1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSchedule.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/MC/MCAsmInfo.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCInstrItineraries.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <new>
64 #include <utility>
65 #include <vector>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "arm-instrinfo"
70 
71 #define GET_INSTRINFO_CTOR_DTOR
72 #include "ARMGenInstrInfo.inc"
73 
74 static cl::opt<bool>
75 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
76                cl::desc("Enable ARM 2-addr to 3-addr conv"));
77 
78 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
79 struct ARM_MLxEntry {
80   uint16_t MLxOpc;     // MLA / MLS opcode
81   uint16_t MulOpc;     // Expanded multiplication opcode
82   uint16_t AddSubOpc;  // Expanded add / sub opcode
83   bool NegAcc;         // True if the acc is negated before the add / sub.
84   bool HasLane;        // True if instruction has an extra "lane" operand.
85 };
86 
87 static const ARM_MLxEntry ARM_MLxTable[] = {
88   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
89   // fp scalar ops
90   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
91   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
92   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
93   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
94   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
95   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
96   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
97   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
98 
99   // fp SIMD ops
100   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
101   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
102   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
103   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
104   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
105   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
106   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
107   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
108 };
109 
110 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
111   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
112     Subtarget(STI) {
113   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
114     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
115       llvm_unreachable("Duplicated entries?");
116     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
117     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
118   }
119 }
120 
121 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
122 // currently defaults to no prepass hazard recognizer.
123 ScheduleHazardRecognizer *
124 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
125                                                const ScheduleDAG *DAG) const {
126   if (usePreRAHazardRecognizer()) {
127     const InstrItineraryData *II =
128         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
129     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
130   }
131   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
132 }
133 
134 ScheduleHazardRecognizer *ARMBaseInstrInfo::
135 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
136                                    const ScheduleDAG *DAG) const {
137   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
138     return new ARMHazardRecognizer(II, DAG);
139   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
140 }
141 
142 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
143     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
144   // FIXME: Thumb2 support.
145 
146   if (!EnableARM3Addr)
147     return nullptr;
148 
149   MachineFunction &MF = *MI.getParent()->getParent();
150   uint64_t TSFlags = MI.getDesc().TSFlags;
151   bool isPre = false;
152   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
153   default: return nullptr;
154   case ARMII::IndexModePre:
155     isPre = true;
156     break;
157   case ARMII::IndexModePost:
158     break;
159   }
160 
161   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
162   // operation.
163   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
164   if (MemOpc == 0)
165     return nullptr;
166 
167   MachineInstr *UpdateMI = nullptr;
168   MachineInstr *MemMI = nullptr;
169   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
170   const MCInstrDesc &MCID = MI.getDesc();
171   unsigned NumOps = MCID.getNumOperands();
172   bool isLoad = !MI.mayStore();
173   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
174   const MachineOperand &Base = MI.getOperand(2);
175   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
176   Register WBReg = WB.getReg();
177   Register BaseReg = Base.getReg();
178   Register OffReg = Offset.getReg();
179   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
180   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
181   switch (AddrMode) {
182   default: llvm_unreachable("Unknown indexed op!");
183   case ARMII::AddrMode2: {
184     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
185     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
186     if (OffReg == 0) {
187       if (ARM_AM::getSOImmVal(Amt) == -1)
188         // Can't encode it in a so_imm operand. This transformation will
189         // add more than 1 instruction. Abandon!
190         return nullptr;
191       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
192                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193                      .addReg(BaseReg)
194                      .addImm(Amt)
195                      .add(predOps(Pred))
196                      .add(condCodeOp());
197     } else if (Amt != 0) {
198       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
199       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
200       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
201                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
202                      .addReg(BaseReg)
203                      .addReg(OffReg)
204                      .addReg(0)
205                      .addImm(SOOpc)
206                      .add(predOps(Pred))
207                      .add(condCodeOp());
208     } else
209       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
210                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
211                      .addReg(BaseReg)
212                      .addReg(OffReg)
213                      .add(predOps(Pred))
214                      .add(condCodeOp());
215     break;
216   }
217   case ARMII::AddrMode3 : {
218     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
219     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
220     if (OffReg == 0)
221       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
222       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
223                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
224                      .addReg(BaseReg)
225                      .addImm(Amt)
226                      .add(predOps(Pred))
227                      .add(condCodeOp());
228     else
229       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
230                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
231                      .addReg(BaseReg)
232                      .addReg(OffReg)
233                      .add(predOps(Pred))
234                      .add(condCodeOp());
235     break;
236   }
237   }
238 
239   std::vector<MachineInstr*> NewMIs;
240   if (isPre) {
241     if (isLoad)
242       MemMI =
243           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
244               .addReg(WBReg)
245               .addImm(0)
246               .addImm(Pred);
247     else
248       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
249                   .addReg(MI.getOperand(1).getReg())
250                   .addReg(WBReg)
251                   .addReg(0)
252                   .addImm(0)
253                   .addImm(Pred);
254     NewMIs.push_back(MemMI);
255     NewMIs.push_back(UpdateMI);
256   } else {
257     if (isLoad)
258       MemMI =
259           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
260               .addReg(BaseReg)
261               .addImm(0)
262               .addImm(Pred);
263     else
264       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
265                   .addReg(MI.getOperand(1).getReg())
266                   .addReg(BaseReg)
267                   .addReg(0)
268                   .addImm(0)
269                   .addImm(Pred);
270     if (WB.isDead())
271       UpdateMI->getOperand(0).setIsDead();
272     NewMIs.push_back(UpdateMI);
273     NewMIs.push_back(MemMI);
274   }
275 
276   // Transfer LiveVariables states, kill / dead info.
277   if (LV) {
278     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
279       MachineOperand &MO = MI.getOperand(i);
280       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
281         Register Reg = MO.getReg();
282 
283         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
284         if (MO.isDef()) {
285           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
286           if (MO.isDead())
287             LV->addVirtualRegisterDead(Reg, *NewMI);
288         }
289         if (MO.isUse() && MO.isKill()) {
290           for (unsigned j = 0; j < 2; ++j) {
291             // Look at the two new MI's in reverse order.
292             MachineInstr *NewMI = NewMIs[j];
293             if (!NewMI->readsRegister(Reg))
294               continue;
295             LV->addVirtualRegisterKilled(Reg, *NewMI);
296             if (VI.removeKill(MI))
297               VI.Kills.push_back(NewMI);
298             break;
299           }
300         }
301       }
302     }
303   }
304 
305   MachineBasicBlock::iterator MBBI = MI.getIterator();
306   MFI->insert(MBBI, NewMIs[1]);
307   MFI->insert(MBBI, NewMIs[0]);
308   return NewMIs[0];
309 }
310 
311 // Branch analysis.
312 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
313                                      MachineBasicBlock *&TBB,
314                                      MachineBasicBlock *&FBB,
315                                      SmallVectorImpl<MachineOperand> &Cond,
316                                      bool AllowModify) const {
317   TBB = nullptr;
318   FBB = nullptr;
319 
320   MachineBasicBlock::instr_iterator I = MBB.instr_end();
321   if (I == MBB.instr_begin())
322     return false; // Empty blocks are easy.
323   --I;
324 
325   // Walk backwards from the end of the basic block until the branch is
326   // analyzed or we give up.
327   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
328     // Flag to be raised on unanalyzeable instructions. This is useful in cases
329     // where we want to clean up on the end of the basic block before we bail
330     // out.
331     bool CantAnalyze = false;
332 
333     // Skip over DEBUG values and predicated nonterminators.
334     while (I->isDebugInstr() || !I->isTerminator()) {
335       if (I == MBB.instr_begin())
336         return false;
337       --I;
338     }
339 
340     if (isIndirectBranchOpcode(I->getOpcode()) ||
341         isJumpTableBranchOpcode(I->getOpcode())) {
342       // Indirect branches and jump tables can't be analyzed, but we still want
343       // to clean up any instructions at the tail of the basic block.
344       CantAnalyze = true;
345     } else if (isUncondBranchOpcode(I->getOpcode())) {
346       TBB = I->getOperand(0).getMBB();
347     } else if (isCondBranchOpcode(I->getOpcode())) {
348       // Bail out if we encounter multiple conditional branches.
349       if (!Cond.empty())
350         return true;
351 
352       assert(!FBB && "FBB should have been null.");
353       FBB = TBB;
354       TBB = I->getOperand(0).getMBB();
355       Cond.push_back(I->getOperand(1));
356       Cond.push_back(I->getOperand(2));
357     } else if (I->isReturn()) {
358       // Returns can't be analyzed, but we should run cleanup.
359       CantAnalyze = true;
360     } else {
361       // We encountered other unrecognized terminator. Bail out immediately.
362       return true;
363     }
364 
365     // Cleanup code - to be run for unpredicated unconditional branches and
366     //                returns.
367     if (!isPredicated(*I) &&
368           (isUncondBranchOpcode(I->getOpcode()) ||
369            isIndirectBranchOpcode(I->getOpcode()) ||
370            isJumpTableBranchOpcode(I->getOpcode()) ||
371            I->isReturn())) {
372       // Forget any previous condition branch information - it no longer applies.
373       Cond.clear();
374       FBB = nullptr;
375 
376       // If we can modify the function, delete everything below this
377       // unconditional branch.
378       if (AllowModify) {
379         MachineBasicBlock::iterator DI = std::next(I);
380         while (DI != MBB.instr_end()) {
381           MachineInstr &InstToDelete = *DI;
382           ++DI;
383           InstToDelete.eraseFromParent();
384         }
385       }
386     }
387 
388     if (CantAnalyze) {
389       // We may not be able to analyze the block, but we could still have
390       // an unconditional branch as the last instruction in the block, which
391       // just branches to layout successor. If this is the case, then just
392       // remove it if we're allowed to make modifications.
393       if (AllowModify && !isPredicated(MBB.back()) &&
394           isUncondBranchOpcode(MBB.back().getOpcode()) &&
395           TBB && MBB.isLayoutSuccessor(TBB))
396         removeBranch(MBB);
397       return true;
398     }
399 
400     if (I == MBB.instr_begin())
401       return false;
402 
403     --I;
404   }
405 
406   // We made it past the terminators without bailing out - we must have
407   // analyzed this branch successfully.
408   return false;
409 }
410 
411 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
412                                         int *BytesRemoved) const {
413   assert(!BytesRemoved && "code size not handled");
414 
415   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
416   if (I == MBB.end())
417     return 0;
418 
419   if (!isUncondBranchOpcode(I->getOpcode()) &&
420       !isCondBranchOpcode(I->getOpcode()))
421     return 0;
422 
423   // Remove the branch.
424   I->eraseFromParent();
425 
426   I = MBB.end();
427 
428   if (I == MBB.begin()) return 1;
429   --I;
430   if (!isCondBranchOpcode(I->getOpcode()))
431     return 1;
432 
433   // Remove the branch.
434   I->eraseFromParent();
435   return 2;
436 }
437 
438 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
439                                         MachineBasicBlock *TBB,
440                                         MachineBasicBlock *FBB,
441                                         ArrayRef<MachineOperand> Cond,
442                                         const DebugLoc &DL,
443                                         int *BytesAdded) const {
444   assert(!BytesAdded && "code size not handled");
445   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
446   int BOpc   = !AFI->isThumbFunction()
447     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
448   int BccOpc = !AFI->isThumbFunction()
449     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
450   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
451 
452   // Shouldn't be a fall through.
453   assert(TBB && "insertBranch must not be told to insert a fallthrough");
454   assert((Cond.size() == 2 || Cond.size() == 0) &&
455          "ARM branch conditions have two components!");
456 
457   // For conditional branches, we use addOperand to preserve CPSR flags.
458 
459   if (!FBB) {
460     if (Cond.empty()) { // Unconditional branch?
461       if (isThumb)
462         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
463       else
464         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
465     } else
466       BuildMI(&MBB, DL, get(BccOpc))
467           .addMBB(TBB)
468           .addImm(Cond[0].getImm())
469           .add(Cond[1]);
470     return 1;
471   }
472 
473   // Two-way conditional branch.
474   BuildMI(&MBB, DL, get(BccOpc))
475       .addMBB(TBB)
476       .addImm(Cond[0].getImm())
477       .add(Cond[1]);
478   if (isThumb)
479     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
480   else
481     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
482   return 2;
483 }
484 
485 bool ARMBaseInstrInfo::
486 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
487   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
488   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
489   return false;
490 }
491 
492 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
493   if (MI.isBundle()) {
494     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
495     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
496     while (++I != E && I->isInsideBundle()) {
497       int PIdx = I->findFirstPredOperandIdx();
498       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
499         return true;
500     }
501     return false;
502   }
503 
504   int PIdx = MI.findFirstPredOperandIdx();
505   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
506 }
507 
508 std::string ARMBaseInstrInfo::createMIROperandComment(
509     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
510     const TargetRegisterInfo *TRI) const {
511 
512   // First, let's see if there is a generic comment for this operand
513   std::string GenericComment =
514       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
515   if (!GenericComment.empty())
516     return GenericComment;
517 
518   // If not, check if we have an immediate operand.
519   if (Op.getType() != MachineOperand::MO_Immediate)
520     return std::string();
521 
522   // And print its corresponding condition code if the immediate is a
523   // predicate.
524   int FirstPredOp = MI.findFirstPredOperandIdx();
525   if (FirstPredOp != (int) OpIdx)
526     return std::string();
527 
528   std::string CC = "CC::";
529   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
530   return CC;
531 }
532 
533 bool ARMBaseInstrInfo::PredicateInstruction(
534     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
535   unsigned Opc = MI.getOpcode();
536   if (isUncondBranchOpcode(Opc)) {
537     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
538     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
539       .addImm(Pred[0].getImm())
540       .addReg(Pred[1].getReg());
541     return true;
542   }
543 
544   int PIdx = MI.findFirstPredOperandIdx();
545   if (PIdx != -1) {
546     MachineOperand &PMO = MI.getOperand(PIdx);
547     PMO.setImm(Pred[0].getImm());
548     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
549 
550     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
551     // IT block. This affects how they are printed.
552     const MCInstrDesc &MCID = MI.getDesc();
553     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
554       assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand");
555       assert((MI.getOperand(1).isDead() ||
556               MI.getOperand(1).getReg() != ARM::CPSR) &&
557              "if conversion tried to stop defining used CPSR");
558       MI.getOperand(1).setReg(ARM::NoRegister);
559     }
560 
561     return true;
562   }
563   return false;
564 }
565 
566 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
567                                          ArrayRef<MachineOperand> Pred2) const {
568   if (Pred1.size() > 2 || Pred2.size() > 2)
569     return false;
570 
571   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
572   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
573   if (CC1 == CC2)
574     return true;
575 
576   switch (CC1) {
577   default:
578     return false;
579   case ARMCC::AL:
580     return true;
581   case ARMCC::HS:
582     return CC2 == ARMCC::HI;
583   case ARMCC::LS:
584     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
585   case ARMCC::GE:
586     return CC2 == ARMCC::GT;
587   case ARMCC::LE:
588     return CC2 == ARMCC::LT;
589   }
590 }
591 
592 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
593                                          std::vector<MachineOperand> &Pred,
594                                          bool SkipDead) const {
595   bool Found = false;
596   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
597     const MachineOperand &MO = MI.getOperand(i);
598     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
599         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
600       Pred.push_back(MO);
601       Found = true;
602     }
603   }
604 
605   return Found;
606 }
607 
608 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
609   for (const auto &MO : MI.operands())
610     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
611       return true;
612   return false;
613 }
614 
615 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
616                                         unsigned Op) const {
617   const MachineOperand &Offset = MI.getOperand(Op + 1);
618   return Offset.getReg() != 0;
619 }
620 
621 // Load with negative register offset requires additional 1cyc and +I unit
622 // for Cortex A57
623 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
624                                              unsigned Op) const {
625   const MachineOperand &Offset = MI.getOperand(Op + 1);
626   const MachineOperand &Opc = MI.getOperand(Op + 2);
627   assert(Opc.isImm());
628   assert(Offset.isReg());
629   int64_t OpcImm = Opc.getImm();
630 
631   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
632   return (isSub && Offset.getReg() != 0);
633 }
634 
635 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
636                                        unsigned Op) const {
637   const MachineOperand &Opc = MI.getOperand(Op + 2);
638   unsigned OffImm = Opc.getImm();
639   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
640 }
641 
642 // Load, scaled register offset, not plus LSL2
643 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
644                                                   unsigned Op) const {
645   const MachineOperand &Opc = MI.getOperand(Op + 2);
646   unsigned OffImm = Opc.getImm();
647 
648   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
649   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
650   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
651   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
652   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
653   return !SimpleScaled;
654 }
655 
656 // Minus reg for ldstso addr mode
657 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
658                                         unsigned Op) const {
659   unsigned OffImm = MI.getOperand(Op + 2).getImm();
660   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
661 }
662 
663 // Load, scaled register offset
664 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
665                                       unsigned Op) const {
666   unsigned OffImm = MI.getOperand(Op + 2).getImm();
667   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
668 }
669 
670 static bool isEligibleForITBlock(const MachineInstr *MI) {
671   switch (MI->getOpcode()) {
672   default: return true;
673   case ARM::tADC:   // ADC (register) T1
674   case ARM::tADDi3: // ADD (immediate) T1
675   case ARM::tADDi8: // ADD (immediate) T2
676   case ARM::tADDrr: // ADD (register) T1
677   case ARM::tAND:   // AND (register) T1
678   case ARM::tASRri: // ASR (immediate) T1
679   case ARM::tASRrr: // ASR (register) T1
680   case ARM::tBIC:   // BIC (register) T1
681   case ARM::tEOR:   // EOR (register) T1
682   case ARM::tLSLri: // LSL (immediate) T1
683   case ARM::tLSLrr: // LSL (register) T1
684   case ARM::tLSRri: // LSR (immediate) T1
685   case ARM::tLSRrr: // LSR (register) T1
686   case ARM::tMUL:   // MUL T1
687   case ARM::tMVN:   // MVN (register) T1
688   case ARM::tORR:   // ORR (register) T1
689   case ARM::tROR:   // ROR (register) T1
690   case ARM::tRSB:   // RSB (immediate) T1
691   case ARM::tSBC:   // SBC (register) T1
692   case ARM::tSUBi3: // SUB (immediate) T1
693   case ARM::tSUBi8: // SUB (immediate) T2
694   case ARM::tSUBrr: // SUB (register) T1
695     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
696   }
697 }
698 
699 /// isPredicable - Return true if the specified instruction can be predicated.
700 /// By default, this returns true for every instruction with a
701 /// PredicateOperand.
702 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
703   if (!MI.isPredicable())
704     return false;
705 
706   if (MI.isBundle())
707     return false;
708 
709   if (!isEligibleForITBlock(&MI))
710     return false;
711 
712   const ARMFunctionInfo *AFI =
713       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
714 
715   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
716   // In their ARM encoding, they can't be encoded in a conditional form.
717   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
718     return false;
719 
720   if (AFI->isThumb2Function()) {
721     if (getSubtarget().restrictIT())
722       return isV8EligibleForIT(&MI);
723   }
724 
725   return true;
726 }
727 
728 namespace llvm {
729 
730 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
731   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
732     const MachineOperand &MO = MI->getOperand(i);
733     if (!MO.isReg() || MO.isUndef() || MO.isUse())
734       continue;
735     if (MO.getReg() != ARM::CPSR)
736       continue;
737     if (!MO.isDead())
738       return false;
739   }
740   // all definitions of CPSR are dead
741   return true;
742 }
743 
744 } // end namespace llvm
745 
746 /// GetInstSize - Return the size of the specified MachineInstr.
747 ///
748 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
749   const MachineBasicBlock &MBB = *MI.getParent();
750   const MachineFunction *MF = MBB.getParent();
751   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
752 
753   const MCInstrDesc &MCID = MI.getDesc();
754   if (MCID.getSize())
755     return MCID.getSize();
756 
757   switch (MI.getOpcode()) {
758   default:
759     // pseudo-instruction sizes are zero.
760     return 0;
761   case TargetOpcode::BUNDLE:
762     return getInstBundleLength(MI);
763   case ARM::MOVi16_ga_pcrel:
764   case ARM::MOVTi16_ga_pcrel:
765   case ARM::t2MOVi16_ga_pcrel:
766   case ARM::t2MOVTi16_ga_pcrel:
767     return 4;
768   case ARM::MOVi32imm:
769   case ARM::t2MOVi32imm:
770     return 8;
771   case ARM::CONSTPOOL_ENTRY:
772   case ARM::JUMPTABLE_INSTS:
773   case ARM::JUMPTABLE_ADDRS:
774   case ARM::JUMPTABLE_TBB:
775   case ARM::JUMPTABLE_TBH:
776     // If this machine instr is a constant pool entry, its size is recorded as
777     // operand #2.
778     return MI.getOperand(2).getImm();
779   case ARM::Int_eh_sjlj_longjmp:
780     return 16;
781   case ARM::tInt_eh_sjlj_longjmp:
782     return 10;
783   case ARM::tInt_WIN_eh_sjlj_longjmp:
784     return 12;
785   case ARM::Int_eh_sjlj_setjmp:
786   case ARM::Int_eh_sjlj_setjmp_nofp:
787     return 20;
788   case ARM::tInt_eh_sjlj_setjmp:
789   case ARM::t2Int_eh_sjlj_setjmp:
790   case ARM::t2Int_eh_sjlj_setjmp_nofp:
791     return 12;
792   case ARM::SPACE:
793     return MI.getOperand(1).getImm();
794   case ARM::INLINEASM:
795   case ARM::INLINEASM_BR: {
796     // If this machine instr is an inline asm, measure it.
797     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
798     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
799       Size = alignTo(Size, 4);
800     return Size;
801   }
802   }
803 }
804 
805 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
806   unsigned Size = 0;
807   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
808   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
809   while (++I != E && I->isInsideBundle()) {
810     assert(!I->isBundle() && "No nested bundle!");
811     Size += getInstSizeInBytes(*I);
812   }
813   return Size;
814 }
815 
816 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
817                                     MachineBasicBlock::iterator I,
818                                     unsigned DestReg, bool KillSrc,
819                                     const ARMSubtarget &Subtarget) const {
820   unsigned Opc = Subtarget.isThumb()
821                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
822                      : ARM::MRS;
823 
824   MachineInstrBuilder MIB =
825       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
826 
827   // There is only 1 A/R class MRS instruction, and it always refers to
828   // APSR. However, there are lots of other possibilities on M-class cores.
829   if (Subtarget.isMClass())
830     MIB.addImm(0x800);
831 
832   MIB.add(predOps(ARMCC::AL))
833      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
834 }
835 
836 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
837                                   MachineBasicBlock::iterator I,
838                                   unsigned SrcReg, bool KillSrc,
839                                   const ARMSubtarget &Subtarget) const {
840   unsigned Opc = Subtarget.isThumb()
841                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
842                      : ARM::MSR;
843 
844   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
845 
846   if (Subtarget.isMClass())
847     MIB.addImm(0x800);
848   else
849     MIB.addImm(8);
850 
851   MIB.addReg(SrcReg, getKillRegState(KillSrc))
852      .add(predOps(ARMCC::AL))
853      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
854 }
855 
856 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
857   MIB.addImm(ARMVCC::None);
858   MIB.addReg(0);
859 }
860 
861 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
862                                       Register DestReg) {
863   addUnpredicatedMveVpredNOp(MIB);
864   MIB.addReg(DestReg, RegState::Undef);
865 }
866 
867 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
868   MIB.addImm(Cond);
869   MIB.addReg(ARM::VPR, RegState::Implicit);
870 }
871 
872 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
873                                     unsigned Cond, unsigned Inactive) {
874   addPredicatedMveVpredNOp(MIB, Cond);
875   MIB.addReg(Inactive);
876 }
877 
878 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
879                                    MachineBasicBlock::iterator I,
880                                    const DebugLoc &DL, MCRegister DestReg,
881                                    MCRegister SrcReg, bool KillSrc) const {
882   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
883   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
884 
885   if (GPRDest && GPRSrc) {
886     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
887         .addReg(SrcReg, getKillRegState(KillSrc))
888         .add(predOps(ARMCC::AL))
889         .add(condCodeOp());
890     return;
891   }
892 
893   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
894   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
895 
896   unsigned Opc = 0;
897   if (SPRDest && SPRSrc)
898     Opc = ARM::VMOVS;
899   else if (GPRDest && SPRSrc)
900     Opc = ARM::VMOVRS;
901   else if (SPRDest && GPRSrc)
902     Opc = ARM::VMOVSR;
903   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
904     Opc = ARM::VMOVD;
905   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
906     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
907 
908   if (Opc) {
909     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
910     MIB.addReg(SrcReg, getKillRegState(KillSrc));
911     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
912       MIB.addReg(SrcReg, getKillRegState(KillSrc));
913     if (Opc == ARM::MVE_VORR)
914       addUnpredicatedMveVpredROp(MIB, DestReg);
915     else
916       MIB.add(predOps(ARMCC::AL));
917     return;
918   }
919 
920   // Handle register classes that require multiple instructions.
921   unsigned BeginIdx = 0;
922   unsigned SubRegs = 0;
923   int Spacing = 1;
924 
925   // Use VORRq when possible.
926   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
927     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
928     BeginIdx = ARM::qsub_0;
929     SubRegs = 2;
930   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
931     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
932     BeginIdx = ARM::qsub_0;
933     SubRegs = 4;
934   // Fall back to VMOVD.
935   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
936     Opc = ARM::VMOVD;
937     BeginIdx = ARM::dsub_0;
938     SubRegs = 2;
939   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
940     Opc = ARM::VMOVD;
941     BeginIdx = ARM::dsub_0;
942     SubRegs = 3;
943   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
944     Opc = ARM::VMOVD;
945     BeginIdx = ARM::dsub_0;
946     SubRegs = 4;
947   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
948     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
949     BeginIdx = ARM::gsub_0;
950     SubRegs = 2;
951   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
952     Opc = ARM::VMOVD;
953     BeginIdx = ARM::dsub_0;
954     SubRegs = 2;
955     Spacing = 2;
956   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
957     Opc = ARM::VMOVD;
958     BeginIdx = ARM::dsub_0;
959     SubRegs = 3;
960     Spacing = 2;
961   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
962     Opc = ARM::VMOVD;
963     BeginIdx = ARM::dsub_0;
964     SubRegs = 4;
965     Spacing = 2;
966   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
967              !Subtarget.hasFP64()) {
968     Opc = ARM::VMOVS;
969     BeginIdx = ARM::ssub_0;
970     SubRegs = 2;
971   } else if (SrcReg == ARM::CPSR) {
972     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
973     return;
974   } else if (DestReg == ARM::CPSR) {
975     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
976     return;
977   } else if (DestReg == ARM::VPR) {
978     assert(ARM::GPRRegClass.contains(SrcReg));
979     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
980         .addReg(SrcReg, getKillRegState(KillSrc))
981         .add(predOps(ARMCC::AL));
982     return;
983   } else if (SrcReg == ARM::VPR) {
984     assert(ARM::GPRRegClass.contains(DestReg));
985     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
986         .addReg(SrcReg, getKillRegState(KillSrc))
987         .add(predOps(ARMCC::AL));
988     return;
989   } else if (DestReg == ARM::FPSCR_NZCV) {
990     assert(ARM::GPRRegClass.contains(SrcReg));
991     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
992         .addReg(SrcReg, getKillRegState(KillSrc))
993         .add(predOps(ARMCC::AL));
994     return;
995   } else if (SrcReg == ARM::FPSCR_NZCV) {
996     assert(ARM::GPRRegClass.contains(DestReg));
997     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
998         .addReg(SrcReg, getKillRegState(KillSrc))
999         .add(predOps(ARMCC::AL));
1000     return;
1001   }
1002 
1003   assert(Opc && "Impossible reg-to-reg copy");
1004 
1005   const TargetRegisterInfo *TRI = &getRegisterInfo();
1006   MachineInstrBuilder Mov;
1007 
1008   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1009   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1010     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1011     Spacing = -Spacing;
1012   }
1013 #ifndef NDEBUG
1014   SmallSet<unsigned, 4> DstRegs;
1015 #endif
1016   for (unsigned i = 0; i != SubRegs; ++i) {
1017     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1018     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1019     assert(Dst && Src && "Bad sub-register");
1020 #ifndef NDEBUG
1021     assert(!DstRegs.count(Src) && "destructive vector copy");
1022     DstRegs.insert(Dst);
1023 #endif
1024     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1025     // VORR (NEON or MVE) takes two source operands.
1026     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1027       Mov.addReg(Src);
1028     }
1029     // MVE VORR takes predicate operands in place of an ordinary condition.
1030     if (Opc == ARM::MVE_VORR)
1031       addUnpredicatedMveVpredROp(Mov, Dst);
1032     else
1033       Mov = Mov.add(predOps(ARMCC::AL));
1034     // MOVr can set CC.
1035     if (Opc == ARM::MOVr)
1036       Mov = Mov.add(condCodeOp());
1037   }
1038   // Add implicit super-register defs and kills to the last instruction.
1039   Mov->addRegisterDefined(DestReg, TRI);
1040   if (KillSrc)
1041     Mov->addRegisterKilled(SrcReg, TRI);
1042 }
1043 
1044 Optional<DestSourcePair>
1045 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1046   // VMOVRRD is also a copy instruction but it requires
1047   // special way of handling. It is more complex copy version
1048   // and since that we are not considering it. For recognition
1049   // of such instruction isExtractSubregLike MI interface fuction
1050   // could be used.
1051   // VORRq is considered as a move only if two inputs are
1052   // the same register.
1053   if (!MI.isMoveReg() ||
1054       (MI.getOpcode() == ARM::VORRq &&
1055        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1056     return None;
1057   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1058 }
1059 
1060 Optional<ParamLoadedValue>
1061 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1062                                       Register Reg) const {
1063   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1064     Register DstReg = DstSrcPair->Destination->getReg();
1065 
1066     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1067     // than the copy registers. Consider for example:
1068     //
1069     //   s16 = VMOVS s0
1070     //   s17 = VMOVS s1
1071     //   call @callee(d0)
1072     //
1073     // We'd like to describe the call site value of d0 as d8, but this requires
1074     // gathering and merging the descriptions for the two VMOVS instructions.
1075     //
1076     // We also don't handle the reverse situation, where the forwarding reg is
1077     // narrower than the copy destination:
1078     //
1079     //   d8 = VMOVD d0
1080     //   call @callee(s1)
1081     //
1082     // We need to produce a fragment description (the call site value of s1 is
1083     // /not/ just d8).
1084     if (DstReg != Reg)
1085       return None;
1086   }
1087   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1088 }
1089 
1090 const MachineInstrBuilder &
1091 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1092                           unsigned SubIdx, unsigned State,
1093                           const TargetRegisterInfo *TRI) const {
1094   if (!SubIdx)
1095     return MIB.addReg(Reg, State);
1096 
1097   if (Register::isPhysicalRegister(Reg))
1098     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1099   return MIB.addReg(Reg, State, SubIdx);
1100 }
1101 
1102 void ARMBaseInstrInfo::
1103 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1104                     Register SrcReg, bool isKill, int FI,
1105                     const TargetRegisterClass *RC,
1106                     const TargetRegisterInfo *TRI) const {
1107   MachineFunction &MF = *MBB.getParent();
1108   MachineFrameInfo &MFI = MF.getFrameInfo();
1109   Align Alignment = MFI.getObjectAlign(FI);
1110 
1111   MachineMemOperand *MMO = MF.getMachineMemOperand(
1112       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1113       MFI.getObjectSize(FI), Alignment);
1114 
1115   switch (TRI->getSpillSize(*RC)) {
1116     case 2:
1117       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1118         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1119             .addReg(SrcReg, getKillRegState(isKill))
1120             .addFrameIndex(FI)
1121             .addImm(0)
1122             .addMemOperand(MMO)
1123             .add(predOps(ARMCC::AL));
1124       } else
1125         llvm_unreachable("Unknown reg class!");
1126       break;
1127     case 4:
1128       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1129         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1130             .addReg(SrcReg, getKillRegState(isKill))
1131             .addFrameIndex(FI)
1132             .addImm(0)
1133             .addMemOperand(MMO)
1134             .add(predOps(ARMCC::AL));
1135       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1136         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1137             .addReg(SrcReg, getKillRegState(isKill))
1138             .addFrameIndex(FI)
1139             .addImm(0)
1140             .addMemOperand(MMO)
1141             .add(predOps(ARMCC::AL));
1142       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1143         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1144             .addReg(SrcReg, getKillRegState(isKill))
1145             .addFrameIndex(FI)
1146             .addImm(0)
1147             .addMemOperand(MMO)
1148             .add(predOps(ARMCC::AL));
1149       } else
1150         llvm_unreachable("Unknown reg class!");
1151       break;
1152     case 8:
1153       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1154         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1155             .addReg(SrcReg, getKillRegState(isKill))
1156             .addFrameIndex(FI)
1157             .addImm(0)
1158             .addMemOperand(MMO)
1159             .add(predOps(ARMCC::AL));
1160       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1161         if (Subtarget.hasV5TEOps()) {
1162           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1163           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1164           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1165           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1166              .add(predOps(ARMCC::AL));
1167         } else {
1168           // Fallback to STM instruction, which has existed since the dawn of
1169           // time.
1170           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1171                                         .addFrameIndex(FI)
1172                                         .addMemOperand(MMO)
1173                                         .add(predOps(ARMCC::AL));
1174           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1175           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1176         }
1177       } else
1178         llvm_unreachable("Unknown reg class!");
1179       break;
1180     case 16:
1181       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1182         // Use aligned spills if the stack can be realigned.
1183         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1184           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1185               .addFrameIndex(FI)
1186               .addImm(16)
1187               .addReg(SrcReg, getKillRegState(isKill))
1188               .addMemOperand(MMO)
1189               .add(predOps(ARMCC::AL));
1190         } else {
1191           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1192               .addReg(SrcReg, getKillRegState(isKill))
1193               .addFrameIndex(FI)
1194               .addMemOperand(MMO)
1195               .add(predOps(ARMCC::AL));
1196         }
1197       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1198                  Subtarget.hasMVEIntegerOps()) {
1199         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1200         MIB.addReg(SrcReg, getKillRegState(isKill))
1201           .addFrameIndex(FI)
1202           .addImm(0)
1203           .addMemOperand(MMO);
1204         addUnpredicatedMveVpredNOp(MIB);
1205       } else
1206         llvm_unreachable("Unknown reg class!");
1207       break;
1208     case 24:
1209       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1210         // Use aligned spills if the stack can be realigned.
1211         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1212             Subtarget.hasNEON()) {
1213           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1214               .addFrameIndex(FI)
1215               .addImm(16)
1216               .addReg(SrcReg, getKillRegState(isKill))
1217               .addMemOperand(MMO)
1218               .add(predOps(ARMCC::AL));
1219         } else {
1220           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1221                                             get(ARM::VSTMDIA))
1222                                         .addFrameIndex(FI)
1223                                         .add(predOps(ARMCC::AL))
1224                                         .addMemOperand(MMO);
1225           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1226           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1227           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1228         }
1229       } else
1230         llvm_unreachable("Unknown reg class!");
1231       break;
1232     case 32:
1233       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1234         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1235             Subtarget.hasNEON()) {
1236           // FIXME: It's possible to only store part of the QQ register if the
1237           // spilled def has a sub-register index.
1238           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1239               .addFrameIndex(FI)
1240               .addImm(16)
1241               .addReg(SrcReg, getKillRegState(isKill))
1242               .addMemOperand(MMO)
1243               .add(predOps(ARMCC::AL));
1244         } else {
1245           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1246                                             get(ARM::VSTMDIA))
1247                                         .addFrameIndex(FI)
1248                                         .add(predOps(ARMCC::AL))
1249                                         .addMemOperand(MMO);
1250           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1251           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1252           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1253                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1254         }
1255       } else
1256         llvm_unreachable("Unknown reg class!");
1257       break;
1258     case 64:
1259       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1260         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1261                                       .addFrameIndex(FI)
1262                                       .add(predOps(ARMCC::AL))
1263                                       .addMemOperand(MMO);
1264         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1265         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1266         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1267         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1268         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1269         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1270         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1271               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1272       } else
1273         llvm_unreachable("Unknown reg class!");
1274       break;
1275     default:
1276       llvm_unreachable("Unknown reg class!");
1277   }
1278 }
1279 
1280 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1281                                               int &FrameIndex) const {
1282   switch (MI.getOpcode()) {
1283   default: break;
1284   case ARM::STRrs:
1285   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1286     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1287         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1288         MI.getOperand(3).getImm() == 0) {
1289       FrameIndex = MI.getOperand(1).getIndex();
1290       return MI.getOperand(0).getReg();
1291     }
1292     break;
1293   case ARM::STRi12:
1294   case ARM::t2STRi12:
1295   case ARM::tSTRspi:
1296   case ARM::VSTRD:
1297   case ARM::VSTRS:
1298     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1299         MI.getOperand(2).getImm() == 0) {
1300       FrameIndex = MI.getOperand(1).getIndex();
1301       return MI.getOperand(0).getReg();
1302     }
1303     break;
1304   case ARM::VSTR_P0_off:
1305     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1306         MI.getOperand(1).getImm() == 0) {
1307       FrameIndex = MI.getOperand(0).getIndex();
1308       return ARM::P0;
1309     }
1310     break;
1311   case ARM::VST1q64:
1312   case ARM::VST1d64TPseudo:
1313   case ARM::VST1d64QPseudo:
1314     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1315       FrameIndex = MI.getOperand(0).getIndex();
1316       return MI.getOperand(2).getReg();
1317     }
1318     break;
1319   case ARM::VSTMQIA:
1320     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1321       FrameIndex = MI.getOperand(1).getIndex();
1322       return MI.getOperand(0).getReg();
1323     }
1324     break;
1325   }
1326 
1327   return 0;
1328 }
1329 
1330 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1331                                                     int &FrameIndex) const {
1332   SmallVector<const MachineMemOperand *, 1> Accesses;
1333   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1334       Accesses.size() == 1) {
1335     FrameIndex =
1336         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1337             ->getFrameIndex();
1338     return true;
1339   }
1340   return false;
1341 }
1342 
1343 void ARMBaseInstrInfo::
1344 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1345                      Register DestReg, int FI,
1346                      const TargetRegisterClass *RC,
1347                      const TargetRegisterInfo *TRI) const {
1348   DebugLoc DL;
1349   if (I != MBB.end()) DL = I->getDebugLoc();
1350   MachineFunction &MF = *MBB.getParent();
1351   MachineFrameInfo &MFI = MF.getFrameInfo();
1352   const Align Alignment = MFI.getObjectAlign(FI);
1353   MachineMemOperand *MMO = MF.getMachineMemOperand(
1354       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1355       MFI.getObjectSize(FI), Alignment);
1356 
1357   switch (TRI->getSpillSize(*RC)) {
1358   case 2:
1359     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1360       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1361           .addFrameIndex(FI)
1362           .addImm(0)
1363           .addMemOperand(MMO)
1364           .add(predOps(ARMCC::AL));
1365     } else
1366       llvm_unreachable("Unknown reg class!");
1367     break;
1368   case 4:
1369     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1370       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1371           .addFrameIndex(FI)
1372           .addImm(0)
1373           .addMemOperand(MMO)
1374           .add(predOps(ARMCC::AL));
1375     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1376       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1377           .addFrameIndex(FI)
1378           .addImm(0)
1379           .addMemOperand(MMO)
1380           .add(predOps(ARMCC::AL));
1381     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1382       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1383           .addFrameIndex(FI)
1384           .addImm(0)
1385           .addMemOperand(MMO)
1386           .add(predOps(ARMCC::AL));
1387     } else
1388       llvm_unreachable("Unknown reg class!");
1389     break;
1390   case 8:
1391     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1392       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1393           .addFrameIndex(FI)
1394           .addImm(0)
1395           .addMemOperand(MMO)
1396           .add(predOps(ARMCC::AL));
1397     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1398       MachineInstrBuilder MIB;
1399 
1400       if (Subtarget.hasV5TEOps()) {
1401         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1402         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1403         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1404         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1405            .add(predOps(ARMCC::AL));
1406       } else {
1407         // Fallback to LDM instruction, which has existed since the dawn of
1408         // time.
1409         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1410                   .addFrameIndex(FI)
1411                   .addMemOperand(MMO)
1412                   .add(predOps(ARMCC::AL));
1413         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1414         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1415       }
1416 
1417       if (Register::isPhysicalRegister(DestReg))
1418         MIB.addReg(DestReg, RegState::ImplicitDefine);
1419     } else
1420       llvm_unreachable("Unknown reg class!");
1421     break;
1422   case 16:
1423     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1424       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1425         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1426             .addFrameIndex(FI)
1427             .addImm(16)
1428             .addMemOperand(MMO)
1429             .add(predOps(ARMCC::AL));
1430       } else {
1431         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1432             .addFrameIndex(FI)
1433             .addMemOperand(MMO)
1434             .add(predOps(ARMCC::AL));
1435       }
1436     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1437                Subtarget.hasMVEIntegerOps()) {
1438       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1439       MIB.addFrameIndex(FI)
1440         .addImm(0)
1441         .addMemOperand(MMO);
1442       addUnpredicatedMveVpredNOp(MIB);
1443     } else
1444       llvm_unreachable("Unknown reg class!");
1445     break;
1446   case 24:
1447     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1448       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1449           Subtarget.hasNEON()) {
1450         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1451             .addFrameIndex(FI)
1452             .addImm(16)
1453             .addMemOperand(MMO)
1454             .add(predOps(ARMCC::AL));
1455       } else {
1456         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1457                                       .addFrameIndex(FI)
1458                                       .addMemOperand(MMO)
1459                                       .add(predOps(ARMCC::AL));
1460         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1461         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1462         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1463         if (Register::isPhysicalRegister(DestReg))
1464           MIB.addReg(DestReg, RegState::ImplicitDefine);
1465       }
1466     } else
1467       llvm_unreachable("Unknown reg class!");
1468     break;
1469    case 32:
1470     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1471       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1472           Subtarget.hasNEON()) {
1473         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1474             .addFrameIndex(FI)
1475             .addImm(16)
1476             .addMemOperand(MMO)
1477             .add(predOps(ARMCC::AL));
1478       } else {
1479         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1480                                       .addFrameIndex(FI)
1481                                       .add(predOps(ARMCC::AL))
1482                                       .addMemOperand(MMO);
1483         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1484         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1485         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1486         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1487         if (Register::isPhysicalRegister(DestReg))
1488           MIB.addReg(DestReg, RegState::ImplicitDefine);
1489       }
1490     } else
1491       llvm_unreachable("Unknown reg class!");
1492     break;
1493   case 64:
1494     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1495       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1496                                     .addFrameIndex(FI)
1497                                     .add(predOps(ARMCC::AL))
1498                                     .addMemOperand(MMO);
1499       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1500       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1501       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1502       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1503       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1504       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1505       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1506       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1507       if (Register::isPhysicalRegister(DestReg))
1508         MIB.addReg(DestReg, RegState::ImplicitDefine);
1509     } else
1510       llvm_unreachable("Unknown reg class!");
1511     break;
1512   default:
1513     llvm_unreachable("Unknown regclass!");
1514   }
1515 }
1516 
1517 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1518                                                int &FrameIndex) const {
1519   switch (MI.getOpcode()) {
1520   default: break;
1521   case ARM::LDRrs:
1522   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1523     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1524         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1525         MI.getOperand(3).getImm() == 0) {
1526       FrameIndex = MI.getOperand(1).getIndex();
1527       return MI.getOperand(0).getReg();
1528     }
1529     break;
1530   case ARM::LDRi12:
1531   case ARM::t2LDRi12:
1532   case ARM::tLDRspi:
1533   case ARM::VLDRD:
1534   case ARM::VLDRS:
1535     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1536         MI.getOperand(2).getImm() == 0) {
1537       FrameIndex = MI.getOperand(1).getIndex();
1538       return MI.getOperand(0).getReg();
1539     }
1540     break;
1541   case ARM::VLDR_P0_off:
1542     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1543         MI.getOperand(1).getImm() == 0) {
1544       FrameIndex = MI.getOperand(0).getIndex();
1545       return ARM::P0;
1546     }
1547     break;
1548   case ARM::VLD1q64:
1549   case ARM::VLD1d8TPseudo:
1550   case ARM::VLD1d16TPseudo:
1551   case ARM::VLD1d32TPseudo:
1552   case ARM::VLD1d64TPseudo:
1553   case ARM::VLD1d8QPseudo:
1554   case ARM::VLD1d16QPseudo:
1555   case ARM::VLD1d32QPseudo:
1556   case ARM::VLD1d64QPseudo:
1557     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1558       FrameIndex = MI.getOperand(1).getIndex();
1559       return MI.getOperand(0).getReg();
1560     }
1561     break;
1562   case ARM::VLDMQIA:
1563     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1564       FrameIndex = MI.getOperand(1).getIndex();
1565       return MI.getOperand(0).getReg();
1566     }
1567     break;
1568   }
1569 
1570   return 0;
1571 }
1572 
1573 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1574                                                      int &FrameIndex) const {
1575   SmallVector<const MachineMemOperand *, 1> Accesses;
1576   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1577       Accesses.size() == 1) {
1578     FrameIndex =
1579         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1580             ->getFrameIndex();
1581     return true;
1582   }
1583   return false;
1584 }
1585 
1586 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1587 /// depending on whether the result is used.
1588 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1589   bool isThumb1 = Subtarget.isThumb1Only();
1590   bool isThumb2 = Subtarget.isThumb2();
1591   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1592 
1593   DebugLoc dl = MI->getDebugLoc();
1594   MachineBasicBlock *BB = MI->getParent();
1595 
1596   MachineInstrBuilder LDM, STM;
1597   if (isThumb1 || !MI->getOperand(1).isDead()) {
1598     MachineOperand LDWb(MI->getOperand(1));
1599     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1600                                                  : isThumb1 ? ARM::tLDMIA_UPD
1601                                                             : ARM::LDMIA_UPD))
1602               .add(LDWb);
1603   } else {
1604     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1605   }
1606 
1607   if (isThumb1 || !MI->getOperand(0).isDead()) {
1608     MachineOperand STWb(MI->getOperand(0));
1609     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1610                                                  : isThumb1 ? ARM::tSTMIA_UPD
1611                                                             : ARM::STMIA_UPD))
1612               .add(STWb);
1613   } else {
1614     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1615   }
1616 
1617   MachineOperand LDBase(MI->getOperand(3));
1618   LDM.add(LDBase).add(predOps(ARMCC::AL));
1619 
1620   MachineOperand STBase(MI->getOperand(2));
1621   STM.add(STBase).add(predOps(ARMCC::AL));
1622 
1623   // Sort the scratch registers into ascending order.
1624   const TargetRegisterInfo &TRI = getRegisterInfo();
1625   SmallVector<unsigned, 6> ScratchRegs;
1626   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1627     ScratchRegs.push_back(MI->getOperand(I).getReg());
1628   llvm::sort(ScratchRegs,
1629              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1630                return TRI.getEncodingValue(Reg1) <
1631                       TRI.getEncodingValue(Reg2);
1632              });
1633 
1634   for (const auto &Reg : ScratchRegs) {
1635     LDM.addReg(Reg, RegState::Define);
1636     STM.addReg(Reg, RegState::Kill);
1637   }
1638 
1639   BB->erase(MI);
1640 }
1641 
1642 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1643   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1644     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1645            "LOAD_STACK_GUARD currently supported only for MachO.");
1646     expandLoadStackGuard(MI);
1647     MI.getParent()->erase(MI);
1648     return true;
1649   }
1650 
1651   if (MI.getOpcode() == ARM::MEMCPY) {
1652     expandMEMCPY(MI);
1653     return true;
1654   }
1655 
1656   // This hook gets to expand COPY instructions before they become
1657   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1658   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1659   // changed into a VORR that can go down the NEON pipeline.
1660   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1661     return false;
1662 
1663   // Look for a copy between even S-registers.  That is where we keep floats
1664   // when using NEON v2f32 instructions for f32 arithmetic.
1665   Register DstRegS = MI.getOperand(0).getReg();
1666   Register SrcRegS = MI.getOperand(1).getReg();
1667   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1668     return false;
1669 
1670   const TargetRegisterInfo *TRI = &getRegisterInfo();
1671   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1672                                               &ARM::DPRRegClass);
1673   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1674                                               &ARM::DPRRegClass);
1675   if (!DstRegD || !SrcRegD)
1676     return false;
1677 
1678   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1679   // legal if the COPY already defines the full DstRegD, and it isn't a
1680   // sub-register insertion.
1681   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1682     return false;
1683 
1684   // A dead copy shouldn't show up here, but reject it just in case.
1685   if (MI.getOperand(0).isDead())
1686     return false;
1687 
1688   // All clear, widen the COPY.
1689   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1690   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1691 
1692   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1693   // or some other super-register.
1694   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1695   if (ImpDefIdx != -1)
1696     MI.RemoveOperand(ImpDefIdx);
1697 
1698   // Change the opcode and operands.
1699   MI.setDesc(get(ARM::VMOVD));
1700   MI.getOperand(0).setReg(DstRegD);
1701   MI.getOperand(1).setReg(SrcRegD);
1702   MIB.add(predOps(ARMCC::AL));
1703 
1704   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1705   // register scavenger and machine verifier, so we need to indicate that we
1706   // are reading an undefined value from SrcRegD, but a proper value from
1707   // SrcRegS.
1708   MI.getOperand(1).setIsUndef();
1709   MIB.addReg(SrcRegS, RegState::Implicit);
1710 
1711   // SrcRegD may actually contain an unrelated value in the ssub_1
1712   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1713   if (MI.getOperand(1).isKill()) {
1714     MI.getOperand(1).setIsKill(false);
1715     MI.addRegisterKilled(SrcRegS, TRI, true);
1716   }
1717 
1718   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1719   return true;
1720 }
1721 
1722 /// Create a copy of a const pool value. Update CPI to the new index and return
1723 /// the label UID.
1724 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1725   MachineConstantPool *MCP = MF.getConstantPool();
1726   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1727 
1728   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1729   assert(MCPE.isMachineConstantPoolEntry() &&
1730          "Expecting a machine constantpool entry!");
1731   ARMConstantPoolValue *ACPV =
1732     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1733 
1734   unsigned PCLabelId = AFI->createPICLabelUId();
1735   ARMConstantPoolValue *NewCPV = nullptr;
1736 
1737   // FIXME: The below assumes PIC relocation model and that the function
1738   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1739   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1740   // instructions, so that's probably OK, but is PIC always correct when
1741   // we get here?
1742   if (ACPV->isGlobalValue())
1743     NewCPV = ARMConstantPoolConstant::Create(
1744         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1745         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1746   else if (ACPV->isExtSymbol())
1747     NewCPV = ARMConstantPoolSymbol::
1748       Create(MF.getFunction().getContext(),
1749              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1750   else if (ACPV->isBlockAddress())
1751     NewCPV = ARMConstantPoolConstant::
1752       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1753              ARMCP::CPBlockAddress, 4);
1754   else if (ACPV->isLSDA())
1755     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1756                                              ARMCP::CPLSDA, 4);
1757   else if (ACPV->isMachineBasicBlock())
1758     NewCPV = ARMConstantPoolMBB::
1759       Create(MF.getFunction().getContext(),
1760              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1761   else
1762     llvm_unreachable("Unexpected ARM constantpool value type!!");
1763   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1764   return PCLabelId;
1765 }
1766 
1767 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1768                                      MachineBasicBlock::iterator I,
1769                                      Register DestReg, unsigned SubIdx,
1770                                      const MachineInstr &Orig,
1771                                      const TargetRegisterInfo &TRI) const {
1772   unsigned Opcode = Orig.getOpcode();
1773   switch (Opcode) {
1774   default: {
1775     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1776     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1777     MBB.insert(I, MI);
1778     break;
1779   }
1780   case ARM::tLDRpci_pic:
1781   case ARM::t2LDRpci_pic: {
1782     MachineFunction &MF = *MBB.getParent();
1783     unsigned CPI = Orig.getOperand(1).getIndex();
1784     unsigned PCLabelId = duplicateCPV(MF, CPI);
1785     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1786         .addConstantPoolIndex(CPI)
1787         .addImm(PCLabelId)
1788         .cloneMemRefs(Orig);
1789     break;
1790   }
1791   }
1792 }
1793 
1794 MachineInstr &
1795 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1796     MachineBasicBlock::iterator InsertBefore,
1797     const MachineInstr &Orig) const {
1798   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1799   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1800   for (;;) {
1801     switch (I->getOpcode()) {
1802     case ARM::tLDRpci_pic:
1803     case ARM::t2LDRpci_pic: {
1804       MachineFunction &MF = *MBB.getParent();
1805       unsigned CPI = I->getOperand(1).getIndex();
1806       unsigned PCLabelId = duplicateCPV(MF, CPI);
1807       I->getOperand(1).setIndex(CPI);
1808       I->getOperand(2).setImm(PCLabelId);
1809       break;
1810     }
1811     }
1812     if (!I->isBundledWithSucc())
1813       break;
1814     ++I;
1815   }
1816   return Cloned;
1817 }
1818 
1819 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1820                                         const MachineInstr &MI1,
1821                                         const MachineRegisterInfo *MRI) const {
1822   unsigned Opcode = MI0.getOpcode();
1823   if (Opcode == ARM::t2LDRpci ||
1824       Opcode == ARM::t2LDRpci_pic ||
1825       Opcode == ARM::tLDRpci ||
1826       Opcode == ARM::tLDRpci_pic ||
1827       Opcode == ARM::LDRLIT_ga_pcrel ||
1828       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1829       Opcode == ARM::tLDRLIT_ga_pcrel ||
1830       Opcode == ARM::MOV_ga_pcrel ||
1831       Opcode == ARM::MOV_ga_pcrel_ldr ||
1832       Opcode == ARM::t2MOV_ga_pcrel) {
1833     if (MI1.getOpcode() != Opcode)
1834       return false;
1835     if (MI0.getNumOperands() != MI1.getNumOperands())
1836       return false;
1837 
1838     const MachineOperand &MO0 = MI0.getOperand(1);
1839     const MachineOperand &MO1 = MI1.getOperand(1);
1840     if (MO0.getOffset() != MO1.getOffset())
1841       return false;
1842 
1843     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1844         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1845         Opcode == ARM::tLDRLIT_ga_pcrel ||
1846         Opcode == ARM::MOV_ga_pcrel ||
1847         Opcode == ARM::MOV_ga_pcrel_ldr ||
1848         Opcode == ARM::t2MOV_ga_pcrel)
1849       // Ignore the PC labels.
1850       return MO0.getGlobal() == MO1.getGlobal();
1851 
1852     const MachineFunction *MF = MI0.getParent()->getParent();
1853     const MachineConstantPool *MCP = MF->getConstantPool();
1854     int CPI0 = MO0.getIndex();
1855     int CPI1 = MO1.getIndex();
1856     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1857     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1858     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1859     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1860     if (isARMCP0 && isARMCP1) {
1861       ARMConstantPoolValue *ACPV0 =
1862         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1863       ARMConstantPoolValue *ACPV1 =
1864         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1865       return ACPV0->hasSameValue(ACPV1);
1866     } else if (!isARMCP0 && !isARMCP1) {
1867       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1868     }
1869     return false;
1870   } else if (Opcode == ARM::PICLDR) {
1871     if (MI1.getOpcode() != Opcode)
1872       return false;
1873     if (MI0.getNumOperands() != MI1.getNumOperands())
1874       return false;
1875 
1876     Register Addr0 = MI0.getOperand(1).getReg();
1877     Register Addr1 = MI1.getOperand(1).getReg();
1878     if (Addr0 != Addr1) {
1879       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1880           !Register::isVirtualRegister(Addr1))
1881         return false;
1882 
1883       // This assumes SSA form.
1884       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1885       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1886       // Check if the loaded value, e.g. a constantpool of a global address, are
1887       // the same.
1888       if (!produceSameValue(*Def0, *Def1, MRI))
1889         return false;
1890     }
1891 
1892     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1893       // %12 = PICLDR %11, 0, 14, %noreg
1894       const MachineOperand &MO0 = MI0.getOperand(i);
1895       const MachineOperand &MO1 = MI1.getOperand(i);
1896       if (!MO0.isIdenticalTo(MO1))
1897         return false;
1898     }
1899     return true;
1900   }
1901 
1902   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1903 }
1904 
1905 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1906 /// determine if two loads are loading from the same base address. It should
1907 /// only return true if the base pointers are the same and the only differences
1908 /// between the two addresses is the offset. It also returns the offsets by
1909 /// reference.
1910 ///
1911 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1912 /// is permanently disabled.
1913 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1914                                                int64_t &Offset1,
1915                                                int64_t &Offset2) const {
1916   // Don't worry about Thumb: just ARM and Thumb2.
1917   if (Subtarget.isThumb1Only()) return false;
1918 
1919   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1920     return false;
1921 
1922   switch (Load1->getMachineOpcode()) {
1923   default:
1924     return false;
1925   case ARM::LDRi12:
1926   case ARM::LDRBi12:
1927   case ARM::LDRD:
1928   case ARM::LDRH:
1929   case ARM::LDRSB:
1930   case ARM::LDRSH:
1931   case ARM::VLDRD:
1932   case ARM::VLDRS:
1933   case ARM::t2LDRi8:
1934   case ARM::t2LDRBi8:
1935   case ARM::t2LDRDi8:
1936   case ARM::t2LDRSHi8:
1937   case ARM::t2LDRi12:
1938   case ARM::t2LDRBi12:
1939   case ARM::t2LDRSHi12:
1940     break;
1941   }
1942 
1943   switch (Load2->getMachineOpcode()) {
1944   default:
1945     return false;
1946   case ARM::LDRi12:
1947   case ARM::LDRBi12:
1948   case ARM::LDRD:
1949   case ARM::LDRH:
1950   case ARM::LDRSB:
1951   case ARM::LDRSH:
1952   case ARM::VLDRD:
1953   case ARM::VLDRS:
1954   case ARM::t2LDRi8:
1955   case ARM::t2LDRBi8:
1956   case ARM::t2LDRSHi8:
1957   case ARM::t2LDRi12:
1958   case ARM::t2LDRBi12:
1959   case ARM::t2LDRSHi12:
1960     break;
1961   }
1962 
1963   // Check if base addresses and chain operands match.
1964   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1965       Load1->getOperand(4) != Load2->getOperand(4))
1966     return false;
1967 
1968   // Index should be Reg0.
1969   if (Load1->getOperand(3) != Load2->getOperand(3))
1970     return false;
1971 
1972   // Determine the offsets.
1973   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1974       isa<ConstantSDNode>(Load2->getOperand(1))) {
1975     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1976     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1977     return true;
1978   }
1979 
1980   return false;
1981 }
1982 
1983 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1984 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1985 /// be scheduled togther. On some targets if two loads are loading from
1986 /// addresses in the same cache line, it's better if they are scheduled
1987 /// together. This function takes two integers that represent the load offsets
1988 /// from the common base address. It returns true if it decides it's desirable
1989 /// to schedule the two loads together. "NumLoads" is the number of loads that
1990 /// have already been scheduled after Load1.
1991 ///
1992 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1993 /// is permanently disabled.
1994 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1995                                                int64_t Offset1, int64_t Offset2,
1996                                                unsigned NumLoads) const {
1997   // Don't worry about Thumb: just ARM and Thumb2.
1998   if (Subtarget.isThumb1Only()) return false;
1999 
2000   assert(Offset2 > Offset1);
2001 
2002   if ((Offset2 - Offset1) / 8 > 64)
2003     return false;
2004 
2005   // Check if the machine opcodes are different. If they are different
2006   // then we consider them to not be of the same base address,
2007   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2008   // In this case, they are considered to be the same because they are different
2009   // encoding forms of the same basic instruction.
2010   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2011       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2012          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2013         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2014          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2015     return false;  // FIXME: overly conservative?
2016 
2017   // Four loads in a row should be sufficient.
2018   if (NumLoads >= 3)
2019     return false;
2020 
2021   return true;
2022 }
2023 
2024 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2025                                             const MachineBasicBlock *MBB,
2026                                             const MachineFunction &MF) const {
2027   // Debug info is never a scheduling boundary. It's necessary to be explicit
2028   // due to the special treatment of IT instructions below, otherwise a
2029   // dbg_value followed by an IT will result in the IT instruction being
2030   // considered a scheduling hazard, which is wrong. It should be the actual
2031   // instruction preceding the dbg_value instruction(s), just like it is
2032   // when debug info is not present.
2033   if (MI.isDebugInstr())
2034     return false;
2035 
2036   // Terminators and labels can't be scheduled around.
2037   if (MI.isTerminator() || MI.isPosition())
2038     return true;
2039 
2040   // INLINEASM_BR can jump to another block
2041   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2042     return true;
2043 
2044   // Treat the start of the IT block as a scheduling boundary, but schedule
2045   // t2IT along with all instructions following it.
2046   // FIXME: This is a big hammer. But the alternative is to add all potential
2047   // true and anti dependencies to IT block instructions as implicit operands
2048   // to the t2IT instruction. The added compile time and complexity does not
2049   // seem worth it.
2050   MachineBasicBlock::const_iterator I = MI;
2051   // Make sure to skip any debug instructions
2052   while (++I != MBB->end() && I->isDebugInstr())
2053     ;
2054   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2055     return true;
2056 
2057   // Don't attempt to schedule around any instruction that defines
2058   // a stack-oriented pointer, as it's unlikely to be profitable. This
2059   // saves compile time, because it doesn't require every single
2060   // stack slot reference to depend on the instruction that does the
2061   // modification.
2062   // Calls don't actually change the stack pointer, even if they have imp-defs.
2063   // No ARM calling conventions change the stack pointer. (X86 calling
2064   // conventions sometimes do).
2065   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2066     return true;
2067 
2068   return false;
2069 }
2070 
2071 bool ARMBaseInstrInfo::
2072 isProfitableToIfCvt(MachineBasicBlock &MBB,
2073                     unsigned NumCycles, unsigned ExtraPredCycles,
2074                     BranchProbability Probability) const {
2075   if (!NumCycles)
2076     return false;
2077 
2078   // If we are optimizing for size, see if the branch in the predecessor can be
2079   // lowered to cbn?z by the constant island lowering pass, and return false if
2080   // so. This results in a shorter instruction sequence.
2081   if (MBB.getParent()->getFunction().hasOptSize()) {
2082     MachineBasicBlock *Pred = *MBB.pred_begin();
2083     if (!Pred->empty()) {
2084       MachineInstr *LastMI = &*Pred->rbegin();
2085       if (LastMI->getOpcode() == ARM::t2Bcc) {
2086         const TargetRegisterInfo *TRI = &getRegisterInfo();
2087         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2088         if (CmpMI)
2089           return false;
2090       }
2091     }
2092   }
2093   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2094                              MBB, 0, 0, Probability);
2095 }
2096 
2097 bool ARMBaseInstrInfo::
2098 isProfitableToIfCvt(MachineBasicBlock &TBB,
2099                     unsigned TCycles, unsigned TExtra,
2100                     MachineBasicBlock &FBB,
2101                     unsigned FCycles, unsigned FExtra,
2102                     BranchProbability Probability) const {
2103   if (!TCycles)
2104     return false;
2105 
2106   // In thumb code we often end up trading one branch for a IT block, and
2107   // if we are cloning the instruction can increase code size. Prevent
2108   // blocks with multiple predecesors from being ifcvted to prevent this
2109   // cloning.
2110   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2111     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2112       return false;
2113   }
2114 
2115   // Attempt to estimate the relative costs of predication versus branching.
2116   // Here we scale up each component of UnpredCost to avoid precision issue when
2117   // scaling TCycles/FCycles by Probability.
2118   const unsigned ScalingUpFactor = 1024;
2119 
2120   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2121   unsigned UnpredCost;
2122   if (!Subtarget.hasBranchPredictor()) {
2123     // When we don't have a branch predictor it's always cheaper to not take a
2124     // branch than take it, so we have to take that into account.
2125     unsigned NotTakenBranchCost = 1;
2126     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2127     unsigned TUnpredCycles, FUnpredCycles;
2128     if (!FCycles) {
2129       // Triangle: TBB is the fallthrough
2130       TUnpredCycles = TCycles + NotTakenBranchCost;
2131       FUnpredCycles = TakenBranchCost;
2132     } else {
2133       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2134       TUnpredCycles = TCycles + TakenBranchCost;
2135       FUnpredCycles = FCycles + NotTakenBranchCost;
2136       // The branch at the end of FBB will disappear when it's predicated, so
2137       // discount it from PredCost.
2138       PredCost -= 1 * ScalingUpFactor;
2139     }
2140     // The total cost is the cost of each path scaled by their probabilites
2141     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2142     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2143     UnpredCost = TUnpredCost + FUnpredCost;
2144     // When predicating assume that the first IT can be folded away but later
2145     // ones cost one cycle each
2146     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2147       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2148     }
2149   } else {
2150     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2151     unsigned FUnpredCost =
2152       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2153     UnpredCost = TUnpredCost + FUnpredCost;
2154     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2155     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2156   }
2157 
2158   return PredCost <= UnpredCost;
2159 }
2160 
2161 unsigned
2162 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2163                                                    unsigned NumInsts) const {
2164   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2165   // ARM has a condition code field in every predicable instruction, using it
2166   // doesn't change code size.
2167   if (!Subtarget.isThumb2())
2168     return 0;
2169 
2170   // It's possible that the size of the IT is restricted to a single block.
2171   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2172   return divideCeil(NumInsts, MaxInsts) * 2;
2173 }
2174 
2175 unsigned
2176 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2177   // If this branch is likely to be folded into the comparison to form a
2178   // CB(N)Z, then removing it won't reduce code size at all, because that will
2179   // just replace the CB(N)Z with a CMP.
2180   if (MI.getOpcode() == ARM::t2Bcc &&
2181       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2182     return 0;
2183 
2184   unsigned Size = getInstSizeInBytes(MI);
2185 
2186   // For Thumb2, all branches are 32-bit instructions during the if conversion
2187   // pass, but may be replaced with 16-bit instructions during size reduction.
2188   // Since the branches considered by if conversion tend to be forward branches
2189   // over small basic blocks, they are very likely to be in range for the
2190   // narrow instructions, so we assume the final code size will be half what it
2191   // currently is.
2192   if (Subtarget.isThumb2())
2193     Size /= 2;
2194 
2195   return Size;
2196 }
2197 
2198 bool
2199 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2200                                             MachineBasicBlock &FMBB) const {
2201   // Reduce false anti-dependencies to let the target's out-of-order execution
2202   // engine do its thing.
2203   return Subtarget.isProfitableToUnpredicate();
2204 }
2205 
2206 /// getInstrPredicate - If instruction is predicated, returns its predicate
2207 /// condition, otherwise returns AL. It also returns the condition code
2208 /// register by reference.
2209 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2210                                          Register &PredReg) {
2211   int PIdx = MI.findFirstPredOperandIdx();
2212   if (PIdx == -1) {
2213     PredReg = 0;
2214     return ARMCC::AL;
2215   }
2216 
2217   PredReg = MI.getOperand(PIdx+1).getReg();
2218   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2219 }
2220 
2221 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2222   if (Opc == ARM::B)
2223     return ARM::Bcc;
2224   if (Opc == ARM::tB)
2225     return ARM::tBcc;
2226   if (Opc == ARM::t2B)
2227     return ARM::t2Bcc;
2228 
2229   llvm_unreachable("Unknown unconditional branch opcode!");
2230 }
2231 
2232 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2233                                                        bool NewMI,
2234                                                        unsigned OpIdx1,
2235                                                        unsigned OpIdx2) const {
2236   switch (MI.getOpcode()) {
2237   case ARM::MOVCCr:
2238   case ARM::t2MOVCCr: {
2239     // MOVCC can be commuted by inverting the condition.
2240     Register PredReg;
2241     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2242     // MOVCC AL can't be inverted. Shouldn't happen.
2243     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2244       return nullptr;
2245     MachineInstr *CommutedMI =
2246         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2247     if (!CommutedMI)
2248       return nullptr;
2249     // After swapping the MOVCC operands, also invert the condition.
2250     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2251         .setImm(ARMCC::getOppositeCondition(CC));
2252     return CommutedMI;
2253   }
2254   }
2255   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2256 }
2257 
2258 /// Identify instructions that can be folded into a MOVCC instruction, and
2259 /// return the defining instruction.
2260 MachineInstr *
2261 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2262                                    const TargetInstrInfo *TII) const {
2263   if (!Reg.isVirtual())
2264     return nullptr;
2265   if (!MRI.hasOneNonDBGUse(Reg))
2266     return nullptr;
2267   MachineInstr *MI = MRI.getVRegDef(Reg);
2268   if (!MI)
2269     return nullptr;
2270   // Check if MI can be predicated and folded into the MOVCC.
2271   if (!isPredicable(*MI))
2272     return nullptr;
2273   // Check if MI has any non-dead defs or physreg uses. This also detects
2274   // predicated instructions which will be reading CPSR.
2275   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2276     const MachineOperand &MO = MI->getOperand(i);
2277     // Reject frame index operands, PEI can't handle the predicated pseudos.
2278     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2279       return nullptr;
2280     if (!MO.isReg())
2281       continue;
2282     // MI can't have any tied operands, that would conflict with predication.
2283     if (MO.isTied())
2284       return nullptr;
2285     if (Register::isPhysicalRegister(MO.getReg()))
2286       return nullptr;
2287     if (MO.isDef() && !MO.isDead())
2288       return nullptr;
2289   }
2290   bool DontMoveAcrossStores = true;
2291   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2292     return nullptr;
2293   return MI;
2294 }
2295 
2296 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2297                                      SmallVectorImpl<MachineOperand> &Cond,
2298                                      unsigned &TrueOp, unsigned &FalseOp,
2299                                      bool &Optimizable) const {
2300   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2301          "Unknown select instruction");
2302   // MOVCC operands:
2303   // 0: Def.
2304   // 1: True use.
2305   // 2: False use.
2306   // 3: Condition code.
2307   // 4: CPSR use.
2308   TrueOp = 1;
2309   FalseOp = 2;
2310   Cond.push_back(MI.getOperand(3));
2311   Cond.push_back(MI.getOperand(4));
2312   // We can always fold a def.
2313   Optimizable = true;
2314   return false;
2315 }
2316 
2317 MachineInstr *
2318 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2319                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2320                                  bool PreferFalse) const {
2321   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2322          "Unknown select instruction");
2323   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2324   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2325   bool Invert = !DefMI;
2326   if (!DefMI)
2327     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2328   if (!DefMI)
2329     return nullptr;
2330 
2331   // Find new register class to use.
2332   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2333   Register DestReg = MI.getOperand(0).getReg();
2334   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2335   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2336     return nullptr;
2337 
2338   // Create a new predicated version of DefMI.
2339   // Rfalse is the first use.
2340   MachineInstrBuilder NewMI =
2341       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2342 
2343   // Copy all the DefMI operands, excluding its (null) predicate.
2344   const MCInstrDesc &DefDesc = DefMI->getDesc();
2345   for (unsigned i = 1, e = DefDesc.getNumOperands();
2346        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2347     NewMI.add(DefMI->getOperand(i));
2348 
2349   unsigned CondCode = MI.getOperand(3).getImm();
2350   if (Invert)
2351     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2352   else
2353     NewMI.addImm(CondCode);
2354   NewMI.add(MI.getOperand(4));
2355 
2356   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2357   if (NewMI->hasOptionalDef())
2358     NewMI.add(condCodeOp());
2359 
2360   // The output register value when the predicate is false is an implicit
2361   // register operand tied to the first def.
2362   // The tie makes the register allocator ensure the FalseReg is allocated the
2363   // same register as operand 0.
2364   FalseReg.setImplicit();
2365   NewMI.add(FalseReg);
2366   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2367 
2368   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2369   SeenMIs.insert(NewMI);
2370   SeenMIs.erase(DefMI);
2371 
2372   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2373   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2374   // loop is expensive, but at least remove kill flags if they are in different
2375   // BBs.
2376   if (DefMI->getParent() != MI.getParent())
2377     NewMI->clearKillInfo();
2378 
2379   // The caller will erase MI, but not DefMI.
2380   DefMI->eraseFromParent();
2381   return NewMI;
2382 }
2383 
2384 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2385 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2386 /// def operand.
2387 ///
2388 /// This will go away once we can teach tblgen how to set the optional CPSR def
2389 /// operand itself.
2390 struct AddSubFlagsOpcodePair {
2391   uint16_t PseudoOpc;
2392   uint16_t MachineOpc;
2393 };
2394 
2395 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2396   {ARM::ADDSri, ARM::ADDri},
2397   {ARM::ADDSrr, ARM::ADDrr},
2398   {ARM::ADDSrsi, ARM::ADDrsi},
2399   {ARM::ADDSrsr, ARM::ADDrsr},
2400 
2401   {ARM::SUBSri, ARM::SUBri},
2402   {ARM::SUBSrr, ARM::SUBrr},
2403   {ARM::SUBSrsi, ARM::SUBrsi},
2404   {ARM::SUBSrsr, ARM::SUBrsr},
2405 
2406   {ARM::RSBSri, ARM::RSBri},
2407   {ARM::RSBSrsi, ARM::RSBrsi},
2408   {ARM::RSBSrsr, ARM::RSBrsr},
2409 
2410   {ARM::tADDSi3, ARM::tADDi3},
2411   {ARM::tADDSi8, ARM::tADDi8},
2412   {ARM::tADDSrr, ARM::tADDrr},
2413   {ARM::tADCS, ARM::tADC},
2414 
2415   {ARM::tSUBSi3, ARM::tSUBi3},
2416   {ARM::tSUBSi8, ARM::tSUBi8},
2417   {ARM::tSUBSrr, ARM::tSUBrr},
2418   {ARM::tSBCS, ARM::tSBC},
2419   {ARM::tRSBS, ARM::tRSB},
2420   {ARM::tLSLSri, ARM::tLSLri},
2421 
2422   {ARM::t2ADDSri, ARM::t2ADDri},
2423   {ARM::t2ADDSrr, ARM::t2ADDrr},
2424   {ARM::t2ADDSrs, ARM::t2ADDrs},
2425 
2426   {ARM::t2SUBSri, ARM::t2SUBri},
2427   {ARM::t2SUBSrr, ARM::t2SUBrr},
2428   {ARM::t2SUBSrs, ARM::t2SUBrs},
2429 
2430   {ARM::t2RSBSri, ARM::t2RSBri},
2431   {ARM::t2RSBSrs, ARM::t2RSBrs},
2432 };
2433 
2434 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2435   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2436     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2437       return AddSubFlagsOpcodeMap[i].MachineOpc;
2438   return 0;
2439 }
2440 
2441 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2442                                    MachineBasicBlock::iterator &MBBI,
2443                                    const DebugLoc &dl, Register DestReg,
2444                                    Register BaseReg, int NumBytes,
2445                                    ARMCC::CondCodes Pred, Register PredReg,
2446                                    const ARMBaseInstrInfo &TII,
2447                                    unsigned MIFlags) {
2448   if (NumBytes == 0 && DestReg != BaseReg) {
2449     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2450         .addReg(BaseReg, RegState::Kill)
2451         .add(predOps(Pred, PredReg))
2452         .add(condCodeOp())
2453         .setMIFlags(MIFlags);
2454     return;
2455   }
2456 
2457   bool isSub = NumBytes < 0;
2458   if (isSub) NumBytes = -NumBytes;
2459 
2460   while (NumBytes) {
2461     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2462     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2463     assert(ThisVal && "Didn't extract field correctly");
2464 
2465     // We will handle these bits from offset, clear them.
2466     NumBytes &= ~ThisVal;
2467 
2468     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2469 
2470     // Build the new ADD / SUB.
2471     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2472     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2473         .addReg(BaseReg, RegState::Kill)
2474         .addImm(ThisVal)
2475         .add(predOps(Pred, PredReg))
2476         .add(condCodeOp())
2477         .setMIFlags(MIFlags);
2478     BaseReg = DestReg;
2479   }
2480 }
2481 
2482 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2483                                       MachineFunction &MF, MachineInstr *MI,
2484                                       unsigned NumBytes) {
2485   // This optimisation potentially adds lots of load and store
2486   // micro-operations, it's only really a great benefit to code-size.
2487   if (!Subtarget.hasMinSize())
2488     return false;
2489 
2490   // If only one register is pushed/popped, LLVM can use an LDR/STR
2491   // instead. We can't modify those so make sure we're dealing with an
2492   // instruction we understand.
2493   bool IsPop = isPopOpcode(MI->getOpcode());
2494   bool IsPush = isPushOpcode(MI->getOpcode());
2495   if (!IsPush && !IsPop)
2496     return false;
2497 
2498   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2499                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2500   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2501                      MI->getOpcode() == ARM::tPOP ||
2502                      MI->getOpcode() == ARM::tPOP_RET;
2503 
2504   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2505                           MI->getOperand(1).getReg() == ARM::SP)) &&
2506          "trying to fold sp update into non-sp-updating push/pop");
2507 
2508   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2509   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2510   // if this is violated.
2511   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2512     return false;
2513 
2514   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2515   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2516   int RegListIdx = IsT1PushPop ? 2 : 4;
2517 
2518   // Calculate the space we'll need in terms of registers.
2519   unsigned RegsNeeded;
2520   const TargetRegisterClass *RegClass;
2521   if (IsVFPPushPop) {
2522     RegsNeeded = NumBytes / 8;
2523     RegClass = &ARM::DPRRegClass;
2524   } else {
2525     RegsNeeded = NumBytes / 4;
2526     RegClass = &ARM::GPRRegClass;
2527   }
2528 
2529   // We're going to have to strip all list operands off before
2530   // re-adding them since the order matters, so save the existing ones
2531   // for later.
2532   SmallVector<MachineOperand, 4> RegList;
2533 
2534   // We're also going to need the first register transferred by this
2535   // instruction, which won't necessarily be the first register in the list.
2536   unsigned FirstRegEnc = -1;
2537 
2538   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2539   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2540     MachineOperand &MO = MI->getOperand(i);
2541     RegList.push_back(MO);
2542 
2543     if (MO.isReg() && !MO.isImplicit() &&
2544         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2545       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2546   }
2547 
2548   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2549 
2550   // Now try to find enough space in the reglist to allocate NumBytes.
2551   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2552        --CurRegEnc) {
2553     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2554     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2555       continue;
2556     if (!IsPop) {
2557       // Pushing any register is completely harmless, mark the register involved
2558       // as undef since we don't care about its value and must not restore it
2559       // during stack unwinding.
2560       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2561                                                   false, false, true));
2562       --RegsNeeded;
2563       continue;
2564     }
2565 
2566     // However, we can only pop an extra register if it's not live. For
2567     // registers live within the function we might clobber a return value
2568     // register; the other way a register can be live here is if it's
2569     // callee-saved.
2570     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2571         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2572         MachineBasicBlock::LQR_Dead) {
2573       // VFP pops don't allow holes in the register list, so any skip is fatal
2574       // for our transformation. GPR pops do, so we should just keep looking.
2575       if (IsVFPPushPop)
2576         return false;
2577       else
2578         continue;
2579     }
2580 
2581     // Mark the unimportant registers as <def,dead> in the POP.
2582     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2583                                                 true));
2584     --RegsNeeded;
2585   }
2586 
2587   if (RegsNeeded > 0)
2588     return false;
2589 
2590   // Finally we know we can profitably perform the optimisation so go
2591   // ahead: strip all existing registers off and add them back again
2592   // in the right order.
2593   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2594     MI->RemoveOperand(i);
2595 
2596   // Add the complete list back in.
2597   MachineInstrBuilder MIB(MF, &*MI);
2598   for (int i = RegList.size() - 1; i >= 0; --i)
2599     MIB.add(RegList[i]);
2600 
2601   return true;
2602 }
2603 
2604 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2605                                 Register FrameReg, int &Offset,
2606                                 const ARMBaseInstrInfo &TII) {
2607   unsigned Opcode = MI.getOpcode();
2608   const MCInstrDesc &Desc = MI.getDesc();
2609   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2610   bool isSub = false;
2611 
2612   // Memory operands in inline assembly always use AddrMode2.
2613   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2614     AddrMode = ARMII::AddrMode2;
2615 
2616   if (Opcode == ARM::ADDri) {
2617     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2618     if (Offset == 0) {
2619       // Turn it into a move.
2620       MI.setDesc(TII.get(ARM::MOVr));
2621       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2622       MI.RemoveOperand(FrameRegIdx+1);
2623       Offset = 0;
2624       return true;
2625     } else if (Offset < 0) {
2626       Offset = -Offset;
2627       isSub = true;
2628       MI.setDesc(TII.get(ARM::SUBri));
2629     }
2630 
2631     // Common case: small offset, fits into instruction.
2632     if (ARM_AM::getSOImmVal(Offset) != -1) {
2633       // Replace the FrameIndex with sp / fp
2634       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2635       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2636       Offset = 0;
2637       return true;
2638     }
2639 
2640     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2641     // as possible.
2642     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2643     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2644 
2645     // We will handle these bits from offset, clear them.
2646     Offset &= ~ThisImmVal;
2647 
2648     // Get the properly encoded SOImmVal field.
2649     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2650            "Bit extraction didn't work?");
2651     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2652  } else {
2653     unsigned ImmIdx = 0;
2654     int InstrOffs = 0;
2655     unsigned NumBits = 0;
2656     unsigned Scale = 1;
2657     switch (AddrMode) {
2658     case ARMII::AddrMode_i12:
2659       ImmIdx = FrameRegIdx + 1;
2660       InstrOffs = MI.getOperand(ImmIdx).getImm();
2661       NumBits = 12;
2662       break;
2663     case ARMII::AddrMode2:
2664       ImmIdx = FrameRegIdx+2;
2665       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2666       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2667         InstrOffs *= -1;
2668       NumBits = 12;
2669       break;
2670     case ARMII::AddrMode3:
2671       ImmIdx = FrameRegIdx+2;
2672       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2673       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2674         InstrOffs *= -1;
2675       NumBits = 8;
2676       break;
2677     case ARMII::AddrMode4:
2678     case ARMII::AddrMode6:
2679       // Can't fold any offset even if it's zero.
2680       return false;
2681     case ARMII::AddrMode5:
2682       ImmIdx = FrameRegIdx+1;
2683       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2684       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2685         InstrOffs *= -1;
2686       NumBits = 8;
2687       Scale = 4;
2688       break;
2689     case ARMII::AddrMode5FP16:
2690       ImmIdx = FrameRegIdx+1;
2691       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2692       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2693         InstrOffs *= -1;
2694       NumBits = 8;
2695       Scale = 2;
2696       break;
2697     case ARMII::AddrModeT2_i7:
2698     case ARMII::AddrModeT2_i7s2:
2699     case ARMII::AddrModeT2_i7s4:
2700       ImmIdx = FrameRegIdx+1;
2701       InstrOffs = MI.getOperand(ImmIdx).getImm();
2702       NumBits = 7;
2703       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2704                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2705       break;
2706     default:
2707       llvm_unreachable("Unsupported addressing mode!");
2708     }
2709 
2710     Offset += InstrOffs * Scale;
2711     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2712     if (Offset < 0) {
2713       Offset = -Offset;
2714       isSub = true;
2715     }
2716 
2717     // Attempt to fold address comp. if opcode has offset bits
2718     if (NumBits > 0) {
2719       // Common case: small offset, fits into instruction.
2720       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2721       int ImmedOffset = Offset / Scale;
2722       unsigned Mask = (1 << NumBits) - 1;
2723       if ((unsigned)Offset <= Mask * Scale) {
2724         // Replace the FrameIndex with sp
2725         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2726         // FIXME: When addrmode2 goes away, this will simplify (like the
2727         // T2 version), as the LDR.i12 versions don't need the encoding
2728         // tricks for the offset value.
2729         if (isSub) {
2730           if (AddrMode == ARMII::AddrMode_i12)
2731             ImmedOffset = -ImmedOffset;
2732           else
2733             ImmedOffset |= 1 << NumBits;
2734         }
2735         ImmOp.ChangeToImmediate(ImmedOffset);
2736         Offset = 0;
2737         return true;
2738       }
2739 
2740       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2741       ImmedOffset = ImmedOffset & Mask;
2742       if (isSub) {
2743         if (AddrMode == ARMII::AddrMode_i12)
2744           ImmedOffset = -ImmedOffset;
2745         else
2746           ImmedOffset |= 1 << NumBits;
2747       }
2748       ImmOp.ChangeToImmediate(ImmedOffset);
2749       Offset &= ~(Mask*Scale);
2750     }
2751   }
2752 
2753   Offset = (isSub) ? -Offset : Offset;
2754   return Offset == 0;
2755 }
2756 
2757 /// analyzeCompare - For a comparison instruction, return the source registers
2758 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2759 /// compares against in CmpValue. Return true if the comparison instruction
2760 /// can be analyzed.
2761 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2762                                       Register &SrcReg2, int &CmpMask,
2763                                       int &CmpValue) const {
2764   switch (MI.getOpcode()) {
2765   default: break;
2766   case ARM::CMPri:
2767   case ARM::t2CMPri:
2768   case ARM::tCMPi8:
2769     SrcReg = MI.getOperand(0).getReg();
2770     SrcReg2 = 0;
2771     CmpMask = ~0;
2772     CmpValue = MI.getOperand(1).getImm();
2773     return true;
2774   case ARM::CMPrr:
2775   case ARM::t2CMPrr:
2776   case ARM::tCMPr:
2777     SrcReg = MI.getOperand(0).getReg();
2778     SrcReg2 = MI.getOperand(1).getReg();
2779     CmpMask = ~0;
2780     CmpValue = 0;
2781     return true;
2782   case ARM::TSTri:
2783   case ARM::t2TSTri:
2784     SrcReg = MI.getOperand(0).getReg();
2785     SrcReg2 = 0;
2786     CmpMask = MI.getOperand(1).getImm();
2787     CmpValue = 0;
2788     return true;
2789   }
2790 
2791   return false;
2792 }
2793 
2794 /// isSuitableForMask - Identify a suitable 'and' instruction that
2795 /// operates on the given source register and applies the same mask
2796 /// as a 'tst' instruction. Provide a limited look-through for copies.
2797 /// When successful, MI will hold the found instruction.
2798 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2799                               int CmpMask, bool CommonUse) {
2800   switch (MI->getOpcode()) {
2801     case ARM::ANDri:
2802     case ARM::t2ANDri:
2803       if (CmpMask != MI->getOperand(2).getImm())
2804         return false;
2805       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2806         return true;
2807       break;
2808   }
2809 
2810   return false;
2811 }
2812 
2813 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2814 /// the condition code if we modify the instructions such that flags are
2815 /// set by ADD(a,b,X).
2816 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2817   switch (CC) {
2818   default: return ARMCC::AL;
2819   case ARMCC::HS: return ARMCC::LO;
2820   case ARMCC::LO: return ARMCC::HS;
2821   case ARMCC::VS: return ARMCC::VS;
2822   case ARMCC::VC: return ARMCC::VC;
2823   }
2824 }
2825 
2826 /// isRedundantFlagInstr - check whether the first instruction, whose only
2827 /// purpose is to update flags, can be made redundant.
2828 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2829 /// CMPri can be made redundant by SUBri if the operands are the same.
2830 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2831 /// This function can be extended later on.
2832 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2833                                         Register SrcReg, Register SrcReg2,
2834                                         int ImmValue, const MachineInstr *OI,
2835                                         bool &IsThumb1) {
2836   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2837       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2838       ((OI->getOperand(1).getReg() == SrcReg &&
2839         OI->getOperand(2).getReg() == SrcReg2) ||
2840        (OI->getOperand(1).getReg() == SrcReg2 &&
2841         OI->getOperand(2).getReg() == SrcReg))) {
2842     IsThumb1 = false;
2843     return true;
2844   }
2845 
2846   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2847       ((OI->getOperand(2).getReg() == SrcReg &&
2848         OI->getOperand(3).getReg() == SrcReg2) ||
2849        (OI->getOperand(2).getReg() == SrcReg2 &&
2850         OI->getOperand(3).getReg() == SrcReg))) {
2851     IsThumb1 = true;
2852     return true;
2853   }
2854 
2855   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2856       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2857       OI->getOperand(1).getReg() == SrcReg &&
2858       OI->getOperand(2).getImm() == ImmValue) {
2859     IsThumb1 = false;
2860     return true;
2861   }
2862 
2863   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2864       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2865       OI->getOperand(2).getReg() == SrcReg &&
2866       OI->getOperand(3).getImm() == ImmValue) {
2867     IsThumb1 = true;
2868     return true;
2869   }
2870 
2871   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2872       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2873        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2874       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2875       OI->getOperand(0).getReg() == SrcReg &&
2876       OI->getOperand(1).getReg() == SrcReg2) {
2877     IsThumb1 = false;
2878     return true;
2879   }
2880 
2881   if (CmpI->getOpcode() == ARM::tCMPr &&
2882       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2883        OI->getOpcode() == ARM::tADDrr) &&
2884       OI->getOperand(0).getReg() == SrcReg &&
2885       OI->getOperand(2).getReg() == SrcReg2) {
2886     IsThumb1 = true;
2887     return true;
2888   }
2889 
2890   return false;
2891 }
2892 
2893 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2894   switch (MI->getOpcode()) {
2895   default: return false;
2896   case ARM::tLSLri:
2897   case ARM::tLSRri:
2898   case ARM::tLSLrr:
2899   case ARM::tLSRrr:
2900   case ARM::tSUBrr:
2901   case ARM::tADDrr:
2902   case ARM::tADDi3:
2903   case ARM::tADDi8:
2904   case ARM::tSUBi3:
2905   case ARM::tSUBi8:
2906   case ARM::tMUL:
2907   case ARM::tADC:
2908   case ARM::tSBC:
2909   case ARM::tRSB:
2910   case ARM::tAND:
2911   case ARM::tORR:
2912   case ARM::tEOR:
2913   case ARM::tBIC:
2914   case ARM::tMVN:
2915   case ARM::tASRri:
2916   case ARM::tASRrr:
2917   case ARM::tROR:
2918     IsThumb1 = true;
2919     LLVM_FALLTHROUGH;
2920   case ARM::RSBrr:
2921   case ARM::RSBri:
2922   case ARM::RSCrr:
2923   case ARM::RSCri:
2924   case ARM::ADDrr:
2925   case ARM::ADDri:
2926   case ARM::ADCrr:
2927   case ARM::ADCri:
2928   case ARM::SUBrr:
2929   case ARM::SUBri:
2930   case ARM::SBCrr:
2931   case ARM::SBCri:
2932   case ARM::t2RSBri:
2933   case ARM::t2ADDrr:
2934   case ARM::t2ADDri:
2935   case ARM::t2ADCrr:
2936   case ARM::t2ADCri:
2937   case ARM::t2SUBrr:
2938   case ARM::t2SUBri:
2939   case ARM::t2SBCrr:
2940   case ARM::t2SBCri:
2941   case ARM::ANDrr:
2942   case ARM::ANDri:
2943   case ARM::t2ANDrr:
2944   case ARM::t2ANDri:
2945   case ARM::ORRrr:
2946   case ARM::ORRri:
2947   case ARM::t2ORRrr:
2948   case ARM::t2ORRri:
2949   case ARM::EORrr:
2950   case ARM::EORri:
2951   case ARM::t2EORrr:
2952   case ARM::t2EORri:
2953   case ARM::t2LSRri:
2954   case ARM::t2LSRrr:
2955   case ARM::t2LSLri:
2956   case ARM::t2LSLrr:
2957     return true;
2958   }
2959 }
2960 
2961 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2962 /// comparison into one that sets the zero bit in the flags register;
2963 /// Remove a redundant Compare instruction if an earlier instruction can set the
2964 /// flags in the same way as Compare.
2965 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2966 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2967 /// condition code of instructions which use the flags.
2968 bool ARMBaseInstrInfo::optimizeCompareInstr(
2969     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask,
2970     int CmpValue, const MachineRegisterInfo *MRI) const {
2971   // Get the unique definition of SrcReg.
2972   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2973   if (!MI) return false;
2974 
2975   // Masked compares sometimes use the same register as the corresponding 'and'.
2976   if (CmpMask != ~0) {
2977     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2978       MI = nullptr;
2979       for (MachineRegisterInfo::use_instr_iterator
2980            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2981            UI != UE; ++UI) {
2982         if (UI->getParent() != CmpInstr.getParent())
2983           continue;
2984         MachineInstr *PotentialAND = &*UI;
2985         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2986             isPredicated(*PotentialAND))
2987           continue;
2988         MI = PotentialAND;
2989         break;
2990       }
2991       if (!MI) return false;
2992     }
2993   }
2994 
2995   // Get ready to iterate backward from CmpInstr.
2996   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2997                               B = CmpInstr.getParent()->begin();
2998 
2999   // Early exit if CmpInstr is at the beginning of the BB.
3000   if (I == B) return false;
3001 
3002   // There are two possible candidates which can be changed to set CPSR:
3003   // One is MI, the other is a SUB or ADD instruction.
3004   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3005   // ADDr[ri](r1, r2, X).
3006   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3007   MachineInstr *SubAdd = nullptr;
3008   if (SrcReg2 != 0)
3009     // MI is not a candidate for CMPrr.
3010     MI = nullptr;
3011   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3012     // Conservatively refuse to convert an instruction which isn't in the same
3013     // BB as the comparison.
3014     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3015     // Thus we cannot return here.
3016     if (CmpInstr.getOpcode() == ARM::CMPri ||
3017         CmpInstr.getOpcode() == ARM::t2CMPri ||
3018         CmpInstr.getOpcode() == ARM::tCMPi8)
3019       MI = nullptr;
3020     else
3021       return false;
3022   }
3023 
3024   bool IsThumb1 = false;
3025   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3026     return false;
3027 
3028   // We also want to do this peephole for cases like this: if (a*b == 0),
3029   // and optimise away the CMP instruction from the generated code sequence:
3030   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3031   // resulting from the select instruction, but these MOVS instructions for
3032   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3033   // However, if we only have MOVS instructions in between the CMP and the
3034   // other instruction (the MULS in this example), then the CPSR is dead so we
3035   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3036   // reordering and then continue the analysis hoping we can eliminate the
3037   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3038   // consequence, the movs won't redefine/kill the MUL operands which would
3039   // make this reordering illegal.
3040   const TargetRegisterInfo *TRI = &getRegisterInfo();
3041   if (MI && IsThumb1) {
3042     --I;
3043     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3044       bool CanReorder = true;
3045       for (; I != E; --I) {
3046         if (I->getOpcode() != ARM::tMOVi8) {
3047           CanReorder = false;
3048           break;
3049         }
3050       }
3051       if (CanReorder) {
3052         MI = MI->removeFromParent();
3053         E = CmpInstr;
3054         CmpInstr.getParent()->insert(E, MI);
3055       }
3056     }
3057     I = CmpInstr;
3058     E = MI;
3059   }
3060 
3061   // Check that CPSR isn't set between the comparison instruction and the one we
3062   // want to change. At the same time, search for SubAdd.
3063   bool SubAddIsThumb1 = false;
3064   do {
3065     const MachineInstr &Instr = *--I;
3066 
3067     // Check whether CmpInstr can be made redundant by the current instruction.
3068     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3069                              SubAddIsThumb1)) {
3070       SubAdd = &*I;
3071       break;
3072     }
3073 
3074     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3075     if (I == E)
3076       break;
3077 
3078     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3079         Instr.readsRegister(ARM::CPSR, TRI))
3080       // This instruction modifies or uses CPSR after the one we want to
3081       // change. We can't do this transformation.
3082       return false;
3083 
3084     if (I == B) {
3085       // In some cases, we scan the use-list of an instruction for an AND;
3086       // that AND is in the same BB, but may not be scheduled before the
3087       // corresponding TST.  In that case, bail out.
3088       //
3089       // FIXME: We could try to reschedule the AND.
3090       return false;
3091     }
3092   } while (true);
3093 
3094   // Return false if no candidates exist.
3095   if (!MI && !SubAdd)
3096     return false;
3097 
3098   // If we found a SubAdd, use it as it will be closer to the CMP
3099   if (SubAdd) {
3100     MI = SubAdd;
3101     IsThumb1 = SubAddIsThumb1;
3102   }
3103 
3104   // We can't use a predicated instruction - it doesn't always write the flags.
3105   if (isPredicated(*MI))
3106     return false;
3107 
3108   // Scan forward for the use of CPSR
3109   // When checking against MI: if it's a conditional code that requires
3110   // checking of the V bit or C bit, then this is not safe to do.
3111   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3112   // If we are done with the basic block, we need to check whether CPSR is
3113   // live-out.
3114   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3115       OperandsToUpdate;
3116   bool isSafe = false;
3117   I = CmpInstr;
3118   E = CmpInstr.getParent()->end();
3119   while (!isSafe && ++I != E) {
3120     const MachineInstr &Instr = *I;
3121     for (unsigned IO = 0, EO = Instr.getNumOperands();
3122          !isSafe && IO != EO; ++IO) {
3123       const MachineOperand &MO = Instr.getOperand(IO);
3124       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3125         isSafe = true;
3126         break;
3127       }
3128       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3129         continue;
3130       if (MO.isDef()) {
3131         isSafe = true;
3132         break;
3133       }
3134       // Condition code is after the operand before CPSR except for VSELs.
3135       ARMCC::CondCodes CC;
3136       bool IsInstrVSel = true;
3137       switch (Instr.getOpcode()) {
3138       default:
3139         IsInstrVSel = false;
3140         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3141         break;
3142       case ARM::VSELEQD:
3143       case ARM::VSELEQS:
3144       case ARM::VSELEQH:
3145         CC = ARMCC::EQ;
3146         break;
3147       case ARM::VSELGTD:
3148       case ARM::VSELGTS:
3149       case ARM::VSELGTH:
3150         CC = ARMCC::GT;
3151         break;
3152       case ARM::VSELGED:
3153       case ARM::VSELGES:
3154       case ARM::VSELGEH:
3155         CC = ARMCC::GE;
3156         break;
3157       case ARM::VSELVSD:
3158       case ARM::VSELVSS:
3159       case ARM::VSELVSH:
3160         CC = ARMCC::VS;
3161         break;
3162       }
3163 
3164       if (SubAdd) {
3165         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3166         // on CMP needs to be updated to be based on SUB.
3167         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3168         // needs to be modified.
3169         // Push the condition code operands to OperandsToUpdate.
3170         // If it is safe to remove CmpInstr, the condition code of these
3171         // operands will be modified.
3172         unsigned Opc = SubAdd->getOpcode();
3173         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3174                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3175                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3176                      Opc == ARM::tSUBi8;
3177         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3178         if (!IsSub ||
3179             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3180              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3181           // VSel doesn't support condition code update.
3182           if (IsInstrVSel)
3183             return false;
3184           // Ensure we can swap the condition.
3185           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3186           if (NewCC == ARMCC::AL)
3187             return false;
3188           OperandsToUpdate.push_back(
3189               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3190         }
3191       } else {
3192         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3193         switch (CC) {
3194         case ARMCC::EQ: // Z
3195         case ARMCC::NE: // Z
3196         case ARMCC::MI: // N
3197         case ARMCC::PL: // N
3198         case ARMCC::AL: // none
3199           // CPSR can be used multiple times, we should continue.
3200           break;
3201         case ARMCC::HS: // C
3202         case ARMCC::LO: // C
3203         case ARMCC::VS: // V
3204         case ARMCC::VC: // V
3205         case ARMCC::HI: // C Z
3206         case ARMCC::LS: // C Z
3207         case ARMCC::GE: // N V
3208         case ARMCC::LT: // N V
3209         case ARMCC::GT: // Z N V
3210         case ARMCC::LE: // Z N V
3211           // The instruction uses the V bit or C bit which is not safe.
3212           return false;
3213         }
3214       }
3215     }
3216   }
3217 
3218   // If CPSR is not killed nor re-defined, we should check whether it is
3219   // live-out. If it is live-out, do not optimize.
3220   if (!isSafe) {
3221     MachineBasicBlock *MBB = CmpInstr.getParent();
3222     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3223              SE = MBB->succ_end(); SI != SE; ++SI)
3224       if ((*SI)->isLiveIn(ARM::CPSR))
3225         return false;
3226   }
3227 
3228   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3229   // set CPSR so this is represented as an explicit output)
3230   if (!IsThumb1) {
3231     MI->getOperand(5).setReg(ARM::CPSR);
3232     MI->getOperand(5).setIsDef(true);
3233   }
3234   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3235   CmpInstr.eraseFromParent();
3236 
3237   // Modify the condition code of operands in OperandsToUpdate.
3238   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3239   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3240   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3241     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3242 
3243   MI->clearRegisterDeads(ARM::CPSR);
3244 
3245   return true;
3246 }
3247 
3248 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3249   // Do not sink MI if it might be used to optimize a redundant compare.
3250   // We heuristically only look at the instruction immediately following MI to
3251   // avoid potentially searching the entire basic block.
3252   if (isPredicated(MI))
3253     return true;
3254   MachineBasicBlock::const_iterator Next = &MI;
3255   ++Next;
3256   Register SrcReg, SrcReg2;
3257   int CmpMask, CmpValue;
3258   bool IsThumb1;
3259   if (Next != MI.getParent()->end() &&
3260       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3261       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3262     return false;
3263   return true;
3264 }
3265 
3266 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3267                                      Register Reg,
3268                                      MachineRegisterInfo *MRI) const {
3269   // Fold large immediates into add, sub, or, xor.
3270   unsigned DefOpc = DefMI.getOpcode();
3271   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3272     return false;
3273   if (!DefMI.getOperand(1).isImm())
3274     // Could be t2MOVi32imm @xx
3275     return false;
3276 
3277   if (!MRI->hasOneNonDBGUse(Reg))
3278     return false;
3279 
3280   const MCInstrDesc &DefMCID = DefMI.getDesc();
3281   if (DefMCID.hasOptionalDef()) {
3282     unsigned NumOps = DefMCID.getNumOperands();
3283     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3284     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3285       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3286       // to delete DefMI.
3287       return false;
3288   }
3289 
3290   const MCInstrDesc &UseMCID = UseMI.getDesc();
3291   if (UseMCID.hasOptionalDef()) {
3292     unsigned NumOps = UseMCID.getNumOperands();
3293     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3294       // If the instruction sets the flag, do not attempt this optimization
3295       // since it may change the semantics of the code.
3296       return false;
3297   }
3298 
3299   unsigned UseOpc = UseMI.getOpcode();
3300   unsigned NewUseOpc = 0;
3301   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3302   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3303   bool Commute = false;
3304   switch (UseOpc) {
3305   default: return false;
3306   case ARM::SUBrr:
3307   case ARM::ADDrr:
3308   case ARM::ORRrr:
3309   case ARM::EORrr:
3310   case ARM::t2SUBrr:
3311   case ARM::t2ADDrr:
3312   case ARM::t2ORRrr:
3313   case ARM::t2EORrr: {
3314     Commute = UseMI.getOperand(2).getReg() != Reg;
3315     switch (UseOpc) {
3316     default: break;
3317     case ARM::ADDrr:
3318     case ARM::SUBrr:
3319       if (UseOpc == ARM::SUBrr && Commute)
3320         return false;
3321 
3322       // ADD/SUB are special because they're essentially the same operation, so
3323       // we can handle a larger range of immediates.
3324       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3325         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3326       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3327         ImmVal = -ImmVal;
3328         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3329       } else
3330         return false;
3331       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3332       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3333       break;
3334     case ARM::ORRrr:
3335     case ARM::EORrr:
3336       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3337         return false;
3338       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3339       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3340       switch (UseOpc) {
3341       default: break;
3342       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3343       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3344       }
3345       break;
3346     case ARM::t2ADDrr:
3347     case ARM::t2SUBrr: {
3348       if (UseOpc == ARM::t2SUBrr && Commute)
3349         return false;
3350 
3351       // ADD/SUB are special because they're essentially the same operation, so
3352       // we can handle a larger range of immediates.
3353       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3354       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3355       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3356       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3357         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3358       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3359         ImmVal = -ImmVal;
3360         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3361       } else
3362         return false;
3363       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3364       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3365       break;
3366     }
3367     case ARM::t2ORRrr:
3368     case ARM::t2EORrr:
3369       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3370         return false;
3371       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3372       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3373       switch (UseOpc) {
3374       default: break;
3375       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3376       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3377       }
3378       break;
3379     }
3380   }
3381   }
3382 
3383   unsigned OpIdx = Commute ? 2 : 1;
3384   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3385   bool isKill = UseMI.getOperand(OpIdx).isKill();
3386   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3387   Register NewReg = MRI->createVirtualRegister(TRC);
3388   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3389           NewReg)
3390       .addReg(Reg1, getKillRegState(isKill))
3391       .addImm(SOImmValV1)
3392       .add(predOps(ARMCC::AL))
3393       .add(condCodeOp());
3394   UseMI.setDesc(get(NewUseOpc));
3395   UseMI.getOperand(1).setReg(NewReg);
3396   UseMI.getOperand(1).setIsKill();
3397   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3398   DefMI.eraseFromParent();
3399   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3400   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3401   // Then the below code will not be needed, as the input/output register
3402   // classes will be rgpr or gprSP.
3403   // For now, we fix the UseMI operand explicitly here:
3404   switch(NewUseOpc){
3405     case ARM::t2ADDspImm:
3406     case ARM::t2SUBspImm:
3407     case ARM::t2ADDri:
3408     case ARM::t2SUBri:
3409       MRI->setRegClass(UseMI.getOperand(0).getReg(), TRC);
3410   }
3411   return true;
3412 }
3413 
3414 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3415                                         const MachineInstr &MI) {
3416   switch (MI.getOpcode()) {
3417   default: {
3418     const MCInstrDesc &Desc = MI.getDesc();
3419     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3420     assert(UOps >= 0 && "bad # UOps");
3421     return UOps;
3422   }
3423 
3424   case ARM::LDRrs:
3425   case ARM::LDRBrs:
3426   case ARM::STRrs:
3427   case ARM::STRBrs: {
3428     unsigned ShOpVal = MI.getOperand(3).getImm();
3429     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3430     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3431     if (!isSub &&
3432         (ShImm == 0 ||
3433          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3434           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3435       return 1;
3436     return 2;
3437   }
3438 
3439   case ARM::LDRH:
3440   case ARM::STRH: {
3441     if (!MI.getOperand(2).getReg())
3442       return 1;
3443 
3444     unsigned ShOpVal = MI.getOperand(3).getImm();
3445     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3446     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3447     if (!isSub &&
3448         (ShImm == 0 ||
3449          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3450           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3451       return 1;
3452     return 2;
3453   }
3454 
3455   case ARM::LDRSB:
3456   case ARM::LDRSH:
3457     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3458 
3459   case ARM::LDRSB_POST:
3460   case ARM::LDRSH_POST: {
3461     Register Rt = MI.getOperand(0).getReg();
3462     Register Rm = MI.getOperand(3).getReg();
3463     return (Rt == Rm) ? 4 : 3;
3464   }
3465 
3466   case ARM::LDR_PRE_REG:
3467   case ARM::LDRB_PRE_REG: {
3468     Register Rt = MI.getOperand(0).getReg();
3469     Register Rm = MI.getOperand(3).getReg();
3470     if (Rt == Rm)
3471       return 3;
3472     unsigned ShOpVal = MI.getOperand(4).getImm();
3473     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3474     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3475     if (!isSub &&
3476         (ShImm == 0 ||
3477          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3478           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3479       return 2;
3480     return 3;
3481   }
3482 
3483   case ARM::STR_PRE_REG:
3484   case ARM::STRB_PRE_REG: {
3485     unsigned ShOpVal = MI.getOperand(4).getImm();
3486     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3487     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3488     if (!isSub &&
3489         (ShImm == 0 ||
3490          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3491           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3492       return 2;
3493     return 3;
3494   }
3495 
3496   case ARM::LDRH_PRE:
3497   case ARM::STRH_PRE: {
3498     Register Rt = MI.getOperand(0).getReg();
3499     Register Rm = MI.getOperand(3).getReg();
3500     if (!Rm)
3501       return 2;
3502     if (Rt == Rm)
3503       return 3;
3504     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3505   }
3506 
3507   case ARM::LDR_POST_REG:
3508   case ARM::LDRB_POST_REG:
3509   case ARM::LDRH_POST: {
3510     Register Rt = MI.getOperand(0).getReg();
3511     Register Rm = MI.getOperand(3).getReg();
3512     return (Rt == Rm) ? 3 : 2;
3513   }
3514 
3515   case ARM::LDR_PRE_IMM:
3516   case ARM::LDRB_PRE_IMM:
3517   case ARM::LDR_POST_IMM:
3518   case ARM::LDRB_POST_IMM:
3519   case ARM::STRB_POST_IMM:
3520   case ARM::STRB_POST_REG:
3521   case ARM::STRB_PRE_IMM:
3522   case ARM::STRH_POST:
3523   case ARM::STR_POST_IMM:
3524   case ARM::STR_POST_REG:
3525   case ARM::STR_PRE_IMM:
3526     return 2;
3527 
3528   case ARM::LDRSB_PRE:
3529   case ARM::LDRSH_PRE: {
3530     Register Rm = MI.getOperand(3).getReg();
3531     if (Rm == 0)
3532       return 3;
3533     Register Rt = MI.getOperand(0).getReg();
3534     if (Rt == Rm)
3535       return 4;
3536     unsigned ShOpVal = MI.getOperand(4).getImm();
3537     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3538     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3539     if (!isSub &&
3540         (ShImm == 0 ||
3541          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3542           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3543       return 3;
3544     return 4;
3545   }
3546 
3547   case ARM::LDRD: {
3548     Register Rt = MI.getOperand(0).getReg();
3549     Register Rn = MI.getOperand(2).getReg();
3550     Register Rm = MI.getOperand(3).getReg();
3551     if (Rm)
3552       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3553                                                                           : 3;
3554     return (Rt == Rn) ? 3 : 2;
3555   }
3556 
3557   case ARM::STRD: {
3558     Register Rm = MI.getOperand(3).getReg();
3559     if (Rm)
3560       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3561                                                                           : 3;
3562     return 2;
3563   }
3564 
3565   case ARM::LDRD_POST:
3566   case ARM::t2LDRD_POST:
3567     return 3;
3568 
3569   case ARM::STRD_POST:
3570   case ARM::t2STRD_POST:
3571     return 4;
3572 
3573   case ARM::LDRD_PRE: {
3574     Register Rt = MI.getOperand(0).getReg();
3575     Register Rn = MI.getOperand(3).getReg();
3576     Register Rm = MI.getOperand(4).getReg();
3577     if (Rm)
3578       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3579                                                                           : 4;
3580     return (Rt == Rn) ? 4 : 3;
3581   }
3582 
3583   case ARM::t2LDRD_PRE: {
3584     Register Rt = MI.getOperand(0).getReg();
3585     Register Rn = MI.getOperand(3).getReg();
3586     return (Rt == Rn) ? 4 : 3;
3587   }
3588 
3589   case ARM::STRD_PRE: {
3590     Register Rm = MI.getOperand(4).getReg();
3591     if (Rm)
3592       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3593                                                                           : 4;
3594     return 3;
3595   }
3596 
3597   case ARM::t2STRD_PRE:
3598     return 3;
3599 
3600   case ARM::t2LDR_POST:
3601   case ARM::t2LDRB_POST:
3602   case ARM::t2LDRB_PRE:
3603   case ARM::t2LDRSBi12:
3604   case ARM::t2LDRSBi8:
3605   case ARM::t2LDRSBpci:
3606   case ARM::t2LDRSBs:
3607   case ARM::t2LDRH_POST:
3608   case ARM::t2LDRH_PRE:
3609   case ARM::t2LDRSBT:
3610   case ARM::t2LDRSB_POST:
3611   case ARM::t2LDRSB_PRE:
3612   case ARM::t2LDRSH_POST:
3613   case ARM::t2LDRSH_PRE:
3614   case ARM::t2LDRSHi12:
3615   case ARM::t2LDRSHi8:
3616   case ARM::t2LDRSHpci:
3617   case ARM::t2LDRSHs:
3618     return 2;
3619 
3620   case ARM::t2LDRDi8: {
3621     Register Rt = MI.getOperand(0).getReg();
3622     Register Rn = MI.getOperand(2).getReg();
3623     return (Rt == Rn) ? 3 : 2;
3624   }
3625 
3626   case ARM::t2STRB_POST:
3627   case ARM::t2STRB_PRE:
3628   case ARM::t2STRBs:
3629   case ARM::t2STRDi8:
3630   case ARM::t2STRH_POST:
3631   case ARM::t2STRH_PRE:
3632   case ARM::t2STRHs:
3633   case ARM::t2STR_POST:
3634   case ARM::t2STR_PRE:
3635   case ARM::t2STRs:
3636     return 2;
3637   }
3638 }
3639 
3640 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3641 // can't be easily determined return 0 (missing MachineMemOperand).
3642 //
3643 // FIXME: The current MachineInstr design does not support relying on machine
3644 // mem operands to determine the width of a memory access. Instead, we expect
3645 // the target to provide this information based on the instruction opcode and
3646 // operands. However, using MachineMemOperand is the best solution now for
3647 // two reasons:
3648 //
3649 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3650 // operands. This is much more dangerous than using the MachineMemOperand
3651 // sizes because CodeGen passes can insert/remove optional machine operands. In
3652 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3653 // postRA passes as well.
3654 //
3655 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3656 // machine model that calls this should handle the unknown (zero size) case.
3657 //
3658 // Long term, we should require a target hook that verifies MachineMemOperand
3659 // sizes during MC lowering. That target hook should be local to MC lowering
3660 // because we can't ensure that it is aware of other MI forms. Doing this will
3661 // ensure that MachineMemOperands are correctly propagated through all passes.
3662 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3663   unsigned Size = 0;
3664   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3665                                   E = MI.memoperands_end();
3666        I != E; ++I) {
3667     Size += (*I)->getSize();
3668   }
3669   // FIXME: The scheduler currently can't handle values larger than 16. But
3670   // the values can actually go up to 32 for floating-point load/store
3671   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3672   // operations isn't right; we could end up with "extra" memory operands for
3673   // various reasons, like tail merge merging two memory operations.
3674   return std::min(Size / 4, 16U);
3675 }
3676 
3677 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3678                                                     unsigned NumRegs) {
3679   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3680   switch (Opc) {
3681   default:
3682     break;
3683   case ARM::VLDMDIA_UPD:
3684   case ARM::VLDMDDB_UPD:
3685   case ARM::VLDMSIA_UPD:
3686   case ARM::VLDMSDB_UPD:
3687   case ARM::VSTMDIA_UPD:
3688   case ARM::VSTMDDB_UPD:
3689   case ARM::VSTMSIA_UPD:
3690   case ARM::VSTMSDB_UPD:
3691   case ARM::LDMIA_UPD:
3692   case ARM::LDMDA_UPD:
3693   case ARM::LDMDB_UPD:
3694   case ARM::LDMIB_UPD:
3695   case ARM::STMIA_UPD:
3696   case ARM::STMDA_UPD:
3697   case ARM::STMDB_UPD:
3698   case ARM::STMIB_UPD:
3699   case ARM::tLDMIA_UPD:
3700   case ARM::tSTMIA_UPD:
3701   case ARM::t2LDMIA_UPD:
3702   case ARM::t2LDMDB_UPD:
3703   case ARM::t2STMIA_UPD:
3704   case ARM::t2STMDB_UPD:
3705     ++UOps; // One for base register writeback.
3706     break;
3707   case ARM::LDMIA_RET:
3708   case ARM::tPOP_RET:
3709   case ARM::t2LDMIA_RET:
3710     UOps += 2; // One for base reg wb, one for write to pc.
3711     break;
3712   }
3713   return UOps;
3714 }
3715 
3716 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3717                                           const MachineInstr &MI) const {
3718   if (!ItinData || ItinData->isEmpty())
3719     return 1;
3720 
3721   const MCInstrDesc &Desc = MI.getDesc();
3722   unsigned Class = Desc.getSchedClass();
3723   int ItinUOps = ItinData->getNumMicroOps(Class);
3724   if (ItinUOps >= 0) {
3725     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3726       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3727 
3728     return ItinUOps;
3729   }
3730 
3731   unsigned Opc = MI.getOpcode();
3732   switch (Opc) {
3733   default:
3734     llvm_unreachable("Unexpected multi-uops instruction!");
3735   case ARM::VLDMQIA:
3736   case ARM::VSTMQIA:
3737     return 2;
3738 
3739   // The number of uOps for load / store multiple are determined by the number
3740   // registers.
3741   //
3742   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3743   // same cycle. The scheduling for the first load / store must be done
3744   // separately by assuming the address is not 64-bit aligned.
3745   //
3746   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3747   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3748   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3749   case ARM::VLDMDIA:
3750   case ARM::VLDMDIA_UPD:
3751   case ARM::VLDMDDB_UPD:
3752   case ARM::VLDMSIA:
3753   case ARM::VLDMSIA_UPD:
3754   case ARM::VLDMSDB_UPD:
3755   case ARM::VSTMDIA:
3756   case ARM::VSTMDIA_UPD:
3757   case ARM::VSTMDDB_UPD:
3758   case ARM::VSTMSIA:
3759   case ARM::VSTMSIA_UPD:
3760   case ARM::VSTMSDB_UPD: {
3761     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3762     return (NumRegs / 2) + (NumRegs % 2) + 1;
3763   }
3764 
3765   case ARM::LDMIA_RET:
3766   case ARM::LDMIA:
3767   case ARM::LDMDA:
3768   case ARM::LDMDB:
3769   case ARM::LDMIB:
3770   case ARM::LDMIA_UPD:
3771   case ARM::LDMDA_UPD:
3772   case ARM::LDMDB_UPD:
3773   case ARM::LDMIB_UPD:
3774   case ARM::STMIA:
3775   case ARM::STMDA:
3776   case ARM::STMDB:
3777   case ARM::STMIB:
3778   case ARM::STMIA_UPD:
3779   case ARM::STMDA_UPD:
3780   case ARM::STMDB_UPD:
3781   case ARM::STMIB_UPD:
3782   case ARM::tLDMIA:
3783   case ARM::tLDMIA_UPD:
3784   case ARM::tSTMIA_UPD:
3785   case ARM::tPOP_RET:
3786   case ARM::tPOP:
3787   case ARM::tPUSH:
3788   case ARM::t2LDMIA_RET:
3789   case ARM::t2LDMIA:
3790   case ARM::t2LDMDB:
3791   case ARM::t2LDMIA_UPD:
3792   case ARM::t2LDMDB_UPD:
3793   case ARM::t2STMIA:
3794   case ARM::t2STMDB:
3795   case ARM::t2STMIA_UPD:
3796   case ARM::t2STMDB_UPD: {
3797     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3798     switch (Subtarget.getLdStMultipleTiming()) {
3799     case ARMSubtarget::SingleIssuePlusExtras:
3800       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3801     case ARMSubtarget::SingleIssue:
3802       // Assume the worst.
3803       return NumRegs;
3804     case ARMSubtarget::DoubleIssue: {
3805       if (NumRegs < 4)
3806         return 2;
3807       // 4 registers would be issued: 2, 2.
3808       // 5 registers would be issued: 2, 2, 1.
3809       unsigned UOps = (NumRegs / 2);
3810       if (NumRegs % 2)
3811         ++UOps;
3812       return UOps;
3813     }
3814     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3815       unsigned UOps = (NumRegs / 2);
3816       // If there are odd number of registers or if it's not 64-bit aligned,
3817       // then it takes an extra AGU (Address Generation Unit) cycle.
3818       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3819           (*MI.memoperands_begin())->getAlign() < Align(8))
3820         ++UOps;
3821       return UOps;
3822       }
3823     }
3824   }
3825   }
3826   llvm_unreachable("Didn't find the number of microops");
3827 }
3828 
3829 int
3830 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3831                                   const MCInstrDesc &DefMCID,
3832                                   unsigned DefClass,
3833                                   unsigned DefIdx, unsigned DefAlign) const {
3834   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3835   if (RegNo <= 0)
3836     // Def is the address writeback.
3837     return ItinData->getOperandCycle(DefClass, DefIdx);
3838 
3839   int DefCycle;
3840   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3841     // (regno / 2) + (regno % 2) + 1
3842     DefCycle = RegNo / 2 + 1;
3843     if (RegNo % 2)
3844       ++DefCycle;
3845   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3846     DefCycle = RegNo;
3847     bool isSLoad = false;
3848 
3849     switch (DefMCID.getOpcode()) {
3850     default: break;
3851     case ARM::VLDMSIA:
3852     case ARM::VLDMSIA_UPD:
3853     case ARM::VLDMSDB_UPD:
3854       isSLoad = true;
3855       break;
3856     }
3857 
3858     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3859     // then it takes an extra cycle.
3860     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3861       ++DefCycle;
3862   } else {
3863     // Assume the worst.
3864     DefCycle = RegNo + 2;
3865   }
3866 
3867   return DefCycle;
3868 }
3869 
3870 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3871   Register BaseReg = MI.getOperand(0).getReg();
3872   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3873     const auto &Op = MI.getOperand(i);
3874     if (Op.isReg() && Op.getReg() == BaseReg)
3875       return true;
3876   }
3877   return false;
3878 }
3879 unsigned
3880 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3881   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3882   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3883   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3884 }
3885 
3886 int
3887 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3888                                  const MCInstrDesc &DefMCID,
3889                                  unsigned DefClass,
3890                                  unsigned DefIdx, unsigned DefAlign) const {
3891   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3892   if (RegNo <= 0)
3893     // Def is the address writeback.
3894     return ItinData->getOperandCycle(DefClass, DefIdx);
3895 
3896   int DefCycle;
3897   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3898     // 4 registers would be issued: 1, 2, 1.
3899     // 5 registers would be issued: 1, 2, 2.
3900     DefCycle = RegNo / 2;
3901     if (DefCycle < 1)
3902       DefCycle = 1;
3903     // Result latency is issue cycle + 2: E2.
3904     DefCycle += 2;
3905   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3906     DefCycle = (RegNo / 2);
3907     // If there are odd number of registers or if it's not 64-bit aligned,
3908     // then it takes an extra AGU (Address Generation Unit) cycle.
3909     if ((RegNo % 2) || DefAlign < 8)
3910       ++DefCycle;
3911     // Result latency is AGU cycles + 2.
3912     DefCycle += 2;
3913   } else {
3914     // Assume the worst.
3915     DefCycle = RegNo + 2;
3916   }
3917 
3918   return DefCycle;
3919 }
3920 
3921 int
3922 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3923                                   const MCInstrDesc &UseMCID,
3924                                   unsigned UseClass,
3925                                   unsigned UseIdx, unsigned UseAlign) const {
3926   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3927   if (RegNo <= 0)
3928     return ItinData->getOperandCycle(UseClass, UseIdx);
3929 
3930   int UseCycle;
3931   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3932     // (regno / 2) + (regno % 2) + 1
3933     UseCycle = RegNo / 2 + 1;
3934     if (RegNo % 2)
3935       ++UseCycle;
3936   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3937     UseCycle = RegNo;
3938     bool isSStore = false;
3939 
3940     switch (UseMCID.getOpcode()) {
3941     default: break;
3942     case ARM::VSTMSIA:
3943     case ARM::VSTMSIA_UPD:
3944     case ARM::VSTMSDB_UPD:
3945       isSStore = true;
3946       break;
3947     }
3948 
3949     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3950     // then it takes an extra cycle.
3951     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3952       ++UseCycle;
3953   } else {
3954     // Assume the worst.
3955     UseCycle = RegNo + 2;
3956   }
3957 
3958   return UseCycle;
3959 }
3960 
3961 int
3962 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3963                                  const MCInstrDesc &UseMCID,
3964                                  unsigned UseClass,
3965                                  unsigned UseIdx, unsigned UseAlign) const {
3966   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3967   if (RegNo <= 0)
3968     return ItinData->getOperandCycle(UseClass, UseIdx);
3969 
3970   int UseCycle;
3971   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3972     UseCycle = RegNo / 2;
3973     if (UseCycle < 2)
3974       UseCycle = 2;
3975     // Read in E3.
3976     UseCycle += 2;
3977   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3978     UseCycle = (RegNo / 2);
3979     // If there are odd number of registers or if it's not 64-bit aligned,
3980     // then it takes an extra AGU (Address Generation Unit) cycle.
3981     if ((RegNo % 2) || UseAlign < 8)
3982       ++UseCycle;
3983   } else {
3984     // Assume the worst.
3985     UseCycle = 1;
3986   }
3987   return UseCycle;
3988 }
3989 
3990 int
3991 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3992                                     const MCInstrDesc &DefMCID,
3993                                     unsigned DefIdx, unsigned DefAlign,
3994                                     const MCInstrDesc &UseMCID,
3995                                     unsigned UseIdx, unsigned UseAlign) const {
3996   unsigned DefClass = DefMCID.getSchedClass();
3997   unsigned UseClass = UseMCID.getSchedClass();
3998 
3999   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4000     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4001 
4002   // This may be a def / use of a variable_ops instruction, the operand
4003   // latency might be determinable dynamically. Let the target try to
4004   // figure it out.
4005   int DefCycle = -1;
4006   bool LdmBypass = false;
4007   switch (DefMCID.getOpcode()) {
4008   default:
4009     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4010     break;
4011 
4012   case ARM::VLDMDIA:
4013   case ARM::VLDMDIA_UPD:
4014   case ARM::VLDMDDB_UPD:
4015   case ARM::VLDMSIA:
4016   case ARM::VLDMSIA_UPD:
4017   case ARM::VLDMSDB_UPD:
4018     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4019     break;
4020 
4021   case ARM::LDMIA_RET:
4022   case ARM::LDMIA:
4023   case ARM::LDMDA:
4024   case ARM::LDMDB:
4025   case ARM::LDMIB:
4026   case ARM::LDMIA_UPD:
4027   case ARM::LDMDA_UPD:
4028   case ARM::LDMDB_UPD:
4029   case ARM::LDMIB_UPD:
4030   case ARM::tLDMIA:
4031   case ARM::tLDMIA_UPD:
4032   case ARM::tPUSH:
4033   case ARM::t2LDMIA_RET:
4034   case ARM::t2LDMIA:
4035   case ARM::t2LDMDB:
4036   case ARM::t2LDMIA_UPD:
4037   case ARM::t2LDMDB_UPD:
4038     LdmBypass = true;
4039     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4040     break;
4041   }
4042 
4043   if (DefCycle == -1)
4044     // We can't seem to determine the result latency of the def, assume it's 2.
4045     DefCycle = 2;
4046 
4047   int UseCycle = -1;
4048   switch (UseMCID.getOpcode()) {
4049   default:
4050     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4051     break;
4052 
4053   case ARM::VSTMDIA:
4054   case ARM::VSTMDIA_UPD:
4055   case ARM::VSTMDDB_UPD:
4056   case ARM::VSTMSIA:
4057   case ARM::VSTMSIA_UPD:
4058   case ARM::VSTMSDB_UPD:
4059     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4060     break;
4061 
4062   case ARM::STMIA:
4063   case ARM::STMDA:
4064   case ARM::STMDB:
4065   case ARM::STMIB:
4066   case ARM::STMIA_UPD:
4067   case ARM::STMDA_UPD:
4068   case ARM::STMDB_UPD:
4069   case ARM::STMIB_UPD:
4070   case ARM::tSTMIA_UPD:
4071   case ARM::tPOP_RET:
4072   case ARM::tPOP:
4073   case ARM::t2STMIA:
4074   case ARM::t2STMDB:
4075   case ARM::t2STMIA_UPD:
4076   case ARM::t2STMDB_UPD:
4077     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4078     break;
4079   }
4080 
4081   if (UseCycle == -1)
4082     // Assume it's read in the first stage.
4083     UseCycle = 1;
4084 
4085   UseCycle = DefCycle - UseCycle + 1;
4086   if (UseCycle > 0) {
4087     if (LdmBypass) {
4088       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4089       // first def operand.
4090       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4091                                           UseClass, UseIdx))
4092         --UseCycle;
4093     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4094                                                UseClass, UseIdx)) {
4095       --UseCycle;
4096     }
4097   }
4098 
4099   return UseCycle;
4100 }
4101 
4102 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4103                                            const MachineInstr *MI, unsigned Reg,
4104                                            unsigned &DefIdx, unsigned &Dist) {
4105   Dist = 0;
4106 
4107   MachineBasicBlock::const_iterator I = MI; ++I;
4108   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4109   assert(II->isInsideBundle() && "Empty bundle?");
4110 
4111   int Idx = -1;
4112   while (II->isInsideBundle()) {
4113     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4114     if (Idx != -1)
4115       break;
4116     --II;
4117     ++Dist;
4118   }
4119 
4120   assert(Idx != -1 && "Cannot find bundled definition!");
4121   DefIdx = Idx;
4122   return &*II;
4123 }
4124 
4125 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4126                                            const MachineInstr &MI, unsigned Reg,
4127                                            unsigned &UseIdx, unsigned &Dist) {
4128   Dist = 0;
4129 
4130   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4131   assert(II->isInsideBundle() && "Empty bundle?");
4132   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4133 
4134   // FIXME: This doesn't properly handle multiple uses.
4135   int Idx = -1;
4136   while (II != E && II->isInsideBundle()) {
4137     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4138     if (Idx != -1)
4139       break;
4140     if (II->getOpcode() != ARM::t2IT)
4141       ++Dist;
4142     ++II;
4143   }
4144 
4145   if (Idx == -1) {
4146     Dist = 0;
4147     return nullptr;
4148   }
4149 
4150   UseIdx = Idx;
4151   return &*II;
4152 }
4153 
4154 /// Return the number of cycles to add to (or subtract from) the static
4155 /// itinerary based on the def opcode and alignment. The caller will ensure that
4156 /// adjusted latency is at least one cycle.
4157 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4158                             const MachineInstr &DefMI,
4159                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4160   int Adjust = 0;
4161   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4162     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4163     // variants are one cycle cheaper.
4164     switch (DefMCID.getOpcode()) {
4165     default: break;
4166     case ARM::LDRrs:
4167     case ARM::LDRBrs: {
4168       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4169       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4170       if (ShImm == 0 ||
4171           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4172         --Adjust;
4173       break;
4174     }
4175     case ARM::t2LDRs:
4176     case ARM::t2LDRBs:
4177     case ARM::t2LDRHs:
4178     case ARM::t2LDRSHs: {
4179       // Thumb2 mode: lsl only.
4180       unsigned ShAmt = DefMI.getOperand(3).getImm();
4181       if (ShAmt == 0 || ShAmt == 2)
4182         --Adjust;
4183       break;
4184     }
4185     }
4186   } else if (Subtarget.isSwift()) {
4187     // FIXME: Properly handle all of the latency adjustments for address
4188     // writeback.
4189     switch (DefMCID.getOpcode()) {
4190     default: break;
4191     case ARM::LDRrs:
4192     case ARM::LDRBrs: {
4193       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4194       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4195       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4196       if (!isSub &&
4197           (ShImm == 0 ||
4198            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4199             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4200         Adjust -= 2;
4201       else if (!isSub &&
4202                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4203         --Adjust;
4204       break;
4205     }
4206     case ARM::t2LDRs:
4207     case ARM::t2LDRBs:
4208     case ARM::t2LDRHs:
4209     case ARM::t2LDRSHs: {
4210       // Thumb2 mode: lsl only.
4211       unsigned ShAmt = DefMI.getOperand(3).getImm();
4212       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4213         Adjust -= 2;
4214       break;
4215     }
4216     }
4217   }
4218 
4219   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4220     switch (DefMCID.getOpcode()) {
4221     default: break;
4222     case ARM::VLD1q8:
4223     case ARM::VLD1q16:
4224     case ARM::VLD1q32:
4225     case ARM::VLD1q64:
4226     case ARM::VLD1q8wb_fixed:
4227     case ARM::VLD1q16wb_fixed:
4228     case ARM::VLD1q32wb_fixed:
4229     case ARM::VLD1q64wb_fixed:
4230     case ARM::VLD1q8wb_register:
4231     case ARM::VLD1q16wb_register:
4232     case ARM::VLD1q32wb_register:
4233     case ARM::VLD1q64wb_register:
4234     case ARM::VLD2d8:
4235     case ARM::VLD2d16:
4236     case ARM::VLD2d32:
4237     case ARM::VLD2q8:
4238     case ARM::VLD2q16:
4239     case ARM::VLD2q32:
4240     case ARM::VLD2d8wb_fixed:
4241     case ARM::VLD2d16wb_fixed:
4242     case ARM::VLD2d32wb_fixed:
4243     case ARM::VLD2q8wb_fixed:
4244     case ARM::VLD2q16wb_fixed:
4245     case ARM::VLD2q32wb_fixed:
4246     case ARM::VLD2d8wb_register:
4247     case ARM::VLD2d16wb_register:
4248     case ARM::VLD2d32wb_register:
4249     case ARM::VLD2q8wb_register:
4250     case ARM::VLD2q16wb_register:
4251     case ARM::VLD2q32wb_register:
4252     case ARM::VLD3d8:
4253     case ARM::VLD3d16:
4254     case ARM::VLD3d32:
4255     case ARM::VLD1d64T:
4256     case ARM::VLD3d8_UPD:
4257     case ARM::VLD3d16_UPD:
4258     case ARM::VLD3d32_UPD:
4259     case ARM::VLD1d64Twb_fixed:
4260     case ARM::VLD1d64Twb_register:
4261     case ARM::VLD3q8_UPD:
4262     case ARM::VLD3q16_UPD:
4263     case ARM::VLD3q32_UPD:
4264     case ARM::VLD4d8:
4265     case ARM::VLD4d16:
4266     case ARM::VLD4d32:
4267     case ARM::VLD1d64Q:
4268     case ARM::VLD4d8_UPD:
4269     case ARM::VLD4d16_UPD:
4270     case ARM::VLD4d32_UPD:
4271     case ARM::VLD1d64Qwb_fixed:
4272     case ARM::VLD1d64Qwb_register:
4273     case ARM::VLD4q8_UPD:
4274     case ARM::VLD4q16_UPD:
4275     case ARM::VLD4q32_UPD:
4276     case ARM::VLD1DUPq8:
4277     case ARM::VLD1DUPq16:
4278     case ARM::VLD1DUPq32:
4279     case ARM::VLD1DUPq8wb_fixed:
4280     case ARM::VLD1DUPq16wb_fixed:
4281     case ARM::VLD1DUPq32wb_fixed:
4282     case ARM::VLD1DUPq8wb_register:
4283     case ARM::VLD1DUPq16wb_register:
4284     case ARM::VLD1DUPq32wb_register:
4285     case ARM::VLD2DUPd8:
4286     case ARM::VLD2DUPd16:
4287     case ARM::VLD2DUPd32:
4288     case ARM::VLD2DUPd8wb_fixed:
4289     case ARM::VLD2DUPd16wb_fixed:
4290     case ARM::VLD2DUPd32wb_fixed:
4291     case ARM::VLD2DUPd8wb_register:
4292     case ARM::VLD2DUPd16wb_register:
4293     case ARM::VLD2DUPd32wb_register:
4294     case ARM::VLD4DUPd8:
4295     case ARM::VLD4DUPd16:
4296     case ARM::VLD4DUPd32:
4297     case ARM::VLD4DUPd8_UPD:
4298     case ARM::VLD4DUPd16_UPD:
4299     case ARM::VLD4DUPd32_UPD:
4300     case ARM::VLD1LNd8:
4301     case ARM::VLD1LNd16:
4302     case ARM::VLD1LNd32:
4303     case ARM::VLD1LNd8_UPD:
4304     case ARM::VLD1LNd16_UPD:
4305     case ARM::VLD1LNd32_UPD:
4306     case ARM::VLD2LNd8:
4307     case ARM::VLD2LNd16:
4308     case ARM::VLD2LNd32:
4309     case ARM::VLD2LNq16:
4310     case ARM::VLD2LNq32:
4311     case ARM::VLD2LNd8_UPD:
4312     case ARM::VLD2LNd16_UPD:
4313     case ARM::VLD2LNd32_UPD:
4314     case ARM::VLD2LNq16_UPD:
4315     case ARM::VLD2LNq32_UPD:
4316     case ARM::VLD4LNd8:
4317     case ARM::VLD4LNd16:
4318     case ARM::VLD4LNd32:
4319     case ARM::VLD4LNq16:
4320     case ARM::VLD4LNq32:
4321     case ARM::VLD4LNd8_UPD:
4322     case ARM::VLD4LNd16_UPD:
4323     case ARM::VLD4LNd32_UPD:
4324     case ARM::VLD4LNq16_UPD:
4325     case ARM::VLD4LNq32_UPD:
4326       // If the address is not 64-bit aligned, the latencies of these
4327       // instructions increases by one.
4328       ++Adjust;
4329       break;
4330     }
4331   }
4332   return Adjust;
4333 }
4334 
4335 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4336                                         const MachineInstr &DefMI,
4337                                         unsigned DefIdx,
4338                                         const MachineInstr &UseMI,
4339                                         unsigned UseIdx) const {
4340   // No operand latency. The caller may fall back to getInstrLatency.
4341   if (!ItinData || ItinData->isEmpty())
4342     return -1;
4343 
4344   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4345   Register Reg = DefMO.getReg();
4346 
4347   const MachineInstr *ResolvedDefMI = &DefMI;
4348   unsigned DefAdj = 0;
4349   if (DefMI.isBundle())
4350     ResolvedDefMI =
4351         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4352   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4353       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4354     return 1;
4355   }
4356 
4357   const MachineInstr *ResolvedUseMI = &UseMI;
4358   unsigned UseAdj = 0;
4359   if (UseMI.isBundle()) {
4360     ResolvedUseMI =
4361         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4362     if (!ResolvedUseMI)
4363       return -1;
4364   }
4365 
4366   return getOperandLatencyImpl(
4367       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4368       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4369 }
4370 
4371 int ARMBaseInstrInfo::getOperandLatencyImpl(
4372     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4373     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4374     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4375     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4376   if (Reg == ARM::CPSR) {
4377     if (DefMI.getOpcode() == ARM::FMSTAT) {
4378       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4379       return Subtarget.isLikeA9() ? 1 : 20;
4380     }
4381 
4382     // CPSR set and branch can be paired in the same cycle.
4383     if (UseMI.isBranch())
4384       return 0;
4385 
4386     // Otherwise it takes the instruction latency (generally one).
4387     unsigned Latency = getInstrLatency(ItinData, DefMI);
4388 
4389     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4390     // its uses. Instructions which are otherwise scheduled between them may
4391     // incur a code size penalty (not able to use the CPSR setting 16-bit
4392     // instructions).
4393     if (Latency > 0 && Subtarget.isThumb2()) {
4394       const MachineFunction *MF = DefMI.getParent()->getParent();
4395       // FIXME: Use Function::hasOptSize().
4396       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4397         --Latency;
4398     }
4399     return Latency;
4400   }
4401 
4402   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4403     return -1;
4404 
4405   unsigned DefAlign = DefMI.hasOneMemOperand()
4406                           ? (*DefMI.memoperands_begin())->getAlign().value()
4407                           : 0;
4408   unsigned UseAlign = UseMI.hasOneMemOperand()
4409                           ? (*UseMI.memoperands_begin())->getAlign().value()
4410                           : 0;
4411 
4412   // Get the itinerary's latency if possible, and handle variable_ops.
4413   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4414                                   UseIdx, UseAlign);
4415   // Unable to find operand latency. The caller may resort to getInstrLatency.
4416   if (Latency < 0)
4417     return Latency;
4418 
4419   // Adjust for IT block position.
4420   int Adj = DefAdj + UseAdj;
4421 
4422   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4423   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4424   if (Adj >= 0 || (int)Latency > -Adj) {
4425     return Latency + Adj;
4426   }
4427   // Return the itinerary latency, which may be zero but not less than zero.
4428   return Latency;
4429 }
4430 
4431 int
4432 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4433                                     SDNode *DefNode, unsigned DefIdx,
4434                                     SDNode *UseNode, unsigned UseIdx) const {
4435   if (!DefNode->isMachineOpcode())
4436     return 1;
4437 
4438   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4439 
4440   if (isZeroCost(DefMCID.Opcode))
4441     return 0;
4442 
4443   if (!ItinData || ItinData->isEmpty())
4444     return DefMCID.mayLoad() ? 3 : 1;
4445 
4446   if (!UseNode->isMachineOpcode()) {
4447     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4448     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4449     int Threshold = 1 + Adj;
4450     return Latency <= Threshold ? 1 : Latency - Adj;
4451   }
4452 
4453   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4454   auto *DefMN = cast<MachineSDNode>(DefNode);
4455   unsigned DefAlign = !DefMN->memoperands_empty()
4456                           ? (*DefMN->memoperands_begin())->getAlign().value()
4457                           : 0;
4458   auto *UseMN = cast<MachineSDNode>(UseNode);
4459   unsigned UseAlign = !UseMN->memoperands_empty()
4460                           ? (*UseMN->memoperands_begin())->getAlign().value()
4461                           : 0;
4462   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4463                                   UseMCID, UseIdx, UseAlign);
4464 
4465   if (Latency > 1 &&
4466       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4467        Subtarget.isCortexA7())) {
4468     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4469     // variants are one cycle cheaper.
4470     switch (DefMCID.getOpcode()) {
4471     default: break;
4472     case ARM::LDRrs:
4473     case ARM::LDRBrs: {
4474       unsigned ShOpVal =
4475         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4476       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4477       if (ShImm == 0 ||
4478           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4479         --Latency;
4480       break;
4481     }
4482     case ARM::t2LDRs:
4483     case ARM::t2LDRBs:
4484     case ARM::t2LDRHs:
4485     case ARM::t2LDRSHs: {
4486       // Thumb2 mode: lsl only.
4487       unsigned ShAmt =
4488         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4489       if (ShAmt == 0 || ShAmt == 2)
4490         --Latency;
4491       break;
4492     }
4493     }
4494   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4495     // FIXME: Properly handle all of the latency adjustments for address
4496     // writeback.
4497     switch (DefMCID.getOpcode()) {
4498     default: break;
4499     case ARM::LDRrs:
4500     case ARM::LDRBrs: {
4501       unsigned ShOpVal =
4502         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4503       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4504       if (ShImm == 0 ||
4505           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4506            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4507         Latency -= 2;
4508       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4509         --Latency;
4510       break;
4511     }
4512     case ARM::t2LDRs:
4513     case ARM::t2LDRBs:
4514     case ARM::t2LDRHs:
4515     case ARM::t2LDRSHs:
4516       // Thumb2 mode: lsl 0-3 only.
4517       Latency -= 2;
4518       break;
4519     }
4520   }
4521 
4522   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4523     switch (DefMCID.getOpcode()) {
4524     default: break;
4525     case ARM::VLD1q8:
4526     case ARM::VLD1q16:
4527     case ARM::VLD1q32:
4528     case ARM::VLD1q64:
4529     case ARM::VLD1q8wb_register:
4530     case ARM::VLD1q16wb_register:
4531     case ARM::VLD1q32wb_register:
4532     case ARM::VLD1q64wb_register:
4533     case ARM::VLD1q8wb_fixed:
4534     case ARM::VLD1q16wb_fixed:
4535     case ARM::VLD1q32wb_fixed:
4536     case ARM::VLD1q64wb_fixed:
4537     case ARM::VLD2d8:
4538     case ARM::VLD2d16:
4539     case ARM::VLD2d32:
4540     case ARM::VLD2q8Pseudo:
4541     case ARM::VLD2q16Pseudo:
4542     case ARM::VLD2q32Pseudo:
4543     case ARM::VLD2d8wb_fixed:
4544     case ARM::VLD2d16wb_fixed:
4545     case ARM::VLD2d32wb_fixed:
4546     case ARM::VLD2q8PseudoWB_fixed:
4547     case ARM::VLD2q16PseudoWB_fixed:
4548     case ARM::VLD2q32PseudoWB_fixed:
4549     case ARM::VLD2d8wb_register:
4550     case ARM::VLD2d16wb_register:
4551     case ARM::VLD2d32wb_register:
4552     case ARM::VLD2q8PseudoWB_register:
4553     case ARM::VLD2q16PseudoWB_register:
4554     case ARM::VLD2q32PseudoWB_register:
4555     case ARM::VLD3d8Pseudo:
4556     case ARM::VLD3d16Pseudo:
4557     case ARM::VLD3d32Pseudo:
4558     case ARM::VLD1d8TPseudo:
4559     case ARM::VLD1d16TPseudo:
4560     case ARM::VLD1d32TPseudo:
4561     case ARM::VLD1d64TPseudo:
4562     case ARM::VLD1d64TPseudoWB_fixed:
4563     case ARM::VLD1d64TPseudoWB_register:
4564     case ARM::VLD3d8Pseudo_UPD:
4565     case ARM::VLD3d16Pseudo_UPD:
4566     case ARM::VLD3d32Pseudo_UPD:
4567     case ARM::VLD3q8Pseudo_UPD:
4568     case ARM::VLD3q16Pseudo_UPD:
4569     case ARM::VLD3q32Pseudo_UPD:
4570     case ARM::VLD3q8oddPseudo:
4571     case ARM::VLD3q16oddPseudo:
4572     case ARM::VLD3q32oddPseudo:
4573     case ARM::VLD3q8oddPseudo_UPD:
4574     case ARM::VLD3q16oddPseudo_UPD:
4575     case ARM::VLD3q32oddPseudo_UPD:
4576     case ARM::VLD4d8Pseudo:
4577     case ARM::VLD4d16Pseudo:
4578     case ARM::VLD4d32Pseudo:
4579     case ARM::VLD1d8QPseudo:
4580     case ARM::VLD1d16QPseudo:
4581     case ARM::VLD1d32QPseudo:
4582     case ARM::VLD1d64QPseudo:
4583     case ARM::VLD1d64QPseudoWB_fixed:
4584     case ARM::VLD1d64QPseudoWB_register:
4585     case ARM::VLD1q8HighQPseudo:
4586     case ARM::VLD1q8LowQPseudo_UPD:
4587     case ARM::VLD1q8HighTPseudo:
4588     case ARM::VLD1q8LowTPseudo_UPD:
4589     case ARM::VLD1q16HighQPseudo:
4590     case ARM::VLD1q16LowQPseudo_UPD:
4591     case ARM::VLD1q16HighTPseudo:
4592     case ARM::VLD1q16LowTPseudo_UPD:
4593     case ARM::VLD1q32HighQPseudo:
4594     case ARM::VLD1q32LowQPseudo_UPD:
4595     case ARM::VLD1q32HighTPseudo:
4596     case ARM::VLD1q32LowTPseudo_UPD:
4597     case ARM::VLD1q64HighQPseudo:
4598     case ARM::VLD1q64LowQPseudo_UPD:
4599     case ARM::VLD1q64HighTPseudo:
4600     case ARM::VLD1q64LowTPseudo_UPD:
4601     case ARM::VLD4d8Pseudo_UPD:
4602     case ARM::VLD4d16Pseudo_UPD:
4603     case ARM::VLD4d32Pseudo_UPD:
4604     case ARM::VLD4q8Pseudo_UPD:
4605     case ARM::VLD4q16Pseudo_UPD:
4606     case ARM::VLD4q32Pseudo_UPD:
4607     case ARM::VLD4q8oddPseudo:
4608     case ARM::VLD4q16oddPseudo:
4609     case ARM::VLD4q32oddPseudo:
4610     case ARM::VLD4q8oddPseudo_UPD:
4611     case ARM::VLD4q16oddPseudo_UPD:
4612     case ARM::VLD4q32oddPseudo_UPD:
4613     case ARM::VLD1DUPq8:
4614     case ARM::VLD1DUPq16:
4615     case ARM::VLD1DUPq32:
4616     case ARM::VLD1DUPq8wb_fixed:
4617     case ARM::VLD1DUPq16wb_fixed:
4618     case ARM::VLD1DUPq32wb_fixed:
4619     case ARM::VLD1DUPq8wb_register:
4620     case ARM::VLD1DUPq16wb_register:
4621     case ARM::VLD1DUPq32wb_register:
4622     case ARM::VLD2DUPd8:
4623     case ARM::VLD2DUPd16:
4624     case ARM::VLD2DUPd32:
4625     case ARM::VLD2DUPd8wb_fixed:
4626     case ARM::VLD2DUPd16wb_fixed:
4627     case ARM::VLD2DUPd32wb_fixed:
4628     case ARM::VLD2DUPd8wb_register:
4629     case ARM::VLD2DUPd16wb_register:
4630     case ARM::VLD2DUPd32wb_register:
4631     case ARM::VLD2DUPq8EvenPseudo:
4632     case ARM::VLD2DUPq8OddPseudo:
4633     case ARM::VLD2DUPq16EvenPseudo:
4634     case ARM::VLD2DUPq16OddPseudo:
4635     case ARM::VLD2DUPq32EvenPseudo:
4636     case ARM::VLD2DUPq32OddPseudo:
4637     case ARM::VLD3DUPq8EvenPseudo:
4638     case ARM::VLD3DUPq8OddPseudo:
4639     case ARM::VLD3DUPq16EvenPseudo:
4640     case ARM::VLD3DUPq16OddPseudo:
4641     case ARM::VLD3DUPq32EvenPseudo:
4642     case ARM::VLD3DUPq32OddPseudo:
4643     case ARM::VLD4DUPd8Pseudo:
4644     case ARM::VLD4DUPd16Pseudo:
4645     case ARM::VLD4DUPd32Pseudo:
4646     case ARM::VLD4DUPd8Pseudo_UPD:
4647     case ARM::VLD4DUPd16Pseudo_UPD:
4648     case ARM::VLD4DUPd32Pseudo_UPD:
4649     case ARM::VLD4DUPq8EvenPseudo:
4650     case ARM::VLD4DUPq8OddPseudo:
4651     case ARM::VLD4DUPq16EvenPseudo:
4652     case ARM::VLD4DUPq16OddPseudo:
4653     case ARM::VLD4DUPq32EvenPseudo:
4654     case ARM::VLD4DUPq32OddPseudo:
4655     case ARM::VLD1LNq8Pseudo:
4656     case ARM::VLD1LNq16Pseudo:
4657     case ARM::VLD1LNq32Pseudo:
4658     case ARM::VLD1LNq8Pseudo_UPD:
4659     case ARM::VLD1LNq16Pseudo_UPD:
4660     case ARM::VLD1LNq32Pseudo_UPD:
4661     case ARM::VLD2LNd8Pseudo:
4662     case ARM::VLD2LNd16Pseudo:
4663     case ARM::VLD2LNd32Pseudo:
4664     case ARM::VLD2LNq16Pseudo:
4665     case ARM::VLD2LNq32Pseudo:
4666     case ARM::VLD2LNd8Pseudo_UPD:
4667     case ARM::VLD2LNd16Pseudo_UPD:
4668     case ARM::VLD2LNd32Pseudo_UPD:
4669     case ARM::VLD2LNq16Pseudo_UPD:
4670     case ARM::VLD2LNq32Pseudo_UPD:
4671     case ARM::VLD4LNd8Pseudo:
4672     case ARM::VLD4LNd16Pseudo:
4673     case ARM::VLD4LNd32Pseudo:
4674     case ARM::VLD4LNq16Pseudo:
4675     case ARM::VLD4LNq32Pseudo:
4676     case ARM::VLD4LNd8Pseudo_UPD:
4677     case ARM::VLD4LNd16Pseudo_UPD:
4678     case ARM::VLD4LNd32Pseudo_UPD:
4679     case ARM::VLD4LNq16Pseudo_UPD:
4680     case ARM::VLD4LNq32Pseudo_UPD:
4681       // If the address is not 64-bit aligned, the latencies of these
4682       // instructions increases by one.
4683       ++Latency;
4684       break;
4685     }
4686 
4687   return Latency;
4688 }
4689 
4690 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4691   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4692       MI.isImplicitDef())
4693     return 0;
4694 
4695   if (MI.isBundle())
4696     return 0;
4697 
4698   const MCInstrDesc &MCID = MI.getDesc();
4699 
4700   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4701                         !Subtarget.cheapPredicableCPSRDef())) {
4702     // When predicated, CPSR is an additional source operand for CPSR updating
4703     // instructions, this apparently increases their latencies.
4704     return 1;
4705   }
4706   return 0;
4707 }
4708 
4709 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4710                                            const MachineInstr &MI,
4711                                            unsigned *PredCost) const {
4712   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4713       MI.isImplicitDef())
4714     return 1;
4715 
4716   // An instruction scheduler typically runs on unbundled instructions, however
4717   // other passes may query the latency of a bundled instruction.
4718   if (MI.isBundle()) {
4719     unsigned Latency = 0;
4720     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4721     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4722     while (++I != E && I->isInsideBundle()) {
4723       if (I->getOpcode() != ARM::t2IT)
4724         Latency += getInstrLatency(ItinData, *I, PredCost);
4725     }
4726     return Latency;
4727   }
4728 
4729   const MCInstrDesc &MCID = MI.getDesc();
4730   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4731                                      !Subtarget.cheapPredicableCPSRDef()))) {
4732     // When predicated, CPSR is an additional source operand for CPSR updating
4733     // instructions, this apparently increases their latencies.
4734     *PredCost = 1;
4735   }
4736   // Be sure to call getStageLatency for an empty itinerary in case it has a
4737   // valid MinLatency property.
4738   if (!ItinData)
4739     return MI.mayLoad() ? 3 : 1;
4740 
4741   unsigned Class = MCID.getSchedClass();
4742 
4743   // For instructions with variable uops, use uops as latency.
4744   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4745     return getNumMicroOps(ItinData, MI);
4746 
4747   // For the common case, fall back on the itinerary's latency.
4748   unsigned Latency = ItinData->getStageLatency(Class);
4749 
4750   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4751   unsigned DefAlign =
4752       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4753   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4754   if (Adj >= 0 || (int)Latency > -Adj) {
4755     return Latency + Adj;
4756   }
4757   return Latency;
4758 }
4759 
4760 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4761                                       SDNode *Node) const {
4762   if (!Node->isMachineOpcode())
4763     return 1;
4764 
4765   if (!ItinData || ItinData->isEmpty())
4766     return 1;
4767 
4768   unsigned Opcode = Node->getMachineOpcode();
4769   switch (Opcode) {
4770   default:
4771     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4772   case ARM::VLDMQIA:
4773   case ARM::VSTMQIA:
4774     return 2;
4775   }
4776 }
4777 
4778 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4779                                              const MachineRegisterInfo *MRI,
4780                                              const MachineInstr &DefMI,
4781                                              unsigned DefIdx,
4782                                              const MachineInstr &UseMI,
4783                                              unsigned UseIdx) const {
4784   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4785   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4786   if (Subtarget.nonpipelinedVFP() &&
4787       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4788     return true;
4789 
4790   // Hoist VFP / NEON instructions with 4 or higher latency.
4791   unsigned Latency =
4792       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4793   if (Latency <= 3)
4794     return false;
4795   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4796          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4797 }
4798 
4799 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4800                                         const MachineInstr &DefMI,
4801                                         unsigned DefIdx) const {
4802   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4803   if (!ItinData || ItinData->isEmpty())
4804     return false;
4805 
4806   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4807   if (DDomain == ARMII::DomainGeneral) {
4808     unsigned DefClass = DefMI.getDesc().getSchedClass();
4809     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4810     return (DefCycle != -1 && DefCycle <= 2);
4811   }
4812   return false;
4813 }
4814 
4815 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4816                                          StringRef &ErrInfo) const {
4817   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4818     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4819     return false;
4820   }
4821   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4822     // Make sure we don't generate a lo-lo mov that isn't supported.
4823     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4824         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4825       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4826       return false;
4827     }
4828   }
4829   if (MI.getOpcode() == ARM::tPUSH ||
4830       MI.getOpcode() == ARM::tPOP ||
4831       MI.getOpcode() == ARM::tPOP_RET) {
4832     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4833       if (MI.getOperand(i).isImplicit() ||
4834           !MI.getOperand(i).isReg())
4835         continue;
4836       Register Reg = MI.getOperand(i).getReg();
4837       if (Reg < ARM::R0 || Reg > ARM::R7) {
4838         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4839             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4840           ErrInfo = "Unsupported register in Thumb1 push/pop";
4841           return false;
4842         }
4843       }
4844     }
4845   }
4846   return true;
4847 }
4848 
4849 // LoadStackGuard has so far only been implemented for MachO. Different code
4850 // sequence is needed for other targets.
4851 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4852                                                 unsigned LoadImmOpc,
4853                                                 unsigned LoadOpc) const {
4854   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4855          "ROPI/RWPI not currently supported with stack guard");
4856 
4857   MachineBasicBlock &MBB = *MI->getParent();
4858   DebugLoc DL = MI->getDebugLoc();
4859   Register Reg = MI->getOperand(0).getReg();
4860   const GlobalValue *GV =
4861       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4862   MachineInstrBuilder MIB;
4863 
4864   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4865       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4866 
4867   if (Subtarget.isGVIndirectSymbol(GV)) {
4868     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4869     MIB.addReg(Reg, RegState::Kill).addImm(0);
4870     auto Flags = MachineMemOperand::MOLoad |
4871                  MachineMemOperand::MODereferenceable |
4872                  MachineMemOperand::MOInvariant;
4873     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4874         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4875     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4876   }
4877 
4878   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4879   MIB.addReg(Reg, RegState::Kill)
4880       .addImm(0)
4881       .cloneMemRefs(*MI)
4882       .add(predOps(ARMCC::AL));
4883 }
4884 
4885 bool
4886 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4887                                      unsigned &AddSubOpc,
4888                                      bool &NegAcc, bool &HasLane) const {
4889   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4890   if (I == MLxEntryMap.end())
4891     return false;
4892 
4893   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4894   MulOpc = Entry.MulOpc;
4895   AddSubOpc = Entry.AddSubOpc;
4896   NegAcc = Entry.NegAcc;
4897   HasLane = Entry.HasLane;
4898   return true;
4899 }
4900 
4901 //===----------------------------------------------------------------------===//
4902 // Execution domains.
4903 //===----------------------------------------------------------------------===//
4904 //
4905 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4906 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4907 // but they can be changed to vorr equivalents that are executed by the NEON
4908 // pipeline.
4909 //
4910 // We use the following execution domain numbering:
4911 //
4912 enum ARMExeDomain {
4913   ExeGeneric = 0,
4914   ExeVFP = 1,
4915   ExeNEON = 2
4916 };
4917 
4918 //
4919 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4920 //
4921 std::pair<uint16_t, uint16_t>
4922 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4923   // If we don't have access to NEON instructions then we won't be able
4924   // to swizzle anything to the NEON domain. Check to make sure.
4925   if (Subtarget.hasNEON()) {
4926     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4927     // if they are not predicated.
4928     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4929       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4930 
4931     // CortexA9 is particularly picky about mixing the two and wants these
4932     // converted.
4933     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4934         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4935          MI.getOpcode() == ARM::VMOVS))
4936       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4937   }
4938   // No other instructions can be swizzled, so just determine their domain.
4939   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4940 
4941   if (Domain & ARMII::DomainNEON)
4942     return std::make_pair(ExeNEON, 0);
4943 
4944   // Certain instructions can go either way on Cortex-A8.
4945   // Treat them as NEON instructions.
4946   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4947     return std::make_pair(ExeNEON, 0);
4948 
4949   if (Domain & ARMII::DomainVFP)
4950     return std::make_pair(ExeVFP, 0);
4951 
4952   return std::make_pair(ExeGeneric, 0);
4953 }
4954 
4955 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4956                                             unsigned SReg, unsigned &Lane) {
4957   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4958   Lane = 0;
4959 
4960   if (DReg != ARM::NoRegister)
4961    return DReg;
4962 
4963   Lane = 1;
4964   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4965 
4966   assert(DReg && "S-register with no D super-register?");
4967   return DReg;
4968 }
4969 
4970 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4971 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4972 /// zero if no register needs to be defined as implicit-use.
4973 ///
4974 /// If the function cannot determine if an SPR should be marked implicit use or
4975 /// not, it returns false.
4976 ///
4977 /// This function handles cases where an instruction is being modified from taking
4978 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4979 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4980 /// lane of the DPR).
4981 ///
4982 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4983 /// (including the case where the DPR itself is defined), it should not.
4984 ///
4985 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4986                                        MachineInstr &MI, unsigned DReg,
4987                                        unsigned Lane, unsigned &ImplicitSReg) {
4988   // If the DPR is defined or used already, the other SPR lane will be chained
4989   // correctly, so there is nothing to be done.
4990   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4991     ImplicitSReg = 0;
4992     return true;
4993   }
4994 
4995   // Otherwise we need to go searching to see if the SPR is set explicitly.
4996   ImplicitSReg = TRI->getSubReg(DReg,
4997                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4998   MachineBasicBlock::LivenessQueryResult LQR =
4999       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5000 
5001   if (LQR == MachineBasicBlock::LQR_Live)
5002     return true;
5003   else if (LQR == MachineBasicBlock::LQR_Unknown)
5004     return false;
5005 
5006   // If the register is known not to be live, there is no need to add an
5007   // implicit-use.
5008   ImplicitSReg = 0;
5009   return true;
5010 }
5011 
5012 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5013                                           unsigned Domain) const {
5014   unsigned DstReg, SrcReg, DReg;
5015   unsigned Lane;
5016   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5017   const TargetRegisterInfo *TRI = &getRegisterInfo();
5018   switch (MI.getOpcode()) {
5019   default:
5020     llvm_unreachable("cannot handle opcode!");
5021     break;
5022   case ARM::VMOVD:
5023     if (Domain != ExeNEON)
5024       break;
5025 
5026     // Zap the predicate operands.
5027     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5028 
5029     // Make sure we've got NEON instructions.
5030     assert(Subtarget.hasNEON() && "VORRd requires NEON");
5031 
5032     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5033     DstReg = MI.getOperand(0).getReg();
5034     SrcReg = MI.getOperand(1).getReg();
5035 
5036     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5037       MI.RemoveOperand(i - 1);
5038 
5039     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5040     MI.setDesc(get(ARM::VORRd));
5041     MIB.addReg(DstReg, RegState::Define)
5042         .addReg(SrcReg)
5043         .addReg(SrcReg)
5044         .add(predOps(ARMCC::AL));
5045     break;
5046   case ARM::VMOVRS:
5047     if (Domain != ExeNEON)
5048       break;
5049     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5050 
5051     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5052     DstReg = MI.getOperand(0).getReg();
5053     SrcReg = MI.getOperand(1).getReg();
5054 
5055     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5056       MI.RemoveOperand(i - 1);
5057 
5058     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5059 
5060     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5061     // Note that DSrc has been widened and the other lane may be undef, which
5062     // contaminates the entire register.
5063     MI.setDesc(get(ARM::VGETLNi32));
5064     MIB.addReg(DstReg, RegState::Define)
5065         .addReg(DReg, RegState::Undef)
5066         .addImm(Lane)
5067         .add(predOps(ARMCC::AL));
5068 
5069     // The old source should be an implicit use, otherwise we might think it
5070     // was dead before here.
5071     MIB.addReg(SrcReg, RegState::Implicit);
5072     break;
5073   case ARM::VMOVSR: {
5074     if (Domain != ExeNEON)
5075       break;
5076     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5077 
5078     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5079     DstReg = MI.getOperand(0).getReg();
5080     SrcReg = MI.getOperand(1).getReg();
5081 
5082     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5083 
5084     unsigned ImplicitSReg;
5085     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5086       break;
5087 
5088     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5089       MI.RemoveOperand(i - 1);
5090 
5091     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5092     // Again DDst may be undefined at the beginning of this instruction.
5093     MI.setDesc(get(ARM::VSETLNi32));
5094     MIB.addReg(DReg, RegState::Define)
5095         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5096         .addReg(SrcReg)
5097         .addImm(Lane)
5098         .add(predOps(ARMCC::AL));
5099 
5100     // The narrower destination must be marked as set to keep previous chains
5101     // in place.
5102     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5103     if (ImplicitSReg != 0)
5104       MIB.addReg(ImplicitSReg, RegState::Implicit);
5105     break;
5106     }
5107     case ARM::VMOVS: {
5108       if (Domain != ExeNEON)
5109         break;
5110 
5111       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5112       DstReg = MI.getOperand(0).getReg();
5113       SrcReg = MI.getOperand(1).getReg();
5114 
5115       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5116       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5117       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5118 
5119       unsigned ImplicitSReg;
5120       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5121         break;
5122 
5123       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5124         MI.RemoveOperand(i - 1);
5125 
5126       if (DSrc == DDst) {
5127         // Destination can be:
5128         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5129         MI.setDesc(get(ARM::VDUPLN32d));
5130         MIB.addReg(DDst, RegState::Define)
5131             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5132             .addImm(SrcLane)
5133             .add(predOps(ARMCC::AL));
5134 
5135         // Neither the source or the destination are naturally represented any
5136         // more, so add them in manually.
5137         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5138         MIB.addReg(SrcReg, RegState::Implicit);
5139         if (ImplicitSReg != 0)
5140           MIB.addReg(ImplicitSReg, RegState::Implicit);
5141         break;
5142       }
5143 
5144       // In general there's no single instruction that can perform an S <-> S
5145       // move in NEON space, but a pair of VEXT instructions *can* do the
5146       // job. It turns out that the VEXTs needed will only use DSrc once, with
5147       // the position based purely on the combination of lane-0 and lane-1
5148       // involved. For example
5149       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5150       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5151       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5152       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5153       //
5154       // Pattern of the MachineInstrs is:
5155       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5156       MachineInstrBuilder NewMIB;
5157       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5158                        DDst);
5159 
5160       // On the first instruction, both DSrc and DDst may be undef if present.
5161       // Specifically when the original instruction didn't have them as an
5162       // <imp-use>.
5163       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5164       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5165       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5166 
5167       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5168       CurUndef = !MI.readsRegister(CurReg, TRI);
5169       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5170             .addImm(1)
5171             .add(predOps(ARMCC::AL));
5172 
5173       if (SrcLane == DstLane)
5174         NewMIB.addReg(SrcReg, RegState::Implicit);
5175 
5176       MI.setDesc(get(ARM::VEXTd32));
5177       MIB.addReg(DDst, RegState::Define);
5178 
5179       // On the second instruction, DDst has definitely been defined above, so
5180       // it is not undef. DSrc, if present, can be undef as above.
5181       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5182       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5183       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5184 
5185       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5186       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5187       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5188          .addImm(1)
5189          .add(predOps(ARMCC::AL));
5190 
5191       if (SrcLane != DstLane)
5192         MIB.addReg(SrcReg, RegState::Implicit);
5193 
5194       // As before, the original destination is no longer represented, add it
5195       // implicitly.
5196       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5197       if (ImplicitSReg != 0)
5198         MIB.addReg(ImplicitSReg, RegState::Implicit);
5199       break;
5200     }
5201   }
5202 }
5203 
5204 //===----------------------------------------------------------------------===//
5205 // Partial register updates
5206 //===----------------------------------------------------------------------===//
5207 //
5208 // Swift renames NEON registers with 64-bit granularity.  That means any
5209 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5210 // problem is mostly avoided by translating f32 operations to v2f32 operations
5211 // on D-registers, but f32 loads are still a problem.
5212 //
5213 // These instructions can load an f32 into a NEON register:
5214 //
5215 // VLDRS - Only writes S, partial D update.
5216 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5217 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5218 //
5219 // FCONSTD can be used as a dependency-breaking instruction.
5220 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5221     const MachineInstr &MI, unsigned OpNum,
5222     const TargetRegisterInfo *TRI) const {
5223   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5224   if (!PartialUpdateClearance)
5225     return 0;
5226 
5227   assert(TRI && "Need TRI instance");
5228 
5229   const MachineOperand &MO = MI.getOperand(OpNum);
5230   if (MO.readsReg())
5231     return 0;
5232   Register Reg = MO.getReg();
5233   int UseOp = -1;
5234 
5235   switch (MI.getOpcode()) {
5236   // Normal instructions writing only an S-register.
5237   case ARM::VLDRS:
5238   case ARM::FCONSTS:
5239   case ARM::VMOVSR:
5240   case ARM::VMOVv8i8:
5241   case ARM::VMOVv4i16:
5242   case ARM::VMOVv2i32:
5243   case ARM::VMOVv2f32:
5244   case ARM::VMOVv1i64:
5245     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5246     break;
5247 
5248     // Explicitly reads the dependency.
5249   case ARM::VLD1LNd32:
5250     UseOp = 3;
5251     break;
5252   default:
5253     return 0;
5254   }
5255 
5256   // If this instruction actually reads a value from Reg, there is no unwanted
5257   // dependency.
5258   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5259     return 0;
5260 
5261   // We must be able to clobber the whole D-reg.
5262   if (Register::isVirtualRegister(Reg)) {
5263     // Virtual register must be a def undef foo:ssub_0 operand.
5264     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5265       return 0;
5266   } else if (ARM::SPRRegClass.contains(Reg)) {
5267     // Physical register: MI must define the full D-reg.
5268     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5269                                              &ARM::DPRRegClass);
5270     if (!DReg || !MI.definesRegister(DReg, TRI))
5271       return 0;
5272   }
5273 
5274   // MI has an unwanted D-register dependency.
5275   // Avoid defs in the previous N instructrions.
5276   return PartialUpdateClearance;
5277 }
5278 
5279 // Break a partial register dependency after getPartialRegUpdateClearance
5280 // returned non-zero.
5281 void ARMBaseInstrInfo::breakPartialRegDependency(
5282     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5283   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5284   assert(TRI && "Need TRI instance");
5285 
5286   const MachineOperand &MO = MI.getOperand(OpNum);
5287   Register Reg = MO.getReg();
5288   assert(Register::isPhysicalRegister(Reg) &&
5289          "Can't break virtual register dependencies.");
5290   unsigned DReg = Reg;
5291 
5292   // If MI defines an S-reg, find the corresponding D super-register.
5293   if (ARM::SPRRegClass.contains(Reg)) {
5294     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5295     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5296   }
5297 
5298   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5299   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5300 
5301   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5302   // the full D-register by loading the same value to both lanes.  The
5303   // instruction is micro-coded with 2 uops, so don't do this until we can
5304   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5305   // too big regressions.
5306 
5307   // Insert the dependency-breaking FCONSTD before MI.
5308   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5309   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5310       .addImm(96)
5311       .add(predOps(ARMCC::AL));
5312   MI.addRegisterKilled(DReg, TRI, true);
5313 }
5314 
5315 bool ARMBaseInstrInfo::hasNOP() const {
5316   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5317 }
5318 
5319 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5320   if (MI->getNumOperands() < 4)
5321     return true;
5322   unsigned ShOpVal = MI->getOperand(3).getImm();
5323   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5324   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5325   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5326       ((ShImm == 1 || ShImm == 2) &&
5327        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5328     return true;
5329 
5330   return false;
5331 }
5332 
5333 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5334     const MachineInstr &MI, unsigned DefIdx,
5335     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5336   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5337   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5338 
5339   switch (MI.getOpcode()) {
5340   case ARM::VMOVDRR:
5341     // dX = VMOVDRR rY, rZ
5342     // is the same as:
5343     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5344     // Populate the InputRegs accordingly.
5345     // rY
5346     const MachineOperand *MOReg = &MI.getOperand(1);
5347     if (!MOReg->isUndef())
5348       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5349                                               MOReg->getSubReg(), ARM::ssub_0));
5350     // rZ
5351     MOReg = &MI.getOperand(2);
5352     if (!MOReg->isUndef())
5353       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5354                                               MOReg->getSubReg(), ARM::ssub_1));
5355     return true;
5356   }
5357   llvm_unreachable("Target dependent opcode missing");
5358 }
5359 
5360 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5361     const MachineInstr &MI, unsigned DefIdx,
5362     RegSubRegPairAndIdx &InputReg) const {
5363   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5364   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5365 
5366   switch (MI.getOpcode()) {
5367   case ARM::VMOVRRD:
5368     // rX, rY = VMOVRRD dZ
5369     // is the same as:
5370     // rX = EXTRACT_SUBREG dZ, ssub_0
5371     // rY = EXTRACT_SUBREG dZ, ssub_1
5372     const MachineOperand &MOReg = MI.getOperand(2);
5373     if (MOReg.isUndef())
5374       return false;
5375     InputReg.Reg = MOReg.getReg();
5376     InputReg.SubReg = MOReg.getSubReg();
5377     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5378     return true;
5379   }
5380   llvm_unreachable("Target dependent opcode missing");
5381 }
5382 
5383 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5384     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5385     RegSubRegPairAndIdx &InsertedReg) const {
5386   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5387   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5388 
5389   switch (MI.getOpcode()) {
5390   case ARM::VSETLNi32:
5391     // dX = VSETLNi32 dY, rZ, imm
5392     const MachineOperand &MOBaseReg = MI.getOperand(1);
5393     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5394     if (MOInsertedReg.isUndef())
5395       return false;
5396     const MachineOperand &MOIndex = MI.getOperand(3);
5397     BaseReg.Reg = MOBaseReg.getReg();
5398     BaseReg.SubReg = MOBaseReg.getSubReg();
5399 
5400     InsertedReg.Reg = MOInsertedReg.getReg();
5401     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5402     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5403     return true;
5404   }
5405   llvm_unreachable("Target dependent opcode missing");
5406 }
5407 
5408 std::pair<unsigned, unsigned>
5409 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5410   const unsigned Mask = ARMII::MO_OPTION_MASK;
5411   return std::make_pair(TF & Mask, TF & ~Mask);
5412 }
5413 
5414 ArrayRef<std::pair<unsigned, const char *>>
5415 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5416   using namespace ARMII;
5417 
5418   static const std::pair<unsigned, const char *> TargetFlags[] = {
5419       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5420   return makeArrayRef(TargetFlags);
5421 }
5422 
5423 ArrayRef<std::pair<unsigned, const char *>>
5424 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5425   using namespace ARMII;
5426 
5427   static const std::pair<unsigned, const char *> TargetFlags[] = {
5428       {MO_COFFSTUB, "arm-coffstub"},
5429       {MO_GOT, "arm-got"},
5430       {MO_SBREL, "arm-sbrel"},
5431       {MO_DLLIMPORT, "arm-dllimport"},
5432       {MO_SECREL, "arm-secrel"},
5433       {MO_NONLAZY, "arm-nonlazy"}};
5434   return makeArrayRef(TargetFlags);
5435 }
5436 
5437 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5438                                                       Register Reg) const {
5439   int Sign = 1;
5440   unsigned Opcode = MI.getOpcode();
5441   int64_t Offset = 0;
5442 
5443   // TODO: Handle cases where Reg is a super- or sub-register of the
5444   // destination register.
5445   const MachineOperand &Op0 = MI.getOperand(0);
5446   if (!Op0.isReg() || Reg != Op0.getReg())
5447     return None;
5448 
5449   // We describe SUBri or ADDri instructions.
5450   if (Opcode == ARM::SUBri)
5451     Sign = -1;
5452   else if (Opcode != ARM::ADDri)
5453     return None;
5454 
5455   // TODO: Third operand can be global address (usually some string). Since
5456   //       strings can be relocated we cannot calculate their offsets for
5457   //       now.
5458   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5459     return None;
5460 
5461   Offset = MI.getOperand(2).getImm() * Sign;
5462   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5463 }
5464 
5465 bool llvm::registerDefinedBetween(unsigned Reg,
5466                                   MachineBasicBlock::iterator From,
5467                                   MachineBasicBlock::iterator To,
5468                                   const TargetRegisterInfo *TRI) {
5469   for (auto I = From; I != To; ++I)
5470     if (I->modifiesRegister(Reg, TRI))
5471       return true;
5472   return false;
5473 }
5474 
5475 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5476                                          const TargetRegisterInfo *TRI) {
5477   // Search backwards to the instruction that defines CSPR. This may or not
5478   // be a CMP, we check that after this loop. If we find another instruction
5479   // that reads cpsr, we return nullptr.
5480   MachineBasicBlock::iterator CmpMI = Br;
5481   while (CmpMI != Br->getParent()->begin()) {
5482     --CmpMI;
5483     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5484       break;
5485     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5486       break;
5487   }
5488 
5489   // Check that this inst is a CMP r[0-7], #0 and that the register
5490   // is not redefined between the cmp and the br.
5491   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5492     return nullptr;
5493   Register Reg = CmpMI->getOperand(0).getReg();
5494   Register PredReg;
5495   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5496   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5497     return nullptr;
5498   if (!isARMLowRegister(Reg))
5499     return nullptr;
5500   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5501     return nullptr;
5502 
5503   return &*CmpMI;
5504 }
5505 
5506 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5507                                            const ARMSubtarget *Subtarget,
5508                                            bool ForCodesize) {
5509   if (Subtarget->isThumb()) {
5510     if (Val <= 255) // MOV
5511       return ForCodesize ? 2 : 1;
5512     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5513                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5514                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5515       return ForCodesize ? 4 : 1;
5516     if (Val <= 510) // MOV + ADDi8
5517       return ForCodesize ? 4 : 2;
5518     if (~Val <= 255) // MOV + MVN
5519       return ForCodesize ? 4 : 2;
5520     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5521       return ForCodesize ? 4 : 2;
5522   } else {
5523     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5524       return ForCodesize ? 4 : 1;
5525     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5526       return ForCodesize ? 4 : 1;
5527     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5528       return ForCodesize ? 4 : 1;
5529     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5530       return ForCodesize ? 8 : 2;
5531     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5532       return ForCodesize ? 8 : 2;
5533   }
5534   if (Subtarget->useMovt()) // MOVW + MOVT
5535     return ForCodesize ? 8 : 2;
5536   return ForCodesize ? 8 : 3; // Literal pool load
5537 }
5538 
5539 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5540                                                const ARMSubtarget *Subtarget,
5541                                                bool ForCodesize) {
5542   // Check with ForCodesize
5543   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5544   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5545   if (Cost1 < Cost2)
5546     return true;
5547   if (Cost1 > Cost2)
5548     return false;
5549 
5550   // If they are equal, try with !ForCodesize
5551   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5552          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5553 }
5554 
5555 /// Constants defining how certain sequences should be outlined.
5556 /// This encompasses how an outlined function should be called, and what kind of
5557 /// frame should be emitted for that outlined function.
5558 ///
5559 /// \p MachineOutlinerTailCall implies that the function is being created from
5560 /// a sequence of instructions ending in a return.
5561 ///
5562 /// That is,
5563 ///
5564 /// I1                                OUTLINED_FUNCTION:
5565 /// I2    --> B OUTLINED_FUNCTION     I1
5566 /// BX LR                             I2
5567 ///                                   BX LR
5568 ///
5569 /// +-------------------------+--------+-----+
5570 /// |                         | Thumb2 | ARM |
5571 /// +-------------------------+--------+-----+
5572 /// | Call overhead in Bytes  |      4 |   4 |
5573 /// | Frame overhead in Bytes |      0 |   0 |
5574 /// | Stack fixup required    |     No |  No |
5575 /// +-------------------------+--------+-----+
5576 ///
5577 /// \p MachineOutlinerThunk implies that the function is being created from
5578 /// a sequence of instructions ending in a call. The outlined function is
5579 /// called with a BL instruction, and the outlined function tail-calls the
5580 /// original call destination.
5581 ///
5582 /// That is,
5583 ///
5584 /// I1                                OUTLINED_FUNCTION:
5585 /// I2   --> BL OUTLINED_FUNCTION     I1
5586 /// BL f                              I2
5587 ///                                   B f
5588 ///
5589 /// +-------------------------+--------+-----+
5590 /// |                         | Thumb2 | ARM |
5591 /// +-------------------------+--------+-----+
5592 /// | Call overhead in Bytes  |      4 |   4 |
5593 /// | Frame overhead in Bytes |      0 |   0 |
5594 /// | Stack fixup required    |     No |  No |
5595 /// +-------------------------+--------+-----+
5596 ///
5597 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5598 /// a BL instruction, but doesn't require LR to be saved and restored. This
5599 /// happens when LR is known to be dead.
5600 ///
5601 /// That is,
5602 ///
5603 /// I1                                OUTLINED_FUNCTION:
5604 /// I2 --> BL OUTLINED_FUNCTION       I1
5605 /// I3                                I2
5606 ///                                   I3
5607 ///                                   BX LR
5608 ///
5609 /// +-------------------------+--------+-----+
5610 /// |                         | Thumb2 | ARM |
5611 /// +-------------------------+--------+-----+
5612 /// | Call overhead in Bytes  |      4 |   4 |
5613 /// | Frame overhead in Bytes |      4 |   4 |
5614 /// | Stack fixup required    |     No |  No |
5615 /// +-------------------------+--------+-----+
5616 ///
5617 /// \p MachineOutlinerRegSave implies that the function should be called with a
5618 /// save and restore of LR to an available register. This allows us to avoid
5619 /// stack fixups. Note that this outlining variant is compatible with the
5620 /// NoLRSave case.
5621 ///
5622 /// That is,
5623 ///
5624 /// I1     Save LR                    OUTLINED_FUNCTION:
5625 /// I2 --> BL OUTLINED_FUNCTION       I1
5626 /// I3     Restore LR                 I2
5627 ///                                   I3
5628 ///                                   BX LR
5629 ///
5630 /// +-------------------------+--------+-----+
5631 /// |                         | Thumb2 | ARM |
5632 /// +-------------------------+--------+-----+
5633 /// | Call overhead in Bytes  |      8 |  12 |
5634 /// | Frame overhead in Bytes |      2 |   4 |
5635 /// | Stack fixup required    |     No |  No |
5636 /// +-------------------------+--------+-----+
5637 ///
5638 /// \p MachineOutlinerDefault implies that the function should be called with
5639 /// a save and restore of LR to the stack.
5640 ///
5641 /// That is,
5642 ///
5643 /// I1     Save LR                    OUTLINED_FUNCTION:
5644 /// I2 --> BL OUTLINED_FUNCTION       I1
5645 /// I3     Restore LR                 I2
5646 ///                                   I3
5647 ///                                   BX LR
5648 ///
5649 /// +-------------------------+--------+-----+
5650 /// |                         | Thumb2 | ARM |
5651 /// +-------------------------+--------+-----+
5652 /// | Call overhead in Bytes  |      8 |  12 |
5653 /// | Frame overhead in Bytes |      2 |   4 |
5654 /// | Stack fixup required    |    Yes | Yes |
5655 /// +-------------------------+--------+-----+
5656 
5657 enum MachineOutlinerClass {
5658   MachineOutlinerTailCall,
5659   MachineOutlinerThunk,
5660   MachineOutlinerNoLRSave,
5661   MachineOutlinerRegSave,
5662   MachineOutlinerDefault
5663 };
5664 
5665 enum MachineOutlinerMBBFlags {
5666   LRUnavailableSomewhere = 0x2,
5667   HasCalls = 0x4,
5668   UnsafeRegsDead = 0x8
5669 };
5670 
5671 struct OutlinerCosts {
5672   const int CallTailCall;
5673   const int FrameTailCall;
5674   const int CallThunk;
5675   const int FrameThunk;
5676   const int CallNoLRSave;
5677   const int FrameNoLRSave;
5678   const int CallRegSave;
5679   const int FrameRegSave;
5680   const int CallDefault;
5681   const int FrameDefault;
5682   const int SaveRestoreLROnStack;
5683 
5684   OutlinerCosts(const ARMSubtarget &target)
5685       : CallTailCall(target.isThumb() ? 4 : 4),
5686         FrameTailCall(target.isThumb() ? 0 : 0),
5687         CallThunk(target.isThumb() ? 4 : 4),
5688         FrameThunk(target.isThumb() ? 0 : 0),
5689         CallNoLRSave(target.isThumb() ? 4 : 4),
5690         FrameNoLRSave(target.isThumb() ? 4 : 4),
5691         CallRegSave(target.isThumb() ? 8 : 12),
5692         FrameRegSave(target.isThumb() ? 2 : 4),
5693         CallDefault(target.isThumb() ? 8 : 12),
5694         FrameDefault(target.isThumb() ? 2 : 4),
5695         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5696 };
5697 
5698 unsigned
5699 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
5700   assert(C.LRUWasSet && "LRU wasn't set?");
5701   MachineFunction *MF = C.getMF();
5702   const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>(
5703       MF->getSubtarget().getRegisterInfo());
5704 
5705   BitVector regsReserved = ARI->getReservedRegs(*MF);
5706   // Check if there is an available register across the sequence that we can
5707   // use.
5708   for (unsigned Reg : ARM::rGPRRegClass) {
5709     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5710         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5711         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5712         C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
5713       return Reg;
5714   }
5715 
5716   // No suitable register. Return 0.
5717   return 0u;
5718 }
5719 
5720 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5721     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5722   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5723   unsigned SequenceSize =
5724       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5725                       [this](unsigned Sum, const MachineInstr &MI) {
5726                         return Sum + getInstSizeInBytes(MI);
5727                       });
5728 
5729   // Properties about candidate MBBs that hold for all of them.
5730   unsigned FlagsSetInAll = 0xF;
5731 
5732   // Compute liveness information for each candidate, and set FlagsSetInAll.
5733   const TargetRegisterInfo &TRI = getRegisterInfo();
5734   std::for_each(
5735       RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5736       [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; });
5737 
5738   // According to the ARM Procedure Call Standard, the following are
5739   // undefined on entry/exit from a function call:
5740   //
5741   // * Register R12(IP),
5742   // * Condition codes (and thus the CPSR register)
5743   //
5744   // Since we control the instructions which are part of the outlined regions
5745   // we don't need to be fully compliant with the AAPCS, but we have to
5746   // guarantee that if a veneer is inserted at link time the code is still
5747   // correct.  Because of this, we can't outline any sequence of instructions
5748   // where one of these registers is live into/across it. Thus, we need to
5749   // delete those candidates.
5750   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5751     // If the unsafe registers in this block are all dead, then we don't need
5752     // to compute liveness here.
5753     if (C.Flags & UnsafeRegsDead)
5754       return false;
5755     C.initLRU(TRI);
5756     LiveRegUnits LRU = C.LRU;
5757     return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR));
5758   };
5759 
5760   // Are there any candidates where those registers are live?
5761   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5762     // Erase every candidate that violates the restrictions above. (It could be
5763     // true that we have viable candidates, so it's not worth bailing out in
5764     // the case that, say, 1 out of 20 candidates violate the restructions.)
5765     RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(),
5766                                               RepeatedSequenceLocs.end(),
5767                                               CantGuaranteeValueAcrossCall),
5768                                RepeatedSequenceLocs.end());
5769 
5770     // If the sequence doesn't have enough candidates left, then we're done.
5771     if (RepeatedSequenceLocs.size() < 2)
5772       return outliner::OutlinedFunction();
5773   }
5774 
5775   // At this point, we have only "safe" candidates to outline. Figure out
5776   // frame + call instruction information.
5777 
5778   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5779 
5780   // Helper lambda which sets call information for every candidate.
5781   auto SetCandidateCallInfo =
5782       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5783         for (outliner::Candidate &C : RepeatedSequenceLocs)
5784           C.setCallInfo(CallID, NumBytesForCall);
5785       };
5786 
5787   OutlinerCosts Costs(Subtarget);
5788   unsigned FrameID = MachineOutlinerDefault;
5789   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5790 
5791   // If the last instruction in any candidate is a terminator, then we should
5792   // tail call all of the candidates.
5793   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5794     FrameID = MachineOutlinerTailCall;
5795     NumBytesToCreateFrame = Costs.FrameTailCall;
5796     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
5797   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
5798              LastInstrOpcode == ARM::tBL || LastInstrOpcode == ARM::tBLXr ||
5799              LastInstrOpcode == ARM::tBLXi) {
5800     FrameID = MachineOutlinerThunk;
5801     NumBytesToCreateFrame = Costs.FrameThunk;
5802     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
5803   } else {
5804     // We need to decide how to emit calls + frames. We can always emit the same
5805     // frame if we don't need to save to the stack. If we have to save to the
5806     // stack, then we need a different frame.
5807     unsigned NumBytesNoStackCalls = 0;
5808     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5809 
5810     for (outliner::Candidate &C : RepeatedSequenceLocs) {
5811       C.initLRU(TRI);
5812       // Is LR available? If so, we don't need a save.
5813       if (C.LRU.available(ARM::LR)) {
5814         FrameID = MachineOutlinerNoLRSave;
5815         NumBytesNoStackCalls += Costs.CallNoLRSave;
5816         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
5817         CandidatesWithoutStackFixups.push_back(C);
5818       }
5819 
5820       // Is an unused register available? If so, we won't modify the stack, so
5821       // we can outline with the same frame type as those that don't save LR.
5822       else if (findRegisterToSaveLRTo(C)) {
5823         FrameID = MachineOutlinerRegSave;
5824         NumBytesNoStackCalls += Costs.CallRegSave;
5825         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
5826         CandidatesWithoutStackFixups.push_back(C);
5827       }
5828 
5829       // Is SP used in the sequence at all? If not, we don't have to modify
5830       // the stack, so we are guaranteed to get the same frame.
5831       else if (C.UsedInSequence.available(ARM::SP)) {
5832         NumBytesNoStackCalls += Costs.CallDefault;
5833         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5834         SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5835         CandidatesWithoutStackFixups.push_back(C);
5836       } else
5837         return outliner::OutlinedFunction();
5838     }
5839 
5840     // Does every candidate's MBB contain a call?  If so, then we might have a
5841     // call in the range.
5842     if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
5843       // check if the range contains a call.  These require a save + restore of
5844       // the link register.
5845       if (std::any_of(FirstCand.front(), FirstCand.back(),
5846                       [](const MachineInstr &MI) { return MI.isCall(); }))
5847         NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5848 
5849       // Handle the last instruction separately.  If it is tail call, then the
5850       // last instruction is a call, we don't want to save + restore in this
5851       // case.  However, it could be possible that the last instruction is a
5852       // call without it being valid to tail call this sequence.  We should
5853       // consider this as well.
5854       else if (FrameID != MachineOutlinerThunk &&
5855                FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
5856         NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5857     }
5858     RepeatedSequenceLocs = CandidatesWithoutStackFixups;
5859   }
5860 
5861   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
5862                                     NumBytesToCreateFrame, FrameID);
5863 }
5864 
5865 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
5866     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
5867   const Function &F = MF.getFunction();
5868 
5869   // Can F be deduplicated by the linker? If it can, don't outline from it.
5870   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
5871     return false;
5872 
5873   // Don't outline from functions with section markings; the program could
5874   // expect that all the code is in the named section.
5875   // FIXME: Allow outlining from multiple functions with the same section
5876   // marking.
5877   if (F.hasSection())
5878     return false;
5879 
5880   // FIXME: Thumb1 outlining is not handled
5881   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
5882     return false;
5883 
5884   // It's safe to outline from MF.
5885   return true;
5886 }
5887 
5888 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
5889                                               unsigned &Flags) const {
5890   // Check if LR is available through all of the MBB. If it's not, then set
5891   // a flag.
5892   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
5893          "Suitable Machine Function for outlining must track liveness");
5894 
5895   LiveRegUnits LRU(getRegisterInfo());
5896 
5897   std::for_each(MBB.rbegin(), MBB.rend(),
5898                 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
5899 
5900   // Check if each of the unsafe registers are available...
5901   bool R12AvailableInBlock = LRU.available(ARM::R12);
5902   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
5903 
5904   // If all of these are dead (and not live out), we know we don't have to check
5905   // them later.
5906   if (R12AvailableInBlock && CPSRAvailableInBlock)
5907     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
5908 
5909   // Now, add the live outs to the set.
5910   LRU.addLiveOuts(MBB);
5911 
5912   // If any of these registers is available in the MBB, but also a live out of
5913   // the block, then we know outlining is unsafe.
5914   if (R12AvailableInBlock && !LRU.available(ARM::R12))
5915     return false;
5916   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
5917     return false;
5918 
5919   // Check if there's a call inside this MachineBasicBlock.  If there is, then
5920   // set a flag.
5921   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
5922     Flags |= MachineOutlinerMBBFlags::HasCalls;
5923 
5924   if (!LRU.available(ARM::LR))
5925     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
5926 
5927   return true;
5928 }
5929 
5930 outliner::InstrType
5931 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
5932                                    unsigned Flags) const {
5933   MachineInstr &MI = *MIT;
5934   const TargetRegisterInfo *TRI = &getRegisterInfo();
5935 
5936   // Be conservative with inline ASM
5937   if (MI.isInlineAsm())
5938     return outliner::InstrType::Illegal;
5939 
5940   // Don't allow debug values to impact outlining type.
5941   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
5942     return outliner::InstrType::Invisible;
5943 
5944   // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
5945   // so we can go ahead and skip over them.
5946   if (MI.isKill() || MI.isImplicitDef())
5947     return outliner::InstrType::Invisible;
5948 
5949   // PIC instructions contain labels, outlining them would break offset
5950   // computing.  unsigned Opc = MI.getOpcode();
5951   unsigned Opc = MI.getOpcode();
5952   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
5953       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
5954       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
5955       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
5956       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
5957       Opc == ARM::t2MOV_ga_pcrel)
5958     return outliner::InstrType::Illegal;
5959 
5960   // Be conservative with ARMv8.1 MVE instructions.
5961   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
5962       Opc == ARM::t2WhileLoopStart || Opc == ARM::t2LoopDec ||
5963       Opc == ARM::t2LoopEnd)
5964     return outliner::InstrType::Illegal;
5965 
5966   const MCInstrDesc &MCID = MI.getDesc();
5967   uint64_t MIFlags = MCID.TSFlags;
5968   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
5969     return outliner::InstrType::Illegal;
5970 
5971   // Is this a terminator for a basic block?
5972   if (MI.isTerminator()) {
5973     // Don't outline if the branch is not unconditional.
5974     if (isPredicated(MI))
5975       return outliner::InstrType::Illegal;
5976 
5977     // Is this the end of a function?
5978     if (MI.getParent()->succ_empty())
5979       return outliner::InstrType::Legal;
5980 
5981     // It's not, so don't outline it.
5982     return outliner::InstrType::Illegal;
5983   }
5984 
5985   // Make sure none of the operands are un-outlinable.
5986   for (const MachineOperand &MOP : MI.operands()) {
5987     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
5988         MOP.isTargetIndex())
5989       return outliner::InstrType::Illegal;
5990   }
5991 
5992   // Don't outline if link register or program counter value are used.
5993   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
5994     return outliner::InstrType::Illegal;
5995 
5996   if (MI.isCall()) {
5997     // Get the function associated with the call.  Look at each operand and find
5998     // the one that represents the calle and get its name.
5999     const Function *Callee = nullptr;
6000     for (const MachineOperand &MOP : MI.operands()) {
6001       if (MOP.isGlobal()) {
6002         Callee = dyn_cast<Function>(MOP.getGlobal());
6003         break;
6004       }
6005     }
6006 
6007     // Dont't outline calls to "mcount" like functions, in particular Linux
6008     // kernel function tracing relies on it.
6009     if (Callee &&
6010         (Callee->getName() == "\01__gnu_mcount_nc" ||
6011          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6012       return outliner::InstrType::Illegal;
6013 
6014     // If we don't know anything about the callee, assume it depends on the
6015     // stack layout of the caller. In that case, it's only legal to outline
6016     // as a tail-call. Explicitly list the call instructions we know about so
6017     // we don't get unexpected results with call pseudo-instructions.
6018     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6019     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6020         Opc == ARM::tBLXr || Opc == ARM::tBLXi)
6021       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6022 
6023     if (!Callee)
6024       return UnknownCallOutlineType;
6025 
6026     // We have a function we have information about.  Check if it's something we
6027     // can safely outline.
6028     MachineFunction *MF = MI.getParent()->getParent();
6029     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6030 
6031     // We don't know what's going on with the callee at all.  Don't touch it.
6032     if (!CalleeMF)
6033       return UnknownCallOutlineType;
6034 
6035     // Check if we know anything about the callee saves on the function. If we
6036     // don't, then don't touch it, since that implies that we haven't computed
6037     // anything about its stack frame yet.
6038     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6039     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6040         MFI.getNumObjects() > 0)
6041       return UnknownCallOutlineType;
6042 
6043     // At this point, we can say that CalleeMF ought to not pass anything on the
6044     // stack. Therefore, we can outline it.
6045     return outliner::InstrType::Legal;
6046   }
6047 
6048   // Since calls are handled, don't touch LR or PC
6049   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6050     return outliner::InstrType::Illegal;
6051 
6052   // Does this use the stack?
6053   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6054     // True if there is no chance that any outlined candidate from this range
6055     // could require stack fixups. That is, both
6056     // * LR is available in the range (No save/restore around call)
6057     // * The range doesn't include calls (No save/restore in outlined frame)
6058     // are true.
6059     // FIXME: This is very restrictive; the flags check the whole block,
6060     // not just the bit we will try to outline.
6061     bool MightNeedStackFixUp =
6062         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6063                   MachineOutlinerMBBFlags::HasCalls));
6064 
6065     if (!MightNeedStackFixUp)
6066       return outliner::InstrType::Legal;
6067 
6068     return outliner::InstrType::Illegal;
6069   }
6070 
6071   // Be conservative with IT blocks.
6072   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6073       MI.modifiesRegister(ARM::ITSTATE, TRI))
6074     return outliner::InstrType::Illegal;
6075 
6076   // Don't outline positions.
6077   if (MI.isPosition())
6078     return outliner::InstrType::Illegal;
6079 
6080   return outliner::InstrType::Legal;
6081 }
6082 
6083 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6084                                      MachineBasicBlock::iterator &It) const {
6085   unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6086   int Align = -Subtarget.getStackAlignment().value();
6087   BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6088     .addReg(ARM::LR, RegState::Kill)
6089     .addReg(ARM::SP)
6090     .addImm(Align)
6091     .add(predOps(ARMCC::AL));
6092 }
6093 
6094 void ARMBaseInstrInfo::restoreLRFromStack(
6095   MachineBasicBlock &MBB, MachineBasicBlock::iterator &It) const {
6096   unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6097   MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6098     .addReg(ARM::SP, RegState::Define)
6099     .addReg(ARM::SP);
6100   if (!Subtarget.isThumb())
6101     MIB.addReg(0);
6102   MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL));
6103 }
6104 
6105 void ARMBaseInstrInfo::buildOutlinedFrame(
6106     MachineBasicBlock &MBB, MachineFunction &MF,
6107     const outliner::OutlinedFunction &OF) const {
6108   // For thunk outlining, rewrite the last instruction from a call to a
6109   // tail-call.
6110   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6111     MachineInstr *Call = &*--MBB.instr_end();
6112     bool isThumb = Subtarget.isThumb();
6113     unsigned FuncOp = isThumb ? 2 : 0;
6114     unsigned Opc = Call->getOperand(FuncOp).isReg()
6115                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6116                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6117                                                              : ARM::tTAILJMPdND
6118                                  : ARM::TAILJMPd;
6119     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6120                                   .add(Call->getOperand(FuncOp));
6121     if (isThumb && !Call->getOperand(FuncOp).isReg())
6122       MIB.add(predOps(ARMCC::AL));
6123     Call->eraseFromParent();
6124   }
6125 
6126   // Is there a call in the outlined range?
6127   auto IsNonTailCall = [](MachineInstr &MI) {
6128     return MI.isCall() && !MI.isReturn();
6129   };
6130   if (std::any_of(MBB.instr_begin(), MBB.instr_end(), IsNonTailCall)) {
6131     MachineBasicBlock::iterator It = MBB.begin();
6132     MachineBasicBlock::iterator Et = MBB.end();
6133 
6134     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6135         OF.FrameConstructionID == MachineOutlinerThunk)
6136       Et = std::prev(MBB.end());
6137 
6138     // We have to save and restore LR, we need to add it to the liveins if it
6139     // is not already part of the set.  This is suffient since outlined
6140     // functions only have one block.
6141     if (!MBB.isLiveIn(ARM::LR))
6142       MBB.addLiveIn(ARM::LR);
6143 
6144     // Insert a save before the outlined region
6145     saveLROnStack(MBB, It);
6146 
6147     unsigned StackAlignment = Subtarget.getStackAlignment().value();
6148     const TargetSubtargetInfo &STI = MF.getSubtarget();
6149     const MCRegisterInfo *MRI = STI.getRegisterInfo();
6150     unsigned DwarfReg = MRI->getDwarfRegNum(ARM::LR, true);
6151     // Add a CFI saying the stack was moved down.
6152     int64_t StackPosEntry = MF.addFrameInst(
6153         MCCFIInstruction::cfiDefCfaOffset(nullptr, StackAlignment));
6154     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6155         .addCFIIndex(StackPosEntry)
6156         .setMIFlags(MachineInstr::FrameSetup);
6157 
6158     // Add a CFI saying that the LR that we want to find is now higher than
6159     // before.
6160     int64_t LRPosEntry = MF.addFrameInst(
6161         MCCFIInstruction::createOffset(nullptr, DwarfReg, StackAlignment));
6162     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6163         .addCFIIndex(LRPosEntry)
6164         .setMIFlags(MachineInstr::FrameSetup);
6165 
6166     // Insert a restore before the terminator for the function.  Restore LR.
6167     restoreLRFromStack(MBB, Et);
6168   }
6169 
6170   // If this is a tail call outlined function, then there's already a return.
6171   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6172       OF.FrameConstructionID == MachineOutlinerThunk)
6173     return;
6174 
6175   // Here we have to insert the return ourselves.  Get the correct opcode from
6176   // current feature set.
6177   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6178       .add(predOps(ARMCC::AL));
6179 }
6180 
6181 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6182     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6183     MachineFunction &MF, const outliner::Candidate &C) const {
6184   MachineInstrBuilder MIB;
6185   MachineBasicBlock::iterator CallPt;
6186   unsigned Opc;
6187   bool isThumb = Subtarget.isThumb();
6188 
6189   // Are we tail calling?
6190   if (C.CallConstructionID == MachineOutlinerTailCall) {
6191     // If yes, then we can just branch to the label.
6192     Opc = isThumb
6193               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6194               : ARM::TAILJMPd;
6195     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6196               .addGlobalAddress(M.getNamedValue(MF.getName()));
6197     if (isThumb)
6198       MIB.add(predOps(ARMCC::AL));
6199     It = MBB.insert(It, MIB);
6200     return It;
6201   }
6202 
6203   // Create the call instruction.
6204   Opc = isThumb ? ARM::tBL : ARM::BL;
6205   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6206   if (isThumb)
6207     CallMIB.add(predOps(ARMCC::AL));
6208   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6209 
6210   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6211       C.CallConstructionID == MachineOutlinerThunk) {
6212     // No, so just insert the call.
6213     It = MBB.insert(It, CallMIB);
6214     return It;
6215   }
6216 
6217   // Can we save to a register?
6218   if (C.CallConstructionID == MachineOutlinerRegSave) {
6219     unsigned Reg = findRegisterToSaveLRTo(C);
6220     assert(Reg != 0 && "No callee-saved register available?");
6221 
6222     // Save and restore LR from that register.
6223     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6224     CallPt = MBB.insert(It, CallMIB);
6225     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6226     It--;
6227     return CallPt;
6228   }
6229   // We have the default case. Save and restore from SP.
6230   saveLROnStack(MBB, It);
6231   CallPt = MBB.insert(It, CallMIB);
6232   restoreLRFromStack(MBB, It);
6233   It--;
6234   return CallPt;
6235 }
6236 
6237 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6238     MachineFunction &MF) const {
6239   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6240 }
6241 
6242 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
6243                                                          AAResults *AA) const {
6244   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6245   // the tail predication conversion. This means that the element count
6246   // register has to be live for longer, but that has to be better than
6247   // spill/restore and VPT predication.
6248   return isVCTP(&MI) && !isPredicated(MI);
6249 }
6250