1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <new>
63 #include <utility>
64 #include <vector>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "arm-instrinfo"
69 
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
72 
73 static cl::opt<bool>
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
75                cl::desc("Enable ARM 2-addr to 3-addr conv"));
76 
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
78 struct ARM_MLxEntry {
79   uint16_t MLxOpc;     // MLA / MLS opcode
80   uint16_t MulOpc;     // Expanded multiplication opcode
81   uint16_t AddSubOpc;  // Expanded add / sub opcode
82   bool NegAcc;         // True if the acc is negated before the add / sub.
83   bool HasLane;        // True if instruction has an extra "lane" operand.
84 };
85 
86 static const ARM_MLxEntry ARM_MLxTable[] = {
87   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
88   // fp scalar ops
89   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
90   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
91   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
92   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
93   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
94   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
95   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
96   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
97 
98   // fp SIMD ops
99   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
100   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
101   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
102   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
103   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
104   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
105   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
106   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
107 };
108 
109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
110   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
111     Subtarget(STI) {
112   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
113     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
114       llvm_unreachable("Duplicated entries?");
115     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
116     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
117   }
118 }
119 
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer *
123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
124                                                const ScheduleDAG *DAG) const {
125   if (usePreRAHazardRecognizer()) {
126     const InstrItineraryData *II =
127         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
128     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
129   }
130   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
131 }
132 
133 ScheduleHazardRecognizer *ARMBaseInstrInfo::
134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
135                                    const ScheduleDAG *DAG) const {
136   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
137     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
138   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
139 }
140 
141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
142     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
143   // FIXME: Thumb2 support.
144 
145   if (!EnableARM3Addr)
146     return nullptr;
147 
148   MachineFunction &MF = *MI.getParent()->getParent();
149   uint64_t TSFlags = MI.getDesc().TSFlags;
150   bool isPre = false;
151   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
152   default: return nullptr;
153   case ARMII::IndexModePre:
154     isPre = true;
155     break;
156   case ARMII::IndexModePost:
157     break;
158   }
159 
160   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
161   // operation.
162   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
163   if (MemOpc == 0)
164     return nullptr;
165 
166   MachineInstr *UpdateMI = nullptr;
167   MachineInstr *MemMI = nullptr;
168   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
169   const MCInstrDesc &MCID = MI.getDesc();
170   unsigned NumOps = MCID.getNumOperands();
171   bool isLoad = !MI.mayStore();
172   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
173   const MachineOperand &Base = MI.getOperand(2);
174   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
175   Register WBReg = WB.getReg();
176   Register BaseReg = Base.getReg();
177   Register OffReg = Offset.getReg();
178   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
179   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
180   switch (AddrMode) {
181   default: llvm_unreachable("Unknown indexed op!");
182   case ARMII::AddrMode2: {
183     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
184     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
185     if (OffReg == 0) {
186       if (ARM_AM::getSOImmVal(Amt) == -1)
187         // Can't encode it in a so_imm operand. This transformation will
188         // add more than 1 instruction. Abandon!
189         return nullptr;
190       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
191                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
192                      .addReg(BaseReg)
193                      .addImm(Amt)
194                      .add(predOps(Pred))
195                      .add(condCodeOp());
196     } else if (Amt != 0) {
197       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
198       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
199       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
200                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
201                      .addReg(BaseReg)
202                      .addReg(OffReg)
203                      .addReg(0)
204                      .addImm(SOOpc)
205                      .add(predOps(Pred))
206                      .add(condCodeOp());
207     } else
208       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
209                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
210                      .addReg(BaseReg)
211                      .addReg(OffReg)
212                      .add(predOps(Pred))
213                      .add(condCodeOp());
214     break;
215   }
216   case ARMII::AddrMode3 : {
217     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
218     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
219     if (OffReg == 0)
220       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
222                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
223                      .addReg(BaseReg)
224                      .addImm(Amt)
225                      .add(predOps(Pred))
226                      .add(condCodeOp());
227     else
228       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
230                      .addReg(BaseReg)
231                      .addReg(OffReg)
232                      .add(predOps(Pred))
233                      .add(condCodeOp());
234     break;
235   }
236   }
237 
238   std::vector<MachineInstr*> NewMIs;
239   if (isPre) {
240     if (isLoad)
241       MemMI =
242           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
243               .addReg(WBReg)
244               .addImm(0)
245               .addImm(Pred);
246     else
247       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
248                   .addReg(MI.getOperand(1).getReg())
249                   .addReg(WBReg)
250                   .addReg(0)
251                   .addImm(0)
252                   .addImm(Pred);
253     NewMIs.push_back(MemMI);
254     NewMIs.push_back(UpdateMI);
255   } else {
256     if (isLoad)
257       MemMI =
258           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
259               .addReg(BaseReg)
260               .addImm(0)
261               .addImm(Pred);
262     else
263       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
264                   .addReg(MI.getOperand(1).getReg())
265                   .addReg(BaseReg)
266                   .addReg(0)
267                   .addImm(0)
268                   .addImm(Pred);
269     if (WB.isDead())
270       UpdateMI->getOperand(0).setIsDead();
271     NewMIs.push_back(UpdateMI);
272     NewMIs.push_back(MemMI);
273   }
274 
275   // Transfer LiveVariables states, kill / dead info.
276   if (LV) {
277     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
278       MachineOperand &MO = MI.getOperand(i);
279       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
280         Register Reg = MO.getReg();
281 
282         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
283         if (MO.isDef()) {
284           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
285           if (MO.isDead())
286             LV->addVirtualRegisterDead(Reg, *NewMI);
287         }
288         if (MO.isUse() && MO.isKill()) {
289           for (unsigned j = 0; j < 2; ++j) {
290             // Look at the two new MI's in reverse order.
291             MachineInstr *NewMI = NewMIs[j];
292             if (!NewMI->readsRegister(Reg))
293               continue;
294             LV->addVirtualRegisterKilled(Reg, *NewMI);
295             if (VI.removeKill(MI))
296               VI.Kills.push_back(NewMI);
297             break;
298           }
299         }
300       }
301     }
302   }
303 
304   MachineBasicBlock::iterator MBBI = MI.getIterator();
305   MFI->insert(MBBI, NewMIs[1]);
306   MFI->insert(MBBI, NewMIs[0]);
307   return NewMIs[0];
308 }
309 
310 // Branch analysis.
311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
312                                      MachineBasicBlock *&TBB,
313                                      MachineBasicBlock *&FBB,
314                                      SmallVectorImpl<MachineOperand> &Cond,
315                                      bool AllowModify) const {
316   TBB = nullptr;
317   FBB = nullptr;
318 
319   MachineBasicBlock::iterator I = MBB.end();
320   if (I == MBB.begin())
321     return false; // Empty blocks are easy.
322   --I;
323 
324   // Walk backwards from the end of the basic block until the branch is
325   // analyzed or we give up.
326   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
327     // Flag to be raised on unanalyzeable instructions. This is useful in cases
328     // where we want to clean up on the end of the basic block before we bail
329     // out.
330     bool CantAnalyze = false;
331 
332     // Skip over DEBUG values and predicated nonterminators.
333     while (I->isDebugInstr() || !I->isTerminator()) {
334       if (I == MBB.begin())
335         return false;
336       --I;
337     }
338 
339     if (isIndirectBranchOpcode(I->getOpcode()) ||
340         isJumpTableBranchOpcode(I->getOpcode())) {
341       // Indirect branches and jump tables can't be analyzed, but we still want
342       // to clean up any instructions at the tail of the basic block.
343       CantAnalyze = true;
344     } else if (isUncondBranchOpcode(I->getOpcode())) {
345       TBB = I->getOperand(0).getMBB();
346     } else if (isCondBranchOpcode(I->getOpcode())) {
347       // Bail out if we encounter multiple conditional branches.
348       if (!Cond.empty())
349         return true;
350 
351       assert(!FBB && "FBB should have been null.");
352       FBB = TBB;
353       TBB = I->getOperand(0).getMBB();
354       Cond.push_back(I->getOperand(1));
355       Cond.push_back(I->getOperand(2));
356     } else if (I->isReturn()) {
357       // Returns can't be analyzed, but we should run cleanup.
358       CantAnalyze = !isPredicated(*I);
359     } else {
360       // We encountered other unrecognized terminator. Bail out immediately.
361       return true;
362     }
363 
364     // Cleanup code - to be run for unpredicated unconditional branches and
365     //                returns.
366     if (!isPredicated(*I) &&
367           (isUncondBranchOpcode(I->getOpcode()) ||
368            isIndirectBranchOpcode(I->getOpcode()) ||
369            isJumpTableBranchOpcode(I->getOpcode()) ||
370            I->isReturn())) {
371       // Forget any previous condition branch information - it no longer applies.
372       Cond.clear();
373       FBB = nullptr;
374 
375       // If we can modify the function, delete everything below this
376       // unconditional branch.
377       if (AllowModify) {
378         MachineBasicBlock::iterator DI = std::next(I);
379         while (DI != MBB.end()) {
380           MachineInstr &InstToDelete = *DI;
381           ++DI;
382           InstToDelete.eraseFromParent();
383         }
384       }
385     }
386 
387     if (CantAnalyze)
388       return true;
389 
390     if (I == MBB.begin())
391       return false;
392 
393     --I;
394   }
395 
396   // We made it past the terminators without bailing out - we must have
397   // analyzed this branch successfully.
398   return false;
399 }
400 
401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
402                                         int *BytesRemoved) const {
403   assert(!BytesRemoved && "code size not handled");
404 
405   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
406   if (I == MBB.end())
407     return 0;
408 
409   if (!isUncondBranchOpcode(I->getOpcode()) &&
410       !isCondBranchOpcode(I->getOpcode()))
411     return 0;
412 
413   // Remove the branch.
414   I->eraseFromParent();
415 
416   I = MBB.end();
417 
418   if (I == MBB.begin()) return 1;
419   --I;
420   if (!isCondBranchOpcode(I->getOpcode()))
421     return 1;
422 
423   // Remove the branch.
424   I->eraseFromParent();
425   return 2;
426 }
427 
428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
429                                         MachineBasicBlock *TBB,
430                                         MachineBasicBlock *FBB,
431                                         ArrayRef<MachineOperand> Cond,
432                                         const DebugLoc &DL,
433                                         int *BytesAdded) const {
434   assert(!BytesAdded && "code size not handled");
435   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
436   int BOpc   = !AFI->isThumbFunction()
437     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
438   int BccOpc = !AFI->isThumbFunction()
439     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
440   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
441 
442   // Shouldn't be a fall through.
443   assert(TBB && "insertBranch must not be told to insert a fallthrough");
444   assert((Cond.size() == 2 || Cond.size() == 0) &&
445          "ARM branch conditions have two components!");
446 
447   // For conditional branches, we use addOperand to preserve CPSR flags.
448 
449   if (!FBB) {
450     if (Cond.empty()) { // Unconditional branch?
451       if (isThumb)
452         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
453       else
454         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
455     } else
456       BuildMI(&MBB, DL, get(BccOpc))
457           .addMBB(TBB)
458           .addImm(Cond[0].getImm())
459           .add(Cond[1]);
460     return 1;
461   }
462 
463   // Two-way conditional branch.
464   BuildMI(&MBB, DL, get(BccOpc))
465       .addMBB(TBB)
466       .addImm(Cond[0].getImm())
467       .add(Cond[1]);
468   if (isThumb)
469     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
470   else
471     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
472   return 2;
473 }
474 
475 bool ARMBaseInstrInfo::
476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
478   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
479   return false;
480 }
481 
482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
483   if (MI.isBundle()) {
484     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
485     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
486     while (++I != E && I->isInsideBundle()) {
487       int PIdx = I->findFirstPredOperandIdx();
488       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
489         return true;
490     }
491     return false;
492   }
493 
494   int PIdx = MI.findFirstPredOperandIdx();
495   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
496 }
497 
498 bool ARMBaseInstrInfo::PredicateInstruction(
499     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
500   unsigned Opc = MI.getOpcode();
501   if (isUncondBranchOpcode(Opc)) {
502     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
503     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
504       .addImm(Pred[0].getImm())
505       .addReg(Pred[1].getReg());
506     return true;
507   }
508 
509   int PIdx = MI.findFirstPredOperandIdx();
510   if (PIdx != -1) {
511     MachineOperand &PMO = MI.getOperand(PIdx);
512     PMO.setImm(Pred[0].getImm());
513     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
514     return true;
515   }
516   return false;
517 }
518 
519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
520                                          ArrayRef<MachineOperand> Pred2) const {
521   if (Pred1.size() > 2 || Pred2.size() > 2)
522     return false;
523 
524   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
525   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
526   if (CC1 == CC2)
527     return true;
528 
529   switch (CC1) {
530   default:
531     return false;
532   case ARMCC::AL:
533     return true;
534   case ARMCC::HS:
535     return CC2 == ARMCC::HI;
536   case ARMCC::LS:
537     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
538   case ARMCC::GE:
539     return CC2 == ARMCC::GT;
540   case ARMCC::LE:
541     return CC2 == ARMCC::LT;
542   }
543 }
544 
545 bool ARMBaseInstrInfo::DefinesPredicate(
546     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
547   bool Found = false;
548   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
549     const MachineOperand &MO = MI.getOperand(i);
550     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
551         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
552       Pred.push_back(MO);
553       Found = true;
554     }
555   }
556 
557   return Found;
558 }
559 
560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
561   for (const auto &MO : MI.operands())
562     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
563       return true;
564   return false;
565 }
566 
567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
568                                         unsigned Op) const {
569   const MachineOperand &Offset = MI.getOperand(Op + 1);
570   return Offset.getReg() != 0;
571 }
572 
573 // Load with negative register offset requires additional 1cyc and +I unit
574 // for Cortex A57
575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
576                                              unsigned Op) const {
577   const MachineOperand &Offset = MI.getOperand(Op + 1);
578   const MachineOperand &Opc = MI.getOperand(Op + 2);
579   assert(Opc.isImm());
580   assert(Offset.isReg());
581   int64_t OpcImm = Opc.getImm();
582 
583   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
584   return (isSub && Offset.getReg() != 0);
585 }
586 
587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
588                                        unsigned Op) const {
589   const MachineOperand &Opc = MI.getOperand(Op + 2);
590   unsigned OffImm = Opc.getImm();
591   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
592 }
593 
594 // Load, scaled register offset, not plus LSL2
595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
596                                                   unsigned Op) const {
597   const MachineOperand &Opc = MI.getOperand(Op + 2);
598   unsigned OffImm = Opc.getImm();
599 
600   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
601   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
602   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
603   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
604   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
605   return !SimpleScaled;
606 }
607 
608 // Minus reg for ldstso addr mode
609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
610                                         unsigned Op) const {
611   unsigned OffImm = MI.getOperand(Op + 2).getImm();
612   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
613 }
614 
615 // Load, scaled register offset
616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
617                                       unsigned Op) const {
618   unsigned OffImm = MI.getOperand(Op + 2).getImm();
619   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
620 }
621 
622 static bool isEligibleForITBlock(const MachineInstr *MI) {
623   switch (MI->getOpcode()) {
624   default: return true;
625   case ARM::tADC:   // ADC (register) T1
626   case ARM::tADDi3: // ADD (immediate) T1
627   case ARM::tADDi8: // ADD (immediate) T2
628   case ARM::tADDrr: // ADD (register) T1
629   case ARM::tAND:   // AND (register) T1
630   case ARM::tASRri: // ASR (immediate) T1
631   case ARM::tASRrr: // ASR (register) T1
632   case ARM::tBIC:   // BIC (register) T1
633   case ARM::tEOR:   // EOR (register) T1
634   case ARM::tLSLri: // LSL (immediate) T1
635   case ARM::tLSLrr: // LSL (register) T1
636   case ARM::tLSRri: // LSR (immediate) T1
637   case ARM::tLSRrr: // LSR (register) T1
638   case ARM::tMUL:   // MUL T1
639   case ARM::tMVN:   // MVN (register) T1
640   case ARM::tORR:   // ORR (register) T1
641   case ARM::tROR:   // ROR (register) T1
642   case ARM::tRSB:   // RSB (immediate) T1
643   case ARM::tSBC:   // SBC (register) T1
644   case ARM::tSUBi3: // SUB (immediate) T1
645   case ARM::tSUBi8: // SUB (immediate) T2
646   case ARM::tSUBrr: // SUB (register) T1
647     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
648   }
649 }
650 
651 /// isPredicable - Return true if the specified instruction can be predicated.
652 /// By default, this returns true for every instruction with a
653 /// PredicateOperand.
654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
655   if (!MI.isPredicable())
656     return false;
657 
658   if (MI.isBundle())
659     return false;
660 
661   if (!isEligibleForITBlock(&MI))
662     return false;
663 
664   const ARMFunctionInfo *AFI =
665       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
666 
667   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
668   // In their ARM encoding, they can't be encoded in a conditional form.
669   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
670     return false;
671 
672   if (AFI->isThumb2Function()) {
673     if (getSubtarget().restrictIT())
674       return isV8EligibleForIT(&MI);
675   }
676 
677   return true;
678 }
679 
680 namespace llvm {
681 
682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
683   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
684     const MachineOperand &MO = MI->getOperand(i);
685     if (!MO.isReg() || MO.isUndef() || MO.isUse())
686       continue;
687     if (MO.getReg() != ARM::CPSR)
688       continue;
689     if (!MO.isDead())
690       return false;
691   }
692   // all definitions of CPSR are dead
693   return true;
694 }
695 
696 } // end namespace llvm
697 
698 /// GetInstSize - Return the size of the specified MachineInstr.
699 ///
700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
701   const MachineBasicBlock &MBB = *MI.getParent();
702   const MachineFunction *MF = MBB.getParent();
703   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
704 
705   const MCInstrDesc &MCID = MI.getDesc();
706   if (MCID.getSize())
707     return MCID.getSize();
708 
709   switch (MI.getOpcode()) {
710   default:
711     // pseudo-instruction sizes are zero.
712     return 0;
713   case TargetOpcode::BUNDLE:
714     return getInstBundleLength(MI);
715   case ARM::MOVi16_ga_pcrel:
716   case ARM::MOVTi16_ga_pcrel:
717   case ARM::t2MOVi16_ga_pcrel:
718   case ARM::t2MOVTi16_ga_pcrel:
719     return 4;
720   case ARM::MOVi32imm:
721   case ARM::t2MOVi32imm:
722     return 8;
723   case ARM::CONSTPOOL_ENTRY:
724   case ARM::JUMPTABLE_INSTS:
725   case ARM::JUMPTABLE_ADDRS:
726   case ARM::JUMPTABLE_TBB:
727   case ARM::JUMPTABLE_TBH:
728     // If this machine instr is a constant pool entry, its size is recorded as
729     // operand #2.
730     return MI.getOperand(2).getImm();
731   case ARM::Int_eh_sjlj_longjmp:
732     return 16;
733   case ARM::tInt_eh_sjlj_longjmp:
734     return 10;
735   case ARM::tInt_WIN_eh_sjlj_longjmp:
736     return 12;
737   case ARM::Int_eh_sjlj_setjmp:
738   case ARM::Int_eh_sjlj_setjmp_nofp:
739     return 20;
740   case ARM::tInt_eh_sjlj_setjmp:
741   case ARM::t2Int_eh_sjlj_setjmp:
742   case ARM::t2Int_eh_sjlj_setjmp_nofp:
743     return 12;
744   case ARM::SPACE:
745     return MI.getOperand(1).getImm();
746   case ARM::INLINEASM:
747   case ARM::INLINEASM_BR: {
748     // If this machine instr is an inline asm, measure it.
749     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
750     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
751       Size = alignTo(Size, 4);
752     return Size;
753   }
754   }
755 }
756 
757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
758   unsigned Size = 0;
759   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
760   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
761   while (++I != E && I->isInsideBundle()) {
762     assert(!I->isBundle() && "No nested bundle!");
763     Size += getInstSizeInBytes(*I);
764   }
765   return Size;
766 }
767 
768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
769                                     MachineBasicBlock::iterator I,
770                                     unsigned DestReg, bool KillSrc,
771                                     const ARMSubtarget &Subtarget) const {
772   unsigned Opc = Subtarget.isThumb()
773                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
774                      : ARM::MRS;
775 
776   MachineInstrBuilder MIB =
777       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
778 
779   // There is only 1 A/R class MRS instruction, and it always refers to
780   // APSR. However, there are lots of other possibilities on M-class cores.
781   if (Subtarget.isMClass())
782     MIB.addImm(0x800);
783 
784   MIB.add(predOps(ARMCC::AL))
785      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
786 }
787 
788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
789                                   MachineBasicBlock::iterator I,
790                                   unsigned SrcReg, bool KillSrc,
791                                   const ARMSubtarget &Subtarget) const {
792   unsigned Opc = Subtarget.isThumb()
793                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
794                      : ARM::MSR;
795 
796   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
797 
798   if (Subtarget.isMClass())
799     MIB.addImm(0x800);
800   else
801     MIB.addImm(8);
802 
803   MIB.addReg(SrcReg, getKillRegState(KillSrc))
804      .add(predOps(ARMCC::AL))
805      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
806 }
807 
808 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
809   MIB.addImm(ARMVCC::None);
810   MIB.addReg(0);
811 }
812 
813 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
814                                       unsigned DestReg) {
815   addUnpredicatedMveVpredNOp(MIB);
816   MIB.addReg(DestReg, RegState::Undef);
817 }
818 
819 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
820   MIB.addImm(Cond);
821   MIB.addReg(ARM::VPR, RegState::Implicit);
822 }
823 
824 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
825                                     unsigned Cond, unsigned Inactive) {
826   addPredicatedMveVpredNOp(MIB, Cond);
827   MIB.addReg(Inactive);
828 }
829 
830 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
831                                    MachineBasicBlock::iterator I,
832                                    const DebugLoc &DL, unsigned DestReg,
833                                    unsigned SrcReg, bool KillSrc) const {
834   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
835   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
836 
837   if (GPRDest && GPRSrc) {
838     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
839         .addReg(SrcReg, getKillRegState(KillSrc))
840         .add(predOps(ARMCC::AL))
841         .add(condCodeOp());
842     return;
843   }
844 
845   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
846   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
847 
848   unsigned Opc = 0;
849   if (SPRDest && SPRSrc)
850     Opc = ARM::VMOVS;
851   else if (GPRDest && SPRSrc)
852     Opc = ARM::VMOVRS;
853   else if (SPRDest && GPRSrc)
854     Opc = ARM::VMOVSR;
855   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
856     Opc = ARM::VMOVD;
857   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
858     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
859 
860   if (Opc) {
861     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
862     MIB.addReg(SrcReg, getKillRegState(KillSrc));
863     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
864       MIB.addReg(SrcReg, getKillRegState(KillSrc));
865     if (Opc == ARM::MVE_VORR)
866       addUnpredicatedMveVpredROp(MIB, DestReg);
867     else
868       MIB.add(predOps(ARMCC::AL));
869     return;
870   }
871 
872   // Handle register classes that require multiple instructions.
873   unsigned BeginIdx = 0;
874   unsigned SubRegs = 0;
875   int Spacing = 1;
876 
877   // Use VORRq when possible.
878   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
879     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
880     BeginIdx = ARM::qsub_0;
881     SubRegs = 2;
882   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
883     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
884     BeginIdx = ARM::qsub_0;
885     SubRegs = 4;
886   // Fall back to VMOVD.
887   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
888     Opc = ARM::VMOVD;
889     BeginIdx = ARM::dsub_0;
890     SubRegs = 2;
891   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
892     Opc = ARM::VMOVD;
893     BeginIdx = ARM::dsub_0;
894     SubRegs = 3;
895   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
896     Opc = ARM::VMOVD;
897     BeginIdx = ARM::dsub_0;
898     SubRegs = 4;
899   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
900     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
901     BeginIdx = ARM::gsub_0;
902     SubRegs = 2;
903   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
904     Opc = ARM::VMOVD;
905     BeginIdx = ARM::dsub_0;
906     SubRegs = 2;
907     Spacing = 2;
908   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
909     Opc = ARM::VMOVD;
910     BeginIdx = ARM::dsub_0;
911     SubRegs = 3;
912     Spacing = 2;
913   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
914     Opc = ARM::VMOVD;
915     BeginIdx = ARM::dsub_0;
916     SubRegs = 4;
917     Spacing = 2;
918   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
919              !Subtarget.hasFP64()) {
920     Opc = ARM::VMOVS;
921     BeginIdx = ARM::ssub_0;
922     SubRegs = 2;
923   } else if (SrcReg == ARM::CPSR) {
924     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
925     return;
926   } else if (DestReg == ARM::CPSR) {
927     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
928     return;
929   } else if (DestReg == ARM::VPR) {
930     assert(ARM::GPRRegClass.contains(SrcReg));
931     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
932         .addReg(SrcReg, getKillRegState(KillSrc))
933         .add(predOps(ARMCC::AL));
934     return;
935   } else if (SrcReg == ARM::VPR) {
936     assert(ARM::GPRRegClass.contains(DestReg));
937     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
938         .addReg(SrcReg, getKillRegState(KillSrc))
939         .add(predOps(ARMCC::AL));
940     return;
941   } else if (DestReg == ARM::FPSCR_NZCV) {
942     assert(ARM::GPRRegClass.contains(SrcReg));
943     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
944         .addReg(SrcReg, getKillRegState(KillSrc))
945         .add(predOps(ARMCC::AL));
946     return;
947   } else if (SrcReg == ARM::FPSCR_NZCV) {
948     assert(ARM::GPRRegClass.contains(DestReg));
949     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
950         .addReg(SrcReg, getKillRegState(KillSrc))
951         .add(predOps(ARMCC::AL));
952     return;
953   }
954 
955   assert(Opc && "Impossible reg-to-reg copy");
956 
957   const TargetRegisterInfo *TRI = &getRegisterInfo();
958   MachineInstrBuilder Mov;
959 
960   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
961   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
962     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
963     Spacing = -Spacing;
964   }
965 #ifndef NDEBUG
966   SmallSet<unsigned, 4> DstRegs;
967 #endif
968   for (unsigned i = 0; i != SubRegs; ++i) {
969     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
970     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
971     assert(Dst && Src && "Bad sub-register");
972 #ifndef NDEBUG
973     assert(!DstRegs.count(Src) && "destructive vector copy");
974     DstRegs.insert(Dst);
975 #endif
976     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
977     // VORR (NEON or MVE) takes two source operands.
978     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
979       Mov.addReg(Src);
980     }
981     // MVE VORR takes predicate operands in place of an ordinary condition.
982     if (Opc == ARM::MVE_VORR)
983       addUnpredicatedMveVpredROp(Mov, Dst);
984     else
985       Mov = Mov.add(predOps(ARMCC::AL));
986     // MOVr can set CC.
987     if (Opc == ARM::MOVr)
988       Mov = Mov.add(condCodeOp());
989   }
990   // Add implicit super-register defs and kills to the last instruction.
991   Mov->addRegisterDefined(DestReg, TRI);
992   if (KillSrc)
993     Mov->addRegisterKilled(SrcReg, TRI);
994 }
995 
996 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI,
997                                        const MachineOperand *&Src,
998                                        const MachineOperand *&Dest) const {
999   // VMOVRRD is also a copy instruction but it requires
1000   // special way of handling. It is more complex copy version
1001   // and since that we are not considering it. For recognition
1002   // of such instruction isExtractSubregLike MI interface fuction
1003   // could be used.
1004   // VORRq is considered as a move only if two inputs are
1005   // the same register.
1006   if (!MI.isMoveReg() ||
1007       (MI.getOpcode() == ARM::VORRq &&
1008        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1009     return false;
1010   Dest = &MI.getOperand(0);
1011   Src = &MI.getOperand(1);
1012   return true;
1013 }
1014 
1015 const MachineInstrBuilder &
1016 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1017                           unsigned SubIdx, unsigned State,
1018                           const TargetRegisterInfo *TRI) const {
1019   if (!SubIdx)
1020     return MIB.addReg(Reg, State);
1021 
1022   if (Register::isPhysicalRegister(Reg))
1023     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1024   return MIB.addReg(Reg, State, SubIdx);
1025 }
1026 
1027 void ARMBaseInstrInfo::
1028 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1029                     unsigned SrcReg, bool isKill, int FI,
1030                     const TargetRegisterClass *RC,
1031                     const TargetRegisterInfo *TRI) const {
1032   MachineFunction &MF = *MBB.getParent();
1033   MachineFrameInfo &MFI = MF.getFrameInfo();
1034   unsigned Align = MFI.getObjectAlignment(FI);
1035 
1036   MachineMemOperand *MMO = MF.getMachineMemOperand(
1037       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1038       MFI.getObjectSize(FI), Align);
1039 
1040   switch (TRI->getSpillSize(*RC)) {
1041     case 2:
1042       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1043         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1044             .addReg(SrcReg, getKillRegState(isKill))
1045             .addFrameIndex(FI)
1046             .addImm(0)
1047             .addMemOperand(MMO)
1048             .add(predOps(ARMCC::AL));
1049       } else
1050         llvm_unreachable("Unknown reg class!");
1051       break;
1052     case 4:
1053       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1054         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1055             .addReg(SrcReg, getKillRegState(isKill))
1056             .addFrameIndex(FI)
1057             .addImm(0)
1058             .addMemOperand(MMO)
1059             .add(predOps(ARMCC::AL));
1060       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1061         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1062             .addReg(SrcReg, getKillRegState(isKill))
1063             .addFrameIndex(FI)
1064             .addImm(0)
1065             .addMemOperand(MMO)
1066             .add(predOps(ARMCC::AL));
1067       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1068         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1069             .addReg(SrcReg, getKillRegState(isKill))
1070             .addFrameIndex(FI)
1071             .addImm(0)
1072             .addMemOperand(MMO)
1073             .add(predOps(ARMCC::AL));
1074       } else
1075         llvm_unreachable("Unknown reg class!");
1076       break;
1077     case 8:
1078       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1079         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1080             .addReg(SrcReg, getKillRegState(isKill))
1081             .addFrameIndex(FI)
1082             .addImm(0)
1083             .addMemOperand(MMO)
1084             .add(predOps(ARMCC::AL));
1085       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1086         if (Subtarget.hasV5TEOps()) {
1087           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1088           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1089           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1090           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1091              .add(predOps(ARMCC::AL));
1092         } else {
1093           // Fallback to STM instruction, which has existed since the dawn of
1094           // time.
1095           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1096                                         .addFrameIndex(FI)
1097                                         .addMemOperand(MMO)
1098                                         .add(predOps(ARMCC::AL));
1099           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1100           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1101         }
1102       } else
1103         llvm_unreachable("Unknown reg class!");
1104       break;
1105     case 16:
1106       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1107         // Use aligned spills if the stack can be realigned.
1108         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1109           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1110               .addFrameIndex(FI)
1111               .addImm(16)
1112               .addReg(SrcReg, getKillRegState(isKill))
1113               .addMemOperand(MMO)
1114               .add(predOps(ARMCC::AL));
1115         } else {
1116           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1117               .addReg(SrcReg, getKillRegState(isKill))
1118               .addFrameIndex(FI)
1119               .addMemOperand(MMO)
1120               .add(predOps(ARMCC::AL));
1121         }
1122       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1123                  Subtarget.hasMVEIntegerOps()) {
1124         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1125         MIB.addReg(SrcReg, getKillRegState(isKill))
1126           .addFrameIndex(FI)
1127           .addImm(0)
1128           .addMemOperand(MMO);
1129         addUnpredicatedMveVpredNOp(MIB);
1130       } else
1131         llvm_unreachable("Unknown reg class!");
1132       break;
1133     case 24:
1134       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1135         // Use aligned spills if the stack can be realigned.
1136         if (Align >= 16 && getRegisterInfo().canRealignStack(MF) &&
1137             Subtarget.hasNEON()) {
1138           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1139               .addFrameIndex(FI)
1140               .addImm(16)
1141               .addReg(SrcReg, getKillRegState(isKill))
1142               .addMemOperand(MMO)
1143               .add(predOps(ARMCC::AL));
1144         } else {
1145           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1146                                             get(ARM::VSTMDIA))
1147                                         .addFrameIndex(FI)
1148                                         .add(predOps(ARMCC::AL))
1149                                         .addMemOperand(MMO);
1150           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1151           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1152           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1153         }
1154       } else
1155         llvm_unreachable("Unknown reg class!");
1156       break;
1157     case 32:
1158       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1159         if (Align >= 16 && getRegisterInfo().canRealignStack(MF) &&
1160             Subtarget.hasNEON()) {
1161           // FIXME: It's possible to only store part of the QQ register if the
1162           // spilled def has a sub-register index.
1163           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1164               .addFrameIndex(FI)
1165               .addImm(16)
1166               .addReg(SrcReg, getKillRegState(isKill))
1167               .addMemOperand(MMO)
1168               .add(predOps(ARMCC::AL));
1169         } else {
1170           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1171                                             get(ARM::VSTMDIA))
1172                                         .addFrameIndex(FI)
1173                                         .add(predOps(ARMCC::AL))
1174                                         .addMemOperand(MMO);
1175           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1176           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1177           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1178                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1179         }
1180       } else
1181         llvm_unreachable("Unknown reg class!");
1182       break;
1183     case 64:
1184       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1185         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1186                                       .addFrameIndex(FI)
1187                                       .add(predOps(ARMCC::AL))
1188                                       .addMemOperand(MMO);
1189         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1190         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1191         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1192         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1193         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1194         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1195         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1196               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1197       } else
1198         llvm_unreachable("Unknown reg class!");
1199       break;
1200     default:
1201       llvm_unreachable("Unknown reg class!");
1202   }
1203 }
1204 
1205 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1206                                               int &FrameIndex) const {
1207   switch (MI.getOpcode()) {
1208   default: break;
1209   case ARM::STRrs:
1210   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1211     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1212         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1213         MI.getOperand(3).getImm() == 0) {
1214       FrameIndex = MI.getOperand(1).getIndex();
1215       return MI.getOperand(0).getReg();
1216     }
1217     break;
1218   case ARM::STRi12:
1219   case ARM::t2STRi12:
1220   case ARM::tSTRspi:
1221   case ARM::VSTRD:
1222   case ARM::VSTRS:
1223     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1224         MI.getOperand(2).getImm() == 0) {
1225       FrameIndex = MI.getOperand(1).getIndex();
1226       return MI.getOperand(0).getReg();
1227     }
1228     break;
1229   case ARM::VSTR_P0_off:
1230     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1231         MI.getOperand(1).getImm() == 0) {
1232       FrameIndex = MI.getOperand(0).getIndex();
1233       return ARM::P0;
1234     }
1235     break;
1236   case ARM::VST1q64:
1237   case ARM::VST1d64TPseudo:
1238   case ARM::VST1d64QPseudo:
1239     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1240       FrameIndex = MI.getOperand(0).getIndex();
1241       return MI.getOperand(2).getReg();
1242     }
1243     break;
1244   case ARM::VSTMQIA:
1245     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1246       FrameIndex = MI.getOperand(1).getIndex();
1247       return MI.getOperand(0).getReg();
1248     }
1249     break;
1250   }
1251 
1252   return 0;
1253 }
1254 
1255 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1256                                                     int &FrameIndex) const {
1257   SmallVector<const MachineMemOperand *, 1> Accesses;
1258   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1259       Accesses.size() == 1) {
1260     FrameIndex =
1261         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1262             ->getFrameIndex();
1263     return true;
1264   }
1265   return false;
1266 }
1267 
1268 void ARMBaseInstrInfo::
1269 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1270                      unsigned DestReg, int FI,
1271                      const TargetRegisterClass *RC,
1272                      const TargetRegisterInfo *TRI) const {
1273   DebugLoc DL;
1274   if (I != MBB.end()) DL = I->getDebugLoc();
1275   MachineFunction &MF = *MBB.getParent();
1276   MachineFrameInfo &MFI = MF.getFrameInfo();
1277   unsigned Align = MFI.getObjectAlignment(FI);
1278   MachineMemOperand *MMO = MF.getMachineMemOperand(
1279       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1280       MFI.getObjectSize(FI), Align);
1281 
1282   switch (TRI->getSpillSize(*RC)) {
1283   case 2:
1284     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1285       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1286           .addFrameIndex(FI)
1287           .addImm(0)
1288           .addMemOperand(MMO)
1289           .add(predOps(ARMCC::AL));
1290     } else
1291       llvm_unreachable("Unknown reg class!");
1292     break;
1293   case 4:
1294     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1295       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1296           .addFrameIndex(FI)
1297           .addImm(0)
1298           .addMemOperand(MMO)
1299           .add(predOps(ARMCC::AL));
1300     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1301       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1302           .addFrameIndex(FI)
1303           .addImm(0)
1304           .addMemOperand(MMO)
1305           .add(predOps(ARMCC::AL));
1306     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1307       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1308           .addFrameIndex(FI)
1309           .addImm(0)
1310           .addMemOperand(MMO)
1311           .add(predOps(ARMCC::AL));
1312     } else
1313       llvm_unreachable("Unknown reg class!");
1314     break;
1315   case 8:
1316     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1317       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1318           .addFrameIndex(FI)
1319           .addImm(0)
1320           .addMemOperand(MMO)
1321           .add(predOps(ARMCC::AL));
1322     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1323       MachineInstrBuilder MIB;
1324 
1325       if (Subtarget.hasV5TEOps()) {
1326         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1327         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1328         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1329         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1330            .add(predOps(ARMCC::AL));
1331       } else {
1332         // Fallback to LDM instruction, which has existed since the dawn of
1333         // time.
1334         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1335                   .addFrameIndex(FI)
1336                   .addMemOperand(MMO)
1337                   .add(predOps(ARMCC::AL));
1338         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1339         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1340       }
1341 
1342       if (Register::isPhysicalRegister(DestReg))
1343         MIB.addReg(DestReg, RegState::ImplicitDefine);
1344     } else
1345       llvm_unreachable("Unknown reg class!");
1346     break;
1347   case 16:
1348     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1349       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1350         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1351             .addFrameIndex(FI)
1352             .addImm(16)
1353             .addMemOperand(MMO)
1354             .add(predOps(ARMCC::AL));
1355       } else {
1356         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1357             .addFrameIndex(FI)
1358             .addMemOperand(MMO)
1359             .add(predOps(ARMCC::AL));
1360       }
1361     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1362                Subtarget.hasMVEIntegerOps()) {
1363       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1364       MIB.addFrameIndex(FI)
1365         .addImm(0)
1366         .addMemOperand(MMO);
1367       addUnpredicatedMveVpredNOp(MIB);
1368     } else
1369       llvm_unreachable("Unknown reg class!");
1370     break;
1371   case 24:
1372     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1373       if (Align >= 16 && getRegisterInfo().canRealignStack(MF) &&
1374           Subtarget.hasNEON()) {
1375         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1376             .addFrameIndex(FI)
1377             .addImm(16)
1378             .addMemOperand(MMO)
1379             .add(predOps(ARMCC::AL));
1380       } else {
1381         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1382                                       .addFrameIndex(FI)
1383                                       .addMemOperand(MMO)
1384                                       .add(predOps(ARMCC::AL));
1385         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1386         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1387         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1388         if (Register::isPhysicalRegister(DestReg))
1389           MIB.addReg(DestReg, RegState::ImplicitDefine);
1390       }
1391     } else
1392       llvm_unreachable("Unknown reg class!");
1393     break;
1394    case 32:
1395     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1396       if (Align >= 16 && getRegisterInfo().canRealignStack(MF) &&
1397           Subtarget.hasNEON()) {
1398         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1399             .addFrameIndex(FI)
1400             .addImm(16)
1401             .addMemOperand(MMO)
1402             .add(predOps(ARMCC::AL));
1403       } else {
1404         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1405                                       .addFrameIndex(FI)
1406                                       .add(predOps(ARMCC::AL))
1407                                       .addMemOperand(MMO);
1408         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1409         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1410         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1411         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1412         if (Register::isPhysicalRegister(DestReg))
1413           MIB.addReg(DestReg, RegState::ImplicitDefine);
1414       }
1415     } else
1416       llvm_unreachable("Unknown reg class!");
1417     break;
1418   case 64:
1419     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1420       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1421                                     .addFrameIndex(FI)
1422                                     .add(predOps(ARMCC::AL))
1423                                     .addMemOperand(MMO);
1424       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1425       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1426       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1427       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1428       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1429       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1430       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1431       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1432       if (Register::isPhysicalRegister(DestReg))
1433         MIB.addReg(DestReg, RegState::ImplicitDefine);
1434     } else
1435       llvm_unreachable("Unknown reg class!");
1436     break;
1437   default:
1438     llvm_unreachable("Unknown regclass!");
1439   }
1440 }
1441 
1442 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1443                                                int &FrameIndex) const {
1444   switch (MI.getOpcode()) {
1445   default: break;
1446   case ARM::LDRrs:
1447   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1448     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1449         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1450         MI.getOperand(3).getImm() == 0) {
1451       FrameIndex = MI.getOperand(1).getIndex();
1452       return MI.getOperand(0).getReg();
1453     }
1454     break;
1455   case ARM::LDRi12:
1456   case ARM::t2LDRi12:
1457   case ARM::tLDRspi:
1458   case ARM::VLDRD:
1459   case ARM::VLDRS:
1460     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1461         MI.getOperand(2).getImm() == 0) {
1462       FrameIndex = MI.getOperand(1).getIndex();
1463       return MI.getOperand(0).getReg();
1464     }
1465     break;
1466   case ARM::VLDR_P0_off:
1467     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1468         MI.getOperand(1).getImm() == 0) {
1469       FrameIndex = MI.getOperand(0).getIndex();
1470       return ARM::P0;
1471     }
1472     break;
1473   case ARM::VLD1q64:
1474   case ARM::VLD1d8TPseudo:
1475   case ARM::VLD1d16TPseudo:
1476   case ARM::VLD1d32TPseudo:
1477   case ARM::VLD1d64TPseudo:
1478   case ARM::VLD1d8QPseudo:
1479   case ARM::VLD1d16QPseudo:
1480   case ARM::VLD1d32QPseudo:
1481   case ARM::VLD1d64QPseudo:
1482     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1483       FrameIndex = MI.getOperand(1).getIndex();
1484       return MI.getOperand(0).getReg();
1485     }
1486     break;
1487   case ARM::VLDMQIA:
1488     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1489       FrameIndex = MI.getOperand(1).getIndex();
1490       return MI.getOperand(0).getReg();
1491     }
1492     break;
1493   }
1494 
1495   return 0;
1496 }
1497 
1498 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1499                                                      int &FrameIndex) const {
1500   SmallVector<const MachineMemOperand *, 1> Accesses;
1501   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1502       Accesses.size() == 1) {
1503     FrameIndex =
1504         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1505             ->getFrameIndex();
1506     return true;
1507   }
1508   return false;
1509 }
1510 
1511 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1512 /// depending on whether the result is used.
1513 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1514   bool isThumb1 = Subtarget.isThumb1Only();
1515   bool isThumb2 = Subtarget.isThumb2();
1516   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1517 
1518   DebugLoc dl = MI->getDebugLoc();
1519   MachineBasicBlock *BB = MI->getParent();
1520 
1521   MachineInstrBuilder LDM, STM;
1522   if (isThumb1 || !MI->getOperand(1).isDead()) {
1523     MachineOperand LDWb(MI->getOperand(1));
1524     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1525                                                  : isThumb1 ? ARM::tLDMIA_UPD
1526                                                             : ARM::LDMIA_UPD))
1527               .add(LDWb);
1528   } else {
1529     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1530   }
1531 
1532   if (isThumb1 || !MI->getOperand(0).isDead()) {
1533     MachineOperand STWb(MI->getOperand(0));
1534     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1535                                                  : isThumb1 ? ARM::tSTMIA_UPD
1536                                                             : ARM::STMIA_UPD))
1537               .add(STWb);
1538   } else {
1539     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1540   }
1541 
1542   MachineOperand LDBase(MI->getOperand(3));
1543   LDM.add(LDBase).add(predOps(ARMCC::AL));
1544 
1545   MachineOperand STBase(MI->getOperand(2));
1546   STM.add(STBase).add(predOps(ARMCC::AL));
1547 
1548   // Sort the scratch registers into ascending order.
1549   const TargetRegisterInfo &TRI = getRegisterInfo();
1550   SmallVector<unsigned, 6> ScratchRegs;
1551   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1552     ScratchRegs.push_back(MI->getOperand(I).getReg());
1553   llvm::sort(ScratchRegs,
1554              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1555                return TRI.getEncodingValue(Reg1) <
1556                       TRI.getEncodingValue(Reg2);
1557              });
1558 
1559   for (const auto &Reg : ScratchRegs) {
1560     LDM.addReg(Reg, RegState::Define);
1561     STM.addReg(Reg, RegState::Kill);
1562   }
1563 
1564   BB->erase(MI);
1565 }
1566 
1567 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1568   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1569     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1570            "LOAD_STACK_GUARD currently supported only for MachO.");
1571     expandLoadStackGuard(MI);
1572     MI.getParent()->erase(MI);
1573     return true;
1574   }
1575 
1576   if (MI.getOpcode() == ARM::MEMCPY) {
1577     expandMEMCPY(MI);
1578     return true;
1579   }
1580 
1581   // This hook gets to expand COPY instructions before they become
1582   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1583   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1584   // changed into a VORR that can go down the NEON pipeline.
1585   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1586     return false;
1587 
1588   // Look for a copy between even S-registers.  That is where we keep floats
1589   // when using NEON v2f32 instructions for f32 arithmetic.
1590   Register DstRegS = MI.getOperand(0).getReg();
1591   Register SrcRegS = MI.getOperand(1).getReg();
1592   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1593     return false;
1594 
1595   const TargetRegisterInfo *TRI = &getRegisterInfo();
1596   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1597                                               &ARM::DPRRegClass);
1598   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1599                                               &ARM::DPRRegClass);
1600   if (!DstRegD || !SrcRegD)
1601     return false;
1602 
1603   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1604   // legal if the COPY already defines the full DstRegD, and it isn't a
1605   // sub-register insertion.
1606   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1607     return false;
1608 
1609   // A dead copy shouldn't show up here, but reject it just in case.
1610   if (MI.getOperand(0).isDead())
1611     return false;
1612 
1613   // All clear, widen the COPY.
1614   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1615   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1616 
1617   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1618   // or some other super-register.
1619   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1620   if (ImpDefIdx != -1)
1621     MI.RemoveOperand(ImpDefIdx);
1622 
1623   // Change the opcode and operands.
1624   MI.setDesc(get(ARM::VMOVD));
1625   MI.getOperand(0).setReg(DstRegD);
1626   MI.getOperand(1).setReg(SrcRegD);
1627   MIB.add(predOps(ARMCC::AL));
1628 
1629   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1630   // register scavenger and machine verifier, so we need to indicate that we
1631   // are reading an undefined value from SrcRegD, but a proper value from
1632   // SrcRegS.
1633   MI.getOperand(1).setIsUndef();
1634   MIB.addReg(SrcRegS, RegState::Implicit);
1635 
1636   // SrcRegD may actually contain an unrelated value in the ssub_1
1637   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1638   if (MI.getOperand(1).isKill()) {
1639     MI.getOperand(1).setIsKill(false);
1640     MI.addRegisterKilled(SrcRegS, TRI, true);
1641   }
1642 
1643   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1644   return true;
1645 }
1646 
1647 /// Create a copy of a const pool value. Update CPI to the new index and return
1648 /// the label UID.
1649 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1650   MachineConstantPool *MCP = MF.getConstantPool();
1651   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1652 
1653   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1654   assert(MCPE.isMachineConstantPoolEntry() &&
1655          "Expecting a machine constantpool entry!");
1656   ARMConstantPoolValue *ACPV =
1657     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1658 
1659   unsigned PCLabelId = AFI->createPICLabelUId();
1660   ARMConstantPoolValue *NewCPV = nullptr;
1661 
1662   // FIXME: The below assumes PIC relocation model and that the function
1663   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1664   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1665   // instructions, so that's probably OK, but is PIC always correct when
1666   // we get here?
1667   if (ACPV->isGlobalValue())
1668     NewCPV = ARMConstantPoolConstant::Create(
1669         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1670         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1671   else if (ACPV->isExtSymbol())
1672     NewCPV = ARMConstantPoolSymbol::
1673       Create(MF.getFunction().getContext(),
1674              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1675   else if (ACPV->isBlockAddress())
1676     NewCPV = ARMConstantPoolConstant::
1677       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1678              ARMCP::CPBlockAddress, 4);
1679   else if (ACPV->isLSDA())
1680     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1681                                              ARMCP::CPLSDA, 4);
1682   else if (ACPV->isMachineBasicBlock())
1683     NewCPV = ARMConstantPoolMBB::
1684       Create(MF.getFunction().getContext(),
1685              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1686   else
1687     llvm_unreachable("Unexpected ARM constantpool value type!!");
1688   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1689   return PCLabelId;
1690 }
1691 
1692 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1693                                      MachineBasicBlock::iterator I,
1694                                      unsigned DestReg, unsigned SubIdx,
1695                                      const MachineInstr &Orig,
1696                                      const TargetRegisterInfo &TRI) const {
1697   unsigned Opcode = Orig.getOpcode();
1698   switch (Opcode) {
1699   default: {
1700     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1701     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1702     MBB.insert(I, MI);
1703     break;
1704   }
1705   case ARM::tLDRpci_pic:
1706   case ARM::t2LDRpci_pic: {
1707     MachineFunction &MF = *MBB.getParent();
1708     unsigned CPI = Orig.getOperand(1).getIndex();
1709     unsigned PCLabelId = duplicateCPV(MF, CPI);
1710     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1711         .addConstantPoolIndex(CPI)
1712         .addImm(PCLabelId)
1713         .cloneMemRefs(Orig);
1714     break;
1715   }
1716   }
1717 }
1718 
1719 MachineInstr &
1720 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1721     MachineBasicBlock::iterator InsertBefore,
1722     const MachineInstr &Orig) const {
1723   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1724   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1725   for (;;) {
1726     switch (I->getOpcode()) {
1727     case ARM::tLDRpci_pic:
1728     case ARM::t2LDRpci_pic: {
1729       MachineFunction &MF = *MBB.getParent();
1730       unsigned CPI = I->getOperand(1).getIndex();
1731       unsigned PCLabelId = duplicateCPV(MF, CPI);
1732       I->getOperand(1).setIndex(CPI);
1733       I->getOperand(2).setImm(PCLabelId);
1734       break;
1735     }
1736     }
1737     if (!I->isBundledWithSucc())
1738       break;
1739     ++I;
1740   }
1741   return Cloned;
1742 }
1743 
1744 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1745                                         const MachineInstr &MI1,
1746                                         const MachineRegisterInfo *MRI) const {
1747   unsigned Opcode = MI0.getOpcode();
1748   if (Opcode == ARM::t2LDRpci ||
1749       Opcode == ARM::t2LDRpci_pic ||
1750       Opcode == ARM::tLDRpci ||
1751       Opcode == ARM::tLDRpci_pic ||
1752       Opcode == ARM::LDRLIT_ga_pcrel ||
1753       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1754       Opcode == ARM::tLDRLIT_ga_pcrel ||
1755       Opcode == ARM::MOV_ga_pcrel ||
1756       Opcode == ARM::MOV_ga_pcrel_ldr ||
1757       Opcode == ARM::t2MOV_ga_pcrel) {
1758     if (MI1.getOpcode() != Opcode)
1759       return false;
1760     if (MI0.getNumOperands() != MI1.getNumOperands())
1761       return false;
1762 
1763     const MachineOperand &MO0 = MI0.getOperand(1);
1764     const MachineOperand &MO1 = MI1.getOperand(1);
1765     if (MO0.getOffset() != MO1.getOffset())
1766       return false;
1767 
1768     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1769         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1770         Opcode == ARM::tLDRLIT_ga_pcrel ||
1771         Opcode == ARM::MOV_ga_pcrel ||
1772         Opcode == ARM::MOV_ga_pcrel_ldr ||
1773         Opcode == ARM::t2MOV_ga_pcrel)
1774       // Ignore the PC labels.
1775       return MO0.getGlobal() == MO1.getGlobal();
1776 
1777     const MachineFunction *MF = MI0.getParent()->getParent();
1778     const MachineConstantPool *MCP = MF->getConstantPool();
1779     int CPI0 = MO0.getIndex();
1780     int CPI1 = MO1.getIndex();
1781     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1782     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1783     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1784     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1785     if (isARMCP0 && isARMCP1) {
1786       ARMConstantPoolValue *ACPV0 =
1787         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1788       ARMConstantPoolValue *ACPV1 =
1789         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1790       return ACPV0->hasSameValue(ACPV1);
1791     } else if (!isARMCP0 && !isARMCP1) {
1792       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1793     }
1794     return false;
1795   } else if (Opcode == ARM::PICLDR) {
1796     if (MI1.getOpcode() != Opcode)
1797       return false;
1798     if (MI0.getNumOperands() != MI1.getNumOperands())
1799       return false;
1800 
1801     Register Addr0 = MI0.getOperand(1).getReg();
1802     Register Addr1 = MI1.getOperand(1).getReg();
1803     if (Addr0 != Addr1) {
1804       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1805           !Register::isVirtualRegister(Addr1))
1806         return false;
1807 
1808       // This assumes SSA form.
1809       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1810       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1811       // Check if the loaded value, e.g. a constantpool of a global address, are
1812       // the same.
1813       if (!produceSameValue(*Def0, *Def1, MRI))
1814         return false;
1815     }
1816 
1817     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1818       // %12 = PICLDR %11, 0, 14, %noreg
1819       const MachineOperand &MO0 = MI0.getOperand(i);
1820       const MachineOperand &MO1 = MI1.getOperand(i);
1821       if (!MO0.isIdenticalTo(MO1))
1822         return false;
1823     }
1824     return true;
1825   }
1826 
1827   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1828 }
1829 
1830 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1831 /// determine if two loads are loading from the same base address. It should
1832 /// only return true if the base pointers are the same and the only differences
1833 /// between the two addresses is the offset. It also returns the offsets by
1834 /// reference.
1835 ///
1836 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1837 /// is permanently disabled.
1838 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1839                                                int64_t &Offset1,
1840                                                int64_t &Offset2) const {
1841   // Don't worry about Thumb: just ARM and Thumb2.
1842   if (Subtarget.isThumb1Only()) return false;
1843 
1844   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1845     return false;
1846 
1847   switch (Load1->getMachineOpcode()) {
1848   default:
1849     return false;
1850   case ARM::LDRi12:
1851   case ARM::LDRBi12:
1852   case ARM::LDRD:
1853   case ARM::LDRH:
1854   case ARM::LDRSB:
1855   case ARM::LDRSH:
1856   case ARM::VLDRD:
1857   case ARM::VLDRS:
1858   case ARM::t2LDRi8:
1859   case ARM::t2LDRBi8:
1860   case ARM::t2LDRDi8:
1861   case ARM::t2LDRSHi8:
1862   case ARM::t2LDRi12:
1863   case ARM::t2LDRBi12:
1864   case ARM::t2LDRSHi12:
1865     break;
1866   }
1867 
1868   switch (Load2->getMachineOpcode()) {
1869   default:
1870     return false;
1871   case ARM::LDRi12:
1872   case ARM::LDRBi12:
1873   case ARM::LDRD:
1874   case ARM::LDRH:
1875   case ARM::LDRSB:
1876   case ARM::LDRSH:
1877   case ARM::VLDRD:
1878   case ARM::VLDRS:
1879   case ARM::t2LDRi8:
1880   case ARM::t2LDRBi8:
1881   case ARM::t2LDRSHi8:
1882   case ARM::t2LDRi12:
1883   case ARM::t2LDRBi12:
1884   case ARM::t2LDRSHi12:
1885     break;
1886   }
1887 
1888   // Check if base addresses and chain operands match.
1889   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1890       Load1->getOperand(4) != Load2->getOperand(4))
1891     return false;
1892 
1893   // Index should be Reg0.
1894   if (Load1->getOperand(3) != Load2->getOperand(3))
1895     return false;
1896 
1897   // Determine the offsets.
1898   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1899       isa<ConstantSDNode>(Load2->getOperand(1))) {
1900     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1901     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1902     return true;
1903   }
1904 
1905   return false;
1906 }
1907 
1908 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1909 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1910 /// be scheduled togther. On some targets if two loads are loading from
1911 /// addresses in the same cache line, it's better if they are scheduled
1912 /// together. This function takes two integers that represent the load offsets
1913 /// from the common base address. It returns true if it decides it's desirable
1914 /// to schedule the two loads together. "NumLoads" is the number of loads that
1915 /// have already been scheduled after Load1.
1916 ///
1917 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1918 /// is permanently disabled.
1919 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1920                                                int64_t Offset1, int64_t Offset2,
1921                                                unsigned NumLoads) const {
1922   // Don't worry about Thumb: just ARM and Thumb2.
1923   if (Subtarget.isThumb1Only()) return false;
1924 
1925   assert(Offset2 > Offset1);
1926 
1927   if ((Offset2 - Offset1) / 8 > 64)
1928     return false;
1929 
1930   // Check if the machine opcodes are different. If they are different
1931   // then we consider them to not be of the same base address,
1932   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1933   // In this case, they are considered to be the same because they are different
1934   // encoding forms of the same basic instruction.
1935   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1936       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1937          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1938         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1939          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1940     return false;  // FIXME: overly conservative?
1941 
1942   // Four loads in a row should be sufficient.
1943   if (NumLoads >= 3)
1944     return false;
1945 
1946   return true;
1947 }
1948 
1949 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1950                                             const MachineBasicBlock *MBB,
1951                                             const MachineFunction &MF) const {
1952   // Debug info is never a scheduling boundary. It's necessary to be explicit
1953   // due to the special treatment of IT instructions below, otherwise a
1954   // dbg_value followed by an IT will result in the IT instruction being
1955   // considered a scheduling hazard, which is wrong. It should be the actual
1956   // instruction preceding the dbg_value instruction(s), just like it is
1957   // when debug info is not present.
1958   if (MI.isDebugInstr())
1959     return false;
1960 
1961   // Terminators and labels can't be scheduled around.
1962   if (MI.isTerminator() || MI.isPosition())
1963     return true;
1964 
1965   // Treat the start of the IT block as a scheduling boundary, but schedule
1966   // t2IT along with all instructions following it.
1967   // FIXME: This is a big hammer. But the alternative is to add all potential
1968   // true and anti dependencies to IT block instructions as implicit operands
1969   // to the t2IT instruction. The added compile time and complexity does not
1970   // seem worth it.
1971   MachineBasicBlock::const_iterator I = MI;
1972   // Make sure to skip any debug instructions
1973   while (++I != MBB->end() && I->isDebugInstr())
1974     ;
1975   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1976     return true;
1977 
1978   // Don't attempt to schedule around any instruction that defines
1979   // a stack-oriented pointer, as it's unlikely to be profitable. This
1980   // saves compile time, because it doesn't require every single
1981   // stack slot reference to depend on the instruction that does the
1982   // modification.
1983   // Calls don't actually change the stack pointer, even if they have imp-defs.
1984   // No ARM calling conventions change the stack pointer. (X86 calling
1985   // conventions sometimes do).
1986   if (!MI.isCall() && MI.definesRegister(ARM::SP))
1987     return true;
1988 
1989   return false;
1990 }
1991 
1992 bool ARMBaseInstrInfo::
1993 isProfitableToIfCvt(MachineBasicBlock &MBB,
1994                     unsigned NumCycles, unsigned ExtraPredCycles,
1995                     BranchProbability Probability) const {
1996   if (!NumCycles)
1997     return false;
1998 
1999   // If we are optimizing for size, see if the branch in the predecessor can be
2000   // lowered to cbn?z by the constant island lowering pass, and return false if
2001   // so. This results in a shorter instruction sequence.
2002   if (MBB.getParent()->getFunction().hasOptSize()) {
2003     MachineBasicBlock *Pred = *MBB.pred_begin();
2004     if (!Pred->empty()) {
2005       MachineInstr *LastMI = &*Pred->rbegin();
2006       if (LastMI->getOpcode() == ARM::t2Bcc) {
2007         const TargetRegisterInfo *TRI = &getRegisterInfo();
2008         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2009         if (CmpMI)
2010           return false;
2011       }
2012     }
2013   }
2014   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2015                              MBB, 0, 0, Probability);
2016 }
2017 
2018 bool ARMBaseInstrInfo::
2019 isProfitableToIfCvt(MachineBasicBlock &TBB,
2020                     unsigned TCycles, unsigned TExtra,
2021                     MachineBasicBlock &FBB,
2022                     unsigned FCycles, unsigned FExtra,
2023                     BranchProbability Probability) const {
2024   if (!TCycles)
2025     return false;
2026 
2027   // In thumb code we often end up trading one branch for a IT block, and
2028   // if we are cloning the instruction can increase code size. Prevent
2029   // blocks with multiple predecesors from being ifcvted to prevent this
2030   // cloning.
2031   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2032     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2033       return false;
2034   }
2035 
2036   // Attempt to estimate the relative costs of predication versus branching.
2037   // Here we scale up each component of UnpredCost to avoid precision issue when
2038   // scaling TCycles/FCycles by Probability.
2039   const unsigned ScalingUpFactor = 1024;
2040 
2041   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2042   unsigned UnpredCost;
2043   if (!Subtarget.hasBranchPredictor()) {
2044     // When we don't have a branch predictor it's always cheaper to not take a
2045     // branch than take it, so we have to take that into account.
2046     unsigned NotTakenBranchCost = 1;
2047     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2048     unsigned TUnpredCycles, FUnpredCycles;
2049     if (!FCycles) {
2050       // Triangle: TBB is the fallthrough
2051       TUnpredCycles = TCycles + NotTakenBranchCost;
2052       FUnpredCycles = TakenBranchCost;
2053     } else {
2054       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2055       TUnpredCycles = TCycles + TakenBranchCost;
2056       FUnpredCycles = FCycles + NotTakenBranchCost;
2057       // The branch at the end of FBB will disappear when it's predicated, so
2058       // discount it from PredCost.
2059       PredCost -= 1 * ScalingUpFactor;
2060     }
2061     // The total cost is the cost of each path scaled by their probabilites
2062     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2063     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2064     UnpredCost = TUnpredCost + FUnpredCost;
2065     // When predicating assume that the first IT can be folded away but later
2066     // ones cost one cycle each
2067     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2068       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2069     }
2070   } else {
2071     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2072     unsigned FUnpredCost =
2073       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2074     UnpredCost = TUnpredCost + FUnpredCost;
2075     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2076     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2077   }
2078 
2079   return PredCost <= UnpredCost;
2080 }
2081 
2082 bool
2083 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2084                                             MachineBasicBlock &FMBB) const {
2085   // Reduce false anti-dependencies to let the target's out-of-order execution
2086   // engine do its thing.
2087   return Subtarget.isProfitableToUnpredicate();
2088 }
2089 
2090 /// getInstrPredicate - If instruction is predicated, returns its predicate
2091 /// condition, otherwise returns AL. It also returns the condition code
2092 /// register by reference.
2093 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2094                                          unsigned &PredReg) {
2095   int PIdx = MI.findFirstPredOperandIdx();
2096   if (PIdx == -1) {
2097     PredReg = 0;
2098     return ARMCC::AL;
2099   }
2100 
2101   PredReg = MI.getOperand(PIdx+1).getReg();
2102   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2103 }
2104 
2105 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2106   if (Opc == ARM::B)
2107     return ARM::Bcc;
2108   if (Opc == ARM::tB)
2109     return ARM::tBcc;
2110   if (Opc == ARM::t2B)
2111     return ARM::t2Bcc;
2112 
2113   llvm_unreachable("Unknown unconditional branch opcode!");
2114 }
2115 
2116 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2117                                                        bool NewMI,
2118                                                        unsigned OpIdx1,
2119                                                        unsigned OpIdx2) const {
2120   switch (MI.getOpcode()) {
2121   case ARM::MOVCCr:
2122   case ARM::t2MOVCCr: {
2123     // MOVCC can be commuted by inverting the condition.
2124     unsigned PredReg = 0;
2125     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2126     // MOVCC AL can't be inverted. Shouldn't happen.
2127     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2128       return nullptr;
2129     MachineInstr *CommutedMI =
2130         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2131     if (!CommutedMI)
2132       return nullptr;
2133     // After swapping the MOVCC operands, also invert the condition.
2134     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2135         .setImm(ARMCC::getOppositeCondition(CC));
2136     return CommutedMI;
2137   }
2138   }
2139   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2140 }
2141 
2142 /// Identify instructions that can be folded into a MOVCC instruction, and
2143 /// return the defining instruction.
2144 MachineInstr *
2145 ARMBaseInstrInfo::canFoldIntoMOVCC(unsigned Reg, const MachineRegisterInfo &MRI,
2146                                    const TargetInstrInfo *TII) const {
2147   if (!Register::isVirtualRegister(Reg))
2148     return nullptr;
2149   if (!MRI.hasOneNonDBGUse(Reg))
2150     return nullptr;
2151   MachineInstr *MI = MRI.getVRegDef(Reg);
2152   if (!MI)
2153     return nullptr;
2154   // Check if MI can be predicated and folded into the MOVCC.
2155   if (!isPredicable(*MI))
2156     return nullptr;
2157   // Check if MI has any non-dead defs or physreg uses. This also detects
2158   // predicated instructions which will be reading CPSR.
2159   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2160     const MachineOperand &MO = MI->getOperand(i);
2161     // Reject frame index operands, PEI can't handle the predicated pseudos.
2162     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2163       return nullptr;
2164     if (!MO.isReg())
2165       continue;
2166     // MI can't have any tied operands, that would conflict with predication.
2167     if (MO.isTied())
2168       return nullptr;
2169     if (Register::isPhysicalRegister(MO.getReg()))
2170       return nullptr;
2171     if (MO.isDef() && !MO.isDead())
2172       return nullptr;
2173   }
2174   bool DontMoveAcrossStores = true;
2175   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2176     return nullptr;
2177   return MI;
2178 }
2179 
2180 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2181                                      SmallVectorImpl<MachineOperand> &Cond,
2182                                      unsigned &TrueOp, unsigned &FalseOp,
2183                                      bool &Optimizable) const {
2184   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2185          "Unknown select instruction");
2186   // MOVCC operands:
2187   // 0: Def.
2188   // 1: True use.
2189   // 2: False use.
2190   // 3: Condition code.
2191   // 4: CPSR use.
2192   TrueOp = 1;
2193   FalseOp = 2;
2194   Cond.push_back(MI.getOperand(3));
2195   Cond.push_back(MI.getOperand(4));
2196   // We can always fold a def.
2197   Optimizable = true;
2198   return false;
2199 }
2200 
2201 MachineInstr *
2202 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2203                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2204                                  bool PreferFalse) const {
2205   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2206          "Unknown select instruction");
2207   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2208   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2209   bool Invert = !DefMI;
2210   if (!DefMI)
2211     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2212   if (!DefMI)
2213     return nullptr;
2214 
2215   // Find new register class to use.
2216   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2217   Register DestReg = MI.getOperand(0).getReg();
2218   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2219   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2220     return nullptr;
2221 
2222   // Create a new predicated version of DefMI.
2223   // Rfalse is the first use.
2224   MachineInstrBuilder NewMI =
2225       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2226 
2227   // Copy all the DefMI operands, excluding its (null) predicate.
2228   const MCInstrDesc &DefDesc = DefMI->getDesc();
2229   for (unsigned i = 1, e = DefDesc.getNumOperands();
2230        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2231     NewMI.add(DefMI->getOperand(i));
2232 
2233   unsigned CondCode = MI.getOperand(3).getImm();
2234   if (Invert)
2235     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2236   else
2237     NewMI.addImm(CondCode);
2238   NewMI.add(MI.getOperand(4));
2239 
2240   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2241   if (NewMI->hasOptionalDef())
2242     NewMI.add(condCodeOp());
2243 
2244   // The output register value when the predicate is false is an implicit
2245   // register operand tied to the first def.
2246   // The tie makes the register allocator ensure the FalseReg is allocated the
2247   // same register as operand 0.
2248   FalseReg.setImplicit();
2249   NewMI.add(FalseReg);
2250   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2251 
2252   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2253   SeenMIs.insert(NewMI);
2254   SeenMIs.erase(DefMI);
2255 
2256   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2257   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2258   // loop is expensive, but at least remove kill flags if they are in different
2259   // BBs.
2260   if (DefMI->getParent() != MI.getParent())
2261     NewMI->clearKillInfo();
2262 
2263   // The caller will erase MI, but not DefMI.
2264   DefMI->eraseFromParent();
2265   return NewMI;
2266 }
2267 
2268 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2269 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2270 /// def operand.
2271 ///
2272 /// This will go away once we can teach tblgen how to set the optional CPSR def
2273 /// operand itself.
2274 struct AddSubFlagsOpcodePair {
2275   uint16_t PseudoOpc;
2276   uint16_t MachineOpc;
2277 };
2278 
2279 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2280   {ARM::ADDSri, ARM::ADDri},
2281   {ARM::ADDSrr, ARM::ADDrr},
2282   {ARM::ADDSrsi, ARM::ADDrsi},
2283   {ARM::ADDSrsr, ARM::ADDrsr},
2284 
2285   {ARM::SUBSri, ARM::SUBri},
2286   {ARM::SUBSrr, ARM::SUBrr},
2287   {ARM::SUBSrsi, ARM::SUBrsi},
2288   {ARM::SUBSrsr, ARM::SUBrsr},
2289 
2290   {ARM::RSBSri, ARM::RSBri},
2291   {ARM::RSBSrsi, ARM::RSBrsi},
2292   {ARM::RSBSrsr, ARM::RSBrsr},
2293 
2294   {ARM::tADDSi3, ARM::tADDi3},
2295   {ARM::tADDSi8, ARM::tADDi8},
2296   {ARM::tADDSrr, ARM::tADDrr},
2297   {ARM::tADCS, ARM::tADC},
2298 
2299   {ARM::tSUBSi3, ARM::tSUBi3},
2300   {ARM::tSUBSi8, ARM::tSUBi8},
2301   {ARM::tSUBSrr, ARM::tSUBrr},
2302   {ARM::tSBCS, ARM::tSBC},
2303   {ARM::tRSBS, ARM::tRSB},
2304   {ARM::tLSLSri, ARM::tLSLri},
2305 
2306   {ARM::t2ADDSri, ARM::t2ADDri},
2307   {ARM::t2ADDSrr, ARM::t2ADDrr},
2308   {ARM::t2ADDSrs, ARM::t2ADDrs},
2309 
2310   {ARM::t2SUBSri, ARM::t2SUBri},
2311   {ARM::t2SUBSrr, ARM::t2SUBrr},
2312   {ARM::t2SUBSrs, ARM::t2SUBrs},
2313 
2314   {ARM::t2RSBSri, ARM::t2RSBri},
2315   {ARM::t2RSBSrs, ARM::t2RSBrs},
2316 };
2317 
2318 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2319   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2320     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2321       return AddSubFlagsOpcodeMap[i].MachineOpc;
2322   return 0;
2323 }
2324 
2325 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2326                                    MachineBasicBlock::iterator &MBBI,
2327                                    const DebugLoc &dl, unsigned DestReg,
2328                                    unsigned BaseReg, int NumBytes,
2329                                    ARMCC::CondCodes Pred, unsigned PredReg,
2330                                    const ARMBaseInstrInfo &TII,
2331                                    unsigned MIFlags) {
2332   if (NumBytes == 0 && DestReg != BaseReg) {
2333     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2334         .addReg(BaseReg, RegState::Kill)
2335         .add(predOps(Pred, PredReg))
2336         .add(condCodeOp())
2337         .setMIFlags(MIFlags);
2338     return;
2339   }
2340 
2341   bool isSub = NumBytes < 0;
2342   if (isSub) NumBytes = -NumBytes;
2343 
2344   while (NumBytes) {
2345     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2346     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2347     assert(ThisVal && "Didn't extract field correctly");
2348 
2349     // We will handle these bits from offset, clear them.
2350     NumBytes &= ~ThisVal;
2351 
2352     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2353 
2354     // Build the new ADD / SUB.
2355     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2356     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2357         .addReg(BaseReg, RegState::Kill)
2358         .addImm(ThisVal)
2359         .add(predOps(Pred, PredReg))
2360         .add(condCodeOp())
2361         .setMIFlags(MIFlags);
2362     BaseReg = DestReg;
2363   }
2364 }
2365 
2366 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2367                                       MachineFunction &MF, MachineInstr *MI,
2368                                       unsigned NumBytes) {
2369   // This optimisation potentially adds lots of load and store
2370   // micro-operations, it's only really a great benefit to code-size.
2371   if (!Subtarget.hasMinSize())
2372     return false;
2373 
2374   // If only one register is pushed/popped, LLVM can use an LDR/STR
2375   // instead. We can't modify those so make sure we're dealing with an
2376   // instruction we understand.
2377   bool IsPop = isPopOpcode(MI->getOpcode());
2378   bool IsPush = isPushOpcode(MI->getOpcode());
2379   if (!IsPush && !IsPop)
2380     return false;
2381 
2382   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2383                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2384   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2385                      MI->getOpcode() == ARM::tPOP ||
2386                      MI->getOpcode() == ARM::tPOP_RET;
2387 
2388   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2389                           MI->getOperand(1).getReg() == ARM::SP)) &&
2390          "trying to fold sp update into non-sp-updating push/pop");
2391 
2392   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2393   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2394   // if this is violated.
2395   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2396     return false;
2397 
2398   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2399   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2400   int RegListIdx = IsT1PushPop ? 2 : 4;
2401 
2402   // Calculate the space we'll need in terms of registers.
2403   unsigned RegsNeeded;
2404   const TargetRegisterClass *RegClass;
2405   if (IsVFPPushPop) {
2406     RegsNeeded = NumBytes / 8;
2407     RegClass = &ARM::DPRRegClass;
2408   } else {
2409     RegsNeeded = NumBytes / 4;
2410     RegClass = &ARM::GPRRegClass;
2411   }
2412 
2413   // We're going to have to strip all list operands off before
2414   // re-adding them since the order matters, so save the existing ones
2415   // for later.
2416   SmallVector<MachineOperand, 4> RegList;
2417 
2418   // We're also going to need the first register transferred by this
2419   // instruction, which won't necessarily be the first register in the list.
2420   unsigned FirstRegEnc = -1;
2421 
2422   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2423   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2424     MachineOperand &MO = MI->getOperand(i);
2425     RegList.push_back(MO);
2426 
2427     if (MO.isReg() && !MO.isImplicit() &&
2428         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2429       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2430   }
2431 
2432   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2433 
2434   // Now try to find enough space in the reglist to allocate NumBytes.
2435   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2436        --CurRegEnc) {
2437     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2438     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2439       continue;
2440     if (!IsPop) {
2441       // Pushing any register is completely harmless, mark the register involved
2442       // as undef since we don't care about its value and must not restore it
2443       // during stack unwinding.
2444       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2445                                                   false, false, true));
2446       --RegsNeeded;
2447       continue;
2448     }
2449 
2450     // However, we can only pop an extra register if it's not live. For
2451     // registers live within the function we might clobber a return value
2452     // register; the other way a register can be live here is if it's
2453     // callee-saved.
2454     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2455         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2456         MachineBasicBlock::LQR_Dead) {
2457       // VFP pops don't allow holes in the register list, so any skip is fatal
2458       // for our transformation. GPR pops do, so we should just keep looking.
2459       if (IsVFPPushPop)
2460         return false;
2461       else
2462         continue;
2463     }
2464 
2465     // Mark the unimportant registers as <def,dead> in the POP.
2466     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2467                                                 true));
2468     --RegsNeeded;
2469   }
2470 
2471   if (RegsNeeded > 0)
2472     return false;
2473 
2474   // Finally we know we can profitably perform the optimisation so go
2475   // ahead: strip all existing registers off and add them back again
2476   // in the right order.
2477   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2478     MI->RemoveOperand(i);
2479 
2480   // Add the complete list back in.
2481   MachineInstrBuilder MIB(MF, &*MI);
2482   for (int i = RegList.size() - 1; i >= 0; --i)
2483     MIB.add(RegList[i]);
2484 
2485   return true;
2486 }
2487 
2488 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2489                                 unsigned FrameReg, int &Offset,
2490                                 const ARMBaseInstrInfo &TII) {
2491   unsigned Opcode = MI.getOpcode();
2492   const MCInstrDesc &Desc = MI.getDesc();
2493   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2494   bool isSub = false;
2495 
2496   // Memory operands in inline assembly always use AddrMode2.
2497   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2498     AddrMode = ARMII::AddrMode2;
2499 
2500   if (Opcode == ARM::ADDri) {
2501     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2502     if (Offset == 0) {
2503       // Turn it into a move.
2504       MI.setDesc(TII.get(ARM::MOVr));
2505       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2506       MI.RemoveOperand(FrameRegIdx+1);
2507       Offset = 0;
2508       return true;
2509     } else if (Offset < 0) {
2510       Offset = -Offset;
2511       isSub = true;
2512       MI.setDesc(TII.get(ARM::SUBri));
2513     }
2514 
2515     // Common case: small offset, fits into instruction.
2516     if (ARM_AM::getSOImmVal(Offset) != -1) {
2517       // Replace the FrameIndex with sp / fp
2518       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2519       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2520       Offset = 0;
2521       return true;
2522     }
2523 
2524     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2525     // as possible.
2526     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2527     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2528 
2529     // We will handle these bits from offset, clear them.
2530     Offset &= ~ThisImmVal;
2531 
2532     // Get the properly encoded SOImmVal field.
2533     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2534            "Bit extraction didn't work?");
2535     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2536  } else {
2537     unsigned ImmIdx = 0;
2538     int InstrOffs = 0;
2539     unsigned NumBits = 0;
2540     unsigned Scale = 1;
2541     switch (AddrMode) {
2542     case ARMII::AddrMode_i12:
2543       ImmIdx = FrameRegIdx + 1;
2544       InstrOffs = MI.getOperand(ImmIdx).getImm();
2545       NumBits = 12;
2546       break;
2547     case ARMII::AddrMode2:
2548       ImmIdx = FrameRegIdx+2;
2549       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2550       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2551         InstrOffs *= -1;
2552       NumBits = 12;
2553       break;
2554     case ARMII::AddrMode3:
2555       ImmIdx = FrameRegIdx+2;
2556       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2557       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2558         InstrOffs *= -1;
2559       NumBits = 8;
2560       break;
2561     case ARMII::AddrMode4:
2562     case ARMII::AddrMode6:
2563       // Can't fold any offset even if it's zero.
2564       return false;
2565     case ARMII::AddrMode5:
2566       ImmIdx = FrameRegIdx+1;
2567       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2568       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2569         InstrOffs *= -1;
2570       NumBits = 8;
2571       Scale = 4;
2572       break;
2573     case ARMII::AddrMode5FP16:
2574       ImmIdx = FrameRegIdx+1;
2575       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2576       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2577         InstrOffs *= -1;
2578       NumBits = 8;
2579       Scale = 2;
2580       break;
2581     case ARMII::AddrModeT2_i7:
2582     case ARMII::AddrModeT2_i7s2:
2583     case ARMII::AddrModeT2_i7s4:
2584       ImmIdx = FrameRegIdx+1;
2585       InstrOffs = MI.getOperand(ImmIdx).getImm();
2586       NumBits = 7;
2587       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2588                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2589       break;
2590     default:
2591       llvm_unreachable("Unsupported addressing mode!");
2592     }
2593 
2594     Offset += InstrOffs * Scale;
2595     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2596     if (Offset < 0) {
2597       Offset = -Offset;
2598       isSub = true;
2599     }
2600 
2601     // Attempt to fold address comp. if opcode has offset bits
2602     if (NumBits > 0) {
2603       // Common case: small offset, fits into instruction.
2604       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2605       int ImmedOffset = Offset / Scale;
2606       unsigned Mask = (1 << NumBits) - 1;
2607       if ((unsigned)Offset <= Mask * Scale) {
2608         // Replace the FrameIndex with sp
2609         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2610         // FIXME: When addrmode2 goes away, this will simplify (like the
2611         // T2 version), as the LDR.i12 versions don't need the encoding
2612         // tricks for the offset value.
2613         if (isSub) {
2614           if (AddrMode == ARMII::AddrMode_i12)
2615             ImmedOffset = -ImmedOffset;
2616           else
2617             ImmedOffset |= 1 << NumBits;
2618         }
2619         ImmOp.ChangeToImmediate(ImmedOffset);
2620         Offset = 0;
2621         return true;
2622       }
2623 
2624       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2625       ImmedOffset = ImmedOffset & Mask;
2626       if (isSub) {
2627         if (AddrMode == ARMII::AddrMode_i12)
2628           ImmedOffset = -ImmedOffset;
2629         else
2630           ImmedOffset |= 1 << NumBits;
2631       }
2632       ImmOp.ChangeToImmediate(ImmedOffset);
2633       Offset &= ~(Mask*Scale);
2634     }
2635   }
2636 
2637   Offset = (isSub) ? -Offset : Offset;
2638   return Offset == 0;
2639 }
2640 
2641 /// analyzeCompare - For a comparison instruction, return the source registers
2642 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2643 /// compares against in CmpValue. Return true if the comparison instruction
2644 /// can be analyzed.
2645 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2646                                       unsigned &SrcReg2, int &CmpMask,
2647                                       int &CmpValue) const {
2648   switch (MI.getOpcode()) {
2649   default: break;
2650   case ARM::CMPri:
2651   case ARM::t2CMPri:
2652   case ARM::tCMPi8:
2653     SrcReg = MI.getOperand(0).getReg();
2654     SrcReg2 = 0;
2655     CmpMask = ~0;
2656     CmpValue = MI.getOperand(1).getImm();
2657     return true;
2658   case ARM::CMPrr:
2659   case ARM::t2CMPrr:
2660   case ARM::tCMPr:
2661     SrcReg = MI.getOperand(0).getReg();
2662     SrcReg2 = MI.getOperand(1).getReg();
2663     CmpMask = ~0;
2664     CmpValue = 0;
2665     return true;
2666   case ARM::TSTri:
2667   case ARM::t2TSTri:
2668     SrcReg = MI.getOperand(0).getReg();
2669     SrcReg2 = 0;
2670     CmpMask = MI.getOperand(1).getImm();
2671     CmpValue = 0;
2672     return true;
2673   }
2674 
2675   return false;
2676 }
2677 
2678 /// isSuitableForMask - Identify a suitable 'and' instruction that
2679 /// operates on the given source register and applies the same mask
2680 /// as a 'tst' instruction. Provide a limited look-through for copies.
2681 /// When successful, MI will hold the found instruction.
2682 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2683                               int CmpMask, bool CommonUse) {
2684   switch (MI->getOpcode()) {
2685     case ARM::ANDri:
2686     case ARM::t2ANDri:
2687       if (CmpMask != MI->getOperand(2).getImm())
2688         return false;
2689       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2690         return true;
2691       break;
2692   }
2693 
2694   return false;
2695 }
2696 
2697 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2698 /// the condition code if we modify the instructions such that flags are
2699 /// set by MI(b,a).
2700 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2701   switch (CC) {
2702   default: return ARMCC::AL;
2703   case ARMCC::EQ: return ARMCC::EQ;
2704   case ARMCC::NE: return ARMCC::NE;
2705   case ARMCC::HS: return ARMCC::LS;
2706   case ARMCC::LO: return ARMCC::HI;
2707   case ARMCC::HI: return ARMCC::LO;
2708   case ARMCC::LS: return ARMCC::HS;
2709   case ARMCC::GE: return ARMCC::LE;
2710   case ARMCC::LT: return ARMCC::GT;
2711   case ARMCC::GT: return ARMCC::LT;
2712   case ARMCC::LE: return ARMCC::GE;
2713   }
2714 }
2715 
2716 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2717 /// the condition code if we modify the instructions such that flags are
2718 /// set by ADD(a,b,X).
2719 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2720   switch (CC) {
2721   default: return ARMCC::AL;
2722   case ARMCC::HS: return ARMCC::LO;
2723   case ARMCC::LO: return ARMCC::HS;
2724   case ARMCC::VS: return ARMCC::VS;
2725   case ARMCC::VC: return ARMCC::VC;
2726   }
2727 }
2728 
2729 /// isRedundantFlagInstr - check whether the first instruction, whose only
2730 /// purpose is to update flags, can be made redundant.
2731 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2732 /// CMPri can be made redundant by SUBri if the operands are the same.
2733 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2734 /// This function can be extended later on.
2735 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2736                                         unsigned SrcReg, unsigned SrcReg2,
2737                                         int ImmValue, const MachineInstr *OI,
2738                                         bool &IsThumb1) {
2739   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2740       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2741       ((OI->getOperand(1).getReg() == SrcReg &&
2742         OI->getOperand(2).getReg() == SrcReg2) ||
2743        (OI->getOperand(1).getReg() == SrcReg2 &&
2744         OI->getOperand(2).getReg() == SrcReg))) {
2745     IsThumb1 = false;
2746     return true;
2747   }
2748 
2749   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2750       ((OI->getOperand(2).getReg() == SrcReg &&
2751         OI->getOperand(3).getReg() == SrcReg2) ||
2752        (OI->getOperand(2).getReg() == SrcReg2 &&
2753         OI->getOperand(3).getReg() == SrcReg))) {
2754     IsThumb1 = true;
2755     return true;
2756   }
2757 
2758   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2759       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2760       OI->getOperand(1).getReg() == SrcReg &&
2761       OI->getOperand(2).getImm() == ImmValue) {
2762     IsThumb1 = false;
2763     return true;
2764   }
2765 
2766   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2767       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2768       OI->getOperand(2).getReg() == SrcReg &&
2769       OI->getOperand(3).getImm() == ImmValue) {
2770     IsThumb1 = true;
2771     return true;
2772   }
2773 
2774   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2775       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2776        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2777       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2778       OI->getOperand(0).getReg() == SrcReg &&
2779       OI->getOperand(1).getReg() == SrcReg2) {
2780     IsThumb1 = false;
2781     return true;
2782   }
2783 
2784   if (CmpI->getOpcode() == ARM::tCMPr &&
2785       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2786        OI->getOpcode() == ARM::tADDrr) &&
2787       OI->getOperand(0).getReg() == SrcReg &&
2788       OI->getOperand(2).getReg() == SrcReg2) {
2789     IsThumb1 = true;
2790     return true;
2791   }
2792 
2793   return false;
2794 }
2795 
2796 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2797   switch (MI->getOpcode()) {
2798   default: return false;
2799   case ARM::tLSLri:
2800   case ARM::tLSRri:
2801   case ARM::tLSLrr:
2802   case ARM::tLSRrr:
2803   case ARM::tSUBrr:
2804   case ARM::tADDrr:
2805   case ARM::tADDi3:
2806   case ARM::tADDi8:
2807   case ARM::tSUBi3:
2808   case ARM::tSUBi8:
2809   case ARM::tMUL:
2810   case ARM::tADC:
2811   case ARM::tSBC:
2812   case ARM::tRSB:
2813   case ARM::tAND:
2814   case ARM::tORR:
2815   case ARM::tEOR:
2816   case ARM::tBIC:
2817   case ARM::tMVN:
2818   case ARM::tASRri:
2819   case ARM::tASRrr:
2820   case ARM::tROR:
2821     IsThumb1 = true;
2822     LLVM_FALLTHROUGH;
2823   case ARM::RSBrr:
2824   case ARM::RSBri:
2825   case ARM::RSCrr:
2826   case ARM::RSCri:
2827   case ARM::ADDrr:
2828   case ARM::ADDri:
2829   case ARM::ADCrr:
2830   case ARM::ADCri:
2831   case ARM::SUBrr:
2832   case ARM::SUBri:
2833   case ARM::SBCrr:
2834   case ARM::SBCri:
2835   case ARM::t2RSBri:
2836   case ARM::t2ADDrr:
2837   case ARM::t2ADDri:
2838   case ARM::t2ADCrr:
2839   case ARM::t2ADCri:
2840   case ARM::t2SUBrr:
2841   case ARM::t2SUBri:
2842   case ARM::t2SBCrr:
2843   case ARM::t2SBCri:
2844   case ARM::ANDrr:
2845   case ARM::ANDri:
2846   case ARM::t2ANDrr:
2847   case ARM::t2ANDri:
2848   case ARM::ORRrr:
2849   case ARM::ORRri:
2850   case ARM::t2ORRrr:
2851   case ARM::t2ORRri:
2852   case ARM::EORrr:
2853   case ARM::EORri:
2854   case ARM::t2EORrr:
2855   case ARM::t2EORri:
2856   case ARM::t2LSRri:
2857   case ARM::t2LSRrr:
2858   case ARM::t2LSLri:
2859   case ARM::t2LSLrr:
2860     return true;
2861   }
2862 }
2863 
2864 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2865 /// comparison into one that sets the zero bit in the flags register;
2866 /// Remove a redundant Compare instruction if an earlier instruction can set the
2867 /// flags in the same way as Compare.
2868 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2869 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2870 /// condition code of instructions which use the flags.
2871 bool ARMBaseInstrInfo::optimizeCompareInstr(
2872     MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2873     int CmpValue, const MachineRegisterInfo *MRI) const {
2874   // Get the unique definition of SrcReg.
2875   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2876   if (!MI) return false;
2877 
2878   // Masked compares sometimes use the same register as the corresponding 'and'.
2879   if (CmpMask != ~0) {
2880     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2881       MI = nullptr;
2882       for (MachineRegisterInfo::use_instr_iterator
2883            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2884            UI != UE; ++UI) {
2885         if (UI->getParent() != CmpInstr.getParent())
2886           continue;
2887         MachineInstr *PotentialAND = &*UI;
2888         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2889             isPredicated(*PotentialAND))
2890           continue;
2891         MI = PotentialAND;
2892         break;
2893       }
2894       if (!MI) return false;
2895     }
2896   }
2897 
2898   // Get ready to iterate backward from CmpInstr.
2899   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2900                               B = CmpInstr.getParent()->begin();
2901 
2902   // Early exit if CmpInstr is at the beginning of the BB.
2903   if (I == B) return false;
2904 
2905   // There are two possible candidates which can be changed to set CPSR:
2906   // One is MI, the other is a SUB or ADD instruction.
2907   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2908   // ADDr[ri](r1, r2, X).
2909   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2910   MachineInstr *SubAdd = nullptr;
2911   if (SrcReg2 != 0)
2912     // MI is not a candidate for CMPrr.
2913     MI = nullptr;
2914   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2915     // Conservatively refuse to convert an instruction which isn't in the same
2916     // BB as the comparison.
2917     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2918     // Thus we cannot return here.
2919     if (CmpInstr.getOpcode() == ARM::CMPri ||
2920         CmpInstr.getOpcode() == ARM::t2CMPri ||
2921         CmpInstr.getOpcode() == ARM::tCMPi8)
2922       MI = nullptr;
2923     else
2924       return false;
2925   }
2926 
2927   bool IsThumb1 = false;
2928   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2929     return false;
2930 
2931   // We also want to do this peephole for cases like this: if (a*b == 0),
2932   // and optimise away the CMP instruction from the generated code sequence:
2933   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2934   // resulting from the select instruction, but these MOVS instructions for
2935   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2936   // However, if we only have MOVS instructions in between the CMP and the
2937   // other instruction (the MULS in this example), then the CPSR is dead so we
2938   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2939   // reordering and then continue the analysis hoping we can eliminate the
2940   // CMP. This peephole works on the vregs, so is still in SSA form. As a
2941   // consequence, the movs won't redefine/kill the MUL operands which would
2942   // make this reordering illegal.
2943   const TargetRegisterInfo *TRI = &getRegisterInfo();
2944   if (MI && IsThumb1) {
2945     --I;
2946     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
2947       bool CanReorder = true;
2948       for (; I != E; --I) {
2949         if (I->getOpcode() != ARM::tMOVi8) {
2950           CanReorder = false;
2951           break;
2952         }
2953       }
2954       if (CanReorder) {
2955         MI = MI->removeFromParent();
2956         E = CmpInstr;
2957         CmpInstr.getParent()->insert(E, MI);
2958       }
2959     }
2960     I = CmpInstr;
2961     E = MI;
2962   }
2963 
2964   // Check that CPSR isn't set between the comparison instruction and the one we
2965   // want to change. At the same time, search for SubAdd.
2966   bool SubAddIsThumb1 = false;
2967   do {
2968     const MachineInstr &Instr = *--I;
2969 
2970     // Check whether CmpInstr can be made redundant by the current instruction.
2971     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
2972                              SubAddIsThumb1)) {
2973       SubAdd = &*I;
2974       break;
2975     }
2976 
2977     // Allow E (which was initially MI) to be SubAdd but do not search before E.
2978     if (I == E)
2979       break;
2980 
2981     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2982         Instr.readsRegister(ARM::CPSR, TRI))
2983       // This instruction modifies or uses CPSR after the one we want to
2984       // change. We can't do this transformation.
2985       return false;
2986 
2987     if (I == B) {
2988       // In some cases, we scan the use-list of an instruction for an AND;
2989       // that AND is in the same BB, but may not be scheduled before the
2990       // corresponding TST.  In that case, bail out.
2991       //
2992       // FIXME: We could try to reschedule the AND.
2993       return false;
2994     }
2995   } while (true);
2996 
2997   // Return false if no candidates exist.
2998   if (!MI && !SubAdd)
2999     return false;
3000 
3001   // If we found a SubAdd, use it as it will be closer to the CMP
3002   if (SubAdd) {
3003     MI = SubAdd;
3004     IsThumb1 = SubAddIsThumb1;
3005   }
3006 
3007   // We can't use a predicated instruction - it doesn't always write the flags.
3008   if (isPredicated(*MI))
3009     return false;
3010 
3011   // Scan forward for the use of CPSR
3012   // When checking against MI: if it's a conditional code that requires
3013   // checking of the V bit or C bit, then this is not safe to do.
3014   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3015   // If we are done with the basic block, we need to check whether CPSR is
3016   // live-out.
3017   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3018       OperandsToUpdate;
3019   bool isSafe = false;
3020   I = CmpInstr;
3021   E = CmpInstr.getParent()->end();
3022   while (!isSafe && ++I != E) {
3023     const MachineInstr &Instr = *I;
3024     for (unsigned IO = 0, EO = Instr.getNumOperands();
3025          !isSafe && IO != EO; ++IO) {
3026       const MachineOperand &MO = Instr.getOperand(IO);
3027       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3028         isSafe = true;
3029         break;
3030       }
3031       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3032         continue;
3033       if (MO.isDef()) {
3034         isSafe = true;
3035         break;
3036       }
3037       // Condition code is after the operand before CPSR except for VSELs.
3038       ARMCC::CondCodes CC;
3039       bool IsInstrVSel = true;
3040       switch (Instr.getOpcode()) {
3041       default:
3042         IsInstrVSel = false;
3043         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3044         break;
3045       case ARM::VSELEQD:
3046       case ARM::VSELEQS:
3047       case ARM::VSELEQH:
3048         CC = ARMCC::EQ;
3049         break;
3050       case ARM::VSELGTD:
3051       case ARM::VSELGTS:
3052       case ARM::VSELGTH:
3053         CC = ARMCC::GT;
3054         break;
3055       case ARM::VSELGED:
3056       case ARM::VSELGES:
3057       case ARM::VSELGEH:
3058         CC = ARMCC::GE;
3059         break;
3060       case ARM::VSELVSD:
3061       case ARM::VSELVSS:
3062       case ARM::VSELVSH:
3063         CC = ARMCC::VS;
3064         break;
3065       }
3066 
3067       if (SubAdd) {
3068         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3069         // on CMP needs to be updated to be based on SUB.
3070         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3071         // needs to be modified.
3072         // Push the condition code operands to OperandsToUpdate.
3073         // If it is safe to remove CmpInstr, the condition code of these
3074         // operands will be modified.
3075         unsigned Opc = SubAdd->getOpcode();
3076         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3077                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3078                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3079                      Opc == ARM::tSUBi8;
3080         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3081         if (!IsSub ||
3082             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3083              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3084           // VSel doesn't support condition code update.
3085           if (IsInstrVSel)
3086             return false;
3087           // Ensure we can swap the condition.
3088           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3089           if (NewCC == ARMCC::AL)
3090             return false;
3091           OperandsToUpdate.push_back(
3092               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3093         }
3094       } else {
3095         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3096         switch (CC) {
3097         case ARMCC::EQ: // Z
3098         case ARMCC::NE: // Z
3099         case ARMCC::MI: // N
3100         case ARMCC::PL: // N
3101         case ARMCC::AL: // none
3102           // CPSR can be used multiple times, we should continue.
3103           break;
3104         case ARMCC::HS: // C
3105         case ARMCC::LO: // C
3106         case ARMCC::VS: // V
3107         case ARMCC::VC: // V
3108         case ARMCC::HI: // C Z
3109         case ARMCC::LS: // C Z
3110         case ARMCC::GE: // N V
3111         case ARMCC::LT: // N V
3112         case ARMCC::GT: // Z N V
3113         case ARMCC::LE: // Z N V
3114           // The instruction uses the V bit or C bit which is not safe.
3115           return false;
3116         }
3117       }
3118     }
3119   }
3120 
3121   // If CPSR is not killed nor re-defined, we should check whether it is
3122   // live-out. If it is live-out, do not optimize.
3123   if (!isSafe) {
3124     MachineBasicBlock *MBB = CmpInstr.getParent();
3125     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3126              SE = MBB->succ_end(); SI != SE; ++SI)
3127       if ((*SI)->isLiveIn(ARM::CPSR))
3128         return false;
3129   }
3130 
3131   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3132   // set CPSR so this is represented as an explicit output)
3133   if (!IsThumb1) {
3134     MI->getOperand(5).setReg(ARM::CPSR);
3135     MI->getOperand(5).setIsDef(true);
3136   }
3137   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3138   CmpInstr.eraseFromParent();
3139 
3140   // Modify the condition code of operands in OperandsToUpdate.
3141   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3142   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3143   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3144     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3145 
3146   MI->clearRegisterDeads(ARM::CPSR);
3147 
3148   return true;
3149 }
3150 
3151 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3152   // Do not sink MI if it might be used to optimize a redundant compare.
3153   // We heuristically only look at the instruction immediately following MI to
3154   // avoid potentially searching the entire basic block.
3155   if (isPredicated(MI))
3156     return true;
3157   MachineBasicBlock::const_iterator Next = &MI;
3158   ++Next;
3159   unsigned SrcReg, SrcReg2;
3160   int CmpMask, CmpValue;
3161   bool IsThumb1;
3162   if (Next != MI.getParent()->end() &&
3163       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3164       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3165     return false;
3166   return true;
3167 }
3168 
3169 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3170                                      unsigned Reg,
3171                                      MachineRegisterInfo *MRI) const {
3172   // Fold large immediates into add, sub, or, xor.
3173   unsigned DefOpc = DefMI.getOpcode();
3174   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3175     return false;
3176   if (!DefMI.getOperand(1).isImm())
3177     // Could be t2MOVi32imm @xx
3178     return false;
3179 
3180   if (!MRI->hasOneNonDBGUse(Reg))
3181     return false;
3182 
3183   const MCInstrDesc &DefMCID = DefMI.getDesc();
3184   if (DefMCID.hasOptionalDef()) {
3185     unsigned NumOps = DefMCID.getNumOperands();
3186     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3187     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3188       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3189       // to delete DefMI.
3190       return false;
3191   }
3192 
3193   const MCInstrDesc &UseMCID = UseMI.getDesc();
3194   if (UseMCID.hasOptionalDef()) {
3195     unsigned NumOps = UseMCID.getNumOperands();
3196     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3197       // If the instruction sets the flag, do not attempt this optimization
3198       // since it may change the semantics of the code.
3199       return false;
3200   }
3201 
3202   unsigned UseOpc = UseMI.getOpcode();
3203   unsigned NewUseOpc = 0;
3204   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3205   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3206   bool Commute = false;
3207   switch (UseOpc) {
3208   default: return false;
3209   case ARM::SUBrr:
3210   case ARM::ADDrr:
3211   case ARM::ORRrr:
3212   case ARM::EORrr:
3213   case ARM::t2SUBrr:
3214   case ARM::t2ADDrr:
3215   case ARM::t2ORRrr:
3216   case ARM::t2EORrr: {
3217     Commute = UseMI.getOperand(2).getReg() != Reg;
3218     switch (UseOpc) {
3219     default: break;
3220     case ARM::ADDrr:
3221     case ARM::SUBrr:
3222       if (UseOpc == ARM::SUBrr && Commute)
3223         return false;
3224 
3225       // ADD/SUB are special because they're essentially the same operation, so
3226       // we can handle a larger range of immediates.
3227       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3228         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3229       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3230         ImmVal = -ImmVal;
3231         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3232       } else
3233         return false;
3234       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3235       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3236       break;
3237     case ARM::ORRrr:
3238     case ARM::EORrr:
3239       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3240         return false;
3241       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3242       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3243       switch (UseOpc) {
3244       default: break;
3245       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3246       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3247       }
3248       break;
3249     case ARM::t2ADDrr:
3250     case ARM::t2SUBrr:
3251       if (UseOpc == ARM::t2SUBrr && Commute)
3252         return false;
3253 
3254       // ADD/SUB are special because they're essentially the same operation, so
3255       // we can handle a larger range of immediates.
3256       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3257         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
3258       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3259         ImmVal = -ImmVal;
3260         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
3261       } else
3262         return false;
3263       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3264       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3265       break;
3266     case ARM::t2ORRrr:
3267     case ARM::t2EORrr:
3268       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3269         return false;
3270       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3271       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3272       switch (UseOpc) {
3273       default: break;
3274       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3275       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3276       }
3277       break;
3278     }
3279   }
3280   }
3281 
3282   unsigned OpIdx = Commute ? 2 : 1;
3283   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3284   bool isKill = UseMI.getOperand(OpIdx).isKill();
3285   Register NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
3286   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3287           NewReg)
3288       .addReg(Reg1, getKillRegState(isKill))
3289       .addImm(SOImmValV1)
3290       .add(predOps(ARMCC::AL))
3291       .add(condCodeOp());
3292   UseMI.setDesc(get(NewUseOpc));
3293   UseMI.getOperand(1).setReg(NewReg);
3294   UseMI.getOperand(1).setIsKill();
3295   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3296   DefMI.eraseFromParent();
3297   return true;
3298 }
3299 
3300 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3301                                         const MachineInstr &MI) {
3302   switch (MI.getOpcode()) {
3303   default: {
3304     const MCInstrDesc &Desc = MI.getDesc();
3305     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3306     assert(UOps >= 0 && "bad # UOps");
3307     return UOps;
3308   }
3309 
3310   case ARM::LDRrs:
3311   case ARM::LDRBrs:
3312   case ARM::STRrs:
3313   case ARM::STRBrs: {
3314     unsigned ShOpVal = MI.getOperand(3).getImm();
3315     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3316     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3317     if (!isSub &&
3318         (ShImm == 0 ||
3319          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3320           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3321       return 1;
3322     return 2;
3323   }
3324 
3325   case ARM::LDRH:
3326   case ARM::STRH: {
3327     if (!MI.getOperand(2).getReg())
3328       return 1;
3329 
3330     unsigned ShOpVal = MI.getOperand(3).getImm();
3331     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3332     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3333     if (!isSub &&
3334         (ShImm == 0 ||
3335          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3336           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3337       return 1;
3338     return 2;
3339   }
3340 
3341   case ARM::LDRSB:
3342   case ARM::LDRSH:
3343     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3344 
3345   case ARM::LDRSB_POST:
3346   case ARM::LDRSH_POST: {
3347     Register Rt = MI.getOperand(0).getReg();
3348     Register Rm = MI.getOperand(3).getReg();
3349     return (Rt == Rm) ? 4 : 3;
3350   }
3351 
3352   case ARM::LDR_PRE_REG:
3353   case ARM::LDRB_PRE_REG: {
3354     Register Rt = MI.getOperand(0).getReg();
3355     Register Rm = MI.getOperand(3).getReg();
3356     if (Rt == Rm)
3357       return 3;
3358     unsigned ShOpVal = MI.getOperand(4).getImm();
3359     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3360     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3361     if (!isSub &&
3362         (ShImm == 0 ||
3363          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3364           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3365       return 2;
3366     return 3;
3367   }
3368 
3369   case ARM::STR_PRE_REG:
3370   case ARM::STRB_PRE_REG: {
3371     unsigned ShOpVal = MI.getOperand(4).getImm();
3372     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3373     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3374     if (!isSub &&
3375         (ShImm == 0 ||
3376          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3377           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3378       return 2;
3379     return 3;
3380   }
3381 
3382   case ARM::LDRH_PRE:
3383   case ARM::STRH_PRE: {
3384     Register Rt = MI.getOperand(0).getReg();
3385     Register Rm = MI.getOperand(3).getReg();
3386     if (!Rm)
3387       return 2;
3388     if (Rt == Rm)
3389       return 3;
3390     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3391   }
3392 
3393   case ARM::LDR_POST_REG:
3394   case ARM::LDRB_POST_REG:
3395   case ARM::LDRH_POST: {
3396     Register Rt = MI.getOperand(0).getReg();
3397     Register Rm = MI.getOperand(3).getReg();
3398     return (Rt == Rm) ? 3 : 2;
3399   }
3400 
3401   case ARM::LDR_PRE_IMM:
3402   case ARM::LDRB_PRE_IMM:
3403   case ARM::LDR_POST_IMM:
3404   case ARM::LDRB_POST_IMM:
3405   case ARM::STRB_POST_IMM:
3406   case ARM::STRB_POST_REG:
3407   case ARM::STRB_PRE_IMM:
3408   case ARM::STRH_POST:
3409   case ARM::STR_POST_IMM:
3410   case ARM::STR_POST_REG:
3411   case ARM::STR_PRE_IMM:
3412     return 2;
3413 
3414   case ARM::LDRSB_PRE:
3415   case ARM::LDRSH_PRE: {
3416     Register Rm = MI.getOperand(3).getReg();
3417     if (Rm == 0)
3418       return 3;
3419     Register Rt = MI.getOperand(0).getReg();
3420     if (Rt == Rm)
3421       return 4;
3422     unsigned ShOpVal = MI.getOperand(4).getImm();
3423     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3424     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3425     if (!isSub &&
3426         (ShImm == 0 ||
3427          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3428           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3429       return 3;
3430     return 4;
3431   }
3432 
3433   case ARM::LDRD: {
3434     Register Rt = MI.getOperand(0).getReg();
3435     Register Rn = MI.getOperand(2).getReg();
3436     Register Rm = MI.getOperand(3).getReg();
3437     if (Rm)
3438       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3439                                                                           : 3;
3440     return (Rt == Rn) ? 3 : 2;
3441   }
3442 
3443   case ARM::STRD: {
3444     Register Rm = MI.getOperand(3).getReg();
3445     if (Rm)
3446       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3447                                                                           : 3;
3448     return 2;
3449   }
3450 
3451   case ARM::LDRD_POST:
3452   case ARM::t2LDRD_POST:
3453     return 3;
3454 
3455   case ARM::STRD_POST:
3456   case ARM::t2STRD_POST:
3457     return 4;
3458 
3459   case ARM::LDRD_PRE: {
3460     Register Rt = MI.getOperand(0).getReg();
3461     Register Rn = MI.getOperand(3).getReg();
3462     Register Rm = MI.getOperand(4).getReg();
3463     if (Rm)
3464       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3465                                                                           : 4;
3466     return (Rt == Rn) ? 4 : 3;
3467   }
3468 
3469   case ARM::t2LDRD_PRE: {
3470     Register Rt = MI.getOperand(0).getReg();
3471     Register Rn = MI.getOperand(3).getReg();
3472     return (Rt == Rn) ? 4 : 3;
3473   }
3474 
3475   case ARM::STRD_PRE: {
3476     Register Rm = MI.getOperand(4).getReg();
3477     if (Rm)
3478       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3479                                                                           : 4;
3480     return 3;
3481   }
3482 
3483   case ARM::t2STRD_PRE:
3484     return 3;
3485 
3486   case ARM::t2LDR_POST:
3487   case ARM::t2LDRB_POST:
3488   case ARM::t2LDRB_PRE:
3489   case ARM::t2LDRSBi12:
3490   case ARM::t2LDRSBi8:
3491   case ARM::t2LDRSBpci:
3492   case ARM::t2LDRSBs:
3493   case ARM::t2LDRH_POST:
3494   case ARM::t2LDRH_PRE:
3495   case ARM::t2LDRSBT:
3496   case ARM::t2LDRSB_POST:
3497   case ARM::t2LDRSB_PRE:
3498   case ARM::t2LDRSH_POST:
3499   case ARM::t2LDRSH_PRE:
3500   case ARM::t2LDRSHi12:
3501   case ARM::t2LDRSHi8:
3502   case ARM::t2LDRSHpci:
3503   case ARM::t2LDRSHs:
3504     return 2;
3505 
3506   case ARM::t2LDRDi8: {
3507     Register Rt = MI.getOperand(0).getReg();
3508     Register Rn = MI.getOperand(2).getReg();
3509     return (Rt == Rn) ? 3 : 2;
3510   }
3511 
3512   case ARM::t2STRB_POST:
3513   case ARM::t2STRB_PRE:
3514   case ARM::t2STRBs:
3515   case ARM::t2STRDi8:
3516   case ARM::t2STRH_POST:
3517   case ARM::t2STRH_PRE:
3518   case ARM::t2STRHs:
3519   case ARM::t2STR_POST:
3520   case ARM::t2STR_PRE:
3521   case ARM::t2STRs:
3522     return 2;
3523   }
3524 }
3525 
3526 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3527 // can't be easily determined return 0 (missing MachineMemOperand).
3528 //
3529 // FIXME: The current MachineInstr design does not support relying on machine
3530 // mem operands to determine the width of a memory access. Instead, we expect
3531 // the target to provide this information based on the instruction opcode and
3532 // operands. However, using MachineMemOperand is the best solution now for
3533 // two reasons:
3534 //
3535 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3536 // operands. This is much more dangerous than using the MachineMemOperand
3537 // sizes because CodeGen passes can insert/remove optional machine operands. In
3538 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3539 // postRA passes as well.
3540 //
3541 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3542 // machine model that calls this should handle the unknown (zero size) case.
3543 //
3544 // Long term, we should require a target hook that verifies MachineMemOperand
3545 // sizes during MC lowering. That target hook should be local to MC lowering
3546 // because we can't ensure that it is aware of other MI forms. Doing this will
3547 // ensure that MachineMemOperands are correctly propagated through all passes.
3548 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3549   unsigned Size = 0;
3550   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3551                                   E = MI.memoperands_end();
3552        I != E; ++I) {
3553     Size += (*I)->getSize();
3554   }
3555   // FIXME: The scheduler currently can't handle values larger than 16. But
3556   // the values can actually go up to 32 for floating-point load/store
3557   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3558   // operations isn't right; we could end up with "extra" memory operands for
3559   // various reasons, like tail merge merging two memory operations.
3560   return std::min(Size / 4, 16U);
3561 }
3562 
3563 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3564                                                     unsigned NumRegs) {
3565   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3566   switch (Opc) {
3567   default:
3568     break;
3569   case ARM::VLDMDIA_UPD:
3570   case ARM::VLDMDDB_UPD:
3571   case ARM::VLDMSIA_UPD:
3572   case ARM::VLDMSDB_UPD:
3573   case ARM::VSTMDIA_UPD:
3574   case ARM::VSTMDDB_UPD:
3575   case ARM::VSTMSIA_UPD:
3576   case ARM::VSTMSDB_UPD:
3577   case ARM::LDMIA_UPD:
3578   case ARM::LDMDA_UPD:
3579   case ARM::LDMDB_UPD:
3580   case ARM::LDMIB_UPD:
3581   case ARM::STMIA_UPD:
3582   case ARM::STMDA_UPD:
3583   case ARM::STMDB_UPD:
3584   case ARM::STMIB_UPD:
3585   case ARM::tLDMIA_UPD:
3586   case ARM::tSTMIA_UPD:
3587   case ARM::t2LDMIA_UPD:
3588   case ARM::t2LDMDB_UPD:
3589   case ARM::t2STMIA_UPD:
3590   case ARM::t2STMDB_UPD:
3591     ++UOps; // One for base register writeback.
3592     break;
3593   case ARM::LDMIA_RET:
3594   case ARM::tPOP_RET:
3595   case ARM::t2LDMIA_RET:
3596     UOps += 2; // One for base reg wb, one for write to pc.
3597     break;
3598   }
3599   return UOps;
3600 }
3601 
3602 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3603                                           const MachineInstr &MI) const {
3604   if (!ItinData || ItinData->isEmpty())
3605     return 1;
3606 
3607   const MCInstrDesc &Desc = MI.getDesc();
3608   unsigned Class = Desc.getSchedClass();
3609   int ItinUOps = ItinData->getNumMicroOps(Class);
3610   if (ItinUOps >= 0) {
3611     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3612       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3613 
3614     return ItinUOps;
3615   }
3616 
3617   unsigned Opc = MI.getOpcode();
3618   switch (Opc) {
3619   default:
3620     llvm_unreachable("Unexpected multi-uops instruction!");
3621   case ARM::VLDMQIA:
3622   case ARM::VSTMQIA:
3623     return 2;
3624 
3625   // The number of uOps for load / store multiple are determined by the number
3626   // registers.
3627   //
3628   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3629   // same cycle. The scheduling for the first load / store must be done
3630   // separately by assuming the address is not 64-bit aligned.
3631   //
3632   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3633   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3634   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3635   case ARM::VLDMDIA:
3636   case ARM::VLDMDIA_UPD:
3637   case ARM::VLDMDDB_UPD:
3638   case ARM::VLDMSIA:
3639   case ARM::VLDMSIA_UPD:
3640   case ARM::VLDMSDB_UPD:
3641   case ARM::VSTMDIA:
3642   case ARM::VSTMDIA_UPD:
3643   case ARM::VSTMDDB_UPD:
3644   case ARM::VSTMSIA:
3645   case ARM::VSTMSIA_UPD:
3646   case ARM::VSTMSDB_UPD: {
3647     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3648     return (NumRegs / 2) + (NumRegs % 2) + 1;
3649   }
3650 
3651   case ARM::LDMIA_RET:
3652   case ARM::LDMIA:
3653   case ARM::LDMDA:
3654   case ARM::LDMDB:
3655   case ARM::LDMIB:
3656   case ARM::LDMIA_UPD:
3657   case ARM::LDMDA_UPD:
3658   case ARM::LDMDB_UPD:
3659   case ARM::LDMIB_UPD:
3660   case ARM::STMIA:
3661   case ARM::STMDA:
3662   case ARM::STMDB:
3663   case ARM::STMIB:
3664   case ARM::STMIA_UPD:
3665   case ARM::STMDA_UPD:
3666   case ARM::STMDB_UPD:
3667   case ARM::STMIB_UPD:
3668   case ARM::tLDMIA:
3669   case ARM::tLDMIA_UPD:
3670   case ARM::tSTMIA_UPD:
3671   case ARM::tPOP_RET:
3672   case ARM::tPOP:
3673   case ARM::tPUSH:
3674   case ARM::t2LDMIA_RET:
3675   case ARM::t2LDMIA:
3676   case ARM::t2LDMDB:
3677   case ARM::t2LDMIA_UPD:
3678   case ARM::t2LDMDB_UPD:
3679   case ARM::t2STMIA:
3680   case ARM::t2STMDB:
3681   case ARM::t2STMIA_UPD:
3682   case ARM::t2STMDB_UPD: {
3683     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3684     switch (Subtarget.getLdStMultipleTiming()) {
3685     case ARMSubtarget::SingleIssuePlusExtras:
3686       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3687     case ARMSubtarget::SingleIssue:
3688       // Assume the worst.
3689       return NumRegs;
3690     case ARMSubtarget::DoubleIssue: {
3691       if (NumRegs < 4)
3692         return 2;
3693       // 4 registers would be issued: 2, 2.
3694       // 5 registers would be issued: 2, 2, 1.
3695       unsigned UOps = (NumRegs / 2);
3696       if (NumRegs % 2)
3697         ++UOps;
3698       return UOps;
3699     }
3700     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3701       unsigned UOps = (NumRegs / 2);
3702       // If there are odd number of registers or if it's not 64-bit aligned,
3703       // then it takes an extra AGU (Address Generation Unit) cycle.
3704       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3705           (*MI.memoperands_begin())->getAlignment() < 8)
3706         ++UOps;
3707       return UOps;
3708       }
3709     }
3710   }
3711   }
3712   llvm_unreachable("Didn't find the number of microops");
3713 }
3714 
3715 int
3716 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3717                                   const MCInstrDesc &DefMCID,
3718                                   unsigned DefClass,
3719                                   unsigned DefIdx, unsigned DefAlign) const {
3720   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3721   if (RegNo <= 0)
3722     // Def is the address writeback.
3723     return ItinData->getOperandCycle(DefClass, DefIdx);
3724 
3725   int DefCycle;
3726   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3727     // (regno / 2) + (regno % 2) + 1
3728     DefCycle = RegNo / 2 + 1;
3729     if (RegNo % 2)
3730       ++DefCycle;
3731   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3732     DefCycle = RegNo;
3733     bool isSLoad = false;
3734 
3735     switch (DefMCID.getOpcode()) {
3736     default: break;
3737     case ARM::VLDMSIA:
3738     case ARM::VLDMSIA_UPD:
3739     case ARM::VLDMSDB_UPD:
3740       isSLoad = true;
3741       break;
3742     }
3743 
3744     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3745     // then it takes an extra cycle.
3746     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3747       ++DefCycle;
3748   } else {
3749     // Assume the worst.
3750     DefCycle = RegNo + 2;
3751   }
3752 
3753   return DefCycle;
3754 }
3755 
3756 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3757   Register BaseReg = MI.getOperand(0).getReg();
3758   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3759     const auto &Op = MI.getOperand(i);
3760     if (Op.isReg() && Op.getReg() == BaseReg)
3761       return true;
3762   }
3763   return false;
3764 }
3765 unsigned
3766 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3767   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3768   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3769   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3770 }
3771 
3772 int
3773 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3774                                  const MCInstrDesc &DefMCID,
3775                                  unsigned DefClass,
3776                                  unsigned DefIdx, unsigned DefAlign) const {
3777   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3778   if (RegNo <= 0)
3779     // Def is the address writeback.
3780     return ItinData->getOperandCycle(DefClass, DefIdx);
3781 
3782   int DefCycle;
3783   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3784     // 4 registers would be issued: 1, 2, 1.
3785     // 5 registers would be issued: 1, 2, 2.
3786     DefCycle = RegNo / 2;
3787     if (DefCycle < 1)
3788       DefCycle = 1;
3789     // Result latency is issue cycle + 2: E2.
3790     DefCycle += 2;
3791   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3792     DefCycle = (RegNo / 2);
3793     // If there are odd number of registers or if it's not 64-bit aligned,
3794     // then it takes an extra AGU (Address Generation Unit) cycle.
3795     if ((RegNo % 2) || DefAlign < 8)
3796       ++DefCycle;
3797     // Result latency is AGU cycles + 2.
3798     DefCycle += 2;
3799   } else {
3800     // Assume the worst.
3801     DefCycle = RegNo + 2;
3802   }
3803 
3804   return DefCycle;
3805 }
3806 
3807 int
3808 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3809                                   const MCInstrDesc &UseMCID,
3810                                   unsigned UseClass,
3811                                   unsigned UseIdx, unsigned UseAlign) const {
3812   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3813   if (RegNo <= 0)
3814     return ItinData->getOperandCycle(UseClass, UseIdx);
3815 
3816   int UseCycle;
3817   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3818     // (regno / 2) + (regno % 2) + 1
3819     UseCycle = RegNo / 2 + 1;
3820     if (RegNo % 2)
3821       ++UseCycle;
3822   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3823     UseCycle = RegNo;
3824     bool isSStore = false;
3825 
3826     switch (UseMCID.getOpcode()) {
3827     default: break;
3828     case ARM::VSTMSIA:
3829     case ARM::VSTMSIA_UPD:
3830     case ARM::VSTMSDB_UPD:
3831       isSStore = true;
3832       break;
3833     }
3834 
3835     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3836     // then it takes an extra cycle.
3837     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3838       ++UseCycle;
3839   } else {
3840     // Assume the worst.
3841     UseCycle = RegNo + 2;
3842   }
3843 
3844   return UseCycle;
3845 }
3846 
3847 int
3848 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3849                                  const MCInstrDesc &UseMCID,
3850                                  unsigned UseClass,
3851                                  unsigned UseIdx, unsigned UseAlign) const {
3852   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3853   if (RegNo <= 0)
3854     return ItinData->getOperandCycle(UseClass, UseIdx);
3855 
3856   int UseCycle;
3857   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3858     UseCycle = RegNo / 2;
3859     if (UseCycle < 2)
3860       UseCycle = 2;
3861     // Read in E3.
3862     UseCycle += 2;
3863   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3864     UseCycle = (RegNo / 2);
3865     // If there are odd number of registers or if it's not 64-bit aligned,
3866     // then it takes an extra AGU (Address Generation Unit) cycle.
3867     if ((RegNo % 2) || UseAlign < 8)
3868       ++UseCycle;
3869   } else {
3870     // Assume the worst.
3871     UseCycle = 1;
3872   }
3873   return UseCycle;
3874 }
3875 
3876 int
3877 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3878                                     const MCInstrDesc &DefMCID,
3879                                     unsigned DefIdx, unsigned DefAlign,
3880                                     const MCInstrDesc &UseMCID,
3881                                     unsigned UseIdx, unsigned UseAlign) const {
3882   unsigned DefClass = DefMCID.getSchedClass();
3883   unsigned UseClass = UseMCID.getSchedClass();
3884 
3885   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3886     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3887 
3888   // This may be a def / use of a variable_ops instruction, the operand
3889   // latency might be determinable dynamically. Let the target try to
3890   // figure it out.
3891   int DefCycle = -1;
3892   bool LdmBypass = false;
3893   switch (DefMCID.getOpcode()) {
3894   default:
3895     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3896     break;
3897 
3898   case ARM::VLDMDIA:
3899   case ARM::VLDMDIA_UPD:
3900   case ARM::VLDMDDB_UPD:
3901   case ARM::VLDMSIA:
3902   case ARM::VLDMSIA_UPD:
3903   case ARM::VLDMSDB_UPD:
3904     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3905     break;
3906 
3907   case ARM::LDMIA_RET:
3908   case ARM::LDMIA:
3909   case ARM::LDMDA:
3910   case ARM::LDMDB:
3911   case ARM::LDMIB:
3912   case ARM::LDMIA_UPD:
3913   case ARM::LDMDA_UPD:
3914   case ARM::LDMDB_UPD:
3915   case ARM::LDMIB_UPD:
3916   case ARM::tLDMIA:
3917   case ARM::tLDMIA_UPD:
3918   case ARM::tPUSH:
3919   case ARM::t2LDMIA_RET:
3920   case ARM::t2LDMIA:
3921   case ARM::t2LDMDB:
3922   case ARM::t2LDMIA_UPD:
3923   case ARM::t2LDMDB_UPD:
3924     LdmBypass = true;
3925     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3926     break;
3927   }
3928 
3929   if (DefCycle == -1)
3930     // We can't seem to determine the result latency of the def, assume it's 2.
3931     DefCycle = 2;
3932 
3933   int UseCycle = -1;
3934   switch (UseMCID.getOpcode()) {
3935   default:
3936     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3937     break;
3938 
3939   case ARM::VSTMDIA:
3940   case ARM::VSTMDIA_UPD:
3941   case ARM::VSTMDDB_UPD:
3942   case ARM::VSTMSIA:
3943   case ARM::VSTMSIA_UPD:
3944   case ARM::VSTMSDB_UPD:
3945     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3946     break;
3947 
3948   case ARM::STMIA:
3949   case ARM::STMDA:
3950   case ARM::STMDB:
3951   case ARM::STMIB:
3952   case ARM::STMIA_UPD:
3953   case ARM::STMDA_UPD:
3954   case ARM::STMDB_UPD:
3955   case ARM::STMIB_UPD:
3956   case ARM::tSTMIA_UPD:
3957   case ARM::tPOP_RET:
3958   case ARM::tPOP:
3959   case ARM::t2STMIA:
3960   case ARM::t2STMDB:
3961   case ARM::t2STMIA_UPD:
3962   case ARM::t2STMDB_UPD:
3963     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3964     break;
3965   }
3966 
3967   if (UseCycle == -1)
3968     // Assume it's read in the first stage.
3969     UseCycle = 1;
3970 
3971   UseCycle = DefCycle - UseCycle + 1;
3972   if (UseCycle > 0) {
3973     if (LdmBypass) {
3974       // It's a variable_ops instruction so we can't use DefIdx here. Just use
3975       // first def operand.
3976       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3977                                           UseClass, UseIdx))
3978         --UseCycle;
3979     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3980                                                UseClass, UseIdx)) {
3981       --UseCycle;
3982     }
3983   }
3984 
3985   return UseCycle;
3986 }
3987 
3988 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3989                                            const MachineInstr *MI, unsigned Reg,
3990                                            unsigned &DefIdx, unsigned &Dist) {
3991   Dist = 0;
3992 
3993   MachineBasicBlock::const_iterator I = MI; ++I;
3994   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3995   assert(II->isInsideBundle() && "Empty bundle?");
3996 
3997   int Idx = -1;
3998   while (II->isInsideBundle()) {
3999     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4000     if (Idx != -1)
4001       break;
4002     --II;
4003     ++Dist;
4004   }
4005 
4006   assert(Idx != -1 && "Cannot find bundled definition!");
4007   DefIdx = Idx;
4008   return &*II;
4009 }
4010 
4011 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4012                                            const MachineInstr &MI, unsigned Reg,
4013                                            unsigned &UseIdx, unsigned &Dist) {
4014   Dist = 0;
4015 
4016   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4017   assert(II->isInsideBundle() && "Empty bundle?");
4018   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4019 
4020   // FIXME: This doesn't properly handle multiple uses.
4021   int Idx = -1;
4022   while (II != E && II->isInsideBundle()) {
4023     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4024     if (Idx != -1)
4025       break;
4026     if (II->getOpcode() != ARM::t2IT)
4027       ++Dist;
4028     ++II;
4029   }
4030 
4031   if (Idx == -1) {
4032     Dist = 0;
4033     return nullptr;
4034   }
4035 
4036   UseIdx = Idx;
4037   return &*II;
4038 }
4039 
4040 /// Return the number of cycles to add to (or subtract from) the static
4041 /// itinerary based on the def opcode and alignment. The caller will ensure that
4042 /// adjusted latency is at least one cycle.
4043 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4044                             const MachineInstr &DefMI,
4045                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4046   int Adjust = 0;
4047   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4048     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4049     // variants are one cycle cheaper.
4050     switch (DefMCID.getOpcode()) {
4051     default: break;
4052     case ARM::LDRrs:
4053     case ARM::LDRBrs: {
4054       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4055       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4056       if (ShImm == 0 ||
4057           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4058         --Adjust;
4059       break;
4060     }
4061     case ARM::t2LDRs:
4062     case ARM::t2LDRBs:
4063     case ARM::t2LDRHs:
4064     case ARM::t2LDRSHs: {
4065       // Thumb2 mode: lsl only.
4066       unsigned ShAmt = DefMI.getOperand(3).getImm();
4067       if (ShAmt == 0 || ShAmt == 2)
4068         --Adjust;
4069       break;
4070     }
4071     }
4072   } else if (Subtarget.isSwift()) {
4073     // FIXME: Properly handle all of the latency adjustments for address
4074     // writeback.
4075     switch (DefMCID.getOpcode()) {
4076     default: break;
4077     case ARM::LDRrs:
4078     case ARM::LDRBrs: {
4079       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4080       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4081       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4082       if (!isSub &&
4083           (ShImm == 0 ||
4084            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4085             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4086         Adjust -= 2;
4087       else if (!isSub &&
4088                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4089         --Adjust;
4090       break;
4091     }
4092     case ARM::t2LDRs:
4093     case ARM::t2LDRBs:
4094     case ARM::t2LDRHs:
4095     case ARM::t2LDRSHs: {
4096       // Thumb2 mode: lsl only.
4097       unsigned ShAmt = DefMI.getOperand(3).getImm();
4098       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4099         Adjust -= 2;
4100       break;
4101     }
4102     }
4103   }
4104 
4105   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4106     switch (DefMCID.getOpcode()) {
4107     default: break;
4108     case ARM::VLD1q8:
4109     case ARM::VLD1q16:
4110     case ARM::VLD1q32:
4111     case ARM::VLD1q64:
4112     case ARM::VLD1q8wb_fixed:
4113     case ARM::VLD1q16wb_fixed:
4114     case ARM::VLD1q32wb_fixed:
4115     case ARM::VLD1q64wb_fixed:
4116     case ARM::VLD1q8wb_register:
4117     case ARM::VLD1q16wb_register:
4118     case ARM::VLD1q32wb_register:
4119     case ARM::VLD1q64wb_register:
4120     case ARM::VLD2d8:
4121     case ARM::VLD2d16:
4122     case ARM::VLD2d32:
4123     case ARM::VLD2q8:
4124     case ARM::VLD2q16:
4125     case ARM::VLD2q32:
4126     case ARM::VLD2d8wb_fixed:
4127     case ARM::VLD2d16wb_fixed:
4128     case ARM::VLD2d32wb_fixed:
4129     case ARM::VLD2q8wb_fixed:
4130     case ARM::VLD2q16wb_fixed:
4131     case ARM::VLD2q32wb_fixed:
4132     case ARM::VLD2d8wb_register:
4133     case ARM::VLD2d16wb_register:
4134     case ARM::VLD2d32wb_register:
4135     case ARM::VLD2q8wb_register:
4136     case ARM::VLD2q16wb_register:
4137     case ARM::VLD2q32wb_register:
4138     case ARM::VLD3d8:
4139     case ARM::VLD3d16:
4140     case ARM::VLD3d32:
4141     case ARM::VLD1d64T:
4142     case ARM::VLD3d8_UPD:
4143     case ARM::VLD3d16_UPD:
4144     case ARM::VLD3d32_UPD:
4145     case ARM::VLD1d64Twb_fixed:
4146     case ARM::VLD1d64Twb_register:
4147     case ARM::VLD3q8_UPD:
4148     case ARM::VLD3q16_UPD:
4149     case ARM::VLD3q32_UPD:
4150     case ARM::VLD4d8:
4151     case ARM::VLD4d16:
4152     case ARM::VLD4d32:
4153     case ARM::VLD1d64Q:
4154     case ARM::VLD4d8_UPD:
4155     case ARM::VLD4d16_UPD:
4156     case ARM::VLD4d32_UPD:
4157     case ARM::VLD1d64Qwb_fixed:
4158     case ARM::VLD1d64Qwb_register:
4159     case ARM::VLD4q8_UPD:
4160     case ARM::VLD4q16_UPD:
4161     case ARM::VLD4q32_UPD:
4162     case ARM::VLD1DUPq8:
4163     case ARM::VLD1DUPq16:
4164     case ARM::VLD1DUPq32:
4165     case ARM::VLD1DUPq8wb_fixed:
4166     case ARM::VLD1DUPq16wb_fixed:
4167     case ARM::VLD1DUPq32wb_fixed:
4168     case ARM::VLD1DUPq8wb_register:
4169     case ARM::VLD1DUPq16wb_register:
4170     case ARM::VLD1DUPq32wb_register:
4171     case ARM::VLD2DUPd8:
4172     case ARM::VLD2DUPd16:
4173     case ARM::VLD2DUPd32:
4174     case ARM::VLD2DUPd8wb_fixed:
4175     case ARM::VLD2DUPd16wb_fixed:
4176     case ARM::VLD2DUPd32wb_fixed:
4177     case ARM::VLD2DUPd8wb_register:
4178     case ARM::VLD2DUPd16wb_register:
4179     case ARM::VLD2DUPd32wb_register:
4180     case ARM::VLD4DUPd8:
4181     case ARM::VLD4DUPd16:
4182     case ARM::VLD4DUPd32:
4183     case ARM::VLD4DUPd8_UPD:
4184     case ARM::VLD4DUPd16_UPD:
4185     case ARM::VLD4DUPd32_UPD:
4186     case ARM::VLD1LNd8:
4187     case ARM::VLD1LNd16:
4188     case ARM::VLD1LNd32:
4189     case ARM::VLD1LNd8_UPD:
4190     case ARM::VLD1LNd16_UPD:
4191     case ARM::VLD1LNd32_UPD:
4192     case ARM::VLD2LNd8:
4193     case ARM::VLD2LNd16:
4194     case ARM::VLD2LNd32:
4195     case ARM::VLD2LNq16:
4196     case ARM::VLD2LNq32:
4197     case ARM::VLD2LNd8_UPD:
4198     case ARM::VLD2LNd16_UPD:
4199     case ARM::VLD2LNd32_UPD:
4200     case ARM::VLD2LNq16_UPD:
4201     case ARM::VLD2LNq32_UPD:
4202     case ARM::VLD4LNd8:
4203     case ARM::VLD4LNd16:
4204     case ARM::VLD4LNd32:
4205     case ARM::VLD4LNq16:
4206     case ARM::VLD4LNq32:
4207     case ARM::VLD4LNd8_UPD:
4208     case ARM::VLD4LNd16_UPD:
4209     case ARM::VLD4LNd32_UPD:
4210     case ARM::VLD4LNq16_UPD:
4211     case ARM::VLD4LNq32_UPD:
4212       // If the address is not 64-bit aligned, the latencies of these
4213       // instructions increases by one.
4214       ++Adjust;
4215       break;
4216     }
4217   }
4218   return Adjust;
4219 }
4220 
4221 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4222                                         const MachineInstr &DefMI,
4223                                         unsigned DefIdx,
4224                                         const MachineInstr &UseMI,
4225                                         unsigned UseIdx) const {
4226   // No operand latency. The caller may fall back to getInstrLatency.
4227   if (!ItinData || ItinData->isEmpty())
4228     return -1;
4229 
4230   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4231   Register Reg = DefMO.getReg();
4232 
4233   const MachineInstr *ResolvedDefMI = &DefMI;
4234   unsigned DefAdj = 0;
4235   if (DefMI.isBundle())
4236     ResolvedDefMI =
4237         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4238   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4239       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4240     return 1;
4241   }
4242 
4243   const MachineInstr *ResolvedUseMI = &UseMI;
4244   unsigned UseAdj = 0;
4245   if (UseMI.isBundle()) {
4246     ResolvedUseMI =
4247         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4248     if (!ResolvedUseMI)
4249       return -1;
4250   }
4251 
4252   return getOperandLatencyImpl(
4253       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4254       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4255 }
4256 
4257 int ARMBaseInstrInfo::getOperandLatencyImpl(
4258     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4259     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4260     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4261     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4262   if (Reg == ARM::CPSR) {
4263     if (DefMI.getOpcode() == ARM::FMSTAT) {
4264       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4265       return Subtarget.isLikeA9() ? 1 : 20;
4266     }
4267 
4268     // CPSR set and branch can be paired in the same cycle.
4269     if (UseMI.isBranch())
4270       return 0;
4271 
4272     // Otherwise it takes the instruction latency (generally one).
4273     unsigned Latency = getInstrLatency(ItinData, DefMI);
4274 
4275     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4276     // its uses. Instructions which are otherwise scheduled between them may
4277     // incur a code size penalty (not able to use the CPSR setting 16-bit
4278     // instructions).
4279     if (Latency > 0 && Subtarget.isThumb2()) {
4280       const MachineFunction *MF = DefMI.getParent()->getParent();
4281       // FIXME: Use Function::hasOptSize().
4282       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4283         --Latency;
4284     }
4285     return Latency;
4286   }
4287 
4288   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4289     return -1;
4290 
4291   unsigned DefAlign = DefMI.hasOneMemOperand()
4292                           ? (*DefMI.memoperands_begin())->getAlignment()
4293                           : 0;
4294   unsigned UseAlign = UseMI.hasOneMemOperand()
4295                           ? (*UseMI.memoperands_begin())->getAlignment()
4296                           : 0;
4297 
4298   // Get the itinerary's latency if possible, and handle variable_ops.
4299   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4300                                   UseIdx, UseAlign);
4301   // Unable to find operand latency. The caller may resort to getInstrLatency.
4302   if (Latency < 0)
4303     return Latency;
4304 
4305   // Adjust for IT block position.
4306   int Adj = DefAdj + UseAdj;
4307 
4308   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4309   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4310   if (Adj >= 0 || (int)Latency > -Adj) {
4311     return Latency + Adj;
4312   }
4313   // Return the itinerary latency, which may be zero but not less than zero.
4314   return Latency;
4315 }
4316 
4317 int
4318 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4319                                     SDNode *DefNode, unsigned DefIdx,
4320                                     SDNode *UseNode, unsigned UseIdx) const {
4321   if (!DefNode->isMachineOpcode())
4322     return 1;
4323 
4324   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4325 
4326   if (isZeroCost(DefMCID.Opcode))
4327     return 0;
4328 
4329   if (!ItinData || ItinData->isEmpty())
4330     return DefMCID.mayLoad() ? 3 : 1;
4331 
4332   if (!UseNode->isMachineOpcode()) {
4333     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4334     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4335     int Threshold = 1 + Adj;
4336     return Latency <= Threshold ? 1 : Latency - Adj;
4337   }
4338 
4339   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4340   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
4341   unsigned DefAlign = !DefMN->memoperands_empty()
4342     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4343   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
4344   unsigned UseAlign = !UseMN->memoperands_empty()
4345     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4346   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4347                                   UseMCID, UseIdx, UseAlign);
4348 
4349   if (Latency > 1 &&
4350       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4351        Subtarget.isCortexA7())) {
4352     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4353     // variants are one cycle cheaper.
4354     switch (DefMCID.getOpcode()) {
4355     default: break;
4356     case ARM::LDRrs:
4357     case ARM::LDRBrs: {
4358       unsigned ShOpVal =
4359         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4360       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4361       if (ShImm == 0 ||
4362           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4363         --Latency;
4364       break;
4365     }
4366     case ARM::t2LDRs:
4367     case ARM::t2LDRBs:
4368     case ARM::t2LDRHs:
4369     case ARM::t2LDRSHs: {
4370       // Thumb2 mode: lsl only.
4371       unsigned ShAmt =
4372         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4373       if (ShAmt == 0 || ShAmt == 2)
4374         --Latency;
4375       break;
4376     }
4377     }
4378   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4379     // FIXME: Properly handle all of the latency adjustments for address
4380     // writeback.
4381     switch (DefMCID.getOpcode()) {
4382     default: break;
4383     case ARM::LDRrs:
4384     case ARM::LDRBrs: {
4385       unsigned ShOpVal =
4386         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4387       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4388       if (ShImm == 0 ||
4389           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4390            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4391         Latency -= 2;
4392       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4393         --Latency;
4394       break;
4395     }
4396     case ARM::t2LDRs:
4397     case ARM::t2LDRBs:
4398     case ARM::t2LDRHs:
4399     case ARM::t2LDRSHs:
4400       // Thumb2 mode: lsl 0-3 only.
4401       Latency -= 2;
4402       break;
4403     }
4404   }
4405 
4406   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4407     switch (DefMCID.getOpcode()) {
4408     default: break;
4409     case ARM::VLD1q8:
4410     case ARM::VLD1q16:
4411     case ARM::VLD1q32:
4412     case ARM::VLD1q64:
4413     case ARM::VLD1q8wb_register:
4414     case ARM::VLD1q16wb_register:
4415     case ARM::VLD1q32wb_register:
4416     case ARM::VLD1q64wb_register:
4417     case ARM::VLD1q8wb_fixed:
4418     case ARM::VLD1q16wb_fixed:
4419     case ARM::VLD1q32wb_fixed:
4420     case ARM::VLD1q64wb_fixed:
4421     case ARM::VLD2d8:
4422     case ARM::VLD2d16:
4423     case ARM::VLD2d32:
4424     case ARM::VLD2q8Pseudo:
4425     case ARM::VLD2q16Pseudo:
4426     case ARM::VLD2q32Pseudo:
4427     case ARM::VLD2d8wb_fixed:
4428     case ARM::VLD2d16wb_fixed:
4429     case ARM::VLD2d32wb_fixed:
4430     case ARM::VLD2q8PseudoWB_fixed:
4431     case ARM::VLD2q16PseudoWB_fixed:
4432     case ARM::VLD2q32PseudoWB_fixed:
4433     case ARM::VLD2d8wb_register:
4434     case ARM::VLD2d16wb_register:
4435     case ARM::VLD2d32wb_register:
4436     case ARM::VLD2q8PseudoWB_register:
4437     case ARM::VLD2q16PseudoWB_register:
4438     case ARM::VLD2q32PseudoWB_register:
4439     case ARM::VLD3d8Pseudo:
4440     case ARM::VLD3d16Pseudo:
4441     case ARM::VLD3d32Pseudo:
4442     case ARM::VLD1d8TPseudo:
4443     case ARM::VLD1d16TPseudo:
4444     case ARM::VLD1d32TPseudo:
4445     case ARM::VLD1d64TPseudo:
4446     case ARM::VLD1d64TPseudoWB_fixed:
4447     case ARM::VLD1d64TPseudoWB_register:
4448     case ARM::VLD3d8Pseudo_UPD:
4449     case ARM::VLD3d16Pseudo_UPD:
4450     case ARM::VLD3d32Pseudo_UPD:
4451     case ARM::VLD3q8Pseudo_UPD:
4452     case ARM::VLD3q16Pseudo_UPD:
4453     case ARM::VLD3q32Pseudo_UPD:
4454     case ARM::VLD3q8oddPseudo:
4455     case ARM::VLD3q16oddPseudo:
4456     case ARM::VLD3q32oddPseudo:
4457     case ARM::VLD3q8oddPseudo_UPD:
4458     case ARM::VLD3q16oddPseudo_UPD:
4459     case ARM::VLD3q32oddPseudo_UPD:
4460     case ARM::VLD4d8Pseudo:
4461     case ARM::VLD4d16Pseudo:
4462     case ARM::VLD4d32Pseudo:
4463     case ARM::VLD1d8QPseudo:
4464     case ARM::VLD1d16QPseudo:
4465     case ARM::VLD1d32QPseudo:
4466     case ARM::VLD1d64QPseudo:
4467     case ARM::VLD1d64QPseudoWB_fixed:
4468     case ARM::VLD1d64QPseudoWB_register:
4469     case ARM::VLD1q8HighQPseudo:
4470     case ARM::VLD1q8LowQPseudo_UPD:
4471     case ARM::VLD1q8HighTPseudo:
4472     case ARM::VLD1q8LowTPseudo_UPD:
4473     case ARM::VLD1q16HighQPseudo:
4474     case ARM::VLD1q16LowQPseudo_UPD:
4475     case ARM::VLD1q16HighTPseudo:
4476     case ARM::VLD1q16LowTPseudo_UPD:
4477     case ARM::VLD1q32HighQPseudo:
4478     case ARM::VLD1q32LowQPseudo_UPD:
4479     case ARM::VLD1q32HighTPseudo:
4480     case ARM::VLD1q32LowTPseudo_UPD:
4481     case ARM::VLD1q64HighQPseudo:
4482     case ARM::VLD1q64LowQPseudo_UPD:
4483     case ARM::VLD1q64HighTPseudo:
4484     case ARM::VLD1q64LowTPseudo_UPD:
4485     case ARM::VLD4d8Pseudo_UPD:
4486     case ARM::VLD4d16Pseudo_UPD:
4487     case ARM::VLD4d32Pseudo_UPD:
4488     case ARM::VLD4q8Pseudo_UPD:
4489     case ARM::VLD4q16Pseudo_UPD:
4490     case ARM::VLD4q32Pseudo_UPD:
4491     case ARM::VLD4q8oddPseudo:
4492     case ARM::VLD4q16oddPseudo:
4493     case ARM::VLD4q32oddPseudo:
4494     case ARM::VLD4q8oddPseudo_UPD:
4495     case ARM::VLD4q16oddPseudo_UPD:
4496     case ARM::VLD4q32oddPseudo_UPD:
4497     case ARM::VLD1DUPq8:
4498     case ARM::VLD1DUPq16:
4499     case ARM::VLD1DUPq32:
4500     case ARM::VLD1DUPq8wb_fixed:
4501     case ARM::VLD1DUPq16wb_fixed:
4502     case ARM::VLD1DUPq32wb_fixed:
4503     case ARM::VLD1DUPq8wb_register:
4504     case ARM::VLD1DUPq16wb_register:
4505     case ARM::VLD1DUPq32wb_register:
4506     case ARM::VLD2DUPd8:
4507     case ARM::VLD2DUPd16:
4508     case ARM::VLD2DUPd32:
4509     case ARM::VLD2DUPd8wb_fixed:
4510     case ARM::VLD2DUPd16wb_fixed:
4511     case ARM::VLD2DUPd32wb_fixed:
4512     case ARM::VLD2DUPd8wb_register:
4513     case ARM::VLD2DUPd16wb_register:
4514     case ARM::VLD2DUPd32wb_register:
4515     case ARM::VLD2DUPq8EvenPseudo:
4516     case ARM::VLD2DUPq8OddPseudo:
4517     case ARM::VLD2DUPq16EvenPseudo:
4518     case ARM::VLD2DUPq16OddPseudo:
4519     case ARM::VLD2DUPq32EvenPseudo:
4520     case ARM::VLD2DUPq32OddPseudo:
4521     case ARM::VLD3DUPq8EvenPseudo:
4522     case ARM::VLD3DUPq8OddPseudo:
4523     case ARM::VLD3DUPq16EvenPseudo:
4524     case ARM::VLD3DUPq16OddPseudo:
4525     case ARM::VLD3DUPq32EvenPseudo:
4526     case ARM::VLD3DUPq32OddPseudo:
4527     case ARM::VLD4DUPd8Pseudo:
4528     case ARM::VLD4DUPd16Pseudo:
4529     case ARM::VLD4DUPd32Pseudo:
4530     case ARM::VLD4DUPd8Pseudo_UPD:
4531     case ARM::VLD4DUPd16Pseudo_UPD:
4532     case ARM::VLD4DUPd32Pseudo_UPD:
4533     case ARM::VLD4DUPq8EvenPseudo:
4534     case ARM::VLD4DUPq8OddPseudo:
4535     case ARM::VLD4DUPq16EvenPseudo:
4536     case ARM::VLD4DUPq16OddPseudo:
4537     case ARM::VLD4DUPq32EvenPseudo:
4538     case ARM::VLD4DUPq32OddPseudo:
4539     case ARM::VLD1LNq8Pseudo:
4540     case ARM::VLD1LNq16Pseudo:
4541     case ARM::VLD1LNq32Pseudo:
4542     case ARM::VLD1LNq8Pseudo_UPD:
4543     case ARM::VLD1LNq16Pseudo_UPD:
4544     case ARM::VLD1LNq32Pseudo_UPD:
4545     case ARM::VLD2LNd8Pseudo:
4546     case ARM::VLD2LNd16Pseudo:
4547     case ARM::VLD2LNd32Pseudo:
4548     case ARM::VLD2LNq16Pseudo:
4549     case ARM::VLD2LNq32Pseudo:
4550     case ARM::VLD2LNd8Pseudo_UPD:
4551     case ARM::VLD2LNd16Pseudo_UPD:
4552     case ARM::VLD2LNd32Pseudo_UPD:
4553     case ARM::VLD2LNq16Pseudo_UPD:
4554     case ARM::VLD2LNq32Pseudo_UPD:
4555     case ARM::VLD4LNd8Pseudo:
4556     case ARM::VLD4LNd16Pseudo:
4557     case ARM::VLD4LNd32Pseudo:
4558     case ARM::VLD4LNq16Pseudo:
4559     case ARM::VLD4LNq32Pseudo:
4560     case ARM::VLD4LNd8Pseudo_UPD:
4561     case ARM::VLD4LNd16Pseudo_UPD:
4562     case ARM::VLD4LNd32Pseudo_UPD:
4563     case ARM::VLD4LNq16Pseudo_UPD:
4564     case ARM::VLD4LNq32Pseudo_UPD:
4565       // If the address is not 64-bit aligned, the latencies of these
4566       // instructions increases by one.
4567       ++Latency;
4568       break;
4569     }
4570 
4571   return Latency;
4572 }
4573 
4574 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4575   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4576       MI.isImplicitDef())
4577     return 0;
4578 
4579   if (MI.isBundle())
4580     return 0;
4581 
4582   const MCInstrDesc &MCID = MI.getDesc();
4583 
4584   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4585                         !Subtarget.cheapPredicableCPSRDef())) {
4586     // When predicated, CPSR is an additional source operand for CPSR updating
4587     // instructions, this apparently increases their latencies.
4588     return 1;
4589   }
4590   return 0;
4591 }
4592 
4593 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4594                                            const MachineInstr &MI,
4595                                            unsigned *PredCost) const {
4596   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4597       MI.isImplicitDef())
4598     return 1;
4599 
4600   // An instruction scheduler typically runs on unbundled instructions, however
4601   // other passes may query the latency of a bundled instruction.
4602   if (MI.isBundle()) {
4603     unsigned Latency = 0;
4604     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4605     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4606     while (++I != E && I->isInsideBundle()) {
4607       if (I->getOpcode() != ARM::t2IT)
4608         Latency += getInstrLatency(ItinData, *I, PredCost);
4609     }
4610     return Latency;
4611   }
4612 
4613   const MCInstrDesc &MCID = MI.getDesc();
4614   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4615                                      !Subtarget.cheapPredicableCPSRDef()))) {
4616     // When predicated, CPSR is an additional source operand for CPSR updating
4617     // instructions, this apparently increases their latencies.
4618     *PredCost = 1;
4619   }
4620   // Be sure to call getStageLatency for an empty itinerary in case it has a
4621   // valid MinLatency property.
4622   if (!ItinData)
4623     return MI.mayLoad() ? 3 : 1;
4624 
4625   unsigned Class = MCID.getSchedClass();
4626 
4627   // For instructions with variable uops, use uops as latency.
4628   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4629     return getNumMicroOps(ItinData, MI);
4630 
4631   // For the common case, fall back on the itinerary's latency.
4632   unsigned Latency = ItinData->getStageLatency(Class);
4633 
4634   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4635   unsigned DefAlign =
4636       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4637   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4638   if (Adj >= 0 || (int)Latency > -Adj) {
4639     return Latency + Adj;
4640   }
4641   return Latency;
4642 }
4643 
4644 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4645                                       SDNode *Node) const {
4646   if (!Node->isMachineOpcode())
4647     return 1;
4648 
4649   if (!ItinData || ItinData->isEmpty())
4650     return 1;
4651 
4652   unsigned Opcode = Node->getMachineOpcode();
4653   switch (Opcode) {
4654   default:
4655     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4656   case ARM::VLDMQIA:
4657   case ARM::VSTMQIA:
4658     return 2;
4659   }
4660 }
4661 
4662 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4663                                              const MachineRegisterInfo *MRI,
4664                                              const MachineInstr &DefMI,
4665                                              unsigned DefIdx,
4666                                              const MachineInstr &UseMI,
4667                                              unsigned UseIdx) const {
4668   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4669   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4670   if (Subtarget.nonpipelinedVFP() &&
4671       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4672     return true;
4673 
4674   // Hoist VFP / NEON instructions with 4 or higher latency.
4675   unsigned Latency =
4676       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4677   if (Latency <= 3)
4678     return false;
4679   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4680          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4681 }
4682 
4683 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4684                                         const MachineInstr &DefMI,
4685                                         unsigned DefIdx) const {
4686   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4687   if (!ItinData || ItinData->isEmpty())
4688     return false;
4689 
4690   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4691   if (DDomain == ARMII::DomainGeneral) {
4692     unsigned DefClass = DefMI.getDesc().getSchedClass();
4693     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4694     return (DefCycle != -1 && DefCycle <= 2);
4695   }
4696   return false;
4697 }
4698 
4699 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4700                                          StringRef &ErrInfo) const {
4701   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4702     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4703     return false;
4704   }
4705   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4706     // Make sure we don't generate a lo-lo mov that isn't supported.
4707     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4708         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4709       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4710       return false;
4711     }
4712   }
4713   if (MI.getOpcode() == ARM::tPUSH ||
4714       MI.getOpcode() == ARM::tPOP ||
4715       MI.getOpcode() == ARM::tPOP_RET) {
4716     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4717       if (MI.getOperand(i).isImplicit() ||
4718           !MI.getOperand(i).isReg())
4719         continue;
4720       Register Reg = MI.getOperand(i).getReg();
4721       if (Reg < ARM::R0 || Reg > ARM::R7) {
4722         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4723             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4724           ErrInfo = "Unsupported register in Thumb1 push/pop";
4725           return false;
4726         }
4727       }
4728     }
4729   }
4730   return true;
4731 }
4732 
4733 // LoadStackGuard has so far only been implemented for MachO. Different code
4734 // sequence is needed for other targets.
4735 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4736                                                 unsigned LoadImmOpc,
4737                                                 unsigned LoadOpc) const {
4738   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4739          "ROPI/RWPI not currently supported with stack guard");
4740 
4741   MachineBasicBlock &MBB = *MI->getParent();
4742   DebugLoc DL = MI->getDebugLoc();
4743   Register Reg = MI->getOperand(0).getReg();
4744   const GlobalValue *GV =
4745       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4746   MachineInstrBuilder MIB;
4747 
4748   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4749       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4750 
4751   if (Subtarget.isGVIndirectSymbol(GV)) {
4752     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4753     MIB.addReg(Reg, RegState::Kill).addImm(0);
4754     auto Flags = MachineMemOperand::MOLoad |
4755                  MachineMemOperand::MODereferenceable |
4756                  MachineMemOperand::MOInvariant;
4757     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4758         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4759     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4760   }
4761 
4762   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4763   MIB.addReg(Reg, RegState::Kill)
4764       .addImm(0)
4765       .cloneMemRefs(*MI)
4766       .add(predOps(ARMCC::AL));
4767 }
4768 
4769 bool
4770 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4771                                      unsigned &AddSubOpc,
4772                                      bool &NegAcc, bool &HasLane) const {
4773   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4774   if (I == MLxEntryMap.end())
4775     return false;
4776 
4777   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4778   MulOpc = Entry.MulOpc;
4779   AddSubOpc = Entry.AddSubOpc;
4780   NegAcc = Entry.NegAcc;
4781   HasLane = Entry.HasLane;
4782   return true;
4783 }
4784 
4785 //===----------------------------------------------------------------------===//
4786 // Execution domains.
4787 //===----------------------------------------------------------------------===//
4788 //
4789 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4790 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4791 // but they can be changed to vorr equivalents that are executed by the NEON
4792 // pipeline.
4793 //
4794 // We use the following execution domain numbering:
4795 //
4796 enum ARMExeDomain {
4797   ExeGeneric = 0,
4798   ExeVFP = 1,
4799   ExeNEON = 2
4800 };
4801 
4802 //
4803 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4804 //
4805 std::pair<uint16_t, uint16_t>
4806 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4807   // If we don't have access to NEON instructions then we won't be able
4808   // to swizzle anything to the NEON domain. Check to make sure.
4809   if (Subtarget.hasNEON()) {
4810     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4811     // if they are not predicated.
4812     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4813       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4814 
4815     // CortexA9 is particularly picky about mixing the two and wants these
4816     // converted.
4817     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4818         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4819          MI.getOpcode() == ARM::VMOVS))
4820       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4821   }
4822   // No other instructions can be swizzled, so just determine their domain.
4823   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4824 
4825   if (Domain & ARMII::DomainNEON)
4826     return std::make_pair(ExeNEON, 0);
4827 
4828   // Certain instructions can go either way on Cortex-A8.
4829   // Treat them as NEON instructions.
4830   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4831     return std::make_pair(ExeNEON, 0);
4832 
4833   if (Domain & ARMII::DomainVFP)
4834     return std::make_pair(ExeVFP, 0);
4835 
4836   return std::make_pair(ExeGeneric, 0);
4837 }
4838 
4839 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4840                                             unsigned SReg, unsigned &Lane) {
4841   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4842   Lane = 0;
4843 
4844   if (DReg != ARM::NoRegister)
4845    return DReg;
4846 
4847   Lane = 1;
4848   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4849 
4850   assert(DReg && "S-register with no D super-register?");
4851   return DReg;
4852 }
4853 
4854 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4855 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4856 /// zero if no register needs to be defined as implicit-use.
4857 ///
4858 /// If the function cannot determine if an SPR should be marked implicit use or
4859 /// not, it returns false.
4860 ///
4861 /// This function handles cases where an instruction is being modified from taking
4862 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4863 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4864 /// lane of the DPR).
4865 ///
4866 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4867 /// (including the case where the DPR itself is defined), it should not.
4868 ///
4869 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4870                                        MachineInstr &MI, unsigned DReg,
4871                                        unsigned Lane, unsigned &ImplicitSReg) {
4872   // If the DPR is defined or used already, the other SPR lane will be chained
4873   // correctly, so there is nothing to be done.
4874   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4875     ImplicitSReg = 0;
4876     return true;
4877   }
4878 
4879   // Otherwise we need to go searching to see if the SPR is set explicitly.
4880   ImplicitSReg = TRI->getSubReg(DReg,
4881                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4882   MachineBasicBlock::LivenessQueryResult LQR =
4883       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4884 
4885   if (LQR == MachineBasicBlock::LQR_Live)
4886     return true;
4887   else if (LQR == MachineBasicBlock::LQR_Unknown)
4888     return false;
4889 
4890   // If the register is known not to be live, there is no need to add an
4891   // implicit-use.
4892   ImplicitSReg = 0;
4893   return true;
4894 }
4895 
4896 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4897                                           unsigned Domain) const {
4898   unsigned DstReg, SrcReg, DReg;
4899   unsigned Lane;
4900   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4901   const TargetRegisterInfo *TRI = &getRegisterInfo();
4902   switch (MI.getOpcode()) {
4903   default:
4904     llvm_unreachable("cannot handle opcode!");
4905     break;
4906   case ARM::VMOVD:
4907     if (Domain != ExeNEON)
4908       break;
4909 
4910     // Zap the predicate operands.
4911     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4912 
4913     // Make sure we've got NEON instructions.
4914     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4915 
4916     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4917     DstReg = MI.getOperand(0).getReg();
4918     SrcReg = MI.getOperand(1).getReg();
4919 
4920     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4921       MI.RemoveOperand(i - 1);
4922 
4923     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4924     MI.setDesc(get(ARM::VORRd));
4925     MIB.addReg(DstReg, RegState::Define)
4926         .addReg(SrcReg)
4927         .addReg(SrcReg)
4928         .add(predOps(ARMCC::AL));
4929     break;
4930   case ARM::VMOVRS:
4931     if (Domain != ExeNEON)
4932       break;
4933     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4934 
4935     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4936     DstReg = MI.getOperand(0).getReg();
4937     SrcReg = MI.getOperand(1).getReg();
4938 
4939     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4940       MI.RemoveOperand(i - 1);
4941 
4942     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4943 
4944     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4945     // Note that DSrc has been widened and the other lane may be undef, which
4946     // contaminates the entire register.
4947     MI.setDesc(get(ARM::VGETLNi32));
4948     MIB.addReg(DstReg, RegState::Define)
4949         .addReg(DReg, RegState::Undef)
4950         .addImm(Lane)
4951         .add(predOps(ARMCC::AL));
4952 
4953     // The old source should be an implicit use, otherwise we might think it
4954     // was dead before here.
4955     MIB.addReg(SrcReg, RegState::Implicit);
4956     break;
4957   case ARM::VMOVSR: {
4958     if (Domain != ExeNEON)
4959       break;
4960     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4961 
4962     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4963     DstReg = MI.getOperand(0).getReg();
4964     SrcReg = MI.getOperand(1).getReg();
4965 
4966     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4967 
4968     unsigned ImplicitSReg;
4969     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4970       break;
4971 
4972     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4973       MI.RemoveOperand(i - 1);
4974 
4975     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4976     // Again DDst may be undefined at the beginning of this instruction.
4977     MI.setDesc(get(ARM::VSETLNi32));
4978     MIB.addReg(DReg, RegState::Define)
4979         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4980         .addReg(SrcReg)
4981         .addImm(Lane)
4982         .add(predOps(ARMCC::AL));
4983 
4984     // The narrower destination must be marked as set to keep previous chains
4985     // in place.
4986     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4987     if (ImplicitSReg != 0)
4988       MIB.addReg(ImplicitSReg, RegState::Implicit);
4989     break;
4990     }
4991     case ARM::VMOVS: {
4992       if (Domain != ExeNEON)
4993         break;
4994 
4995       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4996       DstReg = MI.getOperand(0).getReg();
4997       SrcReg = MI.getOperand(1).getReg();
4998 
4999       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5000       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5001       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5002 
5003       unsigned ImplicitSReg;
5004       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5005         break;
5006 
5007       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5008         MI.RemoveOperand(i - 1);
5009 
5010       if (DSrc == DDst) {
5011         // Destination can be:
5012         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5013         MI.setDesc(get(ARM::VDUPLN32d));
5014         MIB.addReg(DDst, RegState::Define)
5015             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5016             .addImm(SrcLane)
5017             .add(predOps(ARMCC::AL));
5018 
5019         // Neither the source or the destination are naturally represented any
5020         // more, so add them in manually.
5021         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5022         MIB.addReg(SrcReg, RegState::Implicit);
5023         if (ImplicitSReg != 0)
5024           MIB.addReg(ImplicitSReg, RegState::Implicit);
5025         break;
5026       }
5027 
5028       // In general there's no single instruction that can perform an S <-> S
5029       // move in NEON space, but a pair of VEXT instructions *can* do the
5030       // job. It turns out that the VEXTs needed will only use DSrc once, with
5031       // the position based purely on the combination of lane-0 and lane-1
5032       // involved. For example
5033       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5034       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5035       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5036       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5037       //
5038       // Pattern of the MachineInstrs is:
5039       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5040       MachineInstrBuilder NewMIB;
5041       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5042                        DDst);
5043 
5044       // On the first instruction, both DSrc and DDst may be undef if present.
5045       // Specifically when the original instruction didn't have them as an
5046       // <imp-use>.
5047       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5048       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5049       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5050 
5051       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5052       CurUndef = !MI.readsRegister(CurReg, TRI);
5053       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5054             .addImm(1)
5055             .add(predOps(ARMCC::AL));
5056 
5057       if (SrcLane == DstLane)
5058         NewMIB.addReg(SrcReg, RegState::Implicit);
5059 
5060       MI.setDesc(get(ARM::VEXTd32));
5061       MIB.addReg(DDst, RegState::Define);
5062 
5063       // On the second instruction, DDst has definitely been defined above, so
5064       // it is not undef. DSrc, if present, can be undef as above.
5065       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5066       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5067       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5068 
5069       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5070       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5071       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5072          .addImm(1)
5073          .add(predOps(ARMCC::AL));
5074 
5075       if (SrcLane != DstLane)
5076         MIB.addReg(SrcReg, RegState::Implicit);
5077 
5078       // As before, the original destination is no longer represented, add it
5079       // implicitly.
5080       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5081       if (ImplicitSReg != 0)
5082         MIB.addReg(ImplicitSReg, RegState::Implicit);
5083       break;
5084     }
5085   }
5086 }
5087 
5088 //===----------------------------------------------------------------------===//
5089 // Partial register updates
5090 //===----------------------------------------------------------------------===//
5091 //
5092 // Swift renames NEON registers with 64-bit granularity.  That means any
5093 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5094 // problem is mostly avoided by translating f32 operations to v2f32 operations
5095 // on D-registers, but f32 loads are still a problem.
5096 //
5097 // These instructions can load an f32 into a NEON register:
5098 //
5099 // VLDRS - Only writes S, partial D update.
5100 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5101 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5102 //
5103 // FCONSTD can be used as a dependency-breaking instruction.
5104 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5105     const MachineInstr &MI, unsigned OpNum,
5106     const TargetRegisterInfo *TRI) const {
5107   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5108   if (!PartialUpdateClearance)
5109     return 0;
5110 
5111   assert(TRI && "Need TRI instance");
5112 
5113   const MachineOperand &MO = MI.getOperand(OpNum);
5114   if (MO.readsReg())
5115     return 0;
5116   Register Reg = MO.getReg();
5117   int UseOp = -1;
5118 
5119   switch (MI.getOpcode()) {
5120   // Normal instructions writing only an S-register.
5121   case ARM::VLDRS:
5122   case ARM::FCONSTS:
5123   case ARM::VMOVSR:
5124   case ARM::VMOVv8i8:
5125   case ARM::VMOVv4i16:
5126   case ARM::VMOVv2i32:
5127   case ARM::VMOVv2f32:
5128   case ARM::VMOVv1i64:
5129     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5130     break;
5131 
5132     // Explicitly reads the dependency.
5133   case ARM::VLD1LNd32:
5134     UseOp = 3;
5135     break;
5136   default:
5137     return 0;
5138   }
5139 
5140   // If this instruction actually reads a value from Reg, there is no unwanted
5141   // dependency.
5142   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5143     return 0;
5144 
5145   // We must be able to clobber the whole D-reg.
5146   if (Register::isVirtualRegister(Reg)) {
5147     // Virtual register must be a def undef foo:ssub_0 operand.
5148     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5149       return 0;
5150   } else if (ARM::SPRRegClass.contains(Reg)) {
5151     // Physical register: MI must define the full D-reg.
5152     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5153                                              &ARM::DPRRegClass);
5154     if (!DReg || !MI.definesRegister(DReg, TRI))
5155       return 0;
5156   }
5157 
5158   // MI has an unwanted D-register dependency.
5159   // Avoid defs in the previous N instructrions.
5160   return PartialUpdateClearance;
5161 }
5162 
5163 // Break a partial register dependency after getPartialRegUpdateClearance
5164 // returned non-zero.
5165 void ARMBaseInstrInfo::breakPartialRegDependency(
5166     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5167   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5168   assert(TRI && "Need TRI instance");
5169 
5170   const MachineOperand &MO = MI.getOperand(OpNum);
5171   Register Reg = MO.getReg();
5172   assert(Register::isPhysicalRegister(Reg) &&
5173          "Can't break virtual register dependencies.");
5174   unsigned DReg = Reg;
5175 
5176   // If MI defines an S-reg, find the corresponding D super-register.
5177   if (ARM::SPRRegClass.contains(Reg)) {
5178     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5179     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5180   }
5181 
5182   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5183   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5184 
5185   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5186   // the full D-register by loading the same value to both lanes.  The
5187   // instruction is micro-coded with 2 uops, so don't do this until we can
5188   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5189   // too big regressions.
5190 
5191   // Insert the dependency-breaking FCONSTD before MI.
5192   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5193   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5194       .addImm(96)
5195       .add(predOps(ARMCC::AL));
5196   MI.addRegisterKilled(DReg, TRI, true);
5197 }
5198 
5199 bool ARMBaseInstrInfo::hasNOP() const {
5200   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5201 }
5202 
5203 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5204   if (MI->getNumOperands() < 4)
5205     return true;
5206   unsigned ShOpVal = MI->getOperand(3).getImm();
5207   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5208   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5209   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5210       ((ShImm == 1 || ShImm == 2) &&
5211        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5212     return true;
5213 
5214   return false;
5215 }
5216 
5217 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5218     const MachineInstr &MI, unsigned DefIdx,
5219     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5220   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5221   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5222 
5223   switch (MI.getOpcode()) {
5224   case ARM::VMOVDRR:
5225     // dX = VMOVDRR rY, rZ
5226     // is the same as:
5227     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5228     // Populate the InputRegs accordingly.
5229     // rY
5230     const MachineOperand *MOReg = &MI.getOperand(1);
5231     if (!MOReg->isUndef())
5232       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5233                                               MOReg->getSubReg(), ARM::ssub_0));
5234     // rZ
5235     MOReg = &MI.getOperand(2);
5236     if (!MOReg->isUndef())
5237       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5238                                               MOReg->getSubReg(), ARM::ssub_1));
5239     return true;
5240   }
5241   llvm_unreachable("Target dependent opcode missing");
5242 }
5243 
5244 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5245     const MachineInstr &MI, unsigned DefIdx,
5246     RegSubRegPairAndIdx &InputReg) const {
5247   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5248   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5249 
5250   switch (MI.getOpcode()) {
5251   case ARM::VMOVRRD:
5252     // rX, rY = VMOVRRD dZ
5253     // is the same as:
5254     // rX = EXTRACT_SUBREG dZ, ssub_0
5255     // rY = EXTRACT_SUBREG dZ, ssub_1
5256     const MachineOperand &MOReg = MI.getOperand(2);
5257     if (MOReg.isUndef())
5258       return false;
5259     InputReg.Reg = MOReg.getReg();
5260     InputReg.SubReg = MOReg.getSubReg();
5261     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5262     return true;
5263   }
5264   llvm_unreachable("Target dependent opcode missing");
5265 }
5266 
5267 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5268     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5269     RegSubRegPairAndIdx &InsertedReg) const {
5270   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5271   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5272 
5273   switch (MI.getOpcode()) {
5274   case ARM::VSETLNi32:
5275     // dX = VSETLNi32 dY, rZ, imm
5276     const MachineOperand &MOBaseReg = MI.getOperand(1);
5277     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5278     if (MOInsertedReg.isUndef())
5279       return false;
5280     const MachineOperand &MOIndex = MI.getOperand(3);
5281     BaseReg.Reg = MOBaseReg.getReg();
5282     BaseReg.SubReg = MOBaseReg.getSubReg();
5283 
5284     InsertedReg.Reg = MOInsertedReg.getReg();
5285     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5286     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5287     return true;
5288   }
5289   llvm_unreachable("Target dependent opcode missing");
5290 }
5291 
5292 std::pair<unsigned, unsigned>
5293 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5294   const unsigned Mask = ARMII::MO_OPTION_MASK;
5295   return std::make_pair(TF & Mask, TF & ~Mask);
5296 }
5297 
5298 ArrayRef<std::pair<unsigned, const char *>>
5299 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5300   using namespace ARMII;
5301 
5302   static const std::pair<unsigned, const char *> TargetFlags[] = {
5303       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5304   return makeArrayRef(TargetFlags);
5305 }
5306 
5307 ArrayRef<std::pair<unsigned, const char *>>
5308 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5309   using namespace ARMII;
5310 
5311   static const std::pair<unsigned, const char *> TargetFlags[] = {
5312       {MO_COFFSTUB, "arm-coffstub"},
5313       {MO_GOT, "arm-got"},
5314       {MO_SBREL, "arm-sbrel"},
5315       {MO_DLLIMPORT, "arm-dllimport"},
5316       {MO_SECREL, "arm-secrel"},
5317       {MO_NONLAZY, "arm-nonlazy"}};
5318   return makeArrayRef(TargetFlags);
5319 }
5320 
5321 bool llvm::registerDefinedBetween(unsigned Reg,
5322                                   MachineBasicBlock::iterator From,
5323                                   MachineBasicBlock::iterator To,
5324                                   const TargetRegisterInfo *TRI) {
5325   for (auto I = From; I != To; ++I)
5326     if (I->modifiesRegister(Reg, TRI))
5327       return true;
5328   return false;
5329 }
5330 
5331 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5332                                          const TargetRegisterInfo *TRI) {
5333   // Search backwards to the instruction that defines CSPR. This may or not
5334   // be a CMP, we check that after this loop. If we find another instruction
5335   // that reads cpsr, we return nullptr.
5336   MachineBasicBlock::iterator CmpMI = Br;
5337   while (CmpMI != Br->getParent()->begin()) {
5338     --CmpMI;
5339     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5340       break;
5341     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5342       break;
5343   }
5344 
5345   // Check that this inst is a CMP r[0-7], #0 and that the register
5346   // is not redefined between the cmp and the br.
5347   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5348     return nullptr;
5349   Register Reg = CmpMI->getOperand(0).getReg();
5350   unsigned PredReg = 0;
5351   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5352   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5353     return nullptr;
5354   if (!isARMLowRegister(Reg))
5355     return nullptr;
5356   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5357     return nullptr;
5358 
5359   return &*CmpMI;
5360 }
5361 
5362 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5363                                            const ARMSubtarget *Subtarget,
5364                                            bool ForCodesize) {
5365   if (Subtarget->isThumb()) {
5366     if (Val <= 255) // MOV
5367       return ForCodesize ? 2 : 1;
5368     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5369                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5370                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5371       return ForCodesize ? 4 : 1;
5372     if (Val <= 510) // MOV + ADDi8
5373       return ForCodesize ? 4 : 2;
5374     if (~Val <= 255) // MOV + MVN
5375       return ForCodesize ? 4 : 2;
5376     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5377       return ForCodesize ? 4 : 2;
5378   } else {
5379     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5380       return ForCodesize ? 4 : 1;
5381     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5382       return ForCodesize ? 4 : 1;
5383     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5384       return ForCodesize ? 4 : 1;
5385     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5386       return ForCodesize ? 8 : 2;
5387   }
5388   if (Subtarget->useMovt()) // MOVW + MOVT
5389     return ForCodesize ? 8 : 2;
5390   return ForCodesize ? 8 : 3; // Literal pool load
5391 }
5392 
5393 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5394                                                const ARMSubtarget *Subtarget,
5395                                                bool ForCodesize) {
5396   // Check with ForCodesize
5397   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5398   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5399   if (Cost1 < Cost2)
5400     return true;
5401   if (Cost1 > Cost2)
5402     return false;
5403 
5404   // If they are equal, try with !ForCodesize
5405   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5406          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5407 }
5408