1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/CodeGen/LiveVariables.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineConstantPool.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSchedule.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/MC/MCAsmInfo.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/MC/MCInstrItineraries.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <new> 63 #include <utility> 64 #include <vector> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "arm-instrinfo" 69 70 #define GET_INSTRINFO_CTOR_DTOR 71 #include "ARMGenInstrInfo.inc" 72 73 static cl::opt<bool> 74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 75 cl::desc("Enable ARM 2-addr to 3-addr conv")); 76 77 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 78 struct ARM_MLxEntry { 79 uint16_t MLxOpc; // MLA / MLS opcode 80 uint16_t MulOpc; // Expanded multiplication opcode 81 uint16_t AddSubOpc; // Expanded add / sub opcode 82 bool NegAcc; // True if the acc is negated before the add / sub. 83 bool HasLane; // True if instruction has an extra "lane" operand. 84 }; 85 86 static const ARM_MLxEntry ARM_MLxTable[] = { 87 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 88 // fp scalar ops 89 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 90 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 91 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 92 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 93 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 94 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 95 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 96 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 97 98 // fp SIMD ops 99 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 100 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 101 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 102 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 103 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 104 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 105 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 106 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 107 }; 108 109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 110 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 111 Subtarget(STI) { 112 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 113 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 114 llvm_unreachable("Duplicated entries?"); 115 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 116 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 117 } 118 } 119 120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 121 // currently defaults to no prepass hazard recognizer. 122 ScheduleHazardRecognizer * 123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 124 const ScheduleDAG *DAG) const { 125 if (usePreRAHazardRecognizer()) { 126 const InstrItineraryData *II = 127 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 128 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 129 } 130 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 131 } 132 133 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 135 const ScheduleDAG *DAG) const { 136 if (Subtarget.isThumb2() || Subtarget.hasVFP2()) 137 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG); 138 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 139 } 140 141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 142 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 143 // FIXME: Thumb2 support. 144 145 if (!EnableARM3Addr) 146 return nullptr; 147 148 MachineFunction &MF = *MI.getParent()->getParent(); 149 uint64_t TSFlags = MI.getDesc().TSFlags; 150 bool isPre = false; 151 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 152 default: return nullptr; 153 case ARMII::IndexModePre: 154 isPre = true; 155 break; 156 case ARMII::IndexModePost: 157 break; 158 } 159 160 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 161 // operation. 162 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 163 if (MemOpc == 0) 164 return nullptr; 165 166 MachineInstr *UpdateMI = nullptr; 167 MachineInstr *MemMI = nullptr; 168 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 169 const MCInstrDesc &MCID = MI.getDesc(); 170 unsigned NumOps = MCID.getNumOperands(); 171 bool isLoad = !MI.mayStore(); 172 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 173 const MachineOperand &Base = MI.getOperand(2); 174 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 175 unsigned WBReg = WB.getReg(); 176 unsigned BaseReg = Base.getReg(); 177 unsigned OffReg = Offset.getReg(); 178 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 179 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 180 switch (AddrMode) { 181 default: llvm_unreachable("Unknown indexed op!"); 182 case ARMII::AddrMode2: { 183 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 184 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 185 if (OffReg == 0) { 186 if (ARM_AM::getSOImmVal(Amt) == -1) 187 // Can't encode it in a so_imm operand. This transformation will 188 // add more than 1 instruction. Abandon! 189 return nullptr; 190 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 191 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 192 .addReg(BaseReg) 193 .addImm(Amt) 194 .add(predOps(Pred)) 195 .add(condCodeOp()); 196 } else if (Amt != 0) { 197 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 198 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 199 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 200 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 201 .addReg(BaseReg) 202 .addReg(OffReg) 203 .addReg(0) 204 .addImm(SOOpc) 205 .add(predOps(Pred)) 206 .add(condCodeOp()); 207 } else 208 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 209 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 210 .addReg(BaseReg) 211 .addReg(OffReg) 212 .add(predOps(Pred)) 213 .add(condCodeOp()); 214 break; 215 } 216 case ARMII::AddrMode3 : { 217 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 218 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 219 if (OffReg == 0) 220 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 221 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 222 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 223 .addReg(BaseReg) 224 .addImm(Amt) 225 .add(predOps(Pred)) 226 .add(condCodeOp()); 227 else 228 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 229 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 230 .addReg(BaseReg) 231 .addReg(OffReg) 232 .add(predOps(Pred)) 233 .add(condCodeOp()); 234 break; 235 } 236 } 237 238 std::vector<MachineInstr*> NewMIs; 239 if (isPre) { 240 if (isLoad) 241 MemMI = 242 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 243 .addReg(WBReg) 244 .addImm(0) 245 .addImm(Pred); 246 else 247 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 248 .addReg(MI.getOperand(1).getReg()) 249 .addReg(WBReg) 250 .addReg(0) 251 .addImm(0) 252 .addImm(Pred); 253 NewMIs.push_back(MemMI); 254 NewMIs.push_back(UpdateMI); 255 } else { 256 if (isLoad) 257 MemMI = 258 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 259 .addReg(BaseReg) 260 .addImm(0) 261 .addImm(Pred); 262 else 263 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 264 .addReg(MI.getOperand(1).getReg()) 265 .addReg(BaseReg) 266 .addReg(0) 267 .addImm(0) 268 .addImm(Pred); 269 if (WB.isDead()) 270 UpdateMI->getOperand(0).setIsDead(); 271 NewMIs.push_back(UpdateMI); 272 NewMIs.push_back(MemMI); 273 } 274 275 // Transfer LiveVariables states, kill / dead info. 276 if (LV) { 277 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 278 MachineOperand &MO = MI.getOperand(i); 279 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 280 unsigned Reg = MO.getReg(); 281 282 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 283 if (MO.isDef()) { 284 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 285 if (MO.isDead()) 286 LV->addVirtualRegisterDead(Reg, *NewMI); 287 } 288 if (MO.isUse() && MO.isKill()) { 289 for (unsigned j = 0; j < 2; ++j) { 290 // Look at the two new MI's in reverse order. 291 MachineInstr *NewMI = NewMIs[j]; 292 if (!NewMI->readsRegister(Reg)) 293 continue; 294 LV->addVirtualRegisterKilled(Reg, *NewMI); 295 if (VI.removeKill(MI)) 296 VI.Kills.push_back(NewMI); 297 break; 298 } 299 } 300 } 301 } 302 } 303 304 MachineBasicBlock::iterator MBBI = MI.getIterator(); 305 MFI->insert(MBBI, NewMIs[1]); 306 MFI->insert(MBBI, NewMIs[0]); 307 return NewMIs[0]; 308 } 309 310 // Branch analysis. 311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 312 MachineBasicBlock *&TBB, 313 MachineBasicBlock *&FBB, 314 SmallVectorImpl<MachineOperand> &Cond, 315 bool AllowModify) const { 316 TBB = nullptr; 317 FBB = nullptr; 318 319 MachineBasicBlock::iterator I = MBB.end(); 320 if (I == MBB.begin()) 321 return false; // Empty blocks are easy. 322 --I; 323 324 // Walk backwards from the end of the basic block until the branch is 325 // analyzed or we give up. 326 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 327 // Flag to be raised on unanalyzeable instructions. This is useful in cases 328 // where we want to clean up on the end of the basic block before we bail 329 // out. 330 bool CantAnalyze = false; 331 332 // Skip over DEBUG values and predicated nonterminators. 333 while (I->isDebugInstr() || !I->isTerminator()) { 334 if (I == MBB.begin()) 335 return false; 336 --I; 337 } 338 339 if (isIndirectBranchOpcode(I->getOpcode()) || 340 isJumpTableBranchOpcode(I->getOpcode())) { 341 // Indirect branches and jump tables can't be analyzed, but we still want 342 // to clean up any instructions at the tail of the basic block. 343 CantAnalyze = true; 344 } else if (isUncondBranchOpcode(I->getOpcode())) { 345 TBB = I->getOperand(0).getMBB(); 346 } else if (isCondBranchOpcode(I->getOpcode())) { 347 // Bail out if we encounter multiple conditional branches. 348 if (!Cond.empty()) 349 return true; 350 351 assert(!FBB && "FBB should have been null."); 352 FBB = TBB; 353 TBB = I->getOperand(0).getMBB(); 354 Cond.push_back(I->getOperand(1)); 355 Cond.push_back(I->getOperand(2)); 356 } else if (I->isReturn()) { 357 // Returns can't be analyzed, but we should run cleanup. 358 CantAnalyze = !isPredicated(*I); 359 } else { 360 // We encountered other unrecognized terminator. Bail out immediately. 361 return true; 362 } 363 364 // Cleanup code - to be run for unpredicated unconditional branches and 365 // returns. 366 if (!isPredicated(*I) && 367 (isUncondBranchOpcode(I->getOpcode()) || 368 isIndirectBranchOpcode(I->getOpcode()) || 369 isJumpTableBranchOpcode(I->getOpcode()) || 370 I->isReturn())) { 371 // Forget any previous condition branch information - it no longer applies. 372 Cond.clear(); 373 FBB = nullptr; 374 375 // If we can modify the function, delete everything below this 376 // unconditional branch. 377 if (AllowModify) { 378 MachineBasicBlock::iterator DI = std::next(I); 379 while (DI != MBB.end()) { 380 MachineInstr &InstToDelete = *DI; 381 ++DI; 382 InstToDelete.eraseFromParent(); 383 } 384 } 385 } 386 387 if (CantAnalyze) 388 return true; 389 390 if (I == MBB.begin()) 391 return false; 392 393 --I; 394 } 395 396 // We made it past the terminators without bailing out - we must have 397 // analyzed this branch successfully. 398 return false; 399 } 400 401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 402 int *BytesRemoved) const { 403 assert(!BytesRemoved && "code size not handled"); 404 405 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 406 if (I == MBB.end()) 407 return 0; 408 409 if (!isUncondBranchOpcode(I->getOpcode()) && 410 !isCondBranchOpcode(I->getOpcode())) 411 return 0; 412 413 // Remove the branch. 414 I->eraseFromParent(); 415 416 I = MBB.end(); 417 418 if (I == MBB.begin()) return 1; 419 --I; 420 if (!isCondBranchOpcode(I->getOpcode())) 421 return 1; 422 423 // Remove the branch. 424 I->eraseFromParent(); 425 return 2; 426 } 427 428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 429 MachineBasicBlock *TBB, 430 MachineBasicBlock *FBB, 431 ArrayRef<MachineOperand> Cond, 432 const DebugLoc &DL, 433 int *BytesAdded) const { 434 assert(!BytesAdded && "code size not handled"); 435 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 436 int BOpc = !AFI->isThumbFunction() 437 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 438 int BccOpc = !AFI->isThumbFunction() 439 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 440 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 441 442 // Shouldn't be a fall through. 443 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 444 assert((Cond.size() == 2 || Cond.size() == 0) && 445 "ARM branch conditions have two components!"); 446 447 // For conditional branches, we use addOperand to preserve CPSR flags. 448 449 if (!FBB) { 450 if (Cond.empty()) { // Unconditional branch? 451 if (isThumb) 452 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 453 else 454 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 455 } else 456 BuildMI(&MBB, DL, get(BccOpc)) 457 .addMBB(TBB) 458 .addImm(Cond[0].getImm()) 459 .add(Cond[1]); 460 return 1; 461 } 462 463 // Two-way conditional branch. 464 BuildMI(&MBB, DL, get(BccOpc)) 465 .addMBB(TBB) 466 .addImm(Cond[0].getImm()) 467 .add(Cond[1]); 468 if (isThumb) 469 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 470 else 471 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 472 return 2; 473 } 474 475 bool ARMBaseInstrInfo:: 476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 477 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 478 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 479 return false; 480 } 481 482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 483 if (MI.isBundle()) { 484 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 485 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 486 while (++I != E && I->isInsideBundle()) { 487 int PIdx = I->findFirstPredOperandIdx(); 488 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 489 return true; 490 } 491 return false; 492 } 493 494 int PIdx = MI.findFirstPredOperandIdx(); 495 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 496 } 497 498 bool ARMBaseInstrInfo::PredicateInstruction( 499 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 500 unsigned Opc = MI.getOpcode(); 501 if (isUncondBranchOpcode(Opc)) { 502 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 503 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 504 .addImm(Pred[0].getImm()) 505 .addReg(Pred[1].getReg()); 506 return true; 507 } 508 509 int PIdx = MI.findFirstPredOperandIdx(); 510 if (PIdx != -1) { 511 MachineOperand &PMO = MI.getOperand(PIdx); 512 PMO.setImm(Pred[0].getImm()); 513 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 514 return true; 515 } 516 return false; 517 } 518 519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 520 ArrayRef<MachineOperand> Pred2) const { 521 if (Pred1.size() > 2 || Pred2.size() > 2) 522 return false; 523 524 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 525 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 526 if (CC1 == CC2) 527 return true; 528 529 switch (CC1) { 530 default: 531 return false; 532 case ARMCC::AL: 533 return true; 534 case ARMCC::HS: 535 return CC2 == ARMCC::HI; 536 case ARMCC::LS: 537 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 538 case ARMCC::GE: 539 return CC2 == ARMCC::GT; 540 case ARMCC::LE: 541 return CC2 == ARMCC::LT; 542 } 543 } 544 545 bool ARMBaseInstrInfo::DefinesPredicate( 546 MachineInstr &MI, std::vector<MachineOperand> &Pred) const { 547 bool Found = false; 548 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 549 const MachineOperand &MO = MI.getOperand(i); 550 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 551 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 552 Pred.push_back(MO); 553 Found = true; 554 } 555 } 556 557 return Found; 558 } 559 560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 561 for (const auto &MO : MI.operands()) 562 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 563 return true; 564 return false; 565 } 566 567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI, 568 unsigned Op) const { 569 const MachineOperand &Offset = MI.getOperand(Op + 1); 570 return Offset.getReg() != 0; 571 } 572 573 // Load with negative register offset requires additional 1cyc and +I unit 574 // for Cortex A57 575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI, 576 unsigned Op) const { 577 const MachineOperand &Offset = MI.getOperand(Op + 1); 578 const MachineOperand &Opc = MI.getOperand(Op + 2); 579 assert(Opc.isImm()); 580 assert(Offset.isReg()); 581 int64_t OpcImm = Opc.getImm(); 582 583 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub; 584 return (isSub && Offset.getReg() != 0); 585 } 586 587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI, 588 unsigned Op) const { 589 const MachineOperand &Opc = MI.getOperand(Op + 2); 590 unsigned OffImm = Opc.getImm(); 591 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 592 } 593 594 // Load, scaled register offset, not plus LSL2 595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI, 596 unsigned Op) const { 597 const MachineOperand &Opc = MI.getOperand(Op + 2); 598 unsigned OffImm = Opc.getImm(); 599 600 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add; 601 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 602 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm); 603 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled 604 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2); 605 return !SimpleScaled; 606 } 607 608 // Minus reg for ldstso addr mode 609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI, 610 unsigned Op) const { 611 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 612 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 613 } 614 615 // Load, scaled register offset 616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI, 617 unsigned Op) const { 618 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 619 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 620 } 621 622 static bool isEligibleForITBlock(const MachineInstr *MI) { 623 switch (MI->getOpcode()) { 624 default: return true; 625 case ARM::tADC: // ADC (register) T1 626 case ARM::tADDi3: // ADD (immediate) T1 627 case ARM::tADDi8: // ADD (immediate) T2 628 case ARM::tADDrr: // ADD (register) T1 629 case ARM::tAND: // AND (register) T1 630 case ARM::tASRri: // ASR (immediate) T1 631 case ARM::tASRrr: // ASR (register) T1 632 case ARM::tBIC: // BIC (register) T1 633 case ARM::tEOR: // EOR (register) T1 634 case ARM::tLSLri: // LSL (immediate) T1 635 case ARM::tLSLrr: // LSL (register) T1 636 case ARM::tLSRri: // LSR (immediate) T1 637 case ARM::tLSRrr: // LSR (register) T1 638 case ARM::tMUL: // MUL T1 639 case ARM::tMVN: // MVN (register) T1 640 case ARM::tORR: // ORR (register) T1 641 case ARM::tROR: // ROR (register) T1 642 case ARM::tRSB: // RSB (immediate) T1 643 case ARM::tSBC: // SBC (register) T1 644 case ARM::tSUBi3: // SUB (immediate) T1 645 case ARM::tSUBi8: // SUB (immediate) T2 646 case ARM::tSUBrr: // SUB (register) T1 647 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 648 } 649 } 650 651 /// isPredicable - Return true if the specified instruction can be predicated. 652 /// By default, this returns true for every instruction with a 653 /// PredicateOperand. 654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 655 if (!MI.isPredicable()) 656 return false; 657 658 if (MI.isBundle()) 659 return false; 660 661 if (!isEligibleForITBlock(&MI)) 662 return false; 663 664 const ARMFunctionInfo *AFI = 665 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>(); 666 667 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 668 // In their ARM encoding, they can't be encoded in a conditional form. 669 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 670 return false; 671 672 if (AFI->isThumb2Function()) { 673 if (getSubtarget().restrictIT()) 674 return isV8EligibleForIT(&MI); 675 } 676 677 return true; 678 } 679 680 namespace llvm { 681 682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 683 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 684 const MachineOperand &MO = MI->getOperand(i); 685 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 686 continue; 687 if (MO.getReg() != ARM::CPSR) 688 continue; 689 if (!MO.isDead()) 690 return false; 691 } 692 // all definitions of CPSR are dead 693 return true; 694 } 695 696 } // end namespace llvm 697 698 /// GetInstSize - Return the size of the specified MachineInstr. 699 /// 700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 701 const MachineBasicBlock &MBB = *MI.getParent(); 702 const MachineFunction *MF = MBB.getParent(); 703 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 704 705 const MCInstrDesc &MCID = MI.getDesc(); 706 if (MCID.getSize()) 707 return MCID.getSize(); 708 709 // If this machine instr is an inline asm, measure it. 710 if (MI.getOpcode() == ARM::INLINEASM) { 711 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 712 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 713 Size = alignTo(Size, 4); 714 return Size; 715 } 716 unsigned Opc = MI.getOpcode(); 717 switch (Opc) { 718 default: 719 // pseudo-instruction sizes are zero. 720 return 0; 721 case TargetOpcode::BUNDLE: 722 return getInstBundleLength(MI); 723 case ARM::MOVi16_ga_pcrel: 724 case ARM::MOVTi16_ga_pcrel: 725 case ARM::t2MOVi16_ga_pcrel: 726 case ARM::t2MOVTi16_ga_pcrel: 727 return 4; 728 case ARM::MOVi32imm: 729 case ARM::t2MOVi32imm: 730 return 8; 731 case ARM::CONSTPOOL_ENTRY: 732 case ARM::JUMPTABLE_INSTS: 733 case ARM::JUMPTABLE_ADDRS: 734 case ARM::JUMPTABLE_TBB: 735 case ARM::JUMPTABLE_TBH: 736 // If this machine instr is a constant pool entry, its size is recorded as 737 // operand #2. 738 return MI.getOperand(2).getImm(); 739 case ARM::Int_eh_sjlj_longjmp: 740 return 16; 741 case ARM::tInt_eh_sjlj_longjmp: 742 return 10; 743 case ARM::tInt_WIN_eh_sjlj_longjmp: 744 return 12; 745 case ARM::Int_eh_sjlj_setjmp: 746 case ARM::Int_eh_sjlj_setjmp_nofp: 747 return 20; 748 case ARM::tInt_eh_sjlj_setjmp: 749 case ARM::t2Int_eh_sjlj_setjmp: 750 case ARM::t2Int_eh_sjlj_setjmp_nofp: 751 return 12; 752 case ARM::SPACE: 753 return MI.getOperand(1).getImm(); 754 } 755 } 756 757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 758 unsigned Size = 0; 759 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 760 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 761 while (++I != E && I->isInsideBundle()) { 762 assert(!I->isBundle() && "No nested bundle!"); 763 Size += getInstSizeInBytes(*I); 764 } 765 return Size; 766 } 767 768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 769 MachineBasicBlock::iterator I, 770 unsigned DestReg, bool KillSrc, 771 const ARMSubtarget &Subtarget) const { 772 unsigned Opc = Subtarget.isThumb() 773 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 774 : ARM::MRS; 775 776 MachineInstrBuilder MIB = 777 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 778 779 // There is only 1 A/R class MRS instruction, and it always refers to 780 // APSR. However, there are lots of other possibilities on M-class cores. 781 if (Subtarget.isMClass()) 782 MIB.addImm(0x800); 783 784 MIB.add(predOps(ARMCC::AL)) 785 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 786 } 787 788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 789 MachineBasicBlock::iterator I, 790 unsigned SrcReg, bool KillSrc, 791 const ARMSubtarget &Subtarget) const { 792 unsigned Opc = Subtarget.isThumb() 793 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 794 : ARM::MSR; 795 796 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 797 798 if (Subtarget.isMClass()) 799 MIB.addImm(0x800); 800 else 801 MIB.addImm(8); 802 803 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 804 .add(predOps(ARMCC::AL)) 805 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 806 } 807 808 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 809 MachineBasicBlock::iterator I, 810 const DebugLoc &DL, unsigned DestReg, 811 unsigned SrcReg, bool KillSrc) const { 812 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 813 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 814 815 if (GPRDest && GPRSrc) { 816 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 817 .addReg(SrcReg, getKillRegState(KillSrc)) 818 .add(predOps(ARMCC::AL)) 819 .add(condCodeOp()); 820 return; 821 } 822 823 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 824 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 825 826 unsigned Opc = 0; 827 if (SPRDest && SPRSrc) 828 Opc = ARM::VMOVS; 829 else if (GPRDest && SPRSrc) 830 Opc = ARM::VMOVRS; 831 else if (SPRDest && GPRSrc) 832 Opc = ARM::VMOVSR; 833 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP()) 834 Opc = ARM::VMOVD; 835 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 836 Opc = ARM::VORRq; 837 838 if (Opc) { 839 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 840 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 841 if (Opc == ARM::VORRq) 842 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 843 MIB.add(predOps(ARMCC::AL)); 844 return; 845 } 846 847 // Handle register classes that require multiple instructions. 848 unsigned BeginIdx = 0; 849 unsigned SubRegs = 0; 850 int Spacing = 1; 851 852 // Use VORRq when possible. 853 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 854 Opc = ARM::VORRq; 855 BeginIdx = ARM::qsub_0; 856 SubRegs = 2; 857 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 858 Opc = ARM::VORRq; 859 BeginIdx = ARM::qsub_0; 860 SubRegs = 4; 861 // Fall back to VMOVD. 862 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 863 Opc = ARM::VMOVD; 864 BeginIdx = ARM::dsub_0; 865 SubRegs = 2; 866 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 867 Opc = ARM::VMOVD; 868 BeginIdx = ARM::dsub_0; 869 SubRegs = 3; 870 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 871 Opc = ARM::VMOVD; 872 BeginIdx = ARM::dsub_0; 873 SubRegs = 4; 874 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 875 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 876 BeginIdx = ARM::gsub_0; 877 SubRegs = 2; 878 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 879 Opc = ARM::VMOVD; 880 BeginIdx = ARM::dsub_0; 881 SubRegs = 2; 882 Spacing = 2; 883 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 884 Opc = ARM::VMOVD; 885 BeginIdx = ARM::dsub_0; 886 SubRegs = 3; 887 Spacing = 2; 888 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 889 Opc = ARM::VMOVD; 890 BeginIdx = ARM::dsub_0; 891 SubRegs = 4; 892 Spacing = 2; 893 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) { 894 Opc = ARM::VMOVS; 895 BeginIdx = ARM::ssub_0; 896 SubRegs = 2; 897 } else if (SrcReg == ARM::CPSR) { 898 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 899 return; 900 } else if (DestReg == ARM::CPSR) { 901 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 902 return; 903 } 904 905 assert(Opc && "Impossible reg-to-reg copy"); 906 907 const TargetRegisterInfo *TRI = &getRegisterInfo(); 908 MachineInstrBuilder Mov; 909 910 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 911 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 912 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 913 Spacing = -Spacing; 914 } 915 #ifndef NDEBUG 916 SmallSet<unsigned, 4> DstRegs; 917 #endif 918 for (unsigned i = 0; i != SubRegs; ++i) { 919 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 920 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 921 assert(Dst && Src && "Bad sub-register"); 922 #ifndef NDEBUG 923 assert(!DstRegs.count(Src) && "destructive vector copy"); 924 DstRegs.insert(Dst); 925 #endif 926 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 927 // VORR takes two source operands. 928 if (Opc == ARM::VORRq) 929 Mov.addReg(Src); 930 Mov = Mov.add(predOps(ARMCC::AL)); 931 // MOVr can set CC. 932 if (Opc == ARM::MOVr) 933 Mov = Mov.add(condCodeOp()); 934 } 935 // Add implicit super-register defs and kills to the last instruction. 936 Mov->addRegisterDefined(DestReg, TRI); 937 if (KillSrc) 938 Mov->addRegisterKilled(SrcReg, TRI); 939 } 940 941 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI, 942 const MachineOperand *&Src, 943 const MachineOperand *&Dest) const { 944 // VMOVRRD is also a copy instruction but it requires 945 // special way of handling. It is more complex copy version 946 // and since that we are not considering it. For recognition 947 // of such instruction isExtractSubregLike MI interface fuction 948 // could be used. 949 // VORRq is considered as a move only if two inputs are 950 // the same register. 951 if (!MI.isMoveReg() || 952 (MI.getOpcode() == ARM::VORRq && 953 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 954 return false; 955 Dest = &MI.getOperand(0); 956 Src = &MI.getOperand(1); 957 return true; 958 } 959 960 const MachineInstrBuilder & 961 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 962 unsigned SubIdx, unsigned State, 963 const TargetRegisterInfo *TRI) const { 964 if (!SubIdx) 965 return MIB.addReg(Reg, State); 966 967 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 968 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 969 return MIB.addReg(Reg, State, SubIdx); 970 } 971 972 void ARMBaseInstrInfo:: 973 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 974 unsigned SrcReg, bool isKill, int FI, 975 const TargetRegisterClass *RC, 976 const TargetRegisterInfo *TRI) const { 977 MachineFunction &MF = *MBB.getParent(); 978 MachineFrameInfo &MFI = MF.getFrameInfo(); 979 unsigned Align = MFI.getObjectAlignment(FI); 980 981 MachineMemOperand *MMO = MF.getMachineMemOperand( 982 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 983 MFI.getObjectSize(FI), Align); 984 985 switch (TRI->getSpillSize(*RC)) { 986 case 2: 987 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 988 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 989 .addReg(SrcReg, getKillRegState(isKill)) 990 .addFrameIndex(FI) 991 .addImm(0) 992 .addMemOperand(MMO) 993 .add(predOps(ARMCC::AL)); 994 } else 995 llvm_unreachable("Unknown reg class!"); 996 break; 997 case 4: 998 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 999 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1000 .addReg(SrcReg, getKillRegState(isKill)) 1001 .addFrameIndex(FI) 1002 .addImm(0) 1003 .addMemOperand(MMO) 1004 .add(predOps(ARMCC::AL)); 1005 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1006 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1007 .addReg(SrcReg, getKillRegState(isKill)) 1008 .addFrameIndex(FI) 1009 .addImm(0) 1010 .addMemOperand(MMO) 1011 .add(predOps(ARMCC::AL)); 1012 } else 1013 llvm_unreachable("Unknown reg class!"); 1014 break; 1015 case 8: 1016 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1017 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1018 .addReg(SrcReg, getKillRegState(isKill)) 1019 .addFrameIndex(FI) 1020 .addImm(0) 1021 .addMemOperand(MMO) 1022 .add(predOps(ARMCC::AL)); 1023 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1024 if (Subtarget.hasV5TEOps()) { 1025 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1026 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1027 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1028 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1029 .add(predOps(ARMCC::AL)); 1030 } else { 1031 // Fallback to STM instruction, which has existed since the dawn of 1032 // time. 1033 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1034 .addFrameIndex(FI) 1035 .addMemOperand(MMO) 1036 .add(predOps(ARMCC::AL)); 1037 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1038 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1039 } 1040 } else 1041 llvm_unreachable("Unknown reg class!"); 1042 break; 1043 case 16: 1044 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1045 // Use aligned spills if the stack can be realigned. 1046 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1047 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1048 .addFrameIndex(FI) 1049 .addImm(16) 1050 .addReg(SrcReg, getKillRegState(isKill)) 1051 .addMemOperand(MMO) 1052 .add(predOps(ARMCC::AL)); 1053 } else { 1054 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1055 .addReg(SrcReg, getKillRegState(isKill)) 1056 .addFrameIndex(FI) 1057 .addMemOperand(MMO) 1058 .add(predOps(ARMCC::AL)); 1059 } 1060 } else 1061 llvm_unreachable("Unknown reg class!"); 1062 break; 1063 case 24: 1064 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1065 // Use aligned spills if the stack can be realigned. 1066 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1067 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1068 .addFrameIndex(FI) 1069 .addImm(16) 1070 .addReg(SrcReg, getKillRegState(isKill)) 1071 .addMemOperand(MMO) 1072 .add(predOps(ARMCC::AL)); 1073 } else { 1074 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1075 get(ARM::VSTMDIA)) 1076 .addFrameIndex(FI) 1077 .add(predOps(ARMCC::AL)) 1078 .addMemOperand(MMO); 1079 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1080 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1081 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1082 } 1083 } else 1084 llvm_unreachable("Unknown reg class!"); 1085 break; 1086 case 32: 1087 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1088 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1089 // FIXME: It's possible to only store part of the QQ register if the 1090 // spilled def has a sub-register index. 1091 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1092 .addFrameIndex(FI) 1093 .addImm(16) 1094 .addReg(SrcReg, getKillRegState(isKill)) 1095 .addMemOperand(MMO) 1096 .add(predOps(ARMCC::AL)); 1097 } else { 1098 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1099 get(ARM::VSTMDIA)) 1100 .addFrameIndex(FI) 1101 .add(predOps(ARMCC::AL)) 1102 .addMemOperand(MMO); 1103 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1104 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1105 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1106 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1107 } 1108 } else 1109 llvm_unreachable("Unknown reg class!"); 1110 break; 1111 case 64: 1112 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1113 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1114 .addFrameIndex(FI) 1115 .add(predOps(ARMCC::AL)) 1116 .addMemOperand(MMO); 1117 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1118 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1119 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1120 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1121 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1122 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1123 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1124 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1125 } else 1126 llvm_unreachable("Unknown reg class!"); 1127 break; 1128 default: 1129 llvm_unreachable("Unknown reg class!"); 1130 } 1131 } 1132 1133 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1134 int &FrameIndex) const { 1135 switch (MI.getOpcode()) { 1136 default: break; 1137 case ARM::STRrs: 1138 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1139 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1140 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1141 MI.getOperand(3).getImm() == 0) { 1142 FrameIndex = MI.getOperand(1).getIndex(); 1143 return MI.getOperand(0).getReg(); 1144 } 1145 break; 1146 case ARM::STRi12: 1147 case ARM::t2STRi12: 1148 case ARM::tSTRspi: 1149 case ARM::VSTRD: 1150 case ARM::VSTRS: 1151 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1152 MI.getOperand(2).getImm() == 0) { 1153 FrameIndex = MI.getOperand(1).getIndex(); 1154 return MI.getOperand(0).getReg(); 1155 } 1156 break; 1157 case ARM::VST1q64: 1158 case ARM::VST1d64TPseudo: 1159 case ARM::VST1d64QPseudo: 1160 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1161 FrameIndex = MI.getOperand(0).getIndex(); 1162 return MI.getOperand(2).getReg(); 1163 } 1164 break; 1165 case ARM::VSTMQIA: 1166 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1167 FrameIndex = MI.getOperand(1).getIndex(); 1168 return MI.getOperand(0).getReg(); 1169 } 1170 break; 1171 } 1172 1173 return 0; 1174 } 1175 1176 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1177 int &FrameIndex) const { 1178 SmallVector<const MachineMemOperand *, 1> Accesses; 1179 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses)) { 1180 FrameIndex = 1181 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1182 ->getFrameIndex(); 1183 return true; 1184 } 1185 return false; 1186 } 1187 1188 void ARMBaseInstrInfo:: 1189 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1190 unsigned DestReg, int FI, 1191 const TargetRegisterClass *RC, 1192 const TargetRegisterInfo *TRI) const { 1193 DebugLoc DL; 1194 if (I != MBB.end()) DL = I->getDebugLoc(); 1195 MachineFunction &MF = *MBB.getParent(); 1196 MachineFrameInfo &MFI = MF.getFrameInfo(); 1197 unsigned Align = MFI.getObjectAlignment(FI); 1198 MachineMemOperand *MMO = MF.getMachineMemOperand( 1199 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1200 MFI.getObjectSize(FI), Align); 1201 1202 switch (TRI->getSpillSize(*RC)) { 1203 case 2: 1204 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1205 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1206 .addFrameIndex(FI) 1207 .addImm(0) 1208 .addMemOperand(MMO) 1209 .add(predOps(ARMCC::AL)); 1210 } else 1211 llvm_unreachable("Unknown reg class!"); 1212 break; 1213 case 4: 1214 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1215 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1216 .addFrameIndex(FI) 1217 .addImm(0) 1218 .addMemOperand(MMO) 1219 .add(predOps(ARMCC::AL)); 1220 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1221 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1222 .addFrameIndex(FI) 1223 .addImm(0) 1224 .addMemOperand(MMO) 1225 .add(predOps(ARMCC::AL)); 1226 } else 1227 llvm_unreachable("Unknown reg class!"); 1228 break; 1229 case 8: 1230 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1231 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1232 .addFrameIndex(FI) 1233 .addImm(0) 1234 .addMemOperand(MMO) 1235 .add(predOps(ARMCC::AL)); 1236 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1237 MachineInstrBuilder MIB; 1238 1239 if (Subtarget.hasV5TEOps()) { 1240 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1241 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1242 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1243 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1244 .add(predOps(ARMCC::AL)); 1245 } else { 1246 // Fallback to LDM instruction, which has existed since the dawn of 1247 // time. 1248 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1249 .addFrameIndex(FI) 1250 .addMemOperand(MMO) 1251 .add(predOps(ARMCC::AL)); 1252 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1253 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1254 } 1255 1256 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1257 MIB.addReg(DestReg, RegState::ImplicitDefine); 1258 } else 1259 llvm_unreachable("Unknown reg class!"); 1260 break; 1261 case 16: 1262 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1263 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1264 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1265 .addFrameIndex(FI) 1266 .addImm(16) 1267 .addMemOperand(MMO) 1268 .add(predOps(ARMCC::AL)); 1269 } else { 1270 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1271 .addFrameIndex(FI) 1272 .addMemOperand(MMO) 1273 .add(predOps(ARMCC::AL)); 1274 } 1275 } else 1276 llvm_unreachable("Unknown reg class!"); 1277 break; 1278 case 24: 1279 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1280 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1281 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1282 .addFrameIndex(FI) 1283 .addImm(16) 1284 .addMemOperand(MMO) 1285 .add(predOps(ARMCC::AL)); 1286 } else { 1287 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1288 .addFrameIndex(FI) 1289 .addMemOperand(MMO) 1290 .add(predOps(ARMCC::AL)); 1291 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1292 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1293 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1294 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1295 MIB.addReg(DestReg, RegState::ImplicitDefine); 1296 } 1297 } else 1298 llvm_unreachable("Unknown reg class!"); 1299 break; 1300 case 32: 1301 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1302 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1303 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1304 .addFrameIndex(FI) 1305 .addImm(16) 1306 .addMemOperand(MMO) 1307 .add(predOps(ARMCC::AL)); 1308 } else { 1309 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1310 .addFrameIndex(FI) 1311 .add(predOps(ARMCC::AL)) 1312 .addMemOperand(MMO); 1313 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1314 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1315 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1316 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1317 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1318 MIB.addReg(DestReg, RegState::ImplicitDefine); 1319 } 1320 } else 1321 llvm_unreachable("Unknown reg class!"); 1322 break; 1323 case 64: 1324 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1325 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1326 .addFrameIndex(FI) 1327 .add(predOps(ARMCC::AL)) 1328 .addMemOperand(MMO); 1329 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1330 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1331 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1332 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1333 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1334 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1335 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1336 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1337 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1338 MIB.addReg(DestReg, RegState::ImplicitDefine); 1339 } else 1340 llvm_unreachable("Unknown reg class!"); 1341 break; 1342 default: 1343 llvm_unreachable("Unknown regclass!"); 1344 } 1345 } 1346 1347 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1348 int &FrameIndex) const { 1349 switch (MI.getOpcode()) { 1350 default: break; 1351 case ARM::LDRrs: 1352 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1353 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1354 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1355 MI.getOperand(3).getImm() == 0) { 1356 FrameIndex = MI.getOperand(1).getIndex(); 1357 return MI.getOperand(0).getReg(); 1358 } 1359 break; 1360 case ARM::LDRi12: 1361 case ARM::t2LDRi12: 1362 case ARM::tLDRspi: 1363 case ARM::VLDRD: 1364 case ARM::VLDRS: 1365 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1366 MI.getOperand(2).getImm() == 0) { 1367 FrameIndex = MI.getOperand(1).getIndex(); 1368 return MI.getOperand(0).getReg(); 1369 } 1370 break; 1371 case ARM::VLD1q64: 1372 case ARM::VLD1d8TPseudo: 1373 case ARM::VLD1d16TPseudo: 1374 case ARM::VLD1d32TPseudo: 1375 case ARM::VLD1d64TPseudo: 1376 case ARM::VLD1d8QPseudo: 1377 case ARM::VLD1d16QPseudo: 1378 case ARM::VLD1d32QPseudo: 1379 case ARM::VLD1d64QPseudo: 1380 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1381 FrameIndex = MI.getOperand(1).getIndex(); 1382 return MI.getOperand(0).getReg(); 1383 } 1384 break; 1385 case ARM::VLDMQIA: 1386 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1387 FrameIndex = MI.getOperand(1).getIndex(); 1388 return MI.getOperand(0).getReg(); 1389 } 1390 break; 1391 } 1392 1393 return 0; 1394 } 1395 1396 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1397 int &FrameIndex) const { 1398 SmallVector<const MachineMemOperand *, 1> Accesses; 1399 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses)) { 1400 FrameIndex = 1401 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1402 ->getFrameIndex(); 1403 return true; 1404 } 1405 return false; 1406 } 1407 1408 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1409 /// depending on whether the result is used. 1410 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1411 bool isThumb1 = Subtarget.isThumb1Only(); 1412 bool isThumb2 = Subtarget.isThumb2(); 1413 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1414 1415 DebugLoc dl = MI->getDebugLoc(); 1416 MachineBasicBlock *BB = MI->getParent(); 1417 1418 MachineInstrBuilder LDM, STM; 1419 if (isThumb1 || !MI->getOperand(1).isDead()) { 1420 MachineOperand LDWb(MI->getOperand(1)); 1421 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1422 : isThumb1 ? ARM::tLDMIA_UPD 1423 : ARM::LDMIA_UPD)) 1424 .add(LDWb); 1425 } else { 1426 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1427 } 1428 1429 if (isThumb1 || !MI->getOperand(0).isDead()) { 1430 MachineOperand STWb(MI->getOperand(0)); 1431 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1432 : isThumb1 ? ARM::tSTMIA_UPD 1433 : ARM::STMIA_UPD)) 1434 .add(STWb); 1435 } else { 1436 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1437 } 1438 1439 MachineOperand LDBase(MI->getOperand(3)); 1440 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1441 1442 MachineOperand STBase(MI->getOperand(2)); 1443 STM.add(STBase).add(predOps(ARMCC::AL)); 1444 1445 // Sort the scratch registers into ascending order. 1446 const TargetRegisterInfo &TRI = getRegisterInfo(); 1447 SmallVector<unsigned, 6> ScratchRegs; 1448 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1449 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1450 llvm::sort(ScratchRegs, 1451 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1452 return TRI.getEncodingValue(Reg1) < 1453 TRI.getEncodingValue(Reg2); 1454 }); 1455 1456 for (const auto &Reg : ScratchRegs) { 1457 LDM.addReg(Reg, RegState::Define); 1458 STM.addReg(Reg, RegState::Kill); 1459 } 1460 1461 BB->erase(MI); 1462 } 1463 1464 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1465 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1466 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1467 "LOAD_STACK_GUARD currently supported only for MachO."); 1468 expandLoadStackGuard(MI); 1469 MI.getParent()->erase(MI); 1470 return true; 1471 } 1472 1473 if (MI.getOpcode() == ARM::MEMCPY) { 1474 expandMEMCPY(MI); 1475 return true; 1476 } 1477 1478 // This hook gets to expand COPY instructions before they become 1479 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1480 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1481 // changed into a VORR that can go down the NEON pipeline. 1482 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP()) 1483 return false; 1484 1485 // Look for a copy between even S-registers. That is where we keep floats 1486 // when using NEON v2f32 instructions for f32 arithmetic. 1487 unsigned DstRegS = MI.getOperand(0).getReg(); 1488 unsigned SrcRegS = MI.getOperand(1).getReg(); 1489 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1490 return false; 1491 1492 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1493 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1494 &ARM::DPRRegClass); 1495 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1496 &ARM::DPRRegClass); 1497 if (!DstRegD || !SrcRegD) 1498 return false; 1499 1500 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1501 // legal if the COPY already defines the full DstRegD, and it isn't a 1502 // sub-register insertion. 1503 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1504 return false; 1505 1506 // A dead copy shouldn't show up here, but reject it just in case. 1507 if (MI.getOperand(0).isDead()) 1508 return false; 1509 1510 // All clear, widen the COPY. 1511 LLVM_DEBUG(dbgs() << "widening: " << MI); 1512 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1513 1514 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1515 // or some other super-register. 1516 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1517 if (ImpDefIdx != -1) 1518 MI.RemoveOperand(ImpDefIdx); 1519 1520 // Change the opcode and operands. 1521 MI.setDesc(get(ARM::VMOVD)); 1522 MI.getOperand(0).setReg(DstRegD); 1523 MI.getOperand(1).setReg(SrcRegD); 1524 MIB.add(predOps(ARMCC::AL)); 1525 1526 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1527 // register scavenger and machine verifier, so we need to indicate that we 1528 // are reading an undefined value from SrcRegD, but a proper value from 1529 // SrcRegS. 1530 MI.getOperand(1).setIsUndef(); 1531 MIB.addReg(SrcRegS, RegState::Implicit); 1532 1533 // SrcRegD may actually contain an unrelated value in the ssub_1 1534 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1535 if (MI.getOperand(1).isKill()) { 1536 MI.getOperand(1).setIsKill(false); 1537 MI.addRegisterKilled(SrcRegS, TRI, true); 1538 } 1539 1540 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1541 return true; 1542 } 1543 1544 /// Create a copy of a const pool value. Update CPI to the new index and return 1545 /// the label UID. 1546 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1547 MachineConstantPool *MCP = MF.getConstantPool(); 1548 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1549 1550 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1551 assert(MCPE.isMachineConstantPoolEntry() && 1552 "Expecting a machine constantpool entry!"); 1553 ARMConstantPoolValue *ACPV = 1554 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1555 1556 unsigned PCLabelId = AFI->createPICLabelUId(); 1557 ARMConstantPoolValue *NewCPV = nullptr; 1558 1559 // FIXME: The below assumes PIC relocation model and that the function 1560 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1561 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1562 // instructions, so that's probably OK, but is PIC always correct when 1563 // we get here? 1564 if (ACPV->isGlobalValue()) 1565 NewCPV = ARMConstantPoolConstant::Create( 1566 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1567 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1568 else if (ACPV->isExtSymbol()) 1569 NewCPV = ARMConstantPoolSymbol:: 1570 Create(MF.getFunction().getContext(), 1571 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1572 else if (ACPV->isBlockAddress()) 1573 NewCPV = ARMConstantPoolConstant:: 1574 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1575 ARMCP::CPBlockAddress, 4); 1576 else if (ACPV->isLSDA()) 1577 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1578 ARMCP::CPLSDA, 4); 1579 else if (ACPV->isMachineBasicBlock()) 1580 NewCPV = ARMConstantPoolMBB:: 1581 Create(MF.getFunction().getContext(), 1582 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1583 else 1584 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1585 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1586 return PCLabelId; 1587 } 1588 1589 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1590 MachineBasicBlock::iterator I, 1591 unsigned DestReg, unsigned SubIdx, 1592 const MachineInstr &Orig, 1593 const TargetRegisterInfo &TRI) const { 1594 unsigned Opcode = Orig.getOpcode(); 1595 switch (Opcode) { 1596 default: { 1597 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1598 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1599 MBB.insert(I, MI); 1600 break; 1601 } 1602 case ARM::tLDRpci_pic: 1603 case ARM::t2LDRpci_pic: { 1604 MachineFunction &MF = *MBB.getParent(); 1605 unsigned CPI = Orig.getOperand(1).getIndex(); 1606 unsigned PCLabelId = duplicateCPV(MF, CPI); 1607 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1608 .addConstantPoolIndex(CPI) 1609 .addImm(PCLabelId) 1610 .cloneMemRefs(Orig); 1611 break; 1612 } 1613 } 1614 } 1615 1616 MachineInstr & 1617 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1618 MachineBasicBlock::iterator InsertBefore, 1619 const MachineInstr &Orig) const { 1620 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1621 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1622 for (;;) { 1623 switch (I->getOpcode()) { 1624 case ARM::tLDRpci_pic: 1625 case ARM::t2LDRpci_pic: { 1626 MachineFunction &MF = *MBB.getParent(); 1627 unsigned CPI = I->getOperand(1).getIndex(); 1628 unsigned PCLabelId = duplicateCPV(MF, CPI); 1629 I->getOperand(1).setIndex(CPI); 1630 I->getOperand(2).setImm(PCLabelId); 1631 break; 1632 } 1633 } 1634 if (!I->isBundledWithSucc()) 1635 break; 1636 ++I; 1637 } 1638 return Cloned; 1639 } 1640 1641 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1642 const MachineInstr &MI1, 1643 const MachineRegisterInfo *MRI) const { 1644 unsigned Opcode = MI0.getOpcode(); 1645 if (Opcode == ARM::t2LDRpci || 1646 Opcode == ARM::t2LDRpci_pic || 1647 Opcode == ARM::tLDRpci || 1648 Opcode == ARM::tLDRpci_pic || 1649 Opcode == ARM::LDRLIT_ga_pcrel || 1650 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1651 Opcode == ARM::tLDRLIT_ga_pcrel || 1652 Opcode == ARM::MOV_ga_pcrel || 1653 Opcode == ARM::MOV_ga_pcrel_ldr || 1654 Opcode == ARM::t2MOV_ga_pcrel) { 1655 if (MI1.getOpcode() != Opcode) 1656 return false; 1657 if (MI0.getNumOperands() != MI1.getNumOperands()) 1658 return false; 1659 1660 const MachineOperand &MO0 = MI0.getOperand(1); 1661 const MachineOperand &MO1 = MI1.getOperand(1); 1662 if (MO0.getOffset() != MO1.getOffset()) 1663 return false; 1664 1665 if (Opcode == ARM::LDRLIT_ga_pcrel || 1666 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1667 Opcode == ARM::tLDRLIT_ga_pcrel || 1668 Opcode == ARM::MOV_ga_pcrel || 1669 Opcode == ARM::MOV_ga_pcrel_ldr || 1670 Opcode == ARM::t2MOV_ga_pcrel) 1671 // Ignore the PC labels. 1672 return MO0.getGlobal() == MO1.getGlobal(); 1673 1674 const MachineFunction *MF = MI0.getParent()->getParent(); 1675 const MachineConstantPool *MCP = MF->getConstantPool(); 1676 int CPI0 = MO0.getIndex(); 1677 int CPI1 = MO1.getIndex(); 1678 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1679 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1680 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1681 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1682 if (isARMCP0 && isARMCP1) { 1683 ARMConstantPoolValue *ACPV0 = 1684 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1685 ARMConstantPoolValue *ACPV1 = 1686 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1687 return ACPV0->hasSameValue(ACPV1); 1688 } else if (!isARMCP0 && !isARMCP1) { 1689 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1690 } 1691 return false; 1692 } else if (Opcode == ARM::PICLDR) { 1693 if (MI1.getOpcode() != Opcode) 1694 return false; 1695 if (MI0.getNumOperands() != MI1.getNumOperands()) 1696 return false; 1697 1698 unsigned Addr0 = MI0.getOperand(1).getReg(); 1699 unsigned Addr1 = MI1.getOperand(1).getReg(); 1700 if (Addr0 != Addr1) { 1701 if (!MRI || 1702 !TargetRegisterInfo::isVirtualRegister(Addr0) || 1703 !TargetRegisterInfo::isVirtualRegister(Addr1)) 1704 return false; 1705 1706 // This assumes SSA form. 1707 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1708 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1709 // Check if the loaded value, e.g. a constantpool of a global address, are 1710 // the same. 1711 if (!produceSameValue(*Def0, *Def1, MRI)) 1712 return false; 1713 } 1714 1715 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1716 // %12 = PICLDR %11, 0, 14, %noreg 1717 const MachineOperand &MO0 = MI0.getOperand(i); 1718 const MachineOperand &MO1 = MI1.getOperand(i); 1719 if (!MO0.isIdenticalTo(MO1)) 1720 return false; 1721 } 1722 return true; 1723 } 1724 1725 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1726 } 1727 1728 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1729 /// determine if two loads are loading from the same base address. It should 1730 /// only return true if the base pointers are the same and the only differences 1731 /// between the two addresses is the offset. It also returns the offsets by 1732 /// reference. 1733 /// 1734 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1735 /// is permanently disabled. 1736 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1737 int64_t &Offset1, 1738 int64_t &Offset2) const { 1739 // Don't worry about Thumb: just ARM and Thumb2. 1740 if (Subtarget.isThumb1Only()) return false; 1741 1742 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1743 return false; 1744 1745 switch (Load1->getMachineOpcode()) { 1746 default: 1747 return false; 1748 case ARM::LDRi12: 1749 case ARM::LDRBi12: 1750 case ARM::LDRD: 1751 case ARM::LDRH: 1752 case ARM::LDRSB: 1753 case ARM::LDRSH: 1754 case ARM::VLDRD: 1755 case ARM::VLDRS: 1756 case ARM::t2LDRi8: 1757 case ARM::t2LDRBi8: 1758 case ARM::t2LDRDi8: 1759 case ARM::t2LDRSHi8: 1760 case ARM::t2LDRi12: 1761 case ARM::t2LDRBi12: 1762 case ARM::t2LDRSHi12: 1763 break; 1764 } 1765 1766 switch (Load2->getMachineOpcode()) { 1767 default: 1768 return false; 1769 case ARM::LDRi12: 1770 case ARM::LDRBi12: 1771 case ARM::LDRD: 1772 case ARM::LDRH: 1773 case ARM::LDRSB: 1774 case ARM::LDRSH: 1775 case ARM::VLDRD: 1776 case ARM::VLDRS: 1777 case ARM::t2LDRi8: 1778 case ARM::t2LDRBi8: 1779 case ARM::t2LDRSHi8: 1780 case ARM::t2LDRi12: 1781 case ARM::t2LDRBi12: 1782 case ARM::t2LDRSHi12: 1783 break; 1784 } 1785 1786 // Check if base addresses and chain operands match. 1787 if (Load1->getOperand(0) != Load2->getOperand(0) || 1788 Load1->getOperand(4) != Load2->getOperand(4)) 1789 return false; 1790 1791 // Index should be Reg0. 1792 if (Load1->getOperand(3) != Load2->getOperand(3)) 1793 return false; 1794 1795 // Determine the offsets. 1796 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1797 isa<ConstantSDNode>(Load2->getOperand(1))) { 1798 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1799 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1800 return true; 1801 } 1802 1803 return false; 1804 } 1805 1806 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1807 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1808 /// be scheduled togther. On some targets if two loads are loading from 1809 /// addresses in the same cache line, it's better if they are scheduled 1810 /// together. This function takes two integers that represent the load offsets 1811 /// from the common base address. It returns true if it decides it's desirable 1812 /// to schedule the two loads together. "NumLoads" is the number of loads that 1813 /// have already been scheduled after Load1. 1814 /// 1815 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1816 /// is permanently disabled. 1817 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1818 int64_t Offset1, int64_t Offset2, 1819 unsigned NumLoads) const { 1820 // Don't worry about Thumb: just ARM and Thumb2. 1821 if (Subtarget.isThumb1Only()) return false; 1822 1823 assert(Offset2 > Offset1); 1824 1825 if ((Offset2 - Offset1) / 8 > 64) 1826 return false; 1827 1828 // Check if the machine opcodes are different. If they are different 1829 // then we consider them to not be of the same base address, 1830 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1831 // In this case, they are considered to be the same because they are different 1832 // encoding forms of the same basic instruction. 1833 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1834 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1835 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1836 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1837 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1838 return false; // FIXME: overly conservative? 1839 1840 // Four loads in a row should be sufficient. 1841 if (NumLoads >= 3) 1842 return false; 1843 1844 return true; 1845 } 1846 1847 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1848 const MachineBasicBlock *MBB, 1849 const MachineFunction &MF) const { 1850 // Debug info is never a scheduling boundary. It's necessary to be explicit 1851 // due to the special treatment of IT instructions below, otherwise a 1852 // dbg_value followed by an IT will result in the IT instruction being 1853 // considered a scheduling hazard, which is wrong. It should be the actual 1854 // instruction preceding the dbg_value instruction(s), just like it is 1855 // when debug info is not present. 1856 if (MI.isDebugInstr()) 1857 return false; 1858 1859 // Terminators and labels can't be scheduled around. 1860 if (MI.isTerminator() || MI.isPosition()) 1861 return true; 1862 1863 // Treat the start of the IT block as a scheduling boundary, but schedule 1864 // t2IT along with all instructions following it. 1865 // FIXME: This is a big hammer. But the alternative is to add all potential 1866 // true and anti dependencies to IT block instructions as implicit operands 1867 // to the t2IT instruction. The added compile time and complexity does not 1868 // seem worth it. 1869 MachineBasicBlock::const_iterator I = MI; 1870 // Make sure to skip any debug instructions 1871 while (++I != MBB->end() && I->isDebugInstr()) 1872 ; 1873 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1874 return true; 1875 1876 // Don't attempt to schedule around any instruction that defines 1877 // a stack-oriented pointer, as it's unlikely to be profitable. This 1878 // saves compile time, because it doesn't require every single 1879 // stack slot reference to depend on the instruction that does the 1880 // modification. 1881 // Calls don't actually change the stack pointer, even if they have imp-defs. 1882 // No ARM calling conventions change the stack pointer. (X86 calling 1883 // conventions sometimes do). 1884 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 1885 return true; 1886 1887 return false; 1888 } 1889 1890 bool ARMBaseInstrInfo:: 1891 isProfitableToIfCvt(MachineBasicBlock &MBB, 1892 unsigned NumCycles, unsigned ExtraPredCycles, 1893 BranchProbability Probability) const { 1894 if (!NumCycles) 1895 return false; 1896 1897 // If we are optimizing for size, see if the branch in the predecessor can be 1898 // lowered to cbn?z by the constant island lowering pass, and return false if 1899 // so. This results in a shorter instruction sequence. 1900 if (MBB.getParent()->getFunction().optForSize()) { 1901 MachineBasicBlock *Pred = *MBB.pred_begin(); 1902 if (!Pred->empty()) { 1903 MachineInstr *LastMI = &*Pred->rbegin(); 1904 if (LastMI->getOpcode() == ARM::t2Bcc) { 1905 MachineBasicBlock::iterator CmpMI = LastMI; 1906 if (CmpMI != Pred->begin()) { 1907 --CmpMI; 1908 if (CmpMI->getOpcode() == ARM::tCMPi8 || 1909 CmpMI->getOpcode() == ARM::t2CMPri) { 1910 unsigned Reg = CmpMI->getOperand(0).getReg(); 1911 unsigned PredReg = 0; 1912 ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg); 1913 if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 && 1914 isARMLowRegister(Reg)) 1915 return false; 1916 } 1917 } 1918 } 1919 } 1920 } 1921 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 1922 MBB, 0, 0, Probability); 1923 } 1924 1925 bool ARMBaseInstrInfo:: 1926 isProfitableToIfCvt(MachineBasicBlock &TBB, 1927 unsigned TCycles, unsigned TExtra, 1928 MachineBasicBlock &FBB, 1929 unsigned FCycles, unsigned FExtra, 1930 BranchProbability Probability) const { 1931 if (!TCycles) 1932 return false; 1933 1934 // Attempt to estimate the relative costs of predication versus branching. 1935 // Here we scale up each component of UnpredCost to avoid precision issue when 1936 // scaling TCycles/FCycles by Probability. 1937 const unsigned ScalingUpFactor = 1024; 1938 1939 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 1940 unsigned UnpredCost; 1941 if (!Subtarget.hasBranchPredictor()) { 1942 // When we don't have a branch predictor it's always cheaper to not take a 1943 // branch than take it, so we have to take that into account. 1944 unsigned NotTakenBranchCost = 1; 1945 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 1946 unsigned TUnpredCycles, FUnpredCycles; 1947 if (!FCycles) { 1948 // Triangle: TBB is the fallthrough 1949 TUnpredCycles = TCycles + NotTakenBranchCost; 1950 FUnpredCycles = TakenBranchCost; 1951 } else { 1952 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 1953 TUnpredCycles = TCycles + TakenBranchCost; 1954 FUnpredCycles = FCycles + NotTakenBranchCost; 1955 // The branch at the end of FBB will disappear when it's predicated, so 1956 // discount it from PredCost. 1957 PredCost -= 1 * ScalingUpFactor; 1958 } 1959 // The total cost is the cost of each path scaled by their probabilites 1960 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 1961 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 1962 UnpredCost = TUnpredCost + FUnpredCost; 1963 // When predicating assume that the first IT can be folded away but later 1964 // ones cost one cycle each 1965 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 1966 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 1967 } 1968 } else { 1969 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 1970 unsigned FUnpredCost = 1971 Probability.getCompl().scale(FCycles * ScalingUpFactor); 1972 UnpredCost = TUnpredCost + FUnpredCost; 1973 UnpredCost += 1 * ScalingUpFactor; // The branch itself 1974 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1975 } 1976 1977 return PredCost <= UnpredCost; 1978 } 1979 1980 bool 1981 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 1982 MachineBasicBlock &FMBB) const { 1983 // Reduce false anti-dependencies to let the target's out-of-order execution 1984 // engine do its thing. 1985 return Subtarget.isProfitableToUnpredicate(); 1986 } 1987 1988 /// getInstrPredicate - If instruction is predicated, returns its predicate 1989 /// condition, otherwise returns AL. It also returns the condition code 1990 /// register by reference. 1991 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 1992 unsigned &PredReg) { 1993 int PIdx = MI.findFirstPredOperandIdx(); 1994 if (PIdx == -1) { 1995 PredReg = 0; 1996 return ARMCC::AL; 1997 } 1998 1999 PredReg = MI.getOperand(PIdx+1).getReg(); 2000 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2001 } 2002 2003 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2004 if (Opc == ARM::B) 2005 return ARM::Bcc; 2006 if (Opc == ARM::tB) 2007 return ARM::tBcc; 2008 if (Opc == ARM::t2B) 2009 return ARM::t2Bcc; 2010 2011 llvm_unreachable("Unknown unconditional branch opcode!"); 2012 } 2013 2014 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2015 bool NewMI, 2016 unsigned OpIdx1, 2017 unsigned OpIdx2) const { 2018 switch (MI.getOpcode()) { 2019 case ARM::MOVCCr: 2020 case ARM::t2MOVCCr: { 2021 // MOVCC can be commuted by inverting the condition. 2022 unsigned PredReg = 0; 2023 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2024 // MOVCC AL can't be inverted. Shouldn't happen. 2025 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2026 return nullptr; 2027 MachineInstr *CommutedMI = 2028 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2029 if (!CommutedMI) 2030 return nullptr; 2031 // After swapping the MOVCC operands, also invert the condition. 2032 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2033 .setImm(ARMCC::getOppositeCondition(CC)); 2034 return CommutedMI; 2035 } 2036 } 2037 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2038 } 2039 2040 /// Identify instructions that can be folded into a MOVCC instruction, and 2041 /// return the defining instruction. 2042 static MachineInstr *canFoldIntoMOVCC(unsigned Reg, 2043 const MachineRegisterInfo &MRI, 2044 const TargetInstrInfo *TII) { 2045 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2046 return nullptr; 2047 if (!MRI.hasOneNonDBGUse(Reg)) 2048 return nullptr; 2049 MachineInstr *MI = MRI.getVRegDef(Reg); 2050 if (!MI) 2051 return nullptr; 2052 // MI is folded into the MOVCC by predicating it. 2053 if (!MI->isPredicable()) 2054 return nullptr; 2055 // Check if MI has any non-dead defs or physreg uses. This also detects 2056 // predicated instructions which will be reading CPSR. 2057 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2058 const MachineOperand &MO = MI->getOperand(i); 2059 // Reject frame index operands, PEI can't handle the predicated pseudos. 2060 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2061 return nullptr; 2062 if (!MO.isReg()) 2063 continue; 2064 // MI can't have any tied operands, that would conflict with predication. 2065 if (MO.isTied()) 2066 return nullptr; 2067 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 2068 return nullptr; 2069 if (MO.isDef() && !MO.isDead()) 2070 return nullptr; 2071 } 2072 bool DontMoveAcrossStores = true; 2073 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2074 return nullptr; 2075 return MI; 2076 } 2077 2078 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2079 SmallVectorImpl<MachineOperand> &Cond, 2080 unsigned &TrueOp, unsigned &FalseOp, 2081 bool &Optimizable) const { 2082 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2083 "Unknown select instruction"); 2084 // MOVCC operands: 2085 // 0: Def. 2086 // 1: True use. 2087 // 2: False use. 2088 // 3: Condition code. 2089 // 4: CPSR use. 2090 TrueOp = 1; 2091 FalseOp = 2; 2092 Cond.push_back(MI.getOperand(3)); 2093 Cond.push_back(MI.getOperand(4)); 2094 // We can always fold a def. 2095 Optimizable = true; 2096 return false; 2097 } 2098 2099 MachineInstr * 2100 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2101 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2102 bool PreferFalse) const { 2103 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2104 "Unknown select instruction"); 2105 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2106 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2107 bool Invert = !DefMI; 2108 if (!DefMI) 2109 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2110 if (!DefMI) 2111 return nullptr; 2112 2113 // Find new register class to use. 2114 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2115 unsigned DestReg = MI.getOperand(0).getReg(); 2116 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2117 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2118 return nullptr; 2119 2120 // Create a new predicated version of DefMI. 2121 // Rfalse is the first use. 2122 MachineInstrBuilder NewMI = 2123 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2124 2125 // Copy all the DefMI operands, excluding its (null) predicate. 2126 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2127 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2128 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2129 NewMI.add(DefMI->getOperand(i)); 2130 2131 unsigned CondCode = MI.getOperand(3).getImm(); 2132 if (Invert) 2133 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2134 else 2135 NewMI.addImm(CondCode); 2136 NewMI.add(MI.getOperand(4)); 2137 2138 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2139 if (NewMI->hasOptionalDef()) 2140 NewMI.add(condCodeOp()); 2141 2142 // The output register value when the predicate is false is an implicit 2143 // register operand tied to the first def. 2144 // The tie makes the register allocator ensure the FalseReg is allocated the 2145 // same register as operand 0. 2146 FalseReg.setImplicit(); 2147 NewMI.add(FalseReg); 2148 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2149 2150 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2151 SeenMIs.insert(NewMI); 2152 SeenMIs.erase(DefMI); 2153 2154 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2155 // DefMI would be invalid when tranferred inside the loop. Checking for a 2156 // loop is expensive, but at least remove kill flags if they are in different 2157 // BBs. 2158 if (DefMI->getParent() != MI.getParent()) 2159 NewMI->clearKillInfo(); 2160 2161 // The caller will erase MI, but not DefMI. 2162 DefMI->eraseFromParent(); 2163 return NewMI; 2164 } 2165 2166 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2167 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2168 /// def operand. 2169 /// 2170 /// This will go away once we can teach tblgen how to set the optional CPSR def 2171 /// operand itself. 2172 struct AddSubFlagsOpcodePair { 2173 uint16_t PseudoOpc; 2174 uint16_t MachineOpc; 2175 }; 2176 2177 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2178 {ARM::ADDSri, ARM::ADDri}, 2179 {ARM::ADDSrr, ARM::ADDrr}, 2180 {ARM::ADDSrsi, ARM::ADDrsi}, 2181 {ARM::ADDSrsr, ARM::ADDrsr}, 2182 2183 {ARM::SUBSri, ARM::SUBri}, 2184 {ARM::SUBSrr, ARM::SUBrr}, 2185 {ARM::SUBSrsi, ARM::SUBrsi}, 2186 {ARM::SUBSrsr, ARM::SUBrsr}, 2187 2188 {ARM::RSBSri, ARM::RSBri}, 2189 {ARM::RSBSrsi, ARM::RSBrsi}, 2190 {ARM::RSBSrsr, ARM::RSBrsr}, 2191 2192 {ARM::tADDSi3, ARM::tADDi3}, 2193 {ARM::tADDSi8, ARM::tADDi8}, 2194 {ARM::tADDSrr, ARM::tADDrr}, 2195 {ARM::tADCS, ARM::tADC}, 2196 2197 {ARM::tSUBSi3, ARM::tSUBi3}, 2198 {ARM::tSUBSi8, ARM::tSUBi8}, 2199 {ARM::tSUBSrr, ARM::tSUBrr}, 2200 {ARM::tSBCS, ARM::tSBC}, 2201 {ARM::tRSBS, ARM::tRSB}, 2202 2203 {ARM::t2ADDSri, ARM::t2ADDri}, 2204 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2205 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2206 2207 {ARM::t2SUBSri, ARM::t2SUBri}, 2208 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2209 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2210 2211 {ARM::t2RSBSri, ARM::t2RSBri}, 2212 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2213 }; 2214 2215 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2216 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2217 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2218 return AddSubFlagsOpcodeMap[i].MachineOpc; 2219 return 0; 2220 } 2221 2222 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2223 MachineBasicBlock::iterator &MBBI, 2224 const DebugLoc &dl, unsigned DestReg, 2225 unsigned BaseReg, int NumBytes, 2226 ARMCC::CondCodes Pred, unsigned PredReg, 2227 const ARMBaseInstrInfo &TII, 2228 unsigned MIFlags) { 2229 if (NumBytes == 0 && DestReg != BaseReg) { 2230 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2231 .addReg(BaseReg, RegState::Kill) 2232 .add(predOps(Pred, PredReg)) 2233 .add(condCodeOp()) 2234 .setMIFlags(MIFlags); 2235 return; 2236 } 2237 2238 bool isSub = NumBytes < 0; 2239 if (isSub) NumBytes = -NumBytes; 2240 2241 while (NumBytes) { 2242 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2243 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2244 assert(ThisVal && "Didn't extract field correctly"); 2245 2246 // We will handle these bits from offset, clear them. 2247 NumBytes &= ~ThisVal; 2248 2249 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2250 2251 // Build the new ADD / SUB. 2252 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2253 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2254 .addReg(BaseReg, RegState::Kill) 2255 .addImm(ThisVal) 2256 .add(predOps(Pred, PredReg)) 2257 .add(condCodeOp()) 2258 .setMIFlags(MIFlags); 2259 BaseReg = DestReg; 2260 } 2261 } 2262 2263 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2264 MachineFunction &MF, MachineInstr *MI, 2265 unsigned NumBytes) { 2266 // This optimisation potentially adds lots of load and store 2267 // micro-operations, it's only really a great benefit to code-size. 2268 if (!Subtarget.optForMinSize()) 2269 return false; 2270 2271 // If only one register is pushed/popped, LLVM can use an LDR/STR 2272 // instead. We can't modify those so make sure we're dealing with an 2273 // instruction we understand. 2274 bool IsPop = isPopOpcode(MI->getOpcode()); 2275 bool IsPush = isPushOpcode(MI->getOpcode()); 2276 if (!IsPush && !IsPop) 2277 return false; 2278 2279 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2280 MI->getOpcode() == ARM::VLDMDIA_UPD; 2281 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2282 MI->getOpcode() == ARM::tPOP || 2283 MI->getOpcode() == ARM::tPOP_RET; 2284 2285 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2286 MI->getOperand(1).getReg() == ARM::SP)) && 2287 "trying to fold sp update into non-sp-updating push/pop"); 2288 2289 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2290 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2291 // if this is violated. 2292 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2293 return false; 2294 2295 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2296 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2297 int RegListIdx = IsT1PushPop ? 2 : 4; 2298 2299 // Calculate the space we'll need in terms of registers. 2300 unsigned RegsNeeded; 2301 const TargetRegisterClass *RegClass; 2302 if (IsVFPPushPop) { 2303 RegsNeeded = NumBytes / 8; 2304 RegClass = &ARM::DPRRegClass; 2305 } else { 2306 RegsNeeded = NumBytes / 4; 2307 RegClass = &ARM::GPRRegClass; 2308 } 2309 2310 // We're going to have to strip all list operands off before 2311 // re-adding them since the order matters, so save the existing ones 2312 // for later. 2313 SmallVector<MachineOperand, 4> RegList; 2314 2315 // We're also going to need the first register transferred by this 2316 // instruction, which won't necessarily be the first register in the list. 2317 unsigned FirstRegEnc = -1; 2318 2319 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2320 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2321 MachineOperand &MO = MI->getOperand(i); 2322 RegList.push_back(MO); 2323 2324 if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2325 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2326 } 2327 2328 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2329 2330 // Now try to find enough space in the reglist to allocate NumBytes. 2331 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2332 --CurRegEnc) { 2333 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2334 if (!IsPop) { 2335 // Pushing any register is completely harmless, mark the register involved 2336 // as undef since we don't care about its value and must not restore it 2337 // during stack unwinding. 2338 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2339 false, false, true)); 2340 --RegsNeeded; 2341 continue; 2342 } 2343 2344 // However, we can only pop an extra register if it's not live. For 2345 // registers live within the function we might clobber a return value 2346 // register; the other way a register can be live here is if it's 2347 // callee-saved. 2348 if (isCalleeSavedRegister(CurReg, CSRegs) || 2349 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2350 MachineBasicBlock::LQR_Dead) { 2351 // VFP pops don't allow holes in the register list, so any skip is fatal 2352 // for our transformation. GPR pops do, so we should just keep looking. 2353 if (IsVFPPushPop) 2354 return false; 2355 else 2356 continue; 2357 } 2358 2359 // Mark the unimportant registers as <def,dead> in the POP. 2360 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2361 true)); 2362 --RegsNeeded; 2363 } 2364 2365 if (RegsNeeded > 0) 2366 return false; 2367 2368 // Finally we know we can profitably perform the optimisation so go 2369 // ahead: strip all existing registers off and add them back again 2370 // in the right order. 2371 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2372 MI->RemoveOperand(i); 2373 2374 // Add the complete list back in. 2375 MachineInstrBuilder MIB(MF, &*MI); 2376 for (int i = RegList.size() - 1; i >= 0; --i) 2377 MIB.add(RegList[i]); 2378 2379 return true; 2380 } 2381 2382 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2383 unsigned FrameReg, int &Offset, 2384 const ARMBaseInstrInfo &TII) { 2385 unsigned Opcode = MI.getOpcode(); 2386 const MCInstrDesc &Desc = MI.getDesc(); 2387 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2388 bool isSub = false; 2389 2390 // Memory operands in inline assembly always use AddrMode2. 2391 if (Opcode == ARM::INLINEASM) 2392 AddrMode = ARMII::AddrMode2; 2393 2394 if (Opcode == ARM::ADDri) { 2395 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2396 if (Offset == 0) { 2397 // Turn it into a move. 2398 MI.setDesc(TII.get(ARM::MOVr)); 2399 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2400 MI.RemoveOperand(FrameRegIdx+1); 2401 Offset = 0; 2402 return true; 2403 } else if (Offset < 0) { 2404 Offset = -Offset; 2405 isSub = true; 2406 MI.setDesc(TII.get(ARM::SUBri)); 2407 } 2408 2409 // Common case: small offset, fits into instruction. 2410 if (ARM_AM::getSOImmVal(Offset) != -1) { 2411 // Replace the FrameIndex with sp / fp 2412 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2413 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2414 Offset = 0; 2415 return true; 2416 } 2417 2418 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2419 // as possible. 2420 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2421 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2422 2423 // We will handle these bits from offset, clear them. 2424 Offset &= ~ThisImmVal; 2425 2426 // Get the properly encoded SOImmVal field. 2427 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2428 "Bit extraction didn't work?"); 2429 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2430 } else { 2431 unsigned ImmIdx = 0; 2432 int InstrOffs = 0; 2433 unsigned NumBits = 0; 2434 unsigned Scale = 1; 2435 switch (AddrMode) { 2436 case ARMII::AddrMode_i12: 2437 ImmIdx = FrameRegIdx + 1; 2438 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2439 NumBits = 12; 2440 break; 2441 case ARMII::AddrMode2: 2442 ImmIdx = FrameRegIdx+2; 2443 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2444 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2445 InstrOffs *= -1; 2446 NumBits = 12; 2447 break; 2448 case ARMII::AddrMode3: 2449 ImmIdx = FrameRegIdx+2; 2450 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2451 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2452 InstrOffs *= -1; 2453 NumBits = 8; 2454 break; 2455 case ARMII::AddrMode4: 2456 case ARMII::AddrMode6: 2457 // Can't fold any offset even if it's zero. 2458 return false; 2459 case ARMII::AddrMode5: 2460 ImmIdx = FrameRegIdx+1; 2461 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2462 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2463 InstrOffs *= -1; 2464 NumBits = 8; 2465 Scale = 4; 2466 break; 2467 case ARMII::AddrMode5FP16: 2468 ImmIdx = FrameRegIdx+1; 2469 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2470 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2471 InstrOffs *= -1; 2472 NumBits = 8; 2473 Scale = 2; 2474 break; 2475 default: 2476 llvm_unreachable("Unsupported addressing mode!"); 2477 } 2478 2479 Offset += InstrOffs * Scale; 2480 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2481 if (Offset < 0) { 2482 Offset = -Offset; 2483 isSub = true; 2484 } 2485 2486 // Attempt to fold address comp. if opcode has offset bits 2487 if (NumBits > 0) { 2488 // Common case: small offset, fits into instruction. 2489 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2490 int ImmedOffset = Offset / Scale; 2491 unsigned Mask = (1 << NumBits) - 1; 2492 if ((unsigned)Offset <= Mask * Scale) { 2493 // Replace the FrameIndex with sp 2494 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2495 // FIXME: When addrmode2 goes away, this will simplify (like the 2496 // T2 version), as the LDR.i12 versions don't need the encoding 2497 // tricks for the offset value. 2498 if (isSub) { 2499 if (AddrMode == ARMII::AddrMode_i12) 2500 ImmedOffset = -ImmedOffset; 2501 else 2502 ImmedOffset |= 1 << NumBits; 2503 } 2504 ImmOp.ChangeToImmediate(ImmedOffset); 2505 Offset = 0; 2506 return true; 2507 } 2508 2509 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2510 ImmedOffset = ImmedOffset & Mask; 2511 if (isSub) { 2512 if (AddrMode == ARMII::AddrMode_i12) 2513 ImmedOffset = -ImmedOffset; 2514 else 2515 ImmedOffset |= 1 << NumBits; 2516 } 2517 ImmOp.ChangeToImmediate(ImmedOffset); 2518 Offset &= ~(Mask*Scale); 2519 } 2520 } 2521 2522 Offset = (isSub) ? -Offset : Offset; 2523 return Offset == 0; 2524 } 2525 2526 /// analyzeCompare - For a comparison instruction, return the source registers 2527 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2528 /// compares against in CmpValue. Return true if the comparison instruction 2529 /// can be analyzed. 2530 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 2531 unsigned &SrcReg2, int &CmpMask, 2532 int &CmpValue) const { 2533 switch (MI.getOpcode()) { 2534 default: break; 2535 case ARM::CMPri: 2536 case ARM::t2CMPri: 2537 case ARM::tCMPi8: 2538 SrcReg = MI.getOperand(0).getReg(); 2539 SrcReg2 = 0; 2540 CmpMask = ~0; 2541 CmpValue = MI.getOperand(1).getImm(); 2542 return true; 2543 case ARM::CMPrr: 2544 case ARM::t2CMPrr: 2545 case ARM::tCMPr: 2546 SrcReg = MI.getOperand(0).getReg(); 2547 SrcReg2 = MI.getOperand(1).getReg(); 2548 CmpMask = ~0; 2549 CmpValue = 0; 2550 return true; 2551 case ARM::TSTri: 2552 case ARM::t2TSTri: 2553 SrcReg = MI.getOperand(0).getReg(); 2554 SrcReg2 = 0; 2555 CmpMask = MI.getOperand(1).getImm(); 2556 CmpValue = 0; 2557 return true; 2558 } 2559 2560 return false; 2561 } 2562 2563 /// isSuitableForMask - Identify a suitable 'and' instruction that 2564 /// operates on the given source register and applies the same mask 2565 /// as a 'tst' instruction. Provide a limited look-through for copies. 2566 /// When successful, MI will hold the found instruction. 2567 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 2568 int CmpMask, bool CommonUse) { 2569 switch (MI->getOpcode()) { 2570 case ARM::ANDri: 2571 case ARM::t2ANDri: 2572 if (CmpMask != MI->getOperand(2).getImm()) 2573 return false; 2574 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2575 return true; 2576 break; 2577 } 2578 2579 return false; 2580 } 2581 2582 /// getSwappedCondition - assume the flags are set by MI(a,b), return 2583 /// the condition code if we modify the instructions such that flags are 2584 /// set by MI(b,a). 2585 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { 2586 switch (CC) { 2587 default: return ARMCC::AL; 2588 case ARMCC::EQ: return ARMCC::EQ; 2589 case ARMCC::NE: return ARMCC::NE; 2590 case ARMCC::HS: return ARMCC::LS; 2591 case ARMCC::LO: return ARMCC::HI; 2592 case ARMCC::HI: return ARMCC::LO; 2593 case ARMCC::LS: return ARMCC::HS; 2594 case ARMCC::GE: return ARMCC::LE; 2595 case ARMCC::LT: return ARMCC::GT; 2596 case ARMCC::GT: return ARMCC::LT; 2597 case ARMCC::LE: return ARMCC::GE; 2598 } 2599 } 2600 2601 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2602 /// the condition code if we modify the instructions such that flags are 2603 /// set by ADD(a,b,X). 2604 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2605 switch (CC) { 2606 default: return ARMCC::AL; 2607 case ARMCC::HS: return ARMCC::LO; 2608 case ARMCC::LO: return ARMCC::HS; 2609 case ARMCC::VS: return ARMCC::VS; 2610 case ARMCC::VC: return ARMCC::VC; 2611 } 2612 } 2613 2614 /// isRedundantFlagInstr - check whether the first instruction, whose only 2615 /// purpose is to update flags, can be made redundant. 2616 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2617 /// CMPri can be made redundant by SUBri if the operands are the same. 2618 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2619 /// This function can be extended later on. 2620 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2621 unsigned SrcReg, unsigned SrcReg2, 2622 int ImmValue, const MachineInstr *OI, 2623 bool &IsThumb1) { 2624 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2625 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2626 ((OI->getOperand(1).getReg() == SrcReg && 2627 OI->getOperand(2).getReg() == SrcReg2) || 2628 (OI->getOperand(1).getReg() == SrcReg2 && 2629 OI->getOperand(2).getReg() == SrcReg))) { 2630 IsThumb1 = false; 2631 return true; 2632 } 2633 2634 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2635 ((OI->getOperand(2).getReg() == SrcReg && 2636 OI->getOperand(3).getReg() == SrcReg2) || 2637 (OI->getOperand(2).getReg() == SrcReg2 && 2638 OI->getOperand(3).getReg() == SrcReg))) { 2639 IsThumb1 = true; 2640 return true; 2641 } 2642 2643 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2644 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2645 OI->getOperand(1).getReg() == SrcReg && 2646 OI->getOperand(2).getImm() == ImmValue) { 2647 IsThumb1 = false; 2648 return true; 2649 } 2650 2651 if (CmpI->getOpcode() == ARM::tCMPi8 && 2652 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2653 OI->getOperand(2).getReg() == SrcReg && 2654 OI->getOperand(3).getImm() == ImmValue) { 2655 IsThumb1 = true; 2656 return true; 2657 } 2658 2659 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2660 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2661 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2662 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2663 OI->getOperand(0).getReg() == SrcReg && 2664 OI->getOperand(1).getReg() == SrcReg2) { 2665 IsThumb1 = false; 2666 return true; 2667 } 2668 2669 if (CmpI->getOpcode() == ARM::tCMPr && 2670 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2671 OI->getOpcode() == ARM::tADDrr) && 2672 OI->getOperand(0).getReg() == SrcReg && 2673 OI->getOperand(2).getReg() == SrcReg2) { 2674 IsThumb1 = true; 2675 return true; 2676 } 2677 2678 return false; 2679 } 2680 2681 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2682 switch (MI->getOpcode()) { 2683 default: return false; 2684 case ARM::tLSLri: 2685 case ARM::tLSRri: 2686 case ARM::tLSLrr: 2687 case ARM::tLSRrr: 2688 case ARM::tSUBrr: 2689 case ARM::tADDrr: 2690 case ARM::tADDi3: 2691 case ARM::tADDi8: 2692 case ARM::tSUBi3: 2693 case ARM::tSUBi8: 2694 case ARM::tMUL: 2695 case ARM::tADC: 2696 case ARM::tSBC: 2697 case ARM::tRSB: 2698 case ARM::tAND: 2699 case ARM::tORR: 2700 case ARM::tEOR: 2701 case ARM::tBIC: 2702 case ARM::tMVN: 2703 case ARM::tASRri: 2704 case ARM::tASRrr: 2705 case ARM::tROR: 2706 IsThumb1 = true; 2707 LLVM_FALLTHROUGH; 2708 case ARM::RSBrr: 2709 case ARM::RSBri: 2710 case ARM::RSCrr: 2711 case ARM::RSCri: 2712 case ARM::ADDrr: 2713 case ARM::ADDri: 2714 case ARM::ADCrr: 2715 case ARM::ADCri: 2716 case ARM::SUBrr: 2717 case ARM::SUBri: 2718 case ARM::SBCrr: 2719 case ARM::SBCri: 2720 case ARM::t2RSBri: 2721 case ARM::t2ADDrr: 2722 case ARM::t2ADDri: 2723 case ARM::t2ADCrr: 2724 case ARM::t2ADCri: 2725 case ARM::t2SUBrr: 2726 case ARM::t2SUBri: 2727 case ARM::t2SBCrr: 2728 case ARM::t2SBCri: 2729 case ARM::ANDrr: 2730 case ARM::ANDri: 2731 case ARM::t2ANDrr: 2732 case ARM::t2ANDri: 2733 case ARM::ORRrr: 2734 case ARM::ORRri: 2735 case ARM::t2ORRrr: 2736 case ARM::t2ORRri: 2737 case ARM::EORrr: 2738 case ARM::EORri: 2739 case ARM::t2EORrr: 2740 case ARM::t2EORri: 2741 case ARM::t2LSRri: 2742 case ARM::t2LSRrr: 2743 case ARM::t2LSLri: 2744 case ARM::t2LSLrr: 2745 return true; 2746 } 2747 } 2748 2749 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2750 /// comparison into one that sets the zero bit in the flags register; 2751 /// Remove a redundant Compare instruction if an earlier instruction can set the 2752 /// flags in the same way as Compare. 2753 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2754 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2755 /// condition code of instructions which use the flags. 2756 bool ARMBaseInstrInfo::optimizeCompareInstr( 2757 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, 2758 int CmpValue, const MachineRegisterInfo *MRI) const { 2759 // Get the unique definition of SrcReg. 2760 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2761 if (!MI) return false; 2762 2763 // Masked compares sometimes use the same register as the corresponding 'and'. 2764 if (CmpMask != ~0) { 2765 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2766 MI = nullptr; 2767 for (MachineRegisterInfo::use_instr_iterator 2768 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2769 UI != UE; ++UI) { 2770 if (UI->getParent() != CmpInstr.getParent()) 2771 continue; 2772 MachineInstr *PotentialAND = &*UI; 2773 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2774 isPredicated(*PotentialAND)) 2775 continue; 2776 MI = PotentialAND; 2777 break; 2778 } 2779 if (!MI) return false; 2780 } 2781 } 2782 2783 // Get ready to iterate backward from CmpInstr. 2784 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2785 B = CmpInstr.getParent()->begin(); 2786 2787 // Early exit if CmpInstr is at the beginning of the BB. 2788 if (I == B) return false; 2789 2790 // There are two possible candidates which can be changed to set CPSR: 2791 // One is MI, the other is a SUB or ADD instruction. 2792 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 2793 // ADDr[ri](r1, r2, X). 2794 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2795 MachineInstr *SubAdd = nullptr; 2796 if (SrcReg2 != 0) 2797 // MI is not a candidate for CMPrr. 2798 MI = nullptr; 2799 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 2800 // Conservatively refuse to convert an instruction which isn't in the same 2801 // BB as the comparison. 2802 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 2803 // Thus we cannot return here. 2804 if (CmpInstr.getOpcode() == ARM::CMPri || 2805 CmpInstr.getOpcode() == ARM::t2CMPri || 2806 CmpInstr.getOpcode() == ARM::tCMPi8) 2807 MI = nullptr; 2808 else 2809 return false; 2810 } 2811 2812 bool IsThumb1 = false; 2813 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 2814 return false; 2815 2816 // We also want to do this peephole for cases like this: if (a*b == 0), 2817 // and optimise away the CMP instruction from the generated code sequence: 2818 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 2819 // resulting from the select instruction, but these MOVS instructions for 2820 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 2821 // However, if we only have MOVS instructions in between the CMP and the 2822 // other instruction (the MULS in this example), then the CPSR is dead so we 2823 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 2824 // reordering and then continue the analysis hoping we can eliminate the 2825 // CMP. This peephole works on the vregs, so is still in SSA form. As a 2826 // consequence, the movs won't redefine/kill the MUL operands which would 2827 // make this reordering illegal. 2828 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2829 if (MI && IsThumb1) { 2830 --I; 2831 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 2832 bool CanReorder = true; 2833 for (; I != E; --I) { 2834 if (I->getOpcode() != ARM::tMOVi8) { 2835 CanReorder = false; 2836 break; 2837 } 2838 } 2839 if (CanReorder) { 2840 MI = MI->removeFromParent(); 2841 E = CmpInstr; 2842 CmpInstr.getParent()->insert(E, MI); 2843 } 2844 } 2845 I = CmpInstr; 2846 E = MI; 2847 } 2848 2849 // Check that CPSR isn't set between the comparison instruction and the one we 2850 // want to change. At the same time, search for SubAdd. 2851 bool SubAddIsThumb1 = false; 2852 do { 2853 const MachineInstr &Instr = *--I; 2854 2855 // Check whether CmpInstr can be made redundant by the current instruction. 2856 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 2857 SubAddIsThumb1)) { 2858 SubAdd = &*I; 2859 break; 2860 } 2861 2862 // Allow E (which was initially MI) to be SubAdd but do not search before E. 2863 if (I == E) 2864 break; 2865 2866 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 2867 Instr.readsRegister(ARM::CPSR, TRI)) 2868 // This instruction modifies or uses CPSR after the one we want to 2869 // change. We can't do this transformation. 2870 return false; 2871 2872 } while (I != B); 2873 2874 // Return false if no candidates exist. 2875 if (!MI && !SubAdd) 2876 return false; 2877 2878 // If we found a SubAdd, use it as it will be closer to the CMP 2879 if (SubAdd) { 2880 MI = SubAdd; 2881 IsThumb1 = SubAddIsThumb1; 2882 } 2883 2884 // We can't use a predicated instruction - it doesn't always write the flags. 2885 if (isPredicated(*MI)) 2886 return false; 2887 2888 // Scan forward for the use of CPSR 2889 // When checking against MI: if it's a conditional code that requires 2890 // checking of the V bit or C bit, then this is not safe to do. 2891 // It is safe to remove CmpInstr if CPSR is redefined or killed. 2892 // If we are done with the basic block, we need to check whether CPSR is 2893 // live-out. 2894 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 2895 OperandsToUpdate; 2896 bool isSafe = false; 2897 I = CmpInstr; 2898 E = CmpInstr.getParent()->end(); 2899 while (!isSafe && ++I != E) { 2900 const MachineInstr &Instr = *I; 2901 for (unsigned IO = 0, EO = Instr.getNumOperands(); 2902 !isSafe && IO != EO; ++IO) { 2903 const MachineOperand &MO = Instr.getOperand(IO); 2904 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 2905 isSafe = true; 2906 break; 2907 } 2908 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 2909 continue; 2910 if (MO.isDef()) { 2911 isSafe = true; 2912 break; 2913 } 2914 // Condition code is after the operand before CPSR except for VSELs. 2915 ARMCC::CondCodes CC; 2916 bool IsInstrVSel = true; 2917 switch (Instr.getOpcode()) { 2918 default: 2919 IsInstrVSel = false; 2920 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 2921 break; 2922 case ARM::VSELEQD: 2923 case ARM::VSELEQS: 2924 CC = ARMCC::EQ; 2925 break; 2926 case ARM::VSELGTD: 2927 case ARM::VSELGTS: 2928 CC = ARMCC::GT; 2929 break; 2930 case ARM::VSELGED: 2931 case ARM::VSELGES: 2932 CC = ARMCC::GE; 2933 break; 2934 case ARM::VSELVSS: 2935 case ARM::VSELVSD: 2936 CC = ARMCC::VS; 2937 break; 2938 } 2939 2940 if (SubAdd) { 2941 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 2942 // on CMP needs to be updated to be based on SUB. 2943 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 2944 // needs to be modified. 2945 // Push the condition code operands to OperandsToUpdate. 2946 // If it is safe to remove CmpInstr, the condition code of these 2947 // operands will be modified. 2948 unsigned Opc = SubAdd->getOpcode(); 2949 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 2950 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 2951 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 2952 Opc == ARM::tSUBi8; 2953 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 2954 if (!IsSub || 2955 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 2956 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 2957 // VSel doesn't support condition code update. 2958 if (IsInstrVSel) 2959 return false; 2960 // Ensure we can swap the condition. 2961 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 2962 if (NewCC == ARMCC::AL) 2963 return false; 2964 OperandsToUpdate.push_back( 2965 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 2966 } 2967 } else { 2968 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 2969 switch (CC) { 2970 case ARMCC::EQ: // Z 2971 case ARMCC::NE: // Z 2972 case ARMCC::MI: // N 2973 case ARMCC::PL: // N 2974 case ARMCC::AL: // none 2975 // CPSR can be used multiple times, we should continue. 2976 break; 2977 case ARMCC::HS: // C 2978 case ARMCC::LO: // C 2979 case ARMCC::VS: // V 2980 case ARMCC::VC: // V 2981 case ARMCC::HI: // C Z 2982 case ARMCC::LS: // C Z 2983 case ARMCC::GE: // N V 2984 case ARMCC::LT: // N V 2985 case ARMCC::GT: // Z N V 2986 case ARMCC::LE: // Z N V 2987 // The instruction uses the V bit or C bit which is not safe. 2988 return false; 2989 } 2990 } 2991 } 2992 } 2993 2994 // If CPSR is not killed nor re-defined, we should check whether it is 2995 // live-out. If it is live-out, do not optimize. 2996 if (!isSafe) { 2997 MachineBasicBlock *MBB = CmpInstr.getParent(); 2998 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 2999 SE = MBB->succ_end(); SI != SE; ++SI) 3000 if ((*SI)->isLiveIn(ARM::CPSR)) 3001 return false; 3002 } 3003 3004 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3005 // set CPSR so this is represented as an explicit output) 3006 if (!IsThumb1) { 3007 MI->getOperand(5).setReg(ARM::CPSR); 3008 MI->getOperand(5).setIsDef(true); 3009 } 3010 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3011 CmpInstr.eraseFromParent(); 3012 3013 // Modify the condition code of operands in OperandsToUpdate. 3014 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3015 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3016 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3017 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3018 3019 MI->clearRegisterDeads(ARM::CPSR); 3020 3021 return true; 3022 } 3023 3024 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3025 // Do not sink MI if it might be used to optimize a redundant compare. 3026 // We heuristically only look at the instruction immediately following MI to 3027 // avoid potentially searching the entire basic block. 3028 if (isPredicated(MI)) 3029 return true; 3030 MachineBasicBlock::const_iterator Next = &MI; 3031 ++Next; 3032 unsigned SrcReg, SrcReg2; 3033 int CmpMask, CmpValue; 3034 bool IsThumb1; 3035 if (Next != MI.getParent()->end() && 3036 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3037 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3038 return false; 3039 return true; 3040 } 3041 3042 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3043 unsigned Reg, 3044 MachineRegisterInfo *MRI) const { 3045 // Fold large immediates into add, sub, or, xor. 3046 unsigned DefOpc = DefMI.getOpcode(); 3047 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3048 return false; 3049 if (!DefMI.getOperand(1).isImm()) 3050 // Could be t2MOVi32imm @xx 3051 return false; 3052 3053 if (!MRI->hasOneNonDBGUse(Reg)) 3054 return false; 3055 3056 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3057 if (DefMCID.hasOptionalDef()) { 3058 unsigned NumOps = DefMCID.getNumOperands(); 3059 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3060 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3061 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3062 // to delete DefMI. 3063 return false; 3064 } 3065 3066 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3067 if (UseMCID.hasOptionalDef()) { 3068 unsigned NumOps = UseMCID.getNumOperands(); 3069 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3070 // If the instruction sets the flag, do not attempt this optimization 3071 // since it may change the semantics of the code. 3072 return false; 3073 } 3074 3075 unsigned UseOpc = UseMI.getOpcode(); 3076 unsigned NewUseOpc = 0; 3077 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3078 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3079 bool Commute = false; 3080 switch (UseOpc) { 3081 default: return false; 3082 case ARM::SUBrr: 3083 case ARM::ADDrr: 3084 case ARM::ORRrr: 3085 case ARM::EORrr: 3086 case ARM::t2SUBrr: 3087 case ARM::t2ADDrr: 3088 case ARM::t2ORRrr: 3089 case ARM::t2EORrr: { 3090 Commute = UseMI.getOperand(2).getReg() != Reg; 3091 switch (UseOpc) { 3092 default: break; 3093 case ARM::ADDrr: 3094 case ARM::SUBrr: 3095 if (UseOpc == ARM::SUBrr && Commute) 3096 return false; 3097 3098 // ADD/SUB are special because they're essentially the same operation, so 3099 // we can handle a larger range of immediates. 3100 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3101 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3102 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3103 ImmVal = -ImmVal; 3104 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3105 } else 3106 return false; 3107 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3108 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3109 break; 3110 case ARM::ORRrr: 3111 case ARM::EORrr: 3112 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3113 return false; 3114 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3115 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3116 switch (UseOpc) { 3117 default: break; 3118 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3119 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3120 } 3121 break; 3122 case ARM::t2ADDrr: 3123 case ARM::t2SUBrr: 3124 if (UseOpc == ARM::t2SUBrr && Commute) 3125 return false; 3126 3127 // ADD/SUB are special because they're essentially the same operation, so 3128 // we can handle a larger range of immediates. 3129 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3130 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri; 3131 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3132 ImmVal = -ImmVal; 3133 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri; 3134 } else 3135 return false; 3136 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3137 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3138 break; 3139 case ARM::t2ORRrr: 3140 case ARM::t2EORrr: 3141 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3142 return false; 3143 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3144 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3145 switch (UseOpc) { 3146 default: break; 3147 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3148 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3149 } 3150 break; 3151 } 3152 } 3153 } 3154 3155 unsigned OpIdx = Commute ? 2 : 1; 3156 unsigned Reg1 = UseMI.getOperand(OpIdx).getReg(); 3157 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3158 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); 3159 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3160 NewReg) 3161 .addReg(Reg1, getKillRegState(isKill)) 3162 .addImm(SOImmValV1) 3163 .add(predOps(ARMCC::AL)) 3164 .add(condCodeOp()); 3165 UseMI.setDesc(get(NewUseOpc)); 3166 UseMI.getOperand(1).setReg(NewReg); 3167 UseMI.getOperand(1).setIsKill(); 3168 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3169 DefMI.eraseFromParent(); 3170 return true; 3171 } 3172 3173 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3174 const MachineInstr &MI) { 3175 switch (MI.getOpcode()) { 3176 default: { 3177 const MCInstrDesc &Desc = MI.getDesc(); 3178 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3179 assert(UOps >= 0 && "bad # UOps"); 3180 return UOps; 3181 } 3182 3183 case ARM::LDRrs: 3184 case ARM::LDRBrs: 3185 case ARM::STRrs: 3186 case ARM::STRBrs: { 3187 unsigned ShOpVal = MI.getOperand(3).getImm(); 3188 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3189 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3190 if (!isSub && 3191 (ShImm == 0 || 3192 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3193 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3194 return 1; 3195 return 2; 3196 } 3197 3198 case ARM::LDRH: 3199 case ARM::STRH: { 3200 if (!MI.getOperand(2).getReg()) 3201 return 1; 3202 3203 unsigned ShOpVal = MI.getOperand(3).getImm(); 3204 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3205 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3206 if (!isSub && 3207 (ShImm == 0 || 3208 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3209 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3210 return 1; 3211 return 2; 3212 } 3213 3214 case ARM::LDRSB: 3215 case ARM::LDRSH: 3216 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3217 3218 case ARM::LDRSB_POST: 3219 case ARM::LDRSH_POST: { 3220 unsigned Rt = MI.getOperand(0).getReg(); 3221 unsigned Rm = MI.getOperand(3).getReg(); 3222 return (Rt == Rm) ? 4 : 3; 3223 } 3224 3225 case ARM::LDR_PRE_REG: 3226 case ARM::LDRB_PRE_REG: { 3227 unsigned Rt = MI.getOperand(0).getReg(); 3228 unsigned Rm = MI.getOperand(3).getReg(); 3229 if (Rt == Rm) 3230 return 3; 3231 unsigned ShOpVal = MI.getOperand(4).getImm(); 3232 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3233 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3234 if (!isSub && 3235 (ShImm == 0 || 3236 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3237 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3238 return 2; 3239 return 3; 3240 } 3241 3242 case ARM::STR_PRE_REG: 3243 case ARM::STRB_PRE_REG: { 3244 unsigned ShOpVal = MI.getOperand(4).getImm(); 3245 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3246 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3247 if (!isSub && 3248 (ShImm == 0 || 3249 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3250 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3251 return 2; 3252 return 3; 3253 } 3254 3255 case ARM::LDRH_PRE: 3256 case ARM::STRH_PRE: { 3257 unsigned Rt = MI.getOperand(0).getReg(); 3258 unsigned Rm = MI.getOperand(3).getReg(); 3259 if (!Rm) 3260 return 2; 3261 if (Rt == Rm) 3262 return 3; 3263 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3264 } 3265 3266 case ARM::LDR_POST_REG: 3267 case ARM::LDRB_POST_REG: 3268 case ARM::LDRH_POST: { 3269 unsigned Rt = MI.getOperand(0).getReg(); 3270 unsigned Rm = MI.getOperand(3).getReg(); 3271 return (Rt == Rm) ? 3 : 2; 3272 } 3273 3274 case ARM::LDR_PRE_IMM: 3275 case ARM::LDRB_PRE_IMM: 3276 case ARM::LDR_POST_IMM: 3277 case ARM::LDRB_POST_IMM: 3278 case ARM::STRB_POST_IMM: 3279 case ARM::STRB_POST_REG: 3280 case ARM::STRB_PRE_IMM: 3281 case ARM::STRH_POST: 3282 case ARM::STR_POST_IMM: 3283 case ARM::STR_POST_REG: 3284 case ARM::STR_PRE_IMM: 3285 return 2; 3286 3287 case ARM::LDRSB_PRE: 3288 case ARM::LDRSH_PRE: { 3289 unsigned Rm = MI.getOperand(3).getReg(); 3290 if (Rm == 0) 3291 return 3; 3292 unsigned Rt = MI.getOperand(0).getReg(); 3293 if (Rt == Rm) 3294 return 4; 3295 unsigned ShOpVal = MI.getOperand(4).getImm(); 3296 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3297 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3298 if (!isSub && 3299 (ShImm == 0 || 3300 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3301 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3302 return 3; 3303 return 4; 3304 } 3305 3306 case ARM::LDRD: { 3307 unsigned Rt = MI.getOperand(0).getReg(); 3308 unsigned Rn = MI.getOperand(2).getReg(); 3309 unsigned Rm = MI.getOperand(3).getReg(); 3310 if (Rm) 3311 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3312 : 3; 3313 return (Rt == Rn) ? 3 : 2; 3314 } 3315 3316 case ARM::STRD: { 3317 unsigned Rm = MI.getOperand(3).getReg(); 3318 if (Rm) 3319 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3320 : 3; 3321 return 2; 3322 } 3323 3324 case ARM::LDRD_POST: 3325 case ARM::t2LDRD_POST: 3326 return 3; 3327 3328 case ARM::STRD_POST: 3329 case ARM::t2STRD_POST: 3330 return 4; 3331 3332 case ARM::LDRD_PRE: { 3333 unsigned Rt = MI.getOperand(0).getReg(); 3334 unsigned Rn = MI.getOperand(3).getReg(); 3335 unsigned Rm = MI.getOperand(4).getReg(); 3336 if (Rm) 3337 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3338 : 4; 3339 return (Rt == Rn) ? 4 : 3; 3340 } 3341 3342 case ARM::t2LDRD_PRE: { 3343 unsigned Rt = MI.getOperand(0).getReg(); 3344 unsigned Rn = MI.getOperand(3).getReg(); 3345 return (Rt == Rn) ? 4 : 3; 3346 } 3347 3348 case ARM::STRD_PRE: { 3349 unsigned Rm = MI.getOperand(4).getReg(); 3350 if (Rm) 3351 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3352 : 4; 3353 return 3; 3354 } 3355 3356 case ARM::t2STRD_PRE: 3357 return 3; 3358 3359 case ARM::t2LDR_POST: 3360 case ARM::t2LDRB_POST: 3361 case ARM::t2LDRB_PRE: 3362 case ARM::t2LDRSBi12: 3363 case ARM::t2LDRSBi8: 3364 case ARM::t2LDRSBpci: 3365 case ARM::t2LDRSBs: 3366 case ARM::t2LDRH_POST: 3367 case ARM::t2LDRH_PRE: 3368 case ARM::t2LDRSBT: 3369 case ARM::t2LDRSB_POST: 3370 case ARM::t2LDRSB_PRE: 3371 case ARM::t2LDRSH_POST: 3372 case ARM::t2LDRSH_PRE: 3373 case ARM::t2LDRSHi12: 3374 case ARM::t2LDRSHi8: 3375 case ARM::t2LDRSHpci: 3376 case ARM::t2LDRSHs: 3377 return 2; 3378 3379 case ARM::t2LDRDi8: { 3380 unsigned Rt = MI.getOperand(0).getReg(); 3381 unsigned Rn = MI.getOperand(2).getReg(); 3382 return (Rt == Rn) ? 3 : 2; 3383 } 3384 3385 case ARM::t2STRB_POST: 3386 case ARM::t2STRB_PRE: 3387 case ARM::t2STRBs: 3388 case ARM::t2STRDi8: 3389 case ARM::t2STRH_POST: 3390 case ARM::t2STRH_PRE: 3391 case ARM::t2STRHs: 3392 case ARM::t2STR_POST: 3393 case ARM::t2STR_PRE: 3394 case ARM::t2STRs: 3395 return 2; 3396 } 3397 } 3398 3399 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3400 // can't be easily determined return 0 (missing MachineMemOperand). 3401 // 3402 // FIXME: The current MachineInstr design does not support relying on machine 3403 // mem operands to determine the width of a memory access. Instead, we expect 3404 // the target to provide this information based on the instruction opcode and 3405 // operands. However, using MachineMemOperand is the best solution now for 3406 // two reasons: 3407 // 3408 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3409 // operands. This is much more dangerous than using the MachineMemOperand 3410 // sizes because CodeGen passes can insert/remove optional machine operands. In 3411 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3412 // postRA passes as well. 3413 // 3414 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3415 // machine model that calls this should handle the unknown (zero size) case. 3416 // 3417 // Long term, we should require a target hook that verifies MachineMemOperand 3418 // sizes during MC lowering. That target hook should be local to MC lowering 3419 // because we can't ensure that it is aware of other MI forms. Doing this will 3420 // ensure that MachineMemOperands are correctly propagated through all passes. 3421 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3422 unsigned Size = 0; 3423 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3424 E = MI.memoperands_end(); 3425 I != E; ++I) { 3426 Size += (*I)->getSize(); 3427 } 3428 return Size / 4; 3429 } 3430 3431 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3432 unsigned NumRegs) { 3433 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3434 switch (Opc) { 3435 default: 3436 break; 3437 case ARM::VLDMDIA_UPD: 3438 case ARM::VLDMDDB_UPD: 3439 case ARM::VLDMSIA_UPD: 3440 case ARM::VLDMSDB_UPD: 3441 case ARM::VSTMDIA_UPD: 3442 case ARM::VSTMDDB_UPD: 3443 case ARM::VSTMSIA_UPD: 3444 case ARM::VSTMSDB_UPD: 3445 case ARM::LDMIA_UPD: 3446 case ARM::LDMDA_UPD: 3447 case ARM::LDMDB_UPD: 3448 case ARM::LDMIB_UPD: 3449 case ARM::STMIA_UPD: 3450 case ARM::STMDA_UPD: 3451 case ARM::STMDB_UPD: 3452 case ARM::STMIB_UPD: 3453 case ARM::tLDMIA_UPD: 3454 case ARM::tSTMIA_UPD: 3455 case ARM::t2LDMIA_UPD: 3456 case ARM::t2LDMDB_UPD: 3457 case ARM::t2STMIA_UPD: 3458 case ARM::t2STMDB_UPD: 3459 ++UOps; // One for base register writeback. 3460 break; 3461 case ARM::LDMIA_RET: 3462 case ARM::tPOP_RET: 3463 case ARM::t2LDMIA_RET: 3464 UOps += 2; // One for base reg wb, one for write to pc. 3465 break; 3466 } 3467 return UOps; 3468 } 3469 3470 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3471 const MachineInstr &MI) const { 3472 if (!ItinData || ItinData->isEmpty()) 3473 return 1; 3474 3475 const MCInstrDesc &Desc = MI.getDesc(); 3476 unsigned Class = Desc.getSchedClass(); 3477 int ItinUOps = ItinData->getNumMicroOps(Class); 3478 if (ItinUOps >= 0) { 3479 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3480 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3481 3482 return ItinUOps; 3483 } 3484 3485 unsigned Opc = MI.getOpcode(); 3486 switch (Opc) { 3487 default: 3488 llvm_unreachable("Unexpected multi-uops instruction!"); 3489 case ARM::VLDMQIA: 3490 case ARM::VSTMQIA: 3491 return 2; 3492 3493 // The number of uOps for load / store multiple are determined by the number 3494 // registers. 3495 // 3496 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3497 // same cycle. The scheduling for the first load / store must be done 3498 // separately by assuming the address is not 64-bit aligned. 3499 // 3500 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3501 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3502 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3503 case ARM::VLDMDIA: 3504 case ARM::VLDMDIA_UPD: 3505 case ARM::VLDMDDB_UPD: 3506 case ARM::VLDMSIA: 3507 case ARM::VLDMSIA_UPD: 3508 case ARM::VLDMSDB_UPD: 3509 case ARM::VSTMDIA: 3510 case ARM::VSTMDIA_UPD: 3511 case ARM::VSTMDDB_UPD: 3512 case ARM::VSTMSIA: 3513 case ARM::VSTMSIA_UPD: 3514 case ARM::VSTMSDB_UPD: { 3515 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3516 return (NumRegs / 2) + (NumRegs % 2) + 1; 3517 } 3518 3519 case ARM::LDMIA_RET: 3520 case ARM::LDMIA: 3521 case ARM::LDMDA: 3522 case ARM::LDMDB: 3523 case ARM::LDMIB: 3524 case ARM::LDMIA_UPD: 3525 case ARM::LDMDA_UPD: 3526 case ARM::LDMDB_UPD: 3527 case ARM::LDMIB_UPD: 3528 case ARM::STMIA: 3529 case ARM::STMDA: 3530 case ARM::STMDB: 3531 case ARM::STMIB: 3532 case ARM::STMIA_UPD: 3533 case ARM::STMDA_UPD: 3534 case ARM::STMDB_UPD: 3535 case ARM::STMIB_UPD: 3536 case ARM::tLDMIA: 3537 case ARM::tLDMIA_UPD: 3538 case ARM::tSTMIA_UPD: 3539 case ARM::tPOP_RET: 3540 case ARM::tPOP: 3541 case ARM::tPUSH: 3542 case ARM::t2LDMIA_RET: 3543 case ARM::t2LDMIA: 3544 case ARM::t2LDMDB: 3545 case ARM::t2LDMIA_UPD: 3546 case ARM::t2LDMDB_UPD: 3547 case ARM::t2STMIA: 3548 case ARM::t2STMDB: 3549 case ARM::t2STMIA_UPD: 3550 case ARM::t2STMDB_UPD: { 3551 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3552 switch (Subtarget.getLdStMultipleTiming()) { 3553 case ARMSubtarget::SingleIssuePlusExtras: 3554 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3555 case ARMSubtarget::SingleIssue: 3556 // Assume the worst. 3557 return NumRegs; 3558 case ARMSubtarget::DoubleIssue: { 3559 if (NumRegs < 4) 3560 return 2; 3561 // 4 registers would be issued: 2, 2. 3562 // 5 registers would be issued: 2, 2, 1. 3563 unsigned UOps = (NumRegs / 2); 3564 if (NumRegs % 2) 3565 ++UOps; 3566 return UOps; 3567 } 3568 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3569 unsigned UOps = (NumRegs / 2); 3570 // If there are odd number of registers or if it's not 64-bit aligned, 3571 // then it takes an extra AGU (Address Generation Unit) cycle. 3572 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3573 (*MI.memoperands_begin())->getAlignment() < 8) 3574 ++UOps; 3575 return UOps; 3576 } 3577 } 3578 } 3579 } 3580 llvm_unreachable("Didn't find the number of microops"); 3581 } 3582 3583 int 3584 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3585 const MCInstrDesc &DefMCID, 3586 unsigned DefClass, 3587 unsigned DefIdx, unsigned DefAlign) const { 3588 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3589 if (RegNo <= 0) 3590 // Def is the address writeback. 3591 return ItinData->getOperandCycle(DefClass, DefIdx); 3592 3593 int DefCycle; 3594 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3595 // (regno / 2) + (regno % 2) + 1 3596 DefCycle = RegNo / 2 + 1; 3597 if (RegNo % 2) 3598 ++DefCycle; 3599 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3600 DefCycle = RegNo; 3601 bool isSLoad = false; 3602 3603 switch (DefMCID.getOpcode()) { 3604 default: break; 3605 case ARM::VLDMSIA: 3606 case ARM::VLDMSIA_UPD: 3607 case ARM::VLDMSDB_UPD: 3608 isSLoad = true; 3609 break; 3610 } 3611 3612 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3613 // then it takes an extra cycle. 3614 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3615 ++DefCycle; 3616 } else { 3617 // Assume the worst. 3618 DefCycle = RegNo + 2; 3619 } 3620 3621 return DefCycle; 3622 } 3623 3624 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const { 3625 unsigned BaseReg = MI.getOperand(0).getReg(); 3626 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) { 3627 const auto &Op = MI.getOperand(i); 3628 if (Op.isReg() && Op.getReg() == BaseReg) 3629 return true; 3630 } 3631 return false; 3632 } 3633 unsigned 3634 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const { 3635 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops 3636 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops) 3637 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands(); 3638 } 3639 3640 int 3641 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3642 const MCInstrDesc &DefMCID, 3643 unsigned DefClass, 3644 unsigned DefIdx, unsigned DefAlign) const { 3645 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3646 if (RegNo <= 0) 3647 // Def is the address writeback. 3648 return ItinData->getOperandCycle(DefClass, DefIdx); 3649 3650 int DefCycle; 3651 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3652 // 4 registers would be issued: 1, 2, 1. 3653 // 5 registers would be issued: 1, 2, 2. 3654 DefCycle = RegNo / 2; 3655 if (DefCycle < 1) 3656 DefCycle = 1; 3657 // Result latency is issue cycle + 2: E2. 3658 DefCycle += 2; 3659 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3660 DefCycle = (RegNo / 2); 3661 // If there are odd number of registers or if it's not 64-bit aligned, 3662 // then it takes an extra AGU (Address Generation Unit) cycle. 3663 if ((RegNo % 2) || DefAlign < 8) 3664 ++DefCycle; 3665 // Result latency is AGU cycles + 2. 3666 DefCycle += 2; 3667 } else { 3668 // Assume the worst. 3669 DefCycle = RegNo + 2; 3670 } 3671 3672 return DefCycle; 3673 } 3674 3675 int 3676 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3677 const MCInstrDesc &UseMCID, 3678 unsigned UseClass, 3679 unsigned UseIdx, unsigned UseAlign) const { 3680 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3681 if (RegNo <= 0) 3682 return ItinData->getOperandCycle(UseClass, UseIdx); 3683 3684 int UseCycle; 3685 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3686 // (regno / 2) + (regno % 2) + 1 3687 UseCycle = RegNo / 2 + 1; 3688 if (RegNo % 2) 3689 ++UseCycle; 3690 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3691 UseCycle = RegNo; 3692 bool isSStore = false; 3693 3694 switch (UseMCID.getOpcode()) { 3695 default: break; 3696 case ARM::VSTMSIA: 3697 case ARM::VSTMSIA_UPD: 3698 case ARM::VSTMSDB_UPD: 3699 isSStore = true; 3700 break; 3701 } 3702 3703 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3704 // then it takes an extra cycle. 3705 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3706 ++UseCycle; 3707 } else { 3708 // Assume the worst. 3709 UseCycle = RegNo + 2; 3710 } 3711 3712 return UseCycle; 3713 } 3714 3715 int 3716 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3717 const MCInstrDesc &UseMCID, 3718 unsigned UseClass, 3719 unsigned UseIdx, unsigned UseAlign) const { 3720 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3721 if (RegNo <= 0) 3722 return ItinData->getOperandCycle(UseClass, UseIdx); 3723 3724 int UseCycle; 3725 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3726 UseCycle = RegNo / 2; 3727 if (UseCycle < 2) 3728 UseCycle = 2; 3729 // Read in E3. 3730 UseCycle += 2; 3731 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3732 UseCycle = (RegNo / 2); 3733 // If there are odd number of registers or if it's not 64-bit aligned, 3734 // then it takes an extra AGU (Address Generation Unit) cycle. 3735 if ((RegNo % 2) || UseAlign < 8) 3736 ++UseCycle; 3737 } else { 3738 // Assume the worst. 3739 UseCycle = 1; 3740 } 3741 return UseCycle; 3742 } 3743 3744 int 3745 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3746 const MCInstrDesc &DefMCID, 3747 unsigned DefIdx, unsigned DefAlign, 3748 const MCInstrDesc &UseMCID, 3749 unsigned UseIdx, unsigned UseAlign) const { 3750 unsigned DefClass = DefMCID.getSchedClass(); 3751 unsigned UseClass = UseMCID.getSchedClass(); 3752 3753 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3754 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3755 3756 // This may be a def / use of a variable_ops instruction, the operand 3757 // latency might be determinable dynamically. Let the target try to 3758 // figure it out. 3759 int DefCycle = -1; 3760 bool LdmBypass = false; 3761 switch (DefMCID.getOpcode()) { 3762 default: 3763 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3764 break; 3765 3766 case ARM::VLDMDIA: 3767 case ARM::VLDMDIA_UPD: 3768 case ARM::VLDMDDB_UPD: 3769 case ARM::VLDMSIA: 3770 case ARM::VLDMSIA_UPD: 3771 case ARM::VLDMSDB_UPD: 3772 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3773 break; 3774 3775 case ARM::LDMIA_RET: 3776 case ARM::LDMIA: 3777 case ARM::LDMDA: 3778 case ARM::LDMDB: 3779 case ARM::LDMIB: 3780 case ARM::LDMIA_UPD: 3781 case ARM::LDMDA_UPD: 3782 case ARM::LDMDB_UPD: 3783 case ARM::LDMIB_UPD: 3784 case ARM::tLDMIA: 3785 case ARM::tLDMIA_UPD: 3786 case ARM::tPUSH: 3787 case ARM::t2LDMIA_RET: 3788 case ARM::t2LDMIA: 3789 case ARM::t2LDMDB: 3790 case ARM::t2LDMIA_UPD: 3791 case ARM::t2LDMDB_UPD: 3792 LdmBypass = true; 3793 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3794 break; 3795 } 3796 3797 if (DefCycle == -1) 3798 // We can't seem to determine the result latency of the def, assume it's 2. 3799 DefCycle = 2; 3800 3801 int UseCycle = -1; 3802 switch (UseMCID.getOpcode()) { 3803 default: 3804 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 3805 break; 3806 3807 case ARM::VSTMDIA: 3808 case ARM::VSTMDIA_UPD: 3809 case ARM::VSTMDDB_UPD: 3810 case ARM::VSTMSIA: 3811 case ARM::VSTMSIA_UPD: 3812 case ARM::VSTMSDB_UPD: 3813 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3814 break; 3815 3816 case ARM::STMIA: 3817 case ARM::STMDA: 3818 case ARM::STMDB: 3819 case ARM::STMIB: 3820 case ARM::STMIA_UPD: 3821 case ARM::STMDA_UPD: 3822 case ARM::STMDB_UPD: 3823 case ARM::STMIB_UPD: 3824 case ARM::tSTMIA_UPD: 3825 case ARM::tPOP_RET: 3826 case ARM::tPOP: 3827 case ARM::t2STMIA: 3828 case ARM::t2STMDB: 3829 case ARM::t2STMIA_UPD: 3830 case ARM::t2STMDB_UPD: 3831 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3832 break; 3833 } 3834 3835 if (UseCycle == -1) 3836 // Assume it's read in the first stage. 3837 UseCycle = 1; 3838 3839 UseCycle = DefCycle - UseCycle + 1; 3840 if (UseCycle > 0) { 3841 if (LdmBypass) { 3842 // It's a variable_ops instruction so we can't use DefIdx here. Just use 3843 // first def operand. 3844 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 3845 UseClass, UseIdx)) 3846 --UseCycle; 3847 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 3848 UseClass, UseIdx)) { 3849 --UseCycle; 3850 } 3851 } 3852 3853 return UseCycle; 3854 } 3855 3856 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 3857 const MachineInstr *MI, unsigned Reg, 3858 unsigned &DefIdx, unsigned &Dist) { 3859 Dist = 0; 3860 3861 MachineBasicBlock::const_iterator I = MI; ++I; 3862 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 3863 assert(II->isInsideBundle() && "Empty bundle?"); 3864 3865 int Idx = -1; 3866 while (II->isInsideBundle()) { 3867 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 3868 if (Idx != -1) 3869 break; 3870 --II; 3871 ++Dist; 3872 } 3873 3874 assert(Idx != -1 && "Cannot find bundled definition!"); 3875 DefIdx = Idx; 3876 return &*II; 3877 } 3878 3879 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 3880 const MachineInstr &MI, unsigned Reg, 3881 unsigned &UseIdx, unsigned &Dist) { 3882 Dist = 0; 3883 3884 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 3885 assert(II->isInsideBundle() && "Empty bundle?"); 3886 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 3887 3888 // FIXME: This doesn't properly handle multiple uses. 3889 int Idx = -1; 3890 while (II != E && II->isInsideBundle()) { 3891 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 3892 if (Idx != -1) 3893 break; 3894 if (II->getOpcode() != ARM::t2IT) 3895 ++Dist; 3896 ++II; 3897 } 3898 3899 if (Idx == -1) { 3900 Dist = 0; 3901 return nullptr; 3902 } 3903 3904 UseIdx = Idx; 3905 return &*II; 3906 } 3907 3908 /// Return the number of cycles to add to (or subtract from) the static 3909 /// itinerary based on the def opcode and alignment. The caller will ensure that 3910 /// adjusted latency is at least one cycle. 3911 static int adjustDefLatency(const ARMSubtarget &Subtarget, 3912 const MachineInstr &DefMI, 3913 const MCInstrDesc &DefMCID, unsigned DefAlign) { 3914 int Adjust = 0; 3915 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 3916 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3917 // variants are one cycle cheaper. 3918 switch (DefMCID.getOpcode()) { 3919 default: break; 3920 case ARM::LDRrs: 3921 case ARM::LDRBrs: { 3922 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 3923 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3924 if (ShImm == 0 || 3925 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3926 --Adjust; 3927 break; 3928 } 3929 case ARM::t2LDRs: 3930 case ARM::t2LDRBs: 3931 case ARM::t2LDRHs: 3932 case ARM::t2LDRSHs: { 3933 // Thumb2 mode: lsl only. 3934 unsigned ShAmt = DefMI.getOperand(3).getImm(); 3935 if (ShAmt == 0 || ShAmt == 2) 3936 --Adjust; 3937 break; 3938 } 3939 } 3940 } else if (Subtarget.isSwift()) { 3941 // FIXME: Properly handle all of the latency adjustments for address 3942 // writeback. 3943 switch (DefMCID.getOpcode()) { 3944 default: break; 3945 case ARM::LDRrs: 3946 case ARM::LDRBrs: { 3947 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 3948 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3949 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3950 if (!isSub && 3951 (ShImm == 0 || 3952 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3953 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3954 Adjust -= 2; 3955 else if (!isSub && 3956 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3957 --Adjust; 3958 break; 3959 } 3960 case ARM::t2LDRs: 3961 case ARM::t2LDRBs: 3962 case ARM::t2LDRHs: 3963 case ARM::t2LDRSHs: { 3964 // Thumb2 mode: lsl only. 3965 unsigned ShAmt = DefMI.getOperand(3).getImm(); 3966 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 3967 Adjust -= 2; 3968 break; 3969 } 3970 } 3971 } 3972 3973 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 3974 switch (DefMCID.getOpcode()) { 3975 default: break; 3976 case ARM::VLD1q8: 3977 case ARM::VLD1q16: 3978 case ARM::VLD1q32: 3979 case ARM::VLD1q64: 3980 case ARM::VLD1q8wb_fixed: 3981 case ARM::VLD1q16wb_fixed: 3982 case ARM::VLD1q32wb_fixed: 3983 case ARM::VLD1q64wb_fixed: 3984 case ARM::VLD1q8wb_register: 3985 case ARM::VLD1q16wb_register: 3986 case ARM::VLD1q32wb_register: 3987 case ARM::VLD1q64wb_register: 3988 case ARM::VLD2d8: 3989 case ARM::VLD2d16: 3990 case ARM::VLD2d32: 3991 case ARM::VLD2q8: 3992 case ARM::VLD2q16: 3993 case ARM::VLD2q32: 3994 case ARM::VLD2d8wb_fixed: 3995 case ARM::VLD2d16wb_fixed: 3996 case ARM::VLD2d32wb_fixed: 3997 case ARM::VLD2q8wb_fixed: 3998 case ARM::VLD2q16wb_fixed: 3999 case ARM::VLD2q32wb_fixed: 4000 case ARM::VLD2d8wb_register: 4001 case ARM::VLD2d16wb_register: 4002 case ARM::VLD2d32wb_register: 4003 case ARM::VLD2q8wb_register: 4004 case ARM::VLD2q16wb_register: 4005 case ARM::VLD2q32wb_register: 4006 case ARM::VLD3d8: 4007 case ARM::VLD3d16: 4008 case ARM::VLD3d32: 4009 case ARM::VLD1d64T: 4010 case ARM::VLD3d8_UPD: 4011 case ARM::VLD3d16_UPD: 4012 case ARM::VLD3d32_UPD: 4013 case ARM::VLD1d64Twb_fixed: 4014 case ARM::VLD1d64Twb_register: 4015 case ARM::VLD3q8_UPD: 4016 case ARM::VLD3q16_UPD: 4017 case ARM::VLD3q32_UPD: 4018 case ARM::VLD4d8: 4019 case ARM::VLD4d16: 4020 case ARM::VLD4d32: 4021 case ARM::VLD1d64Q: 4022 case ARM::VLD4d8_UPD: 4023 case ARM::VLD4d16_UPD: 4024 case ARM::VLD4d32_UPD: 4025 case ARM::VLD1d64Qwb_fixed: 4026 case ARM::VLD1d64Qwb_register: 4027 case ARM::VLD4q8_UPD: 4028 case ARM::VLD4q16_UPD: 4029 case ARM::VLD4q32_UPD: 4030 case ARM::VLD1DUPq8: 4031 case ARM::VLD1DUPq16: 4032 case ARM::VLD1DUPq32: 4033 case ARM::VLD1DUPq8wb_fixed: 4034 case ARM::VLD1DUPq16wb_fixed: 4035 case ARM::VLD1DUPq32wb_fixed: 4036 case ARM::VLD1DUPq8wb_register: 4037 case ARM::VLD1DUPq16wb_register: 4038 case ARM::VLD1DUPq32wb_register: 4039 case ARM::VLD2DUPd8: 4040 case ARM::VLD2DUPd16: 4041 case ARM::VLD2DUPd32: 4042 case ARM::VLD2DUPd8wb_fixed: 4043 case ARM::VLD2DUPd16wb_fixed: 4044 case ARM::VLD2DUPd32wb_fixed: 4045 case ARM::VLD2DUPd8wb_register: 4046 case ARM::VLD2DUPd16wb_register: 4047 case ARM::VLD2DUPd32wb_register: 4048 case ARM::VLD4DUPd8: 4049 case ARM::VLD4DUPd16: 4050 case ARM::VLD4DUPd32: 4051 case ARM::VLD4DUPd8_UPD: 4052 case ARM::VLD4DUPd16_UPD: 4053 case ARM::VLD4DUPd32_UPD: 4054 case ARM::VLD1LNd8: 4055 case ARM::VLD1LNd16: 4056 case ARM::VLD1LNd32: 4057 case ARM::VLD1LNd8_UPD: 4058 case ARM::VLD1LNd16_UPD: 4059 case ARM::VLD1LNd32_UPD: 4060 case ARM::VLD2LNd8: 4061 case ARM::VLD2LNd16: 4062 case ARM::VLD2LNd32: 4063 case ARM::VLD2LNq16: 4064 case ARM::VLD2LNq32: 4065 case ARM::VLD2LNd8_UPD: 4066 case ARM::VLD2LNd16_UPD: 4067 case ARM::VLD2LNd32_UPD: 4068 case ARM::VLD2LNq16_UPD: 4069 case ARM::VLD2LNq32_UPD: 4070 case ARM::VLD4LNd8: 4071 case ARM::VLD4LNd16: 4072 case ARM::VLD4LNd32: 4073 case ARM::VLD4LNq16: 4074 case ARM::VLD4LNq32: 4075 case ARM::VLD4LNd8_UPD: 4076 case ARM::VLD4LNd16_UPD: 4077 case ARM::VLD4LNd32_UPD: 4078 case ARM::VLD4LNq16_UPD: 4079 case ARM::VLD4LNq32_UPD: 4080 // If the address is not 64-bit aligned, the latencies of these 4081 // instructions increases by one. 4082 ++Adjust; 4083 break; 4084 } 4085 } 4086 return Adjust; 4087 } 4088 4089 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4090 const MachineInstr &DefMI, 4091 unsigned DefIdx, 4092 const MachineInstr &UseMI, 4093 unsigned UseIdx) const { 4094 // No operand latency. The caller may fall back to getInstrLatency. 4095 if (!ItinData || ItinData->isEmpty()) 4096 return -1; 4097 4098 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4099 unsigned Reg = DefMO.getReg(); 4100 4101 const MachineInstr *ResolvedDefMI = &DefMI; 4102 unsigned DefAdj = 0; 4103 if (DefMI.isBundle()) 4104 ResolvedDefMI = 4105 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4106 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4107 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4108 return 1; 4109 } 4110 4111 const MachineInstr *ResolvedUseMI = &UseMI; 4112 unsigned UseAdj = 0; 4113 if (UseMI.isBundle()) { 4114 ResolvedUseMI = 4115 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4116 if (!ResolvedUseMI) 4117 return -1; 4118 } 4119 4120 return getOperandLatencyImpl( 4121 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4122 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4123 } 4124 4125 int ARMBaseInstrInfo::getOperandLatencyImpl( 4126 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4127 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4128 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4129 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4130 if (Reg == ARM::CPSR) { 4131 if (DefMI.getOpcode() == ARM::FMSTAT) { 4132 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4133 return Subtarget.isLikeA9() ? 1 : 20; 4134 } 4135 4136 // CPSR set and branch can be paired in the same cycle. 4137 if (UseMI.isBranch()) 4138 return 0; 4139 4140 // Otherwise it takes the instruction latency (generally one). 4141 unsigned Latency = getInstrLatency(ItinData, DefMI); 4142 4143 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4144 // its uses. Instructions which are otherwise scheduled between them may 4145 // incur a code size penalty (not able to use the CPSR setting 16-bit 4146 // instructions). 4147 if (Latency > 0 && Subtarget.isThumb2()) { 4148 const MachineFunction *MF = DefMI.getParent()->getParent(); 4149 // FIXME: Use Function::optForSize(). 4150 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4151 --Latency; 4152 } 4153 return Latency; 4154 } 4155 4156 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4157 return -1; 4158 4159 unsigned DefAlign = DefMI.hasOneMemOperand() 4160 ? (*DefMI.memoperands_begin())->getAlignment() 4161 : 0; 4162 unsigned UseAlign = UseMI.hasOneMemOperand() 4163 ? (*UseMI.memoperands_begin())->getAlignment() 4164 : 0; 4165 4166 // Get the itinerary's latency if possible, and handle variable_ops. 4167 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4168 UseIdx, UseAlign); 4169 // Unable to find operand latency. The caller may resort to getInstrLatency. 4170 if (Latency < 0) 4171 return Latency; 4172 4173 // Adjust for IT block position. 4174 int Adj = DefAdj + UseAdj; 4175 4176 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4177 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4178 if (Adj >= 0 || (int)Latency > -Adj) { 4179 return Latency + Adj; 4180 } 4181 // Return the itinerary latency, which may be zero but not less than zero. 4182 return Latency; 4183 } 4184 4185 int 4186 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4187 SDNode *DefNode, unsigned DefIdx, 4188 SDNode *UseNode, unsigned UseIdx) const { 4189 if (!DefNode->isMachineOpcode()) 4190 return 1; 4191 4192 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4193 4194 if (isZeroCost(DefMCID.Opcode)) 4195 return 0; 4196 4197 if (!ItinData || ItinData->isEmpty()) 4198 return DefMCID.mayLoad() ? 3 : 1; 4199 4200 if (!UseNode->isMachineOpcode()) { 4201 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4202 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4203 int Threshold = 1 + Adj; 4204 return Latency <= Threshold ? 1 : Latency - Adj; 4205 } 4206 4207 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4208 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); 4209 unsigned DefAlign = !DefMN->memoperands_empty() 4210 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 4211 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); 4212 unsigned UseAlign = !UseMN->memoperands_empty() 4213 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 4214 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4215 UseMCID, UseIdx, UseAlign); 4216 4217 if (Latency > 1 && 4218 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4219 Subtarget.isCortexA7())) { 4220 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4221 // variants are one cycle cheaper. 4222 switch (DefMCID.getOpcode()) { 4223 default: break; 4224 case ARM::LDRrs: 4225 case ARM::LDRBrs: { 4226 unsigned ShOpVal = 4227 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4228 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4229 if (ShImm == 0 || 4230 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4231 --Latency; 4232 break; 4233 } 4234 case ARM::t2LDRs: 4235 case ARM::t2LDRBs: 4236 case ARM::t2LDRHs: 4237 case ARM::t2LDRSHs: { 4238 // Thumb2 mode: lsl only. 4239 unsigned ShAmt = 4240 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4241 if (ShAmt == 0 || ShAmt == 2) 4242 --Latency; 4243 break; 4244 } 4245 } 4246 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4247 // FIXME: Properly handle all of the latency adjustments for address 4248 // writeback. 4249 switch (DefMCID.getOpcode()) { 4250 default: break; 4251 case ARM::LDRrs: 4252 case ARM::LDRBrs: { 4253 unsigned ShOpVal = 4254 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4255 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4256 if (ShImm == 0 || 4257 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4258 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4259 Latency -= 2; 4260 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4261 --Latency; 4262 break; 4263 } 4264 case ARM::t2LDRs: 4265 case ARM::t2LDRBs: 4266 case ARM::t2LDRHs: 4267 case ARM::t2LDRSHs: 4268 // Thumb2 mode: lsl 0-3 only. 4269 Latency -= 2; 4270 break; 4271 } 4272 } 4273 4274 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4275 switch (DefMCID.getOpcode()) { 4276 default: break; 4277 case ARM::VLD1q8: 4278 case ARM::VLD1q16: 4279 case ARM::VLD1q32: 4280 case ARM::VLD1q64: 4281 case ARM::VLD1q8wb_register: 4282 case ARM::VLD1q16wb_register: 4283 case ARM::VLD1q32wb_register: 4284 case ARM::VLD1q64wb_register: 4285 case ARM::VLD1q8wb_fixed: 4286 case ARM::VLD1q16wb_fixed: 4287 case ARM::VLD1q32wb_fixed: 4288 case ARM::VLD1q64wb_fixed: 4289 case ARM::VLD2d8: 4290 case ARM::VLD2d16: 4291 case ARM::VLD2d32: 4292 case ARM::VLD2q8Pseudo: 4293 case ARM::VLD2q16Pseudo: 4294 case ARM::VLD2q32Pseudo: 4295 case ARM::VLD2d8wb_fixed: 4296 case ARM::VLD2d16wb_fixed: 4297 case ARM::VLD2d32wb_fixed: 4298 case ARM::VLD2q8PseudoWB_fixed: 4299 case ARM::VLD2q16PseudoWB_fixed: 4300 case ARM::VLD2q32PseudoWB_fixed: 4301 case ARM::VLD2d8wb_register: 4302 case ARM::VLD2d16wb_register: 4303 case ARM::VLD2d32wb_register: 4304 case ARM::VLD2q8PseudoWB_register: 4305 case ARM::VLD2q16PseudoWB_register: 4306 case ARM::VLD2q32PseudoWB_register: 4307 case ARM::VLD3d8Pseudo: 4308 case ARM::VLD3d16Pseudo: 4309 case ARM::VLD3d32Pseudo: 4310 case ARM::VLD1d8TPseudo: 4311 case ARM::VLD1d16TPseudo: 4312 case ARM::VLD1d32TPseudo: 4313 case ARM::VLD1d64TPseudo: 4314 case ARM::VLD1d64TPseudoWB_fixed: 4315 case ARM::VLD1d64TPseudoWB_register: 4316 case ARM::VLD3d8Pseudo_UPD: 4317 case ARM::VLD3d16Pseudo_UPD: 4318 case ARM::VLD3d32Pseudo_UPD: 4319 case ARM::VLD3q8Pseudo_UPD: 4320 case ARM::VLD3q16Pseudo_UPD: 4321 case ARM::VLD3q32Pseudo_UPD: 4322 case ARM::VLD3q8oddPseudo: 4323 case ARM::VLD3q16oddPseudo: 4324 case ARM::VLD3q32oddPseudo: 4325 case ARM::VLD3q8oddPseudo_UPD: 4326 case ARM::VLD3q16oddPseudo_UPD: 4327 case ARM::VLD3q32oddPseudo_UPD: 4328 case ARM::VLD4d8Pseudo: 4329 case ARM::VLD4d16Pseudo: 4330 case ARM::VLD4d32Pseudo: 4331 case ARM::VLD1d8QPseudo: 4332 case ARM::VLD1d16QPseudo: 4333 case ARM::VLD1d32QPseudo: 4334 case ARM::VLD1d64QPseudo: 4335 case ARM::VLD1d64QPseudoWB_fixed: 4336 case ARM::VLD1d64QPseudoWB_register: 4337 case ARM::VLD1q8HighQPseudo: 4338 case ARM::VLD1q8LowQPseudo_UPD: 4339 case ARM::VLD1q8HighTPseudo: 4340 case ARM::VLD1q8LowTPseudo_UPD: 4341 case ARM::VLD1q16HighQPseudo: 4342 case ARM::VLD1q16LowQPseudo_UPD: 4343 case ARM::VLD1q16HighTPseudo: 4344 case ARM::VLD1q16LowTPseudo_UPD: 4345 case ARM::VLD1q32HighQPseudo: 4346 case ARM::VLD1q32LowQPseudo_UPD: 4347 case ARM::VLD1q32HighTPseudo: 4348 case ARM::VLD1q32LowTPseudo_UPD: 4349 case ARM::VLD1q64HighQPseudo: 4350 case ARM::VLD1q64LowQPseudo_UPD: 4351 case ARM::VLD1q64HighTPseudo: 4352 case ARM::VLD1q64LowTPseudo_UPD: 4353 case ARM::VLD4d8Pseudo_UPD: 4354 case ARM::VLD4d16Pseudo_UPD: 4355 case ARM::VLD4d32Pseudo_UPD: 4356 case ARM::VLD4q8Pseudo_UPD: 4357 case ARM::VLD4q16Pseudo_UPD: 4358 case ARM::VLD4q32Pseudo_UPD: 4359 case ARM::VLD4q8oddPseudo: 4360 case ARM::VLD4q16oddPseudo: 4361 case ARM::VLD4q32oddPseudo: 4362 case ARM::VLD4q8oddPseudo_UPD: 4363 case ARM::VLD4q16oddPseudo_UPD: 4364 case ARM::VLD4q32oddPseudo_UPD: 4365 case ARM::VLD1DUPq8: 4366 case ARM::VLD1DUPq16: 4367 case ARM::VLD1DUPq32: 4368 case ARM::VLD1DUPq8wb_fixed: 4369 case ARM::VLD1DUPq16wb_fixed: 4370 case ARM::VLD1DUPq32wb_fixed: 4371 case ARM::VLD1DUPq8wb_register: 4372 case ARM::VLD1DUPq16wb_register: 4373 case ARM::VLD1DUPq32wb_register: 4374 case ARM::VLD2DUPd8: 4375 case ARM::VLD2DUPd16: 4376 case ARM::VLD2DUPd32: 4377 case ARM::VLD2DUPd8wb_fixed: 4378 case ARM::VLD2DUPd16wb_fixed: 4379 case ARM::VLD2DUPd32wb_fixed: 4380 case ARM::VLD2DUPd8wb_register: 4381 case ARM::VLD2DUPd16wb_register: 4382 case ARM::VLD2DUPd32wb_register: 4383 case ARM::VLD2DUPq8EvenPseudo: 4384 case ARM::VLD2DUPq8OddPseudo: 4385 case ARM::VLD2DUPq16EvenPseudo: 4386 case ARM::VLD2DUPq16OddPseudo: 4387 case ARM::VLD2DUPq32EvenPseudo: 4388 case ARM::VLD2DUPq32OddPseudo: 4389 case ARM::VLD3DUPq8EvenPseudo: 4390 case ARM::VLD3DUPq8OddPseudo: 4391 case ARM::VLD3DUPq16EvenPseudo: 4392 case ARM::VLD3DUPq16OddPseudo: 4393 case ARM::VLD3DUPq32EvenPseudo: 4394 case ARM::VLD3DUPq32OddPseudo: 4395 case ARM::VLD4DUPd8Pseudo: 4396 case ARM::VLD4DUPd16Pseudo: 4397 case ARM::VLD4DUPd32Pseudo: 4398 case ARM::VLD4DUPd8Pseudo_UPD: 4399 case ARM::VLD4DUPd16Pseudo_UPD: 4400 case ARM::VLD4DUPd32Pseudo_UPD: 4401 case ARM::VLD4DUPq8EvenPseudo: 4402 case ARM::VLD4DUPq8OddPseudo: 4403 case ARM::VLD4DUPq16EvenPseudo: 4404 case ARM::VLD4DUPq16OddPseudo: 4405 case ARM::VLD4DUPq32EvenPseudo: 4406 case ARM::VLD4DUPq32OddPseudo: 4407 case ARM::VLD1LNq8Pseudo: 4408 case ARM::VLD1LNq16Pseudo: 4409 case ARM::VLD1LNq32Pseudo: 4410 case ARM::VLD1LNq8Pseudo_UPD: 4411 case ARM::VLD1LNq16Pseudo_UPD: 4412 case ARM::VLD1LNq32Pseudo_UPD: 4413 case ARM::VLD2LNd8Pseudo: 4414 case ARM::VLD2LNd16Pseudo: 4415 case ARM::VLD2LNd32Pseudo: 4416 case ARM::VLD2LNq16Pseudo: 4417 case ARM::VLD2LNq32Pseudo: 4418 case ARM::VLD2LNd8Pseudo_UPD: 4419 case ARM::VLD2LNd16Pseudo_UPD: 4420 case ARM::VLD2LNd32Pseudo_UPD: 4421 case ARM::VLD2LNq16Pseudo_UPD: 4422 case ARM::VLD2LNq32Pseudo_UPD: 4423 case ARM::VLD4LNd8Pseudo: 4424 case ARM::VLD4LNd16Pseudo: 4425 case ARM::VLD4LNd32Pseudo: 4426 case ARM::VLD4LNq16Pseudo: 4427 case ARM::VLD4LNq32Pseudo: 4428 case ARM::VLD4LNd8Pseudo_UPD: 4429 case ARM::VLD4LNd16Pseudo_UPD: 4430 case ARM::VLD4LNd32Pseudo_UPD: 4431 case ARM::VLD4LNq16Pseudo_UPD: 4432 case ARM::VLD4LNq32Pseudo_UPD: 4433 // If the address is not 64-bit aligned, the latencies of these 4434 // instructions increases by one. 4435 ++Latency; 4436 break; 4437 } 4438 4439 return Latency; 4440 } 4441 4442 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4443 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4444 MI.isImplicitDef()) 4445 return 0; 4446 4447 if (MI.isBundle()) 4448 return 0; 4449 4450 const MCInstrDesc &MCID = MI.getDesc(); 4451 4452 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4453 !Subtarget.cheapPredicableCPSRDef())) { 4454 // When predicated, CPSR is an additional source operand for CPSR updating 4455 // instructions, this apparently increases their latencies. 4456 return 1; 4457 } 4458 return 0; 4459 } 4460 4461 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4462 const MachineInstr &MI, 4463 unsigned *PredCost) const { 4464 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4465 MI.isImplicitDef()) 4466 return 1; 4467 4468 // An instruction scheduler typically runs on unbundled instructions, however 4469 // other passes may query the latency of a bundled instruction. 4470 if (MI.isBundle()) { 4471 unsigned Latency = 0; 4472 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4473 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4474 while (++I != E && I->isInsideBundle()) { 4475 if (I->getOpcode() != ARM::t2IT) 4476 Latency += getInstrLatency(ItinData, *I, PredCost); 4477 } 4478 return Latency; 4479 } 4480 4481 const MCInstrDesc &MCID = MI.getDesc(); 4482 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4483 !Subtarget.cheapPredicableCPSRDef()))) { 4484 // When predicated, CPSR is an additional source operand for CPSR updating 4485 // instructions, this apparently increases their latencies. 4486 *PredCost = 1; 4487 } 4488 // Be sure to call getStageLatency for an empty itinerary in case it has a 4489 // valid MinLatency property. 4490 if (!ItinData) 4491 return MI.mayLoad() ? 3 : 1; 4492 4493 unsigned Class = MCID.getSchedClass(); 4494 4495 // For instructions with variable uops, use uops as latency. 4496 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4497 return getNumMicroOps(ItinData, MI); 4498 4499 // For the common case, fall back on the itinerary's latency. 4500 unsigned Latency = ItinData->getStageLatency(Class); 4501 4502 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4503 unsigned DefAlign = 4504 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0; 4505 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4506 if (Adj >= 0 || (int)Latency > -Adj) { 4507 return Latency + Adj; 4508 } 4509 return Latency; 4510 } 4511 4512 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4513 SDNode *Node) const { 4514 if (!Node->isMachineOpcode()) 4515 return 1; 4516 4517 if (!ItinData || ItinData->isEmpty()) 4518 return 1; 4519 4520 unsigned Opcode = Node->getMachineOpcode(); 4521 switch (Opcode) { 4522 default: 4523 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4524 case ARM::VLDMQIA: 4525 case ARM::VSTMQIA: 4526 return 2; 4527 } 4528 } 4529 4530 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4531 const MachineRegisterInfo *MRI, 4532 const MachineInstr &DefMI, 4533 unsigned DefIdx, 4534 const MachineInstr &UseMI, 4535 unsigned UseIdx) const { 4536 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4537 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4538 if (Subtarget.nonpipelinedVFP() && 4539 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4540 return true; 4541 4542 // Hoist VFP / NEON instructions with 4 or higher latency. 4543 unsigned Latency = 4544 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4545 if (Latency <= 3) 4546 return false; 4547 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4548 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4549 } 4550 4551 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4552 const MachineInstr &DefMI, 4553 unsigned DefIdx) const { 4554 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4555 if (!ItinData || ItinData->isEmpty()) 4556 return false; 4557 4558 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4559 if (DDomain == ARMII::DomainGeneral) { 4560 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4561 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4562 return (DefCycle != -1 && DefCycle <= 2); 4563 } 4564 return false; 4565 } 4566 4567 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4568 StringRef &ErrInfo) const { 4569 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4570 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4571 return false; 4572 } 4573 return true; 4574 } 4575 4576 // LoadStackGuard has so far only been implemented for MachO. Different code 4577 // sequence is needed for other targets. 4578 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4579 unsigned LoadImmOpc, 4580 unsigned LoadOpc) const { 4581 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4582 "ROPI/RWPI not currently supported with stack guard"); 4583 4584 MachineBasicBlock &MBB = *MI->getParent(); 4585 DebugLoc DL = MI->getDebugLoc(); 4586 unsigned Reg = MI->getOperand(0).getReg(); 4587 const GlobalValue *GV = 4588 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4589 MachineInstrBuilder MIB; 4590 4591 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4592 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4593 4594 if (Subtarget.isGVIndirectSymbol(GV)) { 4595 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4596 MIB.addReg(Reg, RegState::Kill).addImm(0); 4597 auto Flags = MachineMemOperand::MOLoad | 4598 MachineMemOperand::MODereferenceable | 4599 MachineMemOperand::MOInvariant; 4600 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4601 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4); 4602 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4603 } 4604 4605 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4606 MIB.addReg(Reg, RegState::Kill) 4607 .addImm(0) 4608 .cloneMemRefs(*MI) 4609 .add(predOps(ARMCC::AL)); 4610 } 4611 4612 bool 4613 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4614 unsigned &AddSubOpc, 4615 bool &NegAcc, bool &HasLane) const { 4616 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4617 if (I == MLxEntryMap.end()) 4618 return false; 4619 4620 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4621 MulOpc = Entry.MulOpc; 4622 AddSubOpc = Entry.AddSubOpc; 4623 NegAcc = Entry.NegAcc; 4624 HasLane = Entry.HasLane; 4625 return true; 4626 } 4627 4628 //===----------------------------------------------------------------------===// 4629 // Execution domains. 4630 //===----------------------------------------------------------------------===// 4631 // 4632 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4633 // and some can go down both. The vmov instructions go down the VFP pipeline, 4634 // but they can be changed to vorr equivalents that are executed by the NEON 4635 // pipeline. 4636 // 4637 // We use the following execution domain numbering: 4638 // 4639 enum ARMExeDomain { 4640 ExeGeneric = 0, 4641 ExeVFP = 1, 4642 ExeNEON = 2 4643 }; 4644 4645 // 4646 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4647 // 4648 std::pair<uint16_t, uint16_t> 4649 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4650 // If we don't have access to NEON instructions then we won't be able 4651 // to swizzle anything to the NEON domain. Check to make sure. 4652 if (Subtarget.hasNEON()) { 4653 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4654 // if they are not predicated. 4655 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4656 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4657 4658 // CortexA9 is particularly picky about mixing the two and wants these 4659 // converted. 4660 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4661 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4662 MI.getOpcode() == ARM::VMOVS)) 4663 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4664 } 4665 // No other instructions can be swizzled, so just determine their domain. 4666 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4667 4668 if (Domain & ARMII::DomainNEON) 4669 return std::make_pair(ExeNEON, 0); 4670 4671 // Certain instructions can go either way on Cortex-A8. 4672 // Treat them as NEON instructions. 4673 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4674 return std::make_pair(ExeNEON, 0); 4675 4676 if (Domain & ARMII::DomainVFP) 4677 return std::make_pair(ExeVFP, 0); 4678 4679 return std::make_pair(ExeGeneric, 0); 4680 } 4681 4682 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4683 unsigned SReg, unsigned &Lane) { 4684 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4685 Lane = 0; 4686 4687 if (DReg != ARM::NoRegister) 4688 return DReg; 4689 4690 Lane = 1; 4691 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4692 4693 assert(DReg && "S-register with no D super-register?"); 4694 return DReg; 4695 } 4696 4697 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4698 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4699 /// zero if no register needs to be defined as implicit-use. 4700 /// 4701 /// If the function cannot determine if an SPR should be marked implicit use or 4702 /// not, it returns false. 4703 /// 4704 /// This function handles cases where an instruction is being modified from taking 4705 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4706 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4707 /// lane of the DPR). 4708 /// 4709 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4710 /// (including the case where the DPR itself is defined), it should not. 4711 /// 4712 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4713 MachineInstr &MI, unsigned DReg, 4714 unsigned Lane, unsigned &ImplicitSReg) { 4715 // If the DPR is defined or used already, the other SPR lane will be chained 4716 // correctly, so there is nothing to be done. 4717 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4718 ImplicitSReg = 0; 4719 return true; 4720 } 4721 4722 // Otherwise we need to go searching to see if the SPR is set explicitly. 4723 ImplicitSReg = TRI->getSubReg(DReg, 4724 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4725 MachineBasicBlock::LivenessQueryResult LQR = 4726 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4727 4728 if (LQR == MachineBasicBlock::LQR_Live) 4729 return true; 4730 else if (LQR == MachineBasicBlock::LQR_Unknown) 4731 return false; 4732 4733 // If the register is known not to be live, there is no need to add an 4734 // implicit-use. 4735 ImplicitSReg = 0; 4736 return true; 4737 } 4738 4739 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 4740 unsigned Domain) const { 4741 unsigned DstReg, SrcReg, DReg; 4742 unsigned Lane; 4743 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4744 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4745 switch (MI.getOpcode()) { 4746 default: 4747 llvm_unreachable("cannot handle opcode!"); 4748 break; 4749 case ARM::VMOVD: 4750 if (Domain != ExeNEON) 4751 break; 4752 4753 // Zap the predicate operands. 4754 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 4755 4756 // Make sure we've got NEON instructions. 4757 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 4758 4759 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 4760 DstReg = MI.getOperand(0).getReg(); 4761 SrcReg = MI.getOperand(1).getReg(); 4762 4763 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4764 MI.RemoveOperand(i - 1); 4765 4766 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 4767 MI.setDesc(get(ARM::VORRd)); 4768 MIB.addReg(DstReg, RegState::Define) 4769 .addReg(SrcReg) 4770 .addReg(SrcReg) 4771 .add(predOps(ARMCC::AL)); 4772 break; 4773 case ARM::VMOVRS: 4774 if (Domain != ExeNEON) 4775 break; 4776 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 4777 4778 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 4779 DstReg = MI.getOperand(0).getReg(); 4780 SrcReg = MI.getOperand(1).getReg(); 4781 4782 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4783 MI.RemoveOperand(i - 1); 4784 4785 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 4786 4787 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 4788 // Note that DSrc has been widened and the other lane may be undef, which 4789 // contaminates the entire register. 4790 MI.setDesc(get(ARM::VGETLNi32)); 4791 MIB.addReg(DstReg, RegState::Define) 4792 .addReg(DReg, RegState::Undef) 4793 .addImm(Lane) 4794 .add(predOps(ARMCC::AL)); 4795 4796 // The old source should be an implicit use, otherwise we might think it 4797 // was dead before here. 4798 MIB.addReg(SrcReg, RegState::Implicit); 4799 break; 4800 case ARM::VMOVSR: { 4801 if (Domain != ExeNEON) 4802 break; 4803 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 4804 4805 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 4806 DstReg = MI.getOperand(0).getReg(); 4807 SrcReg = MI.getOperand(1).getReg(); 4808 4809 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 4810 4811 unsigned ImplicitSReg; 4812 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 4813 break; 4814 4815 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4816 MI.RemoveOperand(i - 1); 4817 4818 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 4819 // Again DDst may be undefined at the beginning of this instruction. 4820 MI.setDesc(get(ARM::VSETLNi32)); 4821 MIB.addReg(DReg, RegState::Define) 4822 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 4823 .addReg(SrcReg) 4824 .addImm(Lane) 4825 .add(predOps(ARMCC::AL)); 4826 4827 // The narrower destination must be marked as set to keep previous chains 4828 // in place. 4829 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4830 if (ImplicitSReg != 0) 4831 MIB.addReg(ImplicitSReg, RegState::Implicit); 4832 break; 4833 } 4834 case ARM::VMOVS: { 4835 if (Domain != ExeNEON) 4836 break; 4837 4838 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 4839 DstReg = MI.getOperand(0).getReg(); 4840 SrcReg = MI.getOperand(1).getReg(); 4841 4842 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 4843 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 4844 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 4845 4846 unsigned ImplicitSReg; 4847 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 4848 break; 4849 4850 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4851 MI.RemoveOperand(i - 1); 4852 4853 if (DSrc == DDst) { 4854 // Destination can be: 4855 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 4856 MI.setDesc(get(ARM::VDUPLN32d)); 4857 MIB.addReg(DDst, RegState::Define) 4858 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 4859 .addImm(SrcLane) 4860 .add(predOps(ARMCC::AL)); 4861 4862 // Neither the source or the destination are naturally represented any 4863 // more, so add them in manually. 4864 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 4865 MIB.addReg(SrcReg, RegState::Implicit); 4866 if (ImplicitSReg != 0) 4867 MIB.addReg(ImplicitSReg, RegState::Implicit); 4868 break; 4869 } 4870 4871 // In general there's no single instruction that can perform an S <-> S 4872 // move in NEON space, but a pair of VEXT instructions *can* do the 4873 // job. It turns out that the VEXTs needed will only use DSrc once, with 4874 // the position based purely on the combination of lane-0 and lane-1 4875 // involved. For example 4876 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 4877 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 4878 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 4879 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 4880 // 4881 // Pattern of the MachineInstrs is: 4882 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 4883 MachineInstrBuilder NewMIB; 4884 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 4885 DDst); 4886 4887 // On the first instruction, both DSrc and DDst may be undef if present. 4888 // Specifically when the original instruction didn't have them as an 4889 // <imp-use>. 4890 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 4891 bool CurUndef = !MI.readsRegister(CurReg, TRI); 4892 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4893 4894 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 4895 CurUndef = !MI.readsRegister(CurReg, TRI); 4896 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 4897 .addImm(1) 4898 .add(predOps(ARMCC::AL)); 4899 4900 if (SrcLane == DstLane) 4901 NewMIB.addReg(SrcReg, RegState::Implicit); 4902 4903 MI.setDesc(get(ARM::VEXTd32)); 4904 MIB.addReg(DDst, RegState::Define); 4905 4906 // On the second instruction, DDst has definitely been defined above, so 4907 // it is not undef. DSrc, if present, can be undef as above. 4908 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 4909 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 4910 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4911 4912 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 4913 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 4914 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 4915 .addImm(1) 4916 .add(predOps(ARMCC::AL)); 4917 4918 if (SrcLane != DstLane) 4919 MIB.addReg(SrcReg, RegState::Implicit); 4920 4921 // As before, the original destination is no longer represented, add it 4922 // implicitly. 4923 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4924 if (ImplicitSReg != 0) 4925 MIB.addReg(ImplicitSReg, RegState::Implicit); 4926 break; 4927 } 4928 } 4929 } 4930 4931 //===----------------------------------------------------------------------===// 4932 // Partial register updates 4933 //===----------------------------------------------------------------------===// 4934 // 4935 // Swift renames NEON registers with 64-bit granularity. That means any 4936 // instruction writing an S-reg implicitly reads the containing D-reg. The 4937 // problem is mostly avoided by translating f32 operations to v2f32 operations 4938 // on D-registers, but f32 loads are still a problem. 4939 // 4940 // These instructions can load an f32 into a NEON register: 4941 // 4942 // VLDRS - Only writes S, partial D update. 4943 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 4944 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 4945 // 4946 // FCONSTD can be used as a dependency-breaking instruction. 4947 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 4948 const MachineInstr &MI, unsigned OpNum, 4949 const TargetRegisterInfo *TRI) const { 4950 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 4951 if (!PartialUpdateClearance) 4952 return 0; 4953 4954 assert(TRI && "Need TRI instance"); 4955 4956 const MachineOperand &MO = MI.getOperand(OpNum); 4957 if (MO.readsReg()) 4958 return 0; 4959 unsigned Reg = MO.getReg(); 4960 int UseOp = -1; 4961 4962 switch (MI.getOpcode()) { 4963 // Normal instructions writing only an S-register. 4964 case ARM::VLDRS: 4965 case ARM::FCONSTS: 4966 case ARM::VMOVSR: 4967 case ARM::VMOVv8i8: 4968 case ARM::VMOVv4i16: 4969 case ARM::VMOVv2i32: 4970 case ARM::VMOVv2f32: 4971 case ARM::VMOVv1i64: 4972 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 4973 break; 4974 4975 // Explicitly reads the dependency. 4976 case ARM::VLD1LNd32: 4977 UseOp = 3; 4978 break; 4979 default: 4980 return 0; 4981 } 4982 4983 // If this instruction actually reads a value from Reg, there is no unwanted 4984 // dependency. 4985 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 4986 return 0; 4987 4988 // We must be able to clobber the whole D-reg. 4989 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 4990 // Virtual register must be a def undef foo:ssub_0 operand. 4991 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 4992 return 0; 4993 } else if (ARM::SPRRegClass.contains(Reg)) { 4994 // Physical register: MI must define the full D-reg. 4995 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 4996 &ARM::DPRRegClass); 4997 if (!DReg || !MI.definesRegister(DReg, TRI)) 4998 return 0; 4999 } 5000 5001 // MI has an unwanted D-register dependency. 5002 // Avoid defs in the previous N instructrions. 5003 return PartialUpdateClearance; 5004 } 5005 5006 // Break a partial register dependency after getPartialRegUpdateClearance 5007 // returned non-zero. 5008 void ARMBaseInstrInfo::breakPartialRegDependency( 5009 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5010 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5011 assert(TRI && "Need TRI instance"); 5012 5013 const MachineOperand &MO = MI.getOperand(OpNum); 5014 unsigned Reg = MO.getReg(); 5015 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 5016 "Can't break virtual register dependencies."); 5017 unsigned DReg = Reg; 5018 5019 // If MI defines an S-reg, find the corresponding D super-register. 5020 if (ARM::SPRRegClass.contains(Reg)) { 5021 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5022 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5023 } 5024 5025 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5026 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5027 5028 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5029 // the full D-register by loading the same value to both lanes. The 5030 // instruction is micro-coded with 2 uops, so don't do this until we can 5031 // properly schedule micro-coded instructions. The dispatcher stalls cause 5032 // too big regressions. 5033 5034 // Insert the dependency-breaking FCONSTD before MI. 5035 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5036 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5037 .addImm(96) 5038 .add(predOps(ARMCC::AL)); 5039 MI.addRegisterKilled(DReg, TRI, true); 5040 } 5041 5042 bool ARMBaseInstrInfo::hasNOP() const { 5043 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5044 } 5045 5046 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5047 if (MI->getNumOperands() < 4) 5048 return true; 5049 unsigned ShOpVal = MI->getOperand(3).getImm(); 5050 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5051 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5052 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5053 ((ShImm == 1 || ShImm == 2) && 5054 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5055 return true; 5056 5057 return false; 5058 } 5059 5060 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5061 const MachineInstr &MI, unsigned DefIdx, 5062 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5063 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5064 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5065 5066 switch (MI.getOpcode()) { 5067 case ARM::VMOVDRR: 5068 // dX = VMOVDRR rY, rZ 5069 // is the same as: 5070 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5071 // Populate the InputRegs accordingly. 5072 // rY 5073 const MachineOperand *MOReg = &MI.getOperand(1); 5074 if (!MOReg->isUndef()) 5075 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5076 MOReg->getSubReg(), ARM::ssub_0)); 5077 // rZ 5078 MOReg = &MI.getOperand(2); 5079 if (!MOReg->isUndef()) 5080 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5081 MOReg->getSubReg(), ARM::ssub_1)); 5082 return true; 5083 } 5084 llvm_unreachable("Target dependent opcode missing"); 5085 } 5086 5087 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5088 const MachineInstr &MI, unsigned DefIdx, 5089 RegSubRegPairAndIdx &InputReg) const { 5090 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5091 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5092 5093 switch (MI.getOpcode()) { 5094 case ARM::VMOVRRD: 5095 // rX, rY = VMOVRRD dZ 5096 // is the same as: 5097 // rX = EXTRACT_SUBREG dZ, ssub_0 5098 // rY = EXTRACT_SUBREG dZ, ssub_1 5099 const MachineOperand &MOReg = MI.getOperand(2); 5100 if (MOReg.isUndef()) 5101 return false; 5102 InputReg.Reg = MOReg.getReg(); 5103 InputReg.SubReg = MOReg.getSubReg(); 5104 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5105 return true; 5106 } 5107 llvm_unreachable("Target dependent opcode missing"); 5108 } 5109 5110 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5111 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5112 RegSubRegPairAndIdx &InsertedReg) const { 5113 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5114 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5115 5116 switch (MI.getOpcode()) { 5117 case ARM::VSETLNi32: 5118 // dX = VSETLNi32 dY, rZ, imm 5119 const MachineOperand &MOBaseReg = MI.getOperand(1); 5120 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5121 if (MOInsertedReg.isUndef()) 5122 return false; 5123 const MachineOperand &MOIndex = MI.getOperand(3); 5124 BaseReg.Reg = MOBaseReg.getReg(); 5125 BaseReg.SubReg = MOBaseReg.getSubReg(); 5126 5127 InsertedReg.Reg = MOInsertedReg.getReg(); 5128 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5129 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 5130 return true; 5131 } 5132 llvm_unreachable("Target dependent opcode missing"); 5133 } 5134 5135 std::pair<unsigned, unsigned> 5136 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5137 const unsigned Mask = ARMII::MO_OPTION_MASK; 5138 return std::make_pair(TF & Mask, TF & ~Mask); 5139 } 5140 5141 ArrayRef<std::pair<unsigned, const char *>> 5142 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5143 using namespace ARMII; 5144 5145 static const std::pair<unsigned, const char *> TargetFlags[] = { 5146 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5147 return makeArrayRef(TargetFlags); 5148 } 5149 5150 ArrayRef<std::pair<unsigned, const char *>> 5151 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5152 using namespace ARMII; 5153 5154 static const std::pair<unsigned, const char *> TargetFlags[] = { 5155 {MO_COFFSTUB, "arm-coffstub"}, 5156 {MO_GOT, "arm-got"}, 5157 {MO_SBREL, "arm-sbrel"}, 5158 {MO_DLLIMPORT, "arm-dllimport"}, 5159 {MO_SECREL, "arm-secrel"}, 5160 {MO_NONLAZY, "arm-nonlazy"}}; 5161 return makeArrayRef(TargetFlags); 5162 } 5163