1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <new>
63 #include <utility>
64 #include <vector>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "arm-instrinfo"
69 
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
72 
73 static cl::opt<bool>
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
75                cl::desc("Enable ARM 2-addr to 3-addr conv"));
76 
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
78 struct ARM_MLxEntry {
79   uint16_t MLxOpc;     // MLA / MLS opcode
80   uint16_t MulOpc;     // Expanded multiplication opcode
81   uint16_t AddSubOpc;  // Expanded add / sub opcode
82   bool NegAcc;         // True if the acc is negated before the add / sub.
83   bool HasLane;        // True if instruction has an extra "lane" operand.
84 };
85 
86 static const ARM_MLxEntry ARM_MLxTable[] = {
87   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
88   // fp scalar ops
89   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
90   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
91   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
92   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
93   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
94   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
95   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
96   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
97 
98   // fp SIMD ops
99   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
100   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
101   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
102   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
103   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
104   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
105   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
106   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
107 };
108 
109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
110   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
111     Subtarget(STI) {
112   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
113     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
114       llvm_unreachable("Duplicated entries?");
115     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
116     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
117   }
118 }
119 
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer *
123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
124                                                const ScheduleDAG *DAG) const {
125   if (usePreRAHazardRecognizer()) {
126     const InstrItineraryData *II =
127         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
128     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
129   }
130   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
131 }
132 
133 ScheduleHazardRecognizer *ARMBaseInstrInfo::
134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
135                                    const ScheduleDAG *DAG) const {
136   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
137     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
138   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
139 }
140 
141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
142     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
143   // FIXME: Thumb2 support.
144 
145   if (!EnableARM3Addr)
146     return nullptr;
147 
148   MachineFunction &MF = *MI.getParent()->getParent();
149   uint64_t TSFlags = MI.getDesc().TSFlags;
150   bool isPre = false;
151   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
152   default: return nullptr;
153   case ARMII::IndexModePre:
154     isPre = true;
155     break;
156   case ARMII::IndexModePost:
157     break;
158   }
159 
160   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
161   // operation.
162   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
163   if (MemOpc == 0)
164     return nullptr;
165 
166   MachineInstr *UpdateMI = nullptr;
167   MachineInstr *MemMI = nullptr;
168   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
169   const MCInstrDesc &MCID = MI.getDesc();
170   unsigned NumOps = MCID.getNumOperands();
171   bool isLoad = !MI.mayStore();
172   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
173   const MachineOperand &Base = MI.getOperand(2);
174   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
175   unsigned WBReg = WB.getReg();
176   unsigned BaseReg = Base.getReg();
177   unsigned OffReg = Offset.getReg();
178   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
179   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
180   switch (AddrMode) {
181   default: llvm_unreachable("Unknown indexed op!");
182   case ARMII::AddrMode2: {
183     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
184     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
185     if (OffReg == 0) {
186       if (ARM_AM::getSOImmVal(Amt) == -1)
187         // Can't encode it in a so_imm operand. This transformation will
188         // add more than 1 instruction. Abandon!
189         return nullptr;
190       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
191                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
192                      .addReg(BaseReg)
193                      .addImm(Amt)
194                      .add(predOps(Pred))
195                      .add(condCodeOp());
196     } else if (Amt != 0) {
197       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
198       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
199       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
200                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
201                      .addReg(BaseReg)
202                      .addReg(OffReg)
203                      .addReg(0)
204                      .addImm(SOOpc)
205                      .add(predOps(Pred))
206                      .add(condCodeOp());
207     } else
208       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
209                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
210                      .addReg(BaseReg)
211                      .addReg(OffReg)
212                      .add(predOps(Pred))
213                      .add(condCodeOp());
214     break;
215   }
216   case ARMII::AddrMode3 : {
217     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
218     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
219     if (OffReg == 0)
220       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
222                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
223                      .addReg(BaseReg)
224                      .addImm(Amt)
225                      .add(predOps(Pred))
226                      .add(condCodeOp());
227     else
228       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
230                      .addReg(BaseReg)
231                      .addReg(OffReg)
232                      .add(predOps(Pred))
233                      .add(condCodeOp());
234     break;
235   }
236   }
237 
238   std::vector<MachineInstr*> NewMIs;
239   if (isPre) {
240     if (isLoad)
241       MemMI =
242           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
243               .addReg(WBReg)
244               .addImm(0)
245               .addImm(Pred);
246     else
247       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
248                   .addReg(MI.getOperand(1).getReg())
249                   .addReg(WBReg)
250                   .addReg(0)
251                   .addImm(0)
252                   .addImm(Pred);
253     NewMIs.push_back(MemMI);
254     NewMIs.push_back(UpdateMI);
255   } else {
256     if (isLoad)
257       MemMI =
258           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
259               .addReg(BaseReg)
260               .addImm(0)
261               .addImm(Pred);
262     else
263       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
264                   .addReg(MI.getOperand(1).getReg())
265                   .addReg(BaseReg)
266                   .addReg(0)
267                   .addImm(0)
268                   .addImm(Pred);
269     if (WB.isDead())
270       UpdateMI->getOperand(0).setIsDead();
271     NewMIs.push_back(UpdateMI);
272     NewMIs.push_back(MemMI);
273   }
274 
275   // Transfer LiveVariables states, kill / dead info.
276   if (LV) {
277     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
278       MachineOperand &MO = MI.getOperand(i);
279       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
280         unsigned Reg = MO.getReg();
281 
282         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
283         if (MO.isDef()) {
284           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
285           if (MO.isDead())
286             LV->addVirtualRegisterDead(Reg, *NewMI);
287         }
288         if (MO.isUse() && MO.isKill()) {
289           for (unsigned j = 0; j < 2; ++j) {
290             // Look at the two new MI's in reverse order.
291             MachineInstr *NewMI = NewMIs[j];
292             if (!NewMI->readsRegister(Reg))
293               continue;
294             LV->addVirtualRegisterKilled(Reg, *NewMI);
295             if (VI.removeKill(MI))
296               VI.Kills.push_back(NewMI);
297             break;
298           }
299         }
300       }
301     }
302   }
303 
304   MachineBasicBlock::iterator MBBI = MI.getIterator();
305   MFI->insert(MBBI, NewMIs[1]);
306   MFI->insert(MBBI, NewMIs[0]);
307   return NewMIs[0];
308 }
309 
310 // Branch analysis.
311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
312                                      MachineBasicBlock *&TBB,
313                                      MachineBasicBlock *&FBB,
314                                      SmallVectorImpl<MachineOperand> &Cond,
315                                      bool AllowModify) const {
316   TBB = nullptr;
317   FBB = nullptr;
318 
319   MachineBasicBlock::iterator I = MBB.end();
320   if (I == MBB.begin())
321     return false; // Empty blocks are easy.
322   --I;
323 
324   // Walk backwards from the end of the basic block until the branch is
325   // analyzed or we give up.
326   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
327     // Flag to be raised on unanalyzeable instructions. This is useful in cases
328     // where we want to clean up on the end of the basic block before we bail
329     // out.
330     bool CantAnalyze = false;
331 
332     // Skip over DEBUG values and predicated nonterminators.
333     while (I->isDebugInstr() || !I->isTerminator()) {
334       if (I == MBB.begin())
335         return false;
336       --I;
337     }
338 
339     if (isIndirectBranchOpcode(I->getOpcode()) ||
340         isJumpTableBranchOpcode(I->getOpcode())) {
341       // Indirect branches and jump tables can't be analyzed, but we still want
342       // to clean up any instructions at the tail of the basic block.
343       CantAnalyze = true;
344     } else if (isUncondBranchOpcode(I->getOpcode())) {
345       TBB = I->getOperand(0).getMBB();
346     } else if (isCondBranchOpcode(I->getOpcode())) {
347       // Bail out if we encounter multiple conditional branches.
348       if (!Cond.empty())
349         return true;
350 
351       assert(!FBB && "FBB should have been null.");
352       FBB = TBB;
353       TBB = I->getOperand(0).getMBB();
354       Cond.push_back(I->getOperand(1));
355       Cond.push_back(I->getOperand(2));
356     } else if (I->isReturn()) {
357       // Returns can't be analyzed, but we should run cleanup.
358       CantAnalyze = !isPredicated(*I);
359     } else {
360       // We encountered other unrecognized terminator. Bail out immediately.
361       return true;
362     }
363 
364     // Cleanup code - to be run for unpredicated unconditional branches and
365     //                returns.
366     if (!isPredicated(*I) &&
367           (isUncondBranchOpcode(I->getOpcode()) ||
368            isIndirectBranchOpcode(I->getOpcode()) ||
369            isJumpTableBranchOpcode(I->getOpcode()) ||
370            I->isReturn())) {
371       // Forget any previous condition branch information - it no longer applies.
372       Cond.clear();
373       FBB = nullptr;
374 
375       // If we can modify the function, delete everything below this
376       // unconditional branch.
377       if (AllowModify) {
378         MachineBasicBlock::iterator DI = std::next(I);
379         while (DI != MBB.end()) {
380           MachineInstr &InstToDelete = *DI;
381           ++DI;
382           InstToDelete.eraseFromParent();
383         }
384       }
385     }
386 
387     if (CantAnalyze)
388       return true;
389 
390     if (I == MBB.begin())
391       return false;
392 
393     --I;
394   }
395 
396   // We made it past the terminators without bailing out - we must have
397   // analyzed this branch successfully.
398   return false;
399 }
400 
401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
402                                         int *BytesRemoved) const {
403   assert(!BytesRemoved && "code size not handled");
404 
405   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
406   if (I == MBB.end())
407     return 0;
408 
409   if (!isUncondBranchOpcode(I->getOpcode()) &&
410       !isCondBranchOpcode(I->getOpcode()))
411     return 0;
412 
413   // Remove the branch.
414   I->eraseFromParent();
415 
416   I = MBB.end();
417 
418   if (I == MBB.begin()) return 1;
419   --I;
420   if (!isCondBranchOpcode(I->getOpcode()))
421     return 1;
422 
423   // Remove the branch.
424   I->eraseFromParent();
425   return 2;
426 }
427 
428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
429                                         MachineBasicBlock *TBB,
430                                         MachineBasicBlock *FBB,
431                                         ArrayRef<MachineOperand> Cond,
432                                         const DebugLoc &DL,
433                                         int *BytesAdded) const {
434   assert(!BytesAdded && "code size not handled");
435   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
436   int BOpc   = !AFI->isThumbFunction()
437     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
438   int BccOpc = !AFI->isThumbFunction()
439     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
440   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
441 
442   // Shouldn't be a fall through.
443   assert(TBB && "insertBranch must not be told to insert a fallthrough");
444   assert((Cond.size() == 2 || Cond.size() == 0) &&
445          "ARM branch conditions have two components!");
446 
447   // For conditional branches, we use addOperand to preserve CPSR flags.
448 
449   if (!FBB) {
450     if (Cond.empty()) { // Unconditional branch?
451       if (isThumb)
452         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
453       else
454         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
455     } else
456       BuildMI(&MBB, DL, get(BccOpc))
457           .addMBB(TBB)
458           .addImm(Cond[0].getImm())
459           .add(Cond[1]);
460     return 1;
461   }
462 
463   // Two-way conditional branch.
464   BuildMI(&MBB, DL, get(BccOpc))
465       .addMBB(TBB)
466       .addImm(Cond[0].getImm())
467       .add(Cond[1]);
468   if (isThumb)
469     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
470   else
471     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
472   return 2;
473 }
474 
475 bool ARMBaseInstrInfo::
476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
478   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
479   return false;
480 }
481 
482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
483   if (MI.isBundle()) {
484     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
485     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
486     while (++I != E && I->isInsideBundle()) {
487       int PIdx = I->findFirstPredOperandIdx();
488       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
489         return true;
490     }
491     return false;
492   }
493 
494   int PIdx = MI.findFirstPredOperandIdx();
495   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
496 }
497 
498 bool ARMBaseInstrInfo::PredicateInstruction(
499     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
500   unsigned Opc = MI.getOpcode();
501   if (isUncondBranchOpcode(Opc)) {
502     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
503     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
504       .addImm(Pred[0].getImm())
505       .addReg(Pred[1].getReg());
506     return true;
507   }
508 
509   int PIdx = MI.findFirstPredOperandIdx();
510   if (PIdx != -1) {
511     MachineOperand &PMO = MI.getOperand(PIdx);
512     PMO.setImm(Pred[0].getImm());
513     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
514     return true;
515   }
516   return false;
517 }
518 
519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
520                                          ArrayRef<MachineOperand> Pred2) const {
521   if (Pred1.size() > 2 || Pred2.size() > 2)
522     return false;
523 
524   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
525   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
526   if (CC1 == CC2)
527     return true;
528 
529   switch (CC1) {
530   default:
531     return false;
532   case ARMCC::AL:
533     return true;
534   case ARMCC::HS:
535     return CC2 == ARMCC::HI;
536   case ARMCC::LS:
537     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
538   case ARMCC::GE:
539     return CC2 == ARMCC::GT;
540   case ARMCC::LE:
541     return CC2 == ARMCC::LT;
542   }
543 }
544 
545 bool ARMBaseInstrInfo::DefinesPredicate(
546     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
547   bool Found = false;
548   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
549     const MachineOperand &MO = MI.getOperand(i);
550     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
551         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
552       Pred.push_back(MO);
553       Found = true;
554     }
555   }
556 
557   return Found;
558 }
559 
560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
561   for (const auto &MO : MI.operands())
562     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
563       return true;
564   return false;
565 }
566 
567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
568                                         unsigned Op) const {
569   const MachineOperand &Offset = MI.getOperand(Op + 1);
570   return Offset.getReg() != 0;
571 }
572 
573 // Load with negative register offset requires additional 1cyc and +I unit
574 // for Cortex A57
575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
576                                              unsigned Op) const {
577   const MachineOperand &Offset = MI.getOperand(Op + 1);
578   const MachineOperand &Opc = MI.getOperand(Op + 2);
579   assert(Opc.isImm());
580   assert(Offset.isReg());
581   int64_t OpcImm = Opc.getImm();
582 
583   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
584   return (isSub && Offset.getReg() != 0);
585 }
586 
587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
588                                        unsigned Op) const {
589   const MachineOperand &Opc = MI.getOperand(Op + 2);
590   unsigned OffImm = Opc.getImm();
591   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
592 }
593 
594 // Load, scaled register offset, not plus LSL2
595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
596                                                   unsigned Op) const {
597   const MachineOperand &Opc = MI.getOperand(Op + 2);
598   unsigned OffImm = Opc.getImm();
599 
600   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
601   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
602   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
603   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
604   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
605   return !SimpleScaled;
606 }
607 
608 // Minus reg for ldstso addr mode
609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
610                                         unsigned Op) const {
611   unsigned OffImm = MI.getOperand(Op + 2).getImm();
612   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
613 }
614 
615 // Load, scaled register offset
616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
617                                       unsigned Op) const {
618   unsigned OffImm = MI.getOperand(Op + 2).getImm();
619   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
620 }
621 
622 static bool isEligibleForITBlock(const MachineInstr *MI) {
623   switch (MI->getOpcode()) {
624   default: return true;
625   case ARM::tADC:   // ADC (register) T1
626   case ARM::tADDi3: // ADD (immediate) T1
627   case ARM::tADDi8: // ADD (immediate) T2
628   case ARM::tADDrr: // ADD (register) T1
629   case ARM::tAND:   // AND (register) T1
630   case ARM::tASRri: // ASR (immediate) T1
631   case ARM::tASRrr: // ASR (register) T1
632   case ARM::tBIC:   // BIC (register) T1
633   case ARM::tEOR:   // EOR (register) T1
634   case ARM::tLSLri: // LSL (immediate) T1
635   case ARM::tLSLrr: // LSL (register) T1
636   case ARM::tLSRri: // LSR (immediate) T1
637   case ARM::tLSRrr: // LSR (register) T1
638   case ARM::tMUL:   // MUL T1
639   case ARM::tMVN:   // MVN (register) T1
640   case ARM::tORR:   // ORR (register) T1
641   case ARM::tROR:   // ROR (register) T1
642   case ARM::tRSB:   // RSB (immediate) T1
643   case ARM::tSBC:   // SBC (register) T1
644   case ARM::tSUBi3: // SUB (immediate) T1
645   case ARM::tSUBi8: // SUB (immediate) T2
646   case ARM::tSUBrr: // SUB (register) T1
647     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
648   }
649 }
650 
651 /// isPredicable - Return true if the specified instruction can be predicated.
652 /// By default, this returns true for every instruction with a
653 /// PredicateOperand.
654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
655   if (!MI.isPredicable())
656     return false;
657 
658   if (MI.isBundle())
659     return false;
660 
661   if (!isEligibleForITBlock(&MI))
662     return false;
663 
664   const ARMFunctionInfo *AFI =
665       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
666 
667   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
668   // In their ARM encoding, they can't be encoded in a conditional form.
669   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
670     return false;
671 
672   if (AFI->isThumb2Function()) {
673     if (getSubtarget().restrictIT())
674       return isV8EligibleForIT(&MI);
675   }
676 
677   return true;
678 }
679 
680 namespace llvm {
681 
682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
683   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
684     const MachineOperand &MO = MI->getOperand(i);
685     if (!MO.isReg() || MO.isUndef() || MO.isUse())
686       continue;
687     if (MO.getReg() != ARM::CPSR)
688       continue;
689     if (!MO.isDead())
690       return false;
691   }
692   // all definitions of CPSR are dead
693   return true;
694 }
695 
696 } // end namespace llvm
697 
698 /// GetInstSize - Return the size of the specified MachineInstr.
699 ///
700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
701   const MachineBasicBlock &MBB = *MI.getParent();
702   const MachineFunction *MF = MBB.getParent();
703   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
704 
705   const MCInstrDesc &MCID = MI.getDesc();
706   if (MCID.getSize())
707     return MCID.getSize();
708 
709   // If this machine instr is an inline asm, measure it.
710   if (MI.getOpcode() == ARM::INLINEASM) {
711     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
712     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
713       Size = alignTo(Size, 4);
714     return Size;
715   }
716   unsigned Opc = MI.getOpcode();
717   switch (Opc) {
718   default:
719     // pseudo-instruction sizes are zero.
720     return 0;
721   case TargetOpcode::BUNDLE:
722     return getInstBundleLength(MI);
723   case ARM::MOVi16_ga_pcrel:
724   case ARM::MOVTi16_ga_pcrel:
725   case ARM::t2MOVi16_ga_pcrel:
726   case ARM::t2MOVTi16_ga_pcrel:
727     return 4;
728   case ARM::MOVi32imm:
729   case ARM::t2MOVi32imm:
730     return 8;
731   case ARM::CONSTPOOL_ENTRY:
732   case ARM::JUMPTABLE_INSTS:
733   case ARM::JUMPTABLE_ADDRS:
734   case ARM::JUMPTABLE_TBB:
735   case ARM::JUMPTABLE_TBH:
736     // If this machine instr is a constant pool entry, its size is recorded as
737     // operand #2.
738     return MI.getOperand(2).getImm();
739   case ARM::Int_eh_sjlj_longjmp:
740     return 16;
741   case ARM::tInt_eh_sjlj_longjmp:
742     return 10;
743   case ARM::tInt_WIN_eh_sjlj_longjmp:
744     return 12;
745   case ARM::Int_eh_sjlj_setjmp:
746   case ARM::Int_eh_sjlj_setjmp_nofp:
747     return 20;
748   case ARM::tInt_eh_sjlj_setjmp:
749   case ARM::t2Int_eh_sjlj_setjmp:
750   case ARM::t2Int_eh_sjlj_setjmp_nofp:
751     return 12;
752   case ARM::SPACE:
753     return MI.getOperand(1).getImm();
754   }
755 }
756 
757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
758   unsigned Size = 0;
759   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
760   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
761   while (++I != E && I->isInsideBundle()) {
762     assert(!I->isBundle() && "No nested bundle!");
763     Size += getInstSizeInBytes(*I);
764   }
765   return Size;
766 }
767 
768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
769                                     MachineBasicBlock::iterator I,
770                                     unsigned DestReg, bool KillSrc,
771                                     const ARMSubtarget &Subtarget) const {
772   unsigned Opc = Subtarget.isThumb()
773                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
774                      : ARM::MRS;
775 
776   MachineInstrBuilder MIB =
777       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
778 
779   // There is only 1 A/R class MRS instruction, and it always refers to
780   // APSR. However, there are lots of other possibilities on M-class cores.
781   if (Subtarget.isMClass())
782     MIB.addImm(0x800);
783 
784   MIB.add(predOps(ARMCC::AL))
785      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
786 }
787 
788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
789                                   MachineBasicBlock::iterator I,
790                                   unsigned SrcReg, bool KillSrc,
791                                   const ARMSubtarget &Subtarget) const {
792   unsigned Opc = Subtarget.isThumb()
793                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
794                      : ARM::MSR;
795 
796   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
797 
798   if (Subtarget.isMClass())
799     MIB.addImm(0x800);
800   else
801     MIB.addImm(8);
802 
803   MIB.addReg(SrcReg, getKillRegState(KillSrc))
804      .add(predOps(ARMCC::AL))
805      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
806 }
807 
808 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
809                                    MachineBasicBlock::iterator I,
810                                    const DebugLoc &DL, unsigned DestReg,
811                                    unsigned SrcReg, bool KillSrc) const {
812   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
813   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
814 
815   if (GPRDest && GPRSrc) {
816     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
817         .addReg(SrcReg, getKillRegState(KillSrc))
818         .add(predOps(ARMCC::AL))
819         .add(condCodeOp());
820     return;
821   }
822 
823   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
824   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
825 
826   unsigned Opc = 0;
827   if (SPRDest && SPRSrc)
828     Opc = ARM::VMOVS;
829   else if (GPRDest && SPRSrc)
830     Opc = ARM::VMOVRS;
831   else if (SPRDest && GPRSrc)
832     Opc = ARM::VMOVSR;
833   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
834     Opc = ARM::VMOVD;
835   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
836     Opc = ARM::VORRq;
837 
838   if (Opc) {
839     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
840     MIB.addReg(SrcReg, getKillRegState(KillSrc));
841     if (Opc == ARM::VORRq)
842       MIB.addReg(SrcReg, getKillRegState(KillSrc));
843     MIB.add(predOps(ARMCC::AL));
844     return;
845   }
846 
847   // Handle register classes that require multiple instructions.
848   unsigned BeginIdx = 0;
849   unsigned SubRegs = 0;
850   int Spacing = 1;
851 
852   // Use VORRq when possible.
853   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
854     Opc = ARM::VORRq;
855     BeginIdx = ARM::qsub_0;
856     SubRegs = 2;
857   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
858     Opc = ARM::VORRq;
859     BeginIdx = ARM::qsub_0;
860     SubRegs = 4;
861   // Fall back to VMOVD.
862   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
863     Opc = ARM::VMOVD;
864     BeginIdx = ARM::dsub_0;
865     SubRegs = 2;
866   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
867     Opc = ARM::VMOVD;
868     BeginIdx = ARM::dsub_0;
869     SubRegs = 3;
870   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
871     Opc = ARM::VMOVD;
872     BeginIdx = ARM::dsub_0;
873     SubRegs = 4;
874   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
875     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
876     BeginIdx = ARM::gsub_0;
877     SubRegs = 2;
878   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
879     Opc = ARM::VMOVD;
880     BeginIdx = ARM::dsub_0;
881     SubRegs = 2;
882     Spacing = 2;
883   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
884     Opc = ARM::VMOVD;
885     BeginIdx = ARM::dsub_0;
886     SubRegs = 3;
887     Spacing = 2;
888   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
889     Opc = ARM::VMOVD;
890     BeginIdx = ARM::dsub_0;
891     SubRegs = 4;
892     Spacing = 2;
893   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
894     Opc = ARM::VMOVS;
895     BeginIdx = ARM::ssub_0;
896     SubRegs = 2;
897   } else if (SrcReg == ARM::CPSR) {
898     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
899     return;
900   } else if (DestReg == ARM::CPSR) {
901     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
902     return;
903   }
904 
905   assert(Opc && "Impossible reg-to-reg copy");
906 
907   const TargetRegisterInfo *TRI = &getRegisterInfo();
908   MachineInstrBuilder Mov;
909 
910   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
911   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
912     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
913     Spacing = -Spacing;
914   }
915 #ifndef NDEBUG
916   SmallSet<unsigned, 4> DstRegs;
917 #endif
918   for (unsigned i = 0; i != SubRegs; ++i) {
919     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
920     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
921     assert(Dst && Src && "Bad sub-register");
922 #ifndef NDEBUG
923     assert(!DstRegs.count(Src) && "destructive vector copy");
924     DstRegs.insert(Dst);
925 #endif
926     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
927     // VORR takes two source operands.
928     if (Opc == ARM::VORRq)
929       Mov.addReg(Src);
930     Mov = Mov.add(predOps(ARMCC::AL));
931     // MOVr can set CC.
932     if (Opc == ARM::MOVr)
933       Mov = Mov.add(condCodeOp());
934   }
935   // Add implicit super-register defs and kills to the last instruction.
936   Mov->addRegisterDefined(DestReg, TRI);
937   if (KillSrc)
938     Mov->addRegisterKilled(SrcReg, TRI);
939 }
940 
941 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI,
942                                        const MachineOperand *&Src,
943                                        const MachineOperand *&Dest) const {
944   // VMOVRRD is also a copy instruction but it requires
945   // special way of handling. It is more complex copy version
946   // and since that we are not considering it. For recognition
947   // of such instruction isExtractSubregLike MI interface fuction
948   // could be used.
949   // VORRq is considered as a move only if two inputs are
950   // the same register.
951   if (!MI.isMoveReg() ||
952       (MI.getOpcode() == ARM::VORRq &&
953        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
954     return false;
955   Dest = &MI.getOperand(0);
956   Src = &MI.getOperand(1);
957   return true;
958 }
959 
960 const MachineInstrBuilder &
961 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
962                           unsigned SubIdx, unsigned State,
963                           const TargetRegisterInfo *TRI) const {
964   if (!SubIdx)
965     return MIB.addReg(Reg, State);
966 
967   if (TargetRegisterInfo::isPhysicalRegister(Reg))
968     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
969   return MIB.addReg(Reg, State, SubIdx);
970 }
971 
972 void ARMBaseInstrInfo::
973 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
974                     unsigned SrcReg, bool isKill, int FI,
975                     const TargetRegisterClass *RC,
976                     const TargetRegisterInfo *TRI) const {
977   MachineFunction &MF = *MBB.getParent();
978   MachineFrameInfo &MFI = MF.getFrameInfo();
979   unsigned Align = MFI.getObjectAlignment(FI);
980 
981   MachineMemOperand *MMO = MF.getMachineMemOperand(
982       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
983       MFI.getObjectSize(FI), Align);
984 
985   switch (TRI->getSpillSize(*RC)) {
986     case 2:
987       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
988         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
989             .addReg(SrcReg, getKillRegState(isKill))
990             .addFrameIndex(FI)
991             .addImm(0)
992             .addMemOperand(MMO)
993             .add(predOps(ARMCC::AL));
994       } else
995         llvm_unreachable("Unknown reg class!");
996       break;
997     case 4:
998       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
999         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1000             .addReg(SrcReg, getKillRegState(isKill))
1001             .addFrameIndex(FI)
1002             .addImm(0)
1003             .addMemOperand(MMO)
1004             .add(predOps(ARMCC::AL));
1005       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1006         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1007             .addReg(SrcReg, getKillRegState(isKill))
1008             .addFrameIndex(FI)
1009             .addImm(0)
1010             .addMemOperand(MMO)
1011             .add(predOps(ARMCC::AL));
1012       } else
1013         llvm_unreachable("Unknown reg class!");
1014       break;
1015     case 8:
1016       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1017         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1018             .addReg(SrcReg, getKillRegState(isKill))
1019             .addFrameIndex(FI)
1020             .addImm(0)
1021             .addMemOperand(MMO)
1022             .add(predOps(ARMCC::AL));
1023       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1024         if (Subtarget.hasV5TEOps()) {
1025           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1026           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1027           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1028           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1029              .add(predOps(ARMCC::AL));
1030         } else {
1031           // Fallback to STM instruction, which has existed since the dawn of
1032           // time.
1033           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1034                                         .addFrameIndex(FI)
1035                                         .addMemOperand(MMO)
1036                                         .add(predOps(ARMCC::AL));
1037           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1038           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1039         }
1040       } else
1041         llvm_unreachable("Unknown reg class!");
1042       break;
1043     case 16:
1044       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1045         // Use aligned spills if the stack can be realigned.
1046         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1047           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1048               .addFrameIndex(FI)
1049               .addImm(16)
1050               .addReg(SrcReg, getKillRegState(isKill))
1051               .addMemOperand(MMO)
1052               .add(predOps(ARMCC::AL));
1053         } else {
1054           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1055               .addReg(SrcReg, getKillRegState(isKill))
1056               .addFrameIndex(FI)
1057               .addMemOperand(MMO)
1058               .add(predOps(ARMCC::AL));
1059         }
1060       } else
1061         llvm_unreachable("Unknown reg class!");
1062       break;
1063     case 24:
1064       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1065         // Use aligned spills if the stack can be realigned.
1066         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1067           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1068               .addFrameIndex(FI)
1069               .addImm(16)
1070               .addReg(SrcReg, getKillRegState(isKill))
1071               .addMemOperand(MMO)
1072               .add(predOps(ARMCC::AL));
1073         } else {
1074           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1075                                             get(ARM::VSTMDIA))
1076                                         .addFrameIndex(FI)
1077                                         .add(predOps(ARMCC::AL))
1078                                         .addMemOperand(MMO);
1079           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1080           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1081           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1082         }
1083       } else
1084         llvm_unreachable("Unknown reg class!");
1085       break;
1086     case 32:
1087       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1088         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1089           // FIXME: It's possible to only store part of the QQ register if the
1090           // spilled def has a sub-register index.
1091           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1092               .addFrameIndex(FI)
1093               .addImm(16)
1094               .addReg(SrcReg, getKillRegState(isKill))
1095               .addMemOperand(MMO)
1096               .add(predOps(ARMCC::AL));
1097         } else {
1098           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1099                                             get(ARM::VSTMDIA))
1100                                         .addFrameIndex(FI)
1101                                         .add(predOps(ARMCC::AL))
1102                                         .addMemOperand(MMO);
1103           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1104           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1105           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1106                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1107         }
1108       } else
1109         llvm_unreachable("Unknown reg class!");
1110       break;
1111     case 64:
1112       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1113         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1114                                       .addFrameIndex(FI)
1115                                       .add(predOps(ARMCC::AL))
1116                                       .addMemOperand(MMO);
1117         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1118         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1119         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1120         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1121         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1122         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1123         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1124               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1125       } else
1126         llvm_unreachable("Unknown reg class!");
1127       break;
1128     default:
1129       llvm_unreachable("Unknown reg class!");
1130   }
1131 }
1132 
1133 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1134                                               int &FrameIndex) const {
1135   switch (MI.getOpcode()) {
1136   default: break;
1137   case ARM::STRrs:
1138   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1139     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1140         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1141         MI.getOperand(3).getImm() == 0) {
1142       FrameIndex = MI.getOperand(1).getIndex();
1143       return MI.getOperand(0).getReg();
1144     }
1145     break;
1146   case ARM::STRi12:
1147   case ARM::t2STRi12:
1148   case ARM::tSTRspi:
1149   case ARM::VSTRD:
1150   case ARM::VSTRS:
1151     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1152         MI.getOperand(2).getImm() == 0) {
1153       FrameIndex = MI.getOperand(1).getIndex();
1154       return MI.getOperand(0).getReg();
1155     }
1156     break;
1157   case ARM::VST1q64:
1158   case ARM::VST1d64TPseudo:
1159   case ARM::VST1d64QPseudo:
1160     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1161       FrameIndex = MI.getOperand(0).getIndex();
1162       return MI.getOperand(2).getReg();
1163     }
1164     break;
1165   case ARM::VSTMQIA:
1166     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1167       FrameIndex = MI.getOperand(1).getIndex();
1168       return MI.getOperand(0).getReg();
1169     }
1170     break;
1171   }
1172 
1173   return 0;
1174 }
1175 
1176 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1177                                                     int &FrameIndex) const {
1178   SmallVector<const MachineMemOperand *, 1> Accesses;
1179   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses)) {
1180     FrameIndex =
1181         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1182             ->getFrameIndex();
1183     return true;
1184   }
1185   return false;
1186 }
1187 
1188 void ARMBaseInstrInfo::
1189 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1190                      unsigned DestReg, int FI,
1191                      const TargetRegisterClass *RC,
1192                      const TargetRegisterInfo *TRI) const {
1193   DebugLoc DL;
1194   if (I != MBB.end()) DL = I->getDebugLoc();
1195   MachineFunction &MF = *MBB.getParent();
1196   MachineFrameInfo &MFI = MF.getFrameInfo();
1197   unsigned Align = MFI.getObjectAlignment(FI);
1198   MachineMemOperand *MMO = MF.getMachineMemOperand(
1199       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1200       MFI.getObjectSize(FI), Align);
1201 
1202   switch (TRI->getSpillSize(*RC)) {
1203   case 2:
1204     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1205       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1206           .addFrameIndex(FI)
1207           .addImm(0)
1208           .addMemOperand(MMO)
1209           .add(predOps(ARMCC::AL));
1210     } else
1211       llvm_unreachable("Unknown reg class!");
1212     break;
1213   case 4:
1214     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1215       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1216           .addFrameIndex(FI)
1217           .addImm(0)
1218           .addMemOperand(MMO)
1219           .add(predOps(ARMCC::AL));
1220     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1221       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1222           .addFrameIndex(FI)
1223           .addImm(0)
1224           .addMemOperand(MMO)
1225           .add(predOps(ARMCC::AL));
1226     } else
1227       llvm_unreachable("Unknown reg class!");
1228     break;
1229   case 8:
1230     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1231       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1232           .addFrameIndex(FI)
1233           .addImm(0)
1234           .addMemOperand(MMO)
1235           .add(predOps(ARMCC::AL));
1236     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1237       MachineInstrBuilder MIB;
1238 
1239       if (Subtarget.hasV5TEOps()) {
1240         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1241         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1242         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1243         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1244            .add(predOps(ARMCC::AL));
1245       } else {
1246         // Fallback to LDM instruction, which has existed since the dawn of
1247         // time.
1248         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1249                   .addFrameIndex(FI)
1250                   .addMemOperand(MMO)
1251                   .add(predOps(ARMCC::AL));
1252         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1253         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1254       }
1255 
1256       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1257         MIB.addReg(DestReg, RegState::ImplicitDefine);
1258     } else
1259       llvm_unreachable("Unknown reg class!");
1260     break;
1261   case 16:
1262     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1263       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1264         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1265             .addFrameIndex(FI)
1266             .addImm(16)
1267             .addMemOperand(MMO)
1268             .add(predOps(ARMCC::AL));
1269       } else {
1270         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1271             .addFrameIndex(FI)
1272             .addMemOperand(MMO)
1273             .add(predOps(ARMCC::AL));
1274       }
1275     } else
1276       llvm_unreachable("Unknown reg class!");
1277     break;
1278   case 24:
1279     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1280       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1281         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1282             .addFrameIndex(FI)
1283             .addImm(16)
1284             .addMemOperand(MMO)
1285             .add(predOps(ARMCC::AL));
1286       } else {
1287         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1288                                       .addFrameIndex(FI)
1289                                       .addMemOperand(MMO)
1290                                       .add(predOps(ARMCC::AL));
1291         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1292         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1293         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1294         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1295           MIB.addReg(DestReg, RegState::ImplicitDefine);
1296       }
1297     } else
1298       llvm_unreachable("Unknown reg class!");
1299     break;
1300    case 32:
1301     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1302       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1303         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1304             .addFrameIndex(FI)
1305             .addImm(16)
1306             .addMemOperand(MMO)
1307             .add(predOps(ARMCC::AL));
1308       } else {
1309         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1310                                       .addFrameIndex(FI)
1311                                       .add(predOps(ARMCC::AL))
1312                                       .addMemOperand(MMO);
1313         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1314         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1315         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1316         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1317         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1318           MIB.addReg(DestReg, RegState::ImplicitDefine);
1319       }
1320     } else
1321       llvm_unreachable("Unknown reg class!");
1322     break;
1323   case 64:
1324     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1325       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1326                                     .addFrameIndex(FI)
1327                                     .add(predOps(ARMCC::AL))
1328                                     .addMemOperand(MMO);
1329       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1330       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1331       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1332       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1333       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1334       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1335       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1336       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1337       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1338         MIB.addReg(DestReg, RegState::ImplicitDefine);
1339     } else
1340       llvm_unreachable("Unknown reg class!");
1341     break;
1342   default:
1343     llvm_unreachable("Unknown regclass!");
1344   }
1345 }
1346 
1347 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1348                                                int &FrameIndex) const {
1349   switch (MI.getOpcode()) {
1350   default: break;
1351   case ARM::LDRrs:
1352   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1353     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1354         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1355         MI.getOperand(3).getImm() == 0) {
1356       FrameIndex = MI.getOperand(1).getIndex();
1357       return MI.getOperand(0).getReg();
1358     }
1359     break;
1360   case ARM::LDRi12:
1361   case ARM::t2LDRi12:
1362   case ARM::tLDRspi:
1363   case ARM::VLDRD:
1364   case ARM::VLDRS:
1365     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1366         MI.getOperand(2).getImm() == 0) {
1367       FrameIndex = MI.getOperand(1).getIndex();
1368       return MI.getOperand(0).getReg();
1369     }
1370     break;
1371   case ARM::VLD1q64:
1372   case ARM::VLD1d8TPseudo:
1373   case ARM::VLD1d16TPseudo:
1374   case ARM::VLD1d32TPseudo:
1375   case ARM::VLD1d64TPseudo:
1376   case ARM::VLD1d8QPseudo:
1377   case ARM::VLD1d16QPseudo:
1378   case ARM::VLD1d32QPseudo:
1379   case ARM::VLD1d64QPseudo:
1380     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1381       FrameIndex = MI.getOperand(1).getIndex();
1382       return MI.getOperand(0).getReg();
1383     }
1384     break;
1385   case ARM::VLDMQIA:
1386     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1387       FrameIndex = MI.getOperand(1).getIndex();
1388       return MI.getOperand(0).getReg();
1389     }
1390     break;
1391   }
1392 
1393   return 0;
1394 }
1395 
1396 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1397                                                      int &FrameIndex) const {
1398   SmallVector<const MachineMemOperand *, 1> Accesses;
1399   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses)) {
1400     FrameIndex =
1401         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1402             ->getFrameIndex();
1403     return true;
1404   }
1405   return false;
1406 }
1407 
1408 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1409 /// depending on whether the result is used.
1410 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1411   bool isThumb1 = Subtarget.isThumb1Only();
1412   bool isThumb2 = Subtarget.isThumb2();
1413   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1414 
1415   DebugLoc dl = MI->getDebugLoc();
1416   MachineBasicBlock *BB = MI->getParent();
1417 
1418   MachineInstrBuilder LDM, STM;
1419   if (isThumb1 || !MI->getOperand(1).isDead()) {
1420     MachineOperand LDWb(MI->getOperand(1));
1421     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1422                                                  : isThumb1 ? ARM::tLDMIA_UPD
1423                                                             : ARM::LDMIA_UPD))
1424               .add(LDWb);
1425   } else {
1426     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1427   }
1428 
1429   if (isThumb1 || !MI->getOperand(0).isDead()) {
1430     MachineOperand STWb(MI->getOperand(0));
1431     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1432                                                  : isThumb1 ? ARM::tSTMIA_UPD
1433                                                             : ARM::STMIA_UPD))
1434               .add(STWb);
1435   } else {
1436     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1437   }
1438 
1439   MachineOperand LDBase(MI->getOperand(3));
1440   LDM.add(LDBase).add(predOps(ARMCC::AL));
1441 
1442   MachineOperand STBase(MI->getOperand(2));
1443   STM.add(STBase).add(predOps(ARMCC::AL));
1444 
1445   // Sort the scratch registers into ascending order.
1446   const TargetRegisterInfo &TRI = getRegisterInfo();
1447   SmallVector<unsigned, 6> ScratchRegs;
1448   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1449     ScratchRegs.push_back(MI->getOperand(I).getReg());
1450   llvm::sort(ScratchRegs,
1451              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1452                return TRI.getEncodingValue(Reg1) <
1453                       TRI.getEncodingValue(Reg2);
1454              });
1455 
1456   for (const auto &Reg : ScratchRegs) {
1457     LDM.addReg(Reg, RegState::Define);
1458     STM.addReg(Reg, RegState::Kill);
1459   }
1460 
1461   BB->erase(MI);
1462 }
1463 
1464 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1465   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1466     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1467            "LOAD_STACK_GUARD currently supported only for MachO.");
1468     expandLoadStackGuard(MI);
1469     MI.getParent()->erase(MI);
1470     return true;
1471   }
1472 
1473   if (MI.getOpcode() == ARM::MEMCPY) {
1474     expandMEMCPY(MI);
1475     return true;
1476   }
1477 
1478   // This hook gets to expand COPY instructions before they become
1479   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1480   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1481   // changed into a VORR that can go down the NEON pipeline.
1482   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
1483     return false;
1484 
1485   // Look for a copy between even S-registers.  That is where we keep floats
1486   // when using NEON v2f32 instructions for f32 arithmetic.
1487   unsigned DstRegS = MI.getOperand(0).getReg();
1488   unsigned SrcRegS = MI.getOperand(1).getReg();
1489   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1490     return false;
1491 
1492   const TargetRegisterInfo *TRI = &getRegisterInfo();
1493   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1494                                               &ARM::DPRRegClass);
1495   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1496                                               &ARM::DPRRegClass);
1497   if (!DstRegD || !SrcRegD)
1498     return false;
1499 
1500   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1501   // legal if the COPY already defines the full DstRegD, and it isn't a
1502   // sub-register insertion.
1503   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1504     return false;
1505 
1506   // A dead copy shouldn't show up here, but reject it just in case.
1507   if (MI.getOperand(0).isDead())
1508     return false;
1509 
1510   // All clear, widen the COPY.
1511   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1512   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1513 
1514   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1515   // or some other super-register.
1516   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1517   if (ImpDefIdx != -1)
1518     MI.RemoveOperand(ImpDefIdx);
1519 
1520   // Change the opcode and operands.
1521   MI.setDesc(get(ARM::VMOVD));
1522   MI.getOperand(0).setReg(DstRegD);
1523   MI.getOperand(1).setReg(SrcRegD);
1524   MIB.add(predOps(ARMCC::AL));
1525 
1526   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1527   // register scavenger and machine verifier, so we need to indicate that we
1528   // are reading an undefined value from SrcRegD, but a proper value from
1529   // SrcRegS.
1530   MI.getOperand(1).setIsUndef();
1531   MIB.addReg(SrcRegS, RegState::Implicit);
1532 
1533   // SrcRegD may actually contain an unrelated value in the ssub_1
1534   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1535   if (MI.getOperand(1).isKill()) {
1536     MI.getOperand(1).setIsKill(false);
1537     MI.addRegisterKilled(SrcRegS, TRI, true);
1538   }
1539 
1540   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1541   return true;
1542 }
1543 
1544 /// Create a copy of a const pool value. Update CPI to the new index and return
1545 /// the label UID.
1546 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1547   MachineConstantPool *MCP = MF.getConstantPool();
1548   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1549 
1550   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1551   assert(MCPE.isMachineConstantPoolEntry() &&
1552          "Expecting a machine constantpool entry!");
1553   ARMConstantPoolValue *ACPV =
1554     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1555 
1556   unsigned PCLabelId = AFI->createPICLabelUId();
1557   ARMConstantPoolValue *NewCPV = nullptr;
1558 
1559   // FIXME: The below assumes PIC relocation model and that the function
1560   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1561   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1562   // instructions, so that's probably OK, but is PIC always correct when
1563   // we get here?
1564   if (ACPV->isGlobalValue())
1565     NewCPV = ARMConstantPoolConstant::Create(
1566         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1567         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1568   else if (ACPV->isExtSymbol())
1569     NewCPV = ARMConstantPoolSymbol::
1570       Create(MF.getFunction().getContext(),
1571              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1572   else if (ACPV->isBlockAddress())
1573     NewCPV = ARMConstantPoolConstant::
1574       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1575              ARMCP::CPBlockAddress, 4);
1576   else if (ACPV->isLSDA())
1577     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1578                                              ARMCP::CPLSDA, 4);
1579   else if (ACPV->isMachineBasicBlock())
1580     NewCPV = ARMConstantPoolMBB::
1581       Create(MF.getFunction().getContext(),
1582              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1583   else
1584     llvm_unreachable("Unexpected ARM constantpool value type!!");
1585   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1586   return PCLabelId;
1587 }
1588 
1589 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1590                                      MachineBasicBlock::iterator I,
1591                                      unsigned DestReg, unsigned SubIdx,
1592                                      const MachineInstr &Orig,
1593                                      const TargetRegisterInfo &TRI) const {
1594   unsigned Opcode = Orig.getOpcode();
1595   switch (Opcode) {
1596   default: {
1597     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1598     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1599     MBB.insert(I, MI);
1600     break;
1601   }
1602   case ARM::tLDRpci_pic:
1603   case ARM::t2LDRpci_pic: {
1604     MachineFunction &MF = *MBB.getParent();
1605     unsigned CPI = Orig.getOperand(1).getIndex();
1606     unsigned PCLabelId = duplicateCPV(MF, CPI);
1607     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1608         .addConstantPoolIndex(CPI)
1609         .addImm(PCLabelId)
1610         .cloneMemRefs(Orig);
1611     break;
1612   }
1613   }
1614 }
1615 
1616 MachineInstr &
1617 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1618     MachineBasicBlock::iterator InsertBefore,
1619     const MachineInstr &Orig) const {
1620   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1621   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1622   for (;;) {
1623     switch (I->getOpcode()) {
1624     case ARM::tLDRpci_pic:
1625     case ARM::t2LDRpci_pic: {
1626       MachineFunction &MF = *MBB.getParent();
1627       unsigned CPI = I->getOperand(1).getIndex();
1628       unsigned PCLabelId = duplicateCPV(MF, CPI);
1629       I->getOperand(1).setIndex(CPI);
1630       I->getOperand(2).setImm(PCLabelId);
1631       break;
1632     }
1633     }
1634     if (!I->isBundledWithSucc())
1635       break;
1636     ++I;
1637   }
1638   return Cloned;
1639 }
1640 
1641 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1642                                         const MachineInstr &MI1,
1643                                         const MachineRegisterInfo *MRI) const {
1644   unsigned Opcode = MI0.getOpcode();
1645   if (Opcode == ARM::t2LDRpci ||
1646       Opcode == ARM::t2LDRpci_pic ||
1647       Opcode == ARM::tLDRpci ||
1648       Opcode == ARM::tLDRpci_pic ||
1649       Opcode == ARM::LDRLIT_ga_pcrel ||
1650       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1651       Opcode == ARM::tLDRLIT_ga_pcrel ||
1652       Opcode == ARM::MOV_ga_pcrel ||
1653       Opcode == ARM::MOV_ga_pcrel_ldr ||
1654       Opcode == ARM::t2MOV_ga_pcrel) {
1655     if (MI1.getOpcode() != Opcode)
1656       return false;
1657     if (MI0.getNumOperands() != MI1.getNumOperands())
1658       return false;
1659 
1660     const MachineOperand &MO0 = MI0.getOperand(1);
1661     const MachineOperand &MO1 = MI1.getOperand(1);
1662     if (MO0.getOffset() != MO1.getOffset())
1663       return false;
1664 
1665     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1666         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1667         Opcode == ARM::tLDRLIT_ga_pcrel ||
1668         Opcode == ARM::MOV_ga_pcrel ||
1669         Opcode == ARM::MOV_ga_pcrel_ldr ||
1670         Opcode == ARM::t2MOV_ga_pcrel)
1671       // Ignore the PC labels.
1672       return MO0.getGlobal() == MO1.getGlobal();
1673 
1674     const MachineFunction *MF = MI0.getParent()->getParent();
1675     const MachineConstantPool *MCP = MF->getConstantPool();
1676     int CPI0 = MO0.getIndex();
1677     int CPI1 = MO1.getIndex();
1678     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1679     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1680     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1681     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1682     if (isARMCP0 && isARMCP1) {
1683       ARMConstantPoolValue *ACPV0 =
1684         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1685       ARMConstantPoolValue *ACPV1 =
1686         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1687       return ACPV0->hasSameValue(ACPV1);
1688     } else if (!isARMCP0 && !isARMCP1) {
1689       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1690     }
1691     return false;
1692   } else if (Opcode == ARM::PICLDR) {
1693     if (MI1.getOpcode() != Opcode)
1694       return false;
1695     if (MI0.getNumOperands() != MI1.getNumOperands())
1696       return false;
1697 
1698     unsigned Addr0 = MI0.getOperand(1).getReg();
1699     unsigned Addr1 = MI1.getOperand(1).getReg();
1700     if (Addr0 != Addr1) {
1701       if (!MRI ||
1702           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1703           !TargetRegisterInfo::isVirtualRegister(Addr1))
1704         return false;
1705 
1706       // This assumes SSA form.
1707       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1708       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1709       // Check if the loaded value, e.g. a constantpool of a global address, are
1710       // the same.
1711       if (!produceSameValue(*Def0, *Def1, MRI))
1712         return false;
1713     }
1714 
1715     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1716       // %12 = PICLDR %11, 0, 14, %noreg
1717       const MachineOperand &MO0 = MI0.getOperand(i);
1718       const MachineOperand &MO1 = MI1.getOperand(i);
1719       if (!MO0.isIdenticalTo(MO1))
1720         return false;
1721     }
1722     return true;
1723   }
1724 
1725   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1726 }
1727 
1728 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1729 /// determine if two loads are loading from the same base address. It should
1730 /// only return true if the base pointers are the same and the only differences
1731 /// between the two addresses is the offset. It also returns the offsets by
1732 /// reference.
1733 ///
1734 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1735 /// is permanently disabled.
1736 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1737                                                int64_t &Offset1,
1738                                                int64_t &Offset2) const {
1739   // Don't worry about Thumb: just ARM and Thumb2.
1740   if (Subtarget.isThumb1Only()) return false;
1741 
1742   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1743     return false;
1744 
1745   switch (Load1->getMachineOpcode()) {
1746   default:
1747     return false;
1748   case ARM::LDRi12:
1749   case ARM::LDRBi12:
1750   case ARM::LDRD:
1751   case ARM::LDRH:
1752   case ARM::LDRSB:
1753   case ARM::LDRSH:
1754   case ARM::VLDRD:
1755   case ARM::VLDRS:
1756   case ARM::t2LDRi8:
1757   case ARM::t2LDRBi8:
1758   case ARM::t2LDRDi8:
1759   case ARM::t2LDRSHi8:
1760   case ARM::t2LDRi12:
1761   case ARM::t2LDRBi12:
1762   case ARM::t2LDRSHi12:
1763     break;
1764   }
1765 
1766   switch (Load2->getMachineOpcode()) {
1767   default:
1768     return false;
1769   case ARM::LDRi12:
1770   case ARM::LDRBi12:
1771   case ARM::LDRD:
1772   case ARM::LDRH:
1773   case ARM::LDRSB:
1774   case ARM::LDRSH:
1775   case ARM::VLDRD:
1776   case ARM::VLDRS:
1777   case ARM::t2LDRi8:
1778   case ARM::t2LDRBi8:
1779   case ARM::t2LDRSHi8:
1780   case ARM::t2LDRi12:
1781   case ARM::t2LDRBi12:
1782   case ARM::t2LDRSHi12:
1783     break;
1784   }
1785 
1786   // Check if base addresses and chain operands match.
1787   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1788       Load1->getOperand(4) != Load2->getOperand(4))
1789     return false;
1790 
1791   // Index should be Reg0.
1792   if (Load1->getOperand(3) != Load2->getOperand(3))
1793     return false;
1794 
1795   // Determine the offsets.
1796   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1797       isa<ConstantSDNode>(Load2->getOperand(1))) {
1798     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1799     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1800     return true;
1801   }
1802 
1803   return false;
1804 }
1805 
1806 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1807 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1808 /// be scheduled togther. On some targets if two loads are loading from
1809 /// addresses in the same cache line, it's better if they are scheduled
1810 /// together. This function takes two integers that represent the load offsets
1811 /// from the common base address. It returns true if it decides it's desirable
1812 /// to schedule the two loads together. "NumLoads" is the number of loads that
1813 /// have already been scheduled after Load1.
1814 ///
1815 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1816 /// is permanently disabled.
1817 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1818                                                int64_t Offset1, int64_t Offset2,
1819                                                unsigned NumLoads) const {
1820   // Don't worry about Thumb: just ARM and Thumb2.
1821   if (Subtarget.isThumb1Only()) return false;
1822 
1823   assert(Offset2 > Offset1);
1824 
1825   if ((Offset2 - Offset1) / 8 > 64)
1826     return false;
1827 
1828   // Check if the machine opcodes are different. If they are different
1829   // then we consider them to not be of the same base address,
1830   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1831   // In this case, they are considered to be the same because they are different
1832   // encoding forms of the same basic instruction.
1833   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1834       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1835          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1836         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1837          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1838     return false;  // FIXME: overly conservative?
1839 
1840   // Four loads in a row should be sufficient.
1841   if (NumLoads >= 3)
1842     return false;
1843 
1844   return true;
1845 }
1846 
1847 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1848                                             const MachineBasicBlock *MBB,
1849                                             const MachineFunction &MF) const {
1850   // Debug info is never a scheduling boundary. It's necessary to be explicit
1851   // due to the special treatment of IT instructions below, otherwise a
1852   // dbg_value followed by an IT will result in the IT instruction being
1853   // considered a scheduling hazard, which is wrong. It should be the actual
1854   // instruction preceding the dbg_value instruction(s), just like it is
1855   // when debug info is not present.
1856   if (MI.isDebugInstr())
1857     return false;
1858 
1859   // Terminators and labels can't be scheduled around.
1860   if (MI.isTerminator() || MI.isPosition())
1861     return true;
1862 
1863   // Treat the start of the IT block as a scheduling boundary, but schedule
1864   // t2IT along with all instructions following it.
1865   // FIXME: This is a big hammer. But the alternative is to add all potential
1866   // true and anti dependencies to IT block instructions as implicit operands
1867   // to the t2IT instruction. The added compile time and complexity does not
1868   // seem worth it.
1869   MachineBasicBlock::const_iterator I = MI;
1870   // Make sure to skip any debug instructions
1871   while (++I != MBB->end() && I->isDebugInstr())
1872     ;
1873   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1874     return true;
1875 
1876   // Don't attempt to schedule around any instruction that defines
1877   // a stack-oriented pointer, as it's unlikely to be profitable. This
1878   // saves compile time, because it doesn't require every single
1879   // stack slot reference to depend on the instruction that does the
1880   // modification.
1881   // Calls don't actually change the stack pointer, even if they have imp-defs.
1882   // No ARM calling conventions change the stack pointer. (X86 calling
1883   // conventions sometimes do).
1884   if (!MI.isCall() && MI.definesRegister(ARM::SP))
1885     return true;
1886 
1887   return false;
1888 }
1889 
1890 bool ARMBaseInstrInfo::
1891 isProfitableToIfCvt(MachineBasicBlock &MBB,
1892                     unsigned NumCycles, unsigned ExtraPredCycles,
1893                     BranchProbability Probability) const {
1894   if (!NumCycles)
1895     return false;
1896 
1897   // If we are optimizing for size, see if the branch in the predecessor can be
1898   // lowered to cbn?z by the constant island lowering pass, and return false if
1899   // so. This results in a shorter instruction sequence.
1900   if (MBB.getParent()->getFunction().optForSize()) {
1901     MachineBasicBlock *Pred = *MBB.pred_begin();
1902     if (!Pred->empty()) {
1903       MachineInstr *LastMI = &*Pred->rbegin();
1904       if (LastMI->getOpcode() == ARM::t2Bcc) {
1905         MachineBasicBlock::iterator CmpMI = LastMI;
1906         if (CmpMI != Pred->begin()) {
1907           --CmpMI;
1908           if (CmpMI->getOpcode() == ARM::tCMPi8 ||
1909               CmpMI->getOpcode() == ARM::t2CMPri) {
1910             unsigned Reg = CmpMI->getOperand(0).getReg();
1911             unsigned PredReg = 0;
1912             ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg);
1913             if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 &&
1914                 isARMLowRegister(Reg))
1915               return false;
1916           }
1917         }
1918       }
1919     }
1920   }
1921   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
1922                              MBB, 0, 0, Probability);
1923 }
1924 
1925 bool ARMBaseInstrInfo::
1926 isProfitableToIfCvt(MachineBasicBlock &TBB,
1927                     unsigned TCycles, unsigned TExtra,
1928                     MachineBasicBlock &FBB,
1929                     unsigned FCycles, unsigned FExtra,
1930                     BranchProbability Probability) const {
1931   if (!TCycles)
1932     return false;
1933 
1934   // Attempt to estimate the relative costs of predication versus branching.
1935   // Here we scale up each component of UnpredCost to avoid precision issue when
1936   // scaling TCycles/FCycles by Probability.
1937   const unsigned ScalingUpFactor = 1024;
1938 
1939   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
1940   unsigned UnpredCost;
1941   if (!Subtarget.hasBranchPredictor()) {
1942     // When we don't have a branch predictor it's always cheaper to not take a
1943     // branch than take it, so we have to take that into account.
1944     unsigned NotTakenBranchCost = 1;
1945     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
1946     unsigned TUnpredCycles, FUnpredCycles;
1947     if (!FCycles) {
1948       // Triangle: TBB is the fallthrough
1949       TUnpredCycles = TCycles + NotTakenBranchCost;
1950       FUnpredCycles = TakenBranchCost;
1951     } else {
1952       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
1953       TUnpredCycles = TCycles + TakenBranchCost;
1954       FUnpredCycles = FCycles + NotTakenBranchCost;
1955       // The branch at the end of FBB will disappear when it's predicated, so
1956       // discount it from PredCost.
1957       PredCost -= 1 * ScalingUpFactor;
1958     }
1959     // The total cost is the cost of each path scaled by their probabilites
1960     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
1961     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
1962     UnpredCost = TUnpredCost + FUnpredCost;
1963     // When predicating assume that the first IT can be folded away but later
1964     // ones cost one cycle each
1965     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
1966       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
1967     }
1968   } else {
1969     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
1970     unsigned FUnpredCost =
1971       Probability.getCompl().scale(FCycles * ScalingUpFactor);
1972     UnpredCost = TUnpredCost + FUnpredCost;
1973     UnpredCost += 1 * ScalingUpFactor; // The branch itself
1974     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1975   }
1976 
1977   return PredCost <= UnpredCost;
1978 }
1979 
1980 bool
1981 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1982                                             MachineBasicBlock &FMBB) const {
1983   // Reduce false anti-dependencies to let the target's out-of-order execution
1984   // engine do its thing.
1985   return Subtarget.isProfitableToUnpredicate();
1986 }
1987 
1988 /// getInstrPredicate - If instruction is predicated, returns its predicate
1989 /// condition, otherwise returns AL. It also returns the condition code
1990 /// register by reference.
1991 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
1992                                          unsigned &PredReg) {
1993   int PIdx = MI.findFirstPredOperandIdx();
1994   if (PIdx == -1) {
1995     PredReg = 0;
1996     return ARMCC::AL;
1997   }
1998 
1999   PredReg = MI.getOperand(PIdx+1).getReg();
2000   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2001 }
2002 
2003 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2004   if (Opc == ARM::B)
2005     return ARM::Bcc;
2006   if (Opc == ARM::tB)
2007     return ARM::tBcc;
2008   if (Opc == ARM::t2B)
2009     return ARM::t2Bcc;
2010 
2011   llvm_unreachable("Unknown unconditional branch opcode!");
2012 }
2013 
2014 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2015                                                        bool NewMI,
2016                                                        unsigned OpIdx1,
2017                                                        unsigned OpIdx2) const {
2018   switch (MI.getOpcode()) {
2019   case ARM::MOVCCr:
2020   case ARM::t2MOVCCr: {
2021     // MOVCC can be commuted by inverting the condition.
2022     unsigned PredReg = 0;
2023     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2024     // MOVCC AL can't be inverted. Shouldn't happen.
2025     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2026       return nullptr;
2027     MachineInstr *CommutedMI =
2028         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2029     if (!CommutedMI)
2030       return nullptr;
2031     // After swapping the MOVCC operands, also invert the condition.
2032     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2033         .setImm(ARMCC::getOppositeCondition(CC));
2034     return CommutedMI;
2035   }
2036   }
2037   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2038 }
2039 
2040 /// Identify instructions that can be folded into a MOVCC instruction, and
2041 /// return the defining instruction.
2042 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
2043                                       const MachineRegisterInfo &MRI,
2044                                       const TargetInstrInfo *TII) {
2045   if (!TargetRegisterInfo::isVirtualRegister(Reg))
2046     return nullptr;
2047   if (!MRI.hasOneNonDBGUse(Reg))
2048     return nullptr;
2049   MachineInstr *MI = MRI.getVRegDef(Reg);
2050   if (!MI)
2051     return nullptr;
2052   // MI is folded into the MOVCC by predicating it.
2053   if (!MI->isPredicable())
2054     return nullptr;
2055   // Check if MI has any non-dead defs or physreg uses. This also detects
2056   // predicated instructions which will be reading CPSR.
2057   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2058     const MachineOperand &MO = MI->getOperand(i);
2059     // Reject frame index operands, PEI can't handle the predicated pseudos.
2060     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2061       return nullptr;
2062     if (!MO.isReg())
2063       continue;
2064     // MI can't have any tied operands, that would conflict with predication.
2065     if (MO.isTied())
2066       return nullptr;
2067     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
2068       return nullptr;
2069     if (MO.isDef() && !MO.isDead())
2070       return nullptr;
2071   }
2072   bool DontMoveAcrossStores = true;
2073   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2074     return nullptr;
2075   return MI;
2076 }
2077 
2078 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2079                                      SmallVectorImpl<MachineOperand> &Cond,
2080                                      unsigned &TrueOp, unsigned &FalseOp,
2081                                      bool &Optimizable) const {
2082   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2083          "Unknown select instruction");
2084   // MOVCC operands:
2085   // 0: Def.
2086   // 1: True use.
2087   // 2: False use.
2088   // 3: Condition code.
2089   // 4: CPSR use.
2090   TrueOp = 1;
2091   FalseOp = 2;
2092   Cond.push_back(MI.getOperand(3));
2093   Cond.push_back(MI.getOperand(4));
2094   // We can always fold a def.
2095   Optimizable = true;
2096   return false;
2097 }
2098 
2099 MachineInstr *
2100 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2101                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2102                                  bool PreferFalse) const {
2103   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2104          "Unknown select instruction");
2105   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2106   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2107   bool Invert = !DefMI;
2108   if (!DefMI)
2109     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2110   if (!DefMI)
2111     return nullptr;
2112 
2113   // Find new register class to use.
2114   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2115   unsigned DestReg = MI.getOperand(0).getReg();
2116   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2117   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2118     return nullptr;
2119 
2120   // Create a new predicated version of DefMI.
2121   // Rfalse is the first use.
2122   MachineInstrBuilder NewMI =
2123       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2124 
2125   // Copy all the DefMI operands, excluding its (null) predicate.
2126   const MCInstrDesc &DefDesc = DefMI->getDesc();
2127   for (unsigned i = 1, e = DefDesc.getNumOperands();
2128        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2129     NewMI.add(DefMI->getOperand(i));
2130 
2131   unsigned CondCode = MI.getOperand(3).getImm();
2132   if (Invert)
2133     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2134   else
2135     NewMI.addImm(CondCode);
2136   NewMI.add(MI.getOperand(4));
2137 
2138   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2139   if (NewMI->hasOptionalDef())
2140     NewMI.add(condCodeOp());
2141 
2142   // The output register value when the predicate is false is an implicit
2143   // register operand tied to the first def.
2144   // The tie makes the register allocator ensure the FalseReg is allocated the
2145   // same register as operand 0.
2146   FalseReg.setImplicit();
2147   NewMI.add(FalseReg);
2148   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2149 
2150   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2151   SeenMIs.insert(NewMI);
2152   SeenMIs.erase(DefMI);
2153 
2154   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2155   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2156   // loop is expensive, but at least remove kill flags if they are in different
2157   // BBs.
2158   if (DefMI->getParent() != MI.getParent())
2159     NewMI->clearKillInfo();
2160 
2161   // The caller will erase MI, but not DefMI.
2162   DefMI->eraseFromParent();
2163   return NewMI;
2164 }
2165 
2166 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2167 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2168 /// def operand.
2169 ///
2170 /// This will go away once we can teach tblgen how to set the optional CPSR def
2171 /// operand itself.
2172 struct AddSubFlagsOpcodePair {
2173   uint16_t PseudoOpc;
2174   uint16_t MachineOpc;
2175 };
2176 
2177 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2178   {ARM::ADDSri, ARM::ADDri},
2179   {ARM::ADDSrr, ARM::ADDrr},
2180   {ARM::ADDSrsi, ARM::ADDrsi},
2181   {ARM::ADDSrsr, ARM::ADDrsr},
2182 
2183   {ARM::SUBSri, ARM::SUBri},
2184   {ARM::SUBSrr, ARM::SUBrr},
2185   {ARM::SUBSrsi, ARM::SUBrsi},
2186   {ARM::SUBSrsr, ARM::SUBrsr},
2187 
2188   {ARM::RSBSri, ARM::RSBri},
2189   {ARM::RSBSrsi, ARM::RSBrsi},
2190   {ARM::RSBSrsr, ARM::RSBrsr},
2191 
2192   {ARM::tADDSi3, ARM::tADDi3},
2193   {ARM::tADDSi8, ARM::tADDi8},
2194   {ARM::tADDSrr, ARM::tADDrr},
2195   {ARM::tADCS, ARM::tADC},
2196 
2197   {ARM::tSUBSi3, ARM::tSUBi3},
2198   {ARM::tSUBSi8, ARM::tSUBi8},
2199   {ARM::tSUBSrr, ARM::tSUBrr},
2200   {ARM::tSBCS, ARM::tSBC},
2201   {ARM::tRSBS, ARM::tRSB},
2202 
2203   {ARM::t2ADDSri, ARM::t2ADDri},
2204   {ARM::t2ADDSrr, ARM::t2ADDrr},
2205   {ARM::t2ADDSrs, ARM::t2ADDrs},
2206 
2207   {ARM::t2SUBSri, ARM::t2SUBri},
2208   {ARM::t2SUBSrr, ARM::t2SUBrr},
2209   {ARM::t2SUBSrs, ARM::t2SUBrs},
2210 
2211   {ARM::t2RSBSri, ARM::t2RSBri},
2212   {ARM::t2RSBSrs, ARM::t2RSBrs},
2213 };
2214 
2215 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2216   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2217     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2218       return AddSubFlagsOpcodeMap[i].MachineOpc;
2219   return 0;
2220 }
2221 
2222 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2223                                    MachineBasicBlock::iterator &MBBI,
2224                                    const DebugLoc &dl, unsigned DestReg,
2225                                    unsigned BaseReg, int NumBytes,
2226                                    ARMCC::CondCodes Pred, unsigned PredReg,
2227                                    const ARMBaseInstrInfo &TII,
2228                                    unsigned MIFlags) {
2229   if (NumBytes == 0 && DestReg != BaseReg) {
2230     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2231         .addReg(BaseReg, RegState::Kill)
2232         .add(predOps(Pred, PredReg))
2233         .add(condCodeOp())
2234         .setMIFlags(MIFlags);
2235     return;
2236   }
2237 
2238   bool isSub = NumBytes < 0;
2239   if (isSub) NumBytes = -NumBytes;
2240 
2241   while (NumBytes) {
2242     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2243     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2244     assert(ThisVal && "Didn't extract field correctly");
2245 
2246     // We will handle these bits from offset, clear them.
2247     NumBytes &= ~ThisVal;
2248 
2249     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2250 
2251     // Build the new ADD / SUB.
2252     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2253     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2254         .addReg(BaseReg, RegState::Kill)
2255         .addImm(ThisVal)
2256         .add(predOps(Pred, PredReg))
2257         .add(condCodeOp())
2258         .setMIFlags(MIFlags);
2259     BaseReg = DestReg;
2260   }
2261 }
2262 
2263 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2264                                       MachineFunction &MF, MachineInstr *MI,
2265                                       unsigned NumBytes) {
2266   // This optimisation potentially adds lots of load and store
2267   // micro-operations, it's only really a great benefit to code-size.
2268   if (!Subtarget.optForMinSize())
2269     return false;
2270 
2271   // If only one register is pushed/popped, LLVM can use an LDR/STR
2272   // instead. We can't modify those so make sure we're dealing with an
2273   // instruction we understand.
2274   bool IsPop = isPopOpcode(MI->getOpcode());
2275   bool IsPush = isPushOpcode(MI->getOpcode());
2276   if (!IsPush && !IsPop)
2277     return false;
2278 
2279   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2280                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2281   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2282                      MI->getOpcode() == ARM::tPOP ||
2283                      MI->getOpcode() == ARM::tPOP_RET;
2284 
2285   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2286                           MI->getOperand(1).getReg() == ARM::SP)) &&
2287          "trying to fold sp update into non-sp-updating push/pop");
2288 
2289   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2290   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2291   // if this is violated.
2292   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2293     return false;
2294 
2295   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2296   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2297   int RegListIdx = IsT1PushPop ? 2 : 4;
2298 
2299   // Calculate the space we'll need in terms of registers.
2300   unsigned RegsNeeded;
2301   const TargetRegisterClass *RegClass;
2302   if (IsVFPPushPop) {
2303     RegsNeeded = NumBytes / 8;
2304     RegClass = &ARM::DPRRegClass;
2305   } else {
2306     RegsNeeded = NumBytes / 4;
2307     RegClass = &ARM::GPRRegClass;
2308   }
2309 
2310   // We're going to have to strip all list operands off before
2311   // re-adding them since the order matters, so save the existing ones
2312   // for later.
2313   SmallVector<MachineOperand, 4> RegList;
2314 
2315   // We're also going to need the first register transferred by this
2316   // instruction, which won't necessarily be the first register in the list.
2317   unsigned FirstRegEnc = -1;
2318 
2319   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2320   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2321     MachineOperand &MO = MI->getOperand(i);
2322     RegList.push_back(MO);
2323 
2324     if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2325       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2326   }
2327 
2328   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2329 
2330   // Now try to find enough space in the reglist to allocate NumBytes.
2331   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2332        --CurRegEnc) {
2333     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2334     if (!IsPop) {
2335       // Pushing any register is completely harmless, mark the register involved
2336       // as undef since we don't care about its value and must not restore it
2337       // during stack unwinding.
2338       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2339                                                   false, false, true));
2340       --RegsNeeded;
2341       continue;
2342     }
2343 
2344     // However, we can only pop an extra register if it's not live. For
2345     // registers live within the function we might clobber a return value
2346     // register; the other way a register can be live here is if it's
2347     // callee-saved.
2348     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2349         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2350         MachineBasicBlock::LQR_Dead) {
2351       // VFP pops don't allow holes in the register list, so any skip is fatal
2352       // for our transformation. GPR pops do, so we should just keep looking.
2353       if (IsVFPPushPop)
2354         return false;
2355       else
2356         continue;
2357     }
2358 
2359     // Mark the unimportant registers as <def,dead> in the POP.
2360     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2361                                                 true));
2362     --RegsNeeded;
2363   }
2364 
2365   if (RegsNeeded > 0)
2366     return false;
2367 
2368   // Finally we know we can profitably perform the optimisation so go
2369   // ahead: strip all existing registers off and add them back again
2370   // in the right order.
2371   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2372     MI->RemoveOperand(i);
2373 
2374   // Add the complete list back in.
2375   MachineInstrBuilder MIB(MF, &*MI);
2376   for (int i = RegList.size() - 1; i >= 0; --i)
2377     MIB.add(RegList[i]);
2378 
2379   return true;
2380 }
2381 
2382 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2383                                 unsigned FrameReg, int &Offset,
2384                                 const ARMBaseInstrInfo &TII) {
2385   unsigned Opcode = MI.getOpcode();
2386   const MCInstrDesc &Desc = MI.getDesc();
2387   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2388   bool isSub = false;
2389 
2390   // Memory operands in inline assembly always use AddrMode2.
2391   if (Opcode == ARM::INLINEASM)
2392     AddrMode = ARMII::AddrMode2;
2393 
2394   if (Opcode == ARM::ADDri) {
2395     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2396     if (Offset == 0) {
2397       // Turn it into a move.
2398       MI.setDesc(TII.get(ARM::MOVr));
2399       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2400       MI.RemoveOperand(FrameRegIdx+1);
2401       Offset = 0;
2402       return true;
2403     } else if (Offset < 0) {
2404       Offset = -Offset;
2405       isSub = true;
2406       MI.setDesc(TII.get(ARM::SUBri));
2407     }
2408 
2409     // Common case: small offset, fits into instruction.
2410     if (ARM_AM::getSOImmVal(Offset) != -1) {
2411       // Replace the FrameIndex with sp / fp
2412       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2413       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2414       Offset = 0;
2415       return true;
2416     }
2417 
2418     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2419     // as possible.
2420     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2421     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2422 
2423     // We will handle these bits from offset, clear them.
2424     Offset &= ~ThisImmVal;
2425 
2426     // Get the properly encoded SOImmVal field.
2427     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2428            "Bit extraction didn't work?");
2429     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2430  } else {
2431     unsigned ImmIdx = 0;
2432     int InstrOffs = 0;
2433     unsigned NumBits = 0;
2434     unsigned Scale = 1;
2435     switch (AddrMode) {
2436     case ARMII::AddrMode_i12:
2437       ImmIdx = FrameRegIdx + 1;
2438       InstrOffs = MI.getOperand(ImmIdx).getImm();
2439       NumBits = 12;
2440       break;
2441     case ARMII::AddrMode2:
2442       ImmIdx = FrameRegIdx+2;
2443       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2444       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2445         InstrOffs *= -1;
2446       NumBits = 12;
2447       break;
2448     case ARMII::AddrMode3:
2449       ImmIdx = FrameRegIdx+2;
2450       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2451       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2452         InstrOffs *= -1;
2453       NumBits = 8;
2454       break;
2455     case ARMII::AddrMode4:
2456     case ARMII::AddrMode6:
2457       // Can't fold any offset even if it's zero.
2458       return false;
2459     case ARMII::AddrMode5:
2460       ImmIdx = FrameRegIdx+1;
2461       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2462       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2463         InstrOffs *= -1;
2464       NumBits = 8;
2465       Scale = 4;
2466       break;
2467     case ARMII::AddrMode5FP16:
2468       ImmIdx = FrameRegIdx+1;
2469       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2470       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2471         InstrOffs *= -1;
2472       NumBits = 8;
2473       Scale = 2;
2474       break;
2475     default:
2476       llvm_unreachable("Unsupported addressing mode!");
2477     }
2478 
2479     Offset += InstrOffs * Scale;
2480     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2481     if (Offset < 0) {
2482       Offset = -Offset;
2483       isSub = true;
2484     }
2485 
2486     // Attempt to fold address comp. if opcode has offset bits
2487     if (NumBits > 0) {
2488       // Common case: small offset, fits into instruction.
2489       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2490       int ImmedOffset = Offset / Scale;
2491       unsigned Mask = (1 << NumBits) - 1;
2492       if ((unsigned)Offset <= Mask * Scale) {
2493         // Replace the FrameIndex with sp
2494         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2495         // FIXME: When addrmode2 goes away, this will simplify (like the
2496         // T2 version), as the LDR.i12 versions don't need the encoding
2497         // tricks for the offset value.
2498         if (isSub) {
2499           if (AddrMode == ARMII::AddrMode_i12)
2500             ImmedOffset = -ImmedOffset;
2501           else
2502             ImmedOffset |= 1 << NumBits;
2503         }
2504         ImmOp.ChangeToImmediate(ImmedOffset);
2505         Offset = 0;
2506         return true;
2507       }
2508 
2509       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2510       ImmedOffset = ImmedOffset & Mask;
2511       if (isSub) {
2512         if (AddrMode == ARMII::AddrMode_i12)
2513           ImmedOffset = -ImmedOffset;
2514         else
2515           ImmedOffset |= 1 << NumBits;
2516       }
2517       ImmOp.ChangeToImmediate(ImmedOffset);
2518       Offset &= ~(Mask*Scale);
2519     }
2520   }
2521 
2522   Offset = (isSub) ? -Offset : Offset;
2523   return Offset == 0;
2524 }
2525 
2526 /// analyzeCompare - For a comparison instruction, return the source registers
2527 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2528 /// compares against in CmpValue. Return true if the comparison instruction
2529 /// can be analyzed.
2530 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2531                                       unsigned &SrcReg2, int &CmpMask,
2532                                       int &CmpValue) const {
2533   switch (MI.getOpcode()) {
2534   default: break;
2535   case ARM::CMPri:
2536   case ARM::t2CMPri:
2537   case ARM::tCMPi8:
2538     SrcReg = MI.getOperand(0).getReg();
2539     SrcReg2 = 0;
2540     CmpMask = ~0;
2541     CmpValue = MI.getOperand(1).getImm();
2542     return true;
2543   case ARM::CMPrr:
2544   case ARM::t2CMPrr:
2545   case ARM::tCMPr:
2546     SrcReg = MI.getOperand(0).getReg();
2547     SrcReg2 = MI.getOperand(1).getReg();
2548     CmpMask = ~0;
2549     CmpValue = 0;
2550     return true;
2551   case ARM::TSTri:
2552   case ARM::t2TSTri:
2553     SrcReg = MI.getOperand(0).getReg();
2554     SrcReg2 = 0;
2555     CmpMask = MI.getOperand(1).getImm();
2556     CmpValue = 0;
2557     return true;
2558   }
2559 
2560   return false;
2561 }
2562 
2563 /// isSuitableForMask - Identify a suitable 'and' instruction that
2564 /// operates on the given source register and applies the same mask
2565 /// as a 'tst' instruction. Provide a limited look-through for copies.
2566 /// When successful, MI will hold the found instruction.
2567 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2568                               int CmpMask, bool CommonUse) {
2569   switch (MI->getOpcode()) {
2570     case ARM::ANDri:
2571     case ARM::t2ANDri:
2572       if (CmpMask != MI->getOperand(2).getImm())
2573         return false;
2574       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2575         return true;
2576       break;
2577   }
2578 
2579   return false;
2580 }
2581 
2582 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2583 /// the condition code if we modify the instructions such that flags are
2584 /// set by MI(b,a).
2585 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2586   switch (CC) {
2587   default: return ARMCC::AL;
2588   case ARMCC::EQ: return ARMCC::EQ;
2589   case ARMCC::NE: return ARMCC::NE;
2590   case ARMCC::HS: return ARMCC::LS;
2591   case ARMCC::LO: return ARMCC::HI;
2592   case ARMCC::HI: return ARMCC::LO;
2593   case ARMCC::LS: return ARMCC::HS;
2594   case ARMCC::GE: return ARMCC::LE;
2595   case ARMCC::LT: return ARMCC::GT;
2596   case ARMCC::GT: return ARMCC::LT;
2597   case ARMCC::LE: return ARMCC::GE;
2598   }
2599 }
2600 
2601 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2602 /// the condition code if we modify the instructions such that flags are
2603 /// set by ADD(a,b,X).
2604 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2605   switch (CC) {
2606   default: return ARMCC::AL;
2607   case ARMCC::HS: return ARMCC::LO;
2608   case ARMCC::LO: return ARMCC::HS;
2609   case ARMCC::VS: return ARMCC::VS;
2610   case ARMCC::VC: return ARMCC::VC;
2611   }
2612 }
2613 
2614 /// isRedundantFlagInstr - check whether the first instruction, whose only
2615 /// purpose is to update flags, can be made redundant.
2616 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2617 /// CMPri can be made redundant by SUBri if the operands are the same.
2618 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2619 /// This function can be extended later on.
2620 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2621                                         unsigned SrcReg, unsigned SrcReg2,
2622                                         int ImmValue, const MachineInstr *OI,
2623                                         bool &IsThumb1) {
2624   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2625       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2626       ((OI->getOperand(1).getReg() == SrcReg &&
2627         OI->getOperand(2).getReg() == SrcReg2) ||
2628        (OI->getOperand(1).getReg() == SrcReg2 &&
2629         OI->getOperand(2).getReg() == SrcReg))) {
2630     IsThumb1 = false;
2631     return true;
2632   }
2633 
2634   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2635       ((OI->getOperand(2).getReg() == SrcReg &&
2636         OI->getOperand(3).getReg() == SrcReg2) ||
2637        (OI->getOperand(2).getReg() == SrcReg2 &&
2638         OI->getOperand(3).getReg() == SrcReg))) {
2639     IsThumb1 = true;
2640     return true;
2641   }
2642 
2643   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2644       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2645       OI->getOperand(1).getReg() == SrcReg &&
2646       OI->getOperand(2).getImm() == ImmValue) {
2647     IsThumb1 = false;
2648     return true;
2649   }
2650 
2651   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2652       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2653       OI->getOperand(2).getReg() == SrcReg &&
2654       OI->getOperand(3).getImm() == ImmValue) {
2655     IsThumb1 = true;
2656     return true;
2657   }
2658 
2659   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2660       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2661        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2662       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2663       OI->getOperand(0).getReg() == SrcReg &&
2664       OI->getOperand(1).getReg() == SrcReg2) {
2665     IsThumb1 = false;
2666     return true;
2667   }
2668 
2669   if (CmpI->getOpcode() == ARM::tCMPr &&
2670       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2671        OI->getOpcode() == ARM::tADDrr) &&
2672       OI->getOperand(0).getReg() == SrcReg &&
2673       OI->getOperand(2).getReg() == SrcReg2) {
2674     IsThumb1 = true;
2675     return true;
2676   }
2677 
2678   return false;
2679 }
2680 
2681 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2682   switch (MI->getOpcode()) {
2683   default: return false;
2684   case ARM::tLSLri:
2685   case ARM::tLSRri:
2686   case ARM::tLSLrr:
2687   case ARM::tLSRrr:
2688   case ARM::tSUBrr:
2689   case ARM::tADDrr:
2690   case ARM::tADDi3:
2691   case ARM::tADDi8:
2692   case ARM::tSUBi3:
2693   case ARM::tSUBi8:
2694   case ARM::tMUL:
2695   case ARM::tADC:
2696   case ARM::tSBC:
2697   case ARM::tRSB:
2698   case ARM::tAND:
2699   case ARM::tORR:
2700   case ARM::tEOR:
2701   case ARM::tBIC:
2702   case ARM::tMVN:
2703   case ARM::tASRri:
2704   case ARM::tASRrr:
2705   case ARM::tROR:
2706     IsThumb1 = true;
2707     LLVM_FALLTHROUGH;
2708   case ARM::RSBrr:
2709   case ARM::RSBri:
2710   case ARM::RSCrr:
2711   case ARM::RSCri:
2712   case ARM::ADDrr:
2713   case ARM::ADDri:
2714   case ARM::ADCrr:
2715   case ARM::ADCri:
2716   case ARM::SUBrr:
2717   case ARM::SUBri:
2718   case ARM::SBCrr:
2719   case ARM::SBCri:
2720   case ARM::t2RSBri:
2721   case ARM::t2ADDrr:
2722   case ARM::t2ADDri:
2723   case ARM::t2ADCrr:
2724   case ARM::t2ADCri:
2725   case ARM::t2SUBrr:
2726   case ARM::t2SUBri:
2727   case ARM::t2SBCrr:
2728   case ARM::t2SBCri:
2729   case ARM::ANDrr:
2730   case ARM::ANDri:
2731   case ARM::t2ANDrr:
2732   case ARM::t2ANDri:
2733   case ARM::ORRrr:
2734   case ARM::ORRri:
2735   case ARM::t2ORRrr:
2736   case ARM::t2ORRri:
2737   case ARM::EORrr:
2738   case ARM::EORri:
2739   case ARM::t2EORrr:
2740   case ARM::t2EORri:
2741   case ARM::t2LSRri:
2742   case ARM::t2LSRrr:
2743   case ARM::t2LSLri:
2744   case ARM::t2LSLrr:
2745     return true;
2746   }
2747 }
2748 
2749 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2750 /// comparison into one that sets the zero bit in the flags register;
2751 /// Remove a redundant Compare instruction if an earlier instruction can set the
2752 /// flags in the same way as Compare.
2753 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2754 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2755 /// condition code of instructions which use the flags.
2756 bool ARMBaseInstrInfo::optimizeCompareInstr(
2757     MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2758     int CmpValue, const MachineRegisterInfo *MRI) const {
2759   // Get the unique definition of SrcReg.
2760   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2761   if (!MI) return false;
2762 
2763   // Masked compares sometimes use the same register as the corresponding 'and'.
2764   if (CmpMask != ~0) {
2765     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2766       MI = nullptr;
2767       for (MachineRegisterInfo::use_instr_iterator
2768            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2769            UI != UE; ++UI) {
2770         if (UI->getParent() != CmpInstr.getParent())
2771           continue;
2772         MachineInstr *PotentialAND = &*UI;
2773         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2774             isPredicated(*PotentialAND))
2775           continue;
2776         MI = PotentialAND;
2777         break;
2778       }
2779       if (!MI) return false;
2780     }
2781   }
2782 
2783   // Get ready to iterate backward from CmpInstr.
2784   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2785                               B = CmpInstr.getParent()->begin();
2786 
2787   // Early exit if CmpInstr is at the beginning of the BB.
2788   if (I == B) return false;
2789 
2790   // There are two possible candidates which can be changed to set CPSR:
2791   // One is MI, the other is a SUB or ADD instruction.
2792   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2793   // ADDr[ri](r1, r2, X).
2794   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2795   MachineInstr *SubAdd = nullptr;
2796   if (SrcReg2 != 0)
2797     // MI is not a candidate for CMPrr.
2798     MI = nullptr;
2799   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2800     // Conservatively refuse to convert an instruction which isn't in the same
2801     // BB as the comparison.
2802     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2803     // Thus we cannot return here.
2804     if (CmpInstr.getOpcode() == ARM::CMPri ||
2805         CmpInstr.getOpcode() == ARM::t2CMPri ||
2806         CmpInstr.getOpcode() == ARM::tCMPi8)
2807       MI = nullptr;
2808     else
2809       return false;
2810   }
2811 
2812   bool IsThumb1 = false;
2813   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2814     return false;
2815 
2816   // We also want to do this peephole for cases like this: if (a*b == 0),
2817   // and optimise away the CMP instruction from the generated code sequence:
2818   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2819   // resulting from the select instruction, but these MOVS instructions for
2820   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2821   // However, if we only have MOVS instructions in between the CMP and the
2822   // other instruction (the MULS in this example), then the CPSR is dead so we
2823   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2824   // reordering and then continue the analysis hoping we can eliminate the
2825   // CMP. This peephole works on the vregs, so is still in SSA form. As a
2826   // consequence, the movs won't redefine/kill the MUL operands which would
2827   // make this reordering illegal.
2828   const TargetRegisterInfo *TRI = &getRegisterInfo();
2829   if (MI && IsThumb1) {
2830     --I;
2831     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
2832       bool CanReorder = true;
2833       for (; I != E; --I) {
2834         if (I->getOpcode() != ARM::tMOVi8) {
2835           CanReorder = false;
2836           break;
2837         }
2838       }
2839       if (CanReorder) {
2840         MI = MI->removeFromParent();
2841         E = CmpInstr;
2842         CmpInstr.getParent()->insert(E, MI);
2843       }
2844     }
2845     I = CmpInstr;
2846     E = MI;
2847   }
2848 
2849   // Check that CPSR isn't set between the comparison instruction and the one we
2850   // want to change. At the same time, search for SubAdd.
2851   bool SubAddIsThumb1 = false;
2852   do {
2853     const MachineInstr &Instr = *--I;
2854 
2855     // Check whether CmpInstr can be made redundant by the current instruction.
2856     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
2857                              SubAddIsThumb1)) {
2858       SubAdd = &*I;
2859       break;
2860     }
2861 
2862     // Allow E (which was initially MI) to be SubAdd but do not search before E.
2863     if (I == E)
2864       break;
2865 
2866     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2867         Instr.readsRegister(ARM::CPSR, TRI))
2868       // This instruction modifies or uses CPSR after the one we want to
2869       // change. We can't do this transformation.
2870       return false;
2871 
2872   } while (I != B);
2873 
2874   // Return false if no candidates exist.
2875   if (!MI && !SubAdd)
2876     return false;
2877 
2878   // If we found a SubAdd, use it as it will be closer to the CMP
2879   if (SubAdd) {
2880     MI = SubAdd;
2881     IsThumb1 = SubAddIsThumb1;
2882   }
2883 
2884   // We can't use a predicated instruction - it doesn't always write the flags.
2885   if (isPredicated(*MI))
2886     return false;
2887 
2888   // Scan forward for the use of CPSR
2889   // When checking against MI: if it's a conditional code that requires
2890   // checking of the V bit or C bit, then this is not safe to do.
2891   // It is safe to remove CmpInstr if CPSR is redefined or killed.
2892   // If we are done with the basic block, we need to check whether CPSR is
2893   // live-out.
2894   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2895       OperandsToUpdate;
2896   bool isSafe = false;
2897   I = CmpInstr;
2898   E = CmpInstr.getParent()->end();
2899   while (!isSafe && ++I != E) {
2900     const MachineInstr &Instr = *I;
2901     for (unsigned IO = 0, EO = Instr.getNumOperands();
2902          !isSafe && IO != EO; ++IO) {
2903       const MachineOperand &MO = Instr.getOperand(IO);
2904       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2905         isSafe = true;
2906         break;
2907       }
2908       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2909         continue;
2910       if (MO.isDef()) {
2911         isSafe = true;
2912         break;
2913       }
2914       // Condition code is after the operand before CPSR except for VSELs.
2915       ARMCC::CondCodes CC;
2916       bool IsInstrVSel = true;
2917       switch (Instr.getOpcode()) {
2918       default:
2919         IsInstrVSel = false;
2920         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2921         break;
2922       case ARM::VSELEQD:
2923       case ARM::VSELEQS:
2924         CC = ARMCC::EQ;
2925         break;
2926       case ARM::VSELGTD:
2927       case ARM::VSELGTS:
2928         CC = ARMCC::GT;
2929         break;
2930       case ARM::VSELGED:
2931       case ARM::VSELGES:
2932         CC = ARMCC::GE;
2933         break;
2934       case ARM::VSELVSS:
2935       case ARM::VSELVSD:
2936         CC = ARMCC::VS;
2937         break;
2938       }
2939 
2940       if (SubAdd) {
2941         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2942         // on CMP needs to be updated to be based on SUB.
2943         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
2944         // needs to be modified.
2945         // Push the condition code operands to OperandsToUpdate.
2946         // If it is safe to remove CmpInstr, the condition code of these
2947         // operands will be modified.
2948         unsigned Opc = SubAdd->getOpcode();
2949         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
2950                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
2951                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
2952                      Opc == ARM::tSUBi8;
2953         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
2954         if (!IsSub ||
2955             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
2956              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
2957           // VSel doesn't support condition code update.
2958           if (IsInstrVSel)
2959             return false;
2960           // Ensure we can swap the condition.
2961           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
2962           if (NewCC == ARMCC::AL)
2963             return false;
2964           OperandsToUpdate.push_back(
2965               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2966         }
2967       } else {
2968         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
2969         switch (CC) {
2970         case ARMCC::EQ: // Z
2971         case ARMCC::NE: // Z
2972         case ARMCC::MI: // N
2973         case ARMCC::PL: // N
2974         case ARMCC::AL: // none
2975           // CPSR can be used multiple times, we should continue.
2976           break;
2977         case ARMCC::HS: // C
2978         case ARMCC::LO: // C
2979         case ARMCC::VS: // V
2980         case ARMCC::VC: // V
2981         case ARMCC::HI: // C Z
2982         case ARMCC::LS: // C Z
2983         case ARMCC::GE: // N V
2984         case ARMCC::LT: // N V
2985         case ARMCC::GT: // Z N V
2986         case ARMCC::LE: // Z N V
2987           // The instruction uses the V bit or C bit which is not safe.
2988           return false;
2989         }
2990       }
2991     }
2992   }
2993 
2994   // If CPSR is not killed nor re-defined, we should check whether it is
2995   // live-out. If it is live-out, do not optimize.
2996   if (!isSafe) {
2997     MachineBasicBlock *MBB = CmpInstr.getParent();
2998     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2999              SE = MBB->succ_end(); SI != SE; ++SI)
3000       if ((*SI)->isLiveIn(ARM::CPSR))
3001         return false;
3002   }
3003 
3004   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3005   // set CPSR so this is represented as an explicit output)
3006   if (!IsThumb1) {
3007     MI->getOperand(5).setReg(ARM::CPSR);
3008     MI->getOperand(5).setIsDef(true);
3009   }
3010   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3011   CmpInstr.eraseFromParent();
3012 
3013   // Modify the condition code of operands in OperandsToUpdate.
3014   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3015   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3016   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3017     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3018 
3019   MI->clearRegisterDeads(ARM::CPSR);
3020 
3021   return true;
3022 }
3023 
3024 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3025   // Do not sink MI if it might be used to optimize a redundant compare.
3026   // We heuristically only look at the instruction immediately following MI to
3027   // avoid potentially searching the entire basic block.
3028   if (isPredicated(MI))
3029     return true;
3030   MachineBasicBlock::const_iterator Next = &MI;
3031   ++Next;
3032   unsigned SrcReg, SrcReg2;
3033   int CmpMask, CmpValue;
3034   bool IsThumb1;
3035   if (Next != MI.getParent()->end() &&
3036       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3037       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3038     return false;
3039   return true;
3040 }
3041 
3042 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3043                                      unsigned Reg,
3044                                      MachineRegisterInfo *MRI) const {
3045   // Fold large immediates into add, sub, or, xor.
3046   unsigned DefOpc = DefMI.getOpcode();
3047   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3048     return false;
3049   if (!DefMI.getOperand(1).isImm())
3050     // Could be t2MOVi32imm @xx
3051     return false;
3052 
3053   if (!MRI->hasOneNonDBGUse(Reg))
3054     return false;
3055 
3056   const MCInstrDesc &DefMCID = DefMI.getDesc();
3057   if (DefMCID.hasOptionalDef()) {
3058     unsigned NumOps = DefMCID.getNumOperands();
3059     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3060     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3061       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3062       // to delete DefMI.
3063       return false;
3064   }
3065 
3066   const MCInstrDesc &UseMCID = UseMI.getDesc();
3067   if (UseMCID.hasOptionalDef()) {
3068     unsigned NumOps = UseMCID.getNumOperands();
3069     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3070       // If the instruction sets the flag, do not attempt this optimization
3071       // since it may change the semantics of the code.
3072       return false;
3073   }
3074 
3075   unsigned UseOpc = UseMI.getOpcode();
3076   unsigned NewUseOpc = 0;
3077   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3078   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3079   bool Commute = false;
3080   switch (UseOpc) {
3081   default: return false;
3082   case ARM::SUBrr:
3083   case ARM::ADDrr:
3084   case ARM::ORRrr:
3085   case ARM::EORrr:
3086   case ARM::t2SUBrr:
3087   case ARM::t2ADDrr:
3088   case ARM::t2ORRrr:
3089   case ARM::t2EORrr: {
3090     Commute = UseMI.getOperand(2).getReg() != Reg;
3091     switch (UseOpc) {
3092     default: break;
3093     case ARM::ADDrr:
3094     case ARM::SUBrr:
3095       if (UseOpc == ARM::SUBrr && Commute)
3096         return false;
3097 
3098       // ADD/SUB are special because they're essentially the same operation, so
3099       // we can handle a larger range of immediates.
3100       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3101         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3102       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3103         ImmVal = -ImmVal;
3104         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3105       } else
3106         return false;
3107       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3108       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3109       break;
3110     case ARM::ORRrr:
3111     case ARM::EORrr:
3112       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3113         return false;
3114       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3115       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3116       switch (UseOpc) {
3117       default: break;
3118       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3119       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3120       }
3121       break;
3122     case ARM::t2ADDrr:
3123     case ARM::t2SUBrr:
3124       if (UseOpc == ARM::t2SUBrr && Commute)
3125         return false;
3126 
3127       // ADD/SUB are special because they're essentially the same operation, so
3128       // we can handle a larger range of immediates.
3129       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3130         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
3131       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3132         ImmVal = -ImmVal;
3133         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
3134       } else
3135         return false;
3136       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3137       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3138       break;
3139     case ARM::t2ORRrr:
3140     case ARM::t2EORrr:
3141       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3142         return false;
3143       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3144       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3145       switch (UseOpc) {
3146       default: break;
3147       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3148       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3149       }
3150       break;
3151     }
3152   }
3153   }
3154 
3155   unsigned OpIdx = Commute ? 2 : 1;
3156   unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
3157   bool isKill = UseMI.getOperand(OpIdx).isKill();
3158   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
3159   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3160           NewReg)
3161       .addReg(Reg1, getKillRegState(isKill))
3162       .addImm(SOImmValV1)
3163       .add(predOps(ARMCC::AL))
3164       .add(condCodeOp());
3165   UseMI.setDesc(get(NewUseOpc));
3166   UseMI.getOperand(1).setReg(NewReg);
3167   UseMI.getOperand(1).setIsKill();
3168   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3169   DefMI.eraseFromParent();
3170   return true;
3171 }
3172 
3173 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3174                                         const MachineInstr &MI) {
3175   switch (MI.getOpcode()) {
3176   default: {
3177     const MCInstrDesc &Desc = MI.getDesc();
3178     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3179     assert(UOps >= 0 && "bad # UOps");
3180     return UOps;
3181   }
3182 
3183   case ARM::LDRrs:
3184   case ARM::LDRBrs:
3185   case ARM::STRrs:
3186   case ARM::STRBrs: {
3187     unsigned ShOpVal = MI.getOperand(3).getImm();
3188     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3189     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3190     if (!isSub &&
3191         (ShImm == 0 ||
3192          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3193           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3194       return 1;
3195     return 2;
3196   }
3197 
3198   case ARM::LDRH:
3199   case ARM::STRH: {
3200     if (!MI.getOperand(2).getReg())
3201       return 1;
3202 
3203     unsigned ShOpVal = MI.getOperand(3).getImm();
3204     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3205     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3206     if (!isSub &&
3207         (ShImm == 0 ||
3208          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3209           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3210       return 1;
3211     return 2;
3212   }
3213 
3214   case ARM::LDRSB:
3215   case ARM::LDRSH:
3216     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3217 
3218   case ARM::LDRSB_POST:
3219   case ARM::LDRSH_POST: {
3220     unsigned Rt = MI.getOperand(0).getReg();
3221     unsigned Rm = MI.getOperand(3).getReg();
3222     return (Rt == Rm) ? 4 : 3;
3223   }
3224 
3225   case ARM::LDR_PRE_REG:
3226   case ARM::LDRB_PRE_REG: {
3227     unsigned Rt = MI.getOperand(0).getReg();
3228     unsigned Rm = MI.getOperand(3).getReg();
3229     if (Rt == Rm)
3230       return 3;
3231     unsigned ShOpVal = MI.getOperand(4).getImm();
3232     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3233     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3234     if (!isSub &&
3235         (ShImm == 0 ||
3236          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3237           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3238       return 2;
3239     return 3;
3240   }
3241 
3242   case ARM::STR_PRE_REG:
3243   case ARM::STRB_PRE_REG: {
3244     unsigned ShOpVal = MI.getOperand(4).getImm();
3245     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3246     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3247     if (!isSub &&
3248         (ShImm == 0 ||
3249          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3250           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3251       return 2;
3252     return 3;
3253   }
3254 
3255   case ARM::LDRH_PRE:
3256   case ARM::STRH_PRE: {
3257     unsigned Rt = MI.getOperand(0).getReg();
3258     unsigned Rm = MI.getOperand(3).getReg();
3259     if (!Rm)
3260       return 2;
3261     if (Rt == Rm)
3262       return 3;
3263     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3264   }
3265 
3266   case ARM::LDR_POST_REG:
3267   case ARM::LDRB_POST_REG:
3268   case ARM::LDRH_POST: {
3269     unsigned Rt = MI.getOperand(0).getReg();
3270     unsigned Rm = MI.getOperand(3).getReg();
3271     return (Rt == Rm) ? 3 : 2;
3272   }
3273 
3274   case ARM::LDR_PRE_IMM:
3275   case ARM::LDRB_PRE_IMM:
3276   case ARM::LDR_POST_IMM:
3277   case ARM::LDRB_POST_IMM:
3278   case ARM::STRB_POST_IMM:
3279   case ARM::STRB_POST_REG:
3280   case ARM::STRB_PRE_IMM:
3281   case ARM::STRH_POST:
3282   case ARM::STR_POST_IMM:
3283   case ARM::STR_POST_REG:
3284   case ARM::STR_PRE_IMM:
3285     return 2;
3286 
3287   case ARM::LDRSB_PRE:
3288   case ARM::LDRSH_PRE: {
3289     unsigned Rm = MI.getOperand(3).getReg();
3290     if (Rm == 0)
3291       return 3;
3292     unsigned Rt = MI.getOperand(0).getReg();
3293     if (Rt == Rm)
3294       return 4;
3295     unsigned ShOpVal = MI.getOperand(4).getImm();
3296     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3297     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3298     if (!isSub &&
3299         (ShImm == 0 ||
3300          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3301           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3302       return 3;
3303     return 4;
3304   }
3305 
3306   case ARM::LDRD: {
3307     unsigned Rt = MI.getOperand(0).getReg();
3308     unsigned Rn = MI.getOperand(2).getReg();
3309     unsigned Rm = MI.getOperand(3).getReg();
3310     if (Rm)
3311       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3312                                                                           : 3;
3313     return (Rt == Rn) ? 3 : 2;
3314   }
3315 
3316   case ARM::STRD: {
3317     unsigned Rm = MI.getOperand(3).getReg();
3318     if (Rm)
3319       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3320                                                                           : 3;
3321     return 2;
3322   }
3323 
3324   case ARM::LDRD_POST:
3325   case ARM::t2LDRD_POST:
3326     return 3;
3327 
3328   case ARM::STRD_POST:
3329   case ARM::t2STRD_POST:
3330     return 4;
3331 
3332   case ARM::LDRD_PRE: {
3333     unsigned Rt = MI.getOperand(0).getReg();
3334     unsigned Rn = MI.getOperand(3).getReg();
3335     unsigned Rm = MI.getOperand(4).getReg();
3336     if (Rm)
3337       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3338                                                                           : 4;
3339     return (Rt == Rn) ? 4 : 3;
3340   }
3341 
3342   case ARM::t2LDRD_PRE: {
3343     unsigned Rt = MI.getOperand(0).getReg();
3344     unsigned Rn = MI.getOperand(3).getReg();
3345     return (Rt == Rn) ? 4 : 3;
3346   }
3347 
3348   case ARM::STRD_PRE: {
3349     unsigned Rm = MI.getOperand(4).getReg();
3350     if (Rm)
3351       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3352                                                                           : 4;
3353     return 3;
3354   }
3355 
3356   case ARM::t2STRD_PRE:
3357     return 3;
3358 
3359   case ARM::t2LDR_POST:
3360   case ARM::t2LDRB_POST:
3361   case ARM::t2LDRB_PRE:
3362   case ARM::t2LDRSBi12:
3363   case ARM::t2LDRSBi8:
3364   case ARM::t2LDRSBpci:
3365   case ARM::t2LDRSBs:
3366   case ARM::t2LDRH_POST:
3367   case ARM::t2LDRH_PRE:
3368   case ARM::t2LDRSBT:
3369   case ARM::t2LDRSB_POST:
3370   case ARM::t2LDRSB_PRE:
3371   case ARM::t2LDRSH_POST:
3372   case ARM::t2LDRSH_PRE:
3373   case ARM::t2LDRSHi12:
3374   case ARM::t2LDRSHi8:
3375   case ARM::t2LDRSHpci:
3376   case ARM::t2LDRSHs:
3377     return 2;
3378 
3379   case ARM::t2LDRDi8: {
3380     unsigned Rt = MI.getOperand(0).getReg();
3381     unsigned Rn = MI.getOperand(2).getReg();
3382     return (Rt == Rn) ? 3 : 2;
3383   }
3384 
3385   case ARM::t2STRB_POST:
3386   case ARM::t2STRB_PRE:
3387   case ARM::t2STRBs:
3388   case ARM::t2STRDi8:
3389   case ARM::t2STRH_POST:
3390   case ARM::t2STRH_PRE:
3391   case ARM::t2STRHs:
3392   case ARM::t2STR_POST:
3393   case ARM::t2STR_PRE:
3394   case ARM::t2STRs:
3395     return 2;
3396   }
3397 }
3398 
3399 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3400 // can't be easily determined return 0 (missing MachineMemOperand).
3401 //
3402 // FIXME: The current MachineInstr design does not support relying on machine
3403 // mem operands to determine the width of a memory access. Instead, we expect
3404 // the target to provide this information based on the instruction opcode and
3405 // operands. However, using MachineMemOperand is the best solution now for
3406 // two reasons:
3407 //
3408 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3409 // operands. This is much more dangerous than using the MachineMemOperand
3410 // sizes because CodeGen passes can insert/remove optional machine operands. In
3411 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3412 // postRA passes as well.
3413 //
3414 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3415 // machine model that calls this should handle the unknown (zero size) case.
3416 //
3417 // Long term, we should require a target hook that verifies MachineMemOperand
3418 // sizes during MC lowering. That target hook should be local to MC lowering
3419 // because we can't ensure that it is aware of other MI forms. Doing this will
3420 // ensure that MachineMemOperands are correctly propagated through all passes.
3421 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3422   unsigned Size = 0;
3423   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3424                                   E = MI.memoperands_end();
3425        I != E; ++I) {
3426     Size += (*I)->getSize();
3427   }
3428   return Size / 4;
3429 }
3430 
3431 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3432                                                     unsigned NumRegs) {
3433   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3434   switch (Opc) {
3435   default:
3436     break;
3437   case ARM::VLDMDIA_UPD:
3438   case ARM::VLDMDDB_UPD:
3439   case ARM::VLDMSIA_UPD:
3440   case ARM::VLDMSDB_UPD:
3441   case ARM::VSTMDIA_UPD:
3442   case ARM::VSTMDDB_UPD:
3443   case ARM::VSTMSIA_UPD:
3444   case ARM::VSTMSDB_UPD:
3445   case ARM::LDMIA_UPD:
3446   case ARM::LDMDA_UPD:
3447   case ARM::LDMDB_UPD:
3448   case ARM::LDMIB_UPD:
3449   case ARM::STMIA_UPD:
3450   case ARM::STMDA_UPD:
3451   case ARM::STMDB_UPD:
3452   case ARM::STMIB_UPD:
3453   case ARM::tLDMIA_UPD:
3454   case ARM::tSTMIA_UPD:
3455   case ARM::t2LDMIA_UPD:
3456   case ARM::t2LDMDB_UPD:
3457   case ARM::t2STMIA_UPD:
3458   case ARM::t2STMDB_UPD:
3459     ++UOps; // One for base register writeback.
3460     break;
3461   case ARM::LDMIA_RET:
3462   case ARM::tPOP_RET:
3463   case ARM::t2LDMIA_RET:
3464     UOps += 2; // One for base reg wb, one for write to pc.
3465     break;
3466   }
3467   return UOps;
3468 }
3469 
3470 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3471                                           const MachineInstr &MI) const {
3472   if (!ItinData || ItinData->isEmpty())
3473     return 1;
3474 
3475   const MCInstrDesc &Desc = MI.getDesc();
3476   unsigned Class = Desc.getSchedClass();
3477   int ItinUOps = ItinData->getNumMicroOps(Class);
3478   if (ItinUOps >= 0) {
3479     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3480       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3481 
3482     return ItinUOps;
3483   }
3484 
3485   unsigned Opc = MI.getOpcode();
3486   switch (Opc) {
3487   default:
3488     llvm_unreachable("Unexpected multi-uops instruction!");
3489   case ARM::VLDMQIA:
3490   case ARM::VSTMQIA:
3491     return 2;
3492 
3493   // The number of uOps for load / store multiple are determined by the number
3494   // registers.
3495   //
3496   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3497   // same cycle. The scheduling for the first load / store must be done
3498   // separately by assuming the address is not 64-bit aligned.
3499   //
3500   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3501   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3502   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3503   case ARM::VLDMDIA:
3504   case ARM::VLDMDIA_UPD:
3505   case ARM::VLDMDDB_UPD:
3506   case ARM::VLDMSIA:
3507   case ARM::VLDMSIA_UPD:
3508   case ARM::VLDMSDB_UPD:
3509   case ARM::VSTMDIA:
3510   case ARM::VSTMDIA_UPD:
3511   case ARM::VSTMDDB_UPD:
3512   case ARM::VSTMSIA:
3513   case ARM::VSTMSIA_UPD:
3514   case ARM::VSTMSDB_UPD: {
3515     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3516     return (NumRegs / 2) + (NumRegs % 2) + 1;
3517   }
3518 
3519   case ARM::LDMIA_RET:
3520   case ARM::LDMIA:
3521   case ARM::LDMDA:
3522   case ARM::LDMDB:
3523   case ARM::LDMIB:
3524   case ARM::LDMIA_UPD:
3525   case ARM::LDMDA_UPD:
3526   case ARM::LDMDB_UPD:
3527   case ARM::LDMIB_UPD:
3528   case ARM::STMIA:
3529   case ARM::STMDA:
3530   case ARM::STMDB:
3531   case ARM::STMIB:
3532   case ARM::STMIA_UPD:
3533   case ARM::STMDA_UPD:
3534   case ARM::STMDB_UPD:
3535   case ARM::STMIB_UPD:
3536   case ARM::tLDMIA:
3537   case ARM::tLDMIA_UPD:
3538   case ARM::tSTMIA_UPD:
3539   case ARM::tPOP_RET:
3540   case ARM::tPOP:
3541   case ARM::tPUSH:
3542   case ARM::t2LDMIA_RET:
3543   case ARM::t2LDMIA:
3544   case ARM::t2LDMDB:
3545   case ARM::t2LDMIA_UPD:
3546   case ARM::t2LDMDB_UPD:
3547   case ARM::t2STMIA:
3548   case ARM::t2STMDB:
3549   case ARM::t2STMIA_UPD:
3550   case ARM::t2STMDB_UPD: {
3551     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3552     switch (Subtarget.getLdStMultipleTiming()) {
3553     case ARMSubtarget::SingleIssuePlusExtras:
3554       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3555     case ARMSubtarget::SingleIssue:
3556       // Assume the worst.
3557       return NumRegs;
3558     case ARMSubtarget::DoubleIssue: {
3559       if (NumRegs < 4)
3560         return 2;
3561       // 4 registers would be issued: 2, 2.
3562       // 5 registers would be issued: 2, 2, 1.
3563       unsigned UOps = (NumRegs / 2);
3564       if (NumRegs % 2)
3565         ++UOps;
3566       return UOps;
3567     }
3568     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3569       unsigned UOps = (NumRegs / 2);
3570       // If there are odd number of registers or if it's not 64-bit aligned,
3571       // then it takes an extra AGU (Address Generation Unit) cycle.
3572       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3573           (*MI.memoperands_begin())->getAlignment() < 8)
3574         ++UOps;
3575       return UOps;
3576       }
3577     }
3578   }
3579   }
3580   llvm_unreachable("Didn't find the number of microops");
3581 }
3582 
3583 int
3584 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3585                                   const MCInstrDesc &DefMCID,
3586                                   unsigned DefClass,
3587                                   unsigned DefIdx, unsigned DefAlign) const {
3588   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3589   if (RegNo <= 0)
3590     // Def is the address writeback.
3591     return ItinData->getOperandCycle(DefClass, DefIdx);
3592 
3593   int DefCycle;
3594   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3595     // (regno / 2) + (regno % 2) + 1
3596     DefCycle = RegNo / 2 + 1;
3597     if (RegNo % 2)
3598       ++DefCycle;
3599   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3600     DefCycle = RegNo;
3601     bool isSLoad = false;
3602 
3603     switch (DefMCID.getOpcode()) {
3604     default: break;
3605     case ARM::VLDMSIA:
3606     case ARM::VLDMSIA_UPD:
3607     case ARM::VLDMSDB_UPD:
3608       isSLoad = true;
3609       break;
3610     }
3611 
3612     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3613     // then it takes an extra cycle.
3614     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3615       ++DefCycle;
3616   } else {
3617     // Assume the worst.
3618     DefCycle = RegNo + 2;
3619   }
3620 
3621   return DefCycle;
3622 }
3623 
3624 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3625   unsigned BaseReg = MI.getOperand(0).getReg();
3626   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3627     const auto &Op = MI.getOperand(i);
3628     if (Op.isReg() && Op.getReg() == BaseReg)
3629       return true;
3630   }
3631   return false;
3632 }
3633 unsigned
3634 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3635   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3636   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3637   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3638 }
3639 
3640 int
3641 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3642                                  const MCInstrDesc &DefMCID,
3643                                  unsigned DefClass,
3644                                  unsigned DefIdx, unsigned DefAlign) const {
3645   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3646   if (RegNo <= 0)
3647     // Def is the address writeback.
3648     return ItinData->getOperandCycle(DefClass, DefIdx);
3649 
3650   int DefCycle;
3651   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3652     // 4 registers would be issued: 1, 2, 1.
3653     // 5 registers would be issued: 1, 2, 2.
3654     DefCycle = RegNo / 2;
3655     if (DefCycle < 1)
3656       DefCycle = 1;
3657     // Result latency is issue cycle + 2: E2.
3658     DefCycle += 2;
3659   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3660     DefCycle = (RegNo / 2);
3661     // If there are odd number of registers or if it's not 64-bit aligned,
3662     // then it takes an extra AGU (Address Generation Unit) cycle.
3663     if ((RegNo % 2) || DefAlign < 8)
3664       ++DefCycle;
3665     // Result latency is AGU cycles + 2.
3666     DefCycle += 2;
3667   } else {
3668     // Assume the worst.
3669     DefCycle = RegNo + 2;
3670   }
3671 
3672   return DefCycle;
3673 }
3674 
3675 int
3676 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3677                                   const MCInstrDesc &UseMCID,
3678                                   unsigned UseClass,
3679                                   unsigned UseIdx, unsigned UseAlign) const {
3680   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3681   if (RegNo <= 0)
3682     return ItinData->getOperandCycle(UseClass, UseIdx);
3683 
3684   int UseCycle;
3685   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3686     // (regno / 2) + (regno % 2) + 1
3687     UseCycle = RegNo / 2 + 1;
3688     if (RegNo % 2)
3689       ++UseCycle;
3690   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3691     UseCycle = RegNo;
3692     bool isSStore = false;
3693 
3694     switch (UseMCID.getOpcode()) {
3695     default: break;
3696     case ARM::VSTMSIA:
3697     case ARM::VSTMSIA_UPD:
3698     case ARM::VSTMSDB_UPD:
3699       isSStore = true;
3700       break;
3701     }
3702 
3703     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3704     // then it takes an extra cycle.
3705     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3706       ++UseCycle;
3707   } else {
3708     // Assume the worst.
3709     UseCycle = RegNo + 2;
3710   }
3711 
3712   return UseCycle;
3713 }
3714 
3715 int
3716 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3717                                  const MCInstrDesc &UseMCID,
3718                                  unsigned UseClass,
3719                                  unsigned UseIdx, unsigned UseAlign) const {
3720   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3721   if (RegNo <= 0)
3722     return ItinData->getOperandCycle(UseClass, UseIdx);
3723 
3724   int UseCycle;
3725   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3726     UseCycle = RegNo / 2;
3727     if (UseCycle < 2)
3728       UseCycle = 2;
3729     // Read in E3.
3730     UseCycle += 2;
3731   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3732     UseCycle = (RegNo / 2);
3733     // If there are odd number of registers or if it's not 64-bit aligned,
3734     // then it takes an extra AGU (Address Generation Unit) cycle.
3735     if ((RegNo % 2) || UseAlign < 8)
3736       ++UseCycle;
3737   } else {
3738     // Assume the worst.
3739     UseCycle = 1;
3740   }
3741   return UseCycle;
3742 }
3743 
3744 int
3745 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3746                                     const MCInstrDesc &DefMCID,
3747                                     unsigned DefIdx, unsigned DefAlign,
3748                                     const MCInstrDesc &UseMCID,
3749                                     unsigned UseIdx, unsigned UseAlign) const {
3750   unsigned DefClass = DefMCID.getSchedClass();
3751   unsigned UseClass = UseMCID.getSchedClass();
3752 
3753   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3754     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3755 
3756   // This may be a def / use of a variable_ops instruction, the operand
3757   // latency might be determinable dynamically. Let the target try to
3758   // figure it out.
3759   int DefCycle = -1;
3760   bool LdmBypass = false;
3761   switch (DefMCID.getOpcode()) {
3762   default:
3763     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3764     break;
3765 
3766   case ARM::VLDMDIA:
3767   case ARM::VLDMDIA_UPD:
3768   case ARM::VLDMDDB_UPD:
3769   case ARM::VLDMSIA:
3770   case ARM::VLDMSIA_UPD:
3771   case ARM::VLDMSDB_UPD:
3772     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3773     break;
3774 
3775   case ARM::LDMIA_RET:
3776   case ARM::LDMIA:
3777   case ARM::LDMDA:
3778   case ARM::LDMDB:
3779   case ARM::LDMIB:
3780   case ARM::LDMIA_UPD:
3781   case ARM::LDMDA_UPD:
3782   case ARM::LDMDB_UPD:
3783   case ARM::LDMIB_UPD:
3784   case ARM::tLDMIA:
3785   case ARM::tLDMIA_UPD:
3786   case ARM::tPUSH:
3787   case ARM::t2LDMIA_RET:
3788   case ARM::t2LDMIA:
3789   case ARM::t2LDMDB:
3790   case ARM::t2LDMIA_UPD:
3791   case ARM::t2LDMDB_UPD:
3792     LdmBypass = true;
3793     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3794     break;
3795   }
3796 
3797   if (DefCycle == -1)
3798     // We can't seem to determine the result latency of the def, assume it's 2.
3799     DefCycle = 2;
3800 
3801   int UseCycle = -1;
3802   switch (UseMCID.getOpcode()) {
3803   default:
3804     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3805     break;
3806 
3807   case ARM::VSTMDIA:
3808   case ARM::VSTMDIA_UPD:
3809   case ARM::VSTMDDB_UPD:
3810   case ARM::VSTMSIA:
3811   case ARM::VSTMSIA_UPD:
3812   case ARM::VSTMSDB_UPD:
3813     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3814     break;
3815 
3816   case ARM::STMIA:
3817   case ARM::STMDA:
3818   case ARM::STMDB:
3819   case ARM::STMIB:
3820   case ARM::STMIA_UPD:
3821   case ARM::STMDA_UPD:
3822   case ARM::STMDB_UPD:
3823   case ARM::STMIB_UPD:
3824   case ARM::tSTMIA_UPD:
3825   case ARM::tPOP_RET:
3826   case ARM::tPOP:
3827   case ARM::t2STMIA:
3828   case ARM::t2STMDB:
3829   case ARM::t2STMIA_UPD:
3830   case ARM::t2STMDB_UPD:
3831     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3832     break;
3833   }
3834 
3835   if (UseCycle == -1)
3836     // Assume it's read in the first stage.
3837     UseCycle = 1;
3838 
3839   UseCycle = DefCycle - UseCycle + 1;
3840   if (UseCycle > 0) {
3841     if (LdmBypass) {
3842       // It's a variable_ops instruction so we can't use DefIdx here. Just use
3843       // first def operand.
3844       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3845                                           UseClass, UseIdx))
3846         --UseCycle;
3847     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3848                                                UseClass, UseIdx)) {
3849       --UseCycle;
3850     }
3851   }
3852 
3853   return UseCycle;
3854 }
3855 
3856 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3857                                            const MachineInstr *MI, unsigned Reg,
3858                                            unsigned &DefIdx, unsigned &Dist) {
3859   Dist = 0;
3860 
3861   MachineBasicBlock::const_iterator I = MI; ++I;
3862   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3863   assert(II->isInsideBundle() && "Empty bundle?");
3864 
3865   int Idx = -1;
3866   while (II->isInsideBundle()) {
3867     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3868     if (Idx != -1)
3869       break;
3870     --II;
3871     ++Dist;
3872   }
3873 
3874   assert(Idx != -1 && "Cannot find bundled definition!");
3875   DefIdx = Idx;
3876   return &*II;
3877 }
3878 
3879 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3880                                            const MachineInstr &MI, unsigned Reg,
3881                                            unsigned &UseIdx, unsigned &Dist) {
3882   Dist = 0;
3883 
3884   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
3885   assert(II->isInsideBundle() && "Empty bundle?");
3886   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
3887 
3888   // FIXME: This doesn't properly handle multiple uses.
3889   int Idx = -1;
3890   while (II != E && II->isInsideBundle()) {
3891     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3892     if (Idx != -1)
3893       break;
3894     if (II->getOpcode() != ARM::t2IT)
3895       ++Dist;
3896     ++II;
3897   }
3898 
3899   if (Idx == -1) {
3900     Dist = 0;
3901     return nullptr;
3902   }
3903 
3904   UseIdx = Idx;
3905   return &*II;
3906 }
3907 
3908 /// Return the number of cycles to add to (or subtract from) the static
3909 /// itinerary based on the def opcode and alignment. The caller will ensure that
3910 /// adjusted latency is at least one cycle.
3911 static int adjustDefLatency(const ARMSubtarget &Subtarget,
3912                             const MachineInstr &DefMI,
3913                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
3914   int Adjust = 0;
3915   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3916     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3917     // variants are one cycle cheaper.
3918     switch (DefMCID.getOpcode()) {
3919     default: break;
3920     case ARM::LDRrs:
3921     case ARM::LDRBrs: {
3922       unsigned ShOpVal = DefMI.getOperand(3).getImm();
3923       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3924       if (ShImm == 0 ||
3925           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3926         --Adjust;
3927       break;
3928     }
3929     case ARM::t2LDRs:
3930     case ARM::t2LDRBs:
3931     case ARM::t2LDRHs:
3932     case ARM::t2LDRSHs: {
3933       // Thumb2 mode: lsl only.
3934       unsigned ShAmt = DefMI.getOperand(3).getImm();
3935       if (ShAmt == 0 || ShAmt == 2)
3936         --Adjust;
3937       break;
3938     }
3939     }
3940   } else if (Subtarget.isSwift()) {
3941     // FIXME: Properly handle all of the latency adjustments for address
3942     // writeback.
3943     switch (DefMCID.getOpcode()) {
3944     default: break;
3945     case ARM::LDRrs:
3946     case ARM::LDRBrs: {
3947       unsigned ShOpVal = DefMI.getOperand(3).getImm();
3948       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3949       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3950       if (!isSub &&
3951           (ShImm == 0 ||
3952            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3953             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3954         Adjust -= 2;
3955       else if (!isSub &&
3956                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3957         --Adjust;
3958       break;
3959     }
3960     case ARM::t2LDRs:
3961     case ARM::t2LDRBs:
3962     case ARM::t2LDRHs:
3963     case ARM::t2LDRSHs: {
3964       // Thumb2 mode: lsl only.
3965       unsigned ShAmt = DefMI.getOperand(3).getImm();
3966       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3967         Adjust -= 2;
3968       break;
3969     }
3970     }
3971   }
3972 
3973   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
3974     switch (DefMCID.getOpcode()) {
3975     default: break;
3976     case ARM::VLD1q8:
3977     case ARM::VLD1q16:
3978     case ARM::VLD1q32:
3979     case ARM::VLD1q64:
3980     case ARM::VLD1q8wb_fixed:
3981     case ARM::VLD1q16wb_fixed:
3982     case ARM::VLD1q32wb_fixed:
3983     case ARM::VLD1q64wb_fixed:
3984     case ARM::VLD1q8wb_register:
3985     case ARM::VLD1q16wb_register:
3986     case ARM::VLD1q32wb_register:
3987     case ARM::VLD1q64wb_register:
3988     case ARM::VLD2d8:
3989     case ARM::VLD2d16:
3990     case ARM::VLD2d32:
3991     case ARM::VLD2q8:
3992     case ARM::VLD2q16:
3993     case ARM::VLD2q32:
3994     case ARM::VLD2d8wb_fixed:
3995     case ARM::VLD2d16wb_fixed:
3996     case ARM::VLD2d32wb_fixed:
3997     case ARM::VLD2q8wb_fixed:
3998     case ARM::VLD2q16wb_fixed:
3999     case ARM::VLD2q32wb_fixed:
4000     case ARM::VLD2d8wb_register:
4001     case ARM::VLD2d16wb_register:
4002     case ARM::VLD2d32wb_register:
4003     case ARM::VLD2q8wb_register:
4004     case ARM::VLD2q16wb_register:
4005     case ARM::VLD2q32wb_register:
4006     case ARM::VLD3d8:
4007     case ARM::VLD3d16:
4008     case ARM::VLD3d32:
4009     case ARM::VLD1d64T:
4010     case ARM::VLD3d8_UPD:
4011     case ARM::VLD3d16_UPD:
4012     case ARM::VLD3d32_UPD:
4013     case ARM::VLD1d64Twb_fixed:
4014     case ARM::VLD1d64Twb_register:
4015     case ARM::VLD3q8_UPD:
4016     case ARM::VLD3q16_UPD:
4017     case ARM::VLD3q32_UPD:
4018     case ARM::VLD4d8:
4019     case ARM::VLD4d16:
4020     case ARM::VLD4d32:
4021     case ARM::VLD1d64Q:
4022     case ARM::VLD4d8_UPD:
4023     case ARM::VLD4d16_UPD:
4024     case ARM::VLD4d32_UPD:
4025     case ARM::VLD1d64Qwb_fixed:
4026     case ARM::VLD1d64Qwb_register:
4027     case ARM::VLD4q8_UPD:
4028     case ARM::VLD4q16_UPD:
4029     case ARM::VLD4q32_UPD:
4030     case ARM::VLD1DUPq8:
4031     case ARM::VLD1DUPq16:
4032     case ARM::VLD1DUPq32:
4033     case ARM::VLD1DUPq8wb_fixed:
4034     case ARM::VLD1DUPq16wb_fixed:
4035     case ARM::VLD1DUPq32wb_fixed:
4036     case ARM::VLD1DUPq8wb_register:
4037     case ARM::VLD1DUPq16wb_register:
4038     case ARM::VLD1DUPq32wb_register:
4039     case ARM::VLD2DUPd8:
4040     case ARM::VLD2DUPd16:
4041     case ARM::VLD2DUPd32:
4042     case ARM::VLD2DUPd8wb_fixed:
4043     case ARM::VLD2DUPd16wb_fixed:
4044     case ARM::VLD2DUPd32wb_fixed:
4045     case ARM::VLD2DUPd8wb_register:
4046     case ARM::VLD2DUPd16wb_register:
4047     case ARM::VLD2DUPd32wb_register:
4048     case ARM::VLD4DUPd8:
4049     case ARM::VLD4DUPd16:
4050     case ARM::VLD4DUPd32:
4051     case ARM::VLD4DUPd8_UPD:
4052     case ARM::VLD4DUPd16_UPD:
4053     case ARM::VLD4DUPd32_UPD:
4054     case ARM::VLD1LNd8:
4055     case ARM::VLD1LNd16:
4056     case ARM::VLD1LNd32:
4057     case ARM::VLD1LNd8_UPD:
4058     case ARM::VLD1LNd16_UPD:
4059     case ARM::VLD1LNd32_UPD:
4060     case ARM::VLD2LNd8:
4061     case ARM::VLD2LNd16:
4062     case ARM::VLD2LNd32:
4063     case ARM::VLD2LNq16:
4064     case ARM::VLD2LNq32:
4065     case ARM::VLD2LNd8_UPD:
4066     case ARM::VLD2LNd16_UPD:
4067     case ARM::VLD2LNd32_UPD:
4068     case ARM::VLD2LNq16_UPD:
4069     case ARM::VLD2LNq32_UPD:
4070     case ARM::VLD4LNd8:
4071     case ARM::VLD4LNd16:
4072     case ARM::VLD4LNd32:
4073     case ARM::VLD4LNq16:
4074     case ARM::VLD4LNq32:
4075     case ARM::VLD4LNd8_UPD:
4076     case ARM::VLD4LNd16_UPD:
4077     case ARM::VLD4LNd32_UPD:
4078     case ARM::VLD4LNq16_UPD:
4079     case ARM::VLD4LNq32_UPD:
4080       // If the address is not 64-bit aligned, the latencies of these
4081       // instructions increases by one.
4082       ++Adjust;
4083       break;
4084     }
4085   }
4086   return Adjust;
4087 }
4088 
4089 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4090                                         const MachineInstr &DefMI,
4091                                         unsigned DefIdx,
4092                                         const MachineInstr &UseMI,
4093                                         unsigned UseIdx) const {
4094   // No operand latency. The caller may fall back to getInstrLatency.
4095   if (!ItinData || ItinData->isEmpty())
4096     return -1;
4097 
4098   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4099   unsigned Reg = DefMO.getReg();
4100 
4101   const MachineInstr *ResolvedDefMI = &DefMI;
4102   unsigned DefAdj = 0;
4103   if (DefMI.isBundle())
4104     ResolvedDefMI =
4105         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4106   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4107       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4108     return 1;
4109   }
4110 
4111   const MachineInstr *ResolvedUseMI = &UseMI;
4112   unsigned UseAdj = 0;
4113   if (UseMI.isBundle()) {
4114     ResolvedUseMI =
4115         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4116     if (!ResolvedUseMI)
4117       return -1;
4118   }
4119 
4120   return getOperandLatencyImpl(
4121       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4122       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4123 }
4124 
4125 int ARMBaseInstrInfo::getOperandLatencyImpl(
4126     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4127     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4128     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4129     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4130   if (Reg == ARM::CPSR) {
4131     if (DefMI.getOpcode() == ARM::FMSTAT) {
4132       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4133       return Subtarget.isLikeA9() ? 1 : 20;
4134     }
4135 
4136     // CPSR set and branch can be paired in the same cycle.
4137     if (UseMI.isBranch())
4138       return 0;
4139 
4140     // Otherwise it takes the instruction latency (generally one).
4141     unsigned Latency = getInstrLatency(ItinData, DefMI);
4142 
4143     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4144     // its uses. Instructions which are otherwise scheduled between them may
4145     // incur a code size penalty (not able to use the CPSR setting 16-bit
4146     // instructions).
4147     if (Latency > 0 && Subtarget.isThumb2()) {
4148       const MachineFunction *MF = DefMI.getParent()->getParent();
4149       // FIXME: Use Function::optForSize().
4150       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4151         --Latency;
4152     }
4153     return Latency;
4154   }
4155 
4156   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4157     return -1;
4158 
4159   unsigned DefAlign = DefMI.hasOneMemOperand()
4160                           ? (*DefMI.memoperands_begin())->getAlignment()
4161                           : 0;
4162   unsigned UseAlign = UseMI.hasOneMemOperand()
4163                           ? (*UseMI.memoperands_begin())->getAlignment()
4164                           : 0;
4165 
4166   // Get the itinerary's latency if possible, and handle variable_ops.
4167   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4168                                   UseIdx, UseAlign);
4169   // Unable to find operand latency. The caller may resort to getInstrLatency.
4170   if (Latency < 0)
4171     return Latency;
4172 
4173   // Adjust for IT block position.
4174   int Adj = DefAdj + UseAdj;
4175 
4176   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4177   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4178   if (Adj >= 0 || (int)Latency > -Adj) {
4179     return Latency + Adj;
4180   }
4181   // Return the itinerary latency, which may be zero but not less than zero.
4182   return Latency;
4183 }
4184 
4185 int
4186 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4187                                     SDNode *DefNode, unsigned DefIdx,
4188                                     SDNode *UseNode, unsigned UseIdx) const {
4189   if (!DefNode->isMachineOpcode())
4190     return 1;
4191 
4192   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4193 
4194   if (isZeroCost(DefMCID.Opcode))
4195     return 0;
4196 
4197   if (!ItinData || ItinData->isEmpty())
4198     return DefMCID.mayLoad() ? 3 : 1;
4199 
4200   if (!UseNode->isMachineOpcode()) {
4201     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4202     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4203     int Threshold = 1 + Adj;
4204     return Latency <= Threshold ? 1 : Latency - Adj;
4205   }
4206 
4207   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4208   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
4209   unsigned DefAlign = !DefMN->memoperands_empty()
4210     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4211   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
4212   unsigned UseAlign = !UseMN->memoperands_empty()
4213     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4214   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4215                                   UseMCID, UseIdx, UseAlign);
4216 
4217   if (Latency > 1 &&
4218       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4219        Subtarget.isCortexA7())) {
4220     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4221     // variants are one cycle cheaper.
4222     switch (DefMCID.getOpcode()) {
4223     default: break;
4224     case ARM::LDRrs:
4225     case ARM::LDRBrs: {
4226       unsigned ShOpVal =
4227         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4228       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4229       if (ShImm == 0 ||
4230           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4231         --Latency;
4232       break;
4233     }
4234     case ARM::t2LDRs:
4235     case ARM::t2LDRBs:
4236     case ARM::t2LDRHs:
4237     case ARM::t2LDRSHs: {
4238       // Thumb2 mode: lsl only.
4239       unsigned ShAmt =
4240         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4241       if (ShAmt == 0 || ShAmt == 2)
4242         --Latency;
4243       break;
4244     }
4245     }
4246   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4247     // FIXME: Properly handle all of the latency adjustments for address
4248     // writeback.
4249     switch (DefMCID.getOpcode()) {
4250     default: break;
4251     case ARM::LDRrs:
4252     case ARM::LDRBrs: {
4253       unsigned ShOpVal =
4254         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4255       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4256       if (ShImm == 0 ||
4257           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4258            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4259         Latency -= 2;
4260       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4261         --Latency;
4262       break;
4263     }
4264     case ARM::t2LDRs:
4265     case ARM::t2LDRBs:
4266     case ARM::t2LDRHs:
4267     case ARM::t2LDRSHs:
4268       // Thumb2 mode: lsl 0-3 only.
4269       Latency -= 2;
4270       break;
4271     }
4272   }
4273 
4274   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4275     switch (DefMCID.getOpcode()) {
4276     default: break;
4277     case ARM::VLD1q8:
4278     case ARM::VLD1q16:
4279     case ARM::VLD1q32:
4280     case ARM::VLD1q64:
4281     case ARM::VLD1q8wb_register:
4282     case ARM::VLD1q16wb_register:
4283     case ARM::VLD1q32wb_register:
4284     case ARM::VLD1q64wb_register:
4285     case ARM::VLD1q8wb_fixed:
4286     case ARM::VLD1q16wb_fixed:
4287     case ARM::VLD1q32wb_fixed:
4288     case ARM::VLD1q64wb_fixed:
4289     case ARM::VLD2d8:
4290     case ARM::VLD2d16:
4291     case ARM::VLD2d32:
4292     case ARM::VLD2q8Pseudo:
4293     case ARM::VLD2q16Pseudo:
4294     case ARM::VLD2q32Pseudo:
4295     case ARM::VLD2d8wb_fixed:
4296     case ARM::VLD2d16wb_fixed:
4297     case ARM::VLD2d32wb_fixed:
4298     case ARM::VLD2q8PseudoWB_fixed:
4299     case ARM::VLD2q16PseudoWB_fixed:
4300     case ARM::VLD2q32PseudoWB_fixed:
4301     case ARM::VLD2d8wb_register:
4302     case ARM::VLD2d16wb_register:
4303     case ARM::VLD2d32wb_register:
4304     case ARM::VLD2q8PseudoWB_register:
4305     case ARM::VLD2q16PseudoWB_register:
4306     case ARM::VLD2q32PseudoWB_register:
4307     case ARM::VLD3d8Pseudo:
4308     case ARM::VLD3d16Pseudo:
4309     case ARM::VLD3d32Pseudo:
4310     case ARM::VLD1d8TPseudo:
4311     case ARM::VLD1d16TPseudo:
4312     case ARM::VLD1d32TPseudo:
4313     case ARM::VLD1d64TPseudo:
4314     case ARM::VLD1d64TPseudoWB_fixed:
4315     case ARM::VLD1d64TPseudoWB_register:
4316     case ARM::VLD3d8Pseudo_UPD:
4317     case ARM::VLD3d16Pseudo_UPD:
4318     case ARM::VLD3d32Pseudo_UPD:
4319     case ARM::VLD3q8Pseudo_UPD:
4320     case ARM::VLD3q16Pseudo_UPD:
4321     case ARM::VLD3q32Pseudo_UPD:
4322     case ARM::VLD3q8oddPseudo:
4323     case ARM::VLD3q16oddPseudo:
4324     case ARM::VLD3q32oddPseudo:
4325     case ARM::VLD3q8oddPseudo_UPD:
4326     case ARM::VLD3q16oddPseudo_UPD:
4327     case ARM::VLD3q32oddPseudo_UPD:
4328     case ARM::VLD4d8Pseudo:
4329     case ARM::VLD4d16Pseudo:
4330     case ARM::VLD4d32Pseudo:
4331     case ARM::VLD1d8QPseudo:
4332     case ARM::VLD1d16QPseudo:
4333     case ARM::VLD1d32QPseudo:
4334     case ARM::VLD1d64QPseudo:
4335     case ARM::VLD1d64QPseudoWB_fixed:
4336     case ARM::VLD1d64QPseudoWB_register:
4337     case ARM::VLD1q8HighQPseudo:
4338     case ARM::VLD1q8LowQPseudo_UPD:
4339     case ARM::VLD1q8HighTPseudo:
4340     case ARM::VLD1q8LowTPseudo_UPD:
4341     case ARM::VLD1q16HighQPseudo:
4342     case ARM::VLD1q16LowQPseudo_UPD:
4343     case ARM::VLD1q16HighTPseudo:
4344     case ARM::VLD1q16LowTPseudo_UPD:
4345     case ARM::VLD1q32HighQPseudo:
4346     case ARM::VLD1q32LowQPseudo_UPD:
4347     case ARM::VLD1q32HighTPseudo:
4348     case ARM::VLD1q32LowTPseudo_UPD:
4349     case ARM::VLD1q64HighQPseudo:
4350     case ARM::VLD1q64LowQPseudo_UPD:
4351     case ARM::VLD1q64HighTPseudo:
4352     case ARM::VLD1q64LowTPseudo_UPD:
4353     case ARM::VLD4d8Pseudo_UPD:
4354     case ARM::VLD4d16Pseudo_UPD:
4355     case ARM::VLD4d32Pseudo_UPD:
4356     case ARM::VLD4q8Pseudo_UPD:
4357     case ARM::VLD4q16Pseudo_UPD:
4358     case ARM::VLD4q32Pseudo_UPD:
4359     case ARM::VLD4q8oddPseudo:
4360     case ARM::VLD4q16oddPseudo:
4361     case ARM::VLD4q32oddPseudo:
4362     case ARM::VLD4q8oddPseudo_UPD:
4363     case ARM::VLD4q16oddPseudo_UPD:
4364     case ARM::VLD4q32oddPseudo_UPD:
4365     case ARM::VLD1DUPq8:
4366     case ARM::VLD1DUPq16:
4367     case ARM::VLD1DUPq32:
4368     case ARM::VLD1DUPq8wb_fixed:
4369     case ARM::VLD1DUPq16wb_fixed:
4370     case ARM::VLD1DUPq32wb_fixed:
4371     case ARM::VLD1DUPq8wb_register:
4372     case ARM::VLD1DUPq16wb_register:
4373     case ARM::VLD1DUPq32wb_register:
4374     case ARM::VLD2DUPd8:
4375     case ARM::VLD2DUPd16:
4376     case ARM::VLD2DUPd32:
4377     case ARM::VLD2DUPd8wb_fixed:
4378     case ARM::VLD2DUPd16wb_fixed:
4379     case ARM::VLD2DUPd32wb_fixed:
4380     case ARM::VLD2DUPd8wb_register:
4381     case ARM::VLD2DUPd16wb_register:
4382     case ARM::VLD2DUPd32wb_register:
4383     case ARM::VLD2DUPq8EvenPseudo:
4384     case ARM::VLD2DUPq8OddPseudo:
4385     case ARM::VLD2DUPq16EvenPseudo:
4386     case ARM::VLD2DUPq16OddPseudo:
4387     case ARM::VLD2DUPq32EvenPseudo:
4388     case ARM::VLD2DUPq32OddPseudo:
4389     case ARM::VLD3DUPq8EvenPseudo:
4390     case ARM::VLD3DUPq8OddPseudo:
4391     case ARM::VLD3DUPq16EvenPseudo:
4392     case ARM::VLD3DUPq16OddPseudo:
4393     case ARM::VLD3DUPq32EvenPseudo:
4394     case ARM::VLD3DUPq32OddPseudo:
4395     case ARM::VLD4DUPd8Pseudo:
4396     case ARM::VLD4DUPd16Pseudo:
4397     case ARM::VLD4DUPd32Pseudo:
4398     case ARM::VLD4DUPd8Pseudo_UPD:
4399     case ARM::VLD4DUPd16Pseudo_UPD:
4400     case ARM::VLD4DUPd32Pseudo_UPD:
4401     case ARM::VLD4DUPq8EvenPseudo:
4402     case ARM::VLD4DUPq8OddPseudo:
4403     case ARM::VLD4DUPq16EvenPseudo:
4404     case ARM::VLD4DUPq16OddPseudo:
4405     case ARM::VLD4DUPq32EvenPseudo:
4406     case ARM::VLD4DUPq32OddPseudo:
4407     case ARM::VLD1LNq8Pseudo:
4408     case ARM::VLD1LNq16Pseudo:
4409     case ARM::VLD1LNq32Pseudo:
4410     case ARM::VLD1LNq8Pseudo_UPD:
4411     case ARM::VLD1LNq16Pseudo_UPD:
4412     case ARM::VLD1LNq32Pseudo_UPD:
4413     case ARM::VLD2LNd8Pseudo:
4414     case ARM::VLD2LNd16Pseudo:
4415     case ARM::VLD2LNd32Pseudo:
4416     case ARM::VLD2LNq16Pseudo:
4417     case ARM::VLD2LNq32Pseudo:
4418     case ARM::VLD2LNd8Pseudo_UPD:
4419     case ARM::VLD2LNd16Pseudo_UPD:
4420     case ARM::VLD2LNd32Pseudo_UPD:
4421     case ARM::VLD2LNq16Pseudo_UPD:
4422     case ARM::VLD2LNq32Pseudo_UPD:
4423     case ARM::VLD4LNd8Pseudo:
4424     case ARM::VLD4LNd16Pseudo:
4425     case ARM::VLD4LNd32Pseudo:
4426     case ARM::VLD4LNq16Pseudo:
4427     case ARM::VLD4LNq32Pseudo:
4428     case ARM::VLD4LNd8Pseudo_UPD:
4429     case ARM::VLD4LNd16Pseudo_UPD:
4430     case ARM::VLD4LNd32Pseudo_UPD:
4431     case ARM::VLD4LNq16Pseudo_UPD:
4432     case ARM::VLD4LNq32Pseudo_UPD:
4433       // If the address is not 64-bit aligned, the latencies of these
4434       // instructions increases by one.
4435       ++Latency;
4436       break;
4437     }
4438 
4439   return Latency;
4440 }
4441 
4442 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4443   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4444       MI.isImplicitDef())
4445     return 0;
4446 
4447   if (MI.isBundle())
4448     return 0;
4449 
4450   const MCInstrDesc &MCID = MI.getDesc();
4451 
4452   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4453                         !Subtarget.cheapPredicableCPSRDef())) {
4454     // When predicated, CPSR is an additional source operand for CPSR updating
4455     // instructions, this apparently increases their latencies.
4456     return 1;
4457   }
4458   return 0;
4459 }
4460 
4461 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4462                                            const MachineInstr &MI,
4463                                            unsigned *PredCost) const {
4464   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4465       MI.isImplicitDef())
4466     return 1;
4467 
4468   // An instruction scheduler typically runs on unbundled instructions, however
4469   // other passes may query the latency of a bundled instruction.
4470   if (MI.isBundle()) {
4471     unsigned Latency = 0;
4472     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4473     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4474     while (++I != E && I->isInsideBundle()) {
4475       if (I->getOpcode() != ARM::t2IT)
4476         Latency += getInstrLatency(ItinData, *I, PredCost);
4477     }
4478     return Latency;
4479   }
4480 
4481   const MCInstrDesc &MCID = MI.getDesc();
4482   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4483                                      !Subtarget.cheapPredicableCPSRDef()))) {
4484     // When predicated, CPSR is an additional source operand for CPSR updating
4485     // instructions, this apparently increases their latencies.
4486     *PredCost = 1;
4487   }
4488   // Be sure to call getStageLatency for an empty itinerary in case it has a
4489   // valid MinLatency property.
4490   if (!ItinData)
4491     return MI.mayLoad() ? 3 : 1;
4492 
4493   unsigned Class = MCID.getSchedClass();
4494 
4495   // For instructions with variable uops, use uops as latency.
4496   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4497     return getNumMicroOps(ItinData, MI);
4498 
4499   // For the common case, fall back on the itinerary's latency.
4500   unsigned Latency = ItinData->getStageLatency(Class);
4501 
4502   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4503   unsigned DefAlign =
4504       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4505   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4506   if (Adj >= 0 || (int)Latency > -Adj) {
4507     return Latency + Adj;
4508   }
4509   return Latency;
4510 }
4511 
4512 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4513                                       SDNode *Node) const {
4514   if (!Node->isMachineOpcode())
4515     return 1;
4516 
4517   if (!ItinData || ItinData->isEmpty())
4518     return 1;
4519 
4520   unsigned Opcode = Node->getMachineOpcode();
4521   switch (Opcode) {
4522   default:
4523     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4524   case ARM::VLDMQIA:
4525   case ARM::VSTMQIA:
4526     return 2;
4527   }
4528 }
4529 
4530 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4531                                              const MachineRegisterInfo *MRI,
4532                                              const MachineInstr &DefMI,
4533                                              unsigned DefIdx,
4534                                              const MachineInstr &UseMI,
4535                                              unsigned UseIdx) const {
4536   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4537   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4538   if (Subtarget.nonpipelinedVFP() &&
4539       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4540     return true;
4541 
4542   // Hoist VFP / NEON instructions with 4 or higher latency.
4543   unsigned Latency =
4544       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4545   if (Latency <= 3)
4546     return false;
4547   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4548          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4549 }
4550 
4551 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4552                                         const MachineInstr &DefMI,
4553                                         unsigned DefIdx) const {
4554   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4555   if (!ItinData || ItinData->isEmpty())
4556     return false;
4557 
4558   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4559   if (DDomain == ARMII::DomainGeneral) {
4560     unsigned DefClass = DefMI.getDesc().getSchedClass();
4561     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4562     return (DefCycle != -1 && DefCycle <= 2);
4563   }
4564   return false;
4565 }
4566 
4567 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4568                                          StringRef &ErrInfo) const {
4569   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4570     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4571     return false;
4572   }
4573   return true;
4574 }
4575 
4576 // LoadStackGuard has so far only been implemented for MachO. Different code
4577 // sequence is needed for other targets.
4578 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4579                                                 unsigned LoadImmOpc,
4580                                                 unsigned LoadOpc) const {
4581   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4582          "ROPI/RWPI not currently supported with stack guard");
4583 
4584   MachineBasicBlock &MBB = *MI->getParent();
4585   DebugLoc DL = MI->getDebugLoc();
4586   unsigned Reg = MI->getOperand(0).getReg();
4587   const GlobalValue *GV =
4588       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4589   MachineInstrBuilder MIB;
4590 
4591   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4592       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4593 
4594   if (Subtarget.isGVIndirectSymbol(GV)) {
4595     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4596     MIB.addReg(Reg, RegState::Kill).addImm(0);
4597     auto Flags = MachineMemOperand::MOLoad |
4598                  MachineMemOperand::MODereferenceable |
4599                  MachineMemOperand::MOInvariant;
4600     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4601         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4602     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4603   }
4604 
4605   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4606   MIB.addReg(Reg, RegState::Kill)
4607       .addImm(0)
4608       .cloneMemRefs(*MI)
4609       .add(predOps(ARMCC::AL));
4610 }
4611 
4612 bool
4613 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4614                                      unsigned &AddSubOpc,
4615                                      bool &NegAcc, bool &HasLane) const {
4616   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4617   if (I == MLxEntryMap.end())
4618     return false;
4619 
4620   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4621   MulOpc = Entry.MulOpc;
4622   AddSubOpc = Entry.AddSubOpc;
4623   NegAcc = Entry.NegAcc;
4624   HasLane = Entry.HasLane;
4625   return true;
4626 }
4627 
4628 //===----------------------------------------------------------------------===//
4629 // Execution domains.
4630 //===----------------------------------------------------------------------===//
4631 //
4632 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4633 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4634 // but they can be changed to vorr equivalents that are executed by the NEON
4635 // pipeline.
4636 //
4637 // We use the following execution domain numbering:
4638 //
4639 enum ARMExeDomain {
4640   ExeGeneric = 0,
4641   ExeVFP = 1,
4642   ExeNEON = 2
4643 };
4644 
4645 //
4646 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4647 //
4648 std::pair<uint16_t, uint16_t>
4649 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4650   // If we don't have access to NEON instructions then we won't be able
4651   // to swizzle anything to the NEON domain. Check to make sure.
4652   if (Subtarget.hasNEON()) {
4653     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4654     // if they are not predicated.
4655     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4656       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4657 
4658     // CortexA9 is particularly picky about mixing the two and wants these
4659     // converted.
4660     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4661         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4662          MI.getOpcode() == ARM::VMOVS))
4663       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4664   }
4665   // No other instructions can be swizzled, so just determine their domain.
4666   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4667 
4668   if (Domain & ARMII::DomainNEON)
4669     return std::make_pair(ExeNEON, 0);
4670 
4671   // Certain instructions can go either way on Cortex-A8.
4672   // Treat them as NEON instructions.
4673   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4674     return std::make_pair(ExeNEON, 0);
4675 
4676   if (Domain & ARMII::DomainVFP)
4677     return std::make_pair(ExeVFP, 0);
4678 
4679   return std::make_pair(ExeGeneric, 0);
4680 }
4681 
4682 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4683                                             unsigned SReg, unsigned &Lane) {
4684   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4685   Lane = 0;
4686 
4687   if (DReg != ARM::NoRegister)
4688    return DReg;
4689 
4690   Lane = 1;
4691   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4692 
4693   assert(DReg && "S-register with no D super-register?");
4694   return DReg;
4695 }
4696 
4697 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4698 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4699 /// zero if no register needs to be defined as implicit-use.
4700 ///
4701 /// If the function cannot determine if an SPR should be marked implicit use or
4702 /// not, it returns false.
4703 ///
4704 /// This function handles cases where an instruction is being modified from taking
4705 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4706 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4707 /// lane of the DPR).
4708 ///
4709 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4710 /// (including the case where the DPR itself is defined), it should not.
4711 ///
4712 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4713                                        MachineInstr &MI, unsigned DReg,
4714                                        unsigned Lane, unsigned &ImplicitSReg) {
4715   // If the DPR is defined or used already, the other SPR lane will be chained
4716   // correctly, so there is nothing to be done.
4717   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4718     ImplicitSReg = 0;
4719     return true;
4720   }
4721 
4722   // Otherwise we need to go searching to see if the SPR is set explicitly.
4723   ImplicitSReg = TRI->getSubReg(DReg,
4724                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4725   MachineBasicBlock::LivenessQueryResult LQR =
4726       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4727 
4728   if (LQR == MachineBasicBlock::LQR_Live)
4729     return true;
4730   else if (LQR == MachineBasicBlock::LQR_Unknown)
4731     return false;
4732 
4733   // If the register is known not to be live, there is no need to add an
4734   // implicit-use.
4735   ImplicitSReg = 0;
4736   return true;
4737 }
4738 
4739 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4740                                           unsigned Domain) const {
4741   unsigned DstReg, SrcReg, DReg;
4742   unsigned Lane;
4743   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4744   const TargetRegisterInfo *TRI = &getRegisterInfo();
4745   switch (MI.getOpcode()) {
4746   default:
4747     llvm_unreachable("cannot handle opcode!");
4748     break;
4749   case ARM::VMOVD:
4750     if (Domain != ExeNEON)
4751       break;
4752 
4753     // Zap the predicate operands.
4754     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4755 
4756     // Make sure we've got NEON instructions.
4757     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4758 
4759     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4760     DstReg = MI.getOperand(0).getReg();
4761     SrcReg = MI.getOperand(1).getReg();
4762 
4763     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4764       MI.RemoveOperand(i - 1);
4765 
4766     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4767     MI.setDesc(get(ARM::VORRd));
4768     MIB.addReg(DstReg, RegState::Define)
4769         .addReg(SrcReg)
4770         .addReg(SrcReg)
4771         .add(predOps(ARMCC::AL));
4772     break;
4773   case ARM::VMOVRS:
4774     if (Domain != ExeNEON)
4775       break;
4776     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4777 
4778     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4779     DstReg = MI.getOperand(0).getReg();
4780     SrcReg = MI.getOperand(1).getReg();
4781 
4782     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4783       MI.RemoveOperand(i - 1);
4784 
4785     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4786 
4787     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4788     // Note that DSrc has been widened and the other lane may be undef, which
4789     // contaminates the entire register.
4790     MI.setDesc(get(ARM::VGETLNi32));
4791     MIB.addReg(DstReg, RegState::Define)
4792         .addReg(DReg, RegState::Undef)
4793         .addImm(Lane)
4794         .add(predOps(ARMCC::AL));
4795 
4796     // The old source should be an implicit use, otherwise we might think it
4797     // was dead before here.
4798     MIB.addReg(SrcReg, RegState::Implicit);
4799     break;
4800   case ARM::VMOVSR: {
4801     if (Domain != ExeNEON)
4802       break;
4803     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4804 
4805     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4806     DstReg = MI.getOperand(0).getReg();
4807     SrcReg = MI.getOperand(1).getReg();
4808 
4809     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4810 
4811     unsigned ImplicitSReg;
4812     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4813       break;
4814 
4815     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4816       MI.RemoveOperand(i - 1);
4817 
4818     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4819     // Again DDst may be undefined at the beginning of this instruction.
4820     MI.setDesc(get(ARM::VSETLNi32));
4821     MIB.addReg(DReg, RegState::Define)
4822         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4823         .addReg(SrcReg)
4824         .addImm(Lane)
4825         .add(predOps(ARMCC::AL));
4826 
4827     // The narrower destination must be marked as set to keep previous chains
4828     // in place.
4829     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4830     if (ImplicitSReg != 0)
4831       MIB.addReg(ImplicitSReg, RegState::Implicit);
4832     break;
4833     }
4834     case ARM::VMOVS: {
4835       if (Domain != ExeNEON)
4836         break;
4837 
4838       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4839       DstReg = MI.getOperand(0).getReg();
4840       SrcReg = MI.getOperand(1).getReg();
4841 
4842       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4843       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4844       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4845 
4846       unsigned ImplicitSReg;
4847       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4848         break;
4849 
4850       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4851         MI.RemoveOperand(i - 1);
4852 
4853       if (DSrc == DDst) {
4854         // Destination can be:
4855         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4856         MI.setDesc(get(ARM::VDUPLN32d));
4857         MIB.addReg(DDst, RegState::Define)
4858             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
4859             .addImm(SrcLane)
4860             .add(predOps(ARMCC::AL));
4861 
4862         // Neither the source or the destination are naturally represented any
4863         // more, so add them in manually.
4864         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4865         MIB.addReg(SrcReg, RegState::Implicit);
4866         if (ImplicitSReg != 0)
4867           MIB.addReg(ImplicitSReg, RegState::Implicit);
4868         break;
4869       }
4870 
4871       // In general there's no single instruction that can perform an S <-> S
4872       // move in NEON space, but a pair of VEXT instructions *can* do the
4873       // job. It turns out that the VEXTs needed will only use DSrc once, with
4874       // the position based purely on the combination of lane-0 and lane-1
4875       // involved. For example
4876       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
4877       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
4878       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
4879       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
4880       //
4881       // Pattern of the MachineInstrs is:
4882       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4883       MachineInstrBuilder NewMIB;
4884       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
4885                        DDst);
4886 
4887       // On the first instruction, both DSrc and DDst may be undef if present.
4888       // Specifically when the original instruction didn't have them as an
4889       // <imp-use>.
4890       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4891       bool CurUndef = !MI.readsRegister(CurReg, TRI);
4892       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4893 
4894       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4895       CurUndef = !MI.readsRegister(CurReg, TRI);
4896       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
4897             .addImm(1)
4898             .add(predOps(ARMCC::AL));
4899 
4900       if (SrcLane == DstLane)
4901         NewMIB.addReg(SrcReg, RegState::Implicit);
4902 
4903       MI.setDesc(get(ARM::VEXTd32));
4904       MIB.addReg(DDst, RegState::Define);
4905 
4906       // On the second instruction, DDst has definitely been defined above, so
4907       // it is not undef. DSrc, if present, can be undef as above.
4908       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4909       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4910       MIB.addReg(CurReg, getUndefRegState(CurUndef));
4911 
4912       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4913       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4914       MIB.addReg(CurReg, getUndefRegState(CurUndef))
4915          .addImm(1)
4916          .add(predOps(ARMCC::AL));
4917 
4918       if (SrcLane != DstLane)
4919         MIB.addReg(SrcReg, RegState::Implicit);
4920 
4921       // As before, the original destination is no longer represented, add it
4922       // implicitly.
4923       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4924       if (ImplicitSReg != 0)
4925         MIB.addReg(ImplicitSReg, RegState::Implicit);
4926       break;
4927     }
4928   }
4929 }
4930 
4931 //===----------------------------------------------------------------------===//
4932 // Partial register updates
4933 //===----------------------------------------------------------------------===//
4934 //
4935 // Swift renames NEON registers with 64-bit granularity.  That means any
4936 // instruction writing an S-reg implicitly reads the containing D-reg.  The
4937 // problem is mostly avoided by translating f32 operations to v2f32 operations
4938 // on D-registers, but f32 loads are still a problem.
4939 //
4940 // These instructions can load an f32 into a NEON register:
4941 //
4942 // VLDRS - Only writes S, partial D update.
4943 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4944 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4945 //
4946 // FCONSTD can be used as a dependency-breaking instruction.
4947 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
4948     const MachineInstr &MI, unsigned OpNum,
4949     const TargetRegisterInfo *TRI) const {
4950   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
4951   if (!PartialUpdateClearance)
4952     return 0;
4953 
4954   assert(TRI && "Need TRI instance");
4955 
4956   const MachineOperand &MO = MI.getOperand(OpNum);
4957   if (MO.readsReg())
4958     return 0;
4959   unsigned Reg = MO.getReg();
4960   int UseOp = -1;
4961 
4962   switch (MI.getOpcode()) {
4963   // Normal instructions writing only an S-register.
4964   case ARM::VLDRS:
4965   case ARM::FCONSTS:
4966   case ARM::VMOVSR:
4967   case ARM::VMOVv8i8:
4968   case ARM::VMOVv4i16:
4969   case ARM::VMOVv2i32:
4970   case ARM::VMOVv2f32:
4971   case ARM::VMOVv1i64:
4972     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
4973     break;
4974 
4975     // Explicitly reads the dependency.
4976   case ARM::VLD1LNd32:
4977     UseOp = 3;
4978     break;
4979   default:
4980     return 0;
4981   }
4982 
4983   // If this instruction actually reads a value from Reg, there is no unwanted
4984   // dependency.
4985   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
4986     return 0;
4987 
4988   // We must be able to clobber the whole D-reg.
4989   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4990     // Virtual register must be a def undef foo:ssub_0 operand.
4991     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
4992       return 0;
4993   } else if (ARM::SPRRegClass.contains(Reg)) {
4994     // Physical register: MI must define the full D-reg.
4995     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4996                                              &ARM::DPRRegClass);
4997     if (!DReg || !MI.definesRegister(DReg, TRI))
4998       return 0;
4999   }
5000 
5001   // MI has an unwanted D-register dependency.
5002   // Avoid defs in the previous N instructrions.
5003   return PartialUpdateClearance;
5004 }
5005 
5006 // Break a partial register dependency after getPartialRegUpdateClearance
5007 // returned non-zero.
5008 void ARMBaseInstrInfo::breakPartialRegDependency(
5009     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5010   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5011   assert(TRI && "Need TRI instance");
5012 
5013   const MachineOperand &MO = MI.getOperand(OpNum);
5014   unsigned Reg = MO.getReg();
5015   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
5016          "Can't break virtual register dependencies.");
5017   unsigned DReg = Reg;
5018 
5019   // If MI defines an S-reg, find the corresponding D super-register.
5020   if (ARM::SPRRegClass.contains(Reg)) {
5021     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5022     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5023   }
5024 
5025   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5026   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5027 
5028   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5029   // the full D-register by loading the same value to both lanes.  The
5030   // instruction is micro-coded with 2 uops, so don't do this until we can
5031   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5032   // too big regressions.
5033 
5034   // Insert the dependency-breaking FCONSTD before MI.
5035   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5036   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5037       .addImm(96)
5038       .add(predOps(ARMCC::AL));
5039   MI.addRegisterKilled(DReg, TRI, true);
5040 }
5041 
5042 bool ARMBaseInstrInfo::hasNOP() const {
5043   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5044 }
5045 
5046 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5047   if (MI->getNumOperands() < 4)
5048     return true;
5049   unsigned ShOpVal = MI->getOperand(3).getImm();
5050   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5051   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5052   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5053       ((ShImm == 1 || ShImm == 2) &&
5054        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5055     return true;
5056 
5057   return false;
5058 }
5059 
5060 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5061     const MachineInstr &MI, unsigned DefIdx,
5062     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5063   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5064   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5065 
5066   switch (MI.getOpcode()) {
5067   case ARM::VMOVDRR:
5068     // dX = VMOVDRR rY, rZ
5069     // is the same as:
5070     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5071     // Populate the InputRegs accordingly.
5072     // rY
5073     const MachineOperand *MOReg = &MI.getOperand(1);
5074     if (!MOReg->isUndef())
5075       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5076                                               MOReg->getSubReg(), ARM::ssub_0));
5077     // rZ
5078     MOReg = &MI.getOperand(2);
5079     if (!MOReg->isUndef())
5080       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5081                                               MOReg->getSubReg(), ARM::ssub_1));
5082     return true;
5083   }
5084   llvm_unreachable("Target dependent opcode missing");
5085 }
5086 
5087 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5088     const MachineInstr &MI, unsigned DefIdx,
5089     RegSubRegPairAndIdx &InputReg) const {
5090   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5091   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5092 
5093   switch (MI.getOpcode()) {
5094   case ARM::VMOVRRD:
5095     // rX, rY = VMOVRRD dZ
5096     // is the same as:
5097     // rX = EXTRACT_SUBREG dZ, ssub_0
5098     // rY = EXTRACT_SUBREG dZ, ssub_1
5099     const MachineOperand &MOReg = MI.getOperand(2);
5100     if (MOReg.isUndef())
5101       return false;
5102     InputReg.Reg = MOReg.getReg();
5103     InputReg.SubReg = MOReg.getSubReg();
5104     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5105     return true;
5106   }
5107   llvm_unreachable("Target dependent opcode missing");
5108 }
5109 
5110 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5111     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5112     RegSubRegPairAndIdx &InsertedReg) const {
5113   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5114   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5115 
5116   switch (MI.getOpcode()) {
5117   case ARM::VSETLNi32:
5118     // dX = VSETLNi32 dY, rZ, imm
5119     const MachineOperand &MOBaseReg = MI.getOperand(1);
5120     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5121     if (MOInsertedReg.isUndef())
5122       return false;
5123     const MachineOperand &MOIndex = MI.getOperand(3);
5124     BaseReg.Reg = MOBaseReg.getReg();
5125     BaseReg.SubReg = MOBaseReg.getSubReg();
5126 
5127     InsertedReg.Reg = MOInsertedReg.getReg();
5128     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5129     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5130     return true;
5131   }
5132   llvm_unreachable("Target dependent opcode missing");
5133 }
5134 
5135 std::pair<unsigned, unsigned>
5136 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5137   const unsigned Mask = ARMII::MO_OPTION_MASK;
5138   return std::make_pair(TF & Mask, TF & ~Mask);
5139 }
5140 
5141 ArrayRef<std::pair<unsigned, const char *>>
5142 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5143   using namespace ARMII;
5144 
5145   static const std::pair<unsigned, const char *> TargetFlags[] = {
5146       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5147   return makeArrayRef(TargetFlags);
5148 }
5149 
5150 ArrayRef<std::pair<unsigned, const char *>>
5151 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5152   using namespace ARMII;
5153 
5154   static const std::pair<unsigned, const char *> TargetFlags[] = {
5155       {MO_COFFSTUB, "arm-coffstub"},
5156       {MO_GOT, "arm-got"},
5157       {MO_SBREL, "arm-sbrel"},
5158       {MO_DLLIMPORT, "arm-dllimport"},
5159       {MO_SECREL, "arm-secrel"},
5160       {MO_NONLAZY, "arm-nonlazy"}};
5161   return makeArrayRef(TargetFlags);
5162 }
5163