1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMBaseRegisterInfo.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMFeatures.h"
18 #include "ARMHazardRecognizer.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMSubtarget.h"
21 #include "MCTargetDesc/ARMAddressingModes.h"
22 #include "MCTargetDesc/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSchedule.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/MC/MCAsmInfo.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCInstrItineraries.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <new>
64 #include <utility>
65 #include <vector>
66 
67 using namespace llvm;
68 
69 #define DEBUG_TYPE "arm-instrinfo"
70 
71 #define GET_INSTRINFO_CTOR_DTOR
72 #include "ARMGenInstrInfo.inc"
73 
74 static cl::opt<bool>
75 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
76                cl::desc("Enable ARM 2-addr to 3-addr conv"));
77 
78 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
79 struct ARM_MLxEntry {
80   uint16_t MLxOpc;     // MLA / MLS opcode
81   uint16_t MulOpc;     // Expanded multiplication opcode
82   uint16_t AddSubOpc;  // Expanded add / sub opcode
83   bool NegAcc;         // True if the acc is negated before the add / sub.
84   bool HasLane;        // True if instruction has an extra "lane" operand.
85 };
86 
87 static const ARM_MLxEntry ARM_MLxTable[] = {
88   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
89   // fp scalar ops
90   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
91   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
92   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
93   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
94   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
95   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
96   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
97   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
98 
99   // fp SIMD ops
100   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
101   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
102   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
103   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
104   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
105   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
106   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
107   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
108 };
109 
110 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
111   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
112     Subtarget(STI) {
113   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
114     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
115       llvm_unreachable("Duplicated entries?");
116     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
117     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
118   }
119 }
120 
121 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
122 // currently defaults to no prepass hazard recognizer.
123 ScheduleHazardRecognizer *
124 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
125                                                const ScheduleDAG *DAG) const {
126   if (usePreRAHazardRecognizer()) {
127     const InstrItineraryData *II =
128         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
129     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
130   }
131   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
132 }
133 
134 ScheduleHazardRecognizer *ARMBaseInstrInfo::
135 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
136                                    const ScheduleDAG *DAG) const {
137   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
138     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
139   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
140 }
141 
142 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
143     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
144   // FIXME: Thumb2 support.
145 
146   if (!EnableARM3Addr)
147     return nullptr;
148 
149   MachineFunction &MF = *MI.getParent()->getParent();
150   uint64_t TSFlags = MI.getDesc().TSFlags;
151   bool isPre = false;
152   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
153   default: return nullptr;
154   case ARMII::IndexModePre:
155     isPre = true;
156     break;
157   case ARMII::IndexModePost:
158     break;
159   }
160 
161   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
162   // operation.
163   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
164   if (MemOpc == 0)
165     return nullptr;
166 
167   MachineInstr *UpdateMI = nullptr;
168   MachineInstr *MemMI = nullptr;
169   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
170   const MCInstrDesc &MCID = MI.getDesc();
171   unsigned NumOps = MCID.getNumOperands();
172   bool isLoad = !MI.mayStore();
173   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
174   const MachineOperand &Base = MI.getOperand(2);
175   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
176   unsigned WBReg = WB.getReg();
177   unsigned BaseReg = Base.getReg();
178   unsigned OffReg = Offset.getReg();
179   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
180   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
181   switch (AddrMode) {
182   default: llvm_unreachable("Unknown indexed op!");
183   case ARMII::AddrMode2: {
184     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
185     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
186     if (OffReg == 0) {
187       if (ARM_AM::getSOImmVal(Amt) == -1)
188         // Can't encode it in a so_imm operand. This transformation will
189         // add more than 1 instruction. Abandon!
190         return nullptr;
191       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
192                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
193                      .addReg(BaseReg)
194                      .addImm(Amt)
195                      .add(predOps(Pred))
196                      .add(condCodeOp());
197     } else if (Amt != 0) {
198       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
199       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
200       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
201                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
202                      .addReg(BaseReg)
203                      .addReg(OffReg)
204                      .addReg(0)
205                      .addImm(SOOpc)
206                      .add(predOps(Pred))
207                      .add(condCodeOp());
208     } else
209       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
210                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
211                      .addReg(BaseReg)
212                      .addReg(OffReg)
213                      .add(predOps(Pred))
214                      .add(condCodeOp());
215     break;
216   }
217   case ARMII::AddrMode3 : {
218     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
219     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
220     if (OffReg == 0)
221       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
222       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
223                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
224                      .addReg(BaseReg)
225                      .addImm(Amt)
226                      .add(predOps(Pred))
227                      .add(condCodeOp());
228     else
229       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
230                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
231                      .addReg(BaseReg)
232                      .addReg(OffReg)
233                      .add(predOps(Pred))
234                      .add(condCodeOp());
235     break;
236   }
237   }
238 
239   std::vector<MachineInstr*> NewMIs;
240   if (isPre) {
241     if (isLoad)
242       MemMI =
243           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
244               .addReg(WBReg)
245               .addImm(0)
246               .addImm(Pred);
247     else
248       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
249                   .addReg(MI.getOperand(1).getReg())
250                   .addReg(WBReg)
251                   .addReg(0)
252                   .addImm(0)
253                   .addImm(Pred);
254     NewMIs.push_back(MemMI);
255     NewMIs.push_back(UpdateMI);
256   } else {
257     if (isLoad)
258       MemMI =
259           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
260               .addReg(BaseReg)
261               .addImm(0)
262               .addImm(Pred);
263     else
264       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
265                   .addReg(MI.getOperand(1).getReg())
266                   .addReg(BaseReg)
267                   .addReg(0)
268                   .addImm(0)
269                   .addImm(Pred);
270     if (WB.isDead())
271       UpdateMI->getOperand(0).setIsDead();
272     NewMIs.push_back(UpdateMI);
273     NewMIs.push_back(MemMI);
274   }
275 
276   // Transfer LiveVariables states, kill / dead info.
277   if (LV) {
278     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
279       MachineOperand &MO = MI.getOperand(i);
280       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
281         unsigned Reg = MO.getReg();
282 
283         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
284         if (MO.isDef()) {
285           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
286           if (MO.isDead())
287             LV->addVirtualRegisterDead(Reg, *NewMI);
288         }
289         if (MO.isUse() && MO.isKill()) {
290           for (unsigned j = 0; j < 2; ++j) {
291             // Look at the two new MI's in reverse order.
292             MachineInstr *NewMI = NewMIs[j];
293             if (!NewMI->readsRegister(Reg))
294               continue;
295             LV->addVirtualRegisterKilled(Reg, *NewMI);
296             if (VI.removeKill(MI))
297               VI.Kills.push_back(NewMI);
298             break;
299           }
300         }
301       }
302     }
303   }
304 
305   MachineBasicBlock::iterator MBBI = MI.getIterator();
306   MFI->insert(MBBI, NewMIs[1]);
307   MFI->insert(MBBI, NewMIs[0]);
308   return NewMIs[0];
309 }
310 
311 // Branch analysis.
312 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
313                                      MachineBasicBlock *&TBB,
314                                      MachineBasicBlock *&FBB,
315                                      SmallVectorImpl<MachineOperand> &Cond,
316                                      bool AllowModify) const {
317   TBB = nullptr;
318   FBB = nullptr;
319 
320   MachineBasicBlock::iterator I = MBB.end();
321   if (I == MBB.begin())
322     return false; // Empty blocks are easy.
323   --I;
324 
325   // Walk backwards from the end of the basic block until the branch is
326   // analyzed or we give up.
327   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
328     // Flag to be raised on unanalyzeable instructions. This is useful in cases
329     // where we want to clean up on the end of the basic block before we bail
330     // out.
331     bool CantAnalyze = false;
332 
333     // Skip over DEBUG values and predicated nonterminators.
334     while (I->isDebugInstr() || !I->isTerminator()) {
335       if (I == MBB.begin())
336         return false;
337       --I;
338     }
339 
340     if (isIndirectBranchOpcode(I->getOpcode()) ||
341         isJumpTableBranchOpcode(I->getOpcode())) {
342       // Indirect branches and jump tables can't be analyzed, but we still want
343       // to clean up any instructions at the tail of the basic block.
344       CantAnalyze = true;
345     } else if (isUncondBranchOpcode(I->getOpcode())) {
346       TBB = I->getOperand(0).getMBB();
347     } else if (isCondBranchOpcode(I->getOpcode())) {
348       // Bail out if we encounter multiple conditional branches.
349       if (!Cond.empty())
350         return true;
351 
352       assert(!FBB && "FBB should have been null.");
353       FBB = TBB;
354       TBB = I->getOperand(0).getMBB();
355       Cond.push_back(I->getOperand(1));
356       Cond.push_back(I->getOperand(2));
357     } else if (I->isReturn()) {
358       // Returns can't be analyzed, but we should run cleanup.
359       CantAnalyze = !isPredicated(*I);
360     } else {
361       // We encountered other unrecognized terminator. Bail out immediately.
362       return true;
363     }
364 
365     // Cleanup code - to be run for unpredicated unconditional branches and
366     //                returns.
367     if (!isPredicated(*I) &&
368           (isUncondBranchOpcode(I->getOpcode()) ||
369            isIndirectBranchOpcode(I->getOpcode()) ||
370            isJumpTableBranchOpcode(I->getOpcode()) ||
371            I->isReturn())) {
372       // Forget any previous condition branch information - it no longer applies.
373       Cond.clear();
374       FBB = nullptr;
375 
376       // If we can modify the function, delete everything below this
377       // unconditional branch.
378       if (AllowModify) {
379         MachineBasicBlock::iterator DI = std::next(I);
380         while (DI != MBB.end()) {
381           MachineInstr &InstToDelete = *DI;
382           ++DI;
383           InstToDelete.eraseFromParent();
384         }
385       }
386     }
387 
388     if (CantAnalyze)
389       return true;
390 
391     if (I == MBB.begin())
392       return false;
393 
394     --I;
395   }
396 
397   // We made it past the terminators without bailing out - we must have
398   // analyzed this branch successfully.
399   return false;
400 }
401 
402 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
403                                         int *BytesRemoved) const {
404   assert(!BytesRemoved && "code size not handled");
405 
406   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
407   if (I == MBB.end())
408     return 0;
409 
410   if (!isUncondBranchOpcode(I->getOpcode()) &&
411       !isCondBranchOpcode(I->getOpcode()))
412     return 0;
413 
414   // Remove the branch.
415   I->eraseFromParent();
416 
417   I = MBB.end();
418 
419   if (I == MBB.begin()) return 1;
420   --I;
421   if (!isCondBranchOpcode(I->getOpcode()))
422     return 1;
423 
424   // Remove the branch.
425   I->eraseFromParent();
426   return 2;
427 }
428 
429 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
430                                         MachineBasicBlock *TBB,
431                                         MachineBasicBlock *FBB,
432                                         ArrayRef<MachineOperand> Cond,
433                                         const DebugLoc &DL,
434                                         int *BytesAdded) const {
435   assert(!BytesAdded && "code size not handled");
436   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
437   int BOpc   = !AFI->isThumbFunction()
438     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
439   int BccOpc = !AFI->isThumbFunction()
440     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
441   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
442 
443   // Shouldn't be a fall through.
444   assert(TBB && "insertBranch must not be told to insert a fallthrough");
445   assert((Cond.size() == 2 || Cond.size() == 0) &&
446          "ARM branch conditions have two components!");
447 
448   // For conditional branches, we use addOperand to preserve CPSR flags.
449 
450   if (!FBB) {
451     if (Cond.empty()) { // Unconditional branch?
452       if (isThumb)
453         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
454       else
455         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
456     } else
457       BuildMI(&MBB, DL, get(BccOpc))
458           .addMBB(TBB)
459           .addImm(Cond[0].getImm())
460           .add(Cond[1]);
461     return 1;
462   }
463 
464   // Two-way conditional branch.
465   BuildMI(&MBB, DL, get(BccOpc))
466       .addMBB(TBB)
467       .addImm(Cond[0].getImm())
468       .add(Cond[1]);
469   if (isThumb)
470     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
471   else
472     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
473   return 2;
474 }
475 
476 bool ARMBaseInstrInfo::
477 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
478   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
479   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
480   return false;
481 }
482 
483 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
484   if (MI.isBundle()) {
485     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
486     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
487     while (++I != E && I->isInsideBundle()) {
488       int PIdx = I->findFirstPredOperandIdx();
489       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
490         return true;
491     }
492     return false;
493   }
494 
495   int PIdx = MI.findFirstPredOperandIdx();
496   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
497 }
498 
499 bool ARMBaseInstrInfo::PredicateInstruction(
500     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
501   unsigned Opc = MI.getOpcode();
502   if (isUncondBranchOpcode(Opc)) {
503     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
504     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
505       .addImm(Pred[0].getImm())
506       .addReg(Pred[1].getReg());
507     return true;
508   }
509 
510   int PIdx = MI.findFirstPredOperandIdx();
511   if (PIdx != -1) {
512     MachineOperand &PMO = MI.getOperand(PIdx);
513     PMO.setImm(Pred[0].getImm());
514     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
515     return true;
516   }
517   return false;
518 }
519 
520 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
521                                          ArrayRef<MachineOperand> Pred2) const {
522   if (Pred1.size() > 2 || Pred2.size() > 2)
523     return false;
524 
525   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
526   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
527   if (CC1 == CC2)
528     return true;
529 
530   switch (CC1) {
531   default:
532     return false;
533   case ARMCC::AL:
534     return true;
535   case ARMCC::HS:
536     return CC2 == ARMCC::HI;
537   case ARMCC::LS:
538     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
539   case ARMCC::GE:
540     return CC2 == ARMCC::GT;
541   case ARMCC::LE:
542     return CC2 == ARMCC::LT;
543   }
544 }
545 
546 bool ARMBaseInstrInfo::DefinesPredicate(
547     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
548   bool Found = false;
549   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
550     const MachineOperand &MO = MI.getOperand(i);
551     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
552         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
553       Pred.push_back(MO);
554       Found = true;
555     }
556   }
557 
558   return Found;
559 }
560 
561 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
562   for (const auto &MO : MI.operands())
563     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
564       return true;
565   return false;
566 }
567 
568 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
569                                         unsigned Op) const {
570   const MachineOperand &Offset = MI.getOperand(Op + 1);
571   return Offset.getReg() != 0;
572 }
573 
574 // Load with negative register offset requires additional 1cyc and +I unit
575 // for Cortex A57
576 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
577                                              unsigned Op) const {
578   const MachineOperand &Offset = MI.getOperand(Op + 1);
579   const MachineOperand &Opc = MI.getOperand(Op + 2);
580   assert(Opc.isImm());
581   assert(Offset.isReg());
582   int64_t OpcImm = Opc.getImm();
583 
584   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
585   return (isSub && Offset.getReg() != 0);
586 }
587 
588 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
589                                        unsigned Op) const {
590   const MachineOperand &Opc = MI.getOperand(Op + 2);
591   unsigned OffImm = Opc.getImm();
592   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
593 }
594 
595 // Load, scaled register offset, not plus LSL2
596 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
597                                                   unsigned Op) const {
598   const MachineOperand &Opc = MI.getOperand(Op + 2);
599   unsigned OffImm = Opc.getImm();
600 
601   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
602   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
603   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
604   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
605   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
606   return !SimpleScaled;
607 }
608 
609 // Minus reg for ldstso addr mode
610 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
611                                         unsigned Op) const {
612   unsigned OffImm = MI.getOperand(Op + 2).getImm();
613   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
614 }
615 
616 // Load, scaled register offset
617 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
618                                       unsigned Op) const {
619   unsigned OffImm = MI.getOperand(Op + 2).getImm();
620   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
621 }
622 
623 static bool isEligibleForITBlock(const MachineInstr *MI) {
624   switch (MI->getOpcode()) {
625   default: return true;
626   case ARM::tADC:   // ADC (register) T1
627   case ARM::tADDi3: // ADD (immediate) T1
628   case ARM::tADDi8: // ADD (immediate) T2
629   case ARM::tADDrr: // ADD (register) T1
630   case ARM::tAND:   // AND (register) T1
631   case ARM::tASRri: // ASR (immediate) T1
632   case ARM::tASRrr: // ASR (register) T1
633   case ARM::tBIC:   // BIC (register) T1
634   case ARM::tEOR:   // EOR (register) T1
635   case ARM::tLSLri: // LSL (immediate) T1
636   case ARM::tLSLrr: // LSL (register) T1
637   case ARM::tLSRri: // LSR (immediate) T1
638   case ARM::tLSRrr: // LSR (register) T1
639   case ARM::tMUL:   // MUL T1
640   case ARM::tMVN:   // MVN (register) T1
641   case ARM::tORR:   // ORR (register) T1
642   case ARM::tROR:   // ROR (register) T1
643   case ARM::tRSB:   // RSB (immediate) T1
644   case ARM::tSBC:   // SBC (register) T1
645   case ARM::tSUBi3: // SUB (immediate) T1
646   case ARM::tSUBi8: // SUB (immediate) T2
647   case ARM::tSUBrr: // SUB (register) T1
648     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
649   }
650 }
651 
652 /// isPredicable - Return true if the specified instruction can be predicated.
653 /// By default, this returns true for every instruction with a
654 /// PredicateOperand.
655 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
656   if (!MI.isPredicable())
657     return false;
658 
659   if (MI.isBundle())
660     return false;
661 
662   if (!isEligibleForITBlock(&MI))
663     return false;
664 
665   const ARMFunctionInfo *AFI =
666       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
667 
668   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
669   // In their ARM encoding, they can't be encoded in a conditional form.
670   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
671     return false;
672 
673   if (AFI->isThumb2Function()) {
674     if (getSubtarget().restrictIT())
675       return isV8EligibleForIT(&MI);
676   }
677 
678   return true;
679 }
680 
681 namespace llvm {
682 
683 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
684   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
685     const MachineOperand &MO = MI->getOperand(i);
686     if (!MO.isReg() || MO.isUndef() || MO.isUse())
687       continue;
688     if (MO.getReg() != ARM::CPSR)
689       continue;
690     if (!MO.isDead())
691       return false;
692   }
693   // all definitions of CPSR are dead
694   return true;
695 }
696 
697 } // end namespace llvm
698 
699 /// GetInstSize - Return the size of the specified MachineInstr.
700 ///
701 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
702   const MachineBasicBlock &MBB = *MI.getParent();
703   const MachineFunction *MF = MBB.getParent();
704   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
705 
706   const MCInstrDesc &MCID = MI.getDesc();
707   if (MCID.getSize())
708     return MCID.getSize();
709 
710   // If this machine instr is an inline asm, measure it.
711   if (MI.getOpcode() == ARM::INLINEASM)
712     return getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
713   unsigned Opc = MI.getOpcode();
714   switch (Opc) {
715   default:
716     // pseudo-instruction sizes are zero.
717     return 0;
718   case TargetOpcode::BUNDLE:
719     return getInstBundleLength(MI);
720   case ARM::MOVi16_ga_pcrel:
721   case ARM::MOVTi16_ga_pcrel:
722   case ARM::t2MOVi16_ga_pcrel:
723   case ARM::t2MOVTi16_ga_pcrel:
724     return 4;
725   case ARM::MOVi32imm:
726   case ARM::t2MOVi32imm:
727     return 8;
728   case ARM::CONSTPOOL_ENTRY:
729   case ARM::JUMPTABLE_INSTS:
730   case ARM::JUMPTABLE_ADDRS:
731   case ARM::JUMPTABLE_TBB:
732   case ARM::JUMPTABLE_TBH:
733     // If this machine instr is a constant pool entry, its size is recorded as
734     // operand #2.
735     return MI.getOperand(2).getImm();
736   case ARM::Int_eh_sjlj_longjmp:
737     return 16;
738   case ARM::tInt_eh_sjlj_longjmp:
739     return 10;
740   case ARM::tInt_WIN_eh_sjlj_longjmp:
741     return 12;
742   case ARM::Int_eh_sjlj_setjmp:
743   case ARM::Int_eh_sjlj_setjmp_nofp:
744     return 20;
745   case ARM::tInt_eh_sjlj_setjmp:
746   case ARM::t2Int_eh_sjlj_setjmp:
747   case ARM::t2Int_eh_sjlj_setjmp_nofp:
748     return 12;
749   case ARM::SPACE:
750     return MI.getOperand(1).getImm();
751   }
752 }
753 
754 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
755   unsigned Size = 0;
756   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
757   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
758   while (++I != E && I->isInsideBundle()) {
759     assert(!I->isBundle() && "No nested bundle!");
760     Size += getInstSizeInBytes(*I);
761   }
762   return Size;
763 }
764 
765 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
766                                     MachineBasicBlock::iterator I,
767                                     unsigned DestReg, bool KillSrc,
768                                     const ARMSubtarget &Subtarget) const {
769   unsigned Opc = Subtarget.isThumb()
770                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
771                      : ARM::MRS;
772 
773   MachineInstrBuilder MIB =
774       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
775 
776   // There is only 1 A/R class MRS instruction, and it always refers to
777   // APSR. However, there are lots of other possibilities on M-class cores.
778   if (Subtarget.isMClass())
779     MIB.addImm(0x800);
780 
781   MIB.add(predOps(ARMCC::AL))
782      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
783 }
784 
785 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
786                                   MachineBasicBlock::iterator I,
787                                   unsigned SrcReg, bool KillSrc,
788                                   const ARMSubtarget &Subtarget) const {
789   unsigned Opc = Subtarget.isThumb()
790                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
791                      : ARM::MSR;
792 
793   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
794 
795   if (Subtarget.isMClass())
796     MIB.addImm(0x800);
797   else
798     MIB.addImm(8);
799 
800   MIB.addReg(SrcReg, getKillRegState(KillSrc))
801      .add(predOps(ARMCC::AL))
802      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
803 }
804 
805 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
806                                    MachineBasicBlock::iterator I,
807                                    const DebugLoc &DL, unsigned DestReg,
808                                    unsigned SrcReg, bool KillSrc) const {
809   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
810   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
811 
812   if (GPRDest && GPRSrc) {
813     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
814         .addReg(SrcReg, getKillRegState(KillSrc))
815         .add(predOps(ARMCC::AL))
816         .add(condCodeOp());
817     return;
818   }
819 
820   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
821   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
822 
823   unsigned Opc = 0;
824   if (SPRDest && SPRSrc)
825     Opc = ARM::VMOVS;
826   else if (GPRDest && SPRSrc)
827     Opc = ARM::VMOVRS;
828   else if (SPRDest && GPRSrc)
829     Opc = ARM::VMOVSR;
830   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
831     Opc = ARM::VMOVD;
832   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
833     Opc = ARM::VORRq;
834 
835   if (Opc) {
836     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
837     MIB.addReg(SrcReg, getKillRegState(KillSrc));
838     if (Opc == ARM::VORRq)
839       MIB.addReg(SrcReg, getKillRegState(KillSrc));
840     MIB.add(predOps(ARMCC::AL));
841     return;
842   }
843 
844   // Handle register classes that require multiple instructions.
845   unsigned BeginIdx = 0;
846   unsigned SubRegs = 0;
847   int Spacing = 1;
848 
849   // Use VORRq when possible.
850   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
851     Opc = ARM::VORRq;
852     BeginIdx = ARM::qsub_0;
853     SubRegs = 2;
854   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
855     Opc = ARM::VORRq;
856     BeginIdx = ARM::qsub_0;
857     SubRegs = 4;
858   // Fall back to VMOVD.
859   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
860     Opc = ARM::VMOVD;
861     BeginIdx = ARM::dsub_0;
862     SubRegs = 2;
863   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
864     Opc = ARM::VMOVD;
865     BeginIdx = ARM::dsub_0;
866     SubRegs = 3;
867   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
868     Opc = ARM::VMOVD;
869     BeginIdx = ARM::dsub_0;
870     SubRegs = 4;
871   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
872     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
873     BeginIdx = ARM::gsub_0;
874     SubRegs = 2;
875   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
876     Opc = ARM::VMOVD;
877     BeginIdx = ARM::dsub_0;
878     SubRegs = 2;
879     Spacing = 2;
880   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
881     Opc = ARM::VMOVD;
882     BeginIdx = ARM::dsub_0;
883     SubRegs = 3;
884     Spacing = 2;
885   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
886     Opc = ARM::VMOVD;
887     BeginIdx = ARM::dsub_0;
888     SubRegs = 4;
889     Spacing = 2;
890   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
891     Opc = ARM::VMOVS;
892     BeginIdx = ARM::ssub_0;
893     SubRegs = 2;
894   } else if (SrcReg == ARM::CPSR) {
895     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
896     return;
897   } else if (DestReg == ARM::CPSR) {
898     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
899     return;
900   }
901 
902   assert(Opc && "Impossible reg-to-reg copy");
903 
904   const TargetRegisterInfo *TRI = &getRegisterInfo();
905   MachineInstrBuilder Mov;
906 
907   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
908   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
909     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
910     Spacing = -Spacing;
911   }
912 #ifndef NDEBUG
913   SmallSet<unsigned, 4> DstRegs;
914 #endif
915   for (unsigned i = 0; i != SubRegs; ++i) {
916     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
917     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
918     assert(Dst && Src && "Bad sub-register");
919 #ifndef NDEBUG
920     assert(!DstRegs.count(Src) && "destructive vector copy");
921     DstRegs.insert(Dst);
922 #endif
923     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
924     // VORR takes two source operands.
925     if (Opc == ARM::VORRq)
926       Mov.addReg(Src);
927     Mov = Mov.add(predOps(ARMCC::AL));
928     // MOVr can set CC.
929     if (Opc == ARM::MOVr)
930       Mov = Mov.add(condCodeOp());
931   }
932   // Add implicit super-register defs and kills to the last instruction.
933   Mov->addRegisterDefined(DestReg, TRI);
934   if (KillSrc)
935     Mov->addRegisterKilled(SrcReg, TRI);
936 }
937 
938 const MachineInstrBuilder &
939 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
940                           unsigned SubIdx, unsigned State,
941                           const TargetRegisterInfo *TRI) const {
942   if (!SubIdx)
943     return MIB.addReg(Reg, State);
944 
945   if (TargetRegisterInfo::isPhysicalRegister(Reg))
946     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
947   return MIB.addReg(Reg, State, SubIdx);
948 }
949 
950 void ARMBaseInstrInfo::
951 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
952                     unsigned SrcReg, bool isKill, int FI,
953                     const TargetRegisterClass *RC,
954                     const TargetRegisterInfo *TRI) const {
955   DebugLoc DL;
956   if (I != MBB.end()) DL = I->getDebugLoc();
957   MachineFunction &MF = *MBB.getParent();
958   MachineFrameInfo &MFI = MF.getFrameInfo();
959   unsigned Align = MFI.getObjectAlignment(FI);
960 
961   MachineMemOperand *MMO = MF.getMachineMemOperand(
962       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
963       MFI.getObjectSize(FI), Align);
964 
965   switch (TRI->getSpillSize(*RC)) {
966     case 2:
967       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
968         BuildMI(MBB, I, DL, get(ARM::VSTRH))
969             .addReg(SrcReg, getKillRegState(isKill))
970             .addFrameIndex(FI)
971             .addImm(0)
972             .addMemOperand(MMO)
973             .add(predOps(ARMCC::AL));
974       } else
975         llvm_unreachable("Unknown reg class!");
976       break;
977     case 4:
978       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
979         BuildMI(MBB, I, DL, get(ARM::STRi12))
980             .addReg(SrcReg, getKillRegState(isKill))
981             .addFrameIndex(FI)
982             .addImm(0)
983             .addMemOperand(MMO)
984             .add(predOps(ARMCC::AL));
985       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
986         BuildMI(MBB, I, DL, get(ARM::VSTRS))
987             .addReg(SrcReg, getKillRegState(isKill))
988             .addFrameIndex(FI)
989             .addImm(0)
990             .addMemOperand(MMO)
991             .add(predOps(ARMCC::AL));
992       } else
993         llvm_unreachable("Unknown reg class!");
994       break;
995     case 8:
996       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
997         BuildMI(MBB, I, DL, get(ARM::VSTRD))
998             .addReg(SrcReg, getKillRegState(isKill))
999             .addFrameIndex(FI)
1000             .addImm(0)
1001             .addMemOperand(MMO)
1002             .add(predOps(ARMCC::AL));
1003       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1004         if (Subtarget.hasV5TEOps()) {
1005           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
1006           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1007           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1008           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1009              .add(predOps(ARMCC::AL));
1010         } else {
1011           // Fallback to STM instruction, which has existed since the dawn of
1012           // time.
1013           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STMIA))
1014                                         .addFrameIndex(FI)
1015                                         .addMemOperand(MMO)
1016                                         .add(predOps(ARMCC::AL));
1017           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1018           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1019         }
1020       } else
1021         llvm_unreachable("Unknown reg class!");
1022       break;
1023     case 16:
1024       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1025         // Use aligned spills if the stack can be realigned.
1026         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1027           BuildMI(MBB, I, DL, get(ARM::VST1q64))
1028               .addFrameIndex(FI)
1029               .addImm(16)
1030               .addReg(SrcReg, getKillRegState(isKill))
1031               .addMemOperand(MMO)
1032               .add(predOps(ARMCC::AL));
1033         } else {
1034           BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
1035               .addReg(SrcReg, getKillRegState(isKill))
1036               .addFrameIndex(FI)
1037               .addMemOperand(MMO)
1038               .add(predOps(ARMCC::AL));
1039         }
1040       } else
1041         llvm_unreachable("Unknown reg class!");
1042       break;
1043     case 24:
1044       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1045         // Use aligned spills if the stack can be realigned.
1046         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1047           BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
1048               .addFrameIndex(FI)
1049               .addImm(16)
1050               .addReg(SrcReg, getKillRegState(isKill))
1051               .addMemOperand(MMO)
1052               .add(predOps(ARMCC::AL));
1053         } else {
1054           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
1055                                         .addFrameIndex(FI)
1056                                         .add(predOps(ARMCC::AL))
1057                                         .addMemOperand(MMO);
1058           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1059           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1060           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1061         }
1062       } else
1063         llvm_unreachable("Unknown reg class!");
1064       break;
1065     case 32:
1066       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1067         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1068           // FIXME: It's possible to only store part of the QQ register if the
1069           // spilled def has a sub-register index.
1070           BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
1071               .addFrameIndex(FI)
1072               .addImm(16)
1073               .addReg(SrcReg, getKillRegState(isKill))
1074               .addMemOperand(MMO)
1075               .add(predOps(ARMCC::AL));
1076         } else {
1077           MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
1078                                         .addFrameIndex(FI)
1079                                         .add(predOps(ARMCC::AL))
1080                                         .addMemOperand(MMO);
1081           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1082           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1083           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1084                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1085         }
1086       } else
1087         llvm_unreachable("Unknown reg class!");
1088       break;
1089     case 64:
1090       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1091         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
1092                                       .addFrameIndex(FI)
1093                                       .add(predOps(ARMCC::AL))
1094                                       .addMemOperand(MMO);
1095         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1096         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1097         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1098         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1099         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1100         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1101         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1102               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1103       } else
1104         llvm_unreachable("Unknown reg class!");
1105       break;
1106     default:
1107       llvm_unreachable("Unknown reg class!");
1108   }
1109 }
1110 
1111 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1112                                               int &FrameIndex) const {
1113   switch (MI.getOpcode()) {
1114   default: break;
1115   case ARM::STRrs:
1116   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1117     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1118         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1119         MI.getOperand(3).getImm() == 0) {
1120       FrameIndex = MI.getOperand(1).getIndex();
1121       return MI.getOperand(0).getReg();
1122     }
1123     break;
1124   case ARM::STRi12:
1125   case ARM::t2STRi12:
1126   case ARM::tSTRspi:
1127   case ARM::VSTRD:
1128   case ARM::VSTRS:
1129     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1130         MI.getOperand(2).getImm() == 0) {
1131       FrameIndex = MI.getOperand(1).getIndex();
1132       return MI.getOperand(0).getReg();
1133     }
1134     break;
1135   case ARM::VST1q64:
1136   case ARM::VST1d64TPseudo:
1137   case ARM::VST1d64QPseudo:
1138     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1139       FrameIndex = MI.getOperand(0).getIndex();
1140       return MI.getOperand(2).getReg();
1141     }
1142     break;
1143   case ARM::VSTMQIA:
1144     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1145       FrameIndex = MI.getOperand(1).getIndex();
1146       return MI.getOperand(0).getReg();
1147     }
1148     break;
1149   }
1150 
1151   return 0;
1152 }
1153 
1154 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1155                                                     int &FrameIndex) const {
1156   const MachineMemOperand *Dummy;
1157   return MI.mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
1158 }
1159 
1160 void ARMBaseInstrInfo::
1161 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1162                      unsigned DestReg, int FI,
1163                      const TargetRegisterClass *RC,
1164                      const TargetRegisterInfo *TRI) const {
1165   DebugLoc DL;
1166   if (I != MBB.end()) DL = I->getDebugLoc();
1167   MachineFunction &MF = *MBB.getParent();
1168   MachineFrameInfo &MFI = MF.getFrameInfo();
1169   unsigned Align = MFI.getObjectAlignment(FI);
1170   MachineMemOperand *MMO = MF.getMachineMemOperand(
1171       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1172       MFI.getObjectSize(FI), Align);
1173 
1174   switch (TRI->getSpillSize(*RC)) {
1175   case 2:
1176     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1177       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1178           .addFrameIndex(FI)
1179           .addImm(0)
1180           .addMemOperand(MMO)
1181           .add(predOps(ARMCC::AL));
1182     } else
1183       llvm_unreachable("Unknown reg class!");
1184     break;
1185   case 4:
1186     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1187       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1188           .addFrameIndex(FI)
1189           .addImm(0)
1190           .addMemOperand(MMO)
1191           .add(predOps(ARMCC::AL));
1192     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1193       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1194           .addFrameIndex(FI)
1195           .addImm(0)
1196           .addMemOperand(MMO)
1197           .add(predOps(ARMCC::AL));
1198     } else
1199       llvm_unreachable("Unknown reg class!");
1200     break;
1201   case 8:
1202     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1203       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1204           .addFrameIndex(FI)
1205           .addImm(0)
1206           .addMemOperand(MMO)
1207           .add(predOps(ARMCC::AL));
1208     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1209       MachineInstrBuilder MIB;
1210 
1211       if (Subtarget.hasV5TEOps()) {
1212         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1213         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1214         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1215         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1216            .add(predOps(ARMCC::AL));
1217       } else {
1218         // Fallback to LDM instruction, which has existed since the dawn of
1219         // time.
1220         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1221                   .addFrameIndex(FI)
1222                   .addMemOperand(MMO)
1223                   .add(predOps(ARMCC::AL));
1224         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1225         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1226       }
1227 
1228       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1229         MIB.addReg(DestReg, RegState::ImplicitDefine);
1230     } else
1231       llvm_unreachable("Unknown reg class!");
1232     break;
1233   case 16:
1234     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1235       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1236         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1237             .addFrameIndex(FI)
1238             .addImm(16)
1239             .addMemOperand(MMO)
1240             .add(predOps(ARMCC::AL));
1241       } else {
1242         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1243             .addFrameIndex(FI)
1244             .addMemOperand(MMO)
1245             .add(predOps(ARMCC::AL));
1246       }
1247     } else
1248       llvm_unreachable("Unknown reg class!");
1249     break;
1250   case 24:
1251     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1252       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1253         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1254             .addFrameIndex(FI)
1255             .addImm(16)
1256             .addMemOperand(MMO)
1257             .add(predOps(ARMCC::AL));
1258       } else {
1259         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1260                                       .addFrameIndex(FI)
1261                                       .addMemOperand(MMO)
1262                                       .add(predOps(ARMCC::AL));
1263         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1264         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1265         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1266         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1267           MIB.addReg(DestReg, RegState::ImplicitDefine);
1268       }
1269     } else
1270       llvm_unreachable("Unknown reg class!");
1271     break;
1272    case 32:
1273     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1274       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1275         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1276             .addFrameIndex(FI)
1277             .addImm(16)
1278             .addMemOperand(MMO)
1279             .add(predOps(ARMCC::AL));
1280       } else {
1281         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1282                                       .addFrameIndex(FI)
1283                                       .add(predOps(ARMCC::AL))
1284                                       .addMemOperand(MMO);
1285         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1286         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1287         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1288         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1289         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1290           MIB.addReg(DestReg, RegState::ImplicitDefine);
1291       }
1292     } else
1293       llvm_unreachable("Unknown reg class!");
1294     break;
1295   case 64:
1296     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1297       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1298                                     .addFrameIndex(FI)
1299                                     .add(predOps(ARMCC::AL))
1300                                     .addMemOperand(MMO);
1301       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1302       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1303       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1304       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1305       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1306       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1307       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1308       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1309       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1310         MIB.addReg(DestReg, RegState::ImplicitDefine);
1311     } else
1312       llvm_unreachable("Unknown reg class!");
1313     break;
1314   default:
1315     llvm_unreachable("Unknown regclass!");
1316   }
1317 }
1318 
1319 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1320                                                int &FrameIndex) const {
1321   switch (MI.getOpcode()) {
1322   default: break;
1323   case ARM::LDRrs:
1324   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1325     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1326         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1327         MI.getOperand(3).getImm() == 0) {
1328       FrameIndex = MI.getOperand(1).getIndex();
1329       return MI.getOperand(0).getReg();
1330     }
1331     break;
1332   case ARM::LDRi12:
1333   case ARM::t2LDRi12:
1334   case ARM::tLDRspi:
1335   case ARM::VLDRD:
1336   case ARM::VLDRS:
1337     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1338         MI.getOperand(2).getImm() == 0) {
1339       FrameIndex = MI.getOperand(1).getIndex();
1340       return MI.getOperand(0).getReg();
1341     }
1342     break;
1343   case ARM::VLD1q64:
1344   case ARM::VLD1d64TPseudo:
1345   case ARM::VLD1d64QPseudo:
1346     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1347       FrameIndex = MI.getOperand(1).getIndex();
1348       return MI.getOperand(0).getReg();
1349     }
1350     break;
1351   case ARM::VLDMQIA:
1352     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1353       FrameIndex = MI.getOperand(1).getIndex();
1354       return MI.getOperand(0).getReg();
1355     }
1356     break;
1357   }
1358 
1359   return 0;
1360 }
1361 
1362 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1363                                                      int &FrameIndex) const {
1364   const MachineMemOperand *Dummy;
1365   return MI.mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1366 }
1367 
1368 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1369 /// depending on whether the result is used.
1370 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1371   bool isThumb1 = Subtarget.isThumb1Only();
1372   bool isThumb2 = Subtarget.isThumb2();
1373   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1374 
1375   DebugLoc dl = MI->getDebugLoc();
1376   MachineBasicBlock *BB = MI->getParent();
1377 
1378   MachineInstrBuilder LDM, STM;
1379   if (isThumb1 || !MI->getOperand(1).isDead()) {
1380     MachineOperand LDWb(MI->getOperand(1));
1381     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1382                                                  : isThumb1 ? ARM::tLDMIA_UPD
1383                                                             : ARM::LDMIA_UPD))
1384               .add(LDWb);
1385   } else {
1386     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1387   }
1388 
1389   if (isThumb1 || !MI->getOperand(0).isDead()) {
1390     MachineOperand STWb(MI->getOperand(0));
1391     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1392                                                  : isThumb1 ? ARM::tSTMIA_UPD
1393                                                             : ARM::STMIA_UPD))
1394               .add(STWb);
1395   } else {
1396     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1397   }
1398 
1399   MachineOperand LDBase(MI->getOperand(3));
1400   LDM.add(LDBase).add(predOps(ARMCC::AL));
1401 
1402   MachineOperand STBase(MI->getOperand(2));
1403   STM.add(STBase).add(predOps(ARMCC::AL));
1404 
1405   // Sort the scratch registers into ascending order.
1406   const TargetRegisterInfo &TRI = getRegisterInfo();
1407   SmallVector<unsigned, 6> ScratchRegs;
1408   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1409     ScratchRegs.push_back(MI->getOperand(I).getReg());
1410   llvm::sort(ScratchRegs.begin(), ScratchRegs.end(),
1411              [&TRI](const unsigned &Reg1,
1412                     const unsigned &Reg2) -> bool {
1413                return TRI.getEncodingValue(Reg1) <
1414                       TRI.getEncodingValue(Reg2);
1415              });
1416 
1417   for (const auto &Reg : ScratchRegs) {
1418     LDM.addReg(Reg, RegState::Define);
1419     STM.addReg(Reg, RegState::Kill);
1420   }
1421 
1422   BB->erase(MI);
1423 }
1424 
1425 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1426   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1427     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1428            "LOAD_STACK_GUARD currently supported only for MachO.");
1429     expandLoadStackGuard(MI);
1430     MI.getParent()->erase(MI);
1431     return true;
1432   }
1433 
1434   if (MI.getOpcode() == ARM::MEMCPY) {
1435     expandMEMCPY(MI);
1436     return true;
1437   }
1438 
1439   // This hook gets to expand COPY instructions before they become
1440   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1441   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1442   // changed into a VORR that can go down the NEON pipeline.
1443   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
1444     return false;
1445 
1446   // Look for a copy between even S-registers.  That is where we keep floats
1447   // when using NEON v2f32 instructions for f32 arithmetic.
1448   unsigned DstRegS = MI.getOperand(0).getReg();
1449   unsigned SrcRegS = MI.getOperand(1).getReg();
1450   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1451     return false;
1452 
1453   const TargetRegisterInfo *TRI = &getRegisterInfo();
1454   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1455                                               &ARM::DPRRegClass);
1456   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1457                                               &ARM::DPRRegClass);
1458   if (!DstRegD || !SrcRegD)
1459     return false;
1460 
1461   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1462   // legal if the COPY already defines the full DstRegD, and it isn't a
1463   // sub-register insertion.
1464   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1465     return false;
1466 
1467   // A dead copy shouldn't show up here, but reject it just in case.
1468   if (MI.getOperand(0).isDead())
1469     return false;
1470 
1471   // All clear, widen the COPY.
1472   DEBUG(dbgs() << "widening:    " << MI);
1473   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1474 
1475   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1476   // or some other super-register.
1477   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1478   if (ImpDefIdx != -1)
1479     MI.RemoveOperand(ImpDefIdx);
1480 
1481   // Change the opcode and operands.
1482   MI.setDesc(get(ARM::VMOVD));
1483   MI.getOperand(0).setReg(DstRegD);
1484   MI.getOperand(1).setReg(SrcRegD);
1485   MIB.add(predOps(ARMCC::AL));
1486 
1487   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1488   // register scavenger and machine verifier, so we need to indicate that we
1489   // are reading an undefined value from SrcRegD, but a proper value from
1490   // SrcRegS.
1491   MI.getOperand(1).setIsUndef();
1492   MIB.addReg(SrcRegS, RegState::Implicit);
1493 
1494   // SrcRegD may actually contain an unrelated value in the ssub_1
1495   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1496   if (MI.getOperand(1).isKill()) {
1497     MI.getOperand(1).setIsKill(false);
1498     MI.addRegisterKilled(SrcRegS, TRI, true);
1499   }
1500 
1501   DEBUG(dbgs() << "replaced by: " << MI);
1502   return true;
1503 }
1504 
1505 /// Create a copy of a const pool value. Update CPI to the new index and return
1506 /// the label UID.
1507 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1508   MachineConstantPool *MCP = MF.getConstantPool();
1509   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1510 
1511   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1512   assert(MCPE.isMachineConstantPoolEntry() &&
1513          "Expecting a machine constantpool entry!");
1514   ARMConstantPoolValue *ACPV =
1515     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1516 
1517   unsigned PCLabelId = AFI->createPICLabelUId();
1518   ARMConstantPoolValue *NewCPV = nullptr;
1519 
1520   // FIXME: The below assumes PIC relocation model and that the function
1521   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1522   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1523   // instructions, so that's probably OK, but is PIC always correct when
1524   // we get here?
1525   if (ACPV->isGlobalValue())
1526     NewCPV = ARMConstantPoolConstant::Create(
1527         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1528         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1529   else if (ACPV->isExtSymbol())
1530     NewCPV = ARMConstantPoolSymbol::
1531       Create(MF.getFunction().getContext(),
1532              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1533   else if (ACPV->isBlockAddress())
1534     NewCPV = ARMConstantPoolConstant::
1535       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1536              ARMCP::CPBlockAddress, 4);
1537   else if (ACPV->isLSDA())
1538     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1539                                              ARMCP::CPLSDA, 4);
1540   else if (ACPV->isMachineBasicBlock())
1541     NewCPV = ARMConstantPoolMBB::
1542       Create(MF.getFunction().getContext(),
1543              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1544   else
1545     llvm_unreachable("Unexpected ARM constantpool value type!!");
1546   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1547   return PCLabelId;
1548 }
1549 
1550 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1551                                      MachineBasicBlock::iterator I,
1552                                      unsigned DestReg, unsigned SubIdx,
1553                                      const MachineInstr &Orig,
1554                                      const TargetRegisterInfo &TRI) const {
1555   unsigned Opcode = Orig.getOpcode();
1556   switch (Opcode) {
1557   default: {
1558     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1559     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1560     MBB.insert(I, MI);
1561     break;
1562   }
1563   case ARM::tLDRpci_pic:
1564   case ARM::t2LDRpci_pic: {
1565     MachineFunction &MF = *MBB.getParent();
1566     unsigned CPI = Orig.getOperand(1).getIndex();
1567     unsigned PCLabelId = duplicateCPV(MF, CPI);
1568     MachineInstrBuilder MIB =
1569         BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1570             .addConstantPoolIndex(CPI)
1571             .addImm(PCLabelId);
1572     MIB->setMemRefs(Orig.memoperands_begin(), Orig.memoperands_end());
1573     break;
1574   }
1575   }
1576 }
1577 
1578 MachineInstr &
1579 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1580     MachineBasicBlock::iterator InsertBefore,
1581     const MachineInstr &Orig) const {
1582   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1583   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1584   for (;;) {
1585     switch (I->getOpcode()) {
1586     case ARM::tLDRpci_pic:
1587     case ARM::t2LDRpci_pic: {
1588       MachineFunction &MF = *MBB.getParent();
1589       unsigned CPI = I->getOperand(1).getIndex();
1590       unsigned PCLabelId = duplicateCPV(MF, CPI);
1591       I->getOperand(1).setIndex(CPI);
1592       I->getOperand(2).setImm(PCLabelId);
1593       break;
1594     }
1595     }
1596     if (!I->isBundledWithSucc())
1597       break;
1598     ++I;
1599   }
1600   return Cloned;
1601 }
1602 
1603 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1604                                         const MachineInstr &MI1,
1605                                         const MachineRegisterInfo *MRI) const {
1606   unsigned Opcode = MI0.getOpcode();
1607   if (Opcode == ARM::t2LDRpci ||
1608       Opcode == ARM::t2LDRpci_pic ||
1609       Opcode == ARM::tLDRpci ||
1610       Opcode == ARM::tLDRpci_pic ||
1611       Opcode == ARM::LDRLIT_ga_pcrel ||
1612       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1613       Opcode == ARM::tLDRLIT_ga_pcrel ||
1614       Opcode == ARM::MOV_ga_pcrel ||
1615       Opcode == ARM::MOV_ga_pcrel_ldr ||
1616       Opcode == ARM::t2MOV_ga_pcrel) {
1617     if (MI1.getOpcode() != Opcode)
1618       return false;
1619     if (MI0.getNumOperands() != MI1.getNumOperands())
1620       return false;
1621 
1622     const MachineOperand &MO0 = MI0.getOperand(1);
1623     const MachineOperand &MO1 = MI1.getOperand(1);
1624     if (MO0.getOffset() != MO1.getOffset())
1625       return false;
1626 
1627     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1628         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1629         Opcode == ARM::tLDRLIT_ga_pcrel ||
1630         Opcode == ARM::MOV_ga_pcrel ||
1631         Opcode == ARM::MOV_ga_pcrel_ldr ||
1632         Opcode == ARM::t2MOV_ga_pcrel)
1633       // Ignore the PC labels.
1634       return MO0.getGlobal() == MO1.getGlobal();
1635 
1636     const MachineFunction *MF = MI0.getParent()->getParent();
1637     const MachineConstantPool *MCP = MF->getConstantPool();
1638     int CPI0 = MO0.getIndex();
1639     int CPI1 = MO1.getIndex();
1640     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1641     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1642     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1643     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1644     if (isARMCP0 && isARMCP1) {
1645       ARMConstantPoolValue *ACPV0 =
1646         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1647       ARMConstantPoolValue *ACPV1 =
1648         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1649       return ACPV0->hasSameValue(ACPV1);
1650     } else if (!isARMCP0 && !isARMCP1) {
1651       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1652     }
1653     return false;
1654   } else if (Opcode == ARM::PICLDR) {
1655     if (MI1.getOpcode() != Opcode)
1656       return false;
1657     if (MI0.getNumOperands() != MI1.getNumOperands())
1658       return false;
1659 
1660     unsigned Addr0 = MI0.getOperand(1).getReg();
1661     unsigned Addr1 = MI1.getOperand(1).getReg();
1662     if (Addr0 != Addr1) {
1663       if (!MRI ||
1664           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1665           !TargetRegisterInfo::isVirtualRegister(Addr1))
1666         return false;
1667 
1668       // This assumes SSA form.
1669       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1670       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1671       // Check if the loaded value, e.g. a constantpool of a global address, are
1672       // the same.
1673       if (!produceSameValue(*Def0, *Def1, MRI))
1674         return false;
1675     }
1676 
1677     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1678       // %12 = PICLDR %11, 0, 14, %noreg
1679       const MachineOperand &MO0 = MI0.getOperand(i);
1680       const MachineOperand &MO1 = MI1.getOperand(i);
1681       if (!MO0.isIdenticalTo(MO1))
1682         return false;
1683     }
1684     return true;
1685   }
1686 
1687   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1688 }
1689 
1690 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1691 /// determine if two loads are loading from the same base address. It should
1692 /// only return true if the base pointers are the same and the only differences
1693 /// between the two addresses is the offset. It also returns the offsets by
1694 /// reference.
1695 ///
1696 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1697 /// is permanently disabled.
1698 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1699                                                int64_t &Offset1,
1700                                                int64_t &Offset2) const {
1701   // Don't worry about Thumb: just ARM and Thumb2.
1702   if (Subtarget.isThumb1Only()) return false;
1703 
1704   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1705     return false;
1706 
1707   switch (Load1->getMachineOpcode()) {
1708   default:
1709     return false;
1710   case ARM::LDRi12:
1711   case ARM::LDRBi12:
1712   case ARM::LDRD:
1713   case ARM::LDRH:
1714   case ARM::LDRSB:
1715   case ARM::LDRSH:
1716   case ARM::VLDRD:
1717   case ARM::VLDRS:
1718   case ARM::t2LDRi8:
1719   case ARM::t2LDRBi8:
1720   case ARM::t2LDRDi8:
1721   case ARM::t2LDRSHi8:
1722   case ARM::t2LDRi12:
1723   case ARM::t2LDRBi12:
1724   case ARM::t2LDRSHi12:
1725     break;
1726   }
1727 
1728   switch (Load2->getMachineOpcode()) {
1729   default:
1730     return false;
1731   case ARM::LDRi12:
1732   case ARM::LDRBi12:
1733   case ARM::LDRD:
1734   case ARM::LDRH:
1735   case ARM::LDRSB:
1736   case ARM::LDRSH:
1737   case ARM::VLDRD:
1738   case ARM::VLDRS:
1739   case ARM::t2LDRi8:
1740   case ARM::t2LDRBi8:
1741   case ARM::t2LDRSHi8:
1742   case ARM::t2LDRi12:
1743   case ARM::t2LDRBi12:
1744   case ARM::t2LDRSHi12:
1745     break;
1746   }
1747 
1748   // Check if base addresses and chain operands match.
1749   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1750       Load1->getOperand(4) != Load2->getOperand(4))
1751     return false;
1752 
1753   // Index should be Reg0.
1754   if (Load1->getOperand(3) != Load2->getOperand(3))
1755     return false;
1756 
1757   // Determine the offsets.
1758   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1759       isa<ConstantSDNode>(Load2->getOperand(1))) {
1760     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1761     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1762     return true;
1763   }
1764 
1765   return false;
1766 }
1767 
1768 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1769 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1770 /// be scheduled togther. On some targets if two loads are loading from
1771 /// addresses in the same cache line, it's better if they are scheduled
1772 /// together. This function takes two integers that represent the load offsets
1773 /// from the common base address. It returns true if it decides it's desirable
1774 /// to schedule the two loads together. "NumLoads" is the number of loads that
1775 /// have already been scheduled after Load1.
1776 ///
1777 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1778 /// is permanently disabled.
1779 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1780                                                int64_t Offset1, int64_t Offset2,
1781                                                unsigned NumLoads) const {
1782   // Don't worry about Thumb: just ARM and Thumb2.
1783   if (Subtarget.isThumb1Only()) return false;
1784 
1785   assert(Offset2 > Offset1);
1786 
1787   if ((Offset2 - Offset1) / 8 > 64)
1788     return false;
1789 
1790   // Check if the machine opcodes are different. If they are different
1791   // then we consider them to not be of the same base address,
1792   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1793   // In this case, they are considered to be the same because they are different
1794   // encoding forms of the same basic instruction.
1795   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1796       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1797          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1798         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1799          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1800     return false;  // FIXME: overly conservative?
1801 
1802   // Four loads in a row should be sufficient.
1803   if (NumLoads >= 3)
1804     return false;
1805 
1806   return true;
1807 }
1808 
1809 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1810                                             const MachineBasicBlock *MBB,
1811                                             const MachineFunction &MF) const {
1812   // Debug info is never a scheduling boundary. It's necessary to be explicit
1813   // due to the special treatment of IT instructions below, otherwise a
1814   // dbg_value followed by an IT will result in the IT instruction being
1815   // considered a scheduling hazard, which is wrong. It should be the actual
1816   // instruction preceding the dbg_value instruction(s), just like it is
1817   // when debug info is not present.
1818   if (MI.isDebugInstr())
1819     return false;
1820 
1821   // Terminators and labels can't be scheduled around.
1822   if (MI.isTerminator() || MI.isPosition())
1823     return true;
1824 
1825   // Treat the start of the IT block as a scheduling boundary, but schedule
1826   // t2IT along with all instructions following it.
1827   // FIXME: This is a big hammer. But the alternative is to add all potential
1828   // true and anti dependencies to IT block instructions as implicit operands
1829   // to the t2IT instruction. The added compile time and complexity does not
1830   // seem worth it.
1831   MachineBasicBlock::const_iterator I = MI;
1832   // Make sure to skip any debug instructions
1833   while (++I != MBB->end() && I->isDebugInstr())
1834     ;
1835   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1836     return true;
1837 
1838   // Don't attempt to schedule around any instruction that defines
1839   // a stack-oriented pointer, as it's unlikely to be profitable. This
1840   // saves compile time, because it doesn't require every single
1841   // stack slot reference to depend on the instruction that does the
1842   // modification.
1843   // Calls don't actually change the stack pointer, even if they have imp-defs.
1844   // No ARM calling conventions change the stack pointer. (X86 calling
1845   // conventions sometimes do).
1846   if (!MI.isCall() && MI.definesRegister(ARM::SP))
1847     return true;
1848 
1849   return false;
1850 }
1851 
1852 bool ARMBaseInstrInfo::
1853 isProfitableToIfCvt(MachineBasicBlock &MBB,
1854                     unsigned NumCycles, unsigned ExtraPredCycles,
1855                     BranchProbability Probability) const {
1856   if (!NumCycles)
1857     return false;
1858 
1859   // If we are optimizing for size, see if the branch in the predecessor can be
1860   // lowered to cbn?z by the constant island lowering pass, and return false if
1861   // so. This results in a shorter instruction sequence.
1862   if (MBB.getParent()->getFunction().optForSize()) {
1863     MachineBasicBlock *Pred = *MBB.pred_begin();
1864     if (!Pred->empty()) {
1865       MachineInstr *LastMI = &*Pred->rbegin();
1866       if (LastMI->getOpcode() == ARM::t2Bcc) {
1867         MachineBasicBlock::iterator CmpMI = LastMI;
1868         if (CmpMI != Pred->begin()) {
1869           --CmpMI;
1870           if (CmpMI->getOpcode() == ARM::tCMPi8 ||
1871               CmpMI->getOpcode() == ARM::t2CMPri) {
1872             unsigned Reg = CmpMI->getOperand(0).getReg();
1873             unsigned PredReg = 0;
1874             ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
1875             if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
1876                 isARMLowRegister(Reg))
1877               return false;
1878           }
1879         }
1880       }
1881     }
1882   }
1883   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
1884                              MBB, 0, 0, Probability);
1885 }
1886 
1887 bool ARMBaseInstrInfo::
1888 isProfitableToIfCvt(MachineBasicBlock &TBB,
1889                     unsigned TCycles, unsigned TExtra,
1890                     MachineBasicBlock &FBB,
1891                     unsigned FCycles, unsigned FExtra,
1892                     BranchProbability Probability) const {
1893   if (!TCycles)
1894     return false;
1895 
1896   // Attempt to estimate the relative costs of predication versus branching.
1897   // Here we scale up each component of UnpredCost to avoid precision issue when
1898   // scaling TCycles/FCycles by Probability.
1899   const unsigned ScalingUpFactor = 1024;
1900 
1901   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
1902   unsigned UnpredCost;
1903   if (!Subtarget.hasBranchPredictor()) {
1904     // When we don't have a branch predictor it's always cheaper to not take a
1905     // branch than take it, so we have to take that into account.
1906     unsigned NotTakenBranchCost = 1;
1907     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
1908     unsigned TUnpredCycles, FUnpredCycles;
1909     if (!FCycles) {
1910       // Triangle: TBB is the fallthrough
1911       TUnpredCycles = TCycles + NotTakenBranchCost;
1912       FUnpredCycles = TakenBranchCost;
1913     } else {
1914       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
1915       TUnpredCycles = TCycles + TakenBranchCost;
1916       FUnpredCycles = FCycles + NotTakenBranchCost;
1917       // The branch at the end of FBB will disappear when it's predicated, so
1918       // discount it from PredCost.
1919       PredCost -= 1 * ScalingUpFactor;
1920     }
1921     // The total cost is the cost of each path scaled by their probabilites
1922     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
1923     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
1924     UnpredCost = TUnpredCost + FUnpredCost;
1925     // When predicating assume that the first IT can be folded away but later
1926     // ones cost one cycle each
1927     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
1928       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
1929     }
1930   } else {
1931     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
1932     unsigned FUnpredCost =
1933       Probability.getCompl().scale(FCycles * ScalingUpFactor);
1934     UnpredCost = TUnpredCost + FUnpredCost;
1935     UnpredCost += 1 * ScalingUpFactor; // The branch itself
1936     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1937   }
1938 
1939   return PredCost <= UnpredCost;
1940 }
1941 
1942 bool
1943 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1944                                             MachineBasicBlock &FMBB) const {
1945   // Reduce false anti-dependencies to let the target's out-of-order execution
1946   // engine do its thing.
1947   return Subtarget.isProfitableToUnpredicate();
1948 }
1949 
1950 /// getInstrPredicate - If instruction is predicated, returns its predicate
1951 /// condition, otherwise returns AL. It also returns the condition code
1952 /// register by reference.
1953 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
1954                                          unsigned &PredReg) {
1955   int PIdx = MI.findFirstPredOperandIdx();
1956   if (PIdx == -1) {
1957     PredReg = 0;
1958     return ARMCC::AL;
1959   }
1960 
1961   PredReg = MI.getOperand(PIdx+1).getReg();
1962   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
1963 }
1964 
1965 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
1966   if (Opc == ARM::B)
1967     return ARM::Bcc;
1968   if (Opc == ARM::tB)
1969     return ARM::tBcc;
1970   if (Opc == ARM::t2B)
1971     return ARM::t2Bcc;
1972 
1973   llvm_unreachable("Unknown unconditional branch opcode!");
1974 }
1975 
1976 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
1977                                                        bool NewMI,
1978                                                        unsigned OpIdx1,
1979                                                        unsigned OpIdx2) const {
1980   switch (MI.getOpcode()) {
1981   case ARM::MOVCCr:
1982   case ARM::t2MOVCCr: {
1983     // MOVCC can be commuted by inverting the condition.
1984     unsigned PredReg = 0;
1985     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1986     // MOVCC AL can't be inverted. Shouldn't happen.
1987     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1988       return nullptr;
1989     MachineInstr *CommutedMI =
1990         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1991     if (!CommutedMI)
1992       return nullptr;
1993     // After swapping the MOVCC operands, also invert the condition.
1994     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
1995         .setImm(ARMCC::getOppositeCondition(CC));
1996     return CommutedMI;
1997   }
1998   }
1999   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2000 }
2001 
2002 /// Identify instructions that can be folded into a MOVCC instruction, and
2003 /// return the defining instruction.
2004 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
2005                                       const MachineRegisterInfo &MRI,
2006                                       const TargetInstrInfo *TII) {
2007   if (!TargetRegisterInfo::isVirtualRegister(Reg))
2008     return nullptr;
2009   if (!MRI.hasOneNonDBGUse(Reg))
2010     return nullptr;
2011   MachineInstr *MI = MRI.getVRegDef(Reg);
2012   if (!MI)
2013     return nullptr;
2014   // MI is folded into the MOVCC by predicating it.
2015   if (!MI->isPredicable())
2016     return nullptr;
2017   // Check if MI has any non-dead defs or physreg uses. This also detects
2018   // predicated instructions which will be reading CPSR.
2019   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2020     const MachineOperand &MO = MI->getOperand(i);
2021     // Reject frame index operands, PEI can't handle the predicated pseudos.
2022     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2023       return nullptr;
2024     if (!MO.isReg())
2025       continue;
2026     // MI can't have any tied operands, that would conflict with predication.
2027     if (MO.isTied())
2028       return nullptr;
2029     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
2030       return nullptr;
2031     if (MO.isDef() && !MO.isDead())
2032       return nullptr;
2033   }
2034   bool DontMoveAcrossStores = true;
2035   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2036     return nullptr;
2037   return MI;
2038 }
2039 
2040 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2041                                      SmallVectorImpl<MachineOperand> &Cond,
2042                                      unsigned &TrueOp, unsigned &FalseOp,
2043                                      bool &Optimizable) const {
2044   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2045          "Unknown select instruction");
2046   // MOVCC operands:
2047   // 0: Def.
2048   // 1: True use.
2049   // 2: False use.
2050   // 3: Condition code.
2051   // 4: CPSR use.
2052   TrueOp = 1;
2053   FalseOp = 2;
2054   Cond.push_back(MI.getOperand(3));
2055   Cond.push_back(MI.getOperand(4));
2056   // We can always fold a def.
2057   Optimizable = true;
2058   return false;
2059 }
2060 
2061 MachineInstr *
2062 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2063                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2064                                  bool PreferFalse) const {
2065   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2066          "Unknown select instruction");
2067   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2068   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2069   bool Invert = !DefMI;
2070   if (!DefMI)
2071     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2072   if (!DefMI)
2073     return nullptr;
2074 
2075   // Find new register class to use.
2076   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2077   unsigned DestReg = MI.getOperand(0).getReg();
2078   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2079   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2080     return nullptr;
2081 
2082   // Create a new predicated version of DefMI.
2083   // Rfalse is the first use.
2084   MachineInstrBuilder NewMI =
2085       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2086 
2087   // Copy all the DefMI operands, excluding its (null) predicate.
2088   const MCInstrDesc &DefDesc = DefMI->getDesc();
2089   for (unsigned i = 1, e = DefDesc.getNumOperands();
2090        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2091     NewMI.add(DefMI->getOperand(i));
2092 
2093   unsigned CondCode = MI.getOperand(3).getImm();
2094   if (Invert)
2095     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2096   else
2097     NewMI.addImm(CondCode);
2098   NewMI.add(MI.getOperand(4));
2099 
2100   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2101   if (NewMI->hasOptionalDef())
2102     NewMI.add(condCodeOp());
2103 
2104   // The output register value when the predicate is false is an implicit
2105   // register operand tied to the first def.
2106   // The tie makes the register allocator ensure the FalseReg is allocated the
2107   // same register as operand 0.
2108   FalseReg.setImplicit();
2109   NewMI.add(FalseReg);
2110   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2111 
2112   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2113   SeenMIs.insert(NewMI);
2114   SeenMIs.erase(DefMI);
2115 
2116   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2117   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2118   // loop is expensive, but at least remove kill flags if they are in different
2119   // BBs.
2120   if (DefMI->getParent() != MI.getParent())
2121     NewMI->clearKillInfo();
2122 
2123   // The caller will erase MI, but not DefMI.
2124   DefMI->eraseFromParent();
2125   return NewMI;
2126 }
2127 
2128 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2129 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2130 /// def operand.
2131 ///
2132 /// This will go away once we can teach tblgen how to set the optional CPSR def
2133 /// operand itself.
2134 struct AddSubFlagsOpcodePair {
2135   uint16_t PseudoOpc;
2136   uint16_t MachineOpc;
2137 };
2138 
2139 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2140   {ARM::ADDSri, ARM::ADDri},
2141   {ARM::ADDSrr, ARM::ADDrr},
2142   {ARM::ADDSrsi, ARM::ADDrsi},
2143   {ARM::ADDSrsr, ARM::ADDrsr},
2144 
2145   {ARM::SUBSri, ARM::SUBri},
2146   {ARM::SUBSrr, ARM::SUBrr},
2147   {ARM::SUBSrsi, ARM::SUBrsi},
2148   {ARM::SUBSrsr, ARM::SUBrsr},
2149 
2150   {ARM::RSBSri, ARM::RSBri},
2151   {ARM::RSBSrsi, ARM::RSBrsi},
2152   {ARM::RSBSrsr, ARM::RSBrsr},
2153 
2154   {ARM::tADDSi3, ARM::tADDi3},
2155   {ARM::tADDSi8, ARM::tADDi8},
2156   {ARM::tADDSrr, ARM::tADDrr},
2157   {ARM::tADCS, ARM::tADC},
2158 
2159   {ARM::tSUBSi3, ARM::tSUBi3},
2160   {ARM::tSUBSi8, ARM::tSUBi8},
2161   {ARM::tSUBSrr, ARM::tSUBrr},
2162   {ARM::tSBCS, ARM::tSBC},
2163 
2164   {ARM::t2ADDSri, ARM::t2ADDri},
2165   {ARM::t2ADDSrr, ARM::t2ADDrr},
2166   {ARM::t2ADDSrs, ARM::t2ADDrs},
2167 
2168   {ARM::t2SUBSri, ARM::t2SUBri},
2169   {ARM::t2SUBSrr, ARM::t2SUBrr},
2170   {ARM::t2SUBSrs, ARM::t2SUBrs},
2171 
2172   {ARM::t2RSBSri, ARM::t2RSBri},
2173   {ARM::t2RSBSrs, ARM::t2RSBrs},
2174 };
2175 
2176 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2177   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2178     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2179       return AddSubFlagsOpcodeMap[i].MachineOpc;
2180   return 0;
2181 }
2182 
2183 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2184                                    MachineBasicBlock::iterator &MBBI,
2185                                    const DebugLoc &dl, unsigned DestReg,
2186                                    unsigned BaseReg, int NumBytes,
2187                                    ARMCC::CondCodes Pred, unsigned PredReg,
2188                                    const ARMBaseInstrInfo &TII,
2189                                    unsigned MIFlags) {
2190   if (NumBytes == 0 && DestReg != BaseReg) {
2191     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2192         .addReg(BaseReg, RegState::Kill)
2193         .add(predOps(Pred, PredReg))
2194         .add(condCodeOp())
2195         .setMIFlags(MIFlags);
2196     return;
2197   }
2198 
2199   bool isSub = NumBytes < 0;
2200   if (isSub) NumBytes = -NumBytes;
2201 
2202   while (NumBytes) {
2203     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2204     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2205     assert(ThisVal && "Didn't extract field correctly");
2206 
2207     // We will handle these bits from offset, clear them.
2208     NumBytes &= ~ThisVal;
2209 
2210     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2211 
2212     // Build the new ADD / SUB.
2213     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2214     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2215         .addReg(BaseReg, RegState::Kill)
2216         .addImm(ThisVal)
2217         .add(predOps(Pred, PredReg))
2218         .add(condCodeOp())
2219         .setMIFlags(MIFlags);
2220     BaseReg = DestReg;
2221   }
2222 }
2223 
2224 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2225                                       MachineFunction &MF, MachineInstr *MI,
2226                                       unsigned NumBytes) {
2227   // This optimisation potentially adds lots of load and store
2228   // micro-operations, it's only really a great benefit to code-size.
2229   if (!MF.getFunction().optForMinSize())
2230     return false;
2231 
2232   // If only one register is pushed/popped, LLVM can use an LDR/STR
2233   // instead. We can't modify those so make sure we're dealing with an
2234   // instruction we understand.
2235   bool IsPop = isPopOpcode(MI->getOpcode());
2236   bool IsPush = isPushOpcode(MI->getOpcode());
2237   if (!IsPush && !IsPop)
2238     return false;
2239 
2240   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2241                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2242   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2243                      MI->getOpcode() == ARM::tPOP ||
2244                      MI->getOpcode() == ARM::tPOP_RET;
2245 
2246   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2247                           MI->getOperand(1).getReg() == ARM::SP)) &&
2248          "trying to fold sp update into non-sp-updating push/pop");
2249 
2250   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2251   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2252   // if this is violated.
2253   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2254     return false;
2255 
2256   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2257   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2258   int RegListIdx = IsT1PushPop ? 2 : 4;
2259 
2260   // Calculate the space we'll need in terms of registers.
2261   unsigned RegsNeeded;
2262   const TargetRegisterClass *RegClass;
2263   if (IsVFPPushPop) {
2264     RegsNeeded = NumBytes / 8;
2265     RegClass = &ARM::DPRRegClass;
2266   } else {
2267     RegsNeeded = NumBytes / 4;
2268     RegClass = &ARM::GPRRegClass;
2269   }
2270 
2271   // We're going to have to strip all list operands off before
2272   // re-adding them since the order matters, so save the existing ones
2273   // for later.
2274   SmallVector<MachineOperand, 4> RegList;
2275 
2276   // We're also going to need the first register transferred by this
2277   // instruction, which won't necessarily be the first register in the list.
2278   unsigned FirstRegEnc = -1;
2279 
2280   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2281   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2282     MachineOperand &MO = MI->getOperand(i);
2283     RegList.push_back(MO);
2284 
2285     if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2286       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2287   }
2288 
2289   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2290 
2291   // Now try to find enough space in the reglist to allocate NumBytes.
2292   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2293        --CurRegEnc) {
2294     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2295     if (!IsPop) {
2296       // Pushing any register is completely harmless, mark the register involved
2297       // as undef since we don't care about its value and must not restore it
2298       // during stack unwinding.
2299       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2300                                                   false, false, true));
2301       --RegsNeeded;
2302       continue;
2303     }
2304 
2305     // However, we can only pop an extra register if it's not live. For
2306     // registers live within the function we might clobber a return value
2307     // register; the other way a register can be live here is if it's
2308     // callee-saved.
2309     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2310         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2311         MachineBasicBlock::LQR_Dead) {
2312       // VFP pops don't allow holes in the register list, so any skip is fatal
2313       // for our transformation. GPR pops do, so we should just keep looking.
2314       if (IsVFPPushPop)
2315         return false;
2316       else
2317         continue;
2318     }
2319 
2320     // Mark the unimportant registers as <def,dead> in the POP.
2321     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2322                                                 true));
2323     --RegsNeeded;
2324   }
2325 
2326   if (RegsNeeded > 0)
2327     return false;
2328 
2329   // Finally we know we can profitably perform the optimisation so go
2330   // ahead: strip all existing registers off and add them back again
2331   // in the right order.
2332   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2333     MI->RemoveOperand(i);
2334 
2335   // Add the complete list back in.
2336   MachineInstrBuilder MIB(MF, &*MI);
2337   for (int i = RegList.size() - 1; i >= 0; --i)
2338     MIB.add(RegList[i]);
2339 
2340   return true;
2341 }
2342 
2343 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2344                                 unsigned FrameReg, int &Offset,
2345                                 const ARMBaseInstrInfo &TII) {
2346   unsigned Opcode = MI.getOpcode();
2347   const MCInstrDesc &Desc = MI.getDesc();
2348   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2349   bool isSub = false;
2350 
2351   // Memory operands in inline assembly always use AddrMode2.
2352   if (Opcode == ARM::INLINEASM)
2353     AddrMode = ARMII::AddrMode2;
2354 
2355   if (Opcode == ARM::ADDri) {
2356     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2357     if (Offset == 0) {
2358       // Turn it into a move.
2359       MI.setDesc(TII.get(ARM::MOVr));
2360       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2361       MI.RemoveOperand(FrameRegIdx+1);
2362       Offset = 0;
2363       return true;
2364     } else if (Offset < 0) {
2365       Offset = -Offset;
2366       isSub = true;
2367       MI.setDesc(TII.get(ARM::SUBri));
2368     }
2369 
2370     // Common case: small offset, fits into instruction.
2371     if (ARM_AM::getSOImmVal(Offset) != -1) {
2372       // Replace the FrameIndex with sp / fp
2373       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2374       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2375       Offset = 0;
2376       return true;
2377     }
2378 
2379     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2380     // as possible.
2381     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2382     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2383 
2384     // We will handle these bits from offset, clear them.
2385     Offset &= ~ThisImmVal;
2386 
2387     // Get the properly encoded SOImmVal field.
2388     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2389            "Bit extraction didn't work?");
2390     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2391  } else {
2392     unsigned ImmIdx = 0;
2393     int InstrOffs = 0;
2394     unsigned NumBits = 0;
2395     unsigned Scale = 1;
2396     switch (AddrMode) {
2397     case ARMII::AddrMode_i12:
2398       ImmIdx = FrameRegIdx + 1;
2399       InstrOffs = MI.getOperand(ImmIdx).getImm();
2400       NumBits = 12;
2401       break;
2402     case ARMII::AddrMode2:
2403       ImmIdx = FrameRegIdx+2;
2404       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2405       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2406         InstrOffs *= -1;
2407       NumBits = 12;
2408       break;
2409     case ARMII::AddrMode3:
2410       ImmIdx = FrameRegIdx+2;
2411       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2412       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2413         InstrOffs *= -1;
2414       NumBits = 8;
2415       break;
2416     case ARMII::AddrMode4:
2417     case ARMII::AddrMode6:
2418       // Can't fold any offset even if it's zero.
2419       return false;
2420     case ARMII::AddrMode5:
2421       ImmIdx = FrameRegIdx+1;
2422       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2423       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2424         InstrOffs *= -1;
2425       NumBits = 8;
2426       Scale = 4;
2427       break;
2428     case ARMII::AddrMode5FP16:
2429       ImmIdx = FrameRegIdx+1;
2430       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2431       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2432         InstrOffs *= -1;
2433       NumBits = 8;
2434       Scale = 2;
2435       break;
2436     default:
2437       llvm_unreachable("Unsupported addressing mode!");
2438     }
2439 
2440     Offset += InstrOffs * Scale;
2441     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2442     if (Offset < 0) {
2443       Offset = -Offset;
2444       isSub = true;
2445     }
2446 
2447     // Attempt to fold address comp. if opcode has offset bits
2448     if (NumBits > 0) {
2449       // Common case: small offset, fits into instruction.
2450       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2451       int ImmedOffset = Offset / Scale;
2452       unsigned Mask = (1 << NumBits) - 1;
2453       if ((unsigned)Offset <= Mask * Scale) {
2454         // Replace the FrameIndex with sp
2455         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2456         // FIXME: When addrmode2 goes away, this will simplify (like the
2457         // T2 version), as the LDR.i12 versions don't need the encoding
2458         // tricks for the offset value.
2459         if (isSub) {
2460           if (AddrMode == ARMII::AddrMode_i12)
2461             ImmedOffset = -ImmedOffset;
2462           else
2463             ImmedOffset |= 1 << NumBits;
2464         }
2465         ImmOp.ChangeToImmediate(ImmedOffset);
2466         Offset = 0;
2467         return true;
2468       }
2469 
2470       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2471       ImmedOffset = ImmedOffset & Mask;
2472       if (isSub) {
2473         if (AddrMode == ARMII::AddrMode_i12)
2474           ImmedOffset = -ImmedOffset;
2475         else
2476           ImmedOffset |= 1 << NumBits;
2477       }
2478       ImmOp.ChangeToImmediate(ImmedOffset);
2479       Offset &= ~(Mask*Scale);
2480     }
2481   }
2482 
2483   Offset = (isSub) ? -Offset : Offset;
2484   return Offset == 0;
2485 }
2486 
2487 /// analyzeCompare - For a comparison instruction, return the source registers
2488 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2489 /// compares against in CmpValue. Return true if the comparison instruction
2490 /// can be analyzed.
2491 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2492                                       unsigned &SrcReg2, int &CmpMask,
2493                                       int &CmpValue) const {
2494   switch (MI.getOpcode()) {
2495   default: break;
2496   case ARM::CMPri:
2497   case ARM::t2CMPri:
2498   case ARM::tCMPi8:
2499     SrcReg = MI.getOperand(0).getReg();
2500     SrcReg2 = 0;
2501     CmpMask = ~0;
2502     CmpValue = MI.getOperand(1).getImm();
2503     return true;
2504   case ARM::CMPrr:
2505   case ARM::t2CMPrr:
2506     SrcReg = MI.getOperand(0).getReg();
2507     SrcReg2 = MI.getOperand(1).getReg();
2508     CmpMask = ~0;
2509     CmpValue = 0;
2510     return true;
2511   case ARM::TSTri:
2512   case ARM::t2TSTri:
2513     SrcReg = MI.getOperand(0).getReg();
2514     SrcReg2 = 0;
2515     CmpMask = MI.getOperand(1).getImm();
2516     CmpValue = 0;
2517     return true;
2518   }
2519 
2520   return false;
2521 }
2522 
2523 /// isSuitableForMask - Identify a suitable 'and' instruction that
2524 /// operates on the given source register and applies the same mask
2525 /// as a 'tst' instruction. Provide a limited look-through for copies.
2526 /// When successful, MI will hold the found instruction.
2527 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2528                               int CmpMask, bool CommonUse) {
2529   switch (MI->getOpcode()) {
2530     case ARM::ANDri:
2531     case ARM::t2ANDri:
2532       if (CmpMask != MI->getOperand(2).getImm())
2533         return false;
2534       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2535         return true;
2536       break;
2537   }
2538 
2539   return false;
2540 }
2541 
2542 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2543 /// the condition code if we modify the instructions such that flags are
2544 /// set by MI(b,a).
2545 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2546   switch (CC) {
2547   default: return ARMCC::AL;
2548   case ARMCC::EQ: return ARMCC::EQ;
2549   case ARMCC::NE: return ARMCC::NE;
2550   case ARMCC::HS: return ARMCC::LS;
2551   case ARMCC::LO: return ARMCC::HI;
2552   case ARMCC::HI: return ARMCC::LO;
2553   case ARMCC::LS: return ARMCC::HS;
2554   case ARMCC::GE: return ARMCC::LE;
2555   case ARMCC::LT: return ARMCC::GT;
2556   case ARMCC::GT: return ARMCC::LT;
2557   case ARMCC::LE: return ARMCC::GE;
2558   }
2559 }
2560 
2561 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2562 /// the condition code if we modify the instructions such that flags are
2563 /// set by ADD(a,b,X).
2564 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2565   switch (CC) {
2566   default: return ARMCC::AL;
2567   case ARMCC::HS: return ARMCC::LO;
2568   case ARMCC::LO: return ARMCC::HS;
2569   case ARMCC::VS: return ARMCC::VS;
2570   case ARMCC::VC: return ARMCC::VC;
2571   }
2572 }
2573 
2574 /// isRedundantFlagInstr - check whether the first instruction, whose only
2575 /// purpose is to update flags, can be made redundant.
2576 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2577 /// CMPri can be made redundant by SUBri if the operands are the same.
2578 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2579 /// This function can be extended later on.
2580 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2581                                         unsigned SrcReg, unsigned SrcReg2,
2582                                         int ImmValue, const MachineInstr *OI) {
2583   if ((CmpI->getOpcode() == ARM::CMPrr ||
2584        CmpI->getOpcode() == ARM::t2CMPrr) &&
2585       (OI->getOpcode() == ARM::SUBrr ||
2586        OI->getOpcode() == ARM::t2SUBrr) &&
2587       ((OI->getOperand(1).getReg() == SrcReg &&
2588         OI->getOperand(2).getReg() == SrcReg2) ||
2589        (OI->getOperand(1).getReg() == SrcReg2 &&
2590         OI->getOperand(2).getReg() == SrcReg)))
2591     return true;
2592 
2593   if ((CmpI->getOpcode() == ARM::CMPri ||
2594        CmpI->getOpcode() == ARM::t2CMPri) &&
2595       (OI->getOpcode() == ARM::SUBri ||
2596        OI->getOpcode() == ARM::t2SUBri) &&
2597       OI->getOperand(1).getReg() == SrcReg &&
2598       OI->getOperand(2).getImm() == ImmValue)
2599     return true;
2600 
2601   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2602       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2603        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2604       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2605       OI->getOperand(0).getReg() == SrcReg &&
2606       OI->getOperand(1).getReg() == SrcReg2)
2607     return true;
2608   return false;
2609 }
2610 
2611 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2612   switch (MI->getOpcode()) {
2613   default: return false;
2614   case ARM::tLSLri:
2615   case ARM::tLSRri:
2616   case ARM::tLSLrr:
2617   case ARM::tLSRrr:
2618   case ARM::tSUBrr:
2619   case ARM::tADDrr:
2620   case ARM::tADDi3:
2621   case ARM::tADDi8:
2622   case ARM::tSUBi3:
2623   case ARM::tSUBi8:
2624   case ARM::tMUL:
2625     IsThumb1 = true;
2626     LLVM_FALLTHROUGH;
2627   case ARM::RSBrr:
2628   case ARM::RSBri:
2629   case ARM::RSCrr:
2630   case ARM::RSCri:
2631   case ARM::ADDrr:
2632   case ARM::ADDri:
2633   case ARM::ADCrr:
2634   case ARM::ADCri:
2635   case ARM::SUBrr:
2636   case ARM::SUBri:
2637   case ARM::SBCrr:
2638   case ARM::SBCri:
2639   case ARM::t2RSBri:
2640   case ARM::t2ADDrr:
2641   case ARM::t2ADDri:
2642   case ARM::t2ADCrr:
2643   case ARM::t2ADCri:
2644   case ARM::t2SUBrr:
2645   case ARM::t2SUBri:
2646   case ARM::t2SBCrr:
2647   case ARM::t2SBCri:
2648   case ARM::ANDrr:
2649   case ARM::ANDri:
2650   case ARM::t2ANDrr:
2651   case ARM::t2ANDri:
2652   case ARM::ORRrr:
2653   case ARM::ORRri:
2654   case ARM::t2ORRrr:
2655   case ARM::t2ORRri:
2656   case ARM::EORrr:
2657   case ARM::EORri:
2658   case ARM::t2EORrr:
2659   case ARM::t2EORri:
2660   case ARM::t2LSRri:
2661   case ARM::t2LSRrr:
2662   case ARM::t2LSLri:
2663   case ARM::t2LSLrr:
2664     return true;
2665   }
2666 }
2667 
2668 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2669 /// comparison into one that sets the zero bit in the flags register;
2670 /// Remove a redundant Compare instruction if an earlier instruction can set the
2671 /// flags in the same way as Compare.
2672 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2673 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2674 /// condition code of instructions which use the flags.
2675 bool ARMBaseInstrInfo::optimizeCompareInstr(
2676     MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2677     int CmpValue, const MachineRegisterInfo *MRI) const {
2678   // Get the unique definition of SrcReg.
2679   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2680   if (!MI) return false;
2681 
2682   // Masked compares sometimes use the same register as the corresponding 'and'.
2683   if (CmpMask != ~0) {
2684     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2685       MI = nullptr;
2686       for (MachineRegisterInfo::use_instr_iterator
2687            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2688            UI != UE; ++UI) {
2689         if (UI->getParent() != CmpInstr.getParent())
2690           continue;
2691         MachineInstr *PotentialAND = &*UI;
2692         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2693             isPredicated(*PotentialAND))
2694           continue;
2695         MI = PotentialAND;
2696         break;
2697       }
2698       if (!MI) return false;
2699     }
2700   }
2701 
2702   // Get ready to iterate backward from CmpInstr.
2703   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2704                               B = CmpInstr.getParent()->begin();
2705 
2706   // Early exit if CmpInstr is at the beginning of the BB.
2707   if (I == B) return false;
2708 
2709   // There are two possible candidates which can be changed to set CPSR:
2710   // One is MI, the other is a SUB or ADD instruction.
2711   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2712   // ADDr[ri](r1, r2, X).
2713   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2714   MachineInstr *SubAdd = nullptr;
2715   if (SrcReg2 != 0)
2716     // MI is not a candidate for CMPrr.
2717     MI = nullptr;
2718   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2719     // Conservatively refuse to convert an instruction which isn't in the same
2720     // BB as the comparison.
2721     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2722     // Thus we cannot return here.
2723     if (CmpInstr.getOpcode() == ARM::CMPri ||
2724         CmpInstr.getOpcode() == ARM::t2CMPri)
2725       MI = nullptr;
2726     else
2727       return false;
2728   }
2729 
2730   bool IsThumb1 = false;
2731   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2732     return false;
2733 
2734   // We also want to do this peephole for cases like this: if (a*b == 0),
2735   // and optimise away the CMP instruction from the generated code sequence:
2736   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2737   // resulting from the select instruction, but these MOVS instructions for
2738   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2739   // However, if we only have MOVS instructions in between the CMP and the
2740   // other instruction (the MULS in this example), then the CPSR is dead so we
2741   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2742   // reordering and then continue the analysis hoping we can eliminate the
2743   // CMP. This peephole works on the vregs, so is still in SSA form. As a
2744   // consequence, the movs won't redefine/kill the MUL operands which would
2745   // make this reordering illegal.
2746   if (MI && IsThumb1) {
2747     --I;
2748     bool CanReorder = true;
2749     const bool HasStmts = I != E;
2750     for (; I != E; --I) {
2751       if (I->getOpcode() != ARM::tMOVi8) {
2752         CanReorder = false;
2753         break;
2754       }
2755     }
2756     if (HasStmts && CanReorder) {
2757       MI = MI->removeFromParent();
2758       E = CmpInstr;
2759       CmpInstr.getParent()->insert(E, MI);
2760     }
2761     I = CmpInstr;
2762     E = MI;
2763   }
2764 
2765   // Check that CPSR isn't set between the comparison instruction and the one we
2766   // want to change. At the same time, search for SubAdd.
2767   const TargetRegisterInfo *TRI = &getRegisterInfo();
2768   do {
2769     const MachineInstr &Instr = *--I;
2770 
2771     // Check whether CmpInstr can be made redundant by the current instruction.
2772     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr)) {
2773       SubAdd = &*I;
2774       break;
2775     }
2776 
2777     // Allow E (which was initially MI) to be SubAdd but do not search before E.
2778     if (I == E)
2779       break;
2780 
2781     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2782         Instr.readsRegister(ARM::CPSR, TRI))
2783       // This instruction modifies or uses CPSR after the one we want to
2784       // change. We can't do this transformation.
2785       return false;
2786 
2787   } while (I != B);
2788 
2789   // Return false if no candidates exist.
2790   if (!MI && !SubAdd)
2791     return false;
2792 
2793   // The single candidate is called MI.
2794   if (!MI) MI = SubAdd;
2795 
2796   // We can't use a predicated instruction - it doesn't always write the flags.
2797   if (isPredicated(*MI))
2798     return false;
2799 
2800   // Scan forward for the use of CPSR
2801   // When checking against MI: if it's a conditional code that requires
2802   // checking of the V bit or C bit, then this is not safe to do.
2803   // It is safe to remove CmpInstr if CPSR is redefined or killed.
2804   // If we are done with the basic block, we need to check whether CPSR is
2805   // live-out.
2806   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2807       OperandsToUpdate;
2808   bool isSafe = false;
2809   I = CmpInstr;
2810   E = CmpInstr.getParent()->end();
2811   while (!isSafe && ++I != E) {
2812     const MachineInstr &Instr = *I;
2813     for (unsigned IO = 0, EO = Instr.getNumOperands();
2814          !isSafe && IO != EO; ++IO) {
2815       const MachineOperand &MO = Instr.getOperand(IO);
2816       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2817         isSafe = true;
2818         break;
2819       }
2820       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2821         continue;
2822       if (MO.isDef()) {
2823         isSafe = true;
2824         break;
2825       }
2826       // Condition code is after the operand before CPSR except for VSELs.
2827       ARMCC::CondCodes CC;
2828       bool IsInstrVSel = true;
2829       switch (Instr.getOpcode()) {
2830       default:
2831         IsInstrVSel = false;
2832         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2833         break;
2834       case ARM::VSELEQD:
2835       case ARM::VSELEQS:
2836         CC = ARMCC::EQ;
2837         break;
2838       case ARM::VSELGTD:
2839       case ARM::VSELGTS:
2840         CC = ARMCC::GT;
2841         break;
2842       case ARM::VSELGED:
2843       case ARM::VSELGES:
2844         CC = ARMCC::GE;
2845         break;
2846       case ARM::VSELVSS:
2847       case ARM::VSELVSD:
2848         CC = ARMCC::VS;
2849         break;
2850       }
2851 
2852       if (SubAdd) {
2853         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2854         // on CMP needs to be updated to be based on SUB.
2855         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
2856         // needs to be modified.
2857         // Push the condition code operands to OperandsToUpdate.
2858         // If it is safe to remove CmpInstr, the condition code of these
2859         // operands will be modified.
2860         unsigned Opc = SubAdd->getOpcode();
2861         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
2862                      Opc == ARM::SUBri || Opc == ARM::t2SUBri;
2863         if (!IsSub || (SrcReg2 != 0 && SubAdd->getOperand(1).getReg() == SrcReg2 &&
2864                        SubAdd->getOperand(2).getReg() == SrcReg)) {
2865           // VSel doesn't support condition code update.
2866           if (IsInstrVSel)
2867             return false;
2868           // Ensure we can swap the condition.
2869           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
2870           if (NewCC == ARMCC::AL)
2871             return false;
2872           OperandsToUpdate.push_back(
2873               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2874         }
2875       } else {
2876         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
2877         switch (CC) {
2878         case ARMCC::EQ: // Z
2879         case ARMCC::NE: // Z
2880         case ARMCC::MI: // N
2881         case ARMCC::PL: // N
2882         case ARMCC::AL: // none
2883           // CPSR can be used multiple times, we should continue.
2884           break;
2885         case ARMCC::HS: // C
2886         case ARMCC::LO: // C
2887         case ARMCC::VS: // V
2888         case ARMCC::VC: // V
2889         case ARMCC::HI: // C Z
2890         case ARMCC::LS: // C Z
2891         case ARMCC::GE: // N V
2892         case ARMCC::LT: // N V
2893         case ARMCC::GT: // Z N V
2894         case ARMCC::LE: // Z N V
2895           // The instruction uses the V bit or C bit which is not safe.
2896           return false;
2897         }
2898       }
2899     }
2900   }
2901 
2902   // If CPSR is not killed nor re-defined, we should check whether it is
2903   // live-out. If it is live-out, do not optimize.
2904   if (!isSafe) {
2905     MachineBasicBlock *MBB = CmpInstr.getParent();
2906     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2907              SE = MBB->succ_end(); SI != SE; ++SI)
2908       if ((*SI)->isLiveIn(ARM::CPSR))
2909         return false;
2910   }
2911 
2912   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
2913   // set CPSR so this is represented as an explicit output)
2914   if (!IsThumb1) {
2915     MI->getOperand(5).setReg(ARM::CPSR);
2916     MI->getOperand(5).setIsDef(true);
2917   }
2918   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
2919   CmpInstr.eraseFromParent();
2920 
2921   // Modify the condition code of operands in OperandsToUpdate.
2922   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2923   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2924   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2925     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2926 
2927   return true;
2928 }
2929 
2930 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
2931   // Do not sink MI if it might be used to optimize a redundant compare.
2932   // We heuristically only look at the instruction immediately following MI to
2933   // avoid potentially searching the entire basic block.
2934   if (isPredicated(MI))
2935     return true;
2936   MachineBasicBlock::const_iterator Next = &MI;
2937   ++Next;
2938   unsigned SrcReg, SrcReg2;
2939   int CmpMask, CmpValue;
2940   if (Next != MI.getParent()->end() &&
2941       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
2942       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI))
2943     return false;
2944   return true;
2945 }
2946 
2947 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2948                                      unsigned Reg,
2949                                      MachineRegisterInfo *MRI) const {
2950   // Fold large immediates into add, sub, or, xor.
2951   unsigned DefOpc = DefMI.getOpcode();
2952   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2953     return false;
2954   if (!DefMI.getOperand(1).isImm())
2955     // Could be t2MOVi32imm @xx
2956     return false;
2957 
2958   if (!MRI->hasOneNonDBGUse(Reg))
2959     return false;
2960 
2961   const MCInstrDesc &DefMCID = DefMI.getDesc();
2962   if (DefMCID.hasOptionalDef()) {
2963     unsigned NumOps = DefMCID.getNumOperands();
2964     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
2965     if (MO.getReg() == ARM::CPSR && !MO.isDead())
2966       // If DefMI defines CPSR and it is not dead, it's obviously not safe
2967       // to delete DefMI.
2968       return false;
2969   }
2970 
2971   const MCInstrDesc &UseMCID = UseMI.getDesc();
2972   if (UseMCID.hasOptionalDef()) {
2973     unsigned NumOps = UseMCID.getNumOperands();
2974     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
2975       // If the instruction sets the flag, do not attempt this optimization
2976       // since it may change the semantics of the code.
2977       return false;
2978   }
2979 
2980   unsigned UseOpc = UseMI.getOpcode();
2981   unsigned NewUseOpc = 0;
2982   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
2983   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2984   bool Commute = false;
2985   switch (UseOpc) {
2986   default: return false;
2987   case ARM::SUBrr:
2988   case ARM::ADDrr:
2989   case ARM::ORRrr:
2990   case ARM::EORrr:
2991   case ARM::t2SUBrr:
2992   case ARM::t2ADDrr:
2993   case ARM::t2ORRrr:
2994   case ARM::t2EORrr: {
2995     Commute = UseMI.getOperand(2).getReg() != Reg;
2996     switch (UseOpc) {
2997     default: break;
2998     case ARM::ADDrr:
2999     case ARM::SUBrr:
3000       if (UseOpc == ARM::SUBrr && Commute)
3001         return false;
3002 
3003       // ADD/SUB are special because they're essentially the same operation, so
3004       // we can handle a larger range of immediates.
3005       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3006         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3007       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3008         ImmVal = -ImmVal;
3009         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3010       } else
3011         return false;
3012       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3013       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3014       break;
3015     case ARM::ORRrr:
3016     case ARM::EORrr:
3017       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3018         return false;
3019       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3020       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3021       switch (UseOpc) {
3022       default: break;
3023       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3024       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3025       }
3026       break;
3027     case ARM::t2ADDrr:
3028     case ARM::t2SUBrr:
3029       if (UseOpc == ARM::t2SUBrr && Commute)
3030         return false;
3031 
3032       // ADD/SUB are special because they're essentially the same operation, so
3033       // we can handle a larger range of immediates.
3034       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3035         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
3036       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3037         ImmVal = -ImmVal;
3038         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
3039       } else
3040         return false;
3041       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3042       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3043       break;
3044     case ARM::t2ORRrr:
3045     case ARM::t2EORrr:
3046       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3047         return false;
3048       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3049       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3050       switch (UseOpc) {
3051       default: break;
3052       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3053       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3054       }
3055       break;
3056     }
3057   }
3058   }
3059 
3060   unsigned OpIdx = Commute ? 2 : 1;
3061   unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
3062   bool isKill = UseMI.getOperand(OpIdx).isKill();
3063   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
3064   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3065           NewReg)
3066       .addReg(Reg1, getKillRegState(isKill))
3067       .addImm(SOImmValV1)
3068       .add(predOps(ARMCC::AL))
3069       .add(condCodeOp());
3070   UseMI.setDesc(get(NewUseOpc));
3071   UseMI.getOperand(1).setReg(NewReg);
3072   UseMI.getOperand(1).setIsKill();
3073   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3074   DefMI.eraseFromParent();
3075   return true;
3076 }
3077 
3078 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3079                                         const MachineInstr &MI) {
3080   switch (MI.getOpcode()) {
3081   default: {
3082     const MCInstrDesc &Desc = MI.getDesc();
3083     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3084     assert(UOps >= 0 && "bad # UOps");
3085     return UOps;
3086   }
3087 
3088   case ARM::LDRrs:
3089   case ARM::LDRBrs:
3090   case ARM::STRrs:
3091   case ARM::STRBrs: {
3092     unsigned ShOpVal = MI.getOperand(3).getImm();
3093     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3094     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3095     if (!isSub &&
3096         (ShImm == 0 ||
3097          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3098           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3099       return 1;
3100     return 2;
3101   }
3102 
3103   case ARM::LDRH:
3104   case ARM::STRH: {
3105     if (!MI.getOperand(2).getReg())
3106       return 1;
3107 
3108     unsigned ShOpVal = MI.getOperand(3).getImm();
3109     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3110     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3111     if (!isSub &&
3112         (ShImm == 0 ||
3113          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3114           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3115       return 1;
3116     return 2;
3117   }
3118 
3119   case ARM::LDRSB:
3120   case ARM::LDRSH:
3121     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3122 
3123   case ARM::LDRSB_POST:
3124   case ARM::LDRSH_POST: {
3125     unsigned Rt = MI.getOperand(0).getReg();
3126     unsigned Rm = MI.getOperand(3).getReg();
3127     return (Rt == Rm) ? 4 : 3;
3128   }
3129 
3130   case ARM::LDR_PRE_REG:
3131   case ARM::LDRB_PRE_REG: {
3132     unsigned Rt = MI.getOperand(0).getReg();
3133     unsigned Rm = MI.getOperand(3).getReg();
3134     if (Rt == Rm)
3135       return 3;
3136     unsigned ShOpVal = MI.getOperand(4).getImm();
3137     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3138     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3139     if (!isSub &&
3140         (ShImm == 0 ||
3141          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3142           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3143       return 2;
3144     return 3;
3145   }
3146 
3147   case ARM::STR_PRE_REG:
3148   case ARM::STRB_PRE_REG: {
3149     unsigned ShOpVal = MI.getOperand(4).getImm();
3150     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3151     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3152     if (!isSub &&
3153         (ShImm == 0 ||
3154          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3155           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3156       return 2;
3157     return 3;
3158   }
3159 
3160   case ARM::LDRH_PRE:
3161   case ARM::STRH_PRE: {
3162     unsigned Rt = MI.getOperand(0).getReg();
3163     unsigned Rm = MI.getOperand(3).getReg();
3164     if (!Rm)
3165       return 2;
3166     if (Rt == Rm)
3167       return 3;
3168     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3169   }
3170 
3171   case ARM::LDR_POST_REG:
3172   case ARM::LDRB_POST_REG:
3173   case ARM::LDRH_POST: {
3174     unsigned Rt = MI.getOperand(0).getReg();
3175     unsigned Rm = MI.getOperand(3).getReg();
3176     return (Rt == Rm) ? 3 : 2;
3177   }
3178 
3179   case ARM::LDR_PRE_IMM:
3180   case ARM::LDRB_PRE_IMM:
3181   case ARM::LDR_POST_IMM:
3182   case ARM::LDRB_POST_IMM:
3183   case ARM::STRB_POST_IMM:
3184   case ARM::STRB_POST_REG:
3185   case ARM::STRB_PRE_IMM:
3186   case ARM::STRH_POST:
3187   case ARM::STR_POST_IMM:
3188   case ARM::STR_POST_REG:
3189   case ARM::STR_PRE_IMM:
3190     return 2;
3191 
3192   case ARM::LDRSB_PRE:
3193   case ARM::LDRSH_PRE: {
3194     unsigned Rm = MI.getOperand(3).getReg();
3195     if (Rm == 0)
3196       return 3;
3197     unsigned Rt = MI.getOperand(0).getReg();
3198     if (Rt == Rm)
3199       return 4;
3200     unsigned ShOpVal = MI.getOperand(4).getImm();
3201     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3202     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3203     if (!isSub &&
3204         (ShImm == 0 ||
3205          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3206           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3207       return 3;
3208     return 4;
3209   }
3210 
3211   case ARM::LDRD: {
3212     unsigned Rt = MI.getOperand(0).getReg();
3213     unsigned Rn = MI.getOperand(2).getReg();
3214     unsigned Rm = MI.getOperand(3).getReg();
3215     if (Rm)
3216       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3217                                                                           : 3;
3218     return (Rt == Rn) ? 3 : 2;
3219   }
3220 
3221   case ARM::STRD: {
3222     unsigned Rm = MI.getOperand(3).getReg();
3223     if (Rm)
3224       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3225                                                                           : 3;
3226     return 2;
3227   }
3228 
3229   case ARM::LDRD_POST:
3230   case ARM::t2LDRD_POST:
3231     return 3;
3232 
3233   case ARM::STRD_POST:
3234   case ARM::t2STRD_POST:
3235     return 4;
3236 
3237   case ARM::LDRD_PRE: {
3238     unsigned Rt = MI.getOperand(0).getReg();
3239     unsigned Rn = MI.getOperand(3).getReg();
3240     unsigned Rm = MI.getOperand(4).getReg();
3241     if (Rm)
3242       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3243                                                                           : 4;
3244     return (Rt == Rn) ? 4 : 3;
3245   }
3246 
3247   case ARM::t2LDRD_PRE: {
3248     unsigned Rt = MI.getOperand(0).getReg();
3249     unsigned Rn = MI.getOperand(3).getReg();
3250     return (Rt == Rn) ? 4 : 3;
3251   }
3252 
3253   case ARM::STRD_PRE: {
3254     unsigned Rm = MI.getOperand(4).getReg();
3255     if (Rm)
3256       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3257                                                                           : 4;
3258     return 3;
3259   }
3260 
3261   case ARM::t2STRD_PRE:
3262     return 3;
3263 
3264   case ARM::t2LDR_POST:
3265   case ARM::t2LDRB_POST:
3266   case ARM::t2LDRB_PRE:
3267   case ARM::t2LDRSBi12:
3268   case ARM::t2LDRSBi8:
3269   case ARM::t2LDRSBpci:
3270   case ARM::t2LDRSBs:
3271   case ARM::t2LDRH_POST:
3272   case ARM::t2LDRH_PRE:
3273   case ARM::t2LDRSBT:
3274   case ARM::t2LDRSB_POST:
3275   case ARM::t2LDRSB_PRE:
3276   case ARM::t2LDRSH_POST:
3277   case ARM::t2LDRSH_PRE:
3278   case ARM::t2LDRSHi12:
3279   case ARM::t2LDRSHi8:
3280   case ARM::t2LDRSHpci:
3281   case ARM::t2LDRSHs:
3282     return 2;
3283 
3284   case ARM::t2LDRDi8: {
3285     unsigned Rt = MI.getOperand(0).getReg();
3286     unsigned Rn = MI.getOperand(2).getReg();
3287     return (Rt == Rn) ? 3 : 2;
3288   }
3289 
3290   case ARM::t2STRB_POST:
3291   case ARM::t2STRB_PRE:
3292   case ARM::t2STRBs:
3293   case ARM::t2STRDi8:
3294   case ARM::t2STRH_POST:
3295   case ARM::t2STRH_PRE:
3296   case ARM::t2STRHs:
3297   case ARM::t2STR_POST:
3298   case ARM::t2STR_PRE:
3299   case ARM::t2STRs:
3300     return 2;
3301   }
3302 }
3303 
3304 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3305 // can't be easily determined return 0 (missing MachineMemOperand).
3306 //
3307 // FIXME: The current MachineInstr design does not support relying on machine
3308 // mem operands to determine the width of a memory access. Instead, we expect
3309 // the target to provide this information based on the instruction opcode and
3310 // operands. However, using MachineMemOperand is the best solution now for
3311 // two reasons:
3312 //
3313 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3314 // operands. This is much more dangerous than using the MachineMemOperand
3315 // sizes because CodeGen passes can insert/remove optional machine operands. In
3316 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3317 // postRA passes as well.
3318 //
3319 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3320 // machine model that calls this should handle the unknown (zero size) case.
3321 //
3322 // Long term, we should require a target hook that verifies MachineMemOperand
3323 // sizes during MC lowering. That target hook should be local to MC lowering
3324 // because we can't ensure that it is aware of other MI forms. Doing this will
3325 // ensure that MachineMemOperands are correctly propagated through all passes.
3326 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3327   unsigned Size = 0;
3328   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3329                                   E = MI.memoperands_end();
3330        I != E; ++I) {
3331     Size += (*I)->getSize();
3332   }
3333   return Size / 4;
3334 }
3335 
3336 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3337                                                     unsigned NumRegs) {
3338   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3339   switch (Opc) {
3340   default:
3341     break;
3342   case ARM::VLDMDIA_UPD:
3343   case ARM::VLDMDDB_UPD:
3344   case ARM::VLDMSIA_UPD:
3345   case ARM::VLDMSDB_UPD:
3346   case ARM::VSTMDIA_UPD:
3347   case ARM::VSTMDDB_UPD:
3348   case ARM::VSTMSIA_UPD:
3349   case ARM::VSTMSDB_UPD:
3350   case ARM::LDMIA_UPD:
3351   case ARM::LDMDA_UPD:
3352   case ARM::LDMDB_UPD:
3353   case ARM::LDMIB_UPD:
3354   case ARM::STMIA_UPD:
3355   case ARM::STMDA_UPD:
3356   case ARM::STMDB_UPD:
3357   case ARM::STMIB_UPD:
3358   case ARM::tLDMIA_UPD:
3359   case ARM::tSTMIA_UPD:
3360   case ARM::t2LDMIA_UPD:
3361   case ARM::t2LDMDB_UPD:
3362   case ARM::t2STMIA_UPD:
3363   case ARM::t2STMDB_UPD:
3364     ++UOps; // One for base register writeback.
3365     break;
3366   case ARM::LDMIA_RET:
3367   case ARM::tPOP_RET:
3368   case ARM::t2LDMIA_RET:
3369     UOps += 2; // One for base reg wb, one for write to pc.
3370     break;
3371   }
3372   return UOps;
3373 }
3374 
3375 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3376                                           const MachineInstr &MI) const {
3377   if (!ItinData || ItinData->isEmpty())
3378     return 1;
3379 
3380   const MCInstrDesc &Desc = MI.getDesc();
3381   unsigned Class = Desc.getSchedClass();
3382   int ItinUOps = ItinData->getNumMicroOps(Class);
3383   if (ItinUOps >= 0) {
3384     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3385       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3386 
3387     return ItinUOps;
3388   }
3389 
3390   unsigned Opc = MI.getOpcode();
3391   switch (Opc) {
3392   default:
3393     llvm_unreachable("Unexpected multi-uops instruction!");
3394   case ARM::VLDMQIA:
3395   case ARM::VSTMQIA:
3396     return 2;
3397 
3398   // The number of uOps for load / store multiple are determined by the number
3399   // registers.
3400   //
3401   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3402   // same cycle. The scheduling for the first load / store must be done
3403   // separately by assuming the address is not 64-bit aligned.
3404   //
3405   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3406   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3407   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3408   case ARM::VLDMDIA:
3409   case ARM::VLDMDIA_UPD:
3410   case ARM::VLDMDDB_UPD:
3411   case ARM::VLDMSIA:
3412   case ARM::VLDMSIA_UPD:
3413   case ARM::VLDMSDB_UPD:
3414   case ARM::VSTMDIA:
3415   case ARM::VSTMDIA_UPD:
3416   case ARM::VSTMDDB_UPD:
3417   case ARM::VSTMSIA:
3418   case ARM::VSTMSIA_UPD:
3419   case ARM::VSTMSDB_UPD: {
3420     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3421     return (NumRegs / 2) + (NumRegs % 2) + 1;
3422   }
3423 
3424   case ARM::LDMIA_RET:
3425   case ARM::LDMIA:
3426   case ARM::LDMDA:
3427   case ARM::LDMDB:
3428   case ARM::LDMIB:
3429   case ARM::LDMIA_UPD:
3430   case ARM::LDMDA_UPD:
3431   case ARM::LDMDB_UPD:
3432   case ARM::LDMIB_UPD:
3433   case ARM::STMIA:
3434   case ARM::STMDA:
3435   case ARM::STMDB:
3436   case ARM::STMIB:
3437   case ARM::STMIA_UPD:
3438   case ARM::STMDA_UPD:
3439   case ARM::STMDB_UPD:
3440   case ARM::STMIB_UPD:
3441   case ARM::tLDMIA:
3442   case ARM::tLDMIA_UPD:
3443   case ARM::tSTMIA_UPD:
3444   case ARM::tPOP_RET:
3445   case ARM::tPOP:
3446   case ARM::tPUSH:
3447   case ARM::t2LDMIA_RET:
3448   case ARM::t2LDMIA:
3449   case ARM::t2LDMDB:
3450   case ARM::t2LDMIA_UPD:
3451   case ARM::t2LDMDB_UPD:
3452   case ARM::t2STMIA:
3453   case ARM::t2STMDB:
3454   case ARM::t2STMIA_UPD:
3455   case ARM::t2STMDB_UPD: {
3456     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3457     switch (Subtarget.getLdStMultipleTiming()) {
3458     case ARMSubtarget::SingleIssuePlusExtras:
3459       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3460     case ARMSubtarget::SingleIssue:
3461       // Assume the worst.
3462       return NumRegs;
3463     case ARMSubtarget::DoubleIssue: {
3464       if (NumRegs < 4)
3465         return 2;
3466       // 4 registers would be issued: 2, 2.
3467       // 5 registers would be issued: 2, 2, 1.
3468       unsigned UOps = (NumRegs / 2);
3469       if (NumRegs % 2)
3470         ++UOps;
3471       return UOps;
3472     }
3473     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3474       unsigned UOps = (NumRegs / 2);
3475       // If there are odd number of registers or if it's not 64-bit aligned,
3476       // then it takes an extra AGU (Address Generation Unit) cycle.
3477       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3478           (*MI.memoperands_begin())->getAlignment() < 8)
3479         ++UOps;
3480       return UOps;
3481       }
3482     }
3483   }
3484   }
3485   llvm_unreachable("Didn't find the number of microops");
3486 }
3487 
3488 int
3489 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3490                                   const MCInstrDesc &DefMCID,
3491                                   unsigned DefClass,
3492                                   unsigned DefIdx, unsigned DefAlign) const {
3493   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3494   if (RegNo <= 0)
3495     // Def is the address writeback.
3496     return ItinData->getOperandCycle(DefClass, DefIdx);
3497 
3498   int DefCycle;
3499   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3500     // (regno / 2) + (regno % 2) + 1
3501     DefCycle = RegNo / 2 + 1;
3502     if (RegNo % 2)
3503       ++DefCycle;
3504   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3505     DefCycle = RegNo;
3506     bool isSLoad = false;
3507 
3508     switch (DefMCID.getOpcode()) {
3509     default: break;
3510     case ARM::VLDMSIA:
3511     case ARM::VLDMSIA_UPD:
3512     case ARM::VLDMSDB_UPD:
3513       isSLoad = true;
3514       break;
3515     }
3516 
3517     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3518     // then it takes an extra cycle.
3519     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3520       ++DefCycle;
3521   } else {
3522     // Assume the worst.
3523     DefCycle = RegNo + 2;
3524   }
3525 
3526   return DefCycle;
3527 }
3528 
3529 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3530   unsigned BaseReg = MI.getOperand(0).getReg();
3531   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3532     const auto &Op = MI.getOperand(i);
3533     if (Op.isReg() && Op.getReg() == BaseReg)
3534       return true;
3535   }
3536   return false;
3537 }
3538 unsigned
3539 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3540   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3541   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3542   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3543 }
3544 
3545 int
3546 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3547                                  const MCInstrDesc &DefMCID,
3548                                  unsigned DefClass,
3549                                  unsigned DefIdx, unsigned DefAlign) const {
3550   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3551   if (RegNo <= 0)
3552     // Def is the address writeback.
3553     return ItinData->getOperandCycle(DefClass, DefIdx);
3554 
3555   int DefCycle;
3556   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3557     // 4 registers would be issued: 1, 2, 1.
3558     // 5 registers would be issued: 1, 2, 2.
3559     DefCycle = RegNo / 2;
3560     if (DefCycle < 1)
3561       DefCycle = 1;
3562     // Result latency is issue cycle + 2: E2.
3563     DefCycle += 2;
3564   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3565     DefCycle = (RegNo / 2);
3566     // If there are odd number of registers or if it's not 64-bit aligned,
3567     // then it takes an extra AGU (Address Generation Unit) cycle.
3568     if ((RegNo % 2) || DefAlign < 8)
3569       ++DefCycle;
3570     // Result latency is AGU cycles + 2.
3571     DefCycle += 2;
3572   } else {
3573     // Assume the worst.
3574     DefCycle = RegNo + 2;
3575   }
3576 
3577   return DefCycle;
3578 }
3579 
3580 int
3581 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3582                                   const MCInstrDesc &UseMCID,
3583                                   unsigned UseClass,
3584                                   unsigned UseIdx, unsigned UseAlign) const {
3585   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3586   if (RegNo <= 0)
3587     return ItinData->getOperandCycle(UseClass, UseIdx);
3588 
3589   int UseCycle;
3590   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3591     // (regno / 2) + (regno % 2) + 1
3592     UseCycle = RegNo / 2 + 1;
3593     if (RegNo % 2)
3594       ++UseCycle;
3595   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3596     UseCycle = RegNo;
3597     bool isSStore = false;
3598 
3599     switch (UseMCID.getOpcode()) {
3600     default: break;
3601     case ARM::VSTMSIA:
3602     case ARM::VSTMSIA_UPD:
3603     case ARM::VSTMSDB_UPD:
3604       isSStore = true;
3605       break;
3606     }
3607 
3608     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3609     // then it takes an extra cycle.
3610     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3611       ++UseCycle;
3612   } else {
3613     // Assume the worst.
3614     UseCycle = RegNo + 2;
3615   }
3616 
3617   return UseCycle;
3618 }
3619 
3620 int
3621 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3622                                  const MCInstrDesc &UseMCID,
3623                                  unsigned UseClass,
3624                                  unsigned UseIdx, unsigned UseAlign) const {
3625   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3626   if (RegNo <= 0)
3627     return ItinData->getOperandCycle(UseClass, UseIdx);
3628 
3629   int UseCycle;
3630   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3631     UseCycle = RegNo / 2;
3632     if (UseCycle < 2)
3633       UseCycle = 2;
3634     // Read in E3.
3635     UseCycle += 2;
3636   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3637     UseCycle = (RegNo / 2);
3638     // If there are odd number of registers or if it's not 64-bit aligned,
3639     // then it takes an extra AGU (Address Generation Unit) cycle.
3640     if ((RegNo % 2) || UseAlign < 8)
3641       ++UseCycle;
3642   } else {
3643     // Assume the worst.
3644     UseCycle = 1;
3645   }
3646   return UseCycle;
3647 }
3648 
3649 int
3650 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3651                                     const MCInstrDesc &DefMCID,
3652                                     unsigned DefIdx, unsigned DefAlign,
3653                                     const MCInstrDesc &UseMCID,
3654                                     unsigned UseIdx, unsigned UseAlign) const {
3655   unsigned DefClass = DefMCID.getSchedClass();
3656   unsigned UseClass = UseMCID.getSchedClass();
3657 
3658   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3659     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3660 
3661   // This may be a def / use of a variable_ops instruction, the operand
3662   // latency might be determinable dynamically. Let the target try to
3663   // figure it out.
3664   int DefCycle = -1;
3665   bool LdmBypass = false;
3666   switch (DefMCID.getOpcode()) {
3667   default:
3668     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3669     break;
3670 
3671   case ARM::VLDMDIA:
3672   case ARM::VLDMDIA_UPD:
3673   case ARM::VLDMDDB_UPD:
3674   case ARM::VLDMSIA:
3675   case ARM::VLDMSIA_UPD:
3676   case ARM::VLDMSDB_UPD:
3677     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3678     break;
3679 
3680   case ARM::LDMIA_RET:
3681   case ARM::LDMIA:
3682   case ARM::LDMDA:
3683   case ARM::LDMDB:
3684   case ARM::LDMIB:
3685   case ARM::LDMIA_UPD:
3686   case ARM::LDMDA_UPD:
3687   case ARM::LDMDB_UPD:
3688   case ARM::LDMIB_UPD:
3689   case ARM::tLDMIA:
3690   case ARM::tLDMIA_UPD:
3691   case ARM::tPUSH:
3692   case ARM::t2LDMIA_RET:
3693   case ARM::t2LDMIA:
3694   case ARM::t2LDMDB:
3695   case ARM::t2LDMIA_UPD:
3696   case ARM::t2LDMDB_UPD:
3697     LdmBypass = true;
3698     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3699     break;
3700   }
3701 
3702   if (DefCycle == -1)
3703     // We can't seem to determine the result latency of the def, assume it's 2.
3704     DefCycle = 2;
3705 
3706   int UseCycle = -1;
3707   switch (UseMCID.getOpcode()) {
3708   default:
3709     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3710     break;
3711 
3712   case ARM::VSTMDIA:
3713   case ARM::VSTMDIA_UPD:
3714   case ARM::VSTMDDB_UPD:
3715   case ARM::VSTMSIA:
3716   case ARM::VSTMSIA_UPD:
3717   case ARM::VSTMSDB_UPD:
3718     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3719     break;
3720 
3721   case ARM::STMIA:
3722   case ARM::STMDA:
3723   case ARM::STMDB:
3724   case ARM::STMIB:
3725   case ARM::STMIA_UPD:
3726   case ARM::STMDA_UPD:
3727   case ARM::STMDB_UPD:
3728   case ARM::STMIB_UPD:
3729   case ARM::tSTMIA_UPD:
3730   case ARM::tPOP_RET:
3731   case ARM::tPOP:
3732   case ARM::t2STMIA:
3733   case ARM::t2STMDB:
3734   case ARM::t2STMIA_UPD:
3735   case ARM::t2STMDB_UPD:
3736     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3737     break;
3738   }
3739 
3740   if (UseCycle == -1)
3741     // Assume it's read in the first stage.
3742     UseCycle = 1;
3743 
3744   UseCycle = DefCycle - UseCycle + 1;
3745   if (UseCycle > 0) {
3746     if (LdmBypass) {
3747       // It's a variable_ops instruction so we can't use DefIdx here. Just use
3748       // first def operand.
3749       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3750                                           UseClass, UseIdx))
3751         --UseCycle;
3752     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3753                                                UseClass, UseIdx)) {
3754       --UseCycle;
3755     }
3756   }
3757 
3758   return UseCycle;
3759 }
3760 
3761 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3762                                            const MachineInstr *MI, unsigned Reg,
3763                                            unsigned &DefIdx, unsigned &Dist) {
3764   Dist = 0;
3765 
3766   MachineBasicBlock::const_iterator I = MI; ++I;
3767   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3768   assert(II->isInsideBundle() && "Empty bundle?");
3769 
3770   int Idx = -1;
3771   while (II->isInsideBundle()) {
3772     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3773     if (Idx != -1)
3774       break;
3775     --II;
3776     ++Dist;
3777   }
3778 
3779   assert(Idx != -1 && "Cannot find bundled definition!");
3780   DefIdx = Idx;
3781   return &*II;
3782 }
3783 
3784 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3785                                            const MachineInstr &MI, unsigned Reg,
3786                                            unsigned &UseIdx, unsigned &Dist) {
3787   Dist = 0;
3788 
3789   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
3790   assert(II->isInsideBundle() && "Empty bundle?");
3791   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
3792 
3793   // FIXME: This doesn't properly handle multiple uses.
3794   int Idx = -1;
3795   while (II != E && II->isInsideBundle()) {
3796     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3797     if (Idx != -1)
3798       break;
3799     if (II->getOpcode() != ARM::t2IT)
3800       ++Dist;
3801     ++II;
3802   }
3803 
3804   if (Idx == -1) {
3805     Dist = 0;
3806     return nullptr;
3807   }
3808 
3809   UseIdx = Idx;
3810   return &*II;
3811 }
3812 
3813 /// Return the number of cycles to add to (or subtract from) the static
3814 /// itinerary based on the def opcode and alignment. The caller will ensure that
3815 /// adjusted latency is at least one cycle.
3816 static int adjustDefLatency(const ARMSubtarget &Subtarget,
3817                             const MachineInstr &DefMI,
3818                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
3819   int Adjust = 0;
3820   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3821     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3822     // variants are one cycle cheaper.
3823     switch (DefMCID.getOpcode()) {
3824     default: break;
3825     case ARM::LDRrs:
3826     case ARM::LDRBrs: {
3827       unsigned ShOpVal = DefMI.getOperand(3).getImm();
3828       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3829       if (ShImm == 0 ||
3830           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3831         --Adjust;
3832       break;
3833     }
3834     case ARM::t2LDRs:
3835     case ARM::t2LDRBs:
3836     case ARM::t2LDRHs:
3837     case ARM::t2LDRSHs: {
3838       // Thumb2 mode: lsl only.
3839       unsigned ShAmt = DefMI.getOperand(3).getImm();
3840       if (ShAmt == 0 || ShAmt == 2)
3841         --Adjust;
3842       break;
3843     }
3844     }
3845   } else if (Subtarget.isSwift()) {
3846     // FIXME: Properly handle all of the latency adjustments for address
3847     // writeback.
3848     switch (DefMCID.getOpcode()) {
3849     default: break;
3850     case ARM::LDRrs:
3851     case ARM::LDRBrs: {
3852       unsigned ShOpVal = DefMI.getOperand(3).getImm();
3853       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3854       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3855       if (!isSub &&
3856           (ShImm == 0 ||
3857            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3858             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3859         Adjust -= 2;
3860       else if (!isSub &&
3861                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3862         --Adjust;
3863       break;
3864     }
3865     case ARM::t2LDRs:
3866     case ARM::t2LDRBs:
3867     case ARM::t2LDRHs:
3868     case ARM::t2LDRSHs: {
3869       // Thumb2 mode: lsl only.
3870       unsigned ShAmt = DefMI.getOperand(3).getImm();
3871       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3872         Adjust -= 2;
3873       break;
3874     }
3875     }
3876   }
3877 
3878   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
3879     switch (DefMCID.getOpcode()) {
3880     default: break;
3881     case ARM::VLD1q8:
3882     case ARM::VLD1q16:
3883     case ARM::VLD1q32:
3884     case ARM::VLD1q64:
3885     case ARM::VLD1q8wb_fixed:
3886     case ARM::VLD1q16wb_fixed:
3887     case ARM::VLD1q32wb_fixed:
3888     case ARM::VLD1q64wb_fixed:
3889     case ARM::VLD1q8wb_register:
3890     case ARM::VLD1q16wb_register:
3891     case ARM::VLD1q32wb_register:
3892     case ARM::VLD1q64wb_register:
3893     case ARM::VLD2d8:
3894     case ARM::VLD2d16:
3895     case ARM::VLD2d32:
3896     case ARM::VLD2q8:
3897     case ARM::VLD2q16:
3898     case ARM::VLD2q32:
3899     case ARM::VLD2d8wb_fixed:
3900     case ARM::VLD2d16wb_fixed:
3901     case ARM::VLD2d32wb_fixed:
3902     case ARM::VLD2q8wb_fixed:
3903     case ARM::VLD2q16wb_fixed:
3904     case ARM::VLD2q32wb_fixed:
3905     case ARM::VLD2d8wb_register:
3906     case ARM::VLD2d16wb_register:
3907     case ARM::VLD2d32wb_register:
3908     case ARM::VLD2q8wb_register:
3909     case ARM::VLD2q16wb_register:
3910     case ARM::VLD2q32wb_register:
3911     case ARM::VLD3d8:
3912     case ARM::VLD3d16:
3913     case ARM::VLD3d32:
3914     case ARM::VLD1d64T:
3915     case ARM::VLD3d8_UPD:
3916     case ARM::VLD3d16_UPD:
3917     case ARM::VLD3d32_UPD:
3918     case ARM::VLD1d64Twb_fixed:
3919     case ARM::VLD1d64Twb_register:
3920     case ARM::VLD3q8_UPD:
3921     case ARM::VLD3q16_UPD:
3922     case ARM::VLD3q32_UPD:
3923     case ARM::VLD4d8:
3924     case ARM::VLD4d16:
3925     case ARM::VLD4d32:
3926     case ARM::VLD1d64Q:
3927     case ARM::VLD4d8_UPD:
3928     case ARM::VLD4d16_UPD:
3929     case ARM::VLD4d32_UPD:
3930     case ARM::VLD1d64Qwb_fixed:
3931     case ARM::VLD1d64Qwb_register:
3932     case ARM::VLD4q8_UPD:
3933     case ARM::VLD4q16_UPD:
3934     case ARM::VLD4q32_UPD:
3935     case ARM::VLD1DUPq8:
3936     case ARM::VLD1DUPq16:
3937     case ARM::VLD1DUPq32:
3938     case ARM::VLD1DUPq8wb_fixed:
3939     case ARM::VLD1DUPq16wb_fixed:
3940     case ARM::VLD1DUPq32wb_fixed:
3941     case ARM::VLD1DUPq8wb_register:
3942     case ARM::VLD1DUPq16wb_register:
3943     case ARM::VLD1DUPq32wb_register:
3944     case ARM::VLD2DUPd8:
3945     case ARM::VLD2DUPd16:
3946     case ARM::VLD2DUPd32:
3947     case ARM::VLD2DUPd8wb_fixed:
3948     case ARM::VLD2DUPd16wb_fixed:
3949     case ARM::VLD2DUPd32wb_fixed:
3950     case ARM::VLD2DUPd8wb_register:
3951     case ARM::VLD2DUPd16wb_register:
3952     case ARM::VLD2DUPd32wb_register:
3953     case ARM::VLD4DUPd8:
3954     case ARM::VLD4DUPd16:
3955     case ARM::VLD4DUPd32:
3956     case ARM::VLD4DUPd8_UPD:
3957     case ARM::VLD4DUPd16_UPD:
3958     case ARM::VLD4DUPd32_UPD:
3959     case ARM::VLD1LNd8:
3960     case ARM::VLD1LNd16:
3961     case ARM::VLD1LNd32:
3962     case ARM::VLD1LNd8_UPD:
3963     case ARM::VLD1LNd16_UPD:
3964     case ARM::VLD1LNd32_UPD:
3965     case ARM::VLD2LNd8:
3966     case ARM::VLD2LNd16:
3967     case ARM::VLD2LNd32:
3968     case ARM::VLD2LNq16:
3969     case ARM::VLD2LNq32:
3970     case ARM::VLD2LNd8_UPD:
3971     case ARM::VLD2LNd16_UPD:
3972     case ARM::VLD2LNd32_UPD:
3973     case ARM::VLD2LNq16_UPD:
3974     case ARM::VLD2LNq32_UPD:
3975     case ARM::VLD4LNd8:
3976     case ARM::VLD4LNd16:
3977     case ARM::VLD4LNd32:
3978     case ARM::VLD4LNq16:
3979     case ARM::VLD4LNq32:
3980     case ARM::VLD4LNd8_UPD:
3981     case ARM::VLD4LNd16_UPD:
3982     case ARM::VLD4LNd32_UPD:
3983     case ARM::VLD4LNq16_UPD:
3984     case ARM::VLD4LNq32_UPD:
3985       // If the address is not 64-bit aligned, the latencies of these
3986       // instructions increases by one.
3987       ++Adjust;
3988       break;
3989     }
3990   }
3991   return Adjust;
3992 }
3993 
3994 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3995                                         const MachineInstr &DefMI,
3996                                         unsigned DefIdx,
3997                                         const MachineInstr &UseMI,
3998                                         unsigned UseIdx) const {
3999   // No operand latency. The caller may fall back to getInstrLatency.
4000   if (!ItinData || ItinData->isEmpty())
4001     return -1;
4002 
4003   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4004   unsigned Reg = DefMO.getReg();
4005 
4006   const MachineInstr *ResolvedDefMI = &DefMI;
4007   unsigned DefAdj = 0;
4008   if (DefMI.isBundle())
4009     ResolvedDefMI =
4010         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4011   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4012       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4013     return 1;
4014   }
4015 
4016   const MachineInstr *ResolvedUseMI = &UseMI;
4017   unsigned UseAdj = 0;
4018   if (UseMI.isBundle()) {
4019     ResolvedUseMI =
4020         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4021     if (!ResolvedUseMI)
4022       return -1;
4023   }
4024 
4025   return getOperandLatencyImpl(
4026       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4027       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4028 }
4029 
4030 int ARMBaseInstrInfo::getOperandLatencyImpl(
4031     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4032     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4033     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4034     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4035   if (Reg == ARM::CPSR) {
4036     if (DefMI.getOpcode() == ARM::FMSTAT) {
4037       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4038       return Subtarget.isLikeA9() ? 1 : 20;
4039     }
4040 
4041     // CPSR set and branch can be paired in the same cycle.
4042     if (UseMI.isBranch())
4043       return 0;
4044 
4045     // Otherwise it takes the instruction latency (generally one).
4046     unsigned Latency = getInstrLatency(ItinData, DefMI);
4047 
4048     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4049     // its uses. Instructions which are otherwise scheduled between them may
4050     // incur a code size penalty (not able to use the CPSR setting 16-bit
4051     // instructions).
4052     if (Latency > 0 && Subtarget.isThumb2()) {
4053       const MachineFunction *MF = DefMI.getParent()->getParent();
4054       // FIXME: Use Function::optForSize().
4055       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4056         --Latency;
4057     }
4058     return Latency;
4059   }
4060 
4061   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4062     return -1;
4063 
4064   unsigned DefAlign = DefMI.hasOneMemOperand()
4065                           ? (*DefMI.memoperands_begin())->getAlignment()
4066                           : 0;
4067   unsigned UseAlign = UseMI.hasOneMemOperand()
4068                           ? (*UseMI.memoperands_begin())->getAlignment()
4069                           : 0;
4070 
4071   // Get the itinerary's latency if possible, and handle variable_ops.
4072   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4073                                   UseIdx, UseAlign);
4074   // Unable to find operand latency. The caller may resort to getInstrLatency.
4075   if (Latency < 0)
4076     return Latency;
4077 
4078   // Adjust for IT block position.
4079   int Adj = DefAdj + UseAdj;
4080 
4081   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4082   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4083   if (Adj >= 0 || (int)Latency > -Adj) {
4084     return Latency + Adj;
4085   }
4086   // Return the itinerary latency, which may be zero but not less than zero.
4087   return Latency;
4088 }
4089 
4090 int
4091 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4092                                     SDNode *DefNode, unsigned DefIdx,
4093                                     SDNode *UseNode, unsigned UseIdx) const {
4094   if (!DefNode->isMachineOpcode())
4095     return 1;
4096 
4097   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4098 
4099   if (isZeroCost(DefMCID.Opcode))
4100     return 0;
4101 
4102   if (!ItinData || ItinData->isEmpty())
4103     return DefMCID.mayLoad() ? 3 : 1;
4104 
4105   if (!UseNode->isMachineOpcode()) {
4106     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4107     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4108     int Threshold = 1 + Adj;
4109     return Latency <= Threshold ? 1 : Latency - Adj;
4110   }
4111 
4112   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4113   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
4114   unsigned DefAlign = !DefMN->memoperands_empty()
4115     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4116   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
4117   unsigned UseAlign = !UseMN->memoperands_empty()
4118     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4119   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4120                                   UseMCID, UseIdx, UseAlign);
4121 
4122   if (Latency > 1 &&
4123       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4124        Subtarget.isCortexA7())) {
4125     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4126     // variants are one cycle cheaper.
4127     switch (DefMCID.getOpcode()) {
4128     default: break;
4129     case ARM::LDRrs:
4130     case ARM::LDRBrs: {
4131       unsigned ShOpVal =
4132         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4133       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4134       if (ShImm == 0 ||
4135           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4136         --Latency;
4137       break;
4138     }
4139     case ARM::t2LDRs:
4140     case ARM::t2LDRBs:
4141     case ARM::t2LDRHs:
4142     case ARM::t2LDRSHs: {
4143       // Thumb2 mode: lsl only.
4144       unsigned ShAmt =
4145         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4146       if (ShAmt == 0 || ShAmt == 2)
4147         --Latency;
4148       break;
4149     }
4150     }
4151   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4152     // FIXME: Properly handle all of the latency adjustments for address
4153     // writeback.
4154     switch (DefMCID.getOpcode()) {
4155     default: break;
4156     case ARM::LDRrs:
4157     case ARM::LDRBrs: {
4158       unsigned ShOpVal =
4159         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4160       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4161       if (ShImm == 0 ||
4162           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4163            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4164         Latency -= 2;
4165       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4166         --Latency;
4167       break;
4168     }
4169     case ARM::t2LDRs:
4170     case ARM::t2LDRBs:
4171     case ARM::t2LDRHs:
4172     case ARM::t2LDRSHs:
4173       // Thumb2 mode: lsl 0-3 only.
4174       Latency -= 2;
4175       break;
4176     }
4177   }
4178 
4179   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4180     switch (DefMCID.getOpcode()) {
4181     default: break;
4182     case ARM::VLD1q8:
4183     case ARM::VLD1q16:
4184     case ARM::VLD1q32:
4185     case ARM::VLD1q64:
4186     case ARM::VLD1q8wb_register:
4187     case ARM::VLD1q16wb_register:
4188     case ARM::VLD1q32wb_register:
4189     case ARM::VLD1q64wb_register:
4190     case ARM::VLD1q8wb_fixed:
4191     case ARM::VLD1q16wb_fixed:
4192     case ARM::VLD1q32wb_fixed:
4193     case ARM::VLD1q64wb_fixed:
4194     case ARM::VLD2d8:
4195     case ARM::VLD2d16:
4196     case ARM::VLD2d32:
4197     case ARM::VLD2q8Pseudo:
4198     case ARM::VLD2q16Pseudo:
4199     case ARM::VLD2q32Pseudo:
4200     case ARM::VLD2d8wb_fixed:
4201     case ARM::VLD2d16wb_fixed:
4202     case ARM::VLD2d32wb_fixed:
4203     case ARM::VLD2q8PseudoWB_fixed:
4204     case ARM::VLD2q16PseudoWB_fixed:
4205     case ARM::VLD2q32PseudoWB_fixed:
4206     case ARM::VLD2d8wb_register:
4207     case ARM::VLD2d16wb_register:
4208     case ARM::VLD2d32wb_register:
4209     case ARM::VLD2q8PseudoWB_register:
4210     case ARM::VLD2q16PseudoWB_register:
4211     case ARM::VLD2q32PseudoWB_register:
4212     case ARM::VLD3d8Pseudo:
4213     case ARM::VLD3d16Pseudo:
4214     case ARM::VLD3d32Pseudo:
4215     case ARM::VLD1d64TPseudo:
4216     case ARM::VLD1d64TPseudoWB_fixed:
4217     case ARM::VLD1d64TPseudoWB_register:
4218     case ARM::VLD3d8Pseudo_UPD:
4219     case ARM::VLD3d16Pseudo_UPD:
4220     case ARM::VLD3d32Pseudo_UPD:
4221     case ARM::VLD3q8Pseudo_UPD:
4222     case ARM::VLD3q16Pseudo_UPD:
4223     case ARM::VLD3q32Pseudo_UPD:
4224     case ARM::VLD3q8oddPseudo:
4225     case ARM::VLD3q16oddPseudo:
4226     case ARM::VLD3q32oddPseudo:
4227     case ARM::VLD3q8oddPseudo_UPD:
4228     case ARM::VLD3q16oddPseudo_UPD:
4229     case ARM::VLD3q32oddPseudo_UPD:
4230     case ARM::VLD4d8Pseudo:
4231     case ARM::VLD4d16Pseudo:
4232     case ARM::VLD4d32Pseudo:
4233     case ARM::VLD1d64QPseudo:
4234     case ARM::VLD1d64QPseudoWB_fixed:
4235     case ARM::VLD1d64QPseudoWB_register:
4236     case ARM::VLD4d8Pseudo_UPD:
4237     case ARM::VLD4d16Pseudo_UPD:
4238     case ARM::VLD4d32Pseudo_UPD:
4239     case ARM::VLD4q8Pseudo_UPD:
4240     case ARM::VLD4q16Pseudo_UPD:
4241     case ARM::VLD4q32Pseudo_UPD:
4242     case ARM::VLD4q8oddPseudo:
4243     case ARM::VLD4q16oddPseudo:
4244     case ARM::VLD4q32oddPseudo:
4245     case ARM::VLD4q8oddPseudo_UPD:
4246     case ARM::VLD4q16oddPseudo_UPD:
4247     case ARM::VLD4q32oddPseudo_UPD:
4248     case ARM::VLD1DUPq8:
4249     case ARM::VLD1DUPq16:
4250     case ARM::VLD1DUPq32:
4251     case ARM::VLD1DUPq8wb_fixed:
4252     case ARM::VLD1DUPq16wb_fixed:
4253     case ARM::VLD1DUPq32wb_fixed:
4254     case ARM::VLD1DUPq8wb_register:
4255     case ARM::VLD1DUPq16wb_register:
4256     case ARM::VLD1DUPq32wb_register:
4257     case ARM::VLD2DUPd8:
4258     case ARM::VLD2DUPd16:
4259     case ARM::VLD2DUPd32:
4260     case ARM::VLD2DUPd8wb_fixed:
4261     case ARM::VLD2DUPd16wb_fixed:
4262     case ARM::VLD2DUPd32wb_fixed:
4263     case ARM::VLD2DUPd8wb_register:
4264     case ARM::VLD2DUPd16wb_register:
4265     case ARM::VLD2DUPd32wb_register:
4266     case ARM::VLD4DUPd8Pseudo:
4267     case ARM::VLD4DUPd16Pseudo:
4268     case ARM::VLD4DUPd32Pseudo:
4269     case ARM::VLD4DUPd8Pseudo_UPD:
4270     case ARM::VLD4DUPd16Pseudo_UPD:
4271     case ARM::VLD4DUPd32Pseudo_UPD:
4272     case ARM::VLD1LNq8Pseudo:
4273     case ARM::VLD1LNq16Pseudo:
4274     case ARM::VLD1LNq32Pseudo:
4275     case ARM::VLD1LNq8Pseudo_UPD:
4276     case ARM::VLD1LNq16Pseudo_UPD:
4277     case ARM::VLD1LNq32Pseudo_UPD:
4278     case ARM::VLD2LNd8Pseudo:
4279     case ARM::VLD2LNd16Pseudo:
4280     case ARM::VLD2LNd32Pseudo:
4281     case ARM::VLD2LNq16Pseudo:
4282     case ARM::VLD2LNq32Pseudo:
4283     case ARM::VLD2LNd8Pseudo_UPD:
4284     case ARM::VLD2LNd16Pseudo_UPD:
4285     case ARM::VLD2LNd32Pseudo_UPD:
4286     case ARM::VLD2LNq16Pseudo_UPD:
4287     case ARM::VLD2LNq32Pseudo_UPD:
4288     case ARM::VLD4LNd8Pseudo:
4289     case ARM::VLD4LNd16Pseudo:
4290     case ARM::VLD4LNd32Pseudo:
4291     case ARM::VLD4LNq16Pseudo:
4292     case ARM::VLD4LNq32Pseudo:
4293     case ARM::VLD4LNd8Pseudo_UPD:
4294     case ARM::VLD4LNd16Pseudo_UPD:
4295     case ARM::VLD4LNd32Pseudo_UPD:
4296     case ARM::VLD4LNq16Pseudo_UPD:
4297     case ARM::VLD4LNq32Pseudo_UPD:
4298       // If the address is not 64-bit aligned, the latencies of these
4299       // instructions increases by one.
4300       ++Latency;
4301       break;
4302     }
4303 
4304   return Latency;
4305 }
4306 
4307 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4308   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4309       MI.isImplicitDef())
4310     return 0;
4311 
4312   if (MI.isBundle())
4313     return 0;
4314 
4315   const MCInstrDesc &MCID = MI.getDesc();
4316 
4317   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4318                         !Subtarget.cheapPredicableCPSRDef())) {
4319     // When predicated, CPSR is an additional source operand for CPSR updating
4320     // instructions, this apparently increases their latencies.
4321     return 1;
4322   }
4323   return 0;
4324 }
4325 
4326 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4327                                            const MachineInstr &MI,
4328                                            unsigned *PredCost) const {
4329   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4330       MI.isImplicitDef())
4331     return 1;
4332 
4333   // An instruction scheduler typically runs on unbundled instructions, however
4334   // other passes may query the latency of a bundled instruction.
4335   if (MI.isBundle()) {
4336     unsigned Latency = 0;
4337     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4338     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4339     while (++I != E && I->isInsideBundle()) {
4340       if (I->getOpcode() != ARM::t2IT)
4341         Latency += getInstrLatency(ItinData, *I, PredCost);
4342     }
4343     return Latency;
4344   }
4345 
4346   const MCInstrDesc &MCID = MI.getDesc();
4347   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4348                                      !Subtarget.cheapPredicableCPSRDef()))) {
4349     // When predicated, CPSR is an additional source operand for CPSR updating
4350     // instructions, this apparently increases their latencies.
4351     *PredCost = 1;
4352   }
4353   // Be sure to call getStageLatency for an empty itinerary in case it has a
4354   // valid MinLatency property.
4355   if (!ItinData)
4356     return MI.mayLoad() ? 3 : 1;
4357 
4358   unsigned Class = MCID.getSchedClass();
4359 
4360   // For instructions with variable uops, use uops as latency.
4361   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4362     return getNumMicroOps(ItinData, MI);
4363 
4364   // For the common case, fall back on the itinerary's latency.
4365   unsigned Latency = ItinData->getStageLatency(Class);
4366 
4367   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4368   unsigned DefAlign =
4369       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4370   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4371   if (Adj >= 0 || (int)Latency > -Adj) {
4372     return Latency + Adj;
4373   }
4374   return Latency;
4375 }
4376 
4377 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4378                                       SDNode *Node) const {
4379   if (!Node->isMachineOpcode())
4380     return 1;
4381 
4382   if (!ItinData || ItinData->isEmpty())
4383     return 1;
4384 
4385   unsigned Opcode = Node->getMachineOpcode();
4386   switch (Opcode) {
4387   default:
4388     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4389   case ARM::VLDMQIA:
4390   case ARM::VSTMQIA:
4391     return 2;
4392   }
4393 }
4394 
4395 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4396                                              const MachineRegisterInfo *MRI,
4397                                              const MachineInstr &DefMI,
4398                                              unsigned DefIdx,
4399                                              const MachineInstr &UseMI,
4400                                              unsigned UseIdx) const {
4401   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4402   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4403   if (Subtarget.nonpipelinedVFP() &&
4404       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4405     return true;
4406 
4407   // Hoist VFP / NEON instructions with 4 or higher latency.
4408   unsigned Latency =
4409       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4410   if (Latency <= 3)
4411     return false;
4412   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4413          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4414 }
4415 
4416 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4417                                         const MachineInstr &DefMI,
4418                                         unsigned DefIdx) const {
4419   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4420   if (!ItinData || ItinData->isEmpty())
4421     return false;
4422 
4423   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4424   if (DDomain == ARMII::DomainGeneral) {
4425     unsigned DefClass = DefMI.getDesc().getSchedClass();
4426     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4427     return (DefCycle != -1 && DefCycle <= 2);
4428   }
4429   return false;
4430 }
4431 
4432 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4433                                          StringRef &ErrInfo) const {
4434   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4435     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4436     return false;
4437   }
4438   return true;
4439 }
4440 
4441 // LoadStackGuard has so far only been implemented for MachO. Different code
4442 // sequence is needed for other targets.
4443 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4444                                                 unsigned LoadImmOpc,
4445                                                 unsigned LoadOpc) const {
4446   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4447          "ROPI/RWPI not currently supported with stack guard");
4448 
4449   MachineBasicBlock &MBB = *MI->getParent();
4450   DebugLoc DL = MI->getDebugLoc();
4451   unsigned Reg = MI->getOperand(0).getReg();
4452   const GlobalValue *GV =
4453       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4454   MachineInstrBuilder MIB;
4455 
4456   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4457       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4458 
4459   if (Subtarget.isGVIndirectSymbol(GV)) {
4460     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4461     MIB.addReg(Reg, RegState::Kill).addImm(0);
4462     auto Flags = MachineMemOperand::MOLoad |
4463                  MachineMemOperand::MODereferenceable |
4464                  MachineMemOperand::MOInvariant;
4465     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4466         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4467     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4468   }
4469 
4470   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4471   MIB.addReg(Reg, RegState::Kill)
4472      .addImm(0)
4473      .setMemRefs(MI->memoperands_begin(), MI->memoperands_end())
4474      .add(predOps(ARMCC::AL));
4475 }
4476 
4477 bool
4478 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4479                                      unsigned &AddSubOpc,
4480                                      bool &NegAcc, bool &HasLane) const {
4481   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4482   if (I == MLxEntryMap.end())
4483     return false;
4484 
4485   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4486   MulOpc = Entry.MulOpc;
4487   AddSubOpc = Entry.AddSubOpc;
4488   NegAcc = Entry.NegAcc;
4489   HasLane = Entry.HasLane;
4490   return true;
4491 }
4492 
4493 //===----------------------------------------------------------------------===//
4494 // Execution domains.
4495 //===----------------------------------------------------------------------===//
4496 //
4497 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4498 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4499 // but they can be changed to vorr equivalents that are executed by the NEON
4500 // pipeline.
4501 //
4502 // We use the following execution domain numbering:
4503 //
4504 enum ARMExeDomain {
4505   ExeGeneric = 0,
4506   ExeVFP = 1,
4507   ExeNEON = 2
4508 };
4509 
4510 //
4511 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4512 //
4513 std::pair<uint16_t, uint16_t>
4514 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4515   // If we don't have access to NEON instructions then we won't be able
4516   // to swizzle anything to the NEON domain. Check to make sure.
4517   if (Subtarget.hasNEON()) {
4518     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4519     // if they are not predicated.
4520     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4521       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4522 
4523     // CortexA9 is particularly picky about mixing the two and wants these
4524     // converted.
4525     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4526         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4527          MI.getOpcode() == ARM::VMOVS))
4528       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4529   }
4530   // No other instructions can be swizzled, so just determine their domain.
4531   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4532 
4533   if (Domain & ARMII::DomainNEON)
4534     return std::make_pair(ExeNEON, 0);
4535 
4536   // Certain instructions can go either way on Cortex-A8.
4537   // Treat them as NEON instructions.
4538   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4539     return std::make_pair(ExeNEON, 0);
4540 
4541   if (Domain & ARMII::DomainVFP)
4542     return std::make_pair(ExeVFP, 0);
4543 
4544   return std::make_pair(ExeGeneric, 0);
4545 }
4546 
4547 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4548                                             unsigned SReg, unsigned &Lane) {
4549   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4550   Lane = 0;
4551 
4552   if (DReg != ARM::NoRegister)
4553    return DReg;
4554 
4555   Lane = 1;
4556   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4557 
4558   assert(DReg && "S-register with no D super-register?");
4559   return DReg;
4560 }
4561 
4562 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4563 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4564 /// zero if no register needs to be defined as implicit-use.
4565 ///
4566 /// If the function cannot determine if an SPR should be marked implicit use or
4567 /// not, it returns false.
4568 ///
4569 /// This function handles cases where an instruction is being modified from taking
4570 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4571 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4572 /// lane of the DPR).
4573 ///
4574 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4575 /// (including the case where the DPR itself is defined), it should not.
4576 ///
4577 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4578                                        MachineInstr &MI, unsigned DReg,
4579                                        unsigned Lane, unsigned &ImplicitSReg) {
4580   // If the DPR is defined or used already, the other SPR lane will be chained
4581   // correctly, so there is nothing to be done.
4582   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4583     ImplicitSReg = 0;
4584     return true;
4585   }
4586 
4587   // Otherwise we need to go searching to see if the SPR is set explicitly.
4588   ImplicitSReg = TRI->getSubReg(DReg,
4589                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4590   MachineBasicBlock::LivenessQueryResult LQR =
4591       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4592 
4593   if (LQR == MachineBasicBlock::LQR_Live)
4594     return true;
4595   else if (LQR == MachineBasicBlock::LQR_Unknown)
4596     return false;
4597 
4598   // If the register is known not to be live, there is no need to add an
4599   // implicit-use.
4600   ImplicitSReg = 0;
4601   return true;
4602 }
4603 
4604 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4605                                           unsigned Domain) const {
4606   unsigned DstReg, SrcReg, DReg;
4607   unsigned Lane;
4608   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4609   const TargetRegisterInfo *TRI = &getRegisterInfo();
4610   switch (MI.getOpcode()) {
4611   default:
4612     llvm_unreachable("cannot handle opcode!");
4613     break;
4614   case ARM::VMOVD:
4615     if (Domain != ExeNEON)
4616       break;
4617 
4618     // Zap the predicate operands.
4619     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4620 
4621     // Make sure we've got NEON instructions.
4622     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4623 
4624     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4625     DstReg = MI.getOperand(0).getReg();
4626     SrcReg = MI.getOperand(1).getReg();
4627 
4628     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4629       MI.RemoveOperand(i - 1);
4630 
4631     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4632     MI.setDesc(get(ARM::VORRd));
4633     MIB.addReg(DstReg, RegState::Define)
4634         .addReg(SrcReg)
4635         .addReg(SrcReg)
4636         .add(predOps(ARMCC::AL));
4637     break;
4638   case ARM::VMOVRS:
4639     if (Domain != ExeNEON)
4640       break;
4641     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4642 
4643     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4644     DstReg = MI.getOperand(0).getReg();
4645     SrcReg = MI.getOperand(1).getReg();
4646 
4647     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4648       MI.RemoveOperand(i - 1);
4649 
4650     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4651 
4652     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4653     // Note that DSrc has been widened and the other lane may be undef, which
4654     // contaminates the entire register.
4655     MI.setDesc(get(ARM::VGETLNi32));
4656     MIB.addReg(DstReg, RegState::Define)
4657         .addReg(DReg, RegState::Undef)
4658         .addImm(Lane)
4659         .add(predOps(ARMCC::AL));
4660 
4661     // The old source should be an implicit use, otherwise we might think it
4662     // was dead before here.
4663     MIB.addReg(SrcReg, RegState::Implicit);
4664     break;
4665   case ARM::VMOVSR: {
4666     if (Domain != ExeNEON)
4667       break;
4668     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4669 
4670     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4671     DstReg = MI.getOperand(0).getReg();
4672     SrcReg = MI.getOperand(1).getReg();
4673 
4674     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4675 
4676     unsigned ImplicitSReg;
4677     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4678       break;
4679 
4680     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4681       MI.RemoveOperand(i - 1);
4682 
4683     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4684     // Again DDst may be undefined at the beginning of this instruction.
4685     MI.setDesc(get(ARM::VSETLNi32));
4686     MIB.addReg(DReg, RegState::Define)
4687         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4688         .addReg(SrcReg)
4689         .addImm(Lane)
4690         .add(predOps(ARMCC::AL));
4691 
4692     // The narrower destination must be marked as set to keep previous chains
4693     // in place.
4694     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4695     if (ImplicitSReg != 0)
4696       MIB.addReg(ImplicitSReg, RegState::Implicit);
4697     break;
4698     }
4699     case ARM::VMOVS: {
4700       if (Domain != ExeNEON)
4701         break;
4702 
4703       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4704       DstReg = MI.getOperand(0).getReg();
4705       SrcReg = MI.getOperand(1).getReg();
4706 
4707       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4708       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4709       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4710 
4711       unsigned ImplicitSReg;
4712       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4713         break;
4714 
4715       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4716         MI.RemoveOperand(i - 1);
4717 
4718       if (DSrc == DDst) {
4719         // Destination can be:
4720         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4721         MI.setDesc(get(ARM::VDUPLN32d));
4722         MIB.addReg(DDst, RegState::Define)
4723             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
4724             .addImm(SrcLane)
4725             .add(predOps(ARMCC::AL));
4726 
4727         // Neither the source or the destination are naturally represented any
4728         // more, so add them in manually.
4729         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4730         MIB.addReg(SrcReg, RegState::Implicit);
4731         if (ImplicitSReg != 0)
4732           MIB.addReg(ImplicitSReg, RegState::Implicit);
4733         break;
4734       }
4735 
4736       // In general there's no single instruction that can perform an S <-> S
4737       // move in NEON space, but a pair of VEXT instructions *can* do the
4738       // job. It turns out that the VEXTs needed will only use DSrc once, with
4739       // the position based purely on the combination of lane-0 and lane-1
4740       // involved. For example
4741       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
4742       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
4743       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
4744       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
4745       //
4746       // Pattern of the MachineInstrs is:
4747       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4748       MachineInstrBuilder NewMIB;
4749       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
4750                        DDst);
4751 
4752       // On the first instruction, both DSrc and DDst may be undef if present.
4753       // Specifically when the original instruction didn't have them as an
4754       // <imp-use>.
4755       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4756       bool CurUndef = !MI.readsRegister(CurReg, TRI);
4757       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4758 
4759       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4760       CurUndef = !MI.readsRegister(CurReg, TRI);
4761       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
4762             .addImm(1)
4763             .add(predOps(ARMCC::AL));
4764 
4765       if (SrcLane == DstLane)
4766         NewMIB.addReg(SrcReg, RegState::Implicit);
4767 
4768       MI.setDesc(get(ARM::VEXTd32));
4769       MIB.addReg(DDst, RegState::Define);
4770 
4771       // On the second instruction, DDst has definitely been defined above, so
4772       // it is not undef. DSrc, if present, can be undef as above.
4773       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4774       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4775       MIB.addReg(CurReg, getUndefRegState(CurUndef));
4776 
4777       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4778       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4779       MIB.addReg(CurReg, getUndefRegState(CurUndef))
4780          .addImm(1)
4781          .add(predOps(ARMCC::AL));
4782 
4783       if (SrcLane != DstLane)
4784         MIB.addReg(SrcReg, RegState::Implicit);
4785 
4786       // As before, the original destination is no longer represented, add it
4787       // implicitly.
4788       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4789       if (ImplicitSReg != 0)
4790         MIB.addReg(ImplicitSReg, RegState::Implicit);
4791       break;
4792     }
4793   }
4794 }
4795 
4796 //===----------------------------------------------------------------------===//
4797 // Partial register updates
4798 //===----------------------------------------------------------------------===//
4799 //
4800 // Swift renames NEON registers with 64-bit granularity.  That means any
4801 // instruction writing an S-reg implicitly reads the containing D-reg.  The
4802 // problem is mostly avoided by translating f32 operations to v2f32 operations
4803 // on D-registers, but f32 loads are still a problem.
4804 //
4805 // These instructions can load an f32 into a NEON register:
4806 //
4807 // VLDRS - Only writes S, partial D update.
4808 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4809 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4810 //
4811 // FCONSTD can be used as a dependency-breaking instruction.
4812 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
4813     const MachineInstr &MI, unsigned OpNum,
4814     const TargetRegisterInfo *TRI) const {
4815   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
4816   if (!PartialUpdateClearance)
4817     return 0;
4818 
4819   assert(TRI && "Need TRI instance");
4820 
4821   const MachineOperand &MO = MI.getOperand(OpNum);
4822   if (MO.readsReg())
4823     return 0;
4824   unsigned Reg = MO.getReg();
4825   int UseOp = -1;
4826 
4827   switch (MI.getOpcode()) {
4828   // Normal instructions writing only an S-register.
4829   case ARM::VLDRS:
4830   case ARM::FCONSTS:
4831   case ARM::VMOVSR:
4832   case ARM::VMOVv8i8:
4833   case ARM::VMOVv4i16:
4834   case ARM::VMOVv2i32:
4835   case ARM::VMOVv2f32:
4836   case ARM::VMOVv1i64:
4837     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
4838     break;
4839 
4840     // Explicitly reads the dependency.
4841   case ARM::VLD1LNd32:
4842     UseOp = 3;
4843     break;
4844   default:
4845     return 0;
4846   }
4847 
4848   // If this instruction actually reads a value from Reg, there is no unwanted
4849   // dependency.
4850   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
4851     return 0;
4852 
4853   // We must be able to clobber the whole D-reg.
4854   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4855     // Virtual register must be a def undef foo:ssub_0 operand.
4856     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
4857       return 0;
4858   } else if (ARM::SPRRegClass.contains(Reg)) {
4859     // Physical register: MI must define the full D-reg.
4860     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4861                                              &ARM::DPRRegClass);
4862     if (!DReg || !MI.definesRegister(DReg, TRI))
4863       return 0;
4864   }
4865 
4866   // MI has an unwanted D-register dependency.
4867   // Avoid defs in the previous N instructrions.
4868   return PartialUpdateClearance;
4869 }
4870 
4871 // Break a partial register dependency after getPartialRegUpdateClearance
4872 // returned non-zero.
4873 void ARMBaseInstrInfo::breakPartialRegDependency(
4874     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
4875   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
4876   assert(TRI && "Need TRI instance");
4877 
4878   const MachineOperand &MO = MI.getOperand(OpNum);
4879   unsigned Reg = MO.getReg();
4880   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4881          "Can't break virtual register dependencies.");
4882   unsigned DReg = Reg;
4883 
4884   // If MI defines an S-reg, find the corresponding D super-register.
4885   if (ARM::SPRRegClass.contains(Reg)) {
4886     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4887     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4888   }
4889 
4890   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4891   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4892 
4893   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4894   // the full D-register by loading the same value to both lanes.  The
4895   // instruction is micro-coded with 2 uops, so don't do this until we can
4896   // properly schedule micro-coded instructions.  The dispatcher stalls cause
4897   // too big regressions.
4898 
4899   // Insert the dependency-breaking FCONSTD before MI.
4900   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4901   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
4902       .addImm(96)
4903       .add(predOps(ARMCC::AL));
4904   MI.addRegisterKilled(DReg, TRI, true);
4905 }
4906 
4907 bool ARMBaseInstrInfo::hasNOP() const {
4908   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
4909 }
4910 
4911 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4912   if (MI->getNumOperands() < 4)
4913     return true;
4914   unsigned ShOpVal = MI->getOperand(3).getImm();
4915   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4916   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4917   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4918       ((ShImm == 1 || ShImm == 2) &&
4919        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4920     return true;
4921 
4922   return false;
4923 }
4924 
4925 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
4926     const MachineInstr &MI, unsigned DefIdx,
4927     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
4928   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4929   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
4930 
4931   switch (MI.getOpcode()) {
4932   case ARM::VMOVDRR:
4933     // dX = VMOVDRR rY, rZ
4934     // is the same as:
4935     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
4936     // Populate the InputRegs accordingly.
4937     // rY
4938     const MachineOperand *MOReg = &MI.getOperand(1);
4939     if (!MOReg->isUndef())
4940       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
4941                                               MOReg->getSubReg(), ARM::ssub_0));
4942     // rZ
4943     MOReg = &MI.getOperand(2);
4944     if (!MOReg->isUndef())
4945       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
4946                                               MOReg->getSubReg(), ARM::ssub_1));
4947     return true;
4948   }
4949   llvm_unreachable("Target dependent opcode missing");
4950 }
4951 
4952 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
4953     const MachineInstr &MI, unsigned DefIdx,
4954     RegSubRegPairAndIdx &InputReg) const {
4955   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4956   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
4957 
4958   switch (MI.getOpcode()) {
4959   case ARM::VMOVRRD:
4960     // rX, rY = VMOVRRD dZ
4961     // is the same as:
4962     // rX = EXTRACT_SUBREG dZ, ssub_0
4963     // rY = EXTRACT_SUBREG dZ, ssub_1
4964     const MachineOperand &MOReg = MI.getOperand(2);
4965     if (MOReg.isUndef())
4966       return false;
4967     InputReg.Reg = MOReg.getReg();
4968     InputReg.SubReg = MOReg.getSubReg();
4969     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
4970     return true;
4971   }
4972   llvm_unreachable("Target dependent opcode missing");
4973 }
4974 
4975 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
4976     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
4977     RegSubRegPairAndIdx &InsertedReg) const {
4978   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4979   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
4980 
4981   switch (MI.getOpcode()) {
4982   case ARM::VSETLNi32:
4983     // dX = VSETLNi32 dY, rZ, imm
4984     const MachineOperand &MOBaseReg = MI.getOperand(1);
4985     const MachineOperand &MOInsertedReg = MI.getOperand(2);
4986     if (MOInsertedReg.isUndef())
4987       return false;
4988     const MachineOperand &MOIndex = MI.getOperand(3);
4989     BaseReg.Reg = MOBaseReg.getReg();
4990     BaseReg.SubReg = MOBaseReg.getSubReg();
4991 
4992     InsertedReg.Reg = MOInsertedReg.getReg();
4993     InsertedReg.SubReg = MOInsertedReg.getSubReg();
4994     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
4995     return true;
4996   }
4997   llvm_unreachable("Target dependent opcode missing");
4998 }
4999