use 16-bit entries instead. Then there won't be an 619 // alignment issue. 620 unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4; 621 unsigned NumEntries = getNumJTEntries(JT, JTI); 622 if (Opc == ARM::t2TBB_JT && (NumEntries & 1)) 623 // Make sure the instruction that follows TBB is 2-byte aligned. 624 // FIXME: Constant island pass should insert an "ALIGN" instruction 625 // instead. 626 ++NumEntries; 627 return NumEntries * EntrySize + InstSize; 628 } 629 default: 630 // Otherwise, pseudo-instruction sizes are zero. 631 return 0; 632 } 633 } 634 635 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const { 636 unsigned Size = 0; 637 MachineBasicBlock::const_instr_iterator I = MI; 638 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 639 while (++I != E && I->isInsideBundle()) { 640 assert(!I->isBundle() && "No nested bundle!"); 641 Size += GetInstSizeInBytes(&*I); 642 } 643 return Size; 644 } 645 646 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 647 MachineBasicBlock::iterator I, DebugLoc DL, 648 unsigned DestReg, unsigned SrcReg, 649 bool KillSrc) const { 650 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 651 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 652 653 if (GPRDest && GPRSrc) { 654 AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 655 .addReg(SrcReg, getKillRegState(KillSrc)))); 656 return; 657 } 658 659 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 660 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 661 662 unsigned Opc = 0; 663 if (SPRDest && SPRSrc) 664 Opc = ARM::VMOVS; 665 else if (GPRDest && SPRSrc) 666 Opc = ARM::VMOVRS; 667 else if (SPRDest && GPRSrc) 668 Opc = ARM::VMOVSR; 669 else if (ARM::DPRRegClass.contains(DestReg, SrcReg)) 670 Opc = ARM::VMOVD; 671 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 672 Opc = ARM::VORRq; 673 674 if (Opc) { 675 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 676 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 677 if (Opc == ARM::VORRq) 678 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 679 AddDefaultPred(MIB); 680 return; 681 } 682 683 // Generate instructions for VMOVQQ and VMOVQQQQ pseudos in place. 684 if (ARM::QQPRRegClass.contains(DestReg, SrcReg) || 685 ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 686 const TargetRegisterInfo *TRI = &getRegisterInfo(); 687 assert(ARM::qsub_0 + 3 == ARM::qsub_3 && "Expected contiguous enum."); 688 unsigned EndSubReg = ARM::QQPRRegClass.contains(DestReg, SrcReg) ? 689 ARM::qsub_1 : ARM::qsub_3; 690 for (unsigned i = ARM::qsub_0, e = EndSubReg + 1; i != e; ++i) { 691 unsigned Dst = TRI->getSubReg(DestReg, i); 692 unsigned Src = TRI->getSubReg(SrcReg, i); 693 MachineInstrBuilder Mov = 694 AddDefaultPred(BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VORRq)) 695 .addReg(Dst, RegState::Define) 696 .addReg(Src, getKillRegState(KillSrc)) 697 .addReg(Src, getKillRegState(KillSrc))); 698 if (i == EndSubReg) { 699 Mov->addRegisterDefined(DestReg, TRI); 700 if (KillSrc) 701 Mov->addRegisterKilled(SrcReg, TRI); 702 } 703 } 704 return; 705 } 706 llvm_unreachable("Impossible reg-to-reg copy"); 707 } 708 709 static const 710 MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, 711 unsigned Reg, unsigned SubIdx, unsigned State, 712 const TargetRegisterInfo *TRI) { 713 if (!SubIdx) 714 return MIB.addReg(Reg, State); 715 716 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 717 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 718 return MIB.addReg(Reg, State, SubIdx); 719 } 720 721 void ARMBaseInstrInfo:: 722 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 723 unsigned SrcReg, bool isKill, int FI, 724 const TargetRegisterClass *RC, 725 const TargetRegisterInfo *TRI) const { 726 DebugLoc DL; 727 if (I != MBB.end()) DL = I->getDebugLoc(); 728 MachineFunction &MF = *MBB.getParent(); 729 MachineFrameInfo &MFI = *MF.getFrameInfo(); 730 unsigned Align = MFI.getObjectAlignment(FI); 731 732 MachineMemOperand *MMO = 733 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 734 MachineMemOperand::MOStore, 735 MFI.getObjectSize(FI), 736 Align); 737 738 switch (RC->getSize()) { 739 case 4: 740 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 741 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12)) 742 .addReg(SrcReg, getKillRegState(isKill)) 743 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 744 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 745 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS)) 746 .addReg(SrcReg, getKillRegState(isKill)) 747 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 748 } else 749 llvm_unreachable("Unknown reg class!"); 750 break; 751 case 8: 752 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 753 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD)) 754 .addReg(SrcReg, getKillRegState(isKill)) 755 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 756 } else 757 llvm_unreachable("Unknown reg class!"); 758 break; 759 case 16: 760 if (ARM::QPRRegClass.hasSubClassEq(RC)) { 761 // Use aligned spills if the stack can be realigned. 762 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 763 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo)) 764 .addFrameIndex(FI).addImm(16) 765 .addReg(SrcReg, getKillRegState(isKill)) 766 .addMemOperand(MMO)); 767 } else { 768 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA)) 769 .addReg(SrcReg, getKillRegState(isKill)) 770 .addFrameIndex(FI) 771 .addMemOperand(MMO)); 772 } 773 } else 774 llvm_unreachable("Unknown reg class!"); 775 break; 776 case 32: 777 if (ARM::QQPRRegClass.hasSubClassEq(RC)) { 778 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 779 // FIXME: It's possible to only store part of the QQ register if the 780 // spilled def has a sub-register index. 781 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo)) 782 .addFrameIndex(FI).addImm(16) 783 .addReg(SrcReg, getKillRegState(isKill)) 784 .addMemOperand(MMO)); 785 } else { 786 MachineInstrBuilder MIB = 787 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 788 .addFrameIndex(FI)) 789 .addMemOperand(MMO); 790 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 791 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 792 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 793 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 794 } 795 } else 796 llvm_unreachable("Unknown reg class!"); 797 break; 798 case 64: 799 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 800 MachineInstrBuilder MIB = 801 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 802 .addFrameIndex(FI)) 803 .addMemOperand(MMO); 804 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 805 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 806 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 807 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 808 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 809 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 810 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 811 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 812 } else 813 llvm_unreachable("Unknown reg class!"); 814 break; 815 default: 816 llvm_unreachable("Unknown reg class!"); 817 } 818 } 819 820 unsigned 821 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 822 int &FrameIndex) const { 823 switch (MI->getOpcode()) { 824 default: break; 825 case ARM::STRrs: 826 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 827 if (MI->getOperand(1).isFI() && 828 MI->getOperand(2).isReg() && 829 MI->getOperand(3).isImm() && 830 MI->getOperand(2).getReg() == 0 && 831 MI->getOperand(3).getImm() == 0) { 832 FrameIndex = MI->getOperand(1).getIndex(); 833 return MI->getOperand(0).getReg(); 834 } 835 break; 836 case ARM::STRi12: 837 case ARM::t2STRi12: 838 case ARM::tSTRspi: 839 case ARM::VSTRD: 840 case ARM::VSTRS: 841 if (MI->getOperand(1).isFI() && 842 MI->getOperand(2).isImm() && 843 MI->getOperand(2).getImm() == 0) { 844 FrameIndex = MI->getOperand(1).getIndex(); 845 return MI->getOperand(0).getReg(); 846 } 847 break; 848 case ARM::VST1q64Pseudo: 849 if (MI->getOperand(0).isFI() && 850 MI->getOperand(2).getSubReg() == 0) { 851 FrameIndex = MI->getOperand(0).getIndex(); 852 return MI->getOperand(2).getReg(); 853 } 854 break; 855 case ARM::VSTMQIA: 856 if (MI->getOperand(1).isFI() && 857 MI->getOperand(0).getSubReg() == 0) { 858 FrameIndex = MI->getOperand(1).getIndex(); 859 return MI->getOperand(0).getReg(); 860 } 861 break; 862 } 863 864 return 0; 865 } 866 867 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, 868 int &FrameIndex) const { 869 const MachineMemOperand *Dummy; 870 return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex); 871 } 872 873 void ARMBaseInstrInfo:: 874 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 875 unsigned DestReg, int FI, 876 const TargetRegisterClass *RC, 877 const TargetRegisterInfo *TRI) const { 878 DebugLoc DL; 879 if (I != MBB.end()) DL = I->getDebugLoc(); 880 MachineFunction &MF = *MBB.getParent(); 881 MachineFrameInfo &MFI = *MF.getFrameInfo(); 882 unsigned Align = MFI.getObjectAlignment(FI); 883 MachineMemOperand *MMO = 884 MF.getMachineMemOperand( 885 MachinePointerInfo::getFixedStack(FI), 886 MachineMemOperand::MOLoad, 887 MFI.getObjectSize(FI), 888 Align); 889 890 switch (RC->getSize()) { 891 case 4: 892 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 893 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 894 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 895 896 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 897 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 898 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 899 } else 900 llvm_unreachable("Unknown reg class!"); 901 break; 902 case 8: 903 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 904 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 905 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 906 } else 907 llvm_unreachable("Unknown reg class!"); 908 break; 909 case 16: 910 if (ARM::QPRRegClass.hasSubClassEq(RC)) { 911 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 912 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg) 913 .addFrameIndex(FI).addImm(16) 914 .addMemOperand(MMO)); 915 } else { 916 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 917 .addFrameIndex(FI) 918 .addMemOperand(MMO)); 919 } 920 } else 921 llvm_unreachable("Unknown reg class!"); 922 break; 923 case 32: 924 if (ARM::QQPRRegClass.hasSubClassEq(RC)) { 925 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 926 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 927 .addFrameIndex(FI).addImm(16) 928 .addMemOperand(MMO)); 929 } else { 930 MachineInstrBuilder MIB = 931 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 932 .addFrameIndex(FI)) 933 .addMemOperand(MMO); 934 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI); 935 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI); 936 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI); 937 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI); 938 MIB.addReg(DestReg, RegState::Define | RegState::Implicit); 939 } 940 } else 941 llvm_unreachable("Unknown reg class!"); 942 break; 943 case 64: 944 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 945 MachineInstrBuilder MIB = 946 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 947 .addFrameIndex(FI)) 948 .addMemOperand(MMO); 949 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI); 950 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI); 951 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI); 952 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI); 953 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI); 954 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI); 955 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI); 956 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI); 957 MIB.addReg(DestReg, RegState::Define | RegState::Implicit); 958 } else 959 llvm_unreachable("Unknown reg class!"); 960 break; 961 default: 962 llvm_unreachable("Unknown regclass!"); 963 } 964 } 965 966 unsigned 967 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 968 int &FrameIndex) const { 969 switch (MI->getOpcode()) { 970 default: break; 971 case ARM::LDRrs: 972 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 973 if (MI->getOperand(1).isFI() && 974 MI->getOperand(2).isReg() && 975 MI->getOperand(3).isImm() && 976 MI->getOperand(2).getReg() == 0 && 977 MI->getOperand(3).getImm() == 0) { 978 FrameIndex = MI->getOperand(1).getIndex(); 979 return MI->getOperand(0).getReg(); 980 } 981 break; 982 case ARM::LDRi12: 983 case ARM::t2LDRi12: 984 case ARM::tLDRspi: 985 case ARM::VLDRD: 986 case ARM::VLDRS: 987 if (MI->getOperand(1).isFI() && 988 MI->getOperand(2).isImm() && 989 MI->getOperand(2).getImm() == 0) { 990 FrameIndex = MI->getOperand(1).getIndex(); 991 return MI->getOperand(0).getReg(); 992 } 993 break; 994 case ARM::VLD1q64Pseudo: 995 if (MI->getOperand(1).isFI() && 996 MI->getOperand(0).getSubReg() == 0) { 997 FrameIndex = MI->getOperand(1).getIndex(); 998 return MI->getOperand(0).getReg(); 999 } 1000 break; 1001 case ARM::VLDMQIA: 1002 if (MI->getOperand(1).isFI() && 1003 MI->getOperand(0).getSubReg() == 0) { 1004 FrameIndex = MI->getOperand(1).getIndex(); 1005 return MI->getOperand(0).getReg(); 1006 } 1007 break; 1008 } 1009 1010 return 0; 1011 } 1012 1013 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 1014 int &FrameIndex) const { 1015 const MachineMemOperand *Dummy; 1016 return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex); 1017 } 1018 1019 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const{ 1020 // This hook gets to expand COPY instructions before they become 1021 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1022 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1023 // changed into a VORR that can go down the NEON pipeline. 1024 if (!WidenVMOVS || !MI->isCopy()) 1025 return false; 1026 1027 // Look for a copy between even S-registers. That is where we keep floats 1028 // when using NEON v2f32 instructions for f32 arithmetic. 1029 unsigned DstRegS = MI->getOperand(0).getReg(); 1030 unsigned SrcRegS = MI->getOperand(1).getReg(); 1031 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1032 return false; 1033 1034 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1035 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1036 &ARM::DPRRegClass); 1037 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1038 &ARM::DPRRegClass); 1039 if (!DstRegD || !SrcRegD) 1040 return false; 1041 1042 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1043 // legal if the COPY already defines the full DstRegD, and it isn't a 1044 // sub-register insertion. 1045 if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI)) 1046 return false; 1047 1048 // A dead copy shouldn't show up here, but reject it just in case. 1049 if (MI->getOperand(0).isDead()) 1050 return false; 1051 1052 // All clear, widen the COPY. 1053 DEBUG(dbgs() << "widening: " << *MI); 1054 1055 // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg 1056 // or some other super-register. 1057 int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD); 1058 if (ImpDefIdx != -1) 1059 MI->RemoveOperand(ImpDefIdx); 1060 1061 // Change the opcode and operands. 1062 MI->setDesc(get(ARM::VMOVD)); 1063 MI->getOperand(0).setReg(DstRegD); 1064 MI->getOperand(1).setReg(SrcRegD); 1065 AddDefaultPred(MachineInstrBuilder(MI)); 1066 1067 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1068 // register scavenger and machine verifier, so we need to indicate that we 1069 // are reading an undefined value from SrcRegD, but a proper value from 1070 // SrcRegS. 1071 MI->getOperand(1).setIsUndef(); 1072 MachineInstrBuilder(MI).addReg(SrcRegS, RegState::Implicit); 1073 1074 // SrcRegD may actually contain an unrelated value in the ssub_1 1075 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1076 if (MI->getOperand(1).isKill()) { 1077 MI->getOperand(1).setIsKill(false); 1078 MI->addRegisterKilled(SrcRegS, TRI, true); 1079 } 1080 1081 DEBUG(dbgs() << "replaced by: " << *MI); 1082 return true; 1083 } 1084 1085 MachineInstr* 1086 ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, 1087 int FrameIx, uint64_t Offset, 1088 const MDNode *MDPtr, 1089 DebugLoc DL) const { 1090 MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE)) 1091 .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr); 1092 return &*MIB; 1093 } 1094 1095 /// Create a copy of a const pool value. Update CPI to the new index and return 1096 /// the label UID. 1097 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1098 MachineConstantPool *MCP = MF.getConstantPool(); 1099 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1100 1101 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1102 assert(MCPE.isMachineConstantPoolEntry() && 1103 "Expecting a machine constantpool entry!"); 1104 ARMConstantPoolValue *ACPV = 1105 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1106 1107 unsigned PCLabelId = AFI->createPICLabelUId(); 1108 ARMConstantPoolValue *NewCPV = 0; 1109 // FIXME: The below assumes PIC relocation model and that the function 1110 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1111 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1112 // instructions, so that's probably OK, but is PIC always correct when 1113 // we get here? 1114 if (ACPV->isGlobalValue()) 1115 NewCPV = ARMConstantPoolConstant:: 1116 Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, 1117 ARMCP::CPValue, 4); 1118 else if (ACPV->isExtSymbol()) 1119 NewCPV = ARMConstantPoolSymbol:: 1120 Create(MF.getFunction()->getContext(), 1121 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1122 else if (ACPV->isBlockAddress()) 1123 NewCPV = ARMConstantPoolConstant:: 1124 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1125 ARMCP::CPBlockAddress, 4); 1126 else if (ACPV->isLSDA()) 1127 NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId, 1128 ARMCP::CPLSDA, 4); 1129 else if (ACPV->isMachineBasicBlock()) 1130 NewCPV = ARMConstantPoolMBB:: 1131 Create(MF.getFunction()->getContext(), 1132 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1133 else 1134 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1135 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1136 return PCLabelId; 1137 } 1138 1139 void ARMBaseInstrInfo:: 1140 reMaterialize(MachineBasicBlock &MBB, 1141 MachineBasicBlock::iterator I, 1142 unsigned DestReg, unsigned SubIdx, 1143 const MachineInstr *Orig, 1144 const TargetRegisterInfo &TRI) const { 1145 unsigned Opcode = Orig->getOpcode(); 1146 switch (Opcode) { 1147 default: { 1148 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 1149 MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); 1150 MBB.insert(I, MI); 1151 break; 1152 } 1153 case ARM::tLDRpci_pic: 1154 case ARM::t2LDRpci_pic: { 1155 MachineFunction &MF = *MBB.getParent(); 1156 unsigned CPI = Orig->getOperand(1).getIndex(); 1157 unsigned PCLabelId = duplicateCPV(MF, CPI); 1158 MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode), 1159 DestReg) 1160 .addConstantPoolIndex(CPI).addImm(PCLabelId); 1161 MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end()); 1162 break; 1163 } 1164 } 1165 } 1166 1167 MachineInstr * 1168 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const { 1169 MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF); 1170 switch(Orig->getOpcode()) { 1171 case ARM::tLDRpci_pic: 1172 case ARM::t2LDRpci_pic: { 1173 unsigned CPI = Orig->getOperand(1).getIndex(); 1174 unsigned PCLabelId = duplicateCPV(MF, CPI); 1175 Orig->getOperand(1).setIndex(CPI); 1176 Orig->getOperand(2).setImm(PCLabelId); 1177 break; 1178 } 1179 } 1180 return MI; 1181 } 1182 1183 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0, 1184 const MachineInstr *MI1, 1185 const MachineRegisterInfo *MRI) const { 1186 int Opcode = MI0->getOpcode(); 1187 if (Opcode == ARM::t2LDRpci || 1188 Opcode == ARM::t2LDRpci_pic || 1189 Opcode == ARM::tLDRpci || 1190 Opcode == ARM::tLDRpci_pic || 1191 Opcode == ARM::MOV_ga_dyn || 1192 Opcode == ARM::MOV_ga_pcrel || 1193 Opcode == ARM::MOV_ga_pcrel_ldr || 1194 Opcode == ARM::t2MOV_ga_dyn || 1195 Opcode == ARM::t2MOV_ga_pcrel) { 1196 if (MI1->getOpcode() != Opcode) 1197 return false; 1198 if (MI0->getNumOperands() != MI1->getNumOperands()) 1199 return false; 1200 1201 const MachineOperand &MO0 = MI0->getOperand(1); 1202 const MachineOperand &MO1 = MI1->getOperand(1); 1203 if (MO0.getOffset() != MO1.getOffset()) 1204 return false; 1205 1206 if (Opcode == ARM::MOV_ga_dyn || 1207 Opcode == ARM::MOV_ga_pcrel || 1208 Opcode == ARM::MOV_ga_pcrel_ldr || 1209 Opcode == ARM::t2MOV_ga_dyn || 1210 Opcode == ARM::t2MOV_ga_pcrel) 1211 // Ignore the PC labels. 1212 return MO0.getGlobal() == MO1.getGlobal(); 1213 1214 const MachineFunction *MF = MI0->getParent()->getParent(); 1215 const MachineConstantPool *MCP = MF->getConstantPool(); 1216 int CPI0 = MO0.getIndex(); 1217 int CPI1 = MO1.getIndex(); 1218 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1219 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1220 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1221 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1222 if (isARMCP0 && isARMCP1) { 1223 ARMConstantPoolValue *ACPV0 = 1224 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1225 ARMConstantPoolValue *ACPV1 = 1226 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1227 return ACPV0->hasSameValue(ACPV1); 1228 } else if (!isARMCP0 && !isARMCP1) { 1229 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1230 } 1231 return false; 1232 } else if (Opcode == ARM::PICLDR) { 1233 if (MI1->getOpcode() != Opcode) 1234 return false; 1235 if (MI0->getNumOperands() != MI1->getNumOperands()) 1236 return false; 1237 1238 unsigned Addr0 = MI0->getOperand(1).getReg(); 1239 unsigned Addr1 = MI1->getOperand(1).getReg(); 1240 if (Addr0 != Addr1) { 1241 if (!MRI || 1242 !TargetRegisterInfo::isVirtualRegister(Addr0) || 1243 !TargetRegisterInfo::isVirtualRegister(Addr1)) 1244 return false; 1245 1246 // This assumes SSA form. 1247 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1248 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1249 // Check if the loaded value, e.g. a constantpool of a global address, are 1250 // the same. 1251 if (!produceSameValue(Def0, Def1, MRI)) 1252 return false; 1253 } 1254 1255 for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) { 1256 // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg 1257 const MachineOperand &MO0 = MI0->getOperand(i); 1258 const MachineOperand &MO1 = MI1->getOperand(i); 1259 if (!MO0.isIdenticalTo(MO1)) 1260 return false; 1261 } 1262 return true; 1263 } 1264 1265 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1266 } 1267 1268 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1269 /// determine if two loads are loading from the same base address. It should 1270 /// only return true if the base pointers are the same and the only differences 1271 /// between the two addresses is the offset. It also returns the offsets by 1272 /// reference. 1273 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1274 int64_t &Offset1, 1275 int64_t &Offset2) const { 1276 // Don't worry about Thumb: just ARM and Thumb2. 1277 if (Subtarget.isThumb1Only()) return false; 1278 1279 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1280 return false; 1281 1282 switch (Load1->getMachineOpcode()) { 1283 default: 1284 return false; 1285 case ARM::LDRi12: 1286 case ARM::LDRBi12: 1287 case ARM::LDRD: 1288 case ARM::LDRH: 1289 case ARM::LDRSB: 1290 case ARM::LDRSH: 1291 case ARM::VLDRD: 1292 case ARM::VLDRS: 1293 case ARM::t2LDRi8: 1294 case ARM::t2LDRDi8: 1295 case ARM::t2LDRSHi8: 1296 case ARM::t2LDRi12: 1297 case ARM::t2LDRSHi12: 1298 break; 1299 } 1300 1301 switch (Load2->getMachineOpcode()) { 1302 default: 1303 return false; 1304 case ARM::LDRi12: 1305 case ARM::LDRBi12: 1306 case ARM::LDRD: 1307 case ARM::LDRH: 1308 case ARM::LDRSB: 1309 case ARM::LDRSH: 1310 case ARM::VLDRD: 1311 case ARM::VLDRS: 1312 case ARM::t2LDRi8: 1313 case ARM::t2LDRDi8: 1314 case ARM::t2LDRSHi8: 1315 case ARM::t2LDRi12: 1316 case ARM::t2LDRSHi12: 1317 break; 1318 } 1319 1320 // Check if base addresses and chain operands match. 1321 if (Load1->getOperand(0) != Load2->getOperand(0) || 1322 Load1->getOperand(4) != Load2->getOperand(4)) 1323 return false; 1324 1325 // Index should be Reg0. 1326 if (Load1->getOperand(3) != Load2->getOperand(3)) 1327 return false; 1328 1329 // Determine the offsets. 1330 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1331 isa<ConstantSDNode>(Load2->getOperand(1))) { 1332 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1333 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1334 return true; 1335 } 1336 1337 return false; 1338 } 1339 1340 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1341 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1342 /// be scheduled togther. On some targets if two loads are loading from 1343 /// addresses in the same cache line, it's better if they are scheduled 1344 /// together. This function takes two integers that represent the load offsets 1345 /// from the common base address. It returns true if it decides it's desirable 1346 /// to schedule the two loads together. "NumLoads" is the number of loads that 1347 /// have already been scheduled after Load1. 1348 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1349 int64_t Offset1, int64_t Offset2, 1350 unsigned NumLoads) const { 1351 // Don't worry about Thumb: just ARM and Thumb2. 1352 if (Subtarget.isThumb1Only()) return false; 1353 1354 assert(Offset2 > Offset1); 1355 1356 if ((Offset2 - Offset1) / 8 > 64) 1357 return false; 1358 1359 if (Load1->getMachineOpcode() != Load2->getMachineOpcode()) 1360 return false; // FIXME: overly conservative? 1361 1362 // Four loads in a row should be sufficient. 1363 if (NumLoads >= 3) 1364 return false; 1365 1366 return true; 1367 } 1368 1369 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 1370 const MachineBasicBlock *MBB, 1371 const MachineFunction &MF) const { 1372 // Debug info is never a scheduling boundary. It's necessary to be explicit 1373 // due to the special treatment of IT instructions below, otherwise a 1374 // dbg_value followed by an IT will result in the IT instruction being 1375 // considered a scheduling hazard, which is wrong. It should be the actual 1376 // instruction preceding the dbg_value instruction(s), just like it is 1377 // when debug info is not present. 1378 if (MI->isDebugValue()) 1379 return false; 1380 1381 // Terminators and labels can't be scheduled around. 1382 if (MI->isTerminator() || MI->isLabel()) 1383 return true; 1384 1385 // Treat the start of the IT block as a scheduling boundary, but schedule 1386 // t2IT along with all instructions following it. 1387 // FIXME: This is a big hammer. But the alternative is to add all potential 1388 // true and anti dependencies to IT block instructions as implicit operands 1389 // to the t2IT instruction. The added compile time and complexity does not 1390 // seem worth it. 1391 MachineBasicBlock::const_iterator I = MI; 1392 // Make sure to skip any dbg_value instructions 1393 while (++I != MBB->end() && I->isDebugValue()) 1394 ; 1395 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1396 return true; 1397 1398 // Don't attempt to schedule around any instruction that defines 1399 // a stack-oriented pointer, as it's unlikely to be profitable. This 1400 // saves compile time, because it doesn't require every single 1401 // stack slot reference to depend on the instruction that does the 1402 // modification. 1403 if (MI->definesRegister(ARM::SP)) 1404 return true; 1405 1406 return false; 1407 } 1408 1409 bool ARMBaseInstrInfo:: 1410 isProfitableToIfCvt(MachineBasicBlock &MBB, 1411 unsigned NumCycles, unsigned ExtraPredCycles, 1412 const BranchProbability &Probability) const { 1413 if (!NumCycles) 1414 return false; 1415 1416 // Attempt to estimate the relative costs of predication versus branching. 1417 unsigned UnpredCost = Probability.getNumerator() * NumCycles; 1418 UnpredCost /= Probability.getDenominator(); 1419 UnpredCost += 1; // The branch itself 1420 UnpredCost += Subtarget.getMispredictionPenalty() / 10; 1421 1422 return (NumCycles + ExtraPredCycles) <= UnpredCost; 1423 } 1424 1425 bool ARMBaseInstrInfo:: 1426 isProfitableToIfCvt(MachineBasicBlock &TMBB, 1427 unsigned TCycles, unsigned TExtra, 1428 MachineBasicBlock &FMBB, 1429 unsigned FCycles, unsigned FExtra, 1430 const BranchProbability &Probability) const { 1431 if (!TCycles || !FCycles) 1432 return false; 1433 1434 // Attempt to estimate the relative costs of predication versus branching. 1435 unsigned TUnpredCost = Probability.getNumerator() * TCycles; 1436 TUnpredCost /= Probability.getDenominator(); 1437 1438 uint32_t Comp = Probability.getDenominator() - Probability.getNumerator(); 1439 unsigned FUnpredCost = Comp * FCycles; 1440 FUnpredCost /= Probability.getDenominator(); 1441 1442 unsigned UnpredCost = TUnpredCost + FUnpredCost; 1443 UnpredCost += 1; // The branch itself 1444 UnpredCost += Subtarget.getMispredictionPenalty() / 10; 1445 1446 return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost; 1447 } 1448 1449 /// getInstrPredicate - If instruction is predicated, returns its predicate 1450 /// condition, otherwise returns AL. It also returns the condition code 1451 /// register by reference. 1452 ARMCC::CondCodes 1453 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) { 1454 int PIdx = MI->findFirstPredOperandIdx(); 1455 if (PIdx == -1) { 1456 PredReg = 0; 1457 return ARMCC::AL; 1458 } 1459 1460 PredReg = MI->getOperand(PIdx+1).getReg(); 1461 return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm(); 1462 } 1463 1464 1465 int llvm::getMatchingCondBranchOpcode(int Opc) { 1466 if (Opc == ARM::B) 1467 return ARM::Bcc; 1468 if (Opc == ARM::tB) 1469 return ARM::tBcc; 1470 if (Opc == ARM::t2B) 1471 return ARM::t2Bcc; 1472 1473 llvm_unreachable("Unknown unconditional branch opcode!"); 1474 } 1475 1476 1477 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 1478 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 1479 /// def operand. 1480 /// 1481 /// This will go away once we can teach tblgen how to set the optional CPSR def 1482 /// operand itself. 1483 struct AddSubFlagsOpcodePair { 1484 unsigned PseudoOpc; 1485 unsigned MachineOpc; 1486 }; 1487 1488 static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 1489 {ARM::ADDSri, ARM::ADDri}, 1490 {ARM::ADDSrr, ARM::ADDrr}, 1491 {ARM::ADDSrsi, ARM::ADDrsi}, 1492 {ARM::ADDSrsr, ARM::ADDrsr}, 1493 1494 {ARM::SUBSri, ARM::SUBri}, 1495 {ARM::SUBSrr, ARM::SUBrr}, 1496 {ARM::SUBSrsi, ARM::SUBrsi}, 1497 {ARM::SUBSrsr, ARM::SUBrsr}, 1498 1499 {ARM::RSBSri, ARM::RSBri}, 1500 {ARM::RSBSrsi, ARM::RSBrsi}, 1501 {ARM::RSBSrsr, ARM::RSBrsr}, 1502 1503 {ARM::t2ADDSri, ARM::t2ADDri}, 1504 {ARM::t2ADDSrr, ARM::t2ADDrr}, 1505 {ARM::t2ADDSrs, ARM::t2ADDrs}, 1506 1507 {ARM::t2SUBSri, ARM::t2SUBri}, 1508 {ARM::t2SUBSrr, ARM::t2SUBrr}, 1509 {ARM::t2SUBSrs, ARM::t2SUBrs}, 1510 1511 {ARM::t2RSBSri, ARM::t2RSBri}, 1512 {ARM::t2RSBSrs, ARM::t2RSBrs}, 1513 }; 1514 1515 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 1516 static const int NPairs = 1517 sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair); 1518 for (AddSubFlagsOpcodePair *OpcPair = &AddSubFlagsOpcodeMap[0], 1519 *End = &AddSubFlagsOpcodeMap[NPairs]; OpcPair != End; ++OpcPair) { 1520 if (OldOpc == OpcPair->PseudoOpc) { 1521 return OpcPair->MachineOpc; 1522 } 1523 } 1524 return 0; 1525 } 1526 1527 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 1528 MachineBasicBlock::iterator &MBBI, DebugLoc dl, 1529 unsigned DestReg, unsigned BaseReg, int NumBytes, 1530 ARMCC::CondCodes Pred, unsigned PredReg, 1531 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 1532 bool isSub = NumBytes < 0; 1533 if (isSub) NumBytes = -NumBytes; 1534 1535 while (NumBytes) { 1536 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 1537 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 1538 assert(ThisVal && "Didn't extract field correctly"); 1539 1540 // We will handle these bits from offset, clear them. 1541 NumBytes &= ~ThisVal; 1542 1543 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 1544 1545 // Build the new ADD / SUB. 1546 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 1547 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 1548 .addReg(BaseReg, RegState::Kill).addImm(ThisVal) 1549 .addImm((unsigned)Pred).addReg(PredReg).addReg(0) 1550 .setMIFlags(MIFlags); 1551 BaseReg = DestReg; 1552 } 1553 } 1554 1555 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 1556 unsigned FrameReg, int &Offset, 1557 const ARMBaseInstrInfo &TII) { 1558 unsigned Opcode = MI.getOpcode(); 1559 const MCInstrDesc &Desc = MI.getDesc(); 1560 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 1561 bool isSub = false; 1562 1563 // Memory operands in inline assembly always use AddrMode2. 1564 if (Opcode == ARM::INLINEASM) 1565 AddrMode = ARMII::AddrMode2; 1566 1567 if (Opcode == ARM::ADDri) { 1568 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 1569 if (Offset == 0) { 1570 // Turn it into a move. 1571 MI.setDesc(TII.get(ARM::MOVr)); 1572 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 1573 MI.RemoveOperand(FrameRegIdx+1); 1574 Offset = 0; 1575 return true; 1576 } else if (Offset < 0) { 1577 Offset = -Offset; 1578 isSub = true; 1579 MI.setDesc(TII.get(ARM::SUBri)); 1580 } 1581 1582 // Common case: small offset, fits into instruction. 1583 if (ARM_AM::getSOImmVal(Offset) != -1) { 1584 // Replace the FrameIndex with sp / fp 1585 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 1586 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 1587 Offset = 0; 1588 return true; 1589 } 1590 1591 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 1592 // as possible. 1593 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 1594 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 1595 1596 // We will handle these bits from offset, clear them. 1597 Offset &= ~ThisImmVal; 1598 1599 // Get the properly encoded SOImmVal field. 1600 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 1601 "Bit extraction didn't work?"); 1602 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 1603 } else { 1604 unsigned ImmIdx = 0; 1605 int InstrOffs = 0; 1606 unsigned NumBits = 0; 1607 unsigned Scale = 1; 1608 switch (AddrMode) { 1609 case ARMII::AddrMode_i12: { 1610 ImmIdx = FrameRegIdx + 1; 1611 InstrOffs = MI.getOperand(ImmIdx).getImm(); 1612 NumBits = 12; 1613 break; 1614 } 1615 case ARMII::AddrMode2: { 1616 ImmIdx = FrameRegIdx+2; 1617 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 1618 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 1619 InstrOffs *= -1; 1620 NumBits = 12; 1621 break; 1622 } 1623 case ARMII::AddrMode3: { 1624 ImmIdx = FrameRegIdx+2; 1625 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 1626 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 1627 InstrOffs *= -1; 1628 NumBits = 8; 1629 break; 1630 } 1631 case ARMII::AddrMode4: 1632 case ARMII::AddrMode6: 1633 // Can't fold any offset even if it's zero. 1634 return false; 1635 case ARMII::AddrMode5: { 1636 ImmIdx = FrameRegIdx+1; 1637 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 1638 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 1639 InstrOffs *= -1; 1640 NumBits = 8; 1641 Scale = 4; 1642 break; 1643 } 1644 default: 1645 llvm_unreachable("Unsupported addressing mode!"); 1646 } 1647 1648 Offset += InstrOffs * Scale; 1649 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 1650 if (Offset < 0) { 1651 Offset = -Offset; 1652 isSub = true; 1653 } 1654 1655 // Attempt to fold address comp. if opcode has offset bits 1656 if (NumBits > 0) { 1657 // Common case: small offset, fits into instruction. 1658 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 1659 int ImmedOffset = Offset / Scale; 1660 unsigned Mask = (1 << NumBits) - 1; 1661 if ((unsigned)Offset <= Mask * Scale) { 1662 // Replace the FrameIndex with sp 1663 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 1664 // FIXME: When addrmode2 goes away, this will simplify (like the 1665 // T2 version), as the LDR.i12 versions don't need the encoding 1666 // tricks for the offset value. 1667 if (isSub) { 1668 if (AddrMode == ARMII::AddrMode_i12) 1669 ImmedOffset = -ImmedOffset; 1670 else 1671 ImmedOffset |= 1 << NumBits; 1672 } 1673 ImmOp.ChangeToImmediate(ImmedOffset); 1674 Offset = 0; 1675 return true; 1676 } 1677 1678 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 1679 ImmedOffset = ImmedOffset & Mask; 1680 if (isSub) { 1681 if (AddrMode == ARMII::AddrMode_i12) 1682 ImmedOffset = -ImmedOffset; 1683 else 1684 ImmedOffset |= 1 << NumBits; 1685 } 1686 ImmOp.ChangeToImmediate(ImmedOffset); 1687 Offset &= ~(Mask*Scale); 1688 } 1689 } 1690 1691 Offset = (isSub) ? -Offset : Offset; 1692 return Offset == 0; 1693 } 1694 1695 bool ARMBaseInstrInfo:: 1696 AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask, 1697 int &CmpValue) const { 1698 switch (MI->getOpcode()) { 1699 default: break; 1700 case ARM::CMPri: 1701 case ARM::t2CMPri: 1702 SrcReg = MI->getOperand(0).getReg(); 1703 CmpMask = ~0; 1704 CmpValue = MI->getOperand(1).getImm(); 1705 return true; 1706 case ARM::TSTri: 1707 case ARM::t2TSTri: 1708 SrcReg = MI->getOperand(0).getReg(); 1709 CmpMask = MI->getOperand(1).getImm(); 1710 CmpValue = 0; 1711 return true; 1712 } 1713 1714 return false; 1715 } 1716 1717 /// isSuitableForMask - Identify a suitable 'and' instruction that 1718 /// operates on the given source register and applies the same mask 1719 /// as a 'tst' instruction. Provide a limited look-through for copies. 1720 /// When successful, MI will hold the found instruction. 1721 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 1722 int CmpMask, bool CommonUse) { 1723 switch (MI->getOpcode()) { 1724 case ARM::ANDri: 1725 case ARM::t2ANDri: 1726 if (CmpMask != MI->getOperand(2).getImm()) 1727 return false; 1728 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 1729 return true; 1730 break; 1731 case ARM::COPY: { 1732 // Walk down one instruction which is potentially an 'and'. 1733 const MachineInstr &Copy = *MI; 1734 MachineBasicBlock::iterator AND( 1735 llvm::next(MachineBasicBlock::iterator(MI))); 1736 if (AND == MI->getParent()->end()) return false; 1737 MI = AND; 1738 return isSuitableForMask(MI, Copy.getOperand(0).getReg(), 1739 CmpMask, true); 1740 } 1741 } 1742 1743 return false; 1744 } 1745 1746 /// OptimizeCompareInstr - Convert the instruction supplying the argument to the 1747 /// comparison into one that sets the zero bit in the flags register. 1748 bool ARMBaseInstrInfo:: 1749 OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask, 1750 int CmpValue, const MachineRegisterInfo *MRI) const { 1751 if (CmpValue != 0) 1752 return false; 1753 1754 MachineRegisterInfo::def_iterator DI = MRI->def_begin(SrcReg); 1755 if (llvm::next(DI) != MRI->def_end()) 1756 // Only support one definition. 1757 return false; 1758 1759 MachineInstr *MI = &*DI; 1760 1761 // Masked compares sometimes use the same register as the corresponding 'and'. 1762 if (CmpMask != ~0) { 1763 if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) { 1764 MI = 0; 1765 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SrcReg), 1766 UE = MRI->use_end(); UI != UE; ++UI) { 1767 if (UI->getParent() != CmpInstr->getParent()) continue; 1768 MachineInstr *PotentialAND = &*UI; 1769 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true)) 1770 continue; 1771 MI = PotentialAND; 1772 break; 1773 } 1774 if (!MI) return false; 1775 } 1776 } 1777 1778 // Conservatively refuse to convert an instruction which isn't in the same BB 1779 // as the comparison. 1780 if (MI->getParent() != CmpInstr->getParent()) 1781 return false; 1782 1783 // Check that CPSR isn't set between the comparison instruction and the one we 1784 // want to change. 1785 MachineBasicBlock::iterator I = CmpInstr,E = MI, B = MI->getParent()->begin(); 1786 1787 // Early exit if CmpInstr is at the beginning of the BB. 1788 if (I == B) return false; 1789 1790 --I; 1791 for (; I != E; --I) { 1792 const MachineInstr &Instr = *I; 1793 1794 for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) { 1795 const MachineOperand &MO = Instr.getOperand(IO); 1796 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) 1797 return false; 1798 if (!MO.isReg()) continue; 1799 1800 // This instruction modifies or uses CPSR after the one we want to 1801 // change. We can't do this transformation. 1802 if (MO.getReg() == ARM::CPSR) 1803 return false; 1804 } 1805 1806 if (I == B) 1807 // The 'and' is below the comparison instruction. 1808 return false; 1809 } 1810 1811 // Set the "zero" bit in CPSR. 1812 switch (MI->getOpcode()) { 1813 default: break; 1814 case ARM::RSBrr: 1815 case ARM::RSBri: 1816 case ARM::RSCrr: 1817 case ARM::RSCri: 1818 case ARM::ADDrr: 1819 case ARM::ADDri: 1820 case ARM::ADCrr: 1821 case ARM::ADCri: 1822 case ARM::SUBrr: 1823 case ARM::SUBri: 1824 case ARM::SBCrr: 1825 case ARM::SBCri: 1826 case ARM::t2RSBri: 1827 case ARM::t2ADDrr: 1828 case ARM::t2ADDri: 1829 case ARM::t2ADCrr: 1830 case ARM::t2ADCri: 1831 case ARM::t2SUBrr: 1832 case ARM::t2SUBri: 1833 case ARM::t2SBCrr: 1834 case ARM::t2SBCri: 1835 case ARM::ANDrr: 1836 case ARM::ANDri: 1837 case ARM::t2ANDrr: 1838 case ARM::t2ANDri: 1839 case ARM::ORRrr: 1840 case ARM::ORRri: 1841 case ARM::t2ORRrr: 1842 case ARM::t2ORRri: 1843 case ARM::EORrr: 1844 case ARM::EORri: 1845 case ARM::t2EORrr: 1846 case ARM::t2EORri: { 1847 // Scan forward for the use of CPSR, if it's a conditional code requires 1848 // checking of V bit, then this is not safe to do. If we can't find the 1849 // CPSR use (i.e. used in another block), then it's not safe to perform 1850 // the optimization. 1851 bool isSafe = false; 1852 I = CmpInstr; 1853 E = MI->getParent()->end(); 1854 while (!isSafe && ++I != E) { 1855 const MachineInstr &Instr = *I; 1856 for (unsigned IO = 0, EO = Instr.getNumOperands(); 1857 !isSafe && IO != EO; ++IO) { 1858 const MachineOperand &MO = Instr.getOperand(IO); 1859 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 1860 isSafe = true; 1861 break; 1862 } 1863 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 1864 continue; 1865 if (MO.isDef()) { 1866 isSafe = true; 1867 break; 1868 } 1869 // Condition code is after the operand before CPSR. 1870 ARMCC::CondCodes CC = (ARMCC::CondCodes)Instr.getOperand(IO-1).getImm(); 1871 switch (CC) { 1872 default: 1873 isSafe = true; 1874 break; 1875 case ARMCC::VS: 1876 case ARMCC::VC: 1877 case ARMCC::GE: 1878 case ARMCC::LT: 1879 case ARMCC::GT: 1880 case ARMCC::LE: 1881 return false; 1882 } 1883 } 1884 } 1885 1886 if (!isSafe) 1887 return false; 1888 1889 // Toggle the optional operand to CPSR. 1890 MI->getOperand(5).setReg(ARM::CPSR); 1891 MI->getOperand(5).setIsDef(true); 1892 CmpInstr->eraseFromParent(); 1893 return true; 1894 } 1895 } 1896 1897 return false; 1898 } 1899 1900 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI, 1901 MachineInstr *DefMI, unsigned Reg, 1902 MachineRegisterInfo *MRI) const { 1903 // Fold large immediates into add, sub, or, xor. 1904 unsigned DefOpc = DefMI->getOpcode(); 1905 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 1906 return false; 1907 if (!DefMI->getOperand(1).isImm()) 1908 // Could be t2MOVi32imm <ga:xx> 1909 return false; 1910 1911 if (!MRI->hasOneNonDBGUse(Reg)) 1912 return false; 1913 1914 unsigned UseOpc = UseMI->getOpcode(); 1915 unsigned NewUseOpc = 0; 1916 uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm(); 1917 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 1918 bool Commute = false; 1919 switch (UseOpc) { 1920 default: return false; 1921 case ARM::SUBrr: 1922 case ARM::ADDrr: 1923 case ARM::ORRrr: 1924 case ARM::EORrr: 1925 case ARM::t2SUBrr: 1926 case ARM::t2ADDrr: 1927 case ARM::t2ORRrr: 1928 case ARM::t2EORrr: { 1929 Commute = UseMI->getOperand(2).getReg() != Reg; 1930 switch (UseOpc) { 1931 default: break; 1932 case ARM::SUBrr: { 1933 if (Commute) 1934 return false; 1935 ImmVal = -ImmVal; 1936 NewUseOpc = ARM::SUBri; 1937 // Fallthrough 1938 } 1939 case ARM::ADDrr: 1940 case ARM::ORRrr: 1941 case ARM::EORrr: { 1942 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 1943 return false; 1944 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 1945 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 1946 switch (UseOpc) { 1947 default: break; 1948 case ARM::ADDrr: NewUseOpc = ARM::ADDri; break; 1949 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 1950 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 1951 } 1952 break; 1953 } 1954 case ARM::t2SUBrr: { 1955 if (Commute) 1956 return false; 1957 ImmVal = -ImmVal; 1958 NewUseOpc = ARM::t2SUBri; 1959 // Fallthrough 1960 } 1961 case ARM::t2ADDrr: 1962 case ARM::t2ORRrr: 1963 case ARM::t2EORrr: { 1964 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 1965 return false; 1966 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 1967 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 1968 switch (UseOpc) { 1969 default: break; 1970 case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break; 1971 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 1972 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 1973 } 1974 break; 1975 } 1976 } 1977 } 1978 } 1979 1980 unsigned OpIdx = Commute ? 2 : 1; 1981 unsigned Reg1 = UseMI->getOperand(OpIdx).getReg(); 1982 bool isKill = UseMI->getOperand(OpIdx).isKill(); 1983 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); 1984 AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(), 1985 UseMI, UseMI->getDebugLoc(), 1986 get(NewUseOpc), NewReg) 1987 .addReg(Reg1, getKillRegState(isKill)) 1988 .addImm(SOImmValV1))); 1989 UseMI->setDesc(get(NewUseOpc)); 1990 UseMI->getOperand(1).setReg(NewReg); 1991 UseMI->getOperand(1).setIsKill(); 1992 UseMI->getOperand(2).ChangeToImmediate(SOImmValV2); 1993 DefMI->eraseFromParent(); 1994 return true; 1995 } 1996 1997 unsigned 1998 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1999 const MachineInstr *MI) const { 2000 if (!ItinData || ItinData->isEmpty()) 2001 return 1; 2002 2003 const MCInstrDesc &Desc = MI->getDesc(); 2004 unsigned Class = Desc.getSchedClass(); 2005 unsigned UOps = ItinData->Itineraries[Class].NumMicroOps; 2006 if (UOps) 2007 return UOps; 2008 2009 unsigned Opc = MI->getOpcode(); 2010 switch (Opc) { 2011 default: 2012 llvm_unreachable("Unexpected multi-uops instruction!"); 2013 case ARM::VLDMQIA: 2014 case ARM::VSTMQIA: 2015 return 2; 2016 2017 // The number of uOps for load / store multiple are determined by the number 2018 // registers. 2019 // 2020 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 2021 // same cycle. The scheduling for the first load / store must be done 2022 // separately by assuming the the address is not 64-bit aligned. 2023 // 2024 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 2025 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 2026 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 2027 case ARM::VLDMDIA: 2028 case ARM::VLDMDIA_UPD: 2029 case ARM::VLDMDDB_UPD: 2030 case ARM::VLDMSIA: 2031 case ARM::VLDMSIA_UPD: 2032 case ARM::VLDMSDB_UPD: 2033 case ARM::VSTMDIA: 2034 case ARM::VSTMDIA_UPD: 2035 case ARM::VSTMDDB_UPD: 2036 case ARM::VSTMSIA: 2037 case ARM::VSTMSIA_UPD: 2038 case ARM::VSTMSDB_UPD: { 2039 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands(); 2040 return (NumRegs / 2) + (NumRegs % 2) + 1; 2041 } 2042 2043 case ARM::LDMIA_RET: 2044 case ARM::LDMIA: 2045 case ARM::LDMDA: 2046 case ARM::LDMDB: 2047 case ARM::LDMIB: 2048 case ARM::LDMIA_UPD: 2049 case ARM::LDMDA_UPD: 2050 case ARM::LDMDB_UPD: 2051 case ARM::LDMIB_UPD: 2052 case ARM::STMIA: 2053 case ARM::STMDA: 2054 case ARM::STMDB: 2055 case ARM::STMIB: 2056 case ARM::STMIA_UPD: 2057 case ARM::STMDA_UPD: 2058 case ARM::STMDB_UPD: 2059 case ARM::STMIB_UPD: 2060 case ARM::tLDMIA: 2061 case ARM::tLDMIA_UPD: 2062 case ARM::tSTMIA_UPD: 2063 case ARM::tPOP_RET: 2064 case ARM::tPOP: 2065 case ARM::tPUSH: 2066 case ARM::t2LDMIA_RET: 2067 case ARM::t2LDMIA: 2068 case ARM::t2LDMDB: 2069 case ARM::t2LDMIA_UPD: 2070 case ARM::t2LDMDB_UPD: 2071 case ARM::t2STMIA: 2072 case ARM::t2STMDB: 2073 case ARM::t2STMIA_UPD: 2074 case ARM::t2STMDB_UPD: { 2075 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1; 2076 if (Subtarget.isCortexA8()) { 2077 if (NumRegs < 4) 2078 return 2; 2079 // 4 registers would be issued: 2, 2. 2080 // 5 registers would be issued: 2, 2, 1. 2081 UOps = (NumRegs / 2); 2082 if (NumRegs % 2) 2083 ++UOps; 2084 return UOps; 2085 } else if (Subtarget.isCortexA9()) { 2086 UOps = (NumRegs / 2); 2087 // If there are odd number of registers or if it's not 64-bit aligned, 2088 // then it takes an extra AGU (Address Generation Unit) cycle. 2089 if ((NumRegs % 2) || 2090 !MI->hasOneMemOperand() || 2091 (*MI->memoperands_begin())->getAlignment() < 8) 2092 ++UOps; 2093 return UOps; 2094 } else { 2095 // Assume the worst. 2096 return NumRegs; 2097 } 2098 } 2099 } 2100 } 2101 2102 int 2103 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 2104 const MCInstrDesc &DefMCID, 2105 unsigned DefClass, 2106 unsigned DefIdx, unsigned DefAlign) const { 2107 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 2108 if (RegNo <= 0) 2109 // Def is the address writeback. 2110 return ItinData->getOperandCycle(DefClass, DefIdx); 2111 2112 int DefCycle; 2113 if (Subtarget.isCortexA8()) { 2114 // (regno / 2) + (regno % 2) + 1 2115 DefCycle = RegNo / 2 + 1; 2116 if (RegNo % 2) 2117 ++DefCycle; 2118 } else if (Subtarget.isCortexA9()) { 2119 DefCycle = RegNo; 2120 bool isSLoad = false; 2121 2122 switch (DefMCID.getOpcode()) { 2123 default: break; 2124 case ARM::VLDMSIA: 2125 case ARM::VLDMSIA_UPD: 2126 case ARM::VLDMSDB_UPD: 2127 isSLoad = true; 2128 break; 2129 } 2130 2131 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 2132 // then it takes an extra cycle. 2133 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 2134 ++DefCycle; 2135 } else { 2136 // Assume the worst. 2137 DefCycle = RegNo + 2; 2138 } 2139 2140 return DefCycle; 2141 } 2142 2143 int 2144 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 2145 const MCInstrDesc &DefMCID, 2146 unsigned DefClass, 2147 unsigned DefIdx, unsigned DefAlign) const { 2148 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 2149 if (RegNo <= 0) 2150 // Def is the address writeback. 2151 return ItinData->getOperandCycle(DefClass, DefIdx); 2152 2153 int DefCycle; 2154 if (Subtarget.isCortexA8()) { 2155 // 4 registers would be issued: 1, 2, 1. 2156 // 5 registers would be issued: 1, 2, 2. 2157 DefCycle = RegNo / 2; 2158 if (DefCycle < 1) 2159 DefCycle = 1; 2160 // Result latency is issue cycle + 2: E2. 2161 DefCycle += 2; 2162 } else if (Subtarget.isCortexA9()) { 2163 DefCycle = (RegNo / 2); 2164 // If there are odd number of registers or if it's not 64-bit aligned, 2165 // then it takes an extra AGU (Address Generation Unit) cycle. 2166 if ((RegNo % 2) || DefAlign < 8) 2167 ++DefCycle; 2168 // Result latency is AGU cycles + 2. 2169 DefCycle += 2; 2170 } else { 2171 // Assume the worst. 2172 DefCycle = RegNo + 2; 2173 } 2174 2175 return DefCycle; 2176 } 2177 2178 int 2179 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 2180 const MCInstrDesc &UseMCID, 2181 unsigned UseClass, 2182 unsigned UseIdx, unsigned UseAlign) const { 2183 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 2184 if (RegNo <= 0) 2185 return ItinData->getOperandCycle(UseClass, UseIdx); 2186 2187 int UseCycle; 2188 if (Subtarget.isCortexA8()) { 2189 // (regno / 2) + (regno % 2) + 1 2190 UseCycle = RegNo / 2 + 1; 2191 if (RegNo % 2) 2192 ++UseCycle; 2193 } else if (Subtarget.isCortexA9()) { 2194 UseCycle = RegNo; 2195 bool isSStore = false; 2196 2197 switch (UseMCID.getOpcode()) { 2198 default: break; 2199 case ARM::VSTMSIA: 2200 case ARM::VSTMSIA_UPD: 2201 case ARM::VSTMSDB_UPD: 2202 isSStore = true; 2203 break; 2204 } 2205 2206 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 2207 // then it takes an extra cycle. 2208 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 2209 ++UseCycle; 2210 } else { 2211 // Assume the worst. 2212 UseCycle = RegNo + 2; 2213 } 2214 2215 return UseCycle; 2216 } 2217 2218 int 2219 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 2220 const MCInstrDesc &UseMCID, 2221 unsigned UseClass, 2222 unsigned UseIdx, unsigned UseAlign) const { 2223 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 2224 if (RegNo <= 0) 2225 return ItinData->getOperandCycle(UseClass, UseIdx); 2226 2227 int UseCycle; 2228 if (Subtarget.isCortexA8()) { 2229 UseCycle = RegNo / 2; 2230 if (UseCycle < 2) 2231 UseCycle = 2; 2232 // Read in E3. 2233 UseCycle += 2; 2234 } else if (Subtarget.isCortexA9()) { 2235 UseCycle = (RegNo / 2); 2236 // If there are odd number of registers or if it's not 64-bit aligned, 2237 // then it takes an extra AGU (Address Generation Unit) cycle. 2238 if ((RegNo % 2) || UseAlign < 8) 2239 ++UseCycle; 2240 } else { 2241 // Assume the worst. 2242 UseCycle = 1; 2243 } 2244 return UseCycle; 2245 } 2246 2247 int 2248 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 2249 const MCInstrDesc &DefMCID, 2250 unsigned DefIdx, unsigned DefAlign, 2251 const MCInstrDesc &UseMCID, 2252 unsigned UseIdx, unsigned UseAlign) const { 2253 unsigned DefClass = DefMCID.getSchedClass(); 2254 unsigned UseClass = UseMCID.getSchedClass(); 2255 2256 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 2257 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 2258 2259 // This may be a def / use of a variable_ops instruction, the operand 2260 // latency might be determinable dynamically. Let the target try to 2261 // figure it out. 2262 int DefCycle = -1; 2263 bool LdmBypass = false; 2264 switch (DefMCID.getOpcode()) { 2265 default: 2266 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 2267 break; 2268 2269 case ARM::VLDMDIA: 2270 case ARM::VLDMDIA_UPD: 2271 case ARM::VLDMDDB_UPD: 2272 case ARM::VLDMSIA: 2273 case ARM::VLDMSIA_UPD: 2274 case ARM::VLDMSDB_UPD: 2275 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 2276 break; 2277 2278 case ARM::LDMIA_RET: 2279 case ARM::LDMIA: 2280 case ARM::LDMDA: 2281 case ARM::LDMDB: 2282 case ARM::LDMIB: 2283 case ARM::LDMIA_UPD: 2284 case ARM::LDMDA_UPD: 2285 case ARM::LDMDB_UPD: 2286 case ARM::LDMIB_UPD: 2287 case ARM::tLDMIA: 2288 case ARM::tLDMIA_UPD: 2289 case ARM::tPUSH: 2290 case ARM::t2LDMIA_RET: 2291 case ARM::t2LDMIA: 2292 case ARM::t2LDMDB: 2293 case ARM::t2LDMIA_UPD: 2294 case ARM::t2LDMDB_UPD: 2295 LdmBypass = 1; 2296 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 2297 break; 2298 } 2299 2300 if (DefCycle == -1) 2301 // We can't seem to determine the result latency of the def, assume it's 2. 2302 DefCycle = 2; 2303 2304 int UseCycle = -1; 2305 switch (UseMCID.getOpcode()) { 2306 default: 2307 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 2308 break; 2309 2310 case ARM::VSTMDIA: 2311 case ARM::VSTMDIA_UPD: 2312 case ARM::VSTMDDB_UPD: 2313 case ARM::VSTMSIA: 2314 case ARM::VSTMSIA_UPD: 2315 case ARM::VSTMSDB_UPD: 2316 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 2317 break; 2318 2319 case ARM::STMIA: 2320 case ARM::STMDA: 2321 case ARM::STMDB: 2322 case ARM::STMIB: 2323 case ARM::STMIA_UPD: 2324 case ARM::STMDA_UPD: 2325 case ARM::STMDB_UPD: 2326 case ARM::STMIB_UPD: 2327 case ARM::tSTMIA_UPD: 2328 case ARM::tPOP_RET: 2329 case ARM::tPOP: 2330 case ARM::t2STMIA: 2331 case ARM::t2STMDB: 2332 case ARM::t2STMIA_UPD: 2333 case ARM::t2STMDB_UPD: 2334 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 2335 break; 2336 } 2337 2338 if (UseCycle == -1) 2339 // Assume it's read in the first stage. 2340 UseCycle = 1; 2341 2342 UseCycle = DefCycle - UseCycle + 1; 2343 if (UseCycle > 0) { 2344 if (LdmBypass) { 2345 // It's a variable_ops instruction so we can't use DefIdx here. Just use 2346 // first def operand. 2347 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 2348 UseClass, UseIdx)) 2349 --UseCycle; 2350 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 2351 UseClass, UseIdx)) { 2352 --UseCycle; 2353 } 2354 } 2355 2356 return UseCycle; 2357 } 2358 2359 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 2360 const MachineInstr *MI, unsigned Reg, 2361 unsigned &DefIdx, unsigned &Dist) { 2362 Dist = 0; 2363 2364 MachineBasicBlock::const_iterator I = MI; ++I; 2365 MachineBasicBlock::const_instr_iterator II = 2366 llvm::prior(I.getInstrIterator()); 2367 assert(II->isInsideBundle() && "Empty bundle?"); 2368 2369 int Idx = -1; 2370 while (II->isInsideBundle()) { 2371 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 2372 if (Idx != -1) 2373 break; 2374 --II; 2375 ++Dist; 2376 } 2377 2378 assert(Idx != -1 && "Cannot find bundled definition!"); 2379 DefIdx = Idx; 2380 return II; 2381 } 2382 2383 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 2384 const MachineInstr *MI, unsigned Reg, 2385 unsigned &UseIdx, unsigned &Dist) { 2386 Dist = 0; 2387 2388 MachineBasicBlock::const_instr_iterator II = MI; ++II; 2389 assert(II->isInsideBundle() && "Empty bundle?"); 2390 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 2391 2392 // FIXME: This doesn't properly handle multiple uses. 2393 int Idx = -1; 2394 while (II != E && II->isInsideBundle()) { 2395 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 2396 if (Idx != -1) 2397 break; 2398 if (II->getOpcode() != ARM::t2IT) 2399 ++Dist; 2400 ++II; 2401 } 2402 2403 if (Idx == -1) { 2404 Dist = 0; 2405 return 0; 2406 } 2407 2408 UseIdx = Idx; 2409 return II; 2410 } 2411 2412 int 2413 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 2414 const MachineInstr *DefMI, unsigned DefIdx, 2415 const MachineInstr *UseMI, unsigned UseIdx) const { 2416 if (DefMI->isCopyLike() || DefMI->isInsertSubreg() || 2417 DefMI->isRegSequence() || DefMI->isImplicitDef()) 2418 return 1; 2419 2420 if (!ItinData || ItinData->isEmpty()) 2421 return DefMI->mayLoad() ? 3 : 1; 2422 2423 const MCInstrDesc *DefMCID = &DefMI->getDesc(); 2424 const MCInstrDesc *UseMCID = &UseMI->getDesc(); 2425 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 2426 unsigned Reg = DefMO.getReg(); 2427 if (Reg == ARM::CPSR) { 2428 if (DefMI->getOpcode() == ARM::FMSTAT) { 2429 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 2430 return Subtarget.isCortexA9() ? 1 : 20; 2431 } 2432 2433 // CPSR set and branch can be paired in the same cycle. 2434 if (UseMI->isBranch()) 2435 return 0; 2436 2437 // Otherwise it takes the instruction latency (generally one). 2438 int Latency = getInstrLatency(ItinData, DefMI); 2439 2440 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 2441 // its uses. Instructions which are otherwise scheduled between them may 2442 // incur a code size penalty (not able to use the CPSR setting 16-bit 2443 // instructions). 2444 if (Latency > 0 && Subtarget.isThumb2()) { 2445 const MachineFunction *MF = DefMI->getParent()->getParent(); 2446 if (MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize)) 2447 --Latency; 2448 } 2449 return Latency; 2450 } 2451 2452 unsigned DefAlign = DefMI->hasOneMemOperand() 2453 ? (*DefMI->memoperands_begin())->getAlignment() : 0; 2454 unsigned UseAlign = UseMI->hasOneMemOperand() 2455 ? (*UseMI->memoperands_begin())->getAlignment() : 0; 2456 2457 unsigned DefAdj = 0; 2458 if (DefMI->isBundle()) { 2459 DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj); 2460 if (DefMI->isCopyLike() || DefMI->isInsertSubreg() || 2461 DefMI->isRegSequence() || DefMI->isImplicitDef()) 2462 return 1; 2463 DefMCID = &DefMI->getDesc(); 2464 } 2465 unsigned UseAdj = 0; 2466 if (UseMI->isBundle()) { 2467 unsigned NewUseIdx; 2468 const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI, 2469 Reg, NewUseIdx, UseAdj); 2470 if (NewUseMI) { 2471 UseMI = NewUseMI; 2472 UseIdx = NewUseIdx; 2473 UseMCID = &UseMI->getDesc(); 2474 } 2475 } 2476 2477 int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign, 2478 *UseMCID, UseIdx, UseAlign); 2479 int Adj = DefAdj + UseAdj; 2480 if (Adj) { 2481 Latency -= (int)(DefAdj + UseAdj); 2482 if (Latency < 1) 2483 return 1; 2484 } 2485 2486 if (Latency > 1 && 2487 (Subtarget.isCortexA8() || Subtarget.isCortexA9())) { 2488 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 2489 // variants are one cycle cheaper. 2490 switch (DefMCID->getOpcode()) { 2491 default: break; 2492 case ARM::LDRrs: 2493 case ARM::LDRBrs: { 2494 unsigned ShOpVal = DefMI->getOperand(3).getImm(); 2495 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2496 if (ShImm == 0 || 2497 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 2498 --Latency; 2499 break; 2500 } 2501 case ARM::t2LDRs: 2502 case ARM::t2LDRBs: 2503 case ARM::t2LDRHs: 2504 case ARM::t2LDRSHs: { 2505 // Thumb2 mode: lsl only. 2506 unsigned ShAmt = DefMI->getOperand(3).getImm(); 2507 if (ShAmt == 0 || ShAmt == 2) 2508 --Latency; 2509 break; 2510 } 2511 } 2512 } 2513 2514 if (DefAlign < 8 && Subtarget.isCortexA9()) 2515 switch (DefMCID->getOpcode()) { 2516 default: break; 2517 case ARM::VLD1q8: 2518 case ARM::VLD1q16: 2519 case ARM::VLD1q32: 2520 case ARM::VLD1q64: 2521 case ARM::VLD1q8wb_fixed: 2522 case ARM::VLD1q16wb_fixed: 2523 case ARM::VLD1q32wb_fixed: 2524 case ARM::VLD1q64wb_fixed: 2525 case ARM::VLD1q8wb_register: 2526 case ARM::VLD1q16wb_register: 2527 case ARM::VLD1q32wb_register: 2528 case ARM::VLD1q64wb_register: 2529 case ARM::VLD2d8: 2530 case ARM::VLD2d16: 2531 case ARM::VLD2d32: 2532 case ARM::VLD2q8: 2533 case ARM::VLD2q16: 2534 case ARM::VLD2q32: 2535 case ARM::VLD2d8wb_fixed: 2536 case ARM::VLD2d16wb_fixed: 2537 case ARM::VLD2d32wb_fixed: 2538 case ARM::VLD2q8wb_fixed: 2539 case ARM::VLD2q16wb_fixed: 2540 case ARM::VLD2q32wb_fixed: 2541 case ARM::VLD2d8wb_register: 2542 case ARM::VLD2d16wb_register: 2543 case ARM::VLD2d32wb_register: 2544 case ARM::VLD2q8wb_register: 2545 case ARM::VLD2q16wb_register: 2546 case ARM::VLD2q32wb_register: 2547 case ARM::VLD3d8: 2548 case ARM::VLD3d16: 2549 case ARM::VLD3d32: 2550 case ARM::VLD1d64T: 2551 case ARM::VLD3d8_UPD: 2552 case ARM::VLD3d16_UPD: 2553 case ARM::VLD3d32_UPD: 2554 case ARM::VLD1d64Twb_fixed: 2555 case ARM::VLD1d64Twb_register: 2556 case ARM::VLD3q8_UPD: 2557 case ARM::VLD3q16_UPD: 2558 case ARM::VLD3q32_UPD: 2559 case ARM::VLD4d8: 2560 case ARM::VLD4d16: 2561 case ARM::VLD4d32: 2562 case ARM::VLD1d64Q: 2563 case ARM::VLD4d8_UPD: 2564 case ARM::VLD4d16_UPD: 2565 case ARM::VLD4d32_UPD: 2566 case ARM::VLD1d64Qwb_fixed: 2567 case ARM::VLD1d64Qwb_register: 2568 case ARM::VLD4q8_UPD: 2569 case ARM::VLD4q16_UPD: 2570 case ARM::VLD4q32_UPD: 2571 case ARM::VLD1DUPq8: 2572 case ARM::VLD1DUPq16: 2573 case ARM::VLD1DUPq32: 2574 case ARM::VLD1DUPq8wb_fixed: 2575 case ARM::VLD1DUPq16wb_fixed: 2576 case ARM::VLD1DUPq32wb_fixed: 2577 case ARM::VLD1DUPq8wb_register: 2578 case ARM::VLD1DUPq16wb_register: 2579 case ARM::VLD1DUPq32wb_register: 2580 case ARM::VLD2DUPd8: 2581 case ARM::VLD2DUPd16: 2582 case ARM::VLD2DUPd32: 2583 case ARM::VLD2DUPd8wb_fixed: 2584 case ARM::VLD2DUPd16wb_fixed: 2585 case ARM::VLD2DUPd32wb_fixed: 2586 case ARM::VLD2DUPd8wb_register: 2587 case ARM::VLD2DUPd16wb_register: 2588 case ARM::VLD2DUPd32wb_register: 2589 case ARM::VLD4DUPd8: 2590 case ARM::VLD4DUPd16: 2591 case ARM::VLD4DUPd32: 2592 case ARM::VLD4DUPd8_UPD: 2593 case ARM::VLD4DUPd16_UPD: 2594 case ARM::VLD4DUPd32_UPD: 2595 case ARM::VLD1LNd8: 2596 case ARM::VLD1LNd16: 2597 case ARM::VLD1LNd32: 2598 case ARM::VLD1LNd8_UPD: 2599 case ARM::VLD1LNd16_UPD: 2600 case ARM::VLD1LNd32_UPD: 2601 case ARM::VLD2LNd8: 2602 case ARM::VLD2LNd16: 2603 case ARM::VLD2LNd32: 2604 case ARM::VLD2LNq16: 2605 case ARM::VLD2LNq32: 2606 case ARM::VLD2LNd8_UPD: 2607 case ARM::VLD2LNd16_UPD: 2608 case ARM::VLD2LNd32_UPD: 2609 case ARM::VLD2LNq16_UPD: 2610 case ARM::VLD2LNq32_UPD: 2611 case ARM::VLD4LNd8: 2612 case ARM::VLD4LNd16: 2613 case ARM::VLD4LNd32: 2614 case ARM::VLD4LNq16: 2615 case ARM::VLD4LNq32: 2616 case ARM::VLD4LNd8_UPD: 2617 case ARM::VLD4LNd16_UPD: 2618 case ARM::VLD4LNd32_UPD: 2619 case ARM::VLD4LNq16_UPD: 2620 case ARM::VLD4LNq32_UPD: 2621 // If the address is not 64-bit aligned, the latencies of these 2622 // instructions increases by one. 2623 ++Latency; 2624 break; 2625 } 2626 2627 return Latency; 2628 } 2629 2630 int 2631 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 2632 SDNode *DefNode, unsigned DefIdx, 2633 SDNode *UseNode, unsigned UseIdx) const { 2634 if (!DefNode->isMachineOpcode()) 2635 return 1; 2636 2637 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 2638 2639 if (isZeroCost(DefMCID.Opcode)) 2640 return 0; 2641 2642 if (!ItinData || ItinData->isEmpty()) 2643 return DefMCID.mayLoad() ? 3 : 1; 2644 2645 if (!UseNode->isMachineOpcode()) { 2646 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 2647 if (Subtarget.isCortexA9()) 2648 return Latency <= 2 ? 1 : Latency - 1; 2649 else 2650 return Latency <= 3 ? 1 : Latency - 2; 2651 } 2652 2653 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 2654 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); 2655 unsigned DefAlign = !DefMN->memoperands_empty() 2656 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 2657 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); 2658 unsigned UseAlign = !UseMN->memoperands_empty() 2659 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 2660 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 2661 UseMCID, UseIdx, UseAlign); 2662 2663 if (Latency > 1 && 2664 (Subtarget.isCortexA8() || Subtarget.isCortexA9())) { 2665 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 2666 // variants are one cycle cheaper. 2667 switch (DefMCID.getOpcode()) { 2668 default: break; 2669 case ARM::LDRrs: 2670 case ARM::LDRBrs: { 2671 unsigned ShOpVal = 2672 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 2673 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2674 if (ShImm == 0 || 2675 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 2676 --Latency; 2677 break; 2678 } 2679 case ARM::t2LDRs: 2680 case ARM::t2LDRBs: 2681 case ARM::t2LDRHs: 2682 case ARM::t2LDRSHs: { 2683 // Thumb2 mode: lsl only. 2684 unsigned ShAmt = 2685 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 2686 if (ShAmt == 0 || ShAmt == 2) 2687 --Latency; 2688 break; 2689 } 2690 } 2691 } 2692 2693 if (DefAlign < 8 && Subtarget.isCortexA9()) 2694 switch (DefMCID.getOpcode()) { 2695 default: break; 2696 case ARM::VLD1q8Pseudo: 2697 case ARM::VLD1q16Pseudo: 2698 case ARM::VLD1q32Pseudo: 2699 case ARM::VLD1q64Pseudo: 2700 case ARM::VLD1q8PseudoWB_register: 2701 case ARM::VLD1q16PseudoWB_register: 2702 case ARM::VLD1q32PseudoWB_register: 2703 case ARM::VLD1q64PseudoWB_register: 2704 case ARM::VLD1q8PseudoWB_fixed: 2705 case ARM::VLD1q16PseudoWB_fixed: 2706 case ARM::VLD1q32PseudoWB_fixed: 2707 case ARM::VLD1q64PseudoWB_fixed: 2708 case ARM::VLD2d8Pseudo: 2709 case ARM::VLD2d16Pseudo: 2710 case ARM::VLD2d32Pseudo: 2711 case ARM::VLD2q8Pseudo: 2712 case ARM::VLD2q16Pseudo: 2713 case ARM::VLD2q32Pseudo: 2714 case ARM::VLD2d8PseudoWB_fixed: 2715 case ARM::VLD2d16PseudoWB_fixed: 2716 case ARM::VLD2d32PseudoWB_fixed: 2717 case ARM::VLD2q8PseudoWB_fixed: 2718 case ARM::VLD2q16PseudoWB_fixed: 2719 case ARM::VLD2q32PseudoWB_fixed: 2720 case ARM::VLD2d8PseudoWB_register: 2721 case ARM::VLD2d16PseudoWB_register: 2722 case ARM::VLD2d32PseudoWB_register: 2723 case ARM::VLD2q8PseudoWB_register: 2724 case ARM::VLD2q16PseudoWB_register: 2725 case ARM::VLD2q32PseudoWB_register: 2726 case ARM::VLD3d8Pseudo: 2727 case ARM::VLD3d16Pseudo: 2728 case ARM::VLD3d32Pseudo: 2729 case ARM::VLD1d64TPseudo: 2730 case ARM::VLD3d8Pseudo_UPD: 2731 case ARM::VLD3d16Pseudo_UPD: 2732 case ARM::VLD3d32Pseudo_UPD: 2733 case ARM::VLD3q8Pseudo_UPD: 2734 case ARM::VLD3q16Pseudo_UPD: 2735 case ARM::VLD3q32Pseudo_UPD: 2736 case ARM::VLD3q8oddPseudo: 2737 case ARM::VLD3q16oddPseudo: 2738 case ARM::VLD3q32oddPseudo: 2739 case ARM::VLD3q8oddPseudo_UPD: 2740 case ARM::VLD3q16oddPseudo_UPD: 2741 case ARM::VLD3q32oddPseudo_UPD: 2742 case ARM::VLD4d8Pseudo: 2743 case ARM::VLD4d16Pseudo: 2744 case ARM::VLD4d32Pseudo: 2745 case ARM::VLD1d64QPseudo: 2746 case ARM::VLD4d8Pseudo_UPD: 2747 case ARM::VLD4d16Pseudo_UPD: 2748 case ARM::VLD4d32Pseudo_UPD: 2749 case ARM::VLD4q8Pseudo_UPD: 2750 case ARM::VLD4q16Pseudo_UPD: 2751 case ARM::VLD4q32Pseudo_UPD: 2752 case ARM::VLD4q8oddPseudo: 2753 case ARM::VLD4q16oddPseudo: 2754 case ARM::VLD4q32oddPseudo: 2755 case ARM::VLD4q8oddPseudo_UPD: 2756 case ARM::VLD4q16oddPseudo_UPD: 2757 case ARM::VLD4q32oddPseudo_UPD: 2758 case ARM::VLD1DUPq8Pseudo: 2759 case ARM::VLD1DUPq16Pseudo: 2760 case ARM::VLD1DUPq32Pseudo: 2761 case ARM::VLD1DUPq8PseudoWB_fixed: 2762 case ARM::VLD1DUPq16PseudoWB_fixed: 2763 case ARM::VLD1DUPq32PseudoWB_fixed: 2764 case ARM::VLD1DUPq8PseudoWB_register: 2765 case ARM::VLD1DUPq16PseudoWB_register: 2766 case ARM::VLD1DUPq32PseudoWB_register: 2767 case ARM::VLD2DUPd8Pseudo: 2768 case ARM::VLD2DUPd16Pseudo: 2769 case ARM::VLD2DUPd32Pseudo: 2770 case ARM::VLD2DUPd8PseudoWB_fixed: 2771 case ARM::VLD2DUPd16PseudoWB_fixed: 2772 case ARM::VLD2DUPd32PseudoWB_fixed: 2773 case ARM::VLD2DUPd8PseudoWB_register: 2774 case ARM::VLD2DUPd16PseudoWB_register: 2775 case ARM::VLD2DUPd32PseudoWB_register: 2776 case ARM::VLD4DUPd8Pseudo: 2777 case ARM::VLD4DUPd16Pseudo: 2778 case ARM::VLD4DUPd32Pseudo: 2779 case ARM::VLD4DUPd8Pseudo_UPD: 2780 case ARM::VLD4DUPd16Pseudo_UPD: 2781 case ARM::VLD4DUPd32Pseudo_UPD: 2782 case ARM::VLD1LNq8Pseudo: 2783 case ARM::VLD1LNq16Pseudo: 2784 case ARM::VLD1LNq32Pseudo: 2785 case ARM::VLD1LNq8Pseudo_UPD: 2786 case ARM::VLD1LNq16Pseudo_UPD: 2787 case ARM::VLD1LNq32Pseudo_UPD: 2788 case ARM::VLD2LNd8Pseudo: 2789 case ARM::VLD2LNd16Pseudo: 2790 case ARM::VLD2LNd32Pseudo: 2791 case ARM::VLD2LNq16Pseudo: 2792 case ARM::VLD2LNq32Pseudo: 2793 case ARM::VLD2LNd8Pseudo_UPD: 2794 case ARM::VLD2LNd16Pseudo_UPD: 2795 case ARM::VLD2LNd32Pseudo_UPD: 2796 case ARM::VLD2LNq16Pseudo_UPD: 2797 case ARM::VLD2LNq32Pseudo_UPD: 2798 case ARM::VLD4LNd8Pseudo: 2799 case ARM::VLD4LNd16Pseudo: 2800 case ARM::VLD4LNd32Pseudo: 2801 case ARM::VLD4LNq16Pseudo: 2802 case ARM::VLD4LNq32Pseudo: 2803 case ARM::VLD4LNd8Pseudo_UPD: 2804 case ARM::VLD4LNd16Pseudo_UPD: 2805 case ARM::VLD4LNd32Pseudo_UPD: 2806 case ARM::VLD4LNq16Pseudo_UPD: 2807 case ARM::VLD4LNq32Pseudo_UPD: 2808 // If the address is not 64-bit aligned, the latencies of these 2809 // instructions increases by one. 2810 ++Latency; 2811 break; 2812 } 2813 2814 return Latency; 2815 } 2816 2817 unsigned 2818 ARMBaseInstrInfo::getOutputLatency(const InstrItineraryData *ItinData, 2819 const MachineInstr *DefMI, unsigned DefIdx, 2820 const MachineInstr *DepMI) const { 2821 unsigned Reg = DefMI->getOperand(DefIdx).getReg(); 2822 if (DepMI->readsRegister(Reg, &getRegisterInfo()) || !isPredicated(DepMI)) 2823 return 1; 2824 2825 // If the second MI is predicated, then there is an implicit use dependency. 2826 return getOperandLatency(ItinData, DefMI, DefIdx, DepMI, 2827 DepMI->getNumOperands()); 2828 } 2829 2830 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 2831 const MachineInstr *MI, 2832 unsigned *PredCost) const { 2833 if (MI->isCopyLike() || MI->isInsertSubreg() || 2834 MI->isRegSequence() || MI->isImplicitDef()) 2835 return 1; 2836 2837 if (!ItinData || ItinData->isEmpty()) 2838 return 1; 2839 2840 if (MI->isBundle()) { 2841 int Latency = 0; 2842 MachineBasicBlock::const_instr_iterator I = MI; 2843 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 2844 while (++I != E && I->isInsideBundle()) { 2845 if (I->getOpcode() != ARM::t2IT) 2846 Latency += getInstrLatency(ItinData, I, PredCost); 2847 } 2848 return Latency; 2849 } 2850 2851 const MCInstrDesc &MCID = MI->getDesc(); 2852 unsigned Class = MCID.getSchedClass(); 2853 unsigned UOps = ItinData->Itineraries[Class].NumMicroOps; 2854 if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) 2855 // When predicated, CPSR is an additional source operand for CPSR updating 2856 // instructions, this apparently increases their latencies. 2857 *PredCost = 1; 2858 if (UOps) 2859 return ItinData->getStageLatency(Class); 2860 return getNumMicroOps(ItinData, MI); 2861 } 2862 2863 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 2864 SDNode *Node) const { 2865 if (!Node->isMachineOpcode()) 2866 return 1; 2867 2868 if (!ItinData || ItinData->isEmpty()) 2869 return 1; 2870 2871 unsigned Opcode = Node->getMachineOpcode(); 2872 switch (Opcode) { 2873 default: 2874 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 2875 case ARM::VLDMQIA: 2876 case ARM::VSTMQIA: 2877 return 2; 2878 } 2879 } 2880 2881 bool ARMBaseInstrInfo:: 2882 hasHighOperandLatency(const InstrItineraryData *ItinData, 2883 const MachineRegisterInfo *MRI, 2884 const MachineInstr *DefMI, unsigned DefIdx, 2885 const MachineInstr *UseMI, unsigned UseIdx) const { 2886 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; 2887 unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask; 2888 if (Subtarget.isCortexA8() && 2889 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 2890 // CortexA8 VFP instructions are not pipelined. 2891 return true; 2892 2893 // Hoist VFP / NEON instructions with 4 or higher latency. 2894 int Latency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 2895 if (Latency <= 3) 2896 return false; 2897 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 2898 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 2899 } 2900 2901 bool ARMBaseInstrInfo:: 2902 hasLowDefLatency(const InstrItineraryData *ItinData, 2903 const MachineInstr *DefMI, unsigned DefIdx) const { 2904 if (!ItinData || ItinData->isEmpty()) 2905 return false; 2906 2907 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; 2908 if (DDomain == ARMII::DomainGeneral) { 2909 unsigned DefClass = DefMI->getDesc().getSchedClass(); 2910 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 2911 return (DefCycle != -1 && DefCycle <= 2); 2912 } 2913 return false; 2914 } 2915 2916 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI, 2917 StringRef &ErrInfo) const { 2918 if (convertAddSubFlagsOpcode(MI->getOpcode())) { 2919 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 2920 return false; 2921 } 2922 return true; 2923 } 2924 2925 bool 2926 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 2927 unsigned &AddSubOpc, 2928 bool &NegAcc, bool &HasLane) const { 2929 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 2930 if (I == MLxEntryMap.end()) 2931 return false; 2932 2933 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 2934 MulOpc = Entry.MulOpc; 2935 AddSubOpc = Entry.AddSubOpc; 2936 NegAcc = Entry.NegAcc; 2937 HasLane = Entry.HasLane; 2938 return true; 2939 } 2940 2941 //===----------------------------------------------------------------------===// 2942 // Execution domains. 2943 //===----------------------------------------------------------------------===// 2944 // 2945 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 2946 // and some can go down both. The vmov instructions go down the VFP pipeline, 2947 // but they can be changed to vorr equivalents that are executed by the NEON 2948 // pipeline. 2949 // 2950 // We use the following execution domain numbering: 2951 // 2952 enum ARMExeDomain { 2953 ExeGeneric = 0, 2954 ExeVFP = 1, 2955 ExeNEON = 2 2956 }; 2957 // 2958 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 2959 // 2960 std::pair<uint16_t, uint16_t> 2961 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const { 2962 // VMOVD is a VFP instruction, but can be changed to NEON if it isn't 2963 // predicated. 2964 if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI)) 2965 return std::make_pair(ExeVFP, (1<<ExeVFP) | (1<<ExeNEON)); 2966 2967 // No other instructions can be swizzled, so just determine their domain. 2968 unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 2969 2970 if (Domain & ARMII::DomainNEON) 2971 return std::make_pair(ExeNEON, 0); 2972 2973 // Certain instructions can go either way on Cortex-A8. 2974 // Treat them as NEON instructions. 2975 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 2976 return std::make_pair(ExeNEON, 0); 2977 2978 if (Domain & ARMII::DomainVFP) 2979 return std::make_pair(ExeVFP, 0); 2980 2981 return std::make_pair(ExeGeneric, 0); 2982 } 2983 2984 void 2985 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { 2986 // We only know how to change VMOVD into VORR. 2987 assert(MI->getOpcode() == ARM::VMOVD && "Can only swizzle VMOVD"); 2988 if (Domain != ExeNEON) 2989 return; 2990 2991 // Zap the predicate operands. 2992 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 2993 MI->RemoveOperand(3); 2994 MI->RemoveOperand(2); 2995 2996 // Change to a VORRd which requires two identical use operands. 2997 MI->setDesc(get(ARM::VORRd)); 2998 2999 // Add the extra source operand and new predicates. 3000 // This will go before any implicit ops. 3001 AddDefaultPred(MachineInstrBuilder(MI).addOperand(MI->getOperand(1))); 3002 } 3003