1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Base ARM implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMBaseInstrInfo.h" 15 #include "ARMBaseRegisterInfo.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMFeatures.h" 18 #include "ARMHazardRecognizer.h" 19 #include "ARMMachineFunctionInfo.h" 20 #include "ARMSubtarget.h" 21 #include "MCTargetDesc/ARMAddressingModes.h" 22 #include "MCTargetDesc/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSchedule.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCInstrDesc.h" 50 #include "llvm/MC/MCInstrItineraries.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <new> 64 #include <utility> 65 #include <vector> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "arm-instrinfo" 70 71 #define GET_INSTRINFO_CTOR_DTOR 72 #include "ARMGenInstrInfo.inc" 73 74 static cl::opt<bool> 75 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 76 cl::desc("Enable ARM 2-addr to 3-addr conv")); 77 78 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 79 struct ARM_MLxEntry { 80 uint16_t MLxOpc; // MLA / MLS opcode 81 uint16_t MulOpc; // Expanded multiplication opcode 82 uint16_t AddSubOpc; // Expanded add / sub opcode 83 bool NegAcc; // True if the acc is negated before the add / sub. 84 bool HasLane; // True if instruction has an extra "lane" operand. 85 }; 86 87 static const ARM_MLxEntry ARM_MLxTable[] = { 88 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 89 // fp scalar ops 90 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 91 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 92 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 93 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 94 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 95 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 96 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 97 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 98 99 // fp SIMD ops 100 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 101 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 102 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 103 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 104 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 105 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 106 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 107 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 108 }; 109 110 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 111 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 112 Subtarget(STI) { 113 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 114 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 115 llvm_unreachable("Duplicated entries?"); 116 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 117 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 118 } 119 } 120 121 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 122 // currently defaults to no prepass hazard recognizer. 123 ScheduleHazardRecognizer * 124 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 125 const ScheduleDAG *DAG) const { 126 if (usePreRAHazardRecognizer()) { 127 const InstrItineraryData *II = 128 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 129 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 130 } 131 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 132 } 133 134 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 135 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 136 const ScheduleDAG *DAG) const { 137 if (Subtarget.isThumb2() || Subtarget.hasVFP2()) 138 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG); 139 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 140 } 141 142 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 143 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 144 // FIXME: Thumb2 support. 145 146 if (!EnableARM3Addr) 147 return nullptr; 148 149 MachineFunction &MF = *MI.getParent()->getParent(); 150 uint64_t TSFlags = MI.getDesc().TSFlags; 151 bool isPre = false; 152 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 153 default: return nullptr; 154 case ARMII::IndexModePre: 155 isPre = true; 156 break; 157 case ARMII::IndexModePost: 158 break; 159 } 160 161 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 162 // operation. 163 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 164 if (MemOpc == 0) 165 return nullptr; 166 167 MachineInstr *UpdateMI = nullptr; 168 MachineInstr *MemMI = nullptr; 169 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 170 const MCInstrDesc &MCID = MI.getDesc(); 171 unsigned NumOps = MCID.getNumOperands(); 172 bool isLoad = !MI.mayStore(); 173 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 174 const MachineOperand &Base = MI.getOperand(2); 175 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 176 unsigned WBReg = WB.getReg(); 177 unsigned BaseReg = Base.getReg(); 178 unsigned OffReg = Offset.getReg(); 179 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 180 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 181 switch (AddrMode) { 182 default: llvm_unreachable("Unknown indexed op!"); 183 case ARMII::AddrMode2: { 184 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 185 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 186 if (OffReg == 0) { 187 if (ARM_AM::getSOImmVal(Amt) == -1) 188 // Can't encode it in a so_imm operand. This transformation will 189 // add more than 1 instruction. Abandon! 190 return nullptr; 191 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 192 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 193 .addReg(BaseReg) 194 .addImm(Amt) 195 .add(predOps(Pred)) 196 .add(condCodeOp()); 197 } else if (Amt != 0) { 198 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 199 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 200 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 201 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 202 .addReg(BaseReg) 203 .addReg(OffReg) 204 .addReg(0) 205 .addImm(SOOpc) 206 .add(predOps(Pred)) 207 .add(condCodeOp()); 208 } else 209 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 210 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 211 .addReg(BaseReg) 212 .addReg(OffReg) 213 .add(predOps(Pred)) 214 .add(condCodeOp()); 215 break; 216 } 217 case ARMII::AddrMode3 : { 218 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 219 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 220 if (OffReg == 0) 221 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 222 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 223 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 224 .addReg(BaseReg) 225 .addImm(Amt) 226 .add(predOps(Pred)) 227 .add(condCodeOp()); 228 else 229 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 230 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 231 .addReg(BaseReg) 232 .addReg(OffReg) 233 .add(predOps(Pred)) 234 .add(condCodeOp()); 235 break; 236 } 237 } 238 239 std::vector<MachineInstr*> NewMIs; 240 if (isPre) { 241 if (isLoad) 242 MemMI = 243 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 244 .addReg(WBReg) 245 .addImm(0) 246 .addImm(Pred); 247 else 248 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 249 .addReg(MI.getOperand(1).getReg()) 250 .addReg(WBReg) 251 .addReg(0) 252 .addImm(0) 253 .addImm(Pred); 254 NewMIs.push_back(MemMI); 255 NewMIs.push_back(UpdateMI); 256 } else { 257 if (isLoad) 258 MemMI = 259 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 260 .addReg(BaseReg) 261 .addImm(0) 262 .addImm(Pred); 263 else 264 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 265 .addReg(MI.getOperand(1).getReg()) 266 .addReg(BaseReg) 267 .addReg(0) 268 .addImm(0) 269 .addImm(Pred); 270 if (WB.isDead()) 271 UpdateMI->getOperand(0).setIsDead(); 272 NewMIs.push_back(UpdateMI); 273 NewMIs.push_back(MemMI); 274 } 275 276 // Transfer LiveVariables states, kill / dead info. 277 if (LV) { 278 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 279 MachineOperand &MO = MI.getOperand(i); 280 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 281 unsigned Reg = MO.getReg(); 282 283 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 284 if (MO.isDef()) { 285 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 286 if (MO.isDead()) 287 LV->addVirtualRegisterDead(Reg, *NewMI); 288 } 289 if (MO.isUse() && MO.isKill()) { 290 for (unsigned j = 0; j < 2; ++j) { 291 // Look at the two new MI's in reverse order. 292 MachineInstr *NewMI = NewMIs[j]; 293 if (!NewMI->readsRegister(Reg)) 294 continue; 295 LV->addVirtualRegisterKilled(Reg, *NewMI); 296 if (VI.removeKill(MI)) 297 VI.Kills.push_back(NewMI); 298 break; 299 } 300 } 301 } 302 } 303 } 304 305 MachineBasicBlock::iterator MBBI = MI.getIterator(); 306 MFI->insert(MBBI, NewMIs[1]); 307 MFI->insert(MBBI, NewMIs[0]); 308 return NewMIs[0]; 309 } 310 311 // Branch analysis. 312 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 313 MachineBasicBlock *&TBB, 314 MachineBasicBlock *&FBB, 315 SmallVectorImpl<MachineOperand> &Cond, 316 bool AllowModify) const { 317 TBB = nullptr; 318 FBB = nullptr; 319 320 MachineBasicBlock::iterator I = MBB.end(); 321 if (I == MBB.begin()) 322 return false; // Empty blocks are easy. 323 --I; 324 325 // Walk backwards from the end of the basic block until the branch is 326 // analyzed or we give up. 327 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 328 // Flag to be raised on unanalyzeable instructions. This is useful in cases 329 // where we want to clean up on the end of the basic block before we bail 330 // out. 331 bool CantAnalyze = false; 332 333 // Skip over DEBUG values and predicated nonterminators. 334 while (I->isDebugInstr() || !I->isTerminator()) { 335 if (I == MBB.begin()) 336 return false; 337 --I; 338 } 339 340 if (isIndirectBranchOpcode(I->getOpcode()) || 341 isJumpTableBranchOpcode(I->getOpcode())) { 342 // Indirect branches and jump tables can't be analyzed, but we still want 343 // to clean up any instructions at the tail of the basic block. 344 CantAnalyze = true; 345 } else if (isUncondBranchOpcode(I->getOpcode())) { 346 TBB = I->getOperand(0).getMBB(); 347 } else if (isCondBranchOpcode(I->getOpcode())) { 348 // Bail out if we encounter multiple conditional branches. 349 if (!Cond.empty()) 350 return true; 351 352 assert(!FBB && "FBB should have been null."); 353 FBB = TBB; 354 TBB = I->getOperand(0).getMBB(); 355 Cond.push_back(I->getOperand(1)); 356 Cond.push_back(I->getOperand(2)); 357 } else if (I->isReturn()) { 358 // Returns can't be analyzed, but we should run cleanup. 359 CantAnalyze = !isPredicated(*I); 360 } else { 361 // We encountered other unrecognized terminator. Bail out immediately. 362 return true; 363 } 364 365 // Cleanup code - to be run for unpredicated unconditional branches and 366 // returns. 367 if (!isPredicated(*I) && 368 (isUncondBranchOpcode(I->getOpcode()) || 369 isIndirectBranchOpcode(I->getOpcode()) || 370 isJumpTableBranchOpcode(I->getOpcode()) || 371 I->isReturn())) { 372 // Forget any previous condition branch information - it no longer applies. 373 Cond.clear(); 374 FBB = nullptr; 375 376 // If we can modify the function, delete everything below this 377 // unconditional branch. 378 if (AllowModify) { 379 MachineBasicBlock::iterator DI = std::next(I); 380 while (DI != MBB.end()) { 381 MachineInstr &InstToDelete = *DI; 382 ++DI; 383 InstToDelete.eraseFromParent(); 384 } 385 } 386 } 387 388 if (CantAnalyze) 389 return true; 390 391 if (I == MBB.begin()) 392 return false; 393 394 --I; 395 } 396 397 // We made it past the terminators without bailing out - we must have 398 // analyzed this branch successfully. 399 return false; 400 } 401 402 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 403 int *BytesRemoved) const { 404 assert(!BytesRemoved && "code size not handled"); 405 406 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 407 if (I == MBB.end()) 408 return 0; 409 410 if (!isUncondBranchOpcode(I->getOpcode()) && 411 !isCondBranchOpcode(I->getOpcode())) 412 return 0; 413 414 // Remove the branch. 415 I->eraseFromParent(); 416 417 I = MBB.end(); 418 419 if (I == MBB.begin()) return 1; 420 --I; 421 if (!isCondBranchOpcode(I->getOpcode())) 422 return 1; 423 424 // Remove the branch. 425 I->eraseFromParent(); 426 return 2; 427 } 428 429 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 430 MachineBasicBlock *TBB, 431 MachineBasicBlock *FBB, 432 ArrayRef<MachineOperand> Cond, 433 const DebugLoc &DL, 434 int *BytesAdded) const { 435 assert(!BytesAdded && "code size not handled"); 436 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 437 int BOpc = !AFI->isThumbFunction() 438 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 439 int BccOpc = !AFI->isThumbFunction() 440 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 441 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 442 443 // Shouldn't be a fall through. 444 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 445 assert((Cond.size() == 2 || Cond.size() == 0) && 446 "ARM branch conditions have two components!"); 447 448 // For conditional branches, we use addOperand to preserve CPSR flags. 449 450 if (!FBB) { 451 if (Cond.empty()) { // Unconditional branch? 452 if (isThumb) 453 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 454 else 455 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 456 } else 457 BuildMI(&MBB, DL, get(BccOpc)) 458 .addMBB(TBB) 459 .addImm(Cond[0].getImm()) 460 .add(Cond[1]); 461 return 1; 462 } 463 464 // Two-way conditional branch. 465 BuildMI(&MBB, DL, get(BccOpc)) 466 .addMBB(TBB) 467 .addImm(Cond[0].getImm()) 468 .add(Cond[1]); 469 if (isThumb) 470 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 471 else 472 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 473 return 2; 474 } 475 476 bool ARMBaseInstrInfo:: 477 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 478 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 479 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 480 return false; 481 } 482 483 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 484 if (MI.isBundle()) { 485 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 486 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 487 while (++I != E && I->isInsideBundle()) { 488 int PIdx = I->findFirstPredOperandIdx(); 489 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 490 return true; 491 } 492 return false; 493 } 494 495 int PIdx = MI.findFirstPredOperandIdx(); 496 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 497 } 498 499 bool ARMBaseInstrInfo::PredicateInstruction( 500 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 501 unsigned Opc = MI.getOpcode(); 502 if (isUncondBranchOpcode(Opc)) { 503 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 504 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 505 .addImm(Pred[0].getImm()) 506 .addReg(Pred[1].getReg()); 507 return true; 508 } 509 510 int PIdx = MI.findFirstPredOperandIdx(); 511 if (PIdx != -1) { 512 MachineOperand &PMO = MI.getOperand(PIdx); 513 PMO.setImm(Pred[0].getImm()); 514 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 515 return true; 516 } 517 return false; 518 } 519 520 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 521 ArrayRef<MachineOperand> Pred2) const { 522 if (Pred1.size() > 2 || Pred2.size() > 2) 523 return false; 524 525 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 526 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 527 if (CC1 == CC2) 528 return true; 529 530 switch (CC1) { 531 default: 532 return false; 533 case ARMCC::AL: 534 return true; 535 case ARMCC::HS: 536 return CC2 == ARMCC::HI; 537 case ARMCC::LS: 538 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 539 case ARMCC::GE: 540 return CC2 == ARMCC::GT; 541 case ARMCC::LE: 542 return CC2 == ARMCC::LT; 543 } 544 } 545 546 bool ARMBaseInstrInfo::DefinesPredicate( 547 MachineInstr &MI, std::vector<MachineOperand> &Pred) const { 548 bool Found = false; 549 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 550 const MachineOperand &MO = MI.getOperand(i); 551 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 552 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 553 Pred.push_back(MO); 554 Found = true; 555 } 556 } 557 558 return Found; 559 } 560 561 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 562 for (const auto &MO : MI.operands()) 563 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 564 return true; 565 return false; 566 } 567 568 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI, 569 unsigned Op) const { 570 const MachineOperand &Offset = MI.getOperand(Op + 1); 571 return Offset.getReg() != 0; 572 } 573 574 // Load with negative register offset requires additional 1cyc and +I unit 575 // for Cortex A57 576 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI, 577 unsigned Op) const { 578 const MachineOperand &Offset = MI.getOperand(Op + 1); 579 const MachineOperand &Opc = MI.getOperand(Op + 2); 580 assert(Opc.isImm()); 581 assert(Offset.isReg()); 582 int64_t OpcImm = Opc.getImm(); 583 584 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub; 585 return (isSub && Offset.getReg() != 0); 586 } 587 588 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI, 589 unsigned Op) const { 590 const MachineOperand &Opc = MI.getOperand(Op + 2); 591 unsigned OffImm = Opc.getImm(); 592 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 593 } 594 595 // Load, scaled register offset, not plus LSL2 596 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI, 597 unsigned Op) const { 598 const MachineOperand &Opc = MI.getOperand(Op + 2); 599 unsigned OffImm = Opc.getImm(); 600 601 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add; 602 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 603 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm); 604 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled 605 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2); 606 return !SimpleScaled; 607 } 608 609 // Minus reg for ldstso addr mode 610 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI, 611 unsigned Op) const { 612 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 613 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 614 } 615 616 // Load, scaled register offset 617 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI, 618 unsigned Op) const { 619 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 620 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 621 } 622 623 static bool isEligibleForITBlock(const MachineInstr *MI) { 624 switch (MI->getOpcode()) { 625 default: return true; 626 case ARM::tADC: // ADC (register) T1 627 case ARM::tADDi3: // ADD (immediate) T1 628 case ARM::tADDi8: // ADD (immediate) T2 629 case ARM::tADDrr: // ADD (register) T1 630 case ARM::tAND: // AND (register) T1 631 case ARM::tASRri: // ASR (immediate) T1 632 case ARM::tASRrr: // ASR (register) T1 633 case ARM::tBIC: // BIC (register) T1 634 case ARM::tEOR: // EOR (register) T1 635 case ARM::tLSLri: // LSL (immediate) T1 636 case ARM::tLSLrr: // LSL (register) T1 637 case ARM::tLSRri: // LSR (immediate) T1 638 case ARM::tLSRrr: // LSR (register) T1 639 case ARM::tMUL: // MUL T1 640 case ARM::tMVN: // MVN (register) T1 641 case ARM::tORR: // ORR (register) T1 642 case ARM::tROR: // ROR (register) T1 643 case ARM::tRSB: // RSB (immediate) T1 644 case ARM::tSBC: // SBC (register) T1 645 case ARM::tSUBi3: // SUB (immediate) T1 646 case ARM::tSUBi8: // SUB (immediate) T2 647 case ARM::tSUBrr: // SUB (register) T1 648 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 649 } 650 } 651 652 /// isPredicable - Return true if the specified instruction can be predicated. 653 /// By default, this returns true for every instruction with a 654 /// PredicateOperand. 655 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 656 if (!MI.isPredicable()) 657 return false; 658 659 if (MI.isBundle()) 660 return false; 661 662 if (!isEligibleForITBlock(&MI)) 663 return false; 664 665 const ARMFunctionInfo *AFI = 666 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>(); 667 668 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 669 // In their ARM encoding, they can't be encoded in a conditional form. 670 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 671 return false; 672 673 if (AFI->isThumb2Function()) { 674 if (getSubtarget().restrictIT()) 675 return isV8EligibleForIT(&MI); 676 } 677 678 return true; 679 } 680 681 namespace llvm { 682 683 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 684 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 685 const MachineOperand &MO = MI->getOperand(i); 686 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 687 continue; 688 if (MO.getReg() != ARM::CPSR) 689 continue; 690 if (!MO.isDead()) 691 return false; 692 } 693 // all definitions of CPSR are dead 694 return true; 695 } 696 697 } // end namespace llvm 698 699 /// GetInstSize - Return the size of the specified MachineInstr. 700 /// 701 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 702 const MachineBasicBlock &MBB = *MI.getParent(); 703 const MachineFunction *MF = MBB.getParent(); 704 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 705 706 const MCInstrDesc &MCID = MI.getDesc(); 707 if (MCID.getSize()) 708 return MCID.getSize(); 709 710 // If this machine instr is an inline asm, measure it. 711 if (MI.getOpcode() == ARM::INLINEASM) { 712 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 713 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 714 Size = alignTo(Size, 4); 715 return Size; 716 } 717 unsigned Opc = MI.getOpcode(); 718 switch (Opc) { 719 default: 720 // pseudo-instruction sizes are zero. 721 return 0; 722 case TargetOpcode::BUNDLE: 723 return getInstBundleLength(MI); 724 case ARM::MOVi16_ga_pcrel: 725 case ARM::MOVTi16_ga_pcrel: 726 case ARM::t2MOVi16_ga_pcrel: 727 case ARM::t2MOVTi16_ga_pcrel: 728 return 4; 729 case ARM::MOVi32imm: 730 case ARM::t2MOVi32imm: 731 return 8; 732 case ARM::CONSTPOOL_ENTRY: 733 case ARM::JUMPTABLE_INSTS: 734 case ARM::JUMPTABLE_ADDRS: 735 case ARM::JUMPTABLE_TBB: 736 case ARM::JUMPTABLE_TBH: 737 // If this machine instr is a constant pool entry, its size is recorded as 738 // operand #2. 739 return MI.getOperand(2).getImm(); 740 case ARM::Int_eh_sjlj_longjmp: 741 return 16; 742 case ARM::tInt_eh_sjlj_longjmp: 743 return 10; 744 case ARM::tInt_WIN_eh_sjlj_longjmp: 745 return 12; 746 case ARM::Int_eh_sjlj_setjmp: 747 case ARM::Int_eh_sjlj_setjmp_nofp: 748 return 20; 749 case ARM::tInt_eh_sjlj_setjmp: 750 case ARM::t2Int_eh_sjlj_setjmp: 751 case ARM::t2Int_eh_sjlj_setjmp_nofp: 752 return 12; 753 case ARM::SPACE: 754 return MI.getOperand(1).getImm(); 755 } 756 } 757 758 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 759 unsigned Size = 0; 760 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 761 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 762 while (++I != E && I->isInsideBundle()) { 763 assert(!I->isBundle() && "No nested bundle!"); 764 Size += getInstSizeInBytes(*I); 765 } 766 return Size; 767 } 768 769 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 770 MachineBasicBlock::iterator I, 771 unsigned DestReg, bool KillSrc, 772 const ARMSubtarget &Subtarget) const { 773 unsigned Opc = Subtarget.isThumb() 774 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 775 : ARM::MRS; 776 777 MachineInstrBuilder MIB = 778 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 779 780 // There is only 1 A/R class MRS instruction, and it always refers to 781 // APSR. However, there are lots of other possibilities on M-class cores. 782 if (Subtarget.isMClass()) 783 MIB.addImm(0x800); 784 785 MIB.add(predOps(ARMCC::AL)) 786 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 787 } 788 789 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 790 MachineBasicBlock::iterator I, 791 unsigned SrcReg, bool KillSrc, 792 const ARMSubtarget &Subtarget) const { 793 unsigned Opc = Subtarget.isThumb() 794 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 795 : ARM::MSR; 796 797 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 798 799 if (Subtarget.isMClass()) 800 MIB.addImm(0x800); 801 else 802 MIB.addImm(8); 803 804 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 805 .add(predOps(ARMCC::AL)) 806 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 807 } 808 809 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 810 MachineBasicBlock::iterator I, 811 const DebugLoc &DL, unsigned DestReg, 812 unsigned SrcReg, bool KillSrc) const { 813 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 814 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 815 816 if (GPRDest && GPRSrc) { 817 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 818 .addReg(SrcReg, getKillRegState(KillSrc)) 819 .add(predOps(ARMCC::AL)) 820 .add(condCodeOp()); 821 return; 822 } 823 824 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 825 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 826 827 unsigned Opc = 0; 828 if (SPRDest && SPRSrc) 829 Opc = ARM::VMOVS; 830 else if (GPRDest && SPRSrc) 831 Opc = ARM::VMOVRS; 832 else if (SPRDest && GPRSrc) 833 Opc = ARM::VMOVSR; 834 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP()) 835 Opc = ARM::VMOVD; 836 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 837 Opc = ARM::VORRq; 838 839 if (Opc) { 840 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 841 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 842 if (Opc == ARM::VORRq) 843 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 844 MIB.add(predOps(ARMCC::AL)); 845 return; 846 } 847 848 // Handle register classes that require multiple instructions. 849 unsigned BeginIdx = 0; 850 unsigned SubRegs = 0; 851 int Spacing = 1; 852 853 // Use VORRq when possible. 854 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 855 Opc = ARM::VORRq; 856 BeginIdx = ARM::qsub_0; 857 SubRegs = 2; 858 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 859 Opc = ARM::VORRq; 860 BeginIdx = ARM::qsub_0; 861 SubRegs = 4; 862 // Fall back to VMOVD. 863 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 864 Opc = ARM::VMOVD; 865 BeginIdx = ARM::dsub_0; 866 SubRegs = 2; 867 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 868 Opc = ARM::VMOVD; 869 BeginIdx = ARM::dsub_0; 870 SubRegs = 3; 871 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 872 Opc = ARM::VMOVD; 873 BeginIdx = ARM::dsub_0; 874 SubRegs = 4; 875 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 876 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 877 BeginIdx = ARM::gsub_0; 878 SubRegs = 2; 879 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 880 Opc = ARM::VMOVD; 881 BeginIdx = ARM::dsub_0; 882 SubRegs = 2; 883 Spacing = 2; 884 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 885 Opc = ARM::VMOVD; 886 BeginIdx = ARM::dsub_0; 887 SubRegs = 3; 888 Spacing = 2; 889 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 890 Opc = ARM::VMOVD; 891 BeginIdx = ARM::dsub_0; 892 SubRegs = 4; 893 Spacing = 2; 894 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) { 895 Opc = ARM::VMOVS; 896 BeginIdx = ARM::ssub_0; 897 SubRegs = 2; 898 } else if (SrcReg == ARM::CPSR) { 899 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 900 return; 901 } else if (DestReg == ARM::CPSR) { 902 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 903 return; 904 } 905 906 assert(Opc && "Impossible reg-to-reg copy"); 907 908 const TargetRegisterInfo *TRI = &getRegisterInfo(); 909 MachineInstrBuilder Mov; 910 911 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 912 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 913 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 914 Spacing = -Spacing; 915 } 916 #ifndef NDEBUG 917 SmallSet<unsigned, 4> DstRegs; 918 #endif 919 for (unsigned i = 0; i != SubRegs; ++i) { 920 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 921 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 922 assert(Dst && Src && "Bad sub-register"); 923 #ifndef NDEBUG 924 assert(!DstRegs.count(Src) && "destructive vector copy"); 925 DstRegs.insert(Dst); 926 #endif 927 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 928 // VORR takes two source operands. 929 if (Opc == ARM::VORRq) 930 Mov.addReg(Src); 931 Mov = Mov.add(predOps(ARMCC::AL)); 932 // MOVr can set CC. 933 if (Opc == ARM::MOVr) 934 Mov = Mov.add(condCodeOp()); 935 } 936 // Add implicit super-register defs and kills to the last instruction. 937 Mov->addRegisterDefined(DestReg, TRI); 938 if (KillSrc) 939 Mov->addRegisterKilled(SrcReg, TRI); 940 } 941 942 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI, 943 const MachineOperand *&Src, 944 const MachineOperand *&Dest) const { 945 // VMOVRRD is also a copy instruction but it requires 946 // special way of handling. It is more complex copy version 947 // and since that we are not considering it. For recognition 948 // of such instruction isExtractSubregLike MI interface fuction 949 // could be used. 950 // VORRq is considered as a move only if two inputs are 951 // the same register. 952 if (!MI.isMoveReg() || 953 (MI.getOpcode() == ARM::VORRq && 954 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 955 return false; 956 Dest = &MI.getOperand(0); 957 Src = &MI.getOperand(1); 958 return true; 959 } 960 961 const MachineInstrBuilder & 962 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 963 unsigned SubIdx, unsigned State, 964 const TargetRegisterInfo *TRI) const { 965 if (!SubIdx) 966 return MIB.addReg(Reg, State); 967 968 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 969 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 970 return MIB.addReg(Reg, State, SubIdx); 971 } 972 973 void ARMBaseInstrInfo:: 974 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 975 unsigned SrcReg, bool isKill, int FI, 976 const TargetRegisterClass *RC, 977 const TargetRegisterInfo *TRI) const { 978 MachineFunction &MF = *MBB.getParent(); 979 MachineFrameInfo &MFI = MF.getFrameInfo(); 980 unsigned Align = MFI.getObjectAlignment(FI); 981 982 MachineMemOperand *MMO = MF.getMachineMemOperand( 983 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 984 MFI.getObjectSize(FI), Align); 985 986 switch (TRI->getSpillSize(*RC)) { 987 case 2: 988 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 989 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 990 .addReg(SrcReg, getKillRegState(isKill)) 991 .addFrameIndex(FI) 992 .addImm(0) 993 .addMemOperand(MMO) 994 .add(predOps(ARMCC::AL)); 995 } else 996 llvm_unreachable("Unknown reg class!"); 997 break; 998 case 4: 999 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1000 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1001 .addReg(SrcReg, getKillRegState(isKill)) 1002 .addFrameIndex(FI) 1003 .addImm(0) 1004 .addMemOperand(MMO) 1005 .add(predOps(ARMCC::AL)); 1006 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1007 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1008 .addReg(SrcReg, getKillRegState(isKill)) 1009 .addFrameIndex(FI) 1010 .addImm(0) 1011 .addMemOperand(MMO) 1012 .add(predOps(ARMCC::AL)); 1013 } else 1014 llvm_unreachable("Unknown reg class!"); 1015 break; 1016 case 8: 1017 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1018 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1019 .addReg(SrcReg, getKillRegState(isKill)) 1020 .addFrameIndex(FI) 1021 .addImm(0) 1022 .addMemOperand(MMO) 1023 .add(predOps(ARMCC::AL)); 1024 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1025 if (Subtarget.hasV5TEOps()) { 1026 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1027 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1028 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1029 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1030 .add(predOps(ARMCC::AL)); 1031 } else { 1032 // Fallback to STM instruction, which has existed since the dawn of 1033 // time. 1034 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1035 .addFrameIndex(FI) 1036 .addMemOperand(MMO) 1037 .add(predOps(ARMCC::AL)); 1038 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1039 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1040 } 1041 } else 1042 llvm_unreachable("Unknown reg class!"); 1043 break; 1044 case 16: 1045 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1046 // Use aligned spills if the stack can be realigned. 1047 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1048 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1049 .addFrameIndex(FI) 1050 .addImm(16) 1051 .addReg(SrcReg, getKillRegState(isKill)) 1052 .addMemOperand(MMO) 1053 .add(predOps(ARMCC::AL)); 1054 } else { 1055 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1056 .addReg(SrcReg, getKillRegState(isKill)) 1057 .addFrameIndex(FI) 1058 .addMemOperand(MMO) 1059 .add(predOps(ARMCC::AL)); 1060 } 1061 } else 1062 llvm_unreachable("Unknown reg class!"); 1063 break; 1064 case 24: 1065 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1066 // Use aligned spills if the stack can be realigned. 1067 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1068 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1069 .addFrameIndex(FI) 1070 .addImm(16) 1071 .addReg(SrcReg, getKillRegState(isKill)) 1072 .addMemOperand(MMO) 1073 .add(predOps(ARMCC::AL)); 1074 } else { 1075 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1076 get(ARM::VSTMDIA)) 1077 .addFrameIndex(FI) 1078 .add(predOps(ARMCC::AL)) 1079 .addMemOperand(MMO); 1080 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1081 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1082 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1083 } 1084 } else 1085 llvm_unreachable("Unknown reg class!"); 1086 break; 1087 case 32: 1088 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1089 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1090 // FIXME: It's possible to only store part of the QQ register if the 1091 // spilled def has a sub-register index. 1092 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1093 .addFrameIndex(FI) 1094 .addImm(16) 1095 .addReg(SrcReg, getKillRegState(isKill)) 1096 .addMemOperand(MMO) 1097 .add(predOps(ARMCC::AL)); 1098 } else { 1099 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1100 get(ARM::VSTMDIA)) 1101 .addFrameIndex(FI) 1102 .add(predOps(ARMCC::AL)) 1103 .addMemOperand(MMO); 1104 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1105 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1106 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1107 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1108 } 1109 } else 1110 llvm_unreachable("Unknown reg class!"); 1111 break; 1112 case 64: 1113 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1114 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1115 .addFrameIndex(FI) 1116 .add(predOps(ARMCC::AL)) 1117 .addMemOperand(MMO); 1118 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1119 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1120 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1121 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1122 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1123 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1124 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1125 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1126 } else 1127 llvm_unreachable("Unknown reg class!"); 1128 break; 1129 default: 1130 llvm_unreachable("Unknown reg class!"); 1131 } 1132 } 1133 1134 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1135 int &FrameIndex) const { 1136 switch (MI.getOpcode()) { 1137 default: break; 1138 case ARM::STRrs: 1139 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1140 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1141 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1142 MI.getOperand(3).getImm() == 0) { 1143 FrameIndex = MI.getOperand(1).getIndex(); 1144 return MI.getOperand(0).getReg(); 1145 } 1146 break; 1147 case ARM::STRi12: 1148 case ARM::t2STRi12: 1149 case ARM::tSTRspi: 1150 case ARM::VSTRD: 1151 case ARM::VSTRS: 1152 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1153 MI.getOperand(2).getImm() == 0) { 1154 FrameIndex = MI.getOperand(1).getIndex(); 1155 return MI.getOperand(0).getReg(); 1156 } 1157 break; 1158 case ARM::VST1q64: 1159 case ARM::VST1d64TPseudo: 1160 case ARM::VST1d64QPseudo: 1161 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1162 FrameIndex = MI.getOperand(0).getIndex(); 1163 return MI.getOperand(2).getReg(); 1164 } 1165 break; 1166 case ARM::VSTMQIA: 1167 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1168 FrameIndex = MI.getOperand(1).getIndex(); 1169 return MI.getOperand(0).getReg(); 1170 } 1171 break; 1172 } 1173 1174 return 0; 1175 } 1176 1177 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1178 int &FrameIndex) const { 1179 SmallVector<const MachineMemOperand *, 1> Accesses; 1180 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses)) { 1181 FrameIndex = 1182 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1183 ->getFrameIndex(); 1184 return true; 1185 } 1186 return false; 1187 } 1188 1189 void ARMBaseInstrInfo:: 1190 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1191 unsigned DestReg, int FI, 1192 const TargetRegisterClass *RC, 1193 const TargetRegisterInfo *TRI) const { 1194 DebugLoc DL; 1195 if (I != MBB.end()) DL = I->getDebugLoc(); 1196 MachineFunction &MF = *MBB.getParent(); 1197 MachineFrameInfo &MFI = MF.getFrameInfo(); 1198 unsigned Align = MFI.getObjectAlignment(FI); 1199 MachineMemOperand *MMO = MF.getMachineMemOperand( 1200 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1201 MFI.getObjectSize(FI), Align); 1202 1203 switch (TRI->getSpillSize(*RC)) { 1204 case 2: 1205 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1206 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1207 .addFrameIndex(FI) 1208 .addImm(0) 1209 .addMemOperand(MMO) 1210 .add(predOps(ARMCC::AL)); 1211 } else 1212 llvm_unreachable("Unknown reg class!"); 1213 break; 1214 case 4: 1215 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1216 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1217 .addFrameIndex(FI) 1218 .addImm(0) 1219 .addMemOperand(MMO) 1220 .add(predOps(ARMCC::AL)); 1221 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1222 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1223 .addFrameIndex(FI) 1224 .addImm(0) 1225 .addMemOperand(MMO) 1226 .add(predOps(ARMCC::AL)); 1227 } else 1228 llvm_unreachable("Unknown reg class!"); 1229 break; 1230 case 8: 1231 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1232 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1233 .addFrameIndex(FI) 1234 .addImm(0) 1235 .addMemOperand(MMO) 1236 .add(predOps(ARMCC::AL)); 1237 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1238 MachineInstrBuilder MIB; 1239 1240 if (Subtarget.hasV5TEOps()) { 1241 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1242 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1243 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1244 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1245 .add(predOps(ARMCC::AL)); 1246 } else { 1247 // Fallback to LDM instruction, which has existed since the dawn of 1248 // time. 1249 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1250 .addFrameIndex(FI) 1251 .addMemOperand(MMO) 1252 .add(predOps(ARMCC::AL)); 1253 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1254 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1255 } 1256 1257 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1258 MIB.addReg(DestReg, RegState::ImplicitDefine); 1259 } else 1260 llvm_unreachable("Unknown reg class!"); 1261 break; 1262 case 16: 1263 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1264 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1265 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1266 .addFrameIndex(FI) 1267 .addImm(16) 1268 .addMemOperand(MMO) 1269 .add(predOps(ARMCC::AL)); 1270 } else { 1271 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1272 .addFrameIndex(FI) 1273 .addMemOperand(MMO) 1274 .add(predOps(ARMCC::AL)); 1275 } 1276 } else 1277 llvm_unreachable("Unknown reg class!"); 1278 break; 1279 case 24: 1280 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1281 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1282 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1283 .addFrameIndex(FI) 1284 .addImm(16) 1285 .addMemOperand(MMO) 1286 .add(predOps(ARMCC::AL)); 1287 } else { 1288 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1289 .addFrameIndex(FI) 1290 .addMemOperand(MMO) 1291 .add(predOps(ARMCC::AL)); 1292 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1293 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1294 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1295 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1296 MIB.addReg(DestReg, RegState::ImplicitDefine); 1297 } 1298 } else 1299 llvm_unreachable("Unknown reg class!"); 1300 break; 1301 case 32: 1302 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1303 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1304 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1305 .addFrameIndex(FI) 1306 .addImm(16) 1307 .addMemOperand(MMO) 1308 .add(predOps(ARMCC::AL)); 1309 } else { 1310 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1311 .addFrameIndex(FI) 1312 .add(predOps(ARMCC::AL)) 1313 .addMemOperand(MMO); 1314 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1315 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1316 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1317 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1318 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1319 MIB.addReg(DestReg, RegState::ImplicitDefine); 1320 } 1321 } else 1322 llvm_unreachable("Unknown reg class!"); 1323 break; 1324 case 64: 1325 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1326 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1327 .addFrameIndex(FI) 1328 .add(predOps(ARMCC::AL)) 1329 .addMemOperand(MMO); 1330 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1331 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1332 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1333 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1334 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1335 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1336 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1337 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1338 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1339 MIB.addReg(DestReg, RegState::ImplicitDefine); 1340 } else 1341 llvm_unreachable("Unknown reg class!"); 1342 break; 1343 default: 1344 llvm_unreachable("Unknown regclass!"); 1345 } 1346 } 1347 1348 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1349 int &FrameIndex) const { 1350 switch (MI.getOpcode()) { 1351 default: break; 1352 case ARM::LDRrs: 1353 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1354 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1355 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1356 MI.getOperand(3).getImm() == 0) { 1357 FrameIndex = MI.getOperand(1).getIndex(); 1358 return MI.getOperand(0).getReg(); 1359 } 1360 break; 1361 case ARM::LDRi12: 1362 case ARM::t2LDRi12: 1363 case ARM::tLDRspi: 1364 case ARM::VLDRD: 1365 case ARM::VLDRS: 1366 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1367 MI.getOperand(2).getImm() == 0) { 1368 FrameIndex = MI.getOperand(1).getIndex(); 1369 return MI.getOperand(0).getReg(); 1370 } 1371 break; 1372 case ARM::VLD1q64: 1373 case ARM::VLD1d8TPseudo: 1374 case ARM::VLD1d16TPseudo: 1375 case ARM::VLD1d32TPseudo: 1376 case ARM::VLD1d64TPseudo: 1377 case ARM::VLD1d8QPseudo: 1378 case ARM::VLD1d16QPseudo: 1379 case ARM::VLD1d32QPseudo: 1380 case ARM::VLD1d64QPseudo: 1381 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1382 FrameIndex = MI.getOperand(1).getIndex(); 1383 return MI.getOperand(0).getReg(); 1384 } 1385 break; 1386 case ARM::VLDMQIA: 1387 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1388 FrameIndex = MI.getOperand(1).getIndex(); 1389 return MI.getOperand(0).getReg(); 1390 } 1391 break; 1392 } 1393 1394 return 0; 1395 } 1396 1397 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1398 int &FrameIndex) const { 1399 SmallVector<const MachineMemOperand *, 1> Accesses; 1400 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses)) { 1401 FrameIndex = 1402 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1403 ->getFrameIndex(); 1404 return true; 1405 } 1406 return false; 1407 } 1408 1409 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1410 /// depending on whether the result is used. 1411 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1412 bool isThumb1 = Subtarget.isThumb1Only(); 1413 bool isThumb2 = Subtarget.isThumb2(); 1414 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1415 1416 DebugLoc dl = MI->getDebugLoc(); 1417 MachineBasicBlock *BB = MI->getParent(); 1418 1419 MachineInstrBuilder LDM, STM; 1420 if (isThumb1 || !MI->getOperand(1).isDead()) { 1421 MachineOperand LDWb(MI->getOperand(1)); 1422 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1423 : isThumb1 ? ARM::tLDMIA_UPD 1424 : ARM::LDMIA_UPD)) 1425 .add(LDWb); 1426 } else { 1427 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1428 } 1429 1430 if (isThumb1 || !MI->getOperand(0).isDead()) { 1431 MachineOperand STWb(MI->getOperand(0)); 1432 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1433 : isThumb1 ? ARM::tSTMIA_UPD 1434 : ARM::STMIA_UPD)) 1435 .add(STWb); 1436 } else { 1437 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1438 } 1439 1440 MachineOperand LDBase(MI->getOperand(3)); 1441 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1442 1443 MachineOperand STBase(MI->getOperand(2)); 1444 STM.add(STBase).add(predOps(ARMCC::AL)); 1445 1446 // Sort the scratch registers into ascending order. 1447 const TargetRegisterInfo &TRI = getRegisterInfo(); 1448 SmallVector<unsigned, 6> ScratchRegs; 1449 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1450 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1451 llvm::sort(ScratchRegs, 1452 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1453 return TRI.getEncodingValue(Reg1) < 1454 TRI.getEncodingValue(Reg2); 1455 }); 1456 1457 for (const auto &Reg : ScratchRegs) { 1458 LDM.addReg(Reg, RegState::Define); 1459 STM.addReg(Reg, RegState::Kill); 1460 } 1461 1462 BB->erase(MI); 1463 } 1464 1465 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1466 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1467 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1468 "LOAD_STACK_GUARD currently supported only for MachO."); 1469 expandLoadStackGuard(MI); 1470 MI.getParent()->erase(MI); 1471 return true; 1472 } 1473 1474 if (MI.getOpcode() == ARM::MEMCPY) { 1475 expandMEMCPY(MI); 1476 return true; 1477 } 1478 1479 // This hook gets to expand COPY instructions before they become 1480 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1481 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1482 // changed into a VORR that can go down the NEON pipeline. 1483 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP()) 1484 return false; 1485 1486 // Look for a copy between even S-registers. That is where we keep floats 1487 // when using NEON v2f32 instructions for f32 arithmetic. 1488 unsigned DstRegS = MI.getOperand(0).getReg(); 1489 unsigned SrcRegS = MI.getOperand(1).getReg(); 1490 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1491 return false; 1492 1493 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1494 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1495 &ARM::DPRRegClass); 1496 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1497 &ARM::DPRRegClass); 1498 if (!DstRegD || !SrcRegD) 1499 return false; 1500 1501 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1502 // legal if the COPY already defines the full DstRegD, and it isn't a 1503 // sub-register insertion. 1504 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1505 return false; 1506 1507 // A dead copy shouldn't show up here, but reject it just in case. 1508 if (MI.getOperand(0).isDead()) 1509 return false; 1510 1511 // All clear, widen the COPY. 1512 LLVM_DEBUG(dbgs() << "widening: " << MI); 1513 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1514 1515 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1516 // or some other super-register. 1517 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1518 if (ImpDefIdx != -1) 1519 MI.RemoveOperand(ImpDefIdx); 1520 1521 // Change the opcode and operands. 1522 MI.setDesc(get(ARM::VMOVD)); 1523 MI.getOperand(0).setReg(DstRegD); 1524 MI.getOperand(1).setReg(SrcRegD); 1525 MIB.add(predOps(ARMCC::AL)); 1526 1527 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1528 // register scavenger and machine verifier, so we need to indicate that we 1529 // are reading an undefined value from SrcRegD, but a proper value from 1530 // SrcRegS. 1531 MI.getOperand(1).setIsUndef(); 1532 MIB.addReg(SrcRegS, RegState::Implicit); 1533 1534 // SrcRegD may actually contain an unrelated value in the ssub_1 1535 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1536 if (MI.getOperand(1).isKill()) { 1537 MI.getOperand(1).setIsKill(false); 1538 MI.addRegisterKilled(SrcRegS, TRI, true); 1539 } 1540 1541 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1542 return true; 1543 } 1544 1545 /// Create a copy of a const pool value. Update CPI to the new index and return 1546 /// the label UID. 1547 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1548 MachineConstantPool *MCP = MF.getConstantPool(); 1549 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1550 1551 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1552 assert(MCPE.isMachineConstantPoolEntry() && 1553 "Expecting a machine constantpool entry!"); 1554 ARMConstantPoolValue *ACPV = 1555 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1556 1557 unsigned PCLabelId = AFI->createPICLabelUId(); 1558 ARMConstantPoolValue *NewCPV = nullptr; 1559 1560 // FIXME: The below assumes PIC relocation model and that the function 1561 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1562 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1563 // instructions, so that's probably OK, but is PIC always correct when 1564 // we get here? 1565 if (ACPV->isGlobalValue()) 1566 NewCPV = ARMConstantPoolConstant::Create( 1567 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1568 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1569 else if (ACPV->isExtSymbol()) 1570 NewCPV = ARMConstantPoolSymbol:: 1571 Create(MF.getFunction().getContext(), 1572 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1573 else if (ACPV->isBlockAddress()) 1574 NewCPV = ARMConstantPoolConstant:: 1575 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1576 ARMCP::CPBlockAddress, 4); 1577 else if (ACPV->isLSDA()) 1578 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1579 ARMCP::CPLSDA, 4); 1580 else if (ACPV->isMachineBasicBlock()) 1581 NewCPV = ARMConstantPoolMBB:: 1582 Create(MF.getFunction().getContext(), 1583 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1584 else 1585 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1586 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1587 return PCLabelId; 1588 } 1589 1590 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1591 MachineBasicBlock::iterator I, 1592 unsigned DestReg, unsigned SubIdx, 1593 const MachineInstr &Orig, 1594 const TargetRegisterInfo &TRI) const { 1595 unsigned Opcode = Orig.getOpcode(); 1596 switch (Opcode) { 1597 default: { 1598 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1599 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1600 MBB.insert(I, MI); 1601 break; 1602 } 1603 case ARM::tLDRpci_pic: 1604 case ARM::t2LDRpci_pic: { 1605 MachineFunction &MF = *MBB.getParent(); 1606 unsigned CPI = Orig.getOperand(1).getIndex(); 1607 unsigned PCLabelId = duplicateCPV(MF, CPI); 1608 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1609 .addConstantPoolIndex(CPI) 1610 .addImm(PCLabelId) 1611 .cloneMemRefs(Orig); 1612 break; 1613 } 1614 } 1615 } 1616 1617 MachineInstr & 1618 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1619 MachineBasicBlock::iterator InsertBefore, 1620 const MachineInstr &Orig) const { 1621 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1622 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1623 for (;;) { 1624 switch (I->getOpcode()) { 1625 case ARM::tLDRpci_pic: 1626 case ARM::t2LDRpci_pic: { 1627 MachineFunction &MF = *MBB.getParent(); 1628 unsigned CPI = I->getOperand(1).getIndex(); 1629 unsigned PCLabelId = duplicateCPV(MF, CPI); 1630 I->getOperand(1).setIndex(CPI); 1631 I->getOperand(2).setImm(PCLabelId); 1632 break; 1633 } 1634 } 1635 if (!I->isBundledWithSucc()) 1636 break; 1637 ++I; 1638 } 1639 return Cloned; 1640 } 1641 1642 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1643 const MachineInstr &MI1, 1644 const MachineRegisterInfo *MRI) const { 1645 unsigned Opcode = MI0.getOpcode(); 1646 if (Opcode == ARM::t2LDRpci || 1647 Opcode == ARM::t2LDRpci_pic || 1648 Opcode == ARM::tLDRpci || 1649 Opcode == ARM::tLDRpci_pic || 1650 Opcode == ARM::LDRLIT_ga_pcrel || 1651 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1652 Opcode == ARM::tLDRLIT_ga_pcrel || 1653 Opcode == ARM::MOV_ga_pcrel || 1654 Opcode == ARM::MOV_ga_pcrel_ldr || 1655 Opcode == ARM::t2MOV_ga_pcrel) { 1656 if (MI1.getOpcode() != Opcode) 1657 return false; 1658 if (MI0.getNumOperands() != MI1.getNumOperands()) 1659 return false; 1660 1661 const MachineOperand &MO0 = MI0.getOperand(1); 1662 const MachineOperand &MO1 = MI1.getOperand(1); 1663 if (MO0.getOffset() != MO1.getOffset()) 1664 return false; 1665 1666 if (Opcode == ARM::LDRLIT_ga_pcrel || 1667 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1668 Opcode == ARM::tLDRLIT_ga_pcrel || 1669 Opcode == ARM::MOV_ga_pcrel || 1670 Opcode == ARM::MOV_ga_pcrel_ldr || 1671 Opcode == ARM::t2MOV_ga_pcrel) 1672 // Ignore the PC labels. 1673 return MO0.getGlobal() == MO1.getGlobal(); 1674 1675 const MachineFunction *MF = MI0.getParent()->getParent(); 1676 const MachineConstantPool *MCP = MF->getConstantPool(); 1677 int CPI0 = MO0.getIndex(); 1678 int CPI1 = MO1.getIndex(); 1679 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1680 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1681 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1682 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1683 if (isARMCP0 && isARMCP1) { 1684 ARMConstantPoolValue *ACPV0 = 1685 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1686 ARMConstantPoolValue *ACPV1 = 1687 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1688 return ACPV0->hasSameValue(ACPV1); 1689 } else if (!isARMCP0 && !isARMCP1) { 1690 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1691 } 1692 return false; 1693 } else if (Opcode == ARM::PICLDR) { 1694 if (MI1.getOpcode() != Opcode) 1695 return false; 1696 if (MI0.getNumOperands() != MI1.getNumOperands()) 1697 return false; 1698 1699 unsigned Addr0 = MI0.getOperand(1).getReg(); 1700 unsigned Addr1 = MI1.getOperand(1).getReg(); 1701 if (Addr0 != Addr1) { 1702 if (!MRI || 1703 !TargetRegisterInfo::isVirtualRegister(Addr0) || 1704 !TargetRegisterInfo::isVirtualRegister(Addr1)) 1705 return false; 1706 1707 // This assumes SSA form. 1708 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1709 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1710 // Check if the loaded value, e.g. a constantpool of a global address, are 1711 // the same. 1712 if (!produceSameValue(*Def0, *Def1, MRI)) 1713 return false; 1714 } 1715 1716 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1717 // %12 = PICLDR %11, 0, 14, %noreg 1718 const MachineOperand &MO0 = MI0.getOperand(i); 1719 const MachineOperand &MO1 = MI1.getOperand(i); 1720 if (!MO0.isIdenticalTo(MO1)) 1721 return false; 1722 } 1723 return true; 1724 } 1725 1726 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1727 } 1728 1729 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1730 /// determine if two loads are loading from the same base address. It should 1731 /// only return true if the base pointers are the same and the only differences 1732 /// between the two addresses is the offset. It also returns the offsets by 1733 /// reference. 1734 /// 1735 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1736 /// is permanently disabled. 1737 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1738 int64_t &Offset1, 1739 int64_t &Offset2) const { 1740 // Don't worry about Thumb: just ARM and Thumb2. 1741 if (Subtarget.isThumb1Only()) return false; 1742 1743 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1744 return false; 1745 1746 switch (Load1->getMachineOpcode()) { 1747 default: 1748 return false; 1749 case ARM::LDRi12: 1750 case ARM::LDRBi12: 1751 case ARM::LDRD: 1752 case ARM::LDRH: 1753 case ARM::LDRSB: 1754 case ARM::LDRSH: 1755 case ARM::VLDRD: 1756 case ARM::VLDRS: 1757 case ARM::t2LDRi8: 1758 case ARM::t2LDRBi8: 1759 case ARM::t2LDRDi8: 1760 case ARM::t2LDRSHi8: 1761 case ARM::t2LDRi12: 1762 case ARM::t2LDRBi12: 1763 case ARM::t2LDRSHi12: 1764 break; 1765 } 1766 1767 switch (Load2->getMachineOpcode()) { 1768 default: 1769 return false; 1770 case ARM::LDRi12: 1771 case ARM::LDRBi12: 1772 case ARM::LDRD: 1773 case ARM::LDRH: 1774 case ARM::LDRSB: 1775 case ARM::LDRSH: 1776 case ARM::VLDRD: 1777 case ARM::VLDRS: 1778 case ARM::t2LDRi8: 1779 case ARM::t2LDRBi8: 1780 case ARM::t2LDRSHi8: 1781 case ARM::t2LDRi12: 1782 case ARM::t2LDRBi12: 1783 case ARM::t2LDRSHi12: 1784 break; 1785 } 1786 1787 // Check if base addresses and chain operands match. 1788 if (Load1->getOperand(0) != Load2->getOperand(0) || 1789 Load1->getOperand(4) != Load2->getOperand(4)) 1790 return false; 1791 1792 // Index should be Reg0. 1793 if (Load1->getOperand(3) != Load2->getOperand(3)) 1794 return false; 1795 1796 // Determine the offsets. 1797 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1798 isa<ConstantSDNode>(Load2->getOperand(1))) { 1799 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1800 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1801 return true; 1802 } 1803 1804 return false; 1805 } 1806 1807 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1808 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1809 /// be scheduled togther. On some targets if two loads are loading from 1810 /// addresses in the same cache line, it's better if they are scheduled 1811 /// together. This function takes two integers that represent the load offsets 1812 /// from the common base address. It returns true if it decides it's desirable 1813 /// to schedule the two loads together. "NumLoads" is the number of loads that 1814 /// have already been scheduled after Load1. 1815 /// 1816 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1817 /// is permanently disabled. 1818 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1819 int64_t Offset1, int64_t Offset2, 1820 unsigned NumLoads) const { 1821 // Don't worry about Thumb: just ARM and Thumb2. 1822 if (Subtarget.isThumb1Only()) return false; 1823 1824 assert(Offset2 > Offset1); 1825 1826 if ((Offset2 - Offset1) / 8 > 64) 1827 return false; 1828 1829 // Check if the machine opcodes are different. If they are different 1830 // then we consider them to not be of the same base address, 1831 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1832 // In this case, they are considered to be the same because they are different 1833 // encoding forms of the same basic instruction. 1834 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1835 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1836 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1837 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1838 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1839 return false; // FIXME: overly conservative? 1840 1841 // Four loads in a row should be sufficient. 1842 if (NumLoads >= 3) 1843 return false; 1844 1845 return true; 1846 } 1847 1848 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1849 const MachineBasicBlock *MBB, 1850 const MachineFunction &MF) const { 1851 // Debug info is never a scheduling boundary. It's necessary to be explicit 1852 // due to the special treatment of IT instructions below, otherwise a 1853 // dbg_value followed by an IT will result in the IT instruction being 1854 // considered a scheduling hazard, which is wrong. It should be the actual 1855 // instruction preceding the dbg_value instruction(s), just like it is 1856 // when debug info is not present. 1857 if (MI.isDebugInstr()) 1858 return false; 1859 1860 // Terminators and labels can't be scheduled around. 1861 if (MI.isTerminator() || MI.isPosition()) 1862 return true; 1863 1864 // Treat the start of the IT block as a scheduling boundary, but schedule 1865 // t2IT along with all instructions following it. 1866 // FIXME: This is a big hammer. But the alternative is to add all potential 1867 // true and anti dependencies to IT block instructions as implicit operands 1868 // to the t2IT instruction. The added compile time and complexity does not 1869 // seem worth it. 1870 MachineBasicBlock::const_iterator I = MI; 1871 // Make sure to skip any debug instructions 1872 while (++I != MBB->end() && I->isDebugInstr()) 1873 ; 1874 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1875 return true; 1876 1877 // Don't attempt to schedule around any instruction that defines 1878 // a stack-oriented pointer, as it's unlikely to be profitable. This 1879 // saves compile time, because it doesn't require every single 1880 // stack slot reference to depend on the instruction that does the 1881 // modification. 1882 // Calls don't actually change the stack pointer, even if they have imp-defs. 1883 // No ARM calling conventions change the stack pointer. (X86 calling 1884 // conventions sometimes do). 1885 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 1886 return true; 1887 1888 return false; 1889 } 1890 1891 bool ARMBaseInstrInfo:: 1892 isProfitableToIfCvt(MachineBasicBlock &MBB, 1893 unsigned NumCycles, unsigned ExtraPredCycles, 1894 BranchProbability Probability) const { 1895 if (!NumCycles) 1896 return false; 1897 1898 // If we are optimizing for size, see if the branch in the predecessor can be 1899 // lowered to cbn?z by the constant island lowering pass, and return false if 1900 // so. This results in a shorter instruction sequence. 1901 if (MBB.getParent()->getFunction().optForSize()) { 1902 MachineBasicBlock *Pred = *MBB.pred_begin(); 1903 if (!Pred->empty()) { 1904 MachineInstr *LastMI = &*Pred->rbegin(); 1905 if (LastMI->getOpcode() == ARM::t2Bcc) { 1906 MachineBasicBlock::iterator CmpMI = LastMI; 1907 if (CmpMI != Pred->begin()) { 1908 --CmpMI; 1909 if (CmpMI->getOpcode() == ARM::tCMPi8 || 1910 CmpMI->getOpcode() == ARM::t2CMPri) { 1911 unsigned Reg = CmpMI->getOperand(0).getReg(); 1912 unsigned PredReg = 0; 1913 ARMCC::CondCodes P = getInstrPredicate(*CmpMI, PredReg); 1914 if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 && 1915 isARMLowRegister(Reg)) 1916 return false; 1917 } 1918 } 1919 } 1920 } 1921 } 1922 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 1923 MBB, 0, 0, Probability); 1924 } 1925 1926 bool ARMBaseInstrInfo:: 1927 isProfitableToIfCvt(MachineBasicBlock &TBB, 1928 unsigned TCycles, unsigned TExtra, 1929 MachineBasicBlock &FBB, 1930 unsigned FCycles, unsigned FExtra, 1931 BranchProbability Probability) const { 1932 if (!TCycles) 1933 return false; 1934 1935 // Attempt to estimate the relative costs of predication versus branching. 1936 // Here we scale up each component of UnpredCost to avoid precision issue when 1937 // scaling TCycles/FCycles by Probability. 1938 const unsigned ScalingUpFactor = 1024; 1939 1940 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 1941 unsigned UnpredCost; 1942 if (!Subtarget.hasBranchPredictor()) { 1943 // When we don't have a branch predictor it's always cheaper to not take a 1944 // branch than take it, so we have to take that into account. 1945 unsigned NotTakenBranchCost = 1; 1946 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 1947 unsigned TUnpredCycles, FUnpredCycles; 1948 if (!FCycles) { 1949 // Triangle: TBB is the fallthrough 1950 TUnpredCycles = TCycles + NotTakenBranchCost; 1951 FUnpredCycles = TakenBranchCost; 1952 } else { 1953 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 1954 TUnpredCycles = TCycles + TakenBranchCost; 1955 FUnpredCycles = FCycles + NotTakenBranchCost; 1956 // The branch at the end of FBB will disappear when it's predicated, so 1957 // discount it from PredCost. 1958 PredCost -= 1 * ScalingUpFactor; 1959 } 1960 // The total cost is the cost of each path scaled by their probabilites 1961 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 1962 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 1963 UnpredCost = TUnpredCost + FUnpredCost; 1964 // When predicating assume that the first IT can be folded away but later 1965 // ones cost one cycle each 1966 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 1967 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 1968 } 1969 } else { 1970 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 1971 unsigned FUnpredCost = 1972 Probability.getCompl().scale(FCycles * ScalingUpFactor); 1973 UnpredCost = TUnpredCost + FUnpredCost; 1974 UnpredCost += 1 * ScalingUpFactor; // The branch itself 1975 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1976 } 1977 1978 return PredCost <= UnpredCost; 1979 } 1980 1981 bool 1982 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 1983 MachineBasicBlock &FMBB) const { 1984 // Reduce false anti-dependencies to let the target's out-of-order execution 1985 // engine do its thing. 1986 return Subtarget.isProfitableToUnpredicate(); 1987 } 1988 1989 /// getInstrPredicate - If instruction is predicated, returns its predicate 1990 /// condition, otherwise returns AL. It also returns the condition code 1991 /// register by reference. 1992 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 1993 unsigned &PredReg) { 1994 int PIdx = MI.findFirstPredOperandIdx(); 1995 if (PIdx == -1) { 1996 PredReg = 0; 1997 return ARMCC::AL; 1998 } 1999 2000 PredReg = MI.getOperand(PIdx+1).getReg(); 2001 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2002 } 2003 2004 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2005 if (Opc == ARM::B) 2006 return ARM::Bcc; 2007 if (Opc == ARM::tB) 2008 return ARM::tBcc; 2009 if (Opc == ARM::t2B) 2010 return ARM::t2Bcc; 2011 2012 llvm_unreachable("Unknown unconditional branch opcode!"); 2013 } 2014 2015 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2016 bool NewMI, 2017 unsigned OpIdx1, 2018 unsigned OpIdx2) const { 2019 switch (MI.getOpcode()) { 2020 case ARM::MOVCCr: 2021 case ARM::t2MOVCCr: { 2022 // MOVCC can be commuted by inverting the condition. 2023 unsigned PredReg = 0; 2024 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2025 // MOVCC AL can't be inverted. Shouldn't happen. 2026 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2027 return nullptr; 2028 MachineInstr *CommutedMI = 2029 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2030 if (!CommutedMI) 2031 return nullptr; 2032 // After swapping the MOVCC operands, also invert the condition. 2033 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2034 .setImm(ARMCC::getOppositeCondition(CC)); 2035 return CommutedMI; 2036 } 2037 } 2038 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2039 } 2040 2041 /// Identify instructions that can be folded into a MOVCC instruction, and 2042 /// return the defining instruction. 2043 static MachineInstr *canFoldIntoMOVCC(unsigned Reg, 2044 const MachineRegisterInfo &MRI, 2045 const TargetInstrInfo *TII) { 2046 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2047 return nullptr; 2048 if (!MRI.hasOneNonDBGUse(Reg)) 2049 return nullptr; 2050 MachineInstr *MI = MRI.getVRegDef(Reg); 2051 if (!MI) 2052 return nullptr; 2053 // MI is folded into the MOVCC by predicating it. 2054 if (!MI->isPredicable()) 2055 return nullptr; 2056 // Check if MI has any non-dead defs or physreg uses. This also detects 2057 // predicated instructions which will be reading CPSR. 2058 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2059 const MachineOperand &MO = MI->getOperand(i); 2060 // Reject frame index operands, PEI can't handle the predicated pseudos. 2061 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2062 return nullptr; 2063 if (!MO.isReg()) 2064 continue; 2065 // MI can't have any tied operands, that would conflict with predication. 2066 if (MO.isTied()) 2067 return nullptr; 2068 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 2069 return nullptr; 2070 if (MO.isDef() && !MO.isDead()) 2071 return nullptr; 2072 } 2073 bool DontMoveAcrossStores = true; 2074 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2075 return nullptr; 2076 return MI; 2077 } 2078 2079 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2080 SmallVectorImpl<MachineOperand> &Cond, 2081 unsigned &TrueOp, unsigned &FalseOp, 2082 bool &Optimizable) const { 2083 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2084 "Unknown select instruction"); 2085 // MOVCC operands: 2086 // 0: Def. 2087 // 1: True use. 2088 // 2: False use. 2089 // 3: Condition code. 2090 // 4: CPSR use. 2091 TrueOp = 1; 2092 FalseOp = 2; 2093 Cond.push_back(MI.getOperand(3)); 2094 Cond.push_back(MI.getOperand(4)); 2095 // We can always fold a def. 2096 Optimizable = true; 2097 return false; 2098 } 2099 2100 MachineInstr * 2101 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2102 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2103 bool PreferFalse) const { 2104 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2105 "Unknown select instruction"); 2106 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2107 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2108 bool Invert = !DefMI; 2109 if (!DefMI) 2110 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2111 if (!DefMI) 2112 return nullptr; 2113 2114 // Find new register class to use. 2115 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2116 unsigned DestReg = MI.getOperand(0).getReg(); 2117 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2118 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2119 return nullptr; 2120 2121 // Create a new predicated version of DefMI. 2122 // Rfalse is the first use. 2123 MachineInstrBuilder NewMI = 2124 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2125 2126 // Copy all the DefMI operands, excluding its (null) predicate. 2127 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2128 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2129 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2130 NewMI.add(DefMI->getOperand(i)); 2131 2132 unsigned CondCode = MI.getOperand(3).getImm(); 2133 if (Invert) 2134 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2135 else 2136 NewMI.addImm(CondCode); 2137 NewMI.add(MI.getOperand(4)); 2138 2139 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2140 if (NewMI->hasOptionalDef()) 2141 NewMI.add(condCodeOp()); 2142 2143 // The output register value when the predicate is false is an implicit 2144 // register operand tied to the first def. 2145 // The tie makes the register allocator ensure the FalseReg is allocated the 2146 // same register as operand 0. 2147 FalseReg.setImplicit(); 2148 NewMI.add(FalseReg); 2149 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2150 2151 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2152 SeenMIs.insert(NewMI); 2153 SeenMIs.erase(DefMI); 2154 2155 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2156 // DefMI would be invalid when tranferred inside the loop. Checking for a 2157 // loop is expensive, but at least remove kill flags if they are in different 2158 // BBs. 2159 if (DefMI->getParent() != MI.getParent()) 2160 NewMI->clearKillInfo(); 2161 2162 // The caller will erase MI, but not DefMI. 2163 DefMI->eraseFromParent(); 2164 return NewMI; 2165 } 2166 2167 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2168 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2169 /// def operand. 2170 /// 2171 /// This will go away once we can teach tblgen how to set the optional CPSR def 2172 /// operand itself. 2173 struct AddSubFlagsOpcodePair { 2174 uint16_t PseudoOpc; 2175 uint16_t MachineOpc; 2176 }; 2177 2178 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2179 {ARM::ADDSri, ARM::ADDri}, 2180 {ARM::ADDSrr, ARM::ADDrr}, 2181 {ARM::ADDSrsi, ARM::ADDrsi}, 2182 {ARM::ADDSrsr, ARM::ADDrsr}, 2183 2184 {ARM::SUBSri, ARM::SUBri}, 2185 {ARM::SUBSrr, ARM::SUBrr}, 2186 {ARM::SUBSrsi, ARM::SUBrsi}, 2187 {ARM::SUBSrsr, ARM::SUBrsr}, 2188 2189 {ARM::RSBSri, ARM::RSBri}, 2190 {ARM::RSBSrsi, ARM::RSBrsi}, 2191 {ARM::RSBSrsr, ARM::RSBrsr}, 2192 2193 {ARM::tADDSi3, ARM::tADDi3}, 2194 {ARM::tADDSi8, ARM::tADDi8}, 2195 {ARM::tADDSrr, ARM::tADDrr}, 2196 {ARM::tADCS, ARM::tADC}, 2197 2198 {ARM::tSUBSi3, ARM::tSUBi3}, 2199 {ARM::tSUBSi8, ARM::tSUBi8}, 2200 {ARM::tSUBSrr, ARM::tSUBrr}, 2201 {ARM::tSBCS, ARM::tSBC}, 2202 {ARM::tRSBS, ARM::tRSB}, 2203 2204 {ARM::t2ADDSri, ARM::t2ADDri}, 2205 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2206 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2207 2208 {ARM::t2SUBSri, ARM::t2SUBri}, 2209 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2210 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2211 2212 {ARM::t2RSBSri, ARM::t2RSBri}, 2213 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2214 }; 2215 2216 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2217 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2218 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2219 return AddSubFlagsOpcodeMap[i].MachineOpc; 2220 return 0; 2221 } 2222 2223 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2224 MachineBasicBlock::iterator &MBBI, 2225 const DebugLoc &dl, unsigned DestReg, 2226 unsigned BaseReg, int NumBytes, 2227 ARMCC::CondCodes Pred, unsigned PredReg, 2228 const ARMBaseInstrInfo &TII, 2229 unsigned MIFlags) { 2230 if (NumBytes == 0 && DestReg != BaseReg) { 2231 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2232 .addReg(BaseReg, RegState::Kill) 2233 .add(predOps(Pred, PredReg)) 2234 .add(condCodeOp()) 2235 .setMIFlags(MIFlags); 2236 return; 2237 } 2238 2239 bool isSub = NumBytes < 0; 2240 if (isSub) NumBytes = -NumBytes; 2241 2242 while (NumBytes) { 2243 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2244 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2245 assert(ThisVal && "Didn't extract field correctly"); 2246 2247 // We will handle these bits from offset, clear them. 2248 NumBytes &= ~ThisVal; 2249 2250 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2251 2252 // Build the new ADD / SUB. 2253 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2254 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2255 .addReg(BaseReg, RegState::Kill) 2256 .addImm(ThisVal) 2257 .add(predOps(Pred, PredReg)) 2258 .add(condCodeOp()) 2259 .setMIFlags(MIFlags); 2260 BaseReg = DestReg; 2261 } 2262 } 2263 2264 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2265 MachineFunction &MF, MachineInstr *MI, 2266 unsigned NumBytes) { 2267 // This optimisation potentially adds lots of load and store 2268 // micro-operations, it's only really a great benefit to code-size. 2269 if (!MF.getFunction().optForMinSize()) 2270 return false; 2271 2272 // If only one register is pushed/popped, LLVM can use an LDR/STR 2273 // instead. We can't modify those so make sure we're dealing with an 2274 // instruction we understand. 2275 bool IsPop = isPopOpcode(MI->getOpcode()); 2276 bool IsPush = isPushOpcode(MI->getOpcode()); 2277 if (!IsPush && !IsPop) 2278 return false; 2279 2280 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2281 MI->getOpcode() == ARM::VLDMDIA_UPD; 2282 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2283 MI->getOpcode() == ARM::tPOP || 2284 MI->getOpcode() == ARM::tPOP_RET; 2285 2286 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2287 MI->getOperand(1).getReg() == ARM::SP)) && 2288 "trying to fold sp update into non-sp-updating push/pop"); 2289 2290 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2291 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2292 // if this is violated. 2293 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2294 return false; 2295 2296 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2297 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2298 int RegListIdx = IsT1PushPop ? 2 : 4; 2299 2300 // Calculate the space we'll need in terms of registers. 2301 unsigned RegsNeeded; 2302 const TargetRegisterClass *RegClass; 2303 if (IsVFPPushPop) { 2304 RegsNeeded = NumBytes / 8; 2305 RegClass = &ARM::DPRRegClass; 2306 } else { 2307 RegsNeeded = NumBytes / 4; 2308 RegClass = &ARM::GPRRegClass; 2309 } 2310 2311 // We're going to have to strip all list operands off before 2312 // re-adding them since the order matters, so save the existing ones 2313 // for later. 2314 SmallVector<MachineOperand, 4> RegList; 2315 2316 // We're also going to need the first register transferred by this 2317 // instruction, which won't necessarily be the first register in the list. 2318 unsigned FirstRegEnc = -1; 2319 2320 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2321 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2322 MachineOperand &MO = MI->getOperand(i); 2323 RegList.push_back(MO); 2324 2325 if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2326 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2327 } 2328 2329 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2330 2331 // Now try to find enough space in the reglist to allocate NumBytes. 2332 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2333 --CurRegEnc) { 2334 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2335 if (!IsPop) { 2336 // Pushing any register is completely harmless, mark the register involved 2337 // as undef since we don't care about its value and must not restore it 2338 // during stack unwinding. 2339 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2340 false, false, true)); 2341 --RegsNeeded; 2342 continue; 2343 } 2344 2345 // However, we can only pop an extra register if it's not live. For 2346 // registers live within the function we might clobber a return value 2347 // register; the other way a register can be live here is if it's 2348 // callee-saved. 2349 if (isCalleeSavedRegister(CurReg, CSRegs) || 2350 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2351 MachineBasicBlock::LQR_Dead) { 2352 // VFP pops don't allow holes in the register list, so any skip is fatal 2353 // for our transformation. GPR pops do, so we should just keep looking. 2354 if (IsVFPPushPop) 2355 return false; 2356 else 2357 continue; 2358 } 2359 2360 // Mark the unimportant registers as <def,dead> in the POP. 2361 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2362 true)); 2363 --RegsNeeded; 2364 } 2365 2366 if (RegsNeeded > 0) 2367 return false; 2368 2369 // Finally we know we can profitably perform the optimisation so go 2370 // ahead: strip all existing registers off and add them back again 2371 // in the right order. 2372 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2373 MI->RemoveOperand(i); 2374 2375 // Add the complete list back in. 2376 MachineInstrBuilder MIB(MF, &*MI); 2377 for (int i = RegList.size() - 1; i >= 0; --i) 2378 MIB.add(RegList[i]); 2379 2380 return true; 2381 } 2382 2383 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2384 unsigned FrameReg, int &Offset, 2385 const ARMBaseInstrInfo &TII) { 2386 unsigned Opcode = MI.getOpcode(); 2387 const MCInstrDesc &Desc = MI.getDesc(); 2388 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2389 bool isSub = false; 2390 2391 // Memory operands in inline assembly always use AddrMode2. 2392 if (Opcode == ARM::INLINEASM) 2393 AddrMode = ARMII::AddrMode2; 2394 2395 if (Opcode == ARM::ADDri) { 2396 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2397 if (Offset == 0) { 2398 // Turn it into a move. 2399 MI.setDesc(TII.get(ARM::MOVr)); 2400 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2401 MI.RemoveOperand(FrameRegIdx+1); 2402 Offset = 0; 2403 return true; 2404 } else if (Offset < 0) { 2405 Offset = -Offset; 2406 isSub = true; 2407 MI.setDesc(TII.get(ARM::SUBri)); 2408 } 2409 2410 // Common case: small offset, fits into instruction. 2411 if (ARM_AM::getSOImmVal(Offset) != -1) { 2412 // Replace the FrameIndex with sp / fp 2413 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2414 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2415 Offset = 0; 2416 return true; 2417 } 2418 2419 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2420 // as possible. 2421 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2422 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2423 2424 // We will handle these bits from offset, clear them. 2425 Offset &= ~ThisImmVal; 2426 2427 // Get the properly encoded SOImmVal field. 2428 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2429 "Bit extraction didn't work?"); 2430 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2431 } else { 2432 unsigned ImmIdx = 0; 2433 int InstrOffs = 0; 2434 unsigned NumBits = 0; 2435 unsigned Scale = 1; 2436 switch (AddrMode) { 2437 case ARMII::AddrMode_i12: 2438 ImmIdx = FrameRegIdx + 1; 2439 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2440 NumBits = 12; 2441 break; 2442 case ARMII::AddrMode2: 2443 ImmIdx = FrameRegIdx+2; 2444 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2445 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2446 InstrOffs *= -1; 2447 NumBits = 12; 2448 break; 2449 case ARMII::AddrMode3: 2450 ImmIdx = FrameRegIdx+2; 2451 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2452 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2453 InstrOffs *= -1; 2454 NumBits = 8; 2455 break; 2456 case ARMII::AddrMode4: 2457 case ARMII::AddrMode6: 2458 // Can't fold any offset even if it's zero. 2459 return false; 2460 case ARMII::AddrMode5: 2461 ImmIdx = FrameRegIdx+1; 2462 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2463 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2464 InstrOffs *= -1; 2465 NumBits = 8; 2466 Scale = 4; 2467 break; 2468 case ARMII::AddrMode5FP16: 2469 ImmIdx = FrameRegIdx+1; 2470 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2471 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2472 InstrOffs *= -1; 2473 NumBits = 8; 2474 Scale = 2; 2475 break; 2476 default: 2477 llvm_unreachable("Unsupported addressing mode!"); 2478 } 2479 2480 Offset += InstrOffs * Scale; 2481 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2482 if (Offset < 0) { 2483 Offset = -Offset; 2484 isSub = true; 2485 } 2486 2487 // Attempt to fold address comp. if opcode has offset bits 2488 if (NumBits > 0) { 2489 // Common case: small offset, fits into instruction. 2490 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2491 int ImmedOffset = Offset / Scale; 2492 unsigned Mask = (1 << NumBits) - 1; 2493 if ((unsigned)Offset <= Mask * Scale) { 2494 // Replace the FrameIndex with sp 2495 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2496 // FIXME: When addrmode2 goes away, this will simplify (like the 2497 // T2 version), as the LDR.i12 versions don't need the encoding 2498 // tricks for the offset value. 2499 if (isSub) { 2500 if (AddrMode == ARMII::AddrMode_i12) 2501 ImmedOffset = -ImmedOffset; 2502 else 2503 ImmedOffset |= 1 << NumBits; 2504 } 2505 ImmOp.ChangeToImmediate(ImmedOffset); 2506 Offset = 0; 2507 return true; 2508 } 2509 2510 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2511 ImmedOffset = ImmedOffset & Mask; 2512 if (isSub) { 2513 if (AddrMode == ARMII::AddrMode_i12) 2514 ImmedOffset = -ImmedOffset; 2515 else 2516 ImmedOffset |= 1 << NumBits; 2517 } 2518 ImmOp.ChangeToImmediate(ImmedOffset); 2519 Offset &= ~(Mask*Scale); 2520 } 2521 } 2522 2523 Offset = (isSub) ? -Offset : Offset; 2524 return Offset == 0; 2525 } 2526 2527 /// analyzeCompare - For a comparison instruction, return the source registers 2528 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2529 /// compares against in CmpValue. Return true if the comparison instruction 2530 /// can be analyzed. 2531 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 2532 unsigned &SrcReg2, int &CmpMask, 2533 int &CmpValue) const { 2534 switch (MI.getOpcode()) { 2535 default: break; 2536 case ARM::CMPri: 2537 case ARM::t2CMPri: 2538 case ARM::tCMPi8: 2539 SrcReg = MI.getOperand(0).getReg(); 2540 SrcReg2 = 0; 2541 CmpMask = ~0; 2542 CmpValue = MI.getOperand(1).getImm(); 2543 return true; 2544 case ARM::CMPrr: 2545 case ARM::t2CMPrr: 2546 SrcReg = MI.getOperand(0).getReg(); 2547 SrcReg2 = MI.getOperand(1).getReg(); 2548 CmpMask = ~0; 2549 CmpValue = 0; 2550 return true; 2551 case ARM::TSTri: 2552 case ARM::t2TSTri: 2553 SrcReg = MI.getOperand(0).getReg(); 2554 SrcReg2 = 0; 2555 CmpMask = MI.getOperand(1).getImm(); 2556 CmpValue = 0; 2557 return true; 2558 } 2559 2560 return false; 2561 } 2562 2563 /// isSuitableForMask - Identify a suitable 'and' instruction that 2564 /// operates on the given source register and applies the same mask 2565 /// as a 'tst' instruction. Provide a limited look-through for copies. 2566 /// When successful, MI will hold the found instruction. 2567 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 2568 int CmpMask, bool CommonUse) { 2569 switch (MI->getOpcode()) { 2570 case ARM::ANDri: 2571 case ARM::t2ANDri: 2572 if (CmpMask != MI->getOperand(2).getImm()) 2573 return false; 2574 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2575 return true; 2576 break; 2577 } 2578 2579 return false; 2580 } 2581 2582 /// getSwappedCondition - assume the flags are set by MI(a,b), return 2583 /// the condition code if we modify the instructions such that flags are 2584 /// set by MI(b,a). 2585 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { 2586 switch (CC) { 2587 default: return ARMCC::AL; 2588 case ARMCC::EQ: return ARMCC::EQ; 2589 case ARMCC::NE: return ARMCC::NE; 2590 case ARMCC::HS: return ARMCC::LS; 2591 case ARMCC::LO: return ARMCC::HI; 2592 case ARMCC::HI: return ARMCC::LO; 2593 case ARMCC::LS: return ARMCC::HS; 2594 case ARMCC::GE: return ARMCC::LE; 2595 case ARMCC::LT: return ARMCC::GT; 2596 case ARMCC::GT: return ARMCC::LT; 2597 case ARMCC::LE: return ARMCC::GE; 2598 } 2599 } 2600 2601 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2602 /// the condition code if we modify the instructions such that flags are 2603 /// set by ADD(a,b,X). 2604 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2605 switch (CC) { 2606 default: return ARMCC::AL; 2607 case ARMCC::HS: return ARMCC::LO; 2608 case ARMCC::LO: return ARMCC::HS; 2609 case ARMCC::VS: return ARMCC::VS; 2610 case ARMCC::VC: return ARMCC::VC; 2611 } 2612 } 2613 2614 /// isRedundantFlagInstr - check whether the first instruction, whose only 2615 /// purpose is to update flags, can be made redundant. 2616 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2617 /// CMPri can be made redundant by SUBri if the operands are the same. 2618 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2619 /// This function can be extended later on. 2620 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2621 unsigned SrcReg, unsigned SrcReg2, 2622 int ImmValue, const MachineInstr *OI) { 2623 if ((CmpI->getOpcode() == ARM::CMPrr || 2624 CmpI->getOpcode() == ARM::t2CMPrr) && 2625 (OI->getOpcode() == ARM::SUBrr || 2626 OI->getOpcode() == ARM::t2SUBrr) && 2627 ((OI->getOperand(1).getReg() == SrcReg && 2628 OI->getOperand(2).getReg() == SrcReg2) || 2629 (OI->getOperand(1).getReg() == SrcReg2 && 2630 OI->getOperand(2).getReg() == SrcReg))) 2631 return true; 2632 2633 if ((CmpI->getOpcode() == ARM::CMPri || 2634 CmpI->getOpcode() == ARM::t2CMPri) && 2635 (OI->getOpcode() == ARM::SUBri || 2636 OI->getOpcode() == ARM::t2SUBri) && 2637 OI->getOperand(1).getReg() == SrcReg && 2638 OI->getOperand(2).getImm() == ImmValue) 2639 return true; 2640 2641 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2642 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2643 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2644 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2645 OI->getOperand(0).getReg() == SrcReg && 2646 OI->getOperand(1).getReg() == SrcReg2) 2647 return true; 2648 return false; 2649 } 2650 2651 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2652 switch (MI->getOpcode()) { 2653 default: return false; 2654 case ARM::tLSLri: 2655 case ARM::tLSRri: 2656 case ARM::tLSLrr: 2657 case ARM::tLSRrr: 2658 case ARM::tSUBrr: 2659 case ARM::tADDrr: 2660 case ARM::tADDi3: 2661 case ARM::tADDi8: 2662 case ARM::tSUBi3: 2663 case ARM::tSUBi8: 2664 case ARM::tMUL: 2665 IsThumb1 = true; 2666 LLVM_FALLTHROUGH; 2667 case ARM::RSBrr: 2668 case ARM::RSBri: 2669 case ARM::RSCrr: 2670 case ARM::RSCri: 2671 case ARM::ADDrr: 2672 case ARM::ADDri: 2673 case ARM::ADCrr: 2674 case ARM::ADCri: 2675 case ARM::SUBrr: 2676 case ARM::SUBri: 2677 case ARM::SBCrr: 2678 case ARM::SBCri: 2679 case ARM::t2RSBri: 2680 case ARM::t2ADDrr: 2681 case ARM::t2ADDri: 2682 case ARM::t2ADCrr: 2683 case ARM::t2ADCri: 2684 case ARM::t2SUBrr: 2685 case ARM::t2SUBri: 2686 case ARM::t2SBCrr: 2687 case ARM::t2SBCri: 2688 case ARM::ANDrr: 2689 case ARM::ANDri: 2690 case ARM::t2ANDrr: 2691 case ARM::t2ANDri: 2692 case ARM::ORRrr: 2693 case ARM::ORRri: 2694 case ARM::t2ORRrr: 2695 case ARM::t2ORRri: 2696 case ARM::EORrr: 2697 case ARM::EORri: 2698 case ARM::t2EORrr: 2699 case ARM::t2EORri: 2700 case ARM::t2LSRri: 2701 case ARM::t2LSRrr: 2702 case ARM::t2LSLri: 2703 case ARM::t2LSLrr: 2704 return true; 2705 } 2706 } 2707 2708 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2709 /// comparison into one that sets the zero bit in the flags register; 2710 /// Remove a redundant Compare instruction if an earlier instruction can set the 2711 /// flags in the same way as Compare. 2712 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2713 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2714 /// condition code of instructions which use the flags. 2715 bool ARMBaseInstrInfo::optimizeCompareInstr( 2716 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, 2717 int CmpValue, const MachineRegisterInfo *MRI) const { 2718 // Get the unique definition of SrcReg. 2719 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2720 if (!MI) return false; 2721 2722 // Masked compares sometimes use the same register as the corresponding 'and'. 2723 if (CmpMask != ~0) { 2724 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2725 MI = nullptr; 2726 for (MachineRegisterInfo::use_instr_iterator 2727 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2728 UI != UE; ++UI) { 2729 if (UI->getParent() != CmpInstr.getParent()) 2730 continue; 2731 MachineInstr *PotentialAND = &*UI; 2732 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2733 isPredicated(*PotentialAND)) 2734 continue; 2735 MI = PotentialAND; 2736 break; 2737 } 2738 if (!MI) return false; 2739 } 2740 } 2741 2742 // Get ready to iterate backward from CmpInstr. 2743 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2744 B = CmpInstr.getParent()->begin(); 2745 2746 // Early exit if CmpInstr is at the beginning of the BB. 2747 if (I == B) return false; 2748 2749 // There are two possible candidates which can be changed to set CPSR: 2750 // One is MI, the other is a SUB or ADD instruction. 2751 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 2752 // ADDr[ri](r1, r2, X). 2753 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2754 MachineInstr *SubAdd = nullptr; 2755 if (SrcReg2 != 0) 2756 // MI is not a candidate for CMPrr. 2757 MI = nullptr; 2758 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 2759 // Conservatively refuse to convert an instruction which isn't in the same 2760 // BB as the comparison. 2761 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 2762 // Thus we cannot return here. 2763 if (CmpInstr.getOpcode() == ARM::CMPri || 2764 CmpInstr.getOpcode() == ARM::t2CMPri) 2765 MI = nullptr; 2766 else 2767 return false; 2768 } 2769 2770 bool IsThumb1 = false; 2771 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 2772 return false; 2773 2774 // We also want to do this peephole for cases like this: if (a*b == 0), 2775 // and optimise away the CMP instruction from the generated code sequence: 2776 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 2777 // resulting from the select instruction, but these MOVS instructions for 2778 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 2779 // However, if we only have MOVS instructions in between the CMP and the 2780 // other instruction (the MULS in this example), then the CPSR is dead so we 2781 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 2782 // reordering and then continue the analysis hoping we can eliminate the 2783 // CMP. This peephole works on the vregs, so is still in SSA form. As a 2784 // consequence, the movs won't redefine/kill the MUL operands which would 2785 // make this reordering illegal. 2786 if (MI && IsThumb1) { 2787 --I; 2788 bool CanReorder = true; 2789 const bool HasStmts = I != E; 2790 for (; I != E; --I) { 2791 if (I->getOpcode() != ARM::tMOVi8) { 2792 CanReorder = false; 2793 break; 2794 } 2795 } 2796 if (HasStmts && CanReorder) { 2797 MI = MI->removeFromParent(); 2798 E = CmpInstr; 2799 CmpInstr.getParent()->insert(E, MI); 2800 } 2801 I = CmpInstr; 2802 E = MI; 2803 } 2804 2805 // Check that CPSR isn't set between the comparison instruction and the one we 2806 // want to change. At the same time, search for SubAdd. 2807 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2808 do { 2809 const MachineInstr &Instr = *--I; 2810 2811 // Check whether CmpInstr can be made redundant by the current instruction. 2812 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr)) { 2813 SubAdd = &*I; 2814 break; 2815 } 2816 2817 // Allow E (which was initially MI) to be SubAdd but do not search before E. 2818 if (I == E) 2819 break; 2820 2821 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 2822 Instr.readsRegister(ARM::CPSR, TRI)) 2823 // This instruction modifies or uses CPSR after the one we want to 2824 // change. We can't do this transformation. 2825 return false; 2826 2827 } while (I != B); 2828 2829 // Return false if no candidates exist. 2830 if (!MI && !SubAdd) 2831 return false; 2832 2833 // The single candidate is called MI. 2834 if (!MI) MI = SubAdd; 2835 2836 // We can't use a predicated instruction - it doesn't always write the flags. 2837 if (isPredicated(*MI)) 2838 return false; 2839 2840 // Scan forward for the use of CPSR 2841 // When checking against MI: if it's a conditional code that requires 2842 // checking of the V bit or C bit, then this is not safe to do. 2843 // It is safe to remove CmpInstr if CPSR is redefined or killed. 2844 // If we are done with the basic block, we need to check whether CPSR is 2845 // live-out. 2846 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 2847 OperandsToUpdate; 2848 bool isSafe = false; 2849 I = CmpInstr; 2850 E = CmpInstr.getParent()->end(); 2851 while (!isSafe && ++I != E) { 2852 const MachineInstr &Instr = *I; 2853 for (unsigned IO = 0, EO = Instr.getNumOperands(); 2854 !isSafe && IO != EO; ++IO) { 2855 const MachineOperand &MO = Instr.getOperand(IO); 2856 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 2857 isSafe = true; 2858 break; 2859 } 2860 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 2861 continue; 2862 if (MO.isDef()) { 2863 isSafe = true; 2864 break; 2865 } 2866 // Condition code is after the operand before CPSR except for VSELs. 2867 ARMCC::CondCodes CC; 2868 bool IsInstrVSel = true; 2869 switch (Instr.getOpcode()) { 2870 default: 2871 IsInstrVSel = false; 2872 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 2873 break; 2874 case ARM::VSELEQD: 2875 case ARM::VSELEQS: 2876 CC = ARMCC::EQ; 2877 break; 2878 case ARM::VSELGTD: 2879 case ARM::VSELGTS: 2880 CC = ARMCC::GT; 2881 break; 2882 case ARM::VSELGED: 2883 case ARM::VSELGES: 2884 CC = ARMCC::GE; 2885 break; 2886 case ARM::VSELVSS: 2887 case ARM::VSELVSD: 2888 CC = ARMCC::VS; 2889 break; 2890 } 2891 2892 if (SubAdd) { 2893 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 2894 // on CMP needs to be updated to be based on SUB. 2895 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 2896 // needs to be modified. 2897 // Push the condition code operands to OperandsToUpdate. 2898 // If it is safe to remove CmpInstr, the condition code of these 2899 // operands will be modified. 2900 unsigned Opc = SubAdd->getOpcode(); 2901 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 2902 Opc == ARM::SUBri || Opc == ARM::t2SUBri; 2903 if (!IsSub || (SrcReg2 != 0 && SubAdd->getOperand(1).getReg() == SrcReg2 && 2904 SubAdd->getOperand(2).getReg() == SrcReg)) { 2905 // VSel doesn't support condition code update. 2906 if (IsInstrVSel) 2907 return false; 2908 // Ensure we can swap the condition. 2909 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 2910 if (NewCC == ARMCC::AL) 2911 return false; 2912 OperandsToUpdate.push_back( 2913 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 2914 } 2915 } else { 2916 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 2917 switch (CC) { 2918 case ARMCC::EQ: // Z 2919 case ARMCC::NE: // Z 2920 case ARMCC::MI: // N 2921 case ARMCC::PL: // N 2922 case ARMCC::AL: // none 2923 // CPSR can be used multiple times, we should continue. 2924 break; 2925 case ARMCC::HS: // C 2926 case ARMCC::LO: // C 2927 case ARMCC::VS: // V 2928 case ARMCC::VC: // V 2929 case ARMCC::HI: // C Z 2930 case ARMCC::LS: // C Z 2931 case ARMCC::GE: // N V 2932 case ARMCC::LT: // N V 2933 case ARMCC::GT: // Z N V 2934 case ARMCC::LE: // Z N V 2935 // The instruction uses the V bit or C bit which is not safe. 2936 return false; 2937 } 2938 } 2939 } 2940 } 2941 2942 // If CPSR is not killed nor re-defined, we should check whether it is 2943 // live-out. If it is live-out, do not optimize. 2944 if (!isSafe) { 2945 MachineBasicBlock *MBB = CmpInstr.getParent(); 2946 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 2947 SE = MBB->succ_end(); SI != SE; ++SI) 2948 if ((*SI)->isLiveIn(ARM::CPSR)) 2949 return false; 2950 } 2951 2952 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 2953 // set CPSR so this is represented as an explicit output) 2954 if (!IsThumb1) { 2955 MI->getOperand(5).setReg(ARM::CPSR); 2956 MI->getOperand(5).setIsDef(true); 2957 } 2958 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 2959 CmpInstr.eraseFromParent(); 2960 2961 // Modify the condition code of operands in OperandsToUpdate. 2962 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2963 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2964 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 2965 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 2966 2967 MI->clearRegisterDeads(ARM::CPSR); 2968 2969 return true; 2970 } 2971 2972 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 2973 // Do not sink MI if it might be used to optimize a redundant compare. 2974 // We heuristically only look at the instruction immediately following MI to 2975 // avoid potentially searching the entire basic block. 2976 if (isPredicated(MI)) 2977 return true; 2978 MachineBasicBlock::const_iterator Next = &MI; 2979 ++Next; 2980 unsigned SrcReg, SrcReg2; 2981 int CmpMask, CmpValue; 2982 if (Next != MI.getParent()->end() && 2983 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 2984 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI)) 2985 return false; 2986 return true; 2987 } 2988 2989 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2990 unsigned Reg, 2991 MachineRegisterInfo *MRI) const { 2992 // Fold large immediates into add, sub, or, xor. 2993 unsigned DefOpc = DefMI.getOpcode(); 2994 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 2995 return false; 2996 if (!DefMI.getOperand(1).isImm()) 2997 // Could be t2MOVi32imm @xx 2998 return false; 2999 3000 if (!MRI->hasOneNonDBGUse(Reg)) 3001 return false; 3002 3003 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3004 if (DefMCID.hasOptionalDef()) { 3005 unsigned NumOps = DefMCID.getNumOperands(); 3006 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3007 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3008 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3009 // to delete DefMI. 3010 return false; 3011 } 3012 3013 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3014 if (UseMCID.hasOptionalDef()) { 3015 unsigned NumOps = UseMCID.getNumOperands(); 3016 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3017 // If the instruction sets the flag, do not attempt this optimization 3018 // since it may change the semantics of the code. 3019 return false; 3020 } 3021 3022 unsigned UseOpc = UseMI.getOpcode(); 3023 unsigned NewUseOpc = 0; 3024 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3025 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3026 bool Commute = false; 3027 switch (UseOpc) { 3028 default: return false; 3029 case ARM::SUBrr: 3030 case ARM::ADDrr: 3031 case ARM::ORRrr: 3032 case ARM::EORrr: 3033 case ARM::t2SUBrr: 3034 case ARM::t2ADDrr: 3035 case ARM::t2ORRrr: 3036 case ARM::t2EORrr: { 3037 Commute = UseMI.getOperand(2).getReg() != Reg; 3038 switch (UseOpc) { 3039 default: break; 3040 case ARM::ADDrr: 3041 case ARM::SUBrr: 3042 if (UseOpc == ARM::SUBrr && Commute) 3043 return false; 3044 3045 // ADD/SUB are special because they're essentially the same operation, so 3046 // we can handle a larger range of immediates. 3047 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3048 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3049 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3050 ImmVal = -ImmVal; 3051 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3052 } else 3053 return false; 3054 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3055 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3056 break; 3057 case ARM::ORRrr: 3058 case ARM::EORrr: 3059 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3060 return false; 3061 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3062 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3063 switch (UseOpc) { 3064 default: break; 3065 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3066 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3067 } 3068 break; 3069 case ARM::t2ADDrr: 3070 case ARM::t2SUBrr: 3071 if (UseOpc == ARM::t2SUBrr && Commute) 3072 return false; 3073 3074 // ADD/SUB are special because they're essentially the same operation, so 3075 // we can handle a larger range of immediates. 3076 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3077 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri; 3078 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3079 ImmVal = -ImmVal; 3080 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri; 3081 } else 3082 return false; 3083 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3084 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3085 break; 3086 case ARM::t2ORRrr: 3087 case ARM::t2EORrr: 3088 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3089 return false; 3090 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3091 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3092 switch (UseOpc) { 3093 default: break; 3094 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3095 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3096 } 3097 break; 3098 } 3099 } 3100 } 3101 3102 unsigned OpIdx = Commute ? 2 : 1; 3103 unsigned Reg1 = UseMI.getOperand(OpIdx).getReg(); 3104 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3105 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); 3106 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3107 NewReg) 3108 .addReg(Reg1, getKillRegState(isKill)) 3109 .addImm(SOImmValV1) 3110 .add(predOps(ARMCC::AL)) 3111 .add(condCodeOp()); 3112 UseMI.setDesc(get(NewUseOpc)); 3113 UseMI.getOperand(1).setReg(NewReg); 3114 UseMI.getOperand(1).setIsKill(); 3115 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3116 DefMI.eraseFromParent(); 3117 return true; 3118 } 3119 3120 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3121 const MachineInstr &MI) { 3122 switch (MI.getOpcode()) { 3123 default: { 3124 const MCInstrDesc &Desc = MI.getDesc(); 3125 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3126 assert(UOps >= 0 && "bad # UOps"); 3127 return UOps; 3128 } 3129 3130 case ARM::LDRrs: 3131 case ARM::LDRBrs: 3132 case ARM::STRrs: 3133 case ARM::STRBrs: { 3134 unsigned ShOpVal = MI.getOperand(3).getImm(); 3135 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3136 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3137 if (!isSub && 3138 (ShImm == 0 || 3139 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3140 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3141 return 1; 3142 return 2; 3143 } 3144 3145 case ARM::LDRH: 3146 case ARM::STRH: { 3147 if (!MI.getOperand(2).getReg()) 3148 return 1; 3149 3150 unsigned ShOpVal = MI.getOperand(3).getImm(); 3151 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3152 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3153 if (!isSub && 3154 (ShImm == 0 || 3155 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3156 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3157 return 1; 3158 return 2; 3159 } 3160 3161 case ARM::LDRSB: 3162 case ARM::LDRSH: 3163 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3164 3165 case ARM::LDRSB_POST: 3166 case ARM::LDRSH_POST: { 3167 unsigned Rt = MI.getOperand(0).getReg(); 3168 unsigned Rm = MI.getOperand(3).getReg(); 3169 return (Rt == Rm) ? 4 : 3; 3170 } 3171 3172 case ARM::LDR_PRE_REG: 3173 case ARM::LDRB_PRE_REG: { 3174 unsigned Rt = MI.getOperand(0).getReg(); 3175 unsigned Rm = MI.getOperand(3).getReg(); 3176 if (Rt == Rm) 3177 return 3; 3178 unsigned ShOpVal = MI.getOperand(4).getImm(); 3179 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3180 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3181 if (!isSub && 3182 (ShImm == 0 || 3183 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3184 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3185 return 2; 3186 return 3; 3187 } 3188 3189 case ARM::STR_PRE_REG: 3190 case ARM::STRB_PRE_REG: { 3191 unsigned ShOpVal = MI.getOperand(4).getImm(); 3192 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3193 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3194 if (!isSub && 3195 (ShImm == 0 || 3196 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3197 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3198 return 2; 3199 return 3; 3200 } 3201 3202 case ARM::LDRH_PRE: 3203 case ARM::STRH_PRE: { 3204 unsigned Rt = MI.getOperand(0).getReg(); 3205 unsigned Rm = MI.getOperand(3).getReg(); 3206 if (!Rm) 3207 return 2; 3208 if (Rt == Rm) 3209 return 3; 3210 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3211 } 3212 3213 case ARM::LDR_POST_REG: 3214 case ARM::LDRB_POST_REG: 3215 case ARM::LDRH_POST: { 3216 unsigned Rt = MI.getOperand(0).getReg(); 3217 unsigned Rm = MI.getOperand(3).getReg(); 3218 return (Rt == Rm) ? 3 : 2; 3219 } 3220 3221 case ARM::LDR_PRE_IMM: 3222 case ARM::LDRB_PRE_IMM: 3223 case ARM::LDR_POST_IMM: 3224 case ARM::LDRB_POST_IMM: 3225 case ARM::STRB_POST_IMM: 3226 case ARM::STRB_POST_REG: 3227 case ARM::STRB_PRE_IMM: 3228 case ARM::STRH_POST: 3229 case ARM::STR_POST_IMM: 3230 case ARM::STR_POST_REG: 3231 case ARM::STR_PRE_IMM: 3232 return 2; 3233 3234 case ARM::LDRSB_PRE: 3235 case ARM::LDRSH_PRE: { 3236 unsigned Rm = MI.getOperand(3).getReg(); 3237 if (Rm == 0) 3238 return 3; 3239 unsigned Rt = MI.getOperand(0).getReg(); 3240 if (Rt == Rm) 3241 return 4; 3242 unsigned ShOpVal = MI.getOperand(4).getImm(); 3243 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3244 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3245 if (!isSub && 3246 (ShImm == 0 || 3247 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3248 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3249 return 3; 3250 return 4; 3251 } 3252 3253 case ARM::LDRD: { 3254 unsigned Rt = MI.getOperand(0).getReg(); 3255 unsigned Rn = MI.getOperand(2).getReg(); 3256 unsigned Rm = MI.getOperand(3).getReg(); 3257 if (Rm) 3258 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3259 : 3; 3260 return (Rt == Rn) ? 3 : 2; 3261 } 3262 3263 case ARM::STRD: { 3264 unsigned Rm = MI.getOperand(3).getReg(); 3265 if (Rm) 3266 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3267 : 3; 3268 return 2; 3269 } 3270 3271 case ARM::LDRD_POST: 3272 case ARM::t2LDRD_POST: 3273 return 3; 3274 3275 case ARM::STRD_POST: 3276 case ARM::t2STRD_POST: 3277 return 4; 3278 3279 case ARM::LDRD_PRE: { 3280 unsigned Rt = MI.getOperand(0).getReg(); 3281 unsigned Rn = MI.getOperand(3).getReg(); 3282 unsigned Rm = MI.getOperand(4).getReg(); 3283 if (Rm) 3284 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3285 : 4; 3286 return (Rt == Rn) ? 4 : 3; 3287 } 3288 3289 case ARM::t2LDRD_PRE: { 3290 unsigned Rt = MI.getOperand(0).getReg(); 3291 unsigned Rn = MI.getOperand(3).getReg(); 3292 return (Rt == Rn) ? 4 : 3; 3293 } 3294 3295 case ARM::STRD_PRE: { 3296 unsigned Rm = MI.getOperand(4).getReg(); 3297 if (Rm) 3298 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3299 : 4; 3300 return 3; 3301 } 3302 3303 case ARM::t2STRD_PRE: 3304 return 3; 3305 3306 case ARM::t2LDR_POST: 3307 case ARM::t2LDRB_POST: 3308 case ARM::t2LDRB_PRE: 3309 case ARM::t2LDRSBi12: 3310 case ARM::t2LDRSBi8: 3311 case ARM::t2LDRSBpci: 3312 case ARM::t2LDRSBs: 3313 case ARM::t2LDRH_POST: 3314 case ARM::t2LDRH_PRE: 3315 case ARM::t2LDRSBT: 3316 case ARM::t2LDRSB_POST: 3317 case ARM::t2LDRSB_PRE: 3318 case ARM::t2LDRSH_POST: 3319 case ARM::t2LDRSH_PRE: 3320 case ARM::t2LDRSHi12: 3321 case ARM::t2LDRSHi8: 3322 case ARM::t2LDRSHpci: 3323 case ARM::t2LDRSHs: 3324 return 2; 3325 3326 case ARM::t2LDRDi8: { 3327 unsigned Rt = MI.getOperand(0).getReg(); 3328 unsigned Rn = MI.getOperand(2).getReg(); 3329 return (Rt == Rn) ? 3 : 2; 3330 } 3331 3332 case ARM::t2STRB_POST: 3333 case ARM::t2STRB_PRE: 3334 case ARM::t2STRBs: 3335 case ARM::t2STRDi8: 3336 case ARM::t2STRH_POST: 3337 case ARM::t2STRH_PRE: 3338 case ARM::t2STRHs: 3339 case ARM::t2STR_POST: 3340 case ARM::t2STR_PRE: 3341 case ARM::t2STRs: 3342 return 2; 3343 } 3344 } 3345 3346 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3347 // can't be easily determined return 0 (missing MachineMemOperand). 3348 // 3349 // FIXME: The current MachineInstr design does not support relying on machine 3350 // mem operands to determine the width of a memory access. Instead, we expect 3351 // the target to provide this information based on the instruction opcode and 3352 // operands. However, using MachineMemOperand is the best solution now for 3353 // two reasons: 3354 // 3355 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3356 // operands. This is much more dangerous than using the MachineMemOperand 3357 // sizes because CodeGen passes can insert/remove optional machine operands. In 3358 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3359 // postRA passes as well. 3360 // 3361 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3362 // machine model that calls this should handle the unknown (zero size) case. 3363 // 3364 // Long term, we should require a target hook that verifies MachineMemOperand 3365 // sizes during MC lowering. That target hook should be local to MC lowering 3366 // because we can't ensure that it is aware of other MI forms. Doing this will 3367 // ensure that MachineMemOperands are correctly propagated through all passes. 3368 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3369 unsigned Size = 0; 3370 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3371 E = MI.memoperands_end(); 3372 I != E; ++I) { 3373 Size += (*I)->getSize(); 3374 } 3375 return Size / 4; 3376 } 3377 3378 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3379 unsigned NumRegs) { 3380 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3381 switch (Opc) { 3382 default: 3383 break; 3384 case ARM::VLDMDIA_UPD: 3385 case ARM::VLDMDDB_UPD: 3386 case ARM::VLDMSIA_UPD: 3387 case ARM::VLDMSDB_UPD: 3388 case ARM::VSTMDIA_UPD: 3389 case ARM::VSTMDDB_UPD: 3390 case ARM::VSTMSIA_UPD: 3391 case ARM::VSTMSDB_UPD: 3392 case ARM::LDMIA_UPD: 3393 case ARM::LDMDA_UPD: 3394 case ARM::LDMDB_UPD: 3395 case ARM::LDMIB_UPD: 3396 case ARM::STMIA_UPD: 3397 case ARM::STMDA_UPD: 3398 case ARM::STMDB_UPD: 3399 case ARM::STMIB_UPD: 3400 case ARM::tLDMIA_UPD: 3401 case ARM::tSTMIA_UPD: 3402 case ARM::t2LDMIA_UPD: 3403 case ARM::t2LDMDB_UPD: 3404 case ARM::t2STMIA_UPD: 3405 case ARM::t2STMDB_UPD: 3406 ++UOps; // One for base register writeback. 3407 break; 3408 case ARM::LDMIA_RET: 3409 case ARM::tPOP_RET: 3410 case ARM::t2LDMIA_RET: 3411 UOps += 2; // One for base reg wb, one for write to pc. 3412 break; 3413 } 3414 return UOps; 3415 } 3416 3417 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3418 const MachineInstr &MI) const { 3419 if (!ItinData || ItinData->isEmpty()) 3420 return 1; 3421 3422 const MCInstrDesc &Desc = MI.getDesc(); 3423 unsigned Class = Desc.getSchedClass(); 3424 int ItinUOps = ItinData->getNumMicroOps(Class); 3425 if (ItinUOps >= 0) { 3426 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3427 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3428 3429 return ItinUOps; 3430 } 3431 3432 unsigned Opc = MI.getOpcode(); 3433 switch (Opc) { 3434 default: 3435 llvm_unreachable("Unexpected multi-uops instruction!"); 3436 case ARM::VLDMQIA: 3437 case ARM::VSTMQIA: 3438 return 2; 3439 3440 // The number of uOps for load / store multiple are determined by the number 3441 // registers. 3442 // 3443 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3444 // same cycle. The scheduling for the first load / store must be done 3445 // separately by assuming the address is not 64-bit aligned. 3446 // 3447 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3448 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3449 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3450 case ARM::VLDMDIA: 3451 case ARM::VLDMDIA_UPD: 3452 case ARM::VLDMDDB_UPD: 3453 case ARM::VLDMSIA: 3454 case ARM::VLDMSIA_UPD: 3455 case ARM::VLDMSDB_UPD: 3456 case ARM::VSTMDIA: 3457 case ARM::VSTMDIA_UPD: 3458 case ARM::VSTMDDB_UPD: 3459 case ARM::VSTMSIA: 3460 case ARM::VSTMSIA_UPD: 3461 case ARM::VSTMSDB_UPD: { 3462 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3463 return (NumRegs / 2) + (NumRegs % 2) + 1; 3464 } 3465 3466 case ARM::LDMIA_RET: 3467 case ARM::LDMIA: 3468 case ARM::LDMDA: 3469 case ARM::LDMDB: 3470 case ARM::LDMIB: 3471 case ARM::LDMIA_UPD: 3472 case ARM::LDMDA_UPD: 3473 case ARM::LDMDB_UPD: 3474 case ARM::LDMIB_UPD: 3475 case ARM::STMIA: 3476 case ARM::STMDA: 3477 case ARM::STMDB: 3478 case ARM::STMIB: 3479 case ARM::STMIA_UPD: 3480 case ARM::STMDA_UPD: 3481 case ARM::STMDB_UPD: 3482 case ARM::STMIB_UPD: 3483 case ARM::tLDMIA: 3484 case ARM::tLDMIA_UPD: 3485 case ARM::tSTMIA_UPD: 3486 case ARM::tPOP_RET: 3487 case ARM::tPOP: 3488 case ARM::tPUSH: 3489 case ARM::t2LDMIA_RET: 3490 case ARM::t2LDMIA: 3491 case ARM::t2LDMDB: 3492 case ARM::t2LDMIA_UPD: 3493 case ARM::t2LDMDB_UPD: 3494 case ARM::t2STMIA: 3495 case ARM::t2STMDB: 3496 case ARM::t2STMIA_UPD: 3497 case ARM::t2STMDB_UPD: { 3498 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3499 switch (Subtarget.getLdStMultipleTiming()) { 3500 case ARMSubtarget::SingleIssuePlusExtras: 3501 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3502 case ARMSubtarget::SingleIssue: 3503 // Assume the worst. 3504 return NumRegs; 3505 case ARMSubtarget::DoubleIssue: { 3506 if (NumRegs < 4) 3507 return 2; 3508 // 4 registers would be issued: 2, 2. 3509 // 5 registers would be issued: 2, 2, 1. 3510 unsigned UOps = (NumRegs / 2); 3511 if (NumRegs % 2) 3512 ++UOps; 3513 return UOps; 3514 } 3515 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3516 unsigned UOps = (NumRegs / 2); 3517 // If there are odd number of registers or if it's not 64-bit aligned, 3518 // then it takes an extra AGU (Address Generation Unit) cycle. 3519 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3520 (*MI.memoperands_begin())->getAlignment() < 8) 3521 ++UOps; 3522 return UOps; 3523 } 3524 } 3525 } 3526 } 3527 llvm_unreachable("Didn't find the number of microops"); 3528 } 3529 3530 int 3531 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3532 const MCInstrDesc &DefMCID, 3533 unsigned DefClass, 3534 unsigned DefIdx, unsigned DefAlign) const { 3535 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3536 if (RegNo <= 0) 3537 // Def is the address writeback. 3538 return ItinData->getOperandCycle(DefClass, DefIdx); 3539 3540 int DefCycle; 3541 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3542 // (regno / 2) + (regno % 2) + 1 3543 DefCycle = RegNo / 2 + 1; 3544 if (RegNo % 2) 3545 ++DefCycle; 3546 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3547 DefCycle = RegNo; 3548 bool isSLoad = false; 3549 3550 switch (DefMCID.getOpcode()) { 3551 default: break; 3552 case ARM::VLDMSIA: 3553 case ARM::VLDMSIA_UPD: 3554 case ARM::VLDMSDB_UPD: 3555 isSLoad = true; 3556 break; 3557 } 3558 3559 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3560 // then it takes an extra cycle. 3561 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3562 ++DefCycle; 3563 } else { 3564 // Assume the worst. 3565 DefCycle = RegNo + 2; 3566 } 3567 3568 return DefCycle; 3569 } 3570 3571 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const { 3572 unsigned BaseReg = MI.getOperand(0).getReg(); 3573 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) { 3574 const auto &Op = MI.getOperand(i); 3575 if (Op.isReg() && Op.getReg() == BaseReg) 3576 return true; 3577 } 3578 return false; 3579 } 3580 unsigned 3581 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const { 3582 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops 3583 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops) 3584 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands(); 3585 } 3586 3587 int 3588 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3589 const MCInstrDesc &DefMCID, 3590 unsigned DefClass, 3591 unsigned DefIdx, unsigned DefAlign) const { 3592 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3593 if (RegNo <= 0) 3594 // Def is the address writeback. 3595 return ItinData->getOperandCycle(DefClass, DefIdx); 3596 3597 int DefCycle; 3598 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3599 // 4 registers would be issued: 1, 2, 1. 3600 // 5 registers would be issued: 1, 2, 2. 3601 DefCycle = RegNo / 2; 3602 if (DefCycle < 1) 3603 DefCycle = 1; 3604 // Result latency is issue cycle + 2: E2. 3605 DefCycle += 2; 3606 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3607 DefCycle = (RegNo / 2); 3608 // If there are odd number of registers or if it's not 64-bit aligned, 3609 // then it takes an extra AGU (Address Generation Unit) cycle. 3610 if ((RegNo % 2) || DefAlign < 8) 3611 ++DefCycle; 3612 // Result latency is AGU cycles + 2. 3613 DefCycle += 2; 3614 } else { 3615 // Assume the worst. 3616 DefCycle = RegNo + 2; 3617 } 3618 3619 return DefCycle; 3620 } 3621 3622 int 3623 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3624 const MCInstrDesc &UseMCID, 3625 unsigned UseClass, 3626 unsigned UseIdx, unsigned UseAlign) const { 3627 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3628 if (RegNo <= 0) 3629 return ItinData->getOperandCycle(UseClass, UseIdx); 3630 3631 int UseCycle; 3632 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3633 // (regno / 2) + (regno % 2) + 1 3634 UseCycle = RegNo / 2 + 1; 3635 if (RegNo % 2) 3636 ++UseCycle; 3637 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3638 UseCycle = RegNo; 3639 bool isSStore = false; 3640 3641 switch (UseMCID.getOpcode()) { 3642 default: break; 3643 case ARM::VSTMSIA: 3644 case ARM::VSTMSIA_UPD: 3645 case ARM::VSTMSDB_UPD: 3646 isSStore = true; 3647 break; 3648 } 3649 3650 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3651 // then it takes an extra cycle. 3652 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3653 ++UseCycle; 3654 } else { 3655 // Assume the worst. 3656 UseCycle = RegNo + 2; 3657 } 3658 3659 return UseCycle; 3660 } 3661 3662 int 3663 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3664 const MCInstrDesc &UseMCID, 3665 unsigned UseClass, 3666 unsigned UseIdx, unsigned UseAlign) const { 3667 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3668 if (RegNo <= 0) 3669 return ItinData->getOperandCycle(UseClass, UseIdx); 3670 3671 int UseCycle; 3672 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3673 UseCycle = RegNo / 2; 3674 if (UseCycle < 2) 3675 UseCycle = 2; 3676 // Read in E3. 3677 UseCycle += 2; 3678 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3679 UseCycle = (RegNo / 2); 3680 // If there are odd number of registers or if it's not 64-bit aligned, 3681 // then it takes an extra AGU (Address Generation Unit) cycle. 3682 if ((RegNo % 2) || UseAlign < 8) 3683 ++UseCycle; 3684 } else { 3685 // Assume the worst. 3686 UseCycle = 1; 3687 } 3688 return UseCycle; 3689 } 3690 3691 int 3692 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3693 const MCInstrDesc &DefMCID, 3694 unsigned DefIdx, unsigned DefAlign, 3695 const MCInstrDesc &UseMCID, 3696 unsigned UseIdx, unsigned UseAlign) const { 3697 unsigned DefClass = DefMCID.getSchedClass(); 3698 unsigned UseClass = UseMCID.getSchedClass(); 3699 3700 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3701 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3702 3703 // This may be a def / use of a variable_ops instruction, the operand 3704 // latency might be determinable dynamically. Let the target try to 3705 // figure it out. 3706 int DefCycle = -1; 3707 bool LdmBypass = false; 3708 switch (DefMCID.getOpcode()) { 3709 default: 3710 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3711 break; 3712 3713 case ARM::VLDMDIA: 3714 case ARM::VLDMDIA_UPD: 3715 case ARM::VLDMDDB_UPD: 3716 case ARM::VLDMSIA: 3717 case ARM::VLDMSIA_UPD: 3718 case ARM::VLDMSDB_UPD: 3719 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3720 break; 3721 3722 case ARM::LDMIA_RET: 3723 case ARM::LDMIA: 3724 case ARM::LDMDA: 3725 case ARM::LDMDB: 3726 case ARM::LDMIB: 3727 case ARM::LDMIA_UPD: 3728 case ARM::LDMDA_UPD: 3729 case ARM::LDMDB_UPD: 3730 case ARM::LDMIB_UPD: 3731 case ARM::tLDMIA: 3732 case ARM::tLDMIA_UPD: 3733 case ARM::tPUSH: 3734 case ARM::t2LDMIA_RET: 3735 case ARM::t2LDMIA: 3736 case ARM::t2LDMDB: 3737 case ARM::t2LDMIA_UPD: 3738 case ARM::t2LDMDB_UPD: 3739 LdmBypass = true; 3740 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3741 break; 3742 } 3743 3744 if (DefCycle == -1) 3745 // We can't seem to determine the result latency of the def, assume it's 2. 3746 DefCycle = 2; 3747 3748 int UseCycle = -1; 3749 switch (UseMCID.getOpcode()) { 3750 default: 3751 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 3752 break; 3753 3754 case ARM::VSTMDIA: 3755 case ARM::VSTMDIA_UPD: 3756 case ARM::VSTMDDB_UPD: 3757 case ARM::VSTMSIA: 3758 case ARM::VSTMSIA_UPD: 3759 case ARM::VSTMSDB_UPD: 3760 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3761 break; 3762 3763 case ARM::STMIA: 3764 case ARM::STMDA: 3765 case ARM::STMDB: 3766 case ARM::STMIB: 3767 case ARM::STMIA_UPD: 3768 case ARM::STMDA_UPD: 3769 case ARM::STMDB_UPD: 3770 case ARM::STMIB_UPD: 3771 case ARM::tSTMIA_UPD: 3772 case ARM::tPOP_RET: 3773 case ARM::tPOP: 3774 case ARM::t2STMIA: 3775 case ARM::t2STMDB: 3776 case ARM::t2STMIA_UPD: 3777 case ARM::t2STMDB_UPD: 3778 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3779 break; 3780 } 3781 3782 if (UseCycle == -1) 3783 // Assume it's read in the first stage. 3784 UseCycle = 1; 3785 3786 UseCycle = DefCycle - UseCycle + 1; 3787 if (UseCycle > 0) { 3788 if (LdmBypass) { 3789 // It's a variable_ops instruction so we can't use DefIdx here. Just use 3790 // first def operand. 3791 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 3792 UseClass, UseIdx)) 3793 --UseCycle; 3794 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 3795 UseClass, UseIdx)) { 3796 --UseCycle; 3797 } 3798 } 3799 3800 return UseCycle; 3801 } 3802 3803 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 3804 const MachineInstr *MI, unsigned Reg, 3805 unsigned &DefIdx, unsigned &Dist) { 3806 Dist = 0; 3807 3808 MachineBasicBlock::const_iterator I = MI; ++I; 3809 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 3810 assert(II->isInsideBundle() && "Empty bundle?"); 3811 3812 int Idx = -1; 3813 while (II->isInsideBundle()) { 3814 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 3815 if (Idx != -1) 3816 break; 3817 --II; 3818 ++Dist; 3819 } 3820 3821 assert(Idx != -1 && "Cannot find bundled definition!"); 3822 DefIdx = Idx; 3823 return &*II; 3824 } 3825 3826 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 3827 const MachineInstr &MI, unsigned Reg, 3828 unsigned &UseIdx, unsigned &Dist) { 3829 Dist = 0; 3830 3831 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 3832 assert(II->isInsideBundle() && "Empty bundle?"); 3833 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 3834 3835 // FIXME: This doesn't properly handle multiple uses. 3836 int Idx = -1; 3837 while (II != E && II->isInsideBundle()) { 3838 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 3839 if (Idx != -1) 3840 break; 3841 if (II->getOpcode() != ARM::t2IT) 3842 ++Dist; 3843 ++II; 3844 } 3845 3846 if (Idx == -1) { 3847 Dist = 0; 3848 return nullptr; 3849 } 3850 3851 UseIdx = Idx; 3852 return &*II; 3853 } 3854 3855 /// Return the number of cycles to add to (or subtract from) the static 3856 /// itinerary based on the def opcode and alignment. The caller will ensure that 3857 /// adjusted latency is at least one cycle. 3858 static int adjustDefLatency(const ARMSubtarget &Subtarget, 3859 const MachineInstr &DefMI, 3860 const MCInstrDesc &DefMCID, unsigned DefAlign) { 3861 int Adjust = 0; 3862 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 3863 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3864 // variants are one cycle cheaper. 3865 switch (DefMCID.getOpcode()) { 3866 default: break; 3867 case ARM::LDRrs: 3868 case ARM::LDRBrs: { 3869 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 3870 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3871 if (ShImm == 0 || 3872 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3873 --Adjust; 3874 break; 3875 } 3876 case ARM::t2LDRs: 3877 case ARM::t2LDRBs: 3878 case ARM::t2LDRHs: 3879 case ARM::t2LDRSHs: { 3880 // Thumb2 mode: lsl only. 3881 unsigned ShAmt = DefMI.getOperand(3).getImm(); 3882 if (ShAmt == 0 || ShAmt == 2) 3883 --Adjust; 3884 break; 3885 } 3886 } 3887 } else if (Subtarget.isSwift()) { 3888 // FIXME: Properly handle all of the latency adjustments for address 3889 // writeback. 3890 switch (DefMCID.getOpcode()) { 3891 default: break; 3892 case ARM::LDRrs: 3893 case ARM::LDRBrs: { 3894 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 3895 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3896 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3897 if (!isSub && 3898 (ShImm == 0 || 3899 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3900 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3901 Adjust -= 2; 3902 else if (!isSub && 3903 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3904 --Adjust; 3905 break; 3906 } 3907 case ARM::t2LDRs: 3908 case ARM::t2LDRBs: 3909 case ARM::t2LDRHs: 3910 case ARM::t2LDRSHs: { 3911 // Thumb2 mode: lsl only. 3912 unsigned ShAmt = DefMI.getOperand(3).getImm(); 3913 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 3914 Adjust -= 2; 3915 break; 3916 } 3917 } 3918 } 3919 3920 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 3921 switch (DefMCID.getOpcode()) { 3922 default: break; 3923 case ARM::VLD1q8: 3924 case ARM::VLD1q16: 3925 case ARM::VLD1q32: 3926 case ARM::VLD1q64: 3927 case ARM::VLD1q8wb_fixed: 3928 case ARM::VLD1q16wb_fixed: 3929 case ARM::VLD1q32wb_fixed: 3930 case ARM::VLD1q64wb_fixed: 3931 case ARM::VLD1q8wb_register: 3932 case ARM::VLD1q16wb_register: 3933 case ARM::VLD1q32wb_register: 3934 case ARM::VLD1q64wb_register: 3935 case ARM::VLD2d8: 3936 case ARM::VLD2d16: 3937 case ARM::VLD2d32: 3938 case ARM::VLD2q8: 3939 case ARM::VLD2q16: 3940 case ARM::VLD2q32: 3941 case ARM::VLD2d8wb_fixed: 3942 case ARM::VLD2d16wb_fixed: 3943 case ARM::VLD2d32wb_fixed: 3944 case ARM::VLD2q8wb_fixed: 3945 case ARM::VLD2q16wb_fixed: 3946 case ARM::VLD2q32wb_fixed: 3947 case ARM::VLD2d8wb_register: 3948 case ARM::VLD2d16wb_register: 3949 case ARM::VLD2d32wb_register: 3950 case ARM::VLD2q8wb_register: 3951 case ARM::VLD2q16wb_register: 3952 case ARM::VLD2q32wb_register: 3953 case ARM::VLD3d8: 3954 case ARM::VLD3d16: 3955 case ARM::VLD3d32: 3956 case ARM::VLD1d64T: 3957 case ARM::VLD3d8_UPD: 3958 case ARM::VLD3d16_UPD: 3959 case ARM::VLD3d32_UPD: 3960 case ARM::VLD1d64Twb_fixed: 3961 case ARM::VLD1d64Twb_register: 3962 case ARM::VLD3q8_UPD: 3963 case ARM::VLD3q16_UPD: 3964 case ARM::VLD3q32_UPD: 3965 case ARM::VLD4d8: 3966 case ARM::VLD4d16: 3967 case ARM::VLD4d32: 3968 case ARM::VLD1d64Q: 3969 case ARM::VLD4d8_UPD: 3970 case ARM::VLD4d16_UPD: 3971 case ARM::VLD4d32_UPD: 3972 case ARM::VLD1d64Qwb_fixed: 3973 case ARM::VLD1d64Qwb_register: 3974 case ARM::VLD4q8_UPD: 3975 case ARM::VLD4q16_UPD: 3976 case ARM::VLD4q32_UPD: 3977 case ARM::VLD1DUPq8: 3978 case ARM::VLD1DUPq16: 3979 case ARM::VLD1DUPq32: 3980 case ARM::VLD1DUPq8wb_fixed: 3981 case ARM::VLD1DUPq16wb_fixed: 3982 case ARM::VLD1DUPq32wb_fixed: 3983 case ARM::VLD1DUPq8wb_register: 3984 case ARM::VLD1DUPq16wb_register: 3985 case ARM::VLD1DUPq32wb_register: 3986 case ARM::VLD2DUPd8: 3987 case ARM::VLD2DUPd16: 3988 case ARM::VLD2DUPd32: 3989 case ARM::VLD2DUPd8wb_fixed: 3990 case ARM::VLD2DUPd16wb_fixed: 3991 case ARM::VLD2DUPd32wb_fixed: 3992 case ARM::VLD2DUPd8wb_register: 3993 case ARM::VLD2DUPd16wb_register: 3994 case ARM::VLD2DUPd32wb_register: 3995 case ARM::VLD4DUPd8: 3996 case ARM::VLD4DUPd16: 3997 case ARM::VLD4DUPd32: 3998 case ARM::VLD4DUPd8_UPD: 3999 case ARM::VLD4DUPd16_UPD: 4000 case ARM::VLD4DUPd32_UPD: 4001 case ARM::VLD1LNd8: 4002 case ARM::VLD1LNd16: 4003 case ARM::VLD1LNd32: 4004 case ARM::VLD1LNd8_UPD: 4005 case ARM::VLD1LNd16_UPD: 4006 case ARM::VLD1LNd32_UPD: 4007 case ARM::VLD2LNd8: 4008 case ARM::VLD2LNd16: 4009 case ARM::VLD2LNd32: 4010 case ARM::VLD2LNq16: 4011 case ARM::VLD2LNq32: 4012 case ARM::VLD2LNd8_UPD: 4013 case ARM::VLD2LNd16_UPD: 4014 case ARM::VLD2LNd32_UPD: 4015 case ARM::VLD2LNq16_UPD: 4016 case ARM::VLD2LNq32_UPD: 4017 case ARM::VLD4LNd8: 4018 case ARM::VLD4LNd16: 4019 case ARM::VLD4LNd32: 4020 case ARM::VLD4LNq16: 4021 case ARM::VLD4LNq32: 4022 case ARM::VLD4LNd8_UPD: 4023 case ARM::VLD4LNd16_UPD: 4024 case ARM::VLD4LNd32_UPD: 4025 case ARM::VLD4LNq16_UPD: 4026 case ARM::VLD4LNq32_UPD: 4027 // If the address is not 64-bit aligned, the latencies of these 4028 // instructions increases by one. 4029 ++Adjust; 4030 break; 4031 } 4032 } 4033 return Adjust; 4034 } 4035 4036 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4037 const MachineInstr &DefMI, 4038 unsigned DefIdx, 4039 const MachineInstr &UseMI, 4040 unsigned UseIdx) const { 4041 // No operand latency. The caller may fall back to getInstrLatency. 4042 if (!ItinData || ItinData->isEmpty()) 4043 return -1; 4044 4045 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4046 unsigned Reg = DefMO.getReg(); 4047 4048 const MachineInstr *ResolvedDefMI = &DefMI; 4049 unsigned DefAdj = 0; 4050 if (DefMI.isBundle()) 4051 ResolvedDefMI = 4052 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4053 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4054 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4055 return 1; 4056 } 4057 4058 const MachineInstr *ResolvedUseMI = &UseMI; 4059 unsigned UseAdj = 0; 4060 if (UseMI.isBundle()) { 4061 ResolvedUseMI = 4062 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4063 if (!ResolvedUseMI) 4064 return -1; 4065 } 4066 4067 return getOperandLatencyImpl( 4068 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4069 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4070 } 4071 4072 int ARMBaseInstrInfo::getOperandLatencyImpl( 4073 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4074 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4075 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4076 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4077 if (Reg == ARM::CPSR) { 4078 if (DefMI.getOpcode() == ARM::FMSTAT) { 4079 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4080 return Subtarget.isLikeA9() ? 1 : 20; 4081 } 4082 4083 // CPSR set and branch can be paired in the same cycle. 4084 if (UseMI.isBranch()) 4085 return 0; 4086 4087 // Otherwise it takes the instruction latency (generally one). 4088 unsigned Latency = getInstrLatency(ItinData, DefMI); 4089 4090 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4091 // its uses. Instructions which are otherwise scheduled between them may 4092 // incur a code size penalty (not able to use the CPSR setting 16-bit 4093 // instructions). 4094 if (Latency > 0 && Subtarget.isThumb2()) { 4095 const MachineFunction *MF = DefMI.getParent()->getParent(); 4096 // FIXME: Use Function::optForSize(). 4097 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4098 --Latency; 4099 } 4100 return Latency; 4101 } 4102 4103 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4104 return -1; 4105 4106 unsigned DefAlign = DefMI.hasOneMemOperand() 4107 ? (*DefMI.memoperands_begin())->getAlignment() 4108 : 0; 4109 unsigned UseAlign = UseMI.hasOneMemOperand() 4110 ? (*UseMI.memoperands_begin())->getAlignment() 4111 : 0; 4112 4113 // Get the itinerary's latency if possible, and handle variable_ops. 4114 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4115 UseIdx, UseAlign); 4116 // Unable to find operand latency. The caller may resort to getInstrLatency. 4117 if (Latency < 0) 4118 return Latency; 4119 4120 // Adjust for IT block position. 4121 int Adj = DefAdj + UseAdj; 4122 4123 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4124 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4125 if (Adj >= 0 || (int)Latency > -Adj) { 4126 return Latency + Adj; 4127 } 4128 // Return the itinerary latency, which may be zero but not less than zero. 4129 return Latency; 4130 } 4131 4132 int 4133 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4134 SDNode *DefNode, unsigned DefIdx, 4135 SDNode *UseNode, unsigned UseIdx) const { 4136 if (!DefNode->isMachineOpcode()) 4137 return 1; 4138 4139 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4140 4141 if (isZeroCost(DefMCID.Opcode)) 4142 return 0; 4143 4144 if (!ItinData || ItinData->isEmpty()) 4145 return DefMCID.mayLoad() ? 3 : 1; 4146 4147 if (!UseNode->isMachineOpcode()) { 4148 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4149 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4150 int Threshold = 1 + Adj; 4151 return Latency <= Threshold ? 1 : Latency - Adj; 4152 } 4153 4154 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4155 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); 4156 unsigned DefAlign = !DefMN->memoperands_empty() 4157 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 4158 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); 4159 unsigned UseAlign = !UseMN->memoperands_empty() 4160 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 4161 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4162 UseMCID, UseIdx, UseAlign); 4163 4164 if (Latency > 1 && 4165 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4166 Subtarget.isCortexA7())) { 4167 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4168 // variants are one cycle cheaper. 4169 switch (DefMCID.getOpcode()) { 4170 default: break; 4171 case ARM::LDRrs: 4172 case ARM::LDRBrs: { 4173 unsigned ShOpVal = 4174 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4175 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4176 if (ShImm == 0 || 4177 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4178 --Latency; 4179 break; 4180 } 4181 case ARM::t2LDRs: 4182 case ARM::t2LDRBs: 4183 case ARM::t2LDRHs: 4184 case ARM::t2LDRSHs: { 4185 // Thumb2 mode: lsl only. 4186 unsigned ShAmt = 4187 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4188 if (ShAmt == 0 || ShAmt == 2) 4189 --Latency; 4190 break; 4191 } 4192 } 4193 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4194 // FIXME: Properly handle all of the latency adjustments for address 4195 // writeback. 4196 switch (DefMCID.getOpcode()) { 4197 default: break; 4198 case ARM::LDRrs: 4199 case ARM::LDRBrs: { 4200 unsigned ShOpVal = 4201 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4202 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4203 if (ShImm == 0 || 4204 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4205 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4206 Latency -= 2; 4207 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4208 --Latency; 4209 break; 4210 } 4211 case ARM::t2LDRs: 4212 case ARM::t2LDRBs: 4213 case ARM::t2LDRHs: 4214 case ARM::t2LDRSHs: 4215 // Thumb2 mode: lsl 0-3 only. 4216 Latency -= 2; 4217 break; 4218 } 4219 } 4220 4221 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4222 switch (DefMCID.getOpcode()) { 4223 default: break; 4224 case ARM::VLD1q8: 4225 case ARM::VLD1q16: 4226 case ARM::VLD1q32: 4227 case ARM::VLD1q64: 4228 case ARM::VLD1q8wb_register: 4229 case ARM::VLD1q16wb_register: 4230 case ARM::VLD1q32wb_register: 4231 case ARM::VLD1q64wb_register: 4232 case ARM::VLD1q8wb_fixed: 4233 case ARM::VLD1q16wb_fixed: 4234 case ARM::VLD1q32wb_fixed: 4235 case ARM::VLD1q64wb_fixed: 4236 case ARM::VLD2d8: 4237 case ARM::VLD2d16: 4238 case ARM::VLD2d32: 4239 case ARM::VLD2q8Pseudo: 4240 case ARM::VLD2q16Pseudo: 4241 case ARM::VLD2q32Pseudo: 4242 case ARM::VLD2d8wb_fixed: 4243 case ARM::VLD2d16wb_fixed: 4244 case ARM::VLD2d32wb_fixed: 4245 case ARM::VLD2q8PseudoWB_fixed: 4246 case ARM::VLD2q16PseudoWB_fixed: 4247 case ARM::VLD2q32PseudoWB_fixed: 4248 case ARM::VLD2d8wb_register: 4249 case ARM::VLD2d16wb_register: 4250 case ARM::VLD2d32wb_register: 4251 case ARM::VLD2q8PseudoWB_register: 4252 case ARM::VLD2q16PseudoWB_register: 4253 case ARM::VLD2q32PseudoWB_register: 4254 case ARM::VLD3d8Pseudo: 4255 case ARM::VLD3d16Pseudo: 4256 case ARM::VLD3d32Pseudo: 4257 case ARM::VLD1d8TPseudo: 4258 case ARM::VLD1d16TPseudo: 4259 case ARM::VLD1d32TPseudo: 4260 case ARM::VLD1d64TPseudo: 4261 case ARM::VLD1d64TPseudoWB_fixed: 4262 case ARM::VLD1d64TPseudoWB_register: 4263 case ARM::VLD3d8Pseudo_UPD: 4264 case ARM::VLD3d16Pseudo_UPD: 4265 case ARM::VLD3d32Pseudo_UPD: 4266 case ARM::VLD3q8Pseudo_UPD: 4267 case ARM::VLD3q16Pseudo_UPD: 4268 case ARM::VLD3q32Pseudo_UPD: 4269 case ARM::VLD3q8oddPseudo: 4270 case ARM::VLD3q16oddPseudo: 4271 case ARM::VLD3q32oddPseudo: 4272 case ARM::VLD3q8oddPseudo_UPD: 4273 case ARM::VLD3q16oddPseudo_UPD: 4274 case ARM::VLD3q32oddPseudo_UPD: 4275 case ARM::VLD4d8Pseudo: 4276 case ARM::VLD4d16Pseudo: 4277 case ARM::VLD4d32Pseudo: 4278 case ARM::VLD1d8QPseudo: 4279 case ARM::VLD1d16QPseudo: 4280 case ARM::VLD1d32QPseudo: 4281 case ARM::VLD1d64QPseudo: 4282 case ARM::VLD1d64QPseudoWB_fixed: 4283 case ARM::VLD1d64QPseudoWB_register: 4284 case ARM::VLD1q8HighQPseudo: 4285 case ARM::VLD1q8LowQPseudo_UPD: 4286 case ARM::VLD1q8HighTPseudo: 4287 case ARM::VLD1q8LowTPseudo_UPD: 4288 case ARM::VLD1q16HighQPseudo: 4289 case ARM::VLD1q16LowQPseudo_UPD: 4290 case ARM::VLD1q16HighTPseudo: 4291 case ARM::VLD1q16LowTPseudo_UPD: 4292 case ARM::VLD1q32HighQPseudo: 4293 case ARM::VLD1q32LowQPseudo_UPD: 4294 case ARM::VLD1q32HighTPseudo: 4295 case ARM::VLD1q32LowTPseudo_UPD: 4296 case ARM::VLD1q64HighQPseudo: 4297 case ARM::VLD1q64LowQPseudo_UPD: 4298 case ARM::VLD1q64HighTPseudo: 4299 case ARM::VLD1q64LowTPseudo_UPD: 4300 case ARM::VLD4d8Pseudo_UPD: 4301 case ARM::VLD4d16Pseudo_UPD: 4302 case ARM::VLD4d32Pseudo_UPD: 4303 case ARM::VLD4q8Pseudo_UPD: 4304 case ARM::VLD4q16Pseudo_UPD: 4305 case ARM::VLD4q32Pseudo_UPD: 4306 case ARM::VLD4q8oddPseudo: 4307 case ARM::VLD4q16oddPseudo: 4308 case ARM::VLD4q32oddPseudo: 4309 case ARM::VLD4q8oddPseudo_UPD: 4310 case ARM::VLD4q16oddPseudo_UPD: 4311 case ARM::VLD4q32oddPseudo_UPD: 4312 case ARM::VLD1DUPq8: 4313 case ARM::VLD1DUPq16: 4314 case ARM::VLD1DUPq32: 4315 case ARM::VLD1DUPq8wb_fixed: 4316 case ARM::VLD1DUPq16wb_fixed: 4317 case ARM::VLD1DUPq32wb_fixed: 4318 case ARM::VLD1DUPq8wb_register: 4319 case ARM::VLD1DUPq16wb_register: 4320 case ARM::VLD1DUPq32wb_register: 4321 case ARM::VLD2DUPd8: 4322 case ARM::VLD2DUPd16: 4323 case ARM::VLD2DUPd32: 4324 case ARM::VLD2DUPd8wb_fixed: 4325 case ARM::VLD2DUPd16wb_fixed: 4326 case ARM::VLD2DUPd32wb_fixed: 4327 case ARM::VLD2DUPd8wb_register: 4328 case ARM::VLD2DUPd16wb_register: 4329 case ARM::VLD2DUPd32wb_register: 4330 case ARM::VLD2DUPq8EvenPseudo: 4331 case ARM::VLD2DUPq8OddPseudo: 4332 case ARM::VLD2DUPq16EvenPseudo: 4333 case ARM::VLD2DUPq16OddPseudo: 4334 case ARM::VLD2DUPq32EvenPseudo: 4335 case ARM::VLD2DUPq32OddPseudo: 4336 case ARM::VLD3DUPq8EvenPseudo: 4337 case ARM::VLD3DUPq8OddPseudo: 4338 case ARM::VLD3DUPq16EvenPseudo: 4339 case ARM::VLD3DUPq16OddPseudo: 4340 case ARM::VLD3DUPq32EvenPseudo: 4341 case ARM::VLD3DUPq32OddPseudo: 4342 case ARM::VLD4DUPd8Pseudo: 4343 case ARM::VLD4DUPd16Pseudo: 4344 case ARM::VLD4DUPd32Pseudo: 4345 case ARM::VLD4DUPd8Pseudo_UPD: 4346 case ARM::VLD4DUPd16Pseudo_UPD: 4347 case ARM::VLD4DUPd32Pseudo_UPD: 4348 case ARM::VLD4DUPq8EvenPseudo: 4349 case ARM::VLD4DUPq8OddPseudo: 4350 case ARM::VLD4DUPq16EvenPseudo: 4351 case ARM::VLD4DUPq16OddPseudo: 4352 case ARM::VLD4DUPq32EvenPseudo: 4353 case ARM::VLD4DUPq32OddPseudo: 4354 case ARM::VLD1LNq8Pseudo: 4355 case ARM::VLD1LNq16Pseudo: 4356 case ARM::VLD1LNq32Pseudo: 4357 case ARM::VLD1LNq8Pseudo_UPD: 4358 case ARM::VLD1LNq16Pseudo_UPD: 4359 case ARM::VLD1LNq32Pseudo_UPD: 4360 case ARM::VLD2LNd8Pseudo: 4361 case ARM::VLD2LNd16Pseudo: 4362 case ARM::VLD2LNd32Pseudo: 4363 case ARM::VLD2LNq16Pseudo: 4364 case ARM::VLD2LNq32Pseudo: 4365 case ARM::VLD2LNd8Pseudo_UPD: 4366 case ARM::VLD2LNd16Pseudo_UPD: 4367 case ARM::VLD2LNd32Pseudo_UPD: 4368 case ARM::VLD2LNq16Pseudo_UPD: 4369 case ARM::VLD2LNq32Pseudo_UPD: 4370 case ARM::VLD4LNd8Pseudo: 4371 case ARM::VLD4LNd16Pseudo: 4372 case ARM::VLD4LNd32Pseudo: 4373 case ARM::VLD4LNq16Pseudo: 4374 case ARM::VLD4LNq32Pseudo: 4375 case ARM::VLD4LNd8Pseudo_UPD: 4376 case ARM::VLD4LNd16Pseudo_UPD: 4377 case ARM::VLD4LNd32Pseudo_UPD: 4378 case ARM::VLD4LNq16Pseudo_UPD: 4379 case ARM::VLD4LNq32Pseudo_UPD: 4380 // If the address is not 64-bit aligned, the latencies of these 4381 // instructions increases by one. 4382 ++Latency; 4383 break; 4384 } 4385 4386 return Latency; 4387 } 4388 4389 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4390 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4391 MI.isImplicitDef()) 4392 return 0; 4393 4394 if (MI.isBundle()) 4395 return 0; 4396 4397 const MCInstrDesc &MCID = MI.getDesc(); 4398 4399 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4400 !Subtarget.cheapPredicableCPSRDef())) { 4401 // When predicated, CPSR is an additional source operand for CPSR updating 4402 // instructions, this apparently increases their latencies. 4403 return 1; 4404 } 4405 return 0; 4406 } 4407 4408 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4409 const MachineInstr &MI, 4410 unsigned *PredCost) const { 4411 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4412 MI.isImplicitDef()) 4413 return 1; 4414 4415 // An instruction scheduler typically runs on unbundled instructions, however 4416 // other passes may query the latency of a bundled instruction. 4417 if (MI.isBundle()) { 4418 unsigned Latency = 0; 4419 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4420 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4421 while (++I != E && I->isInsideBundle()) { 4422 if (I->getOpcode() != ARM::t2IT) 4423 Latency += getInstrLatency(ItinData, *I, PredCost); 4424 } 4425 return Latency; 4426 } 4427 4428 const MCInstrDesc &MCID = MI.getDesc(); 4429 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4430 !Subtarget.cheapPredicableCPSRDef()))) { 4431 // When predicated, CPSR is an additional source operand for CPSR updating 4432 // instructions, this apparently increases their latencies. 4433 *PredCost = 1; 4434 } 4435 // Be sure to call getStageLatency for an empty itinerary in case it has a 4436 // valid MinLatency property. 4437 if (!ItinData) 4438 return MI.mayLoad() ? 3 : 1; 4439 4440 unsigned Class = MCID.getSchedClass(); 4441 4442 // For instructions with variable uops, use uops as latency. 4443 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4444 return getNumMicroOps(ItinData, MI); 4445 4446 // For the common case, fall back on the itinerary's latency. 4447 unsigned Latency = ItinData->getStageLatency(Class); 4448 4449 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4450 unsigned DefAlign = 4451 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0; 4452 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4453 if (Adj >= 0 || (int)Latency > -Adj) { 4454 return Latency + Adj; 4455 } 4456 return Latency; 4457 } 4458 4459 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4460 SDNode *Node) const { 4461 if (!Node->isMachineOpcode()) 4462 return 1; 4463 4464 if (!ItinData || ItinData->isEmpty()) 4465 return 1; 4466 4467 unsigned Opcode = Node->getMachineOpcode(); 4468 switch (Opcode) { 4469 default: 4470 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4471 case ARM::VLDMQIA: 4472 case ARM::VSTMQIA: 4473 return 2; 4474 } 4475 } 4476 4477 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4478 const MachineRegisterInfo *MRI, 4479 const MachineInstr &DefMI, 4480 unsigned DefIdx, 4481 const MachineInstr &UseMI, 4482 unsigned UseIdx) const { 4483 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4484 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4485 if (Subtarget.nonpipelinedVFP() && 4486 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4487 return true; 4488 4489 // Hoist VFP / NEON instructions with 4 or higher latency. 4490 unsigned Latency = 4491 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4492 if (Latency <= 3) 4493 return false; 4494 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4495 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4496 } 4497 4498 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4499 const MachineInstr &DefMI, 4500 unsigned DefIdx) const { 4501 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4502 if (!ItinData || ItinData->isEmpty()) 4503 return false; 4504 4505 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4506 if (DDomain == ARMII::DomainGeneral) { 4507 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4508 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4509 return (DefCycle != -1 && DefCycle <= 2); 4510 } 4511 return false; 4512 } 4513 4514 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4515 StringRef &ErrInfo) const { 4516 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4517 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4518 return false; 4519 } 4520 return true; 4521 } 4522 4523 // LoadStackGuard has so far only been implemented for MachO. Different code 4524 // sequence is needed for other targets. 4525 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4526 unsigned LoadImmOpc, 4527 unsigned LoadOpc) const { 4528 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4529 "ROPI/RWPI not currently supported with stack guard"); 4530 4531 MachineBasicBlock &MBB = *MI->getParent(); 4532 DebugLoc DL = MI->getDebugLoc(); 4533 unsigned Reg = MI->getOperand(0).getReg(); 4534 const GlobalValue *GV = 4535 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4536 MachineInstrBuilder MIB; 4537 4538 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4539 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4540 4541 if (Subtarget.isGVIndirectSymbol(GV)) { 4542 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4543 MIB.addReg(Reg, RegState::Kill).addImm(0); 4544 auto Flags = MachineMemOperand::MOLoad | 4545 MachineMemOperand::MODereferenceable | 4546 MachineMemOperand::MOInvariant; 4547 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4548 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4); 4549 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4550 } 4551 4552 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4553 MIB.addReg(Reg, RegState::Kill) 4554 .addImm(0) 4555 .cloneMemRefs(*MI) 4556 .add(predOps(ARMCC::AL)); 4557 } 4558 4559 bool 4560 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4561 unsigned &AddSubOpc, 4562 bool &NegAcc, bool &HasLane) const { 4563 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4564 if (I == MLxEntryMap.end()) 4565 return false; 4566 4567 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4568 MulOpc = Entry.MulOpc; 4569 AddSubOpc = Entry.AddSubOpc; 4570 NegAcc = Entry.NegAcc; 4571 HasLane = Entry.HasLane; 4572 return true; 4573 } 4574 4575 //===----------------------------------------------------------------------===// 4576 // Execution domains. 4577 //===----------------------------------------------------------------------===// 4578 // 4579 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4580 // and some can go down both. The vmov instructions go down the VFP pipeline, 4581 // but they can be changed to vorr equivalents that are executed by the NEON 4582 // pipeline. 4583 // 4584 // We use the following execution domain numbering: 4585 // 4586 enum ARMExeDomain { 4587 ExeGeneric = 0, 4588 ExeVFP = 1, 4589 ExeNEON = 2 4590 }; 4591 4592 // 4593 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4594 // 4595 std::pair<uint16_t, uint16_t> 4596 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4597 // If we don't have access to NEON instructions then we won't be able 4598 // to swizzle anything to the NEON domain. Check to make sure. 4599 if (Subtarget.hasNEON()) { 4600 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4601 // if they are not predicated. 4602 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4603 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4604 4605 // CortexA9 is particularly picky about mixing the two and wants these 4606 // converted. 4607 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4608 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4609 MI.getOpcode() == ARM::VMOVS)) 4610 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4611 } 4612 // No other instructions can be swizzled, so just determine their domain. 4613 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4614 4615 if (Domain & ARMII::DomainNEON) 4616 return std::make_pair(ExeNEON, 0); 4617 4618 // Certain instructions can go either way on Cortex-A8. 4619 // Treat them as NEON instructions. 4620 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4621 return std::make_pair(ExeNEON, 0); 4622 4623 if (Domain & ARMII::DomainVFP) 4624 return std::make_pair(ExeVFP, 0); 4625 4626 return std::make_pair(ExeGeneric, 0); 4627 } 4628 4629 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4630 unsigned SReg, unsigned &Lane) { 4631 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4632 Lane = 0; 4633 4634 if (DReg != ARM::NoRegister) 4635 return DReg; 4636 4637 Lane = 1; 4638 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4639 4640 assert(DReg && "S-register with no D super-register?"); 4641 return DReg; 4642 } 4643 4644 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4645 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4646 /// zero if no register needs to be defined as implicit-use. 4647 /// 4648 /// If the function cannot determine if an SPR should be marked implicit use or 4649 /// not, it returns false. 4650 /// 4651 /// This function handles cases where an instruction is being modified from taking 4652 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4653 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4654 /// lane of the DPR). 4655 /// 4656 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4657 /// (including the case where the DPR itself is defined), it should not. 4658 /// 4659 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4660 MachineInstr &MI, unsigned DReg, 4661 unsigned Lane, unsigned &ImplicitSReg) { 4662 // If the DPR is defined or used already, the other SPR lane will be chained 4663 // correctly, so there is nothing to be done. 4664 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4665 ImplicitSReg = 0; 4666 return true; 4667 } 4668 4669 // Otherwise we need to go searching to see if the SPR is set explicitly. 4670 ImplicitSReg = TRI->getSubReg(DReg, 4671 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4672 MachineBasicBlock::LivenessQueryResult LQR = 4673 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4674 4675 if (LQR == MachineBasicBlock::LQR_Live) 4676 return true; 4677 else if (LQR == MachineBasicBlock::LQR_Unknown) 4678 return false; 4679 4680 // If the register is known not to be live, there is no need to add an 4681 // implicit-use. 4682 ImplicitSReg = 0; 4683 return true; 4684 } 4685 4686 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 4687 unsigned Domain) const { 4688 unsigned DstReg, SrcReg, DReg; 4689 unsigned Lane; 4690 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4691 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4692 switch (MI.getOpcode()) { 4693 default: 4694 llvm_unreachable("cannot handle opcode!"); 4695 break; 4696 case ARM::VMOVD: 4697 if (Domain != ExeNEON) 4698 break; 4699 4700 // Zap the predicate operands. 4701 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 4702 4703 // Make sure we've got NEON instructions. 4704 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 4705 4706 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 4707 DstReg = MI.getOperand(0).getReg(); 4708 SrcReg = MI.getOperand(1).getReg(); 4709 4710 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4711 MI.RemoveOperand(i - 1); 4712 4713 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 4714 MI.setDesc(get(ARM::VORRd)); 4715 MIB.addReg(DstReg, RegState::Define) 4716 .addReg(SrcReg) 4717 .addReg(SrcReg) 4718 .add(predOps(ARMCC::AL)); 4719 break; 4720 case ARM::VMOVRS: 4721 if (Domain != ExeNEON) 4722 break; 4723 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 4724 4725 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 4726 DstReg = MI.getOperand(0).getReg(); 4727 SrcReg = MI.getOperand(1).getReg(); 4728 4729 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4730 MI.RemoveOperand(i - 1); 4731 4732 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 4733 4734 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 4735 // Note that DSrc has been widened and the other lane may be undef, which 4736 // contaminates the entire register. 4737 MI.setDesc(get(ARM::VGETLNi32)); 4738 MIB.addReg(DstReg, RegState::Define) 4739 .addReg(DReg, RegState::Undef) 4740 .addImm(Lane) 4741 .add(predOps(ARMCC::AL)); 4742 4743 // The old source should be an implicit use, otherwise we might think it 4744 // was dead before here. 4745 MIB.addReg(SrcReg, RegState::Implicit); 4746 break; 4747 case ARM::VMOVSR: { 4748 if (Domain != ExeNEON) 4749 break; 4750 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 4751 4752 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 4753 DstReg = MI.getOperand(0).getReg(); 4754 SrcReg = MI.getOperand(1).getReg(); 4755 4756 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 4757 4758 unsigned ImplicitSReg; 4759 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 4760 break; 4761 4762 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4763 MI.RemoveOperand(i - 1); 4764 4765 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 4766 // Again DDst may be undefined at the beginning of this instruction. 4767 MI.setDesc(get(ARM::VSETLNi32)); 4768 MIB.addReg(DReg, RegState::Define) 4769 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 4770 .addReg(SrcReg) 4771 .addImm(Lane) 4772 .add(predOps(ARMCC::AL)); 4773 4774 // The narrower destination must be marked as set to keep previous chains 4775 // in place. 4776 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4777 if (ImplicitSReg != 0) 4778 MIB.addReg(ImplicitSReg, RegState::Implicit); 4779 break; 4780 } 4781 case ARM::VMOVS: { 4782 if (Domain != ExeNEON) 4783 break; 4784 4785 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 4786 DstReg = MI.getOperand(0).getReg(); 4787 SrcReg = MI.getOperand(1).getReg(); 4788 4789 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 4790 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 4791 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 4792 4793 unsigned ImplicitSReg; 4794 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 4795 break; 4796 4797 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4798 MI.RemoveOperand(i - 1); 4799 4800 if (DSrc == DDst) { 4801 // Destination can be: 4802 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 4803 MI.setDesc(get(ARM::VDUPLN32d)); 4804 MIB.addReg(DDst, RegState::Define) 4805 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 4806 .addImm(SrcLane) 4807 .add(predOps(ARMCC::AL)); 4808 4809 // Neither the source or the destination are naturally represented any 4810 // more, so add them in manually. 4811 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 4812 MIB.addReg(SrcReg, RegState::Implicit); 4813 if (ImplicitSReg != 0) 4814 MIB.addReg(ImplicitSReg, RegState::Implicit); 4815 break; 4816 } 4817 4818 // In general there's no single instruction that can perform an S <-> S 4819 // move in NEON space, but a pair of VEXT instructions *can* do the 4820 // job. It turns out that the VEXTs needed will only use DSrc once, with 4821 // the position based purely on the combination of lane-0 and lane-1 4822 // involved. For example 4823 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 4824 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 4825 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 4826 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 4827 // 4828 // Pattern of the MachineInstrs is: 4829 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 4830 MachineInstrBuilder NewMIB; 4831 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 4832 DDst); 4833 4834 // On the first instruction, both DSrc and DDst may be undef if present. 4835 // Specifically when the original instruction didn't have them as an 4836 // <imp-use>. 4837 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 4838 bool CurUndef = !MI.readsRegister(CurReg, TRI); 4839 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4840 4841 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 4842 CurUndef = !MI.readsRegister(CurReg, TRI); 4843 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 4844 .addImm(1) 4845 .add(predOps(ARMCC::AL)); 4846 4847 if (SrcLane == DstLane) 4848 NewMIB.addReg(SrcReg, RegState::Implicit); 4849 4850 MI.setDesc(get(ARM::VEXTd32)); 4851 MIB.addReg(DDst, RegState::Define); 4852 4853 // On the second instruction, DDst has definitely been defined above, so 4854 // it is not undef. DSrc, if present, can be undef as above. 4855 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 4856 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 4857 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4858 4859 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 4860 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 4861 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 4862 .addImm(1) 4863 .add(predOps(ARMCC::AL)); 4864 4865 if (SrcLane != DstLane) 4866 MIB.addReg(SrcReg, RegState::Implicit); 4867 4868 // As before, the original destination is no longer represented, add it 4869 // implicitly. 4870 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4871 if (ImplicitSReg != 0) 4872 MIB.addReg(ImplicitSReg, RegState::Implicit); 4873 break; 4874 } 4875 } 4876 } 4877 4878 //===----------------------------------------------------------------------===// 4879 // Partial register updates 4880 //===----------------------------------------------------------------------===// 4881 // 4882 // Swift renames NEON registers with 64-bit granularity. That means any 4883 // instruction writing an S-reg implicitly reads the containing D-reg. The 4884 // problem is mostly avoided by translating f32 operations to v2f32 operations 4885 // on D-registers, but f32 loads are still a problem. 4886 // 4887 // These instructions can load an f32 into a NEON register: 4888 // 4889 // VLDRS - Only writes S, partial D update. 4890 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 4891 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 4892 // 4893 // FCONSTD can be used as a dependency-breaking instruction. 4894 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 4895 const MachineInstr &MI, unsigned OpNum, 4896 const TargetRegisterInfo *TRI) const { 4897 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 4898 if (!PartialUpdateClearance) 4899 return 0; 4900 4901 assert(TRI && "Need TRI instance"); 4902 4903 const MachineOperand &MO = MI.getOperand(OpNum); 4904 if (MO.readsReg()) 4905 return 0; 4906 unsigned Reg = MO.getReg(); 4907 int UseOp = -1; 4908 4909 switch (MI.getOpcode()) { 4910 // Normal instructions writing only an S-register. 4911 case ARM::VLDRS: 4912 case ARM::FCONSTS: 4913 case ARM::VMOVSR: 4914 case ARM::VMOVv8i8: 4915 case ARM::VMOVv4i16: 4916 case ARM::VMOVv2i32: 4917 case ARM::VMOVv2f32: 4918 case ARM::VMOVv1i64: 4919 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 4920 break; 4921 4922 // Explicitly reads the dependency. 4923 case ARM::VLD1LNd32: 4924 UseOp = 3; 4925 break; 4926 default: 4927 return 0; 4928 } 4929 4930 // If this instruction actually reads a value from Reg, there is no unwanted 4931 // dependency. 4932 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 4933 return 0; 4934 4935 // We must be able to clobber the whole D-reg. 4936 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 4937 // Virtual register must be a def undef foo:ssub_0 operand. 4938 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 4939 return 0; 4940 } else if (ARM::SPRRegClass.contains(Reg)) { 4941 // Physical register: MI must define the full D-reg. 4942 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 4943 &ARM::DPRRegClass); 4944 if (!DReg || !MI.definesRegister(DReg, TRI)) 4945 return 0; 4946 } 4947 4948 // MI has an unwanted D-register dependency. 4949 // Avoid defs in the previous N instructrions. 4950 return PartialUpdateClearance; 4951 } 4952 4953 // Break a partial register dependency after getPartialRegUpdateClearance 4954 // returned non-zero. 4955 void ARMBaseInstrInfo::breakPartialRegDependency( 4956 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 4957 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 4958 assert(TRI && "Need TRI instance"); 4959 4960 const MachineOperand &MO = MI.getOperand(OpNum); 4961 unsigned Reg = MO.getReg(); 4962 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 4963 "Can't break virtual register dependencies."); 4964 unsigned DReg = Reg; 4965 4966 // If MI defines an S-reg, find the corresponding D super-register. 4967 if (ARM::SPRRegClass.contains(Reg)) { 4968 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 4969 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 4970 } 4971 4972 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 4973 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 4974 4975 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 4976 // the full D-register by loading the same value to both lanes. The 4977 // instruction is micro-coded with 2 uops, so don't do this until we can 4978 // properly schedule micro-coded instructions. The dispatcher stalls cause 4979 // too big regressions. 4980 4981 // Insert the dependency-breaking FCONSTD before MI. 4982 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 4983 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 4984 .addImm(96) 4985 .add(predOps(ARMCC::AL)); 4986 MI.addRegisterKilled(DReg, TRI, true); 4987 } 4988 4989 bool ARMBaseInstrInfo::hasNOP() const { 4990 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 4991 } 4992 4993 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 4994 if (MI->getNumOperands() < 4) 4995 return true; 4996 unsigned ShOpVal = MI->getOperand(3).getImm(); 4997 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 4998 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 4999 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5000 ((ShImm == 1 || ShImm == 2) && 5001 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5002 return true; 5003 5004 return false; 5005 } 5006 5007 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5008 const MachineInstr &MI, unsigned DefIdx, 5009 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5010 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5011 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5012 5013 switch (MI.getOpcode()) { 5014 case ARM::VMOVDRR: 5015 // dX = VMOVDRR rY, rZ 5016 // is the same as: 5017 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5018 // Populate the InputRegs accordingly. 5019 // rY 5020 const MachineOperand *MOReg = &MI.getOperand(1); 5021 if (!MOReg->isUndef()) 5022 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5023 MOReg->getSubReg(), ARM::ssub_0)); 5024 // rZ 5025 MOReg = &MI.getOperand(2); 5026 if (!MOReg->isUndef()) 5027 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5028 MOReg->getSubReg(), ARM::ssub_1)); 5029 return true; 5030 } 5031 llvm_unreachable("Target dependent opcode missing"); 5032 } 5033 5034 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5035 const MachineInstr &MI, unsigned DefIdx, 5036 RegSubRegPairAndIdx &InputReg) const { 5037 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5038 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5039 5040 switch (MI.getOpcode()) { 5041 case ARM::VMOVRRD: 5042 // rX, rY = VMOVRRD dZ 5043 // is the same as: 5044 // rX = EXTRACT_SUBREG dZ, ssub_0 5045 // rY = EXTRACT_SUBREG dZ, ssub_1 5046 const MachineOperand &MOReg = MI.getOperand(2); 5047 if (MOReg.isUndef()) 5048 return false; 5049 InputReg.Reg = MOReg.getReg(); 5050 InputReg.SubReg = MOReg.getSubReg(); 5051 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5052 return true; 5053 } 5054 llvm_unreachable("Target dependent opcode missing"); 5055 } 5056 5057 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5058 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5059 RegSubRegPairAndIdx &InsertedReg) const { 5060 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5061 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5062 5063 switch (MI.getOpcode()) { 5064 case ARM::VSETLNi32: 5065 // dX = VSETLNi32 dY, rZ, imm 5066 const MachineOperand &MOBaseReg = MI.getOperand(1); 5067 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5068 if (MOInsertedReg.isUndef()) 5069 return false; 5070 const MachineOperand &MOIndex = MI.getOperand(3); 5071 BaseReg.Reg = MOBaseReg.getReg(); 5072 BaseReg.SubReg = MOBaseReg.getSubReg(); 5073 5074 InsertedReg.Reg = MOInsertedReg.getReg(); 5075 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5076 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 5077 return true; 5078 } 5079 llvm_unreachable("Target dependent opcode missing"); 5080 } 5081 5082 std::pair<unsigned, unsigned> 5083 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5084 const unsigned Mask = ARMII::MO_OPTION_MASK; 5085 return std::make_pair(TF & Mask, TF & ~Mask); 5086 } 5087 5088 ArrayRef<std::pair<unsigned, const char *>> 5089 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5090 using namespace ARMII; 5091 5092 static const std::pair<unsigned, const char *> TargetFlags[] = { 5093 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5094 return makeArrayRef(TargetFlags); 5095 } 5096 5097 ArrayRef<std::pair<unsigned, const char *>> 5098 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5099 using namespace ARMII; 5100 5101 static const std::pair<unsigned, const char *> TargetFlags[] = { 5102 {MO_COFFSTUB, "arm-coffstub"}, 5103 {MO_GOT, "arm-got"}, 5104 {MO_SBREL, "arm-sbrel"}, 5105 {MO_DLLIMPORT, "arm-dllimport"}, 5106 {MO_SECREL, "arm-secrel"}, 5107 {MO_NONLAZY, "arm-nonlazy"}}; 5108 return makeArrayRef(TargetFlags); 5109 } 5110