1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <new>
63 #include <utility>
64 #include <vector>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "arm-instrinfo"
69 
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
72 
73 static cl::opt<bool>
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
75                cl::desc("Enable ARM 2-addr to 3-addr conv"));
76 
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
78 struct ARM_MLxEntry {
79   uint16_t MLxOpc;     // MLA / MLS opcode
80   uint16_t MulOpc;     // Expanded multiplication opcode
81   uint16_t AddSubOpc;  // Expanded add / sub opcode
82   bool NegAcc;         // True if the acc is negated before the add / sub.
83   bool HasLane;        // True if instruction has an extra "lane" operand.
84 };
85 
86 static const ARM_MLxEntry ARM_MLxTable[] = {
87   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
88   // fp scalar ops
89   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
90   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
91   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
92   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
93   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
94   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
95   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
96   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
97 
98   // fp SIMD ops
99   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
100   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
101   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
102   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
103   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
104   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
105   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
106   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
107 };
108 
109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
110   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
111     Subtarget(STI) {
112   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
113     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
114       llvm_unreachable("Duplicated entries?");
115     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
116     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
117   }
118 }
119 
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer *
123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
124                                                const ScheduleDAG *DAG) const {
125   if (usePreRAHazardRecognizer()) {
126     const InstrItineraryData *II =
127         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
128     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
129   }
130   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
131 }
132 
133 ScheduleHazardRecognizer *ARMBaseInstrInfo::
134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
135                                    const ScheduleDAG *DAG) const {
136   if (Subtarget.isThumb2() || Subtarget.hasVFP2())
137     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
138   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
139 }
140 
141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
142     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
143   // FIXME: Thumb2 support.
144 
145   if (!EnableARM3Addr)
146     return nullptr;
147 
148   MachineFunction &MF = *MI.getParent()->getParent();
149   uint64_t TSFlags = MI.getDesc().TSFlags;
150   bool isPre = false;
151   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
152   default: return nullptr;
153   case ARMII::IndexModePre:
154     isPre = true;
155     break;
156   case ARMII::IndexModePost:
157     break;
158   }
159 
160   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
161   // operation.
162   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
163   if (MemOpc == 0)
164     return nullptr;
165 
166   MachineInstr *UpdateMI = nullptr;
167   MachineInstr *MemMI = nullptr;
168   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
169   const MCInstrDesc &MCID = MI.getDesc();
170   unsigned NumOps = MCID.getNumOperands();
171   bool isLoad = !MI.mayStore();
172   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
173   const MachineOperand &Base = MI.getOperand(2);
174   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
175   unsigned WBReg = WB.getReg();
176   unsigned BaseReg = Base.getReg();
177   unsigned OffReg = Offset.getReg();
178   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
179   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
180   switch (AddrMode) {
181   default: llvm_unreachable("Unknown indexed op!");
182   case ARMII::AddrMode2: {
183     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
184     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
185     if (OffReg == 0) {
186       if (ARM_AM::getSOImmVal(Amt) == -1)
187         // Can't encode it in a so_imm operand. This transformation will
188         // add more than 1 instruction. Abandon!
189         return nullptr;
190       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
191                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
192                      .addReg(BaseReg)
193                      .addImm(Amt)
194                      .add(predOps(Pred))
195                      .add(condCodeOp());
196     } else if (Amt != 0) {
197       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
198       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
199       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
200                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
201                      .addReg(BaseReg)
202                      .addReg(OffReg)
203                      .addReg(0)
204                      .addImm(SOOpc)
205                      .add(predOps(Pred))
206                      .add(condCodeOp());
207     } else
208       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
209                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
210                      .addReg(BaseReg)
211                      .addReg(OffReg)
212                      .add(predOps(Pred))
213                      .add(condCodeOp());
214     break;
215   }
216   case ARMII::AddrMode3 : {
217     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
218     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
219     if (OffReg == 0)
220       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
222                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
223                      .addReg(BaseReg)
224                      .addImm(Amt)
225                      .add(predOps(Pred))
226                      .add(condCodeOp());
227     else
228       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
230                      .addReg(BaseReg)
231                      .addReg(OffReg)
232                      .add(predOps(Pred))
233                      .add(condCodeOp());
234     break;
235   }
236   }
237 
238   std::vector<MachineInstr*> NewMIs;
239   if (isPre) {
240     if (isLoad)
241       MemMI =
242           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
243               .addReg(WBReg)
244               .addImm(0)
245               .addImm(Pred);
246     else
247       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
248                   .addReg(MI.getOperand(1).getReg())
249                   .addReg(WBReg)
250                   .addReg(0)
251                   .addImm(0)
252                   .addImm(Pred);
253     NewMIs.push_back(MemMI);
254     NewMIs.push_back(UpdateMI);
255   } else {
256     if (isLoad)
257       MemMI =
258           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
259               .addReg(BaseReg)
260               .addImm(0)
261               .addImm(Pred);
262     else
263       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
264                   .addReg(MI.getOperand(1).getReg())
265                   .addReg(BaseReg)
266                   .addReg(0)
267                   .addImm(0)
268                   .addImm(Pred);
269     if (WB.isDead())
270       UpdateMI->getOperand(0).setIsDead();
271     NewMIs.push_back(UpdateMI);
272     NewMIs.push_back(MemMI);
273   }
274 
275   // Transfer LiveVariables states, kill / dead info.
276   if (LV) {
277     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
278       MachineOperand &MO = MI.getOperand(i);
279       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
280         unsigned Reg = MO.getReg();
281 
282         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
283         if (MO.isDef()) {
284           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
285           if (MO.isDead())
286             LV->addVirtualRegisterDead(Reg, *NewMI);
287         }
288         if (MO.isUse() && MO.isKill()) {
289           for (unsigned j = 0; j < 2; ++j) {
290             // Look at the two new MI's in reverse order.
291             MachineInstr *NewMI = NewMIs[j];
292             if (!NewMI->readsRegister(Reg))
293               continue;
294             LV->addVirtualRegisterKilled(Reg, *NewMI);
295             if (VI.removeKill(MI))
296               VI.Kills.push_back(NewMI);
297             break;
298           }
299         }
300       }
301     }
302   }
303 
304   MachineBasicBlock::iterator MBBI = MI.getIterator();
305   MFI->insert(MBBI, NewMIs[1]);
306   MFI->insert(MBBI, NewMIs[0]);
307   return NewMIs[0];
308 }
309 
310 // Branch analysis.
311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
312                                      MachineBasicBlock *&TBB,
313                                      MachineBasicBlock *&FBB,
314                                      SmallVectorImpl<MachineOperand> &Cond,
315                                      bool AllowModify) const {
316   TBB = nullptr;
317   FBB = nullptr;
318 
319   MachineBasicBlock::iterator I = MBB.end();
320   if (I == MBB.begin())
321     return false; // Empty blocks are easy.
322   --I;
323 
324   // Walk backwards from the end of the basic block until the branch is
325   // analyzed or we give up.
326   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
327     // Flag to be raised on unanalyzeable instructions. This is useful in cases
328     // where we want to clean up on the end of the basic block before we bail
329     // out.
330     bool CantAnalyze = false;
331 
332     // Skip over DEBUG values and predicated nonterminators.
333     while (I->isDebugInstr() || !I->isTerminator()) {
334       if (I == MBB.begin())
335         return false;
336       --I;
337     }
338 
339     if (isIndirectBranchOpcode(I->getOpcode()) ||
340         isJumpTableBranchOpcode(I->getOpcode())) {
341       // Indirect branches and jump tables can't be analyzed, but we still want
342       // to clean up any instructions at the tail of the basic block.
343       CantAnalyze = true;
344     } else if (isUncondBranchOpcode(I->getOpcode())) {
345       TBB = I->getOperand(0).getMBB();
346     } else if (isCondBranchOpcode(I->getOpcode())) {
347       // Bail out if we encounter multiple conditional branches.
348       if (!Cond.empty())
349         return true;
350 
351       assert(!FBB && "FBB should have been null.");
352       FBB = TBB;
353       TBB = I->getOperand(0).getMBB();
354       Cond.push_back(I->getOperand(1));
355       Cond.push_back(I->getOperand(2));
356     } else if (I->isReturn()) {
357       // Returns can't be analyzed, but we should run cleanup.
358       CantAnalyze = !isPredicated(*I);
359     } else {
360       // We encountered other unrecognized terminator. Bail out immediately.
361       return true;
362     }
363 
364     // Cleanup code - to be run for unpredicated unconditional branches and
365     //                returns.
366     if (!isPredicated(*I) &&
367           (isUncondBranchOpcode(I->getOpcode()) ||
368            isIndirectBranchOpcode(I->getOpcode()) ||
369            isJumpTableBranchOpcode(I->getOpcode()) ||
370            I->isReturn())) {
371       // Forget any previous condition branch information - it no longer applies.
372       Cond.clear();
373       FBB = nullptr;
374 
375       // If we can modify the function, delete everything below this
376       // unconditional branch.
377       if (AllowModify) {
378         MachineBasicBlock::iterator DI = std::next(I);
379         while (DI != MBB.end()) {
380           MachineInstr &InstToDelete = *DI;
381           ++DI;
382           InstToDelete.eraseFromParent();
383         }
384       }
385     }
386 
387     if (CantAnalyze)
388       return true;
389 
390     if (I == MBB.begin())
391       return false;
392 
393     --I;
394   }
395 
396   // We made it past the terminators without bailing out - we must have
397   // analyzed this branch successfully.
398   return false;
399 }
400 
401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
402                                         int *BytesRemoved) const {
403   assert(!BytesRemoved && "code size not handled");
404 
405   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
406   if (I == MBB.end())
407     return 0;
408 
409   if (!isUncondBranchOpcode(I->getOpcode()) &&
410       !isCondBranchOpcode(I->getOpcode()))
411     return 0;
412 
413   // Remove the branch.
414   I->eraseFromParent();
415 
416   I = MBB.end();
417 
418   if (I == MBB.begin()) return 1;
419   --I;
420   if (!isCondBranchOpcode(I->getOpcode()))
421     return 1;
422 
423   // Remove the branch.
424   I->eraseFromParent();
425   return 2;
426 }
427 
428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
429                                         MachineBasicBlock *TBB,
430                                         MachineBasicBlock *FBB,
431                                         ArrayRef<MachineOperand> Cond,
432                                         const DebugLoc &DL,
433                                         int *BytesAdded) const {
434   assert(!BytesAdded && "code size not handled");
435   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
436   int BOpc   = !AFI->isThumbFunction()
437     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
438   int BccOpc = !AFI->isThumbFunction()
439     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
440   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
441 
442   // Shouldn't be a fall through.
443   assert(TBB && "insertBranch must not be told to insert a fallthrough");
444   assert((Cond.size() == 2 || Cond.size() == 0) &&
445          "ARM branch conditions have two components!");
446 
447   // For conditional branches, we use addOperand to preserve CPSR flags.
448 
449   if (!FBB) {
450     if (Cond.empty()) { // Unconditional branch?
451       if (isThumb)
452         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
453       else
454         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
455     } else
456       BuildMI(&MBB, DL, get(BccOpc))
457           .addMBB(TBB)
458           .addImm(Cond[0].getImm())
459           .add(Cond[1]);
460     return 1;
461   }
462 
463   // Two-way conditional branch.
464   BuildMI(&MBB, DL, get(BccOpc))
465       .addMBB(TBB)
466       .addImm(Cond[0].getImm())
467       .add(Cond[1]);
468   if (isThumb)
469     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
470   else
471     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
472   return 2;
473 }
474 
475 bool ARMBaseInstrInfo::
476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
478   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
479   return false;
480 }
481 
482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
483   if (MI.isBundle()) {
484     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
485     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
486     while (++I != E && I->isInsideBundle()) {
487       int PIdx = I->findFirstPredOperandIdx();
488       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
489         return true;
490     }
491     return false;
492   }
493 
494   int PIdx = MI.findFirstPredOperandIdx();
495   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
496 }
497 
498 bool ARMBaseInstrInfo::PredicateInstruction(
499     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
500   unsigned Opc = MI.getOpcode();
501   if (isUncondBranchOpcode(Opc)) {
502     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
503     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
504       .addImm(Pred[0].getImm())
505       .addReg(Pred[1].getReg());
506     return true;
507   }
508 
509   int PIdx = MI.findFirstPredOperandIdx();
510   if (PIdx != -1) {
511     MachineOperand &PMO = MI.getOperand(PIdx);
512     PMO.setImm(Pred[0].getImm());
513     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
514     return true;
515   }
516   return false;
517 }
518 
519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
520                                          ArrayRef<MachineOperand> Pred2) const {
521   if (Pred1.size() > 2 || Pred2.size() > 2)
522     return false;
523 
524   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
525   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
526   if (CC1 == CC2)
527     return true;
528 
529   switch (CC1) {
530   default:
531     return false;
532   case ARMCC::AL:
533     return true;
534   case ARMCC::HS:
535     return CC2 == ARMCC::HI;
536   case ARMCC::LS:
537     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
538   case ARMCC::GE:
539     return CC2 == ARMCC::GT;
540   case ARMCC::LE:
541     return CC2 == ARMCC::LT;
542   }
543 }
544 
545 bool ARMBaseInstrInfo::DefinesPredicate(
546     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
547   bool Found = false;
548   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
549     const MachineOperand &MO = MI.getOperand(i);
550     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
551         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
552       Pred.push_back(MO);
553       Found = true;
554     }
555   }
556 
557   return Found;
558 }
559 
560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
561   for (const auto &MO : MI.operands())
562     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
563       return true;
564   return false;
565 }
566 
567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
568                                         unsigned Op) const {
569   const MachineOperand &Offset = MI.getOperand(Op + 1);
570   return Offset.getReg() != 0;
571 }
572 
573 // Load with negative register offset requires additional 1cyc and +I unit
574 // for Cortex A57
575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
576                                              unsigned Op) const {
577   const MachineOperand &Offset = MI.getOperand(Op + 1);
578   const MachineOperand &Opc = MI.getOperand(Op + 2);
579   assert(Opc.isImm());
580   assert(Offset.isReg());
581   int64_t OpcImm = Opc.getImm();
582 
583   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
584   return (isSub && Offset.getReg() != 0);
585 }
586 
587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
588                                        unsigned Op) const {
589   const MachineOperand &Opc = MI.getOperand(Op + 2);
590   unsigned OffImm = Opc.getImm();
591   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
592 }
593 
594 // Load, scaled register offset, not plus LSL2
595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
596                                                   unsigned Op) const {
597   const MachineOperand &Opc = MI.getOperand(Op + 2);
598   unsigned OffImm = Opc.getImm();
599 
600   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
601   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
602   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
603   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
604   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
605   return !SimpleScaled;
606 }
607 
608 // Minus reg for ldstso addr mode
609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
610                                         unsigned Op) const {
611   unsigned OffImm = MI.getOperand(Op + 2).getImm();
612   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
613 }
614 
615 // Load, scaled register offset
616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
617                                       unsigned Op) const {
618   unsigned OffImm = MI.getOperand(Op + 2).getImm();
619   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
620 }
621 
622 static bool isEligibleForITBlock(const MachineInstr *MI) {
623   switch (MI->getOpcode()) {
624   default: return true;
625   case ARM::tADC:   // ADC (register) T1
626   case ARM::tADDi3: // ADD (immediate) T1
627   case ARM::tADDi8: // ADD (immediate) T2
628   case ARM::tADDrr: // ADD (register) T1
629   case ARM::tAND:   // AND (register) T1
630   case ARM::tASRri: // ASR (immediate) T1
631   case ARM::tASRrr: // ASR (register) T1
632   case ARM::tBIC:   // BIC (register) T1
633   case ARM::tEOR:   // EOR (register) T1
634   case ARM::tLSLri: // LSL (immediate) T1
635   case ARM::tLSLrr: // LSL (register) T1
636   case ARM::tLSRri: // LSR (immediate) T1
637   case ARM::tLSRrr: // LSR (register) T1
638   case ARM::tMUL:   // MUL T1
639   case ARM::tMVN:   // MVN (register) T1
640   case ARM::tORR:   // ORR (register) T1
641   case ARM::tROR:   // ROR (register) T1
642   case ARM::tRSB:   // RSB (immediate) T1
643   case ARM::tSBC:   // SBC (register) T1
644   case ARM::tSUBi3: // SUB (immediate) T1
645   case ARM::tSUBi8: // SUB (immediate) T2
646   case ARM::tSUBrr: // SUB (register) T1
647     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
648   }
649 }
650 
651 /// isPredicable - Return true if the specified instruction can be predicated.
652 /// By default, this returns true for every instruction with a
653 /// PredicateOperand.
654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
655   if (!MI.isPredicable())
656     return false;
657 
658   if (MI.isBundle())
659     return false;
660 
661   if (!isEligibleForITBlock(&MI))
662     return false;
663 
664   const ARMFunctionInfo *AFI =
665       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
666 
667   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
668   // In their ARM encoding, they can't be encoded in a conditional form.
669   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
670     return false;
671 
672   if (AFI->isThumb2Function()) {
673     if (getSubtarget().restrictIT())
674       return isV8EligibleForIT(&MI);
675   }
676 
677   return true;
678 }
679 
680 namespace llvm {
681 
682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
683   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
684     const MachineOperand &MO = MI->getOperand(i);
685     if (!MO.isReg() || MO.isUndef() || MO.isUse())
686       continue;
687     if (MO.getReg() != ARM::CPSR)
688       continue;
689     if (!MO.isDead())
690       return false;
691   }
692   // all definitions of CPSR are dead
693   return true;
694 }
695 
696 } // end namespace llvm
697 
698 /// GetInstSize - Return the size of the specified MachineInstr.
699 ///
700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
701   const MachineBasicBlock &MBB = *MI.getParent();
702   const MachineFunction *MF = MBB.getParent();
703   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
704 
705   const MCInstrDesc &MCID = MI.getDesc();
706   if (MCID.getSize())
707     return MCID.getSize();
708 
709   // If this machine instr is an inline asm, measure it.
710   if (MI.getOpcode() == ARM::INLINEASM) {
711     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
712     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
713       Size = alignTo(Size, 4);
714     return Size;
715   }
716   unsigned Opc = MI.getOpcode();
717   switch (Opc) {
718   default:
719     // pseudo-instruction sizes are zero.
720     return 0;
721   case TargetOpcode::BUNDLE:
722     return getInstBundleLength(MI);
723   case ARM::MOVi16_ga_pcrel:
724   case ARM::MOVTi16_ga_pcrel:
725   case ARM::t2MOVi16_ga_pcrel:
726   case ARM::t2MOVTi16_ga_pcrel:
727     return 4;
728   case ARM::MOVi32imm:
729   case ARM::t2MOVi32imm:
730     return 8;
731   case ARM::CONSTPOOL_ENTRY:
732   case ARM::JUMPTABLE_INSTS:
733   case ARM::JUMPTABLE_ADDRS:
734   case ARM::JUMPTABLE_TBB:
735   case ARM::JUMPTABLE_TBH:
736     // If this machine instr is a constant pool entry, its size is recorded as
737     // operand #2.
738     return MI.getOperand(2).getImm();
739   case ARM::Int_eh_sjlj_longjmp:
740     return 16;
741   case ARM::tInt_eh_sjlj_longjmp:
742     return 10;
743   case ARM::tInt_WIN_eh_sjlj_longjmp:
744     return 12;
745   case ARM::Int_eh_sjlj_setjmp:
746   case ARM::Int_eh_sjlj_setjmp_nofp:
747     return 20;
748   case ARM::tInt_eh_sjlj_setjmp:
749   case ARM::t2Int_eh_sjlj_setjmp:
750   case ARM::t2Int_eh_sjlj_setjmp_nofp:
751     return 12;
752   case ARM::SPACE:
753     return MI.getOperand(1).getImm();
754   }
755 }
756 
757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
758   unsigned Size = 0;
759   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
760   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
761   while (++I != E && I->isInsideBundle()) {
762     assert(!I->isBundle() && "No nested bundle!");
763     Size += getInstSizeInBytes(*I);
764   }
765   return Size;
766 }
767 
768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
769                                     MachineBasicBlock::iterator I,
770                                     unsigned DestReg, bool KillSrc,
771                                     const ARMSubtarget &Subtarget) const {
772   unsigned Opc = Subtarget.isThumb()
773                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
774                      : ARM::MRS;
775 
776   MachineInstrBuilder MIB =
777       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
778 
779   // There is only 1 A/R class MRS instruction, and it always refers to
780   // APSR. However, there are lots of other possibilities on M-class cores.
781   if (Subtarget.isMClass())
782     MIB.addImm(0x800);
783 
784   MIB.add(predOps(ARMCC::AL))
785      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
786 }
787 
788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
789                                   MachineBasicBlock::iterator I,
790                                   unsigned SrcReg, bool KillSrc,
791                                   const ARMSubtarget &Subtarget) const {
792   unsigned Opc = Subtarget.isThumb()
793                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
794                      : ARM::MSR;
795 
796   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
797 
798   if (Subtarget.isMClass())
799     MIB.addImm(0x800);
800   else
801     MIB.addImm(8);
802 
803   MIB.addReg(SrcReg, getKillRegState(KillSrc))
804      .add(predOps(ARMCC::AL))
805      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
806 }
807 
808 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
809                                    MachineBasicBlock::iterator I,
810                                    const DebugLoc &DL, unsigned DestReg,
811                                    unsigned SrcReg, bool KillSrc) const {
812   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
813   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
814 
815   if (GPRDest && GPRSrc) {
816     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
817         .addReg(SrcReg, getKillRegState(KillSrc))
818         .add(predOps(ARMCC::AL))
819         .add(condCodeOp());
820     return;
821   }
822 
823   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
824   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
825 
826   unsigned Opc = 0;
827   if (SPRDest && SPRSrc)
828     Opc = ARM::VMOVS;
829   else if (GPRDest && SPRSrc)
830     Opc = ARM::VMOVRS;
831   else if (SPRDest && GPRSrc)
832     Opc = ARM::VMOVSR;
833   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
834     Opc = ARM::VMOVD;
835   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
836     Opc = ARM::VORRq;
837 
838   if (Opc) {
839     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
840     MIB.addReg(SrcReg, getKillRegState(KillSrc));
841     if (Opc == ARM::VORRq)
842       MIB.addReg(SrcReg, getKillRegState(KillSrc));
843     MIB.add(predOps(ARMCC::AL));
844     return;
845   }
846 
847   // Handle register classes that require multiple instructions.
848   unsigned BeginIdx = 0;
849   unsigned SubRegs = 0;
850   int Spacing = 1;
851 
852   // Use VORRq when possible.
853   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
854     Opc = ARM::VORRq;
855     BeginIdx = ARM::qsub_0;
856     SubRegs = 2;
857   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
858     Opc = ARM::VORRq;
859     BeginIdx = ARM::qsub_0;
860     SubRegs = 4;
861   // Fall back to VMOVD.
862   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
863     Opc = ARM::VMOVD;
864     BeginIdx = ARM::dsub_0;
865     SubRegs = 2;
866   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
867     Opc = ARM::VMOVD;
868     BeginIdx = ARM::dsub_0;
869     SubRegs = 3;
870   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
871     Opc = ARM::VMOVD;
872     BeginIdx = ARM::dsub_0;
873     SubRegs = 4;
874   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
875     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
876     BeginIdx = ARM::gsub_0;
877     SubRegs = 2;
878   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
879     Opc = ARM::VMOVD;
880     BeginIdx = ARM::dsub_0;
881     SubRegs = 2;
882     Spacing = 2;
883   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
884     Opc = ARM::VMOVD;
885     BeginIdx = ARM::dsub_0;
886     SubRegs = 3;
887     Spacing = 2;
888   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
889     Opc = ARM::VMOVD;
890     BeginIdx = ARM::dsub_0;
891     SubRegs = 4;
892     Spacing = 2;
893   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
894     Opc = ARM::VMOVS;
895     BeginIdx = ARM::ssub_0;
896     SubRegs = 2;
897   } else if (SrcReg == ARM::CPSR) {
898     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
899     return;
900   } else if (DestReg == ARM::CPSR) {
901     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
902     return;
903   }
904 
905   assert(Opc && "Impossible reg-to-reg copy");
906 
907   const TargetRegisterInfo *TRI = &getRegisterInfo();
908   MachineInstrBuilder Mov;
909 
910   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
911   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
912     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
913     Spacing = -Spacing;
914   }
915 #ifndef NDEBUG
916   SmallSet<unsigned, 4> DstRegs;
917 #endif
918   for (unsigned i = 0; i != SubRegs; ++i) {
919     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
920     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
921     assert(Dst && Src && "Bad sub-register");
922 #ifndef NDEBUG
923     assert(!DstRegs.count(Src) && "destructive vector copy");
924     DstRegs.insert(Dst);
925 #endif
926     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
927     // VORR takes two source operands.
928     if (Opc == ARM::VORRq)
929       Mov.addReg(Src);
930     Mov = Mov.add(predOps(ARMCC::AL));
931     // MOVr can set CC.
932     if (Opc == ARM::MOVr)
933       Mov = Mov.add(condCodeOp());
934   }
935   // Add implicit super-register defs and kills to the last instruction.
936   Mov->addRegisterDefined(DestReg, TRI);
937   if (KillSrc)
938     Mov->addRegisterKilled(SrcReg, TRI);
939 }
940 
941 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI,
942                                        const MachineOperand *&Src,
943                                        const MachineOperand *&Dest) const {
944   // VMOVRRD is also a copy instruction but it requires
945   // special way of handling. It is more complex copy version
946   // and since that we are not considering it. For recognition
947   // of such instruction isExtractSubregLike MI interface fuction
948   // could be used.
949   // VORRq is considered as a move only if two inputs are
950   // the same register.
951   if (!MI.isMoveReg() ||
952       (MI.getOpcode() == ARM::VORRq &&
953        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
954     return false;
955   Dest = &MI.getOperand(0);
956   Src = &MI.getOperand(1);
957   return true;
958 }
959 
960 const MachineInstrBuilder &
961 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
962                           unsigned SubIdx, unsigned State,
963                           const TargetRegisterInfo *TRI) const {
964   if (!SubIdx)
965     return MIB.addReg(Reg, State);
966 
967   if (TargetRegisterInfo::isPhysicalRegister(Reg))
968     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
969   return MIB.addReg(Reg, State, SubIdx);
970 }
971 
972 void ARMBaseInstrInfo::
973 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
974                     unsigned SrcReg, bool isKill, int FI,
975                     const TargetRegisterClass *RC,
976                     const TargetRegisterInfo *TRI) const {
977   MachineFunction &MF = *MBB.getParent();
978   MachineFrameInfo &MFI = MF.getFrameInfo();
979   unsigned Align = MFI.getObjectAlignment(FI);
980 
981   MachineMemOperand *MMO = MF.getMachineMemOperand(
982       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
983       MFI.getObjectSize(FI), Align);
984 
985   switch (TRI->getSpillSize(*RC)) {
986     case 2:
987       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
988         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
989             .addReg(SrcReg, getKillRegState(isKill))
990             .addFrameIndex(FI)
991             .addImm(0)
992             .addMemOperand(MMO)
993             .add(predOps(ARMCC::AL));
994       } else
995         llvm_unreachable("Unknown reg class!");
996       break;
997     case 4:
998       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
999         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1000             .addReg(SrcReg, getKillRegState(isKill))
1001             .addFrameIndex(FI)
1002             .addImm(0)
1003             .addMemOperand(MMO)
1004             .add(predOps(ARMCC::AL));
1005       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1006         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1007             .addReg(SrcReg, getKillRegState(isKill))
1008             .addFrameIndex(FI)
1009             .addImm(0)
1010             .addMemOperand(MMO)
1011             .add(predOps(ARMCC::AL));
1012       } else
1013         llvm_unreachable("Unknown reg class!");
1014       break;
1015     case 8:
1016       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1017         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1018             .addReg(SrcReg, getKillRegState(isKill))
1019             .addFrameIndex(FI)
1020             .addImm(0)
1021             .addMemOperand(MMO)
1022             .add(predOps(ARMCC::AL));
1023       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1024         if (Subtarget.hasV5TEOps()) {
1025           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1026           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1027           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1028           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1029              .add(predOps(ARMCC::AL));
1030         } else {
1031           // Fallback to STM instruction, which has existed since the dawn of
1032           // time.
1033           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1034                                         .addFrameIndex(FI)
1035                                         .addMemOperand(MMO)
1036                                         .add(predOps(ARMCC::AL));
1037           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1038           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1039         }
1040       } else
1041         llvm_unreachable("Unknown reg class!");
1042       break;
1043     case 16:
1044       if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1045         // Use aligned spills if the stack can be realigned.
1046         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1047           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1048               .addFrameIndex(FI)
1049               .addImm(16)
1050               .addReg(SrcReg, getKillRegState(isKill))
1051               .addMemOperand(MMO)
1052               .add(predOps(ARMCC::AL));
1053         } else {
1054           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1055               .addReg(SrcReg, getKillRegState(isKill))
1056               .addFrameIndex(FI)
1057               .addMemOperand(MMO)
1058               .add(predOps(ARMCC::AL));
1059         }
1060       } else
1061         llvm_unreachable("Unknown reg class!");
1062       break;
1063     case 24:
1064       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1065         // Use aligned spills if the stack can be realigned.
1066         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1067           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1068               .addFrameIndex(FI)
1069               .addImm(16)
1070               .addReg(SrcReg, getKillRegState(isKill))
1071               .addMemOperand(MMO)
1072               .add(predOps(ARMCC::AL));
1073         } else {
1074           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1075                                             get(ARM::VSTMDIA))
1076                                         .addFrameIndex(FI)
1077                                         .add(predOps(ARMCC::AL))
1078                                         .addMemOperand(MMO);
1079           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1080           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1081           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1082         }
1083       } else
1084         llvm_unreachable("Unknown reg class!");
1085       break;
1086     case 32:
1087       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1088         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1089           // FIXME: It's possible to only store part of the QQ register if the
1090           // spilled def has a sub-register index.
1091           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1092               .addFrameIndex(FI)
1093               .addImm(16)
1094               .addReg(SrcReg, getKillRegState(isKill))
1095               .addMemOperand(MMO)
1096               .add(predOps(ARMCC::AL));
1097         } else {
1098           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1099                                             get(ARM::VSTMDIA))
1100                                         .addFrameIndex(FI)
1101                                         .add(predOps(ARMCC::AL))
1102                                         .addMemOperand(MMO);
1103           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1104           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1105           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1106                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1107         }
1108       } else
1109         llvm_unreachable("Unknown reg class!");
1110       break;
1111     case 64:
1112       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1113         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1114                                       .addFrameIndex(FI)
1115                                       .add(predOps(ARMCC::AL))
1116                                       .addMemOperand(MMO);
1117         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1118         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1119         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1120         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1121         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1122         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1123         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1124               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1125       } else
1126         llvm_unreachable("Unknown reg class!");
1127       break;
1128     default:
1129       llvm_unreachable("Unknown reg class!");
1130   }
1131 }
1132 
1133 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1134                                               int &FrameIndex) const {
1135   switch (MI.getOpcode()) {
1136   default: break;
1137   case ARM::STRrs:
1138   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1139     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1140         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1141         MI.getOperand(3).getImm() == 0) {
1142       FrameIndex = MI.getOperand(1).getIndex();
1143       return MI.getOperand(0).getReg();
1144     }
1145     break;
1146   case ARM::STRi12:
1147   case ARM::t2STRi12:
1148   case ARM::tSTRspi:
1149   case ARM::VSTRD:
1150   case ARM::VSTRS:
1151     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1152         MI.getOperand(2).getImm() == 0) {
1153       FrameIndex = MI.getOperand(1).getIndex();
1154       return MI.getOperand(0).getReg();
1155     }
1156     break;
1157   case ARM::VST1q64:
1158   case ARM::VST1d64TPseudo:
1159   case ARM::VST1d64QPseudo:
1160     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1161       FrameIndex = MI.getOperand(0).getIndex();
1162       return MI.getOperand(2).getReg();
1163     }
1164     break;
1165   case ARM::VSTMQIA:
1166     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1167       FrameIndex = MI.getOperand(1).getIndex();
1168       return MI.getOperand(0).getReg();
1169     }
1170     break;
1171   }
1172 
1173   return 0;
1174 }
1175 
1176 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1177                                                     int &FrameIndex) const {
1178   SmallVector<const MachineMemOperand *, 1> Accesses;
1179   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1180       Accesses.size() == 1) {
1181     FrameIndex =
1182         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1183             ->getFrameIndex();
1184     return true;
1185   }
1186   return false;
1187 }
1188 
1189 void ARMBaseInstrInfo::
1190 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1191                      unsigned DestReg, int FI,
1192                      const TargetRegisterClass *RC,
1193                      const TargetRegisterInfo *TRI) const {
1194   DebugLoc DL;
1195   if (I != MBB.end()) DL = I->getDebugLoc();
1196   MachineFunction &MF = *MBB.getParent();
1197   MachineFrameInfo &MFI = MF.getFrameInfo();
1198   unsigned Align = MFI.getObjectAlignment(FI);
1199   MachineMemOperand *MMO = MF.getMachineMemOperand(
1200       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1201       MFI.getObjectSize(FI), Align);
1202 
1203   switch (TRI->getSpillSize(*RC)) {
1204   case 2:
1205     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1206       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1207           .addFrameIndex(FI)
1208           .addImm(0)
1209           .addMemOperand(MMO)
1210           .add(predOps(ARMCC::AL));
1211     } else
1212       llvm_unreachable("Unknown reg class!");
1213     break;
1214   case 4:
1215     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1216       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1217           .addFrameIndex(FI)
1218           .addImm(0)
1219           .addMemOperand(MMO)
1220           .add(predOps(ARMCC::AL));
1221     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1222       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1223           .addFrameIndex(FI)
1224           .addImm(0)
1225           .addMemOperand(MMO)
1226           .add(predOps(ARMCC::AL));
1227     } else
1228       llvm_unreachable("Unknown reg class!");
1229     break;
1230   case 8:
1231     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1232       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1233           .addFrameIndex(FI)
1234           .addImm(0)
1235           .addMemOperand(MMO)
1236           .add(predOps(ARMCC::AL));
1237     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1238       MachineInstrBuilder MIB;
1239 
1240       if (Subtarget.hasV5TEOps()) {
1241         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1242         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1243         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1244         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1245            .add(predOps(ARMCC::AL));
1246       } else {
1247         // Fallback to LDM instruction, which has existed since the dawn of
1248         // time.
1249         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1250                   .addFrameIndex(FI)
1251                   .addMemOperand(MMO)
1252                   .add(predOps(ARMCC::AL));
1253         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1254         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1255       }
1256 
1257       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1258         MIB.addReg(DestReg, RegState::ImplicitDefine);
1259     } else
1260       llvm_unreachable("Unknown reg class!");
1261     break;
1262   case 16:
1263     if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1264       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1265         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1266             .addFrameIndex(FI)
1267             .addImm(16)
1268             .addMemOperand(MMO)
1269             .add(predOps(ARMCC::AL));
1270       } else {
1271         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1272             .addFrameIndex(FI)
1273             .addMemOperand(MMO)
1274             .add(predOps(ARMCC::AL));
1275       }
1276     } else
1277       llvm_unreachable("Unknown reg class!");
1278     break;
1279   case 24:
1280     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1281       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1282         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1283             .addFrameIndex(FI)
1284             .addImm(16)
1285             .addMemOperand(MMO)
1286             .add(predOps(ARMCC::AL));
1287       } else {
1288         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1289                                       .addFrameIndex(FI)
1290                                       .addMemOperand(MMO)
1291                                       .add(predOps(ARMCC::AL));
1292         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1293         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1294         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1295         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1296           MIB.addReg(DestReg, RegState::ImplicitDefine);
1297       }
1298     } else
1299       llvm_unreachable("Unknown reg class!");
1300     break;
1301    case 32:
1302     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1303       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1304         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1305             .addFrameIndex(FI)
1306             .addImm(16)
1307             .addMemOperand(MMO)
1308             .add(predOps(ARMCC::AL));
1309       } else {
1310         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1311                                       .addFrameIndex(FI)
1312                                       .add(predOps(ARMCC::AL))
1313                                       .addMemOperand(MMO);
1314         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1315         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1316         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1317         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1318         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1319           MIB.addReg(DestReg, RegState::ImplicitDefine);
1320       }
1321     } else
1322       llvm_unreachable("Unknown reg class!");
1323     break;
1324   case 64:
1325     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1326       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1327                                     .addFrameIndex(FI)
1328                                     .add(predOps(ARMCC::AL))
1329                                     .addMemOperand(MMO);
1330       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1331       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1332       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1333       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1334       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1335       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1336       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1337       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1338       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1339         MIB.addReg(DestReg, RegState::ImplicitDefine);
1340     } else
1341       llvm_unreachable("Unknown reg class!");
1342     break;
1343   default:
1344     llvm_unreachable("Unknown regclass!");
1345   }
1346 }
1347 
1348 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1349                                                int &FrameIndex) const {
1350   switch (MI.getOpcode()) {
1351   default: break;
1352   case ARM::LDRrs:
1353   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1354     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1355         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1356         MI.getOperand(3).getImm() == 0) {
1357       FrameIndex = MI.getOperand(1).getIndex();
1358       return MI.getOperand(0).getReg();
1359     }
1360     break;
1361   case ARM::LDRi12:
1362   case ARM::t2LDRi12:
1363   case ARM::tLDRspi:
1364   case ARM::VLDRD:
1365   case ARM::VLDRS:
1366     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1367         MI.getOperand(2).getImm() == 0) {
1368       FrameIndex = MI.getOperand(1).getIndex();
1369       return MI.getOperand(0).getReg();
1370     }
1371     break;
1372   case ARM::VLD1q64:
1373   case ARM::VLD1d8TPseudo:
1374   case ARM::VLD1d16TPseudo:
1375   case ARM::VLD1d32TPseudo:
1376   case ARM::VLD1d64TPseudo:
1377   case ARM::VLD1d8QPseudo:
1378   case ARM::VLD1d16QPseudo:
1379   case ARM::VLD1d32QPseudo:
1380   case ARM::VLD1d64QPseudo:
1381     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1382       FrameIndex = MI.getOperand(1).getIndex();
1383       return MI.getOperand(0).getReg();
1384     }
1385     break;
1386   case ARM::VLDMQIA:
1387     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1388       FrameIndex = MI.getOperand(1).getIndex();
1389       return MI.getOperand(0).getReg();
1390     }
1391     break;
1392   }
1393 
1394   return 0;
1395 }
1396 
1397 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1398                                                      int &FrameIndex) const {
1399   SmallVector<const MachineMemOperand *, 1> Accesses;
1400   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1401       Accesses.size() == 1) {
1402     FrameIndex =
1403         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1404             ->getFrameIndex();
1405     return true;
1406   }
1407   return false;
1408 }
1409 
1410 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1411 /// depending on whether the result is used.
1412 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1413   bool isThumb1 = Subtarget.isThumb1Only();
1414   bool isThumb2 = Subtarget.isThumb2();
1415   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1416 
1417   DebugLoc dl = MI->getDebugLoc();
1418   MachineBasicBlock *BB = MI->getParent();
1419 
1420   MachineInstrBuilder LDM, STM;
1421   if (isThumb1 || !MI->getOperand(1).isDead()) {
1422     MachineOperand LDWb(MI->getOperand(1));
1423     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1424                                                  : isThumb1 ? ARM::tLDMIA_UPD
1425                                                             : ARM::LDMIA_UPD))
1426               .add(LDWb);
1427   } else {
1428     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1429   }
1430 
1431   if (isThumb1 || !MI->getOperand(0).isDead()) {
1432     MachineOperand STWb(MI->getOperand(0));
1433     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1434                                                  : isThumb1 ? ARM::tSTMIA_UPD
1435                                                             : ARM::STMIA_UPD))
1436               .add(STWb);
1437   } else {
1438     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1439   }
1440 
1441   MachineOperand LDBase(MI->getOperand(3));
1442   LDM.add(LDBase).add(predOps(ARMCC::AL));
1443 
1444   MachineOperand STBase(MI->getOperand(2));
1445   STM.add(STBase).add(predOps(ARMCC::AL));
1446 
1447   // Sort the scratch registers into ascending order.
1448   const TargetRegisterInfo &TRI = getRegisterInfo();
1449   SmallVector<unsigned, 6> ScratchRegs;
1450   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1451     ScratchRegs.push_back(MI->getOperand(I).getReg());
1452   llvm::sort(ScratchRegs,
1453              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1454                return TRI.getEncodingValue(Reg1) <
1455                       TRI.getEncodingValue(Reg2);
1456              });
1457 
1458   for (const auto &Reg : ScratchRegs) {
1459     LDM.addReg(Reg, RegState::Define);
1460     STM.addReg(Reg, RegState::Kill);
1461   }
1462 
1463   BB->erase(MI);
1464 }
1465 
1466 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1467   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1468     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1469            "LOAD_STACK_GUARD currently supported only for MachO.");
1470     expandLoadStackGuard(MI);
1471     MI.getParent()->erase(MI);
1472     return true;
1473   }
1474 
1475   if (MI.getOpcode() == ARM::MEMCPY) {
1476     expandMEMCPY(MI);
1477     return true;
1478   }
1479 
1480   // This hook gets to expand COPY instructions before they become
1481   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1482   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1483   // changed into a VORR that can go down the NEON pipeline.
1484   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || Subtarget.isFPOnlySP())
1485     return false;
1486 
1487   // Look for a copy between even S-registers.  That is where we keep floats
1488   // when using NEON v2f32 instructions for f32 arithmetic.
1489   unsigned DstRegS = MI.getOperand(0).getReg();
1490   unsigned SrcRegS = MI.getOperand(1).getReg();
1491   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1492     return false;
1493 
1494   const TargetRegisterInfo *TRI = &getRegisterInfo();
1495   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1496                                               &ARM::DPRRegClass);
1497   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1498                                               &ARM::DPRRegClass);
1499   if (!DstRegD || !SrcRegD)
1500     return false;
1501 
1502   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1503   // legal if the COPY already defines the full DstRegD, and it isn't a
1504   // sub-register insertion.
1505   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1506     return false;
1507 
1508   // A dead copy shouldn't show up here, but reject it just in case.
1509   if (MI.getOperand(0).isDead())
1510     return false;
1511 
1512   // All clear, widen the COPY.
1513   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1514   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1515 
1516   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1517   // or some other super-register.
1518   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1519   if (ImpDefIdx != -1)
1520     MI.RemoveOperand(ImpDefIdx);
1521 
1522   // Change the opcode and operands.
1523   MI.setDesc(get(ARM::VMOVD));
1524   MI.getOperand(0).setReg(DstRegD);
1525   MI.getOperand(1).setReg(SrcRegD);
1526   MIB.add(predOps(ARMCC::AL));
1527 
1528   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1529   // register scavenger and machine verifier, so we need to indicate that we
1530   // are reading an undefined value from SrcRegD, but a proper value from
1531   // SrcRegS.
1532   MI.getOperand(1).setIsUndef();
1533   MIB.addReg(SrcRegS, RegState::Implicit);
1534 
1535   // SrcRegD may actually contain an unrelated value in the ssub_1
1536   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1537   if (MI.getOperand(1).isKill()) {
1538     MI.getOperand(1).setIsKill(false);
1539     MI.addRegisterKilled(SrcRegS, TRI, true);
1540   }
1541 
1542   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1543   return true;
1544 }
1545 
1546 /// Create a copy of a const pool value. Update CPI to the new index and return
1547 /// the label UID.
1548 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1549   MachineConstantPool *MCP = MF.getConstantPool();
1550   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1551 
1552   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1553   assert(MCPE.isMachineConstantPoolEntry() &&
1554          "Expecting a machine constantpool entry!");
1555   ARMConstantPoolValue *ACPV =
1556     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1557 
1558   unsigned PCLabelId = AFI->createPICLabelUId();
1559   ARMConstantPoolValue *NewCPV = nullptr;
1560 
1561   // FIXME: The below assumes PIC relocation model and that the function
1562   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1563   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1564   // instructions, so that's probably OK, but is PIC always correct when
1565   // we get here?
1566   if (ACPV->isGlobalValue())
1567     NewCPV = ARMConstantPoolConstant::Create(
1568         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1569         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1570   else if (ACPV->isExtSymbol())
1571     NewCPV = ARMConstantPoolSymbol::
1572       Create(MF.getFunction().getContext(),
1573              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1574   else if (ACPV->isBlockAddress())
1575     NewCPV = ARMConstantPoolConstant::
1576       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1577              ARMCP::CPBlockAddress, 4);
1578   else if (ACPV->isLSDA())
1579     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1580                                              ARMCP::CPLSDA, 4);
1581   else if (ACPV->isMachineBasicBlock())
1582     NewCPV = ARMConstantPoolMBB::
1583       Create(MF.getFunction().getContext(),
1584              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1585   else
1586     llvm_unreachable("Unexpected ARM constantpool value type!!");
1587   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1588   return PCLabelId;
1589 }
1590 
1591 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1592                                      MachineBasicBlock::iterator I,
1593                                      unsigned DestReg, unsigned SubIdx,
1594                                      const MachineInstr &Orig,
1595                                      const TargetRegisterInfo &TRI) const {
1596   unsigned Opcode = Orig.getOpcode();
1597   switch (Opcode) {
1598   default: {
1599     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1600     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1601     MBB.insert(I, MI);
1602     break;
1603   }
1604   case ARM::tLDRpci_pic:
1605   case ARM::t2LDRpci_pic: {
1606     MachineFunction &MF = *MBB.getParent();
1607     unsigned CPI = Orig.getOperand(1).getIndex();
1608     unsigned PCLabelId = duplicateCPV(MF, CPI);
1609     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1610         .addConstantPoolIndex(CPI)
1611         .addImm(PCLabelId)
1612         .cloneMemRefs(Orig);
1613     break;
1614   }
1615   }
1616 }
1617 
1618 MachineInstr &
1619 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1620     MachineBasicBlock::iterator InsertBefore,
1621     const MachineInstr &Orig) const {
1622   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1623   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1624   for (;;) {
1625     switch (I->getOpcode()) {
1626     case ARM::tLDRpci_pic:
1627     case ARM::t2LDRpci_pic: {
1628       MachineFunction &MF = *MBB.getParent();
1629       unsigned CPI = I->getOperand(1).getIndex();
1630       unsigned PCLabelId = duplicateCPV(MF, CPI);
1631       I->getOperand(1).setIndex(CPI);
1632       I->getOperand(2).setImm(PCLabelId);
1633       break;
1634     }
1635     }
1636     if (!I->isBundledWithSucc())
1637       break;
1638     ++I;
1639   }
1640   return Cloned;
1641 }
1642 
1643 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1644                                         const MachineInstr &MI1,
1645                                         const MachineRegisterInfo *MRI) const {
1646   unsigned Opcode = MI0.getOpcode();
1647   if (Opcode == ARM::t2LDRpci ||
1648       Opcode == ARM::t2LDRpci_pic ||
1649       Opcode == ARM::tLDRpci ||
1650       Opcode == ARM::tLDRpci_pic ||
1651       Opcode == ARM::LDRLIT_ga_pcrel ||
1652       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1653       Opcode == ARM::tLDRLIT_ga_pcrel ||
1654       Opcode == ARM::MOV_ga_pcrel ||
1655       Opcode == ARM::MOV_ga_pcrel_ldr ||
1656       Opcode == ARM::t2MOV_ga_pcrel) {
1657     if (MI1.getOpcode() != Opcode)
1658       return false;
1659     if (MI0.getNumOperands() != MI1.getNumOperands())
1660       return false;
1661 
1662     const MachineOperand &MO0 = MI0.getOperand(1);
1663     const MachineOperand &MO1 = MI1.getOperand(1);
1664     if (MO0.getOffset() != MO1.getOffset())
1665       return false;
1666 
1667     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1668         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1669         Opcode == ARM::tLDRLIT_ga_pcrel ||
1670         Opcode == ARM::MOV_ga_pcrel ||
1671         Opcode == ARM::MOV_ga_pcrel_ldr ||
1672         Opcode == ARM::t2MOV_ga_pcrel)
1673       // Ignore the PC labels.
1674       return MO0.getGlobal() == MO1.getGlobal();
1675 
1676     const MachineFunction *MF = MI0.getParent()->getParent();
1677     const MachineConstantPool *MCP = MF->getConstantPool();
1678     int CPI0 = MO0.getIndex();
1679     int CPI1 = MO1.getIndex();
1680     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1681     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1682     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1683     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1684     if (isARMCP0 && isARMCP1) {
1685       ARMConstantPoolValue *ACPV0 =
1686         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1687       ARMConstantPoolValue *ACPV1 =
1688         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1689       return ACPV0->hasSameValue(ACPV1);
1690     } else if (!isARMCP0 && !isARMCP1) {
1691       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1692     }
1693     return false;
1694   } else if (Opcode == ARM::PICLDR) {
1695     if (MI1.getOpcode() != Opcode)
1696       return false;
1697     if (MI0.getNumOperands() != MI1.getNumOperands())
1698       return false;
1699 
1700     unsigned Addr0 = MI0.getOperand(1).getReg();
1701     unsigned Addr1 = MI1.getOperand(1).getReg();
1702     if (Addr0 != Addr1) {
1703       if (!MRI ||
1704           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1705           !TargetRegisterInfo::isVirtualRegister(Addr1))
1706         return false;
1707 
1708       // This assumes SSA form.
1709       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1710       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1711       // Check if the loaded value, e.g. a constantpool of a global address, are
1712       // the same.
1713       if (!produceSameValue(*Def0, *Def1, MRI))
1714         return false;
1715     }
1716 
1717     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1718       // %12 = PICLDR %11, 0, 14, %noreg
1719       const MachineOperand &MO0 = MI0.getOperand(i);
1720       const MachineOperand &MO1 = MI1.getOperand(i);
1721       if (!MO0.isIdenticalTo(MO1))
1722         return false;
1723     }
1724     return true;
1725   }
1726 
1727   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1728 }
1729 
1730 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1731 /// determine if two loads are loading from the same base address. It should
1732 /// only return true if the base pointers are the same and the only differences
1733 /// between the two addresses is the offset. It also returns the offsets by
1734 /// reference.
1735 ///
1736 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1737 /// is permanently disabled.
1738 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1739                                                int64_t &Offset1,
1740                                                int64_t &Offset2) const {
1741   // Don't worry about Thumb: just ARM and Thumb2.
1742   if (Subtarget.isThumb1Only()) return false;
1743 
1744   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1745     return false;
1746 
1747   switch (Load1->getMachineOpcode()) {
1748   default:
1749     return false;
1750   case ARM::LDRi12:
1751   case ARM::LDRBi12:
1752   case ARM::LDRD:
1753   case ARM::LDRH:
1754   case ARM::LDRSB:
1755   case ARM::LDRSH:
1756   case ARM::VLDRD:
1757   case ARM::VLDRS:
1758   case ARM::t2LDRi8:
1759   case ARM::t2LDRBi8:
1760   case ARM::t2LDRDi8:
1761   case ARM::t2LDRSHi8:
1762   case ARM::t2LDRi12:
1763   case ARM::t2LDRBi12:
1764   case ARM::t2LDRSHi12:
1765     break;
1766   }
1767 
1768   switch (Load2->getMachineOpcode()) {
1769   default:
1770     return false;
1771   case ARM::LDRi12:
1772   case ARM::LDRBi12:
1773   case ARM::LDRD:
1774   case ARM::LDRH:
1775   case ARM::LDRSB:
1776   case ARM::LDRSH:
1777   case ARM::VLDRD:
1778   case ARM::VLDRS:
1779   case ARM::t2LDRi8:
1780   case ARM::t2LDRBi8:
1781   case ARM::t2LDRSHi8:
1782   case ARM::t2LDRi12:
1783   case ARM::t2LDRBi12:
1784   case ARM::t2LDRSHi12:
1785     break;
1786   }
1787 
1788   // Check if base addresses and chain operands match.
1789   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1790       Load1->getOperand(4) != Load2->getOperand(4))
1791     return false;
1792 
1793   // Index should be Reg0.
1794   if (Load1->getOperand(3) != Load2->getOperand(3))
1795     return false;
1796 
1797   // Determine the offsets.
1798   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1799       isa<ConstantSDNode>(Load2->getOperand(1))) {
1800     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1801     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1802     return true;
1803   }
1804 
1805   return false;
1806 }
1807 
1808 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1809 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1810 /// be scheduled togther. On some targets if two loads are loading from
1811 /// addresses in the same cache line, it's better if they are scheduled
1812 /// together. This function takes two integers that represent the load offsets
1813 /// from the common base address. It returns true if it decides it's desirable
1814 /// to schedule the two loads together. "NumLoads" is the number of loads that
1815 /// have already been scheduled after Load1.
1816 ///
1817 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1818 /// is permanently disabled.
1819 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1820                                                int64_t Offset1, int64_t Offset2,
1821                                                unsigned NumLoads) const {
1822   // Don't worry about Thumb: just ARM and Thumb2.
1823   if (Subtarget.isThumb1Only()) return false;
1824 
1825   assert(Offset2 > Offset1);
1826 
1827   if ((Offset2 - Offset1) / 8 > 64)
1828     return false;
1829 
1830   // Check if the machine opcodes are different. If they are different
1831   // then we consider them to not be of the same base address,
1832   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1833   // In this case, they are considered to be the same because they are different
1834   // encoding forms of the same basic instruction.
1835   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1836       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1837          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1838         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1839          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1840     return false;  // FIXME: overly conservative?
1841 
1842   // Four loads in a row should be sufficient.
1843   if (NumLoads >= 3)
1844     return false;
1845 
1846   return true;
1847 }
1848 
1849 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1850                                             const MachineBasicBlock *MBB,
1851                                             const MachineFunction &MF) const {
1852   // Debug info is never a scheduling boundary. It's necessary to be explicit
1853   // due to the special treatment of IT instructions below, otherwise a
1854   // dbg_value followed by an IT will result in the IT instruction being
1855   // considered a scheduling hazard, which is wrong. It should be the actual
1856   // instruction preceding the dbg_value instruction(s), just like it is
1857   // when debug info is not present.
1858   if (MI.isDebugInstr())
1859     return false;
1860 
1861   // Terminators and labels can't be scheduled around.
1862   if (MI.isTerminator() || MI.isPosition())
1863     return true;
1864 
1865   // Treat the start of the IT block as a scheduling boundary, but schedule
1866   // t2IT along with all instructions following it.
1867   // FIXME: This is a big hammer. But the alternative is to add all potential
1868   // true and anti dependencies to IT block instructions as implicit operands
1869   // to the t2IT instruction. The added compile time and complexity does not
1870   // seem worth it.
1871   MachineBasicBlock::const_iterator I = MI;
1872   // Make sure to skip any debug instructions
1873   while (++I != MBB->end() && I->isDebugInstr())
1874     ;
1875   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1876     return true;
1877 
1878   // Don't attempt to schedule around any instruction that defines
1879   // a stack-oriented pointer, as it's unlikely to be profitable. This
1880   // saves compile time, because it doesn't require every single
1881   // stack slot reference to depend on the instruction that does the
1882   // modification.
1883   // Calls don't actually change the stack pointer, even if they have imp-defs.
1884   // No ARM calling conventions change the stack pointer. (X86 calling
1885   // conventions sometimes do).
1886   if (!MI.isCall() && MI.definesRegister(ARM::SP))
1887     return true;
1888 
1889   return false;
1890 }
1891 
1892 bool ARMBaseInstrInfo::
1893 isProfitableToIfCvt(MachineBasicBlock &MBB,
1894                     unsigned NumCycles, unsigned ExtraPredCycles,
1895                     BranchProbability Probability) const {
1896   if (!NumCycles)
1897     return false;
1898 
1899   // If we are optimizing for size, see if the branch in the predecessor can be
1900   // lowered to cbn?z by the constant island lowering pass, and return false if
1901   // so. This results in a shorter instruction sequence.
1902   if (MBB.getParent()->getFunction().hasOptSize()) {
1903     MachineBasicBlock *Pred = *MBB.pred_begin();
1904     if (!Pred->empty()) {
1905       MachineInstr *LastMI = &*Pred->rbegin();
1906       if (LastMI->getOpcode() == ARM::t2Bcc) {
1907         const TargetRegisterInfo *TRI = &getRegisterInfo();
1908         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
1909         if (CmpMI)
1910           return false;
1911       }
1912     }
1913   }
1914   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
1915                              MBB, 0, 0, Probability);
1916 }
1917 
1918 bool ARMBaseInstrInfo::
1919 isProfitableToIfCvt(MachineBasicBlock &TBB,
1920                     unsigned TCycles, unsigned TExtra,
1921                     MachineBasicBlock &FBB,
1922                     unsigned FCycles, unsigned FExtra,
1923                     BranchProbability Probability) const {
1924   if (!TCycles)
1925     return false;
1926 
1927   // In thumb code we often end up trading one branch for a IT block, and
1928   // if we are cloning the instruction can increase code size. Prevent
1929   // blocks with multiple predecesors from being ifcvted to prevent this
1930   // cloning.
1931   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
1932     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
1933       return false;
1934   }
1935 
1936   // Attempt to estimate the relative costs of predication versus branching.
1937   // Here we scale up each component of UnpredCost to avoid precision issue when
1938   // scaling TCycles/FCycles by Probability.
1939   const unsigned ScalingUpFactor = 1024;
1940 
1941   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
1942   unsigned UnpredCost;
1943   if (!Subtarget.hasBranchPredictor()) {
1944     // When we don't have a branch predictor it's always cheaper to not take a
1945     // branch than take it, so we have to take that into account.
1946     unsigned NotTakenBranchCost = 1;
1947     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
1948     unsigned TUnpredCycles, FUnpredCycles;
1949     if (!FCycles) {
1950       // Triangle: TBB is the fallthrough
1951       TUnpredCycles = TCycles + NotTakenBranchCost;
1952       FUnpredCycles = TakenBranchCost;
1953     } else {
1954       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
1955       TUnpredCycles = TCycles + TakenBranchCost;
1956       FUnpredCycles = FCycles + NotTakenBranchCost;
1957       // The branch at the end of FBB will disappear when it's predicated, so
1958       // discount it from PredCost.
1959       PredCost -= 1 * ScalingUpFactor;
1960     }
1961     // The total cost is the cost of each path scaled by their probabilites
1962     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
1963     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
1964     UnpredCost = TUnpredCost + FUnpredCost;
1965     // When predicating assume that the first IT can be folded away but later
1966     // ones cost one cycle each
1967     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
1968       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
1969     }
1970   } else {
1971     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
1972     unsigned FUnpredCost =
1973       Probability.getCompl().scale(FCycles * ScalingUpFactor);
1974     UnpredCost = TUnpredCost + FUnpredCost;
1975     UnpredCost += 1 * ScalingUpFactor; // The branch itself
1976     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
1977   }
1978 
1979   return PredCost <= UnpredCost;
1980 }
1981 
1982 bool
1983 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1984                                             MachineBasicBlock &FMBB) const {
1985   // Reduce false anti-dependencies to let the target's out-of-order execution
1986   // engine do its thing.
1987   return Subtarget.isProfitableToUnpredicate();
1988 }
1989 
1990 /// getInstrPredicate - If instruction is predicated, returns its predicate
1991 /// condition, otherwise returns AL. It also returns the condition code
1992 /// register by reference.
1993 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
1994                                          unsigned &PredReg) {
1995   int PIdx = MI.findFirstPredOperandIdx();
1996   if (PIdx == -1) {
1997     PredReg = 0;
1998     return ARMCC::AL;
1999   }
2000 
2001   PredReg = MI.getOperand(PIdx+1).getReg();
2002   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2003 }
2004 
2005 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2006   if (Opc == ARM::B)
2007     return ARM::Bcc;
2008   if (Opc == ARM::tB)
2009     return ARM::tBcc;
2010   if (Opc == ARM::t2B)
2011     return ARM::t2Bcc;
2012 
2013   llvm_unreachable("Unknown unconditional branch opcode!");
2014 }
2015 
2016 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2017                                                        bool NewMI,
2018                                                        unsigned OpIdx1,
2019                                                        unsigned OpIdx2) const {
2020   switch (MI.getOpcode()) {
2021   case ARM::MOVCCr:
2022   case ARM::t2MOVCCr: {
2023     // MOVCC can be commuted by inverting the condition.
2024     unsigned PredReg = 0;
2025     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2026     // MOVCC AL can't be inverted. Shouldn't happen.
2027     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2028       return nullptr;
2029     MachineInstr *CommutedMI =
2030         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2031     if (!CommutedMI)
2032       return nullptr;
2033     // After swapping the MOVCC operands, also invert the condition.
2034     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2035         .setImm(ARMCC::getOppositeCondition(CC));
2036     return CommutedMI;
2037   }
2038   }
2039   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2040 }
2041 
2042 /// Identify instructions that can be folded into a MOVCC instruction, and
2043 /// return the defining instruction.
2044 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
2045                                       const MachineRegisterInfo &MRI,
2046                                       const TargetInstrInfo *TII) {
2047   if (!TargetRegisterInfo::isVirtualRegister(Reg))
2048     return nullptr;
2049   if (!MRI.hasOneNonDBGUse(Reg))
2050     return nullptr;
2051   MachineInstr *MI = MRI.getVRegDef(Reg);
2052   if (!MI)
2053     return nullptr;
2054   // MI is folded into the MOVCC by predicating it.
2055   if (!MI->isPredicable())
2056     return nullptr;
2057   // Check if MI has any non-dead defs or physreg uses. This also detects
2058   // predicated instructions which will be reading CPSR.
2059   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2060     const MachineOperand &MO = MI->getOperand(i);
2061     // Reject frame index operands, PEI can't handle the predicated pseudos.
2062     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2063       return nullptr;
2064     if (!MO.isReg())
2065       continue;
2066     // MI can't have any tied operands, that would conflict with predication.
2067     if (MO.isTied())
2068       return nullptr;
2069     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
2070       return nullptr;
2071     if (MO.isDef() && !MO.isDead())
2072       return nullptr;
2073   }
2074   bool DontMoveAcrossStores = true;
2075   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2076     return nullptr;
2077   return MI;
2078 }
2079 
2080 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2081                                      SmallVectorImpl<MachineOperand> &Cond,
2082                                      unsigned &TrueOp, unsigned &FalseOp,
2083                                      bool &Optimizable) const {
2084   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2085          "Unknown select instruction");
2086   // MOVCC operands:
2087   // 0: Def.
2088   // 1: True use.
2089   // 2: False use.
2090   // 3: Condition code.
2091   // 4: CPSR use.
2092   TrueOp = 1;
2093   FalseOp = 2;
2094   Cond.push_back(MI.getOperand(3));
2095   Cond.push_back(MI.getOperand(4));
2096   // We can always fold a def.
2097   Optimizable = true;
2098   return false;
2099 }
2100 
2101 MachineInstr *
2102 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2103                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2104                                  bool PreferFalse) const {
2105   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2106          "Unknown select instruction");
2107   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2108   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2109   bool Invert = !DefMI;
2110   if (!DefMI)
2111     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2112   if (!DefMI)
2113     return nullptr;
2114 
2115   // Find new register class to use.
2116   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2117   unsigned DestReg = MI.getOperand(0).getReg();
2118   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2119   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2120     return nullptr;
2121 
2122   // Create a new predicated version of DefMI.
2123   // Rfalse is the first use.
2124   MachineInstrBuilder NewMI =
2125       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2126 
2127   // Copy all the DefMI operands, excluding its (null) predicate.
2128   const MCInstrDesc &DefDesc = DefMI->getDesc();
2129   for (unsigned i = 1, e = DefDesc.getNumOperands();
2130        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2131     NewMI.add(DefMI->getOperand(i));
2132 
2133   unsigned CondCode = MI.getOperand(3).getImm();
2134   if (Invert)
2135     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2136   else
2137     NewMI.addImm(CondCode);
2138   NewMI.add(MI.getOperand(4));
2139 
2140   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2141   if (NewMI->hasOptionalDef())
2142     NewMI.add(condCodeOp());
2143 
2144   // The output register value when the predicate is false is an implicit
2145   // register operand tied to the first def.
2146   // The tie makes the register allocator ensure the FalseReg is allocated the
2147   // same register as operand 0.
2148   FalseReg.setImplicit();
2149   NewMI.add(FalseReg);
2150   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2151 
2152   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2153   SeenMIs.insert(NewMI);
2154   SeenMIs.erase(DefMI);
2155 
2156   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2157   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2158   // loop is expensive, but at least remove kill flags if they are in different
2159   // BBs.
2160   if (DefMI->getParent() != MI.getParent())
2161     NewMI->clearKillInfo();
2162 
2163   // The caller will erase MI, but not DefMI.
2164   DefMI->eraseFromParent();
2165   return NewMI;
2166 }
2167 
2168 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2169 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2170 /// def operand.
2171 ///
2172 /// This will go away once we can teach tblgen how to set the optional CPSR def
2173 /// operand itself.
2174 struct AddSubFlagsOpcodePair {
2175   uint16_t PseudoOpc;
2176   uint16_t MachineOpc;
2177 };
2178 
2179 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2180   {ARM::ADDSri, ARM::ADDri},
2181   {ARM::ADDSrr, ARM::ADDrr},
2182   {ARM::ADDSrsi, ARM::ADDrsi},
2183   {ARM::ADDSrsr, ARM::ADDrsr},
2184 
2185   {ARM::SUBSri, ARM::SUBri},
2186   {ARM::SUBSrr, ARM::SUBrr},
2187   {ARM::SUBSrsi, ARM::SUBrsi},
2188   {ARM::SUBSrsr, ARM::SUBrsr},
2189 
2190   {ARM::RSBSri, ARM::RSBri},
2191   {ARM::RSBSrsi, ARM::RSBrsi},
2192   {ARM::RSBSrsr, ARM::RSBrsr},
2193 
2194   {ARM::tADDSi3, ARM::tADDi3},
2195   {ARM::tADDSi8, ARM::tADDi8},
2196   {ARM::tADDSrr, ARM::tADDrr},
2197   {ARM::tADCS, ARM::tADC},
2198 
2199   {ARM::tSUBSi3, ARM::tSUBi3},
2200   {ARM::tSUBSi8, ARM::tSUBi8},
2201   {ARM::tSUBSrr, ARM::tSUBrr},
2202   {ARM::tSBCS, ARM::tSBC},
2203   {ARM::tRSBS, ARM::tRSB},
2204 
2205   {ARM::t2ADDSri, ARM::t2ADDri},
2206   {ARM::t2ADDSrr, ARM::t2ADDrr},
2207   {ARM::t2ADDSrs, ARM::t2ADDrs},
2208 
2209   {ARM::t2SUBSri, ARM::t2SUBri},
2210   {ARM::t2SUBSrr, ARM::t2SUBrr},
2211   {ARM::t2SUBSrs, ARM::t2SUBrs},
2212 
2213   {ARM::t2RSBSri, ARM::t2RSBri},
2214   {ARM::t2RSBSrs, ARM::t2RSBrs},
2215 };
2216 
2217 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2218   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2219     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2220       return AddSubFlagsOpcodeMap[i].MachineOpc;
2221   return 0;
2222 }
2223 
2224 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2225                                    MachineBasicBlock::iterator &MBBI,
2226                                    const DebugLoc &dl, unsigned DestReg,
2227                                    unsigned BaseReg, int NumBytes,
2228                                    ARMCC::CondCodes Pred, unsigned PredReg,
2229                                    const ARMBaseInstrInfo &TII,
2230                                    unsigned MIFlags) {
2231   if (NumBytes == 0 && DestReg != BaseReg) {
2232     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2233         .addReg(BaseReg, RegState::Kill)
2234         .add(predOps(Pred, PredReg))
2235         .add(condCodeOp())
2236         .setMIFlags(MIFlags);
2237     return;
2238   }
2239 
2240   bool isSub = NumBytes < 0;
2241   if (isSub) NumBytes = -NumBytes;
2242 
2243   while (NumBytes) {
2244     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2245     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2246     assert(ThisVal && "Didn't extract field correctly");
2247 
2248     // We will handle these bits from offset, clear them.
2249     NumBytes &= ~ThisVal;
2250 
2251     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2252 
2253     // Build the new ADD / SUB.
2254     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2255     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2256         .addReg(BaseReg, RegState::Kill)
2257         .addImm(ThisVal)
2258         .add(predOps(Pred, PredReg))
2259         .add(condCodeOp())
2260         .setMIFlags(MIFlags);
2261     BaseReg = DestReg;
2262   }
2263 }
2264 
2265 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2266                                       MachineFunction &MF, MachineInstr *MI,
2267                                       unsigned NumBytes) {
2268   // This optimisation potentially adds lots of load and store
2269   // micro-operations, it's only really a great benefit to code-size.
2270   if (!Subtarget.hasMinSize())
2271     return false;
2272 
2273   // If only one register is pushed/popped, LLVM can use an LDR/STR
2274   // instead. We can't modify those so make sure we're dealing with an
2275   // instruction we understand.
2276   bool IsPop = isPopOpcode(MI->getOpcode());
2277   bool IsPush = isPushOpcode(MI->getOpcode());
2278   if (!IsPush && !IsPop)
2279     return false;
2280 
2281   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2282                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2283   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2284                      MI->getOpcode() == ARM::tPOP ||
2285                      MI->getOpcode() == ARM::tPOP_RET;
2286 
2287   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2288                           MI->getOperand(1).getReg() == ARM::SP)) &&
2289          "trying to fold sp update into non-sp-updating push/pop");
2290 
2291   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2292   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2293   // if this is violated.
2294   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2295     return false;
2296 
2297   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2298   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2299   int RegListIdx = IsT1PushPop ? 2 : 4;
2300 
2301   // Calculate the space we'll need in terms of registers.
2302   unsigned RegsNeeded;
2303   const TargetRegisterClass *RegClass;
2304   if (IsVFPPushPop) {
2305     RegsNeeded = NumBytes / 8;
2306     RegClass = &ARM::DPRRegClass;
2307   } else {
2308     RegsNeeded = NumBytes / 4;
2309     RegClass = &ARM::GPRRegClass;
2310   }
2311 
2312   // We're going to have to strip all list operands off before
2313   // re-adding them since the order matters, so save the existing ones
2314   // for later.
2315   SmallVector<MachineOperand, 4> RegList;
2316 
2317   // We're also going to need the first register transferred by this
2318   // instruction, which won't necessarily be the first register in the list.
2319   unsigned FirstRegEnc = -1;
2320 
2321   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2322   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2323     MachineOperand &MO = MI->getOperand(i);
2324     RegList.push_back(MO);
2325 
2326     if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2327       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2328   }
2329 
2330   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2331 
2332   // Now try to find enough space in the reglist to allocate NumBytes.
2333   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2334        --CurRegEnc) {
2335     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2336     if (IsT1PushPop && CurReg > ARM::R7)
2337       continue;
2338     if (!IsPop) {
2339       // Pushing any register is completely harmless, mark the register involved
2340       // as undef since we don't care about its value and must not restore it
2341       // during stack unwinding.
2342       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2343                                                   false, false, true));
2344       --RegsNeeded;
2345       continue;
2346     }
2347 
2348     // However, we can only pop an extra register if it's not live. For
2349     // registers live within the function we might clobber a return value
2350     // register; the other way a register can be live here is if it's
2351     // callee-saved.
2352     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2353         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2354         MachineBasicBlock::LQR_Dead) {
2355       // VFP pops don't allow holes in the register list, so any skip is fatal
2356       // for our transformation. GPR pops do, so we should just keep looking.
2357       if (IsVFPPushPop)
2358         return false;
2359       else
2360         continue;
2361     }
2362 
2363     // Mark the unimportant registers as <def,dead> in the POP.
2364     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2365                                                 true));
2366     --RegsNeeded;
2367   }
2368 
2369   if (RegsNeeded > 0)
2370     return false;
2371 
2372   // Finally we know we can profitably perform the optimisation so go
2373   // ahead: strip all existing registers off and add them back again
2374   // in the right order.
2375   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2376     MI->RemoveOperand(i);
2377 
2378   // Add the complete list back in.
2379   MachineInstrBuilder MIB(MF, &*MI);
2380   for (int i = RegList.size() - 1; i >= 0; --i)
2381     MIB.add(RegList[i]);
2382 
2383   return true;
2384 }
2385 
2386 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2387                                 unsigned FrameReg, int &Offset,
2388                                 const ARMBaseInstrInfo &TII) {
2389   unsigned Opcode = MI.getOpcode();
2390   const MCInstrDesc &Desc = MI.getDesc();
2391   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2392   bool isSub = false;
2393 
2394   // Memory operands in inline assembly always use AddrMode2.
2395   if (Opcode == ARM::INLINEASM)
2396     AddrMode = ARMII::AddrMode2;
2397 
2398   if (Opcode == ARM::ADDri) {
2399     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2400     if (Offset == 0) {
2401       // Turn it into a move.
2402       MI.setDesc(TII.get(ARM::MOVr));
2403       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2404       MI.RemoveOperand(FrameRegIdx+1);
2405       Offset = 0;
2406       return true;
2407     } else if (Offset < 0) {
2408       Offset = -Offset;
2409       isSub = true;
2410       MI.setDesc(TII.get(ARM::SUBri));
2411     }
2412 
2413     // Common case: small offset, fits into instruction.
2414     if (ARM_AM::getSOImmVal(Offset) != -1) {
2415       // Replace the FrameIndex with sp / fp
2416       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2417       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2418       Offset = 0;
2419       return true;
2420     }
2421 
2422     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2423     // as possible.
2424     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2425     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2426 
2427     // We will handle these bits from offset, clear them.
2428     Offset &= ~ThisImmVal;
2429 
2430     // Get the properly encoded SOImmVal field.
2431     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2432            "Bit extraction didn't work?");
2433     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2434  } else {
2435     unsigned ImmIdx = 0;
2436     int InstrOffs = 0;
2437     unsigned NumBits = 0;
2438     unsigned Scale = 1;
2439     switch (AddrMode) {
2440     case ARMII::AddrMode_i12:
2441       ImmIdx = FrameRegIdx + 1;
2442       InstrOffs = MI.getOperand(ImmIdx).getImm();
2443       NumBits = 12;
2444       break;
2445     case ARMII::AddrMode2:
2446       ImmIdx = FrameRegIdx+2;
2447       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2448       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2449         InstrOffs *= -1;
2450       NumBits = 12;
2451       break;
2452     case ARMII::AddrMode3:
2453       ImmIdx = FrameRegIdx+2;
2454       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2455       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2456         InstrOffs *= -1;
2457       NumBits = 8;
2458       break;
2459     case ARMII::AddrMode4:
2460     case ARMII::AddrMode6:
2461       // Can't fold any offset even if it's zero.
2462       return false;
2463     case ARMII::AddrMode5:
2464       ImmIdx = FrameRegIdx+1;
2465       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2466       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2467         InstrOffs *= -1;
2468       NumBits = 8;
2469       Scale = 4;
2470       break;
2471     case ARMII::AddrMode5FP16:
2472       ImmIdx = FrameRegIdx+1;
2473       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2474       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2475         InstrOffs *= -1;
2476       NumBits = 8;
2477       Scale = 2;
2478       break;
2479     default:
2480       llvm_unreachable("Unsupported addressing mode!");
2481     }
2482 
2483     Offset += InstrOffs * Scale;
2484     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2485     if (Offset < 0) {
2486       Offset = -Offset;
2487       isSub = true;
2488     }
2489 
2490     // Attempt to fold address comp. if opcode has offset bits
2491     if (NumBits > 0) {
2492       // Common case: small offset, fits into instruction.
2493       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2494       int ImmedOffset = Offset / Scale;
2495       unsigned Mask = (1 << NumBits) - 1;
2496       if ((unsigned)Offset <= Mask * Scale) {
2497         // Replace the FrameIndex with sp
2498         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2499         // FIXME: When addrmode2 goes away, this will simplify (like the
2500         // T2 version), as the LDR.i12 versions don't need the encoding
2501         // tricks for the offset value.
2502         if (isSub) {
2503           if (AddrMode == ARMII::AddrMode_i12)
2504             ImmedOffset = -ImmedOffset;
2505           else
2506             ImmedOffset |= 1 << NumBits;
2507         }
2508         ImmOp.ChangeToImmediate(ImmedOffset);
2509         Offset = 0;
2510         return true;
2511       }
2512 
2513       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2514       ImmedOffset = ImmedOffset & Mask;
2515       if (isSub) {
2516         if (AddrMode == ARMII::AddrMode_i12)
2517           ImmedOffset = -ImmedOffset;
2518         else
2519           ImmedOffset |= 1 << NumBits;
2520       }
2521       ImmOp.ChangeToImmediate(ImmedOffset);
2522       Offset &= ~(Mask*Scale);
2523     }
2524   }
2525 
2526   Offset = (isSub) ? -Offset : Offset;
2527   return Offset == 0;
2528 }
2529 
2530 /// analyzeCompare - For a comparison instruction, return the source registers
2531 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2532 /// compares against in CmpValue. Return true if the comparison instruction
2533 /// can be analyzed.
2534 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2535                                       unsigned &SrcReg2, int &CmpMask,
2536                                       int &CmpValue) const {
2537   switch (MI.getOpcode()) {
2538   default: break;
2539   case ARM::CMPri:
2540   case ARM::t2CMPri:
2541   case ARM::tCMPi8:
2542     SrcReg = MI.getOperand(0).getReg();
2543     SrcReg2 = 0;
2544     CmpMask = ~0;
2545     CmpValue = MI.getOperand(1).getImm();
2546     return true;
2547   case ARM::CMPrr:
2548   case ARM::t2CMPrr:
2549   case ARM::tCMPr:
2550     SrcReg = MI.getOperand(0).getReg();
2551     SrcReg2 = MI.getOperand(1).getReg();
2552     CmpMask = ~0;
2553     CmpValue = 0;
2554     return true;
2555   case ARM::TSTri:
2556   case ARM::t2TSTri:
2557     SrcReg = MI.getOperand(0).getReg();
2558     SrcReg2 = 0;
2559     CmpMask = MI.getOperand(1).getImm();
2560     CmpValue = 0;
2561     return true;
2562   }
2563 
2564   return false;
2565 }
2566 
2567 /// isSuitableForMask - Identify a suitable 'and' instruction that
2568 /// operates on the given source register and applies the same mask
2569 /// as a 'tst' instruction. Provide a limited look-through for copies.
2570 /// When successful, MI will hold the found instruction.
2571 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2572                               int CmpMask, bool CommonUse) {
2573   switch (MI->getOpcode()) {
2574     case ARM::ANDri:
2575     case ARM::t2ANDri:
2576       if (CmpMask != MI->getOperand(2).getImm())
2577         return false;
2578       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2579         return true;
2580       break;
2581   }
2582 
2583   return false;
2584 }
2585 
2586 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2587 /// the condition code if we modify the instructions such that flags are
2588 /// set by MI(b,a).
2589 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2590   switch (CC) {
2591   default: return ARMCC::AL;
2592   case ARMCC::EQ: return ARMCC::EQ;
2593   case ARMCC::NE: return ARMCC::NE;
2594   case ARMCC::HS: return ARMCC::LS;
2595   case ARMCC::LO: return ARMCC::HI;
2596   case ARMCC::HI: return ARMCC::LO;
2597   case ARMCC::LS: return ARMCC::HS;
2598   case ARMCC::GE: return ARMCC::LE;
2599   case ARMCC::LT: return ARMCC::GT;
2600   case ARMCC::GT: return ARMCC::LT;
2601   case ARMCC::LE: return ARMCC::GE;
2602   }
2603 }
2604 
2605 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2606 /// the condition code if we modify the instructions such that flags are
2607 /// set by ADD(a,b,X).
2608 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2609   switch (CC) {
2610   default: return ARMCC::AL;
2611   case ARMCC::HS: return ARMCC::LO;
2612   case ARMCC::LO: return ARMCC::HS;
2613   case ARMCC::VS: return ARMCC::VS;
2614   case ARMCC::VC: return ARMCC::VC;
2615   }
2616 }
2617 
2618 /// isRedundantFlagInstr - check whether the first instruction, whose only
2619 /// purpose is to update flags, can be made redundant.
2620 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2621 /// CMPri can be made redundant by SUBri if the operands are the same.
2622 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2623 /// This function can be extended later on.
2624 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2625                                         unsigned SrcReg, unsigned SrcReg2,
2626                                         int ImmValue, const MachineInstr *OI,
2627                                         bool &IsThumb1) {
2628   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2629       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2630       ((OI->getOperand(1).getReg() == SrcReg &&
2631         OI->getOperand(2).getReg() == SrcReg2) ||
2632        (OI->getOperand(1).getReg() == SrcReg2 &&
2633         OI->getOperand(2).getReg() == SrcReg))) {
2634     IsThumb1 = false;
2635     return true;
2636   }
2637 
2638   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2639       ((OI->getOperand(2).getReg() == SrcReg &&
2640         OI->getOperand(3).getReg() == SrcReg2) ||
2641        (OI->getOperand(2).getReg() == SrcReg2 &&
2642         OI->getOperand(3).getReg() == SrcReg))) {
2643     IsThumb1 = true;
2644     return true;
2645   }
2646 
2647   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2648       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2649       OI->getOperand(1).getReg() == SrcReg &&
2650       OI->getOperand(2).getImm() == ImmValue) {
2651     IsThumb1 = false;
2652     return true;
2653   }
2654 
2655   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2656       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2657       OI->getOperand(2).getReg() == SrcReg &&
2658       OI->getOperand(3).getImm() == ImmValue) {
2659     IsThumb1 = true;
2660     return true;
2661   }
2662 
2663   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2664       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2665        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2666       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2667       OI->getOperand(0).getReg() == SrcReg &&
2668       OI->getOperand(1).getReg() == SrcReg2) {
2669     IsThumb1 = false;
2670     return true;
2671   }
2672 
2673   if (CmpI->getOpcode() == ARM::tCMPr &&
2674       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2675        OI->getOpcode() == ARM::tADDrr) &&
2676       OI->getOperand(0).getReg() == SrcReg &&
2677       OI->getOperand(2).getReg() == SrcReg2) {
2678     IsThumb1 = true;
2679     return true;
2680   }
2681 
2682   return false;
2683 }
2684 
2685 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2686   switch (MI->getOpcode()) {
2687   default: return false;
2688   case ARM::tLSLri:
2689   case ARM::tLSRri:
2690   case ARM::tLSLrr:
2691   case ARM::tLSRrr:
2692   case ARM::tSUBrr:
2693   case ARM::tADDrr:
2694   case ARM::tADDi3:
2695   case ARM::tADDi8:
2696   case ARM::tSUBi3:
2697   case ARM::tSUBi8:
2698   case ARM::tMUL:
2699   case ARM::tADC:
2700   case ARM::tSBC:
2701   case ARM::tRSB:
2702   case ARM::tAND:
2703   case ARM::tORR:
2704   case ARM::tEOR:
2705   case ARM::tBIC:
2706   case ARM::tMVN:
2707   case ARM::tASRri:
2708   case ARM::tASRrr:
2709   case ARM::tROR:
2710     IsThumb1 = true;
2711     LLVM_FALLTHROUGH;
2712   case ARM::RSBrr:
2713   case ARM::RSBri:
2714   case ARM::RSCrr:
2715   case ARM::RSCri:
2716   case ARM::ADDrr:
2717   case ARM::ADDri:
2718   case ARM::ADCrr:
2719   case ARM::ADCri:
2720   case ARM::SUBrr:
2721   case ARM::SUBri:
2722   case ARM::SBCrr:
2723   case ARM::SBCri:
2724   case ARM::t2RSBri:
2725   case ARM::t2ADDrr:
2726   case ARM::t2ADDri:
2727   case ARM::t2ADCrr:
2728   case ARM::t2ADCri:
2729   case ARM::t2SUBrr:
2730   case ARM::t2SUBri:
2731   case ARM::t2SBCrr:
2732   case ARM::t2SBCri:
2733   case ARM::ANDrr:
2734   case ARM::ANDri:
2735   case ARM::t2ANDrr:
2736   case ARM::t2ANDri:
2737   case ARM::ORRrr:
2738   case ARM::ORRri:
2739   case ARM::t2ORRrr:
2740   case ARM::t2ORRri:
2741   case ARM::EORrr:
2742   case ARM::EORri:
2743   case ARM::t2EORrr:
2744   case ARM::t2EORri:
2745   case ARM::t2LSRri:
2746   case ARM::t2LSRrr:
2747   case ARM::t2LSLri:
2748   case ARM::t2LSLrr:
2749     return true;
2750   }
2751 }
2752 
2753 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2754 /// comparison into one that sets the zero bit in the flags register;
2755 /// Remove a redundant Compare instruction if an earlier instruction can set the
2756 /// flags in the same way as Compare.
2757 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2758 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2759 /// condition code of instructions which use the flags.
2760 bool ARMBaseInstrInfo::optimizeCompareInstr(
2761     MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2762     int CmpValue, const MachineRegisterInfo *MRI) const {
2763   // Get the unique definition of SrcReg.
2764   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2765   if (!MI) return false;
2766 
2767   // Masked compares sometimes use the same register as the corresponding 'and'.
2768   if (CmpMask != ~0) {
2769     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2770       MI = nullptr;
2771       for (MachineRegisterInfo::use_instr_iterator
2772            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2773            UI != UE; ++UI) {
2774         if (UI->getParent() != CmpInstr.getParent())
2775           continue;
2776         MachineInstr *PotentialAND = &*UI;
2777         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2778             isPredicated(*PotentialAND))
2779           continue;
2780         MI = PotentialAND;
2781         break;
2782       }
2783       if (!MI) return false;
2784     }
2785   }
2786 
2787   // Get ready to iterate backward from CmpInstr.
2788   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2789                               B = CmpInstr.getParent()->begin();
2790 
2791   // Early exit if CmpInstr is at the beginning of the BB.
2792   if (I == B) return false;
2793 
2794   // There are two possible candidates which can be changed to set CPSR:
2795   // One is MI, the other is a SUB or ADD instruction.
2796   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2797   // ADDr[ri](r1, r2, X).
2798   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2799   MachineInstr *SubAdd = nullptr;
2800   if (SrcReg2 != 0)
2801     // MI is not a candidate for CMPrr.
2802     MI = nullptr;
2803   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2804     // Conservatively refuse to convert an instruction which isn't in the same
2805     // BB as the comparison.
2806     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2807     // Thus we cannot return here.
2808     if (CmpInstr.getOpcode() == ARM::CMPri ||
2809         CmpInstr.getOpcode() == ARM::t2CMPri ||
2810         CmpInstr.getOpcode() == ARM::tCMPi8)
2811       MI = nullptr;
2812     else
2813       return false;
2814   }
2815 
2816   bool IsThumb1 = false;
2817   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2818     return false;
2819 
2820   // We also want to do this peephole for cases like this: if (a*b == 0),
2821   // and optimise away the CMP instruction from the generated code sequence:
2822   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2823   // resulting from the select instruction, but these MOVS instructions for
2824   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2825   // However, if we only have MOVS instructions in between the CMP and the
2826   // other instruction (the MULS in this example), then the CPSR is dead so we
2827   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2828   // reordering and then continue the analysis hoping we can eliminate the
2829   // CMP. This peephole works on the vregs, so is still in SSA form. As a
2830   // consequence, the movs won't redefine/kill the MUL operands which would
2831   // make this reordering illegal.
2832   const TargetRegisterInfo *TRI = &getRegisterInfo();
2833   if (MI && IsThumb1) {
2834     --I;
2835     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
2836       bool CanReorder = true;
2837       for (; I != E; --I) {
2838         if (I->getOpcode() != ARM::tMOVi8) {
2839           CanReorder = false;
2840           break;
2841         }
2842       }
2843       if (CanReorder) {
2844         MI = MI->removeFromParent();
2845         E = CmpInstr;
2846         CmpInstr.getParent()->insert(E, MI);
2847       }
2848     }
2849     I = CmpInstr;
2850     E = MI;
2851   }
2852 
2853   // Check that CPSR isn't set between the comparison instruction and the one we
2854   // want to change. At the same time, search for SubAdd.
2855   bool SubAddIsThumb1 = false;
2856   do {
2857     const MachineInstr &Instr = *--I;
2858 
2859     // Check whether CmpInstr can be made redundant by the current instruction.
2860     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
2861                              SubAddIsThumb1)) {
2862       SubAdd = &*I;
2863       break;
2864     }
2865 
2866     // Allow E (which was initially MI) to be SubAdd but do not search before E.
2867     if (I == E)
2868       break;
2869 
2870     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2871         Instr.readsRegister(ARM::CPSR, TRI))
2872       // This instruction modifies or uses CPSR after the one we want to
2873       // change. We can't do this transformation.
2874       return false;
2875 
2876     if (I == B) {
2877       // In some cases, we scan the use-list of an instruction for an AND;
2878       // that AND is in the same BB, but may not be scheduled before the
2879       // corresponding TST.  In that case, bail out.
2880       //
2881       // FIXME: We could try to reschedule the AND.
2882       return false;
2883     }
2884   } while (true);
2885 
2886   // Return false if no candidates exist.
2887   if (!MI && !SubAdd)
2888     return false;
2889 
2890   // If we found a SubAdd, use it as it will be closer to the CMP
2891   if (SubAdd) {
2892     MI = SubAdd;
2893     IsThumb1 = SubAddIsThumb1;
2894   }
2895 
2896   // We can't use a predicated instruction - it doesn't always write the flags.
2897   if (isPredicated(*MI))
2898     return false;
2899 
2900   // Scan forward for the use of CPSR
2901   // When checking against MI: if it's a conditional code that requires
2902   // checking of the V bit or C bit, then this is not safe to do.
2903   // It is safe to remove CmpInstr if CPSR is redefined or killed.
2904   // If we are done with the basic block, we need to check whether CPSR is
2905   // live-out.
2906   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2907       OperandsToUpdate;
2908   bool isSafe = false;
2909   I = CmpInstr;
2910   E = CmpInstr.getParent()->end();
2911   while (!isSafe && ++I != E) {
2912     const MachineInstr &Instr = *I;
2913     for (unsigned IO = 0, EO = Instr.getNumOperands();
2914          !isSafe && IO != EO; ++IO) {
2915       const MachineOperand &MO = Instr.getOperand(IO);
2916       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2917         isSafe = true;
2918         break;
2919       }
2920       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2921         continue;
2922       if (MO.isDef()) {
2923         isSafe = true;
2924         break;
2925       }
2926       // Condition code is after the operand before CPSR except for VSELs.
2927       ARMCC::CondCodes CC;
2928       bool IsInstrVSel = true;
2929       switch (Instr.getOpcode()) {
2930       default:
2931         IsInstrVSel = false;
2932         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2933         break;
2934       case ARM::VSELEQD:
2935       case ARM::VSELEQS:
2936         CC = ARMCC::EQ;
2937         break;
2938       case ARM::VSELGTD:
2939       case ARM::VSELGTS:
2940         CC = ARMCC::GT;
2941         break;
2942       case ARM::VSELGED:
2943       case ARM::VSELGES:
2944         CC = ARMCC::GE;
2945         break;
2946       case ARM::VSELVSS:
2947       case ARM::VSELVSD:
2948         CC = ARMCC::VS;
2949         break;
2950       }
2951 
2952       if (SubAdd) {
2953         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2954         // on CMP needs to be updated to be based on SUB.
2955         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
2956         // needs to be modified.
2957         // Push the condition code operands to OperandsToUpdate.
2958         // If it is safe to remove CmpInstr, the condition code of these
2959         // operands will be modified.
2960         unsigned Opc = SubAdd->getOpcode();
2961         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
2962                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
2963                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
2964                      Opc == ARM::tSUBi8;
2965         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
2966         if (!IsSub ||
2967             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
2968              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
2969           // VSel doesn't support condition code update.
2970           if (IsInstrVSel)
2971             return false;
2972           // Ensure we can swap the condition.
2973           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
2974           if (NewCC == ARMCC::AL)
2975             return false;
2976           OperandsToUpdate.push_back(
2977               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2978         }
2979       } else {
2980         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
2981         switch (CC) {
2982         case ARMCC::EQ: // Z
2983         case ARMCC::NE: // Z
2984         case ARMCC::MI: // N
2985         case ARMCC::PL: // N
2986         case ARMCC::AL: // none
2987           // CPSR can be used multiple times, we should continue.
2988           break;
2989         case ARMCC::HS: // C
2990         case ARMCC::LO: // C
2991         case ARMCC::VS: // V
2992         case ARMCC::VC: // V
2993         case ARMCC::HI: // C Z
2994         case ARMCC::LS: // C Z
2995         case ARMCC::GE: // N V
2996         case ARMCC::LT: // N V
2997         case ARMCC::GT: // Z N V
2998         case ARMCC::LE: // Z N V
2999           // The instruction uses the V bit or C bit which is not safe.
3000           return false;
3001         }
3002       }
3003     }
3004   }
3005 
3006   // If CPSR is not killed nor re-defined, we should check whether it is
3007   // live-out. If it is live-out, do not optimize.
3008   if (!isSafe) {
3009     MachineBasicBlock *MBB = CmpInstr.getParent();
3010     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3011              SE = MBB->succ_end(); SI != SE; ++SI)
3012       if ((*SI)->isLiveIn(ARM::CPSR))
3013         return false;
3014   }
3015 
3016   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3017   // set CPSR so this is represented as an explicit output)
3018   if (!IsThumb1) {
3019     MI->getOperand(5).setReg(ARM::CPSR);
3020     MI->getOperand(5).setIsDef(true);
3021   }
3022   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3023   CmpInstr.eraseFromParent();
3024 
3025   // Modify the condition code of operands in OperandsToUpdate.
3026   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3027   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3028   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3029     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3030 
3031   MI->clearRegisterDeads(ARM::CPSR);
3032 
3033   return true;
3034 }
3035 
3036 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3037   // Do not sink MI if it might be used to optimize a redundant compare.
3038   // We heuristically only look at the instruction immediately following MI to
3039   // avoid potentially searching the entire basic block.
3040   if (isPredicated(MI))
3041     return true;
3042   MachineBasicBlock::const_iterator Next = &MI;
3043   ++Next;
3044   unsigned SrcReg, SrcReg2;
3045   int CmpMask, CmpValue;
3046   bool IsThumb1;
3047   if (Next != MI.getParent()->end() &&
3048       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3049       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3050     return false;
3051   return true;
3052 }
3053 
3054 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3055                                      unsigned Reg,
3056                                      MachineRegisterInfo *MRI) const {
3057   // Fold large immediates into add, sub, or, xor.
3058   unsigned DefOpc = DefMI.getOpcode();
3059   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3060     return false;
3061   if (!DefMI.getOperand(1).isImm())
3062     // Could be t2MOVi32imm @xx
3063     return false;
3064 
3065   if (!MRI->hasOneNonDBGUse(Reg))
3066     return false;
3067 
3068   const MCInstrDesc &DefMCID = DefMI.getDesc();
3069   if (DefMCID.hasOptionalDef()) {
3070     unsigned NumOps = DefMCID.getNumOperands();
3071     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3072     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3073       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3074       // to delete DefMI.
3075       return false;
3076   }
3077 
3078   const MCInstrDesc &UseMCID = UseMI.getDesc();
3079   if (UseMCID.hasOptionalDef()) {
3080     unsigned NumOps = UseMCID.getNumOperands();
3081     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3082       // If the instruction sets the flag, do not attempt this optimization
3083       // since it may change the semantics of the code.
3084       return false;
3085   }
3086 
3087   unsigned UseOpc = UseMI.getOpcode();
3088   unsigned NewUseOpc = 0;
3089   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3090   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3091   bool Commute = false;
3092   switch (UseOpc) {
3093   default: return false;
3094   case ARM::SUBrr:
3095   case ARM::ADDrr:
3096   case ARM::ORRrr:
3097   case ARM::EORrr:
3098   case ARM::t2SUBrr:
3099   case ARM::t2ADDrr:
3100   case ARM::t2ORRrr:
3101   case ARM::t2EORrr: {
3102     Commute = UseMI.getOperand(2).getReg() != Reg;
3103     switch (UseOpc) {
3104     default: break;
3105     case ARM::ADDrr:
3106     case ARM::SUBrr:
3107       if (UseOpc == ARM::SUBrr && Commute)
3108         return false;
3109 
3110       // ADD/SUB are special because they're essentially the same operation, so
3111       // we can handle a larger range of immediates.
3112       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3113         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3114       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3115         ImmVal = -ImmVal;
3116         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3117       } else
3118         return false;
3119       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3120       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3121       break;
3122     case ARM::ORRrr:
3123     case ARM::EORrr:
3124       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3125         return false;
3126       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3127       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3128       switch (UseOpc) {
3129       default: break;
3130       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3131       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3132       }
3133       break;
3134     case ARM::t2ADDrr:
3135     case ARM::t2SUBrr:
3136       if (UseOpc == ARM::t2SUBrr && Commute)
3137         return false;
3138 
3139       // ADD/SUB are special because they're essentially the same operation, so
3140       // we can handle a larger range of immediates.
3141       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3142         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
3143       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3144         ImmVal = -ImmVal;
3145         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
3146       } else
3147         return false;
3148       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3149       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3150       break;
3151     case ARM::t2ORRrr:
3152     case ARM::t2EORrr:
3153       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3154         return false;
3155       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3156       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3157       switch (UseOpc) {
3158       default: break;
3159       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3160       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3161       }
3162       break;
3163     }
3164   }
3165   }
3166 
3167   unsigned OpIdx = Commute ? 2 : 1;
3168   unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
3169   bool isKill = UseMI.getOperand(OpIdx).isKill();
3170   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
3171   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3172           NewReg)
3173       .addReg(Reg1, getKillRegState(isKill))
3174       .addImm(SOImmValV1)
3175       .add(predOps(ARMCC::AL))
3176       .add(condCodeOp());
3177   UseMI.setDesc(get(NewUseOpc));
3178   UseMI.getOperand(1).setReg(NewReg);
3179   UseMI.getOperand(1).setIsKill();
3180   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3181   DefMI.eraseFromParent();
3182   return true;
3183 }
3184 
3185 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3186                                         const MachineInstr &MI) {
3187   switch (MI.getOpcode()) {
3188   default: {
3189     const MCInstrDesc &Desc = MI.getDesc();
3190     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3191     assert(UOps >= 0 && "bad # UOps");
3192     return UOps;
3193   }
3194 
3195   case ARM::LDRrs:
3196   case ARM::LDRBrs:
3197   case ARM::STRrs:
3198   case ARM::STRBrs: {
3199     unsigned ShOpVal = MI.getOperand(3).getImm();
3200     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3201     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3202     if (!isSub &&
3203         (ShImm == 0 ||
3204          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3205           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3206       return 1;
3207     return 2;
3208   }
3209 
3210   case ARM::LDRH:
3211   case ARM::STRH: {
3212     if (!MI.getOperand(2).getReg())
3213       return 1;
3214 
3215     unsigned ShOpVal = MI.getOperand(3).getImm();
3216     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3217     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3218     if (!isSub &&
3219         (ShImm == 0 ||
3220          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3221           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3222       return 1;
3223     return 2;
3224   }
3225 
3226   case ARM::LDRSB:
3227   case ARM::LDRSH:
3228     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3229 
3230   case ARM::LDRSB_POST:
3231   case ARM::LDRSH_POST: {
3232     unsigned Rt = MI.getOperand(0).getReg();
3233     unsigned Rm = MI.getOperand(3).getReg();
3234     return (Rt == Rm) ? 4 : 3;
3235   }
3236 
3237   case ARM::LDR_PRE_REG:
3238   case ARM::LDRB_PRE_REG: {
3239     unsigned Rt = MI.getOperand(0).getReg();
3240     unsigned Rm = MI.getOperand(3).getReg();
3241     if (Rt == Rm)
3242       return 3;
3243     unsigned ShOpVal = MI.getOperand(4).getImm();
3244     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3245     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3246     if (!isSub &&
3247         (ShImm == 0 ||
3248          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3249           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3250       return 2;
3251     return 3;
3252   }
3253 
3254   case ARM::STR_PRE_REG:
3255   case ARM::STRB_PRE_REG: {
3256     unsigned ShOpVal = MI.getOperand(4).getImm();
3257     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3258     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3259     if (!isSub &&
3260         (ShImm == 0 ||
3261          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3262           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3263       return 2;
3264     return 3;
3265   }
3266 
3267   case ARM::LDRH_PRE:
3268   case ARM::STRH_PRE: {
3269     unsigned Rt = MI.getOperand(0).getReg();
3270     unsigned Rm = MI.getOperand(3).getReg();
3271     if (!Rm)
3272       return 2;
3273     if (Rt == Rm)
3274       return 3;
3275     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3276   }
3277 
3278   case ARM::LDR_POST_REG:
3279   case ARM::LDRB_POST_REG:
3280   case ARM::LDRH_POST: {
3281     unsigned Rt = MI.getOperand(0).getReg();
3282     unsigned Rm = MI.getOperand(3).getReg();
3283     return (Rt == Rm) ? 3 : 2;
3284   }
3285 
3286   case ARM::LDR_PRE_IMM:
3287   case ARM::LDRB_PRE_IMM:
3288   case ARM::LDR_POST_IMM:
3289   case ARM::LDRB_POST_IMM:
3290   case ARM::STRB_POST_IMM:
3291   case ARM::STRB_POST_REG:
3292   case ARM::STRB_PRE_IMM:
3293   case ARM::STRH_POST:
3294   case ARM::STR_POST_IMM:
3295   case ARM::STR_POST_REG:
3296   case ARM::STR_PRE_IMM:
3297     return 2;
3298 
3299   case ARM::LDRSB_PRE:
3300   case ARM::LDRSH_PRE: {
3301     unsigned Rm = MI.getOperand(3).getReg();
3302     if (Rm == 0)
3303       return 3;
3304     unsigned Rt = MI.getOperand(0).getReg();
3305     if (Rt == Rm)
3306       return 4;
3307     unsigned ShOpVal = MI.getOperand(4).getImm();
3308     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3309     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3310     if (!isSub &&
3311         (ShImm == 0 ||
3312          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3313           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3314       return 3;
3315     return 4;
3316   }
3317 
3318   case ARM::LDRD: {
3319     unsigned Rt = MI.getOperand(0).getReg();
3320     unsigned Rn = MI.getOperand(2).getReg();
3321     unsigned Rm = MI.getOperand(3).getReg();
3322     if (Rm)
3323       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3324                                                                           : 3;
3325     return (Rt == Rn) ? 3 : 2;
3326   }
3327 
3328   case ARM::STRD: {
3329     unsigned Rm = MI.getOperand(3).getReg();
3330     if (Rm)
3331       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3332                                                                           : 3;
3333     return 2;
3334   }
3335 
3336   case ARM::LDRD_POST:
3337   case ARM::t2LDRD_POST:
3338     return 3;
3339 
3340   case ARM::STRD_POST:
3341   case ARM::t2STRD_POST:
3342     return 4;
3343 
3344   case ARM::LDRD_PRE: {
3345     unsigned Rt = MI.getOperand(0).getReg();
3346     unsigned Rn = MI.getOperand(3).getReg();
3347     unsigned Rm = MI.getOperand(4).getReg();
3348     if (Rm)
3349       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3350                                                                           : 4;
3351     return (Rt == Rn) ? 4 : 3;
3352   }
3353 
3354   case ARM::t2LDRD_PRE: {
3355     unsigned Rt = MI.getOperand(0).getReg();
3356     unsigned Rn = MI.getOperand(3).getReg();
3357     return (Rt == Rn) ? 4 : 3;
3358   }
3359 
3360   case ARM::STRD_PRE: {
3361     unsigned Rm = MI.getOperand(4).getReg();
3362     if (Rm)
3363       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3364                                                                           : 4;
3365     return 3;
3366   }
3367 
3368   case ARM::t2STRD_PRE:
3369     return 3;
3370 
3371   case ARM::t2LDR_POST:
3372   case ARM::t2LDRB_POST:
3373   case ARM::t2LDRB_PRE:
3374   case ARM::t2LDRSBi12:
3375   case ARM::t2LDRSBi8:
3376   case ARM::t2LDRSBpci:
3377   case ARM::t2LDRSBs:
3378   case ARM::t2LDRH_POST:
3379   case ARM::t2LDRH_PRE:
3380   case ARM::t2LDRSBT:
3381   case ARM::t2LDRSB_POST:
3382   case ARM::t2LDRSB_PRE:
3383   case ARM::t2LDRSH_POST:
3384   case ARM::t2LDRSH_PRE:
3385   case ARM::t2LDRSHi12:
3386   case ARM::t2LDRSHi8:
3387   case ARM::t2LDRSHpci:
3388   case ARM::t2LDRSHs:
3389     return 2;
3390 
3391   case ARM::t2LDRDi8: {
3392     unsigned Rt = MI.getOperand(0).getReg();
3393     unsigned Rn = MI.getOperand(2).getReg();
3394     return (Rt == Rn) ? 3 : 2;
3395   }
3396 
3397   case ARM::t2STRB_POST:
3398   case ARM::t2STRB_PRE:
3399   case ARM::t2STRBs:
3400   case ARM::t2STRDi8:
3401   case ARM::t2STRH_POST:
3402   case ARM::t2STRH_PRE:
3403   case ARM::t2STRHs:
3404   case ARM::t2STR_POST:
3405   case ARM::t2STR_PRE:
3406   case ARM::t2STRs:
3407     return 2;
3408   }
3409 }
3410 
3411 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3412 // can't be easily determined return 0 (missing MachineMemOperand).
3413 //
3414 // FIXME: The current MachineInstr design does not support relying on machine
3415 // mem operands to determine the width of a memory access. Instead, we expect
3416 // the target to provide this information based on the instruction opcode and
3417 // operands. However, using MachineMemOperand is the best solution now for
3418 // two reasons:
3419 //
3420 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3421 // operands. This is much more dangerous than using the MachineMemOperand
3422 // sizes because CodeGen passes can insert/remove optional machine operands. In
3423 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3424 // postRA passes as well.
3425 //
3426 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3427 // machine model that calls this should handle the unknown (zero size) case.
3428 //
3429 // Long term, we should require a target hook that verifies MachineMemOperand
3430 // sizes during MC lowering. That target hook should be local to MC lowering
3431 // because we can't ensure that it is aware of other MI forms. Doing this will
3432 // ensure that MachineMemOperands are correctly propagated through all passes.
3433 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3434   unsigned Size = 0;
3435   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3436                                   E = MI.memoperands_end();
3437        I != E; ++I) {
3438     Size += (*I)->getSize();
3439   }
3440   // FIXME: The scheduler currently can't handle values larger than 16. But
3441   // the values can actually go up to 32 for floating-point load/store
3442   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3443   // operations isn't right; we could end up with "extra" memory operands for
3444   // various reasons, like tail merge merging two memory operations.
3445   return std::min(Size / 4, 16U);
3446 }
3447 
3448 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3449                                                     unsigned NumRegs) {
3450   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3451   switch (Opc) {
3452   default:
3453     break;
3454   case ARM::VLDMDIA_UPD:
3455   case ARM::VLDMDDB_UPD:
3456   case ARM::VLDMSIA_UPD:
3457   case ARM::VLDMSDB_UPD:
3458   case ARM::VSTMDIA_UPD:
3459   case ARM::VSTMDDB_UPD:
3460   case ARM::VSTMSIA_UPD:
3461   case ARM::VSTMSDB_UPD:
3462   case ARM::LDMIA_UPD:
3463   case ARM::LDMDA_UPD:
3464   case ARM::LDMDB_UPD:
3465   case ARM::LDMIB_UPD:
3466   case ARM::STMIA_UPD:
3467   case ARM::STMDA_UPD:
3468   case ARM::STMDB_UPD:
3469   case ARM::STMIB_UPD:
3470   case ARM::tLDMIA_UPD:
3471   case ARM::tSTMIA_UPD:
3472   case ARM::t2LDMIA_UPD:
3473   case ARM::t2LDMDB_UPD:
3474   case ARM::t2STMIA_UPD:
3475   case ARM::t2STMDB_UPD:
3476     ++UOps; // One for base register writeback.
3477     break;
3478   case ARM::LDMIA_RET:
3479   case ARM::tPOP_RET:
3480   case ARM::t2LDMIA_RET:
3481     UOps += 2; // One for base reg wb, one for write to pc.
3482     break;
3483   }
3484   return UOps;
3485 }
3486 
3487 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3488                                           const MachineInstr &MI) const {
3489   if (!ItinData || ItinData->isEmpty())
3490     return 1;
3491 
3492   const MCInstrDesc &Desc = MI.getDesc();
3493   unsigned Class = Desc.getSchedClass();
3494   int ItinUOps = ItinData->getNumMicroOps(Class);
3495   if (ItinUOps >= 0) {
3496     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3497       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3498 
3499     return ItinUOps;
3500   }
3501 
3502   unsigned Opc = MI.getOpcode();
3503   switch (Opc) {
3504   default:
3505     llvm_unreachable("Unexpected multi-uops instruction!");
3506   case ARM::VLDMQIA:
3507   case ARM::VSTMQIA:
3508     return 2;
3509 
3510   // The number of uOps for load / store multiple are determined by the number
3511   // registers.
3512   //
3513   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3514   // same cycle. The scheduling for the first load / store must be done
3515   // separately by assuming the address is not 64-bit aligned.
3516   //
3517   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3518   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3519   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3520   case ARM::VLDMDIA:
3521   case ARM::VLDMDIA_UPD:
3522   case ARM::VLDMDDB_UPD:
3523   case ARM::VLDMSIA:
3524   case ARM::VLDMSIA_UPD:
3525   case ARM::VLDMSDB_UPD:
3526   case ARM::VSTMDIA:
3527   case ARM::VSTMDIA_UPD:
3528   case ARM::VSTMDDB_UPD:
3529   case ARM::VSTMSIA:
3530   case ARM::VSTMSIA_UPD:
3531   case ARM::VSTMSDB_UPD: {
3532     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3533     return (NumRegs / 2) + (NumRegs % 2) + 1;
3534   }
3535 
3536   case ARM::LDMIA_RET:
3537   case ARM::LDMIA:
3538   case ARM::LDMDA:
3539   case ARM::LDMDB:
3540   case ARM::LDMIB:
3541   case ARM::LDMIA_UPD:
3542   case ARM::LDMDA_UPD:
3543   case ARM::LDMDB_UPD:
3544   case ARM::LDMIB_UPD:
3545   case ARM::STMIA:
3546   case ARM::STMDA:
3547   case ARM::STMDB:
3548   case ARM::STMIB:
3549   case ARM::STMIA_UPD:
3550   case ARM::STMDA_UPD:
3551   case ARM::STMDB_UPD:
3552   case ARM::STMIB_UPD:
3553   case ARM::tLDMIA:
3554   case ARM::tLDMIA_UPD:
3555   case ARM::tSTMIA_UPD:
3556   case ARM::tPOP_RET:
3557   case ARM::tPOP:
3558   case ARM::tPUSH:
3559   case ARM::t2LDMIA_RET:
3560   case ARM::t2LDMIA:
3561   case ARM::t2LDMDB:
3562   case ARM::t2LDMIA_UPD:
3563   case ARM::t2LDMDB_UPD:
3564   case ARM::t2STMIA:
3565   case ARM::t2STMDB:
3566   case ARM::t2STMIA_UPD:
3567   case ARM::t2STMDB_UPD: {
3568     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3569     switch (Subtarget.getLdStMultipleTiming()) {
3570     case ARMSubtarget::SingleIssuePlusExtras:
3571       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3572     case ARMSubtarget::SingleIssue:
3573       // Assume the worst.
3574       return NumRegs;
3575     case ARMSubtarget::DoubleIssue: {
3576       if (NumRegs < 4)
3577         return 2;
3578       // 4 registers would be issued: 2, 2.
3579       // 5 registers would be issued: 2, 2, 1.
3580       unsigned UOps = (NumRegs / 2);
3581       if (NumRegs % 2)
3582         ++UOps;
3583       return UOps;
3584     }
3585     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3586       unsigned UOps = (NumRegs / 2);
3587       // If there are odd number of registers or if it's not 64-bit aligned,
3588       // then it takes an extra AGU (Address Generation Unit) cycle.
3589       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3590           (*MI.memoperands_begin())->getAlignment() < 8)
3591         ++UOps;
3592       return UOps;
3593       }
3594     }
3595   }
3596   }
3597   llvm_unreachable("Didn't find the number of microops");
3598 }
3599 
3600 int
3601 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3602                                   const MCInstrDesc &DefMCID,
3603                                   unsigned DefClass,
3604                                   unsigned DefIdx, unsigned DefAlign) const {
3605   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3606   if (RegNo <= 0)
3607     // Def is the address writeback.
3608     return ItinData->getOperandCycle(DefClass, DefIdx);
3609 
3610   int DefCycle;
3611   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3612     // (regno / 2) + (regno % 2) + 1
3613     DefCycle = RegNo / 2 + 1;
3614     if (RegNo % 2)
3615       ++DefCycle;
3616   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3617     DefCycle = RegNo;
3618     bool isSLoad = false;
3619 
3620     switch (DefMCID.getOpcode()) {
3621     default: break;
3622     case ARM::VLDMSIA:
3623     case ARM::VLDMSIA_UPD:
3624     case ARM::VLDMSDB_UPD:
3625       isSLoad = true;
3626       break;
3627     }
3628 
3629     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3630     // then it takes an extra cycle.
3631     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3632       ++DefCycle;
3633   } else {
3634     // Assume the worst.
3635     DefCycle = RegNo + 2;
3636   }
3637 
3638   return DefCycle;
3639 }
3640 
3641 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3642   unsigned BaseReg = MI.getOperand(0).getReg();
3643   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3644     const auto &Op = MI.getOperand(i);
3645     if (Op.isReg() && Op.getReg() == BaseReg)
3646       return true;
3647   }
3648   return false;
3649 }
3650 unsigned
3651 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3652   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3653   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3654   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3655 }
3656 
3657 int
3658 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3659                                  const MCInstrDesc &DefMCID,
3660                                  unsigned DefClass,
3661                                  unsigned DefIdx, unsigned DefAlign) const {
3662   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3663   if (RegNo <= 0)
3664     // Def is the address writeback.
3665     return ItinData->getOperandCycle(DefClass, DefIdx);
3666 
3667   int DefCycle;
3668   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3669     // 4 registers would be issued: 1, 2, 1.
3670     // 5 registers would be issued: 1, 2, 2.
3671     DefCycle = RegNo / 2;
3672     if (DefCycle < 1)
3673       DefCycle = 1;
3674     // Result latency is issue cycle + 2: E2.
3675     DefCycle += 2;
3676   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3677     DefCycle = (RegNo / 2);
3678     // If there are odd number of registers or if it's not 64-bit aligned,
3679     // then it takes an extra AGU (Address Generation Unit) cycle.
3680     if ((RegNo % 2) || DefAlign < 8)
3681       ++DefCycle;
3682     // Result latency is AGU cycles + 2.
3683     DefCycle += 2;
3684   } else {
3685     // Assume the worst.
3686     DefCycle = RegNo + 2;
3687   }
3688 
3689   return DefCycle;
3690 }
3691 
3692 int
3693 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3694                                   const MCInstrDesc &UseMCID,
3695                                   unsigned UseClass,
3696                                   unsigned UseIdx, unsigned UseAlign) const {
3697   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3698   if (RegNo <= 0)
3699     return ItinData->getOperandCycle(UseClass, UseIdx);
3700 
3701   int UseCycle;
3702   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3703     // (regno / 2) + (regno % 2) + 1
3704     UseCycle = RegNo / 2 + 1;
3705     if (RegNo % 2)
3706       ++UseCycle;
3707   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3708     UseCycle = RegNo;
3709     bool isSStore = false;
3710 
3711     switch (UseMCID.getOpcode()) {
3712     default: break;
3713     case ARM::VSTMSIA:
3714     case ARM::VSTMSIA_UPD:
3715     case ARM::VSTMSDB_UPD:
3716       isSStore = true;
3717       break;
3718     }
3719 
3720     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3721     // then it takes an extra cycle.
3722     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3723       ++UseCycle;
3724   } else {
3725     // Assume the worst.
3726     UseCycle = RegNo + 2;
3727   }
3728 
3729   return UseCycle;
3730 }
3731 
3732 int
3733 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3734                                  const MCInstrDesc &UseMCID,
3735                                  unsigned UseClass,
3736                                  unsigned UseIdx, unsigned UseAlign) const {
3737   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3738   if (RegNo <= 0)
3739     return ItinData->getOperandCycle(UseClass, UseIdx);
3740 
3741   int UseCycle;
3742   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3743     UseCycle = RegNo / 2;
3744     if (UseCycle < 2)
3745       UseCycle = 2;
3746     // Read in E3.
3747     UseCycle += 2;
3748   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3749     UseCycle = (RegNo / 2);
3750     // If there are odd number of registers or if it's not 64-bit aligned,
3751     // then it takes an extra AGU (Address Generation Unit) cycle.
3752     if ((RegNo % 2) || UseAlign < 8)
3753       ++UseCycle;
3754   } else {
3755     // Assume the worst.
3756     UseCycle = 1;
3757   }
3758   return UseCycle;
3759 }
3760 
3761 int
3762 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3763                                     const MCInstrDesc &DefMCID,
3764                                     unsigned DefIdx, unsigned DefAlign,
3765                                     const MCInstrDesc &UseMCID,
3766                                     unsigned UseIdx, unsigned UseAlign) const {
3767   unsigned DefClass = DefMCID.getSchedClass();
3768   unsigned UseClass = UseMCID.getSchedClass();
3769 
3770   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3771     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3772 
3773   // This may be a def / use of a variable_ops instruction, the operand
3774   // latency might be determinable dynamically. Let the target try to
3775   // figure it out.
3776   int DefCycle = -1;
3777   bool LdmBypass = false;
3778   switch (DefMCID.getOpcode()) {
3779   default:
3780     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3781     break;
3782 
3783   case ARM::VLDMDIA:
3784   case ARM::VLDMDIA_UPD:
3785   case ARM::VLDMDDB_UPD:
3786   case ARM::VLDMSIA:
3787   case ARM::VLDMSIA_UPD:
3788   case ARM::VLDMSDB_UPD:
3789     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3790     break;
3791 
3792   case ARM::LDMIA_RET:
3793   case ARM::LDMIA:
3794   case ARM::LDMDA:
3795   case ARM::LDMDB:
3796   case ARM::LDMIB:
3797   case ARM::LDMIA_UPD:
3798   case ARM::LDMDA_UPD:
3799   case ARM::LDMDB_UPD:
3800   case ARM::LDMIB_UPD:
3801   case ARM::tLDMIA:
3802   case ARM::tLDMIA_UPD:
3803   case ARM::tPUSH:
3804   case ARM::t2LDMIA_RET:
3805   case ARM::t2LDMIA:
3806   case ARM::t2LDMDB:
3807   case ARM::t2LDMIA_UPD:
3808   case ARM::t2LDMDB_UPD:
3809     LdmBypass = true;
3810     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3811     break;
3812   }
3813 
3814   if (DefCycle == -1)
3815     // We can't seem to determine the result latency of the def, assume it's 2.
3816     DefCycle = 2;
3817 
3818   int UseCycle = -1;
3819   switch (UseMCID.getOpcode()) {
3820   default:
3821     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3822     break;
3823 
3824   case ARM::VSTMDIA:
3825   case ARM::VSTMDIA_UPD:
3826   case ARM::VSTMDDB_UPD:
3827   case ARM::VSTMSIA:
3828   case ARM::VSTMSIA_UPD:
3829   case ARM::VSTMSDB_UPD:
3830     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3831     break;
3832 
3833   case ARM::STMIA:
3834   case ARM::STMDA:
3835   case ARM::STMDB:
3836   case ARM::STMIB:
3837   case ARM::STMIA_UPD:
3838   case ARM::STMDA_UPD:
3839   case ARM::STMDB_UPD:
3840   case ARM::STMIB_UPD:
3841   case ARM::tSTMIA_UPD:
3842   case ARM::tPOP_RET:
3843   case ARM::tPOP:
3844   case ARM::t2STMIA:
3845   case ARM::t2STMDB:
3846   case ARM::t2STMIA_UPD:
3847   case ARM::t2STMDB_UPD:
3848     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3849     break;
3850   }
3851 
3852   if (UseCycle == -1)
3853     // Assume it's read in the first stage.
3854     UseCycle = 1;
3855 
3856   UseCycle = DefCycle - UseCycle + 1;
3857   if (UseCycle > 0) {
3858     if (LdmBypass) {
3859       // It's a variable_ops instruction so we can't use DefIdx here. Just use
3860       // first def operand.
3861       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3862                                           UseClass, UseIdx))
3863         --UseCycle;
3864     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3865                                                UseClass, UseIdx)) {
3866       --UseCycle;
3867     }
3868   }
3869 
3870   return UseCycle;
3871 }
3872 
3873 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3874                                            const MachineInstr *MI, unsigned Reg,
3875                                            unsigned &DefIdx, unsigned &Dist) {
3876   Dist = 0;
3877 
3878   MachineBasicBlock::const_iterator I = MI; ++I;
3879   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3880   assert(II->isInsideBundle() && "Empty bundle?");
3881 
3882   int Idx = -1;
3883   while (II->isInsideBundle()) {
3884     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3885     if (Idx != -1)
3886       break;
3887     --II;
3888     ++Dist;
3889   }
3890 
3891   assert(Idx != -1 && "Cannot find bundled definition!");
3892   DefIdx = Idx;
3893   return &*II;
3894 }
3895 
3896 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3897                                            const MachineInstr &MI, unsigned Reg,
3898                                            unsigned &UseIdx, unsigned &Dist) {
3899   Dist = 0;
3900 
3901   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
3902   assert(II->isInsideBundle() && "Empty bundle?");
3903   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
3904 
3905   // FIXME: This doesn't properly handle multiple uses.
3906   int Idx = -1;
3907   while (II != E && II->isInsideBundle()) {
3908     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3909     if (Idx != -1)
3910       break;
3911     if (II->getOpcode() != ARM::t2IT)
3912       ++Dist;
3913     ++II;
3914   }
3915 
3916   if (Idx == -1) {
3917     Dist = 0;
3918     return nullptr;
3919   }
3920 
3921   UseIdx = Idx;
3922   return &*II;
3923 }
3924 
3925 /// Return the number of cycles to add to (or subtract from) the static
3926 /// itinerary based on the def opcode and alignment. The caller will ensure that
3927 /// adjusted latency is at least one cycle.
3928 static int adjustDefLatency(const ARMSubtarget &Subtarget,
3929                             const MachineInstr &DefMI,
3930                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
3931   int Adjust = 0;
3932   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3933     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3934     // variants are one cycle cheaper.
3935     switch (DefMCID.getOpcode()) {
3936     default: break;
3937     case ARM::LDRrs:
3938     case ARM::LDRBrs: {
3939       unsigned ShOpVal = DefMI.getOperand(3).getImm();
3940       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3941       if (ShImm == 0 ||
3942           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3943         --Adjust;
3944       break;
3945     }
3946     case ARM::t2LDRs:
3947     case ARM::t2LDRBs:
3948     case ARM::t2LDRHs:
3949     case ARM::t2LDRSHs: {
3950       // Thumb2 mode: lsl only.
3951       unsigned ShAmt = DefMI.getOperand(3).getImm();
3952       if (ShAmt == 0 || ShAmt == 2)
3953         --Adjust;
3954       break;
3955     }
3956     }
3957   } else if (Subtarget.isSwift()) {
3958     // FIXME: Properly handle all of the latency adjustments for address
3959     // writeback.
3960     switch (DefMCID.getOpcode()) {
3961     default: break;
3962     case ARM::LDRrs:
3963     case ARM::LDRBrs: {
3964       unsigned ShOpVal = DefMI.getOperand(3).getImm();
3965       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3966       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3967       if (!isSub &&
3968           (ShImm == 0 ||
3969            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3970             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3971         Adjust -= 2;
3972       else if (!isSub &&
3973                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3974         --Adjust;
3975       break;
3976     }
3977     case ARM::t2LDRs:
3978     case ARM::t2LDRBs:
3979     case ARM::t2LDRHs:
3980     case ARM::t2LDRSHs: {
3981       // Thumb2 mode: lsl only.
3982       unsigned ShAmt = DefMI.getOperand(3).getImm();
3983       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3984         Adjust -= 2;
3985       break;
3986     }
3987     }
3988   }
3989 
3990   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
3991     switch (DefMCID.getOpcode()) {
3992     default: break;
3993     case ARM::VLD1q8:
3994     case ARM::VLD1q16:
3995     case ARM::VLD1q32:
3996     case ARM::VLD1q64:
3997     case ARM::VLD1q8wb_fixed:
3998     case ARM::VLD1q16wb_fixed:
3999     case ARM::VLD1q32wb_fixed:
4000     case ARM::VLD1q64wb_fixed:
4001     case ARM::VLD1q8wb_register:
4002     case ARM::VLD1q16wb_register:
4003     case ARM::VLD1q32wb_register:
4004     case ARM::VLD1q64wb_register:
4005     case ARM::VLD2d8:
4006     case ARM::VLD2d16:
4007     case ARM::VLD2d32:
4008     case ARM::VLD2q8:
4009     case ARM::VLD2q16:
4010     case ARM::VLD2q32:
4011     case ARM::VLD2d8wb_fixed:
4012     case ARM::VLD2d16wb_fixed:
4013     case ARM::VLD2d32wb_fixed:
4014     case ARM::VLD2q8wb_fixed:
4015     case ARM::VLD2q16wb_fixed:
4016     case ARM::VLD2q32wb_fixed:
4017     case ARM::VLD2d8wb_register:
4018     case ARM::VLD2d16wb_register:
4019     case ARM::VLD2d32wb_register:
4020     case ARM::VLD2q8wb_register:
4021     case ARM::VLD2q16wb_register:
4022     case ARM::VLD2q32wb_register:
4023     case ARM::VLD3d8:
4024     case ARM::VLD3d16:
4025     case ARM::VLD3d32:
4026     case ARM::VLD1d64T:
4027     case ARM::VLD3d8_UPD:
4028     case ARM::VLD3d16_UPD:
4029     case ARM::VLD3d32_UPD:
4030     case ARM::VLD1d64Twb_fixed:
4031     case ARM::VLD1d64Twb_register:
4032     case ARM::VLD3q8_UPD:
4033     case ARM::VLD3q16_UPD:
4034     case ARM::VLD3q32_UPD:
4035     case ARM::VLD4d8:
4036     case ARM::VLD4d16:
4037     case ARM::VLD4d32:
4038     case ARM::VLD1d64Q:
4039     case ARM::VLD4d8_UPD:
4040     case ARM::VLD4d16_UPD:
4041     case ARM::VLD4d32_UPD:
4042     case ARM::VLD1d64Qwb_fixed:
4043     case ARM::VLD1d64Qwb_register:
4044     case ARM::VLD4q8_UPD:
4045     case ARM::VLD4q16_UPD:
4046     case ARM::VLD4q32_UPD:
4047     case ARM::VLD1DUPq8:
4048     case ARM::VLD1DUPq16:
4049     case ARM::VLD1DUPq32:
4050     case ARM::VLD1DUPq8wb_fixed:
4051     case ARM::VLD1DUPq16wb_fixed:
4052     case ARM::VLD1DUPq32wb_fixed:
4053     case ARM::VLD1DUPq8wb_register:
4054     case ARM::VLD1DUPq16wb_register:
4055     case ARM::VLD1DUPq32wb_register:
4056     case ARM::VLD2DUPd8:
4057     case ARM::VLD2DUPd16:
4058     case ARM::VLD2DUPd32:
4059     case ARM::VLD2DUPd8wb_fixed:
4060     case ARM::VLD2DUPd16wb_fixed:
4061     case ARM::VLD2DUPd32wb_fixed:
4062     case ARM::VLD2DUPd8wb_register:
4063     case ARM::VLD2DUPd16wb_register:
4064     case ARM::VLD2DUPd32wb_register:
4065     case ARM::VLD4DUPd8:
4066     case ARM::VLD4DUPd16:
4067     case ARM::VLD4DUPd32:
4068     case ARM::VLD4DUPd8_UPD:
4069     case ARM::VLD4DUPd16_UPD:
4070     case ARM::VLD4DUPd32_UPD:
4071     case ARM::VLD1LNd8:
4072     case ARM::VLD1LNd16:
4073     case ARM::VLD1LNd32:
4074     case ARM::VLD1LNd8_UPD:
4075     case ARM::VLD1LNd16_UPD:
4076     case ARM::VLD1LNd32_UPD:
4077     case ARM::VLD2LNd8:
4078     case ARM::VLD2LNd16:
4079     case ARM::VLD2LNd32:
4080     case ARM::VLD2LNq16:
4081     case ARM::VLD2LNq32:
4082     case ARM::VLD2LNd8_UPD:
4083     case ARM::VLD2LNd16_UPD:
4084     case ARM::VLD2LNd32_UPD:
4085     case ARM::VLD2LNq16_UPD:
4086     case ARM::VLD2LNq32_UPD:
4087     case ARM::VLD4LNd8:
4088     case ARM::VLD4LNd16:
4089     case ARM::VLD4LNd32:
4090     case ARM::VLD4LNq16:
4091     case ARM::VLD4LNq32:
4092     case ARM::VLD4LNd8_UPD:
4093     case ARM::VLD4LNd16_UPD:
4094     case ARM::VLD4LNd32_UPD:
4095     case ARM::VLD4LNq16_UPD:
4096     case ARM::VLD4LNq32_UPD:
4097       // If the address is not 64-bit aligned, the latencies of these
4098       // instructions increases by one.
4099       ++Adjust;
4100       break;
4101     }
4102   }
4103   return Adjust;
4104 }
4105 
4106 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4107                                         const MachineInstr &DefMI,
4108                                         unsigned DefIdx,
4109                                         const MachineInstr &UseMI,
4110                                         unsigned UseIdx) const {
4111   // No operand latency. The caller may fall back to getInstrLatency.
4112   if (!ItinData || ItinData->isEmpty())
4113     return -1;
4114 
4115   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4116   unsigned Reg = DefMO.getReg();
4117 
4118   const MachineInstr *ResolvedDefMI = &DefMI;
4119   unsigned DefAdj = 0;
4120   if (DefMI.isBundle())
4121     ResolvedDefMI =
4122         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4123   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4124       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4125     return 1;
4126   }
4127 
4128   const MachineInstr *ResolvedUseMI = &UseMI;
4129   unsigned UseAdj = 0;
4130   if (UseMI.isBundle()) {
4131     ResolvedUseMI =
4132         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4133     if (!ResolvedUseMI)
4134       return -1;
4135   }
4136 
4137   return getOperandLatencyImpl(
4138       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4139       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4140 }
4141 
4142 int ARMBaseInstrInfo::getOperandLatencyImpl(
4143     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4144     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4145     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4146     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4147   if (Reg == ARM::CPSR) {
4148     if (DefMI.getOpcode() == ARM::FMSTAT) {
4149       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4150       return Subtarget.isLikeA9() ? 1 : 20;
4151     }
4152 
4153     // CPSR set and branch can be paired in the same cycle.
4154     if (UseMI.isBranch())
4155       return 0;
4156 
4157     // Otherwise it takes the instruction latency (generally one).
4158     unsigned Latency = getInstrLatency(ItinData, DefMI);
4159 
4160     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4161     // its uses. Instructions which are otherwise scheduled between them may
4162     // incur a code size penalty (not able to use the CPSR setting 16-bit
4163     // instructions).
4164     if (Latency > 0 && Subtarget.isThumb2()) {
4165       const MachineFunction *MF = DefMI.getParent()->getParent();
4166       // FIXME: Use Function::hasOptSize().
4167       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4168         --Latency;
4169     }
4170     return Latency;
4171   }
4172 
4173   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4174     return -1;
4175 
4176   unsigned DefAlign = DefMI.hasOneMemOperand()
4177                           ? (*DefMI.memoperands_begin())->getAlignment()
4178                           : 0;
4179   unsigned UseAlign = UseMI.hasOneMemOperand()
4180                           ? (*UseMI.memoperands_begin())->getAlignment()
4181                           : 0;
4182 
4183   // Get the itinerary's latency if possible, and handle variable_ops.
4184   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4185                                   UseIdx, UseAlign);
4186   // Unable to find operand latency. The caller may resort to getInstrLatency.
4187   if (Latency < 0)
4188     return Latency;
4189 
4190   // Adjust for IT block position.
4191   int Adj = DefAdj + UseAdj;
4192 
4193   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4194   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4195   if (Adj >= 0 || (int)Latency > -Adj) {
4196     return Latency + Adj;
4197   }
4198   // Return the itinerary latency, which may be zero but not less than zero.
4199   return Latency;
4200 }
4201 
4202 int
4203 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4204                                     SDNode *DefNode, unsigned DefIdx,
4205                                     SDNode *UseNode, unsigned UseIdx) const {
4206   if (!DefNode->isMachineOpcode())
4207     return 1;
4208 
4209   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4210 
4211   if (isZeroCost(DefMCID.Opcode))
4212     return 0;
4213 
4214   if (!ItinData || ItinData->isEmpty())
4215     return DefMCID.mayLoad() ? 3 : 1;
4216 
4217   if (!UseNode->isMachineOpcode()) {
4218     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4219     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4220     int Threshold = 1 + Adj;
4221     return Latency <= Threshold ? 1 : Latency - Adj;
4222   }
4223 
4224   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4225   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
4226   unsigned DefAlign = !DefMN->memoperands_empty()
4227     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4228   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
4229   unsigned UseAlign = !UseMN->memoperands_empty()
4230     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4231   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4232                                   UseMCID, UseIdx, UseAlign);
4233 
4234   if (Latency > 1 &&
4235       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4236        Subtarget.isCortexA7())) {
4237     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4238     // variants are one cycle cheaper.
4239     switch (DefMCID.getOpcode()) {
4240     default: break;
4241     case ARM::LDRrs:
4242     case ARM::LDRBrs: {
4243       unsigned ShOpVal =
4244         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4245       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4246       if (ShImm == 0 ||
4247           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4248         --Latency;
4249       break;
4250     }
4251     case ARM::t2LDRs:
4252     case ARM::t2LDRBs:
4253     case ARM::t2LDRHs:
4254     case ARM::t2LDRSHs: {
4255       // Thumb2 mode: lsl only.
4256       unsigned ShAmt =
4257         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4258       if (ShAmt == 0 || ShAmt == 2)
4259         --Latency;
4260       break;
4261     }
4262     }
4263   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4264     // FIXME: Properly handle all of the latency adjustments for address
4265     // writeback.
4266     switch (DefMCID.getOpcode()) {
4267     default: break;
4268     case ARM::LDRrs:
4269     case ARM::LDRBrs: {
4270       unsigned ShOpVal =
4271         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4272       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4273       if (ShImm == 0 ||
4274           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4275            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4276         Latency -= 2;
4277       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4278         --Latency;
4279       break;
4280     }
4281     case ARM::t2LDRs:
4282     case ARM::t2LDRBs:
4283     case ARM::t2LDRHs:
4284     case ARM::t2LDRSHs:
4285       // Thumb2 mode: lsl 0-3 only.
4286       Latency -= 2;
4287       break;
4288     }
4289   }
4290 
4291   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4292     switch (DefMCID.getOpcode()) {
4293     default: break;
4294     case ARM::VLD1q8:
4295     case ARM::VLD1q16:
4296     case ARM::VLD1q32:
4297     case ARM::VLD1q64:
4298     case ARM::VLD1q8wb_register:
4299     case ARM::VLD1q16wb_register:
4300     case ARM::VLD1q32wb_register:
4301     case ARM::VLD1q64wb_register:
4302     case ARM::VLD1q8wb_fixed:
4303     case ARM::VLD1q16wb_fixed:
4304     case ARM::VLD1q32wb_fixed:
4305     case ARM::VLD1q64wb_fixed:
4306     case ARM::VLD2d8:
4307     case ARM::VLD2d16:
4308     case ARM::VLD2d32:
4309     case ARM::VLD2q8Pseudo:
4310     case ARM::VLD2q16Pseudo:
4311     case ARM::VLD2q32Pseudo:
4312     case ARM::VLD2d8wb_fixed:
4313     case ARM::VLD2d16wb_fixed:
4314     case ARM::VLD2d32wb_fixed:
4315     case ARM::VLD2q8PseudoWB_fixed:
4316     case ARM::VLD2q16PseudoWB_fixed:
4317     case ARM::VLD2q32PseudoWB_fixed:
4318     case ARM::VLD2d8wb_register:
4319     case ARM::VLD2d16wb_register:
4320     case ARM::VLD2d32wb_register:
4321     case ARM::VLD2q8PseudoWB_register:
4322     case ARM::VLD2q16PseudoWB_register:
4323     case ARM::VLD2q32PseudoWB_register:
4324     case ARM::VLD3d8Pseudo:
4325     case ARM::VLD3d16Pseudo:
4326     case ARM::VLD3d32Pseudo:
4327     case ARM::VLD1d8TPseudo:
4328     case ARM::VLD1d16TPseudo:
4329     case ARM::VLD1d32TPseudo:
4330     case ARM::VLD1d64TPseudo:
4331     case ARM::VLD1d64TPseudoWB_fixed:
4332     case ARM::VLD1d64TPseudoWB_register:
4333     case ARM::VLD3d8Pseudo_UPD:
4334     case ARM::VLD3d16Pseudo_UPD:
4335     case ARM::VLD3d32Pseudo_UPD:
4336     case ARM::VLD3q8Pseudo_UPD:
4337     case ARM::VLD3q16Pseudo_UPD:
4338     case ARM::VLD3q32Pseudo_UPD:
4339     case ARM::VLD3q8oddPseudo:
4340     case ARM::VLD3q16oddPseudo:
4341     case ARM::VLD3q32oddPseudo:
4342     case ARM::VLD3q8oddPseudo_UPD:
4343     case ARM::VLD3q16oddPseudo_UPD:
4344     case ARM::VLD3q32oddPseudo_UPD:
4345     case ARM::VLD4d8Pseudo:
4346     case ARM::VLD4d16Pseudo:
4347     case ARM::VLD4d32Pseudo:
4348     case ARM::VLD1d8QPseudo:
4349     case ARM::VLD1d16QPseudo:
4350     case ARM::VLD1d32QPseudo:
4351     case ARM::VLD1d64QPseudo:
4352     case ARM::VLD1d64QPseudoWB_fixed:
4353     case ARM::VLD1d64QPseudoWB_register:
4354     case ARM::VLD1q8HighQPseudo:
4355     case ARM::VLD1q8LowQPseudo_UPD:
4356     case ARM::VLD1q8HighTPseudo:
4357     case ARM::VLD1q8LowTPseudo_UPD:
4358     case ARM::VLD1q16HighQPseudo:
4359     case ARM::VLD1q16LowQPseudo_UPD:
4360     case ARM::VLD1q16HighTPseudo:
4361     case ARM::VLD1q16LowTPseudo_UPD:
4362     case ARM::VLD1q32HighQPseudo:
4363     case ARM::VLD1q32LowQPseudo_UPD:
4364     case ARM::VLD1q32HighTPseudo:
4365     case ARM::VLD1q32LowTPseudo_UPD:
4366     case ARM::VLD1q64HighQPseudo:
4367     case ARM::VLD1q64LowQPseudo_UPD:
4368     case ARM::VLD1q64HighTPseudo:
4369     case ARM::VLD1q64LowTPseudo_UPD:
4370     case ARM::VLD4d8Pseudo_UPD:
4371     case ARM::VLD4d16Pseudo_UPD:
4372     case ARM::VLD4d32Pseudo_UPD:
4373     case ARM::VLD4q8Pseudo_UPD:
4374     case ARM::VLD4q16Pseudo_UPD:
4375     case ARM::VLD4q32Pseudo_UPD:
4376     case ARM::VLD4q8oddPseudo:
4377     case ARM::VLD4q16oddPseudo:
4378     case ARM::VLD4q32oddPseudo:
4379     case ARM::VLD4q8oddPseudo_UPD:
4380     case ARM::VLD4q16oddPseudo_UPD:
4381     case ARM::VLD4q32oddPseudo_UPD:
4382     case ARM::VLD1DUPq8:
4383     case ARM::VLD1DUPq16:
4384     case ARM::VLD1DUPq32:
4385     case ARM::VLD1DUPq8wb_fixed:
4386     case ARM::VLD1DUPq16wb_fixed:
4387     case ARM::VLD1DUPq32wb_fixed:
4388     case ARM::VLD1DUPq8wb_register:
4389     case ARM::VLD1DUPq16wb_register:
4390     case ARM::VLD1DUPq32wb_register:
4391     case ARM::VLD2DUPd8:
4392     case ARM::VLD2DUPd16:
4393     case ARM::VLD2DUPd32:
4394     case ARM::VLD2DUPd8wb_fixed:
4395     case ARM::VLD2DUPd16wb_fixed:
4396     case ARM::VLD2DUPd32wb_fixed:
4397     case ARM::VLD2DUPd8wb_register:
4398     case ARM::VLD2DUPd16wb_register:
4399     case ARM::VLD2DUPd32wb_register:
4400     case ARM::VLD2DUPq8EvenPseudo:
4401     case ARM::VLD2DUPq8OddPseudo:
4402     case ARM::VLD2DUPq16EvenPseudo:
4403     case ARM::VLD2DUPq16OddPseudo:
4404     case ARM::VLD2DUPq32EvenPseudo:
4405     case ARM::VLD2DUPq32OddPseudo:
4406     case ARM::VLD3DUPq8EvenPseudo:
4407     case ARM::VLD3DUPq8OddPseudo:
4408     case ARM::VLD3DUPq16EvenPseudo:
4409     case ARM::VLD3DUPq16OddPseudo:
4410     case ARM::VLD3DUPq32EvenPseudo:
4411     case ARM::VLD3DUPq32OddPseudo:
4412     case ARM::VLD4DUPd8Pseudo:
4413     case ARM::VLD4DUPd16Pseudo:
4414     case ARM::VLD4DUPd32Pseudo:
4415     case ARM::VLD4DUPd8Pseudo_UPD:
4416     case ARM::VLD4DUPd16Pseudo_UPD:
4417     case ARM::VLD4DUPd32Pseudo_UPD:
4418     case ARM::VLD4DUPq8EvenPseudo:
4419     case ARM::VLD4DUPq8OddPseudo:
4420     case ARM::VLD4DUPq16EvenPseudo:
4421     case ARM::VLD4DUPq16OddPseudo:
4422     case ARM::VLD4DUPq32EvenPseudo:
4423     case ARM::VLD4DUPq32OddPseudo:
4424     case ARM::VLD1LNq8Pseudo:
4425     case ARM::VLD1LNq16Pseudo:
4426     case ARM::VLD1LNq32Pseudo:
4427     case ARM::VLD1LNq8Pseudo_UPD:
4428     case ARM::VLD1LNq16Pseudo_UPD:
4429     case ARM::VLD1LNq32Pseudo_UPD:
4430     case ARM::VLD2LNd8Pseudo:
4431     case ARM::VLD2LNd16Pseudo:
4432     case ARM::VLD2LNd32Pseudo:
4433     case ARM::VLD2LNq16Pseudo:
4434     case ARM::VLD2LNq32Pseudo:
4435     case ARM::VLD2LNd8Pseudo_UPD:
4436     case ARM::VLD2LNd16Pseudo_UPD:
4437     case ARM::VLD2LNd32Pseudo_UPD:
4438     case ARM::VLD2LNq16Pseudo_UPD:
4439     case ARM::VLD2LNq32Pseudo_UPD:
4440     case ARM::VLD4LNd8Pseudo:
4441     case ARM::VLD4LNd16Pseudo:
4442     case ARM::VLD4LNd32Pseudo:
4443     case ARM::VLD4LNq16Pseudo:
4444     case ARM::VLD4LNq32Pseudo:
4445     case ARM::VLD4LNd8Pseudo_UPD:
4446     case ARM::VLD4LNd16Pseudo_UPD:
4447     case ARM::VLD4LNd32Pseudo_UPD:
4448     case ARM::VLD4LNq16Pseudo_UPD:
4449     case ARM::VLD4LNq32Pseudo_UPD:
4450       // If the address is not 64-bit aligned, the latencies of these
4451       // instructions increases by one.
4452       ++Latency;
4453       break;
4454     }
4455 
4456   return Latency;
4457 }
4458 
4459 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4460   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4461       MI.isImplicitDef())
4462     return 0;
4463 
4464   if (MI.isBundle())
4465     return 0;
4466 
4467   const MCInstrDesc &MCID = MI.getDesc();
4468 
4469   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4470                         !Subtarget.cheapPredicableCPSRDef())) {
4471     // When predicated, CPSR is an additional source operand for CPSR updating
4472     // instructions, this apparently increases their latencies.
4473     return 1;
4474   }
4475   return 0;
4476 }
4477 
4478 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4479                                            const MachineInstr &MI,
4480                                            unsigned *PredCost) const {
4481   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4482       MI.isImplicitDef())
4483     return 1;
4484 
4485   // An instruction scheduler typically runs on unbundled instructions, however
4486   // other passes may query the latency of a bundled instruction.
4487   if (MI.isBundle()) {
4488     unsigned Latency = 0;
4489     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4490     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4491     while (++I != E && I->isInsideBundle()) {
4492       if (I->getOpcode() != ARM::t2IT)
4493         Latency += getInstrLatency(ItinData, *I, PredCost);
4494     }
4495     return Latency;
4496   }
4497 
4498   const MCInstrDesc &MCID = MI.getDesc();
4499   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4500                                      !Subtarget.cheapPredicableCPSRDef()))) {
4501     // When predicated, CPSR is an additional source operand for CPSR updating
4502     // instructions, this apparently increases their latencies.
4503     *PredCost = 1;
4504   }
4505   // Be sure to call getStageLatency for an empty itinerary in case it has a
4506   // valid MinLatency property.
4507   if (!ItinData)
4508     return MI.mayLoad() ? 3 : 1;
4509 
4510   unsigned Class = MCID.getSchedClass();
4511 
4512   // For instructions with variable uops, use uops as latency.
4513   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4514     return getNumMicroOps(ItinData, MI);
4515 
4516   // For the common case, fall back on the itinerary's latency.
4517   unsigned Latency = ItinData->getStageLatency(Class);
4518 
4519   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4520   unsigned DefAlign =
4521       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4522   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4523   if (Adj >= 0 || (int)Latency > -Adj) {
4524     return Latency + Adj;
4525   }
4526   return Latency;
4527 }
4528 
4529 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4530                                       SDNode *Node) const {
4531   if (!Node->isMachineOpcode())
4532     return 1;
4533 
4534   if (!ItinData || ItinData->isEmpty())
4535     return 1;
4536 
4537   unsigned Opcode = Node->getMachineOpcode();
4538   switch (Opcode) {
4539   default:
4540     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4541   case ARM::VLDMQIA:
4542   case ARM::VSTMQIA:
4543     return 2;
4544   }
4545 }
4546 
4547 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4548                                              const MachineRegisterInfo *MRI,
4549                                              const MachineInstr &DefMI,
4550                                              unsigned DefIdx,
4551                                              const MachineInstr &UseMI,
4552                                              unsigned UseIdx) const {
4553   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4554   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4555   if (Subtarget.nonpipelinedVFP() &&
4556       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4557     return true;
4558 
4559   // Hoist VFP / NEON instructions with 4 or higher latency.
4560   unsigned Latency =
4561       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4562   if (Latency <= 3)
4563     return false;
4564   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4565          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4566 }
4567 
4568 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4569                                         const MachineInstr &DefMI,
4570                                         unsigned DefIdx) const {
4571   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4572   if (!ItinData || ItinData->isEmpty())
4573     return false;
4574 
4575   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4576   if (DDomain == ARMII::DomainGeneral) {
4577     unsigned DefClass = DefMI.getDesc().getSchedClass();
4578     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4579     return (DefCycle != -1 && DefCycle <= 2);
4580   }
4581   return false;
4582 }
4583 
4584 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4585                                          StringRef &ErrInfo) const {
4586   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4587     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4588     return false;
4589   }
4590   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4591     // Make sure we don't generate a lo-lo mov that isn't supported.
4592     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4593         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4594       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4595       return false;
4596     }
4597   }
4598   if (MI.getOpcode() == ARM::tPUSH ||
4599       MI.getOpcode() == ARM::tPOP ||
4600       MI.getOpcode() == ARM::tPOP_RET) {
4601     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4602       if (MI.getOperand(i).isImplicit() ||
4603           !MI.getOperand(i).isReg())
4604         continue;
4605       unsigned Reg = MI.getOperand(i).getReg();
4606       if (Reg < ARM::R0 || Reg > ARM::R7) {
4607         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4608             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4609           ErrInfo = "Unsupported register in Thumb1 push/pop";
4610           return false;
4611         }
4612       }
4613     }
4614   }
4615   return true;
4616 }
4617 
4618 // LoadStackGuard has so far only been implemented for MachO. Different code
4619 // sequence is needed for other targets.
4620 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4621                                                 unsigned LoadImmOpc,
4622                                                 unsigned LoadOpc) const {
4623   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4624          "ROPI/RWPI not currently supported with stack guard");
4625 
4626   MachineBasicBlock &MBB = *MI->getParent();
4627   DebugLoc DL = MI->getDebugLoc();
4628   unsigned Reg = MI->getOperand(0).getReg();
4629   const GlobalValue *GV =
4630       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4631   MachineInstrBuilder MIB;
4632 
4633   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4634       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4635 
4636   if (Subtarget.isGVIndirectSymbol(GV)) {
4637     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4638     MIB.addReg(Reg, RegState::Kill).addImm(0);
4639     auto Flags = MachineMemOperand::MOLoad |
4640                  MachineMemOperand::MODereferenceable |
4641                  MachineMemOperand::MOInvariant;
4642     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4643         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4644     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4645   }
4646 
4647   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4648   MIB.addReg(Reg, RegState::Kill)
4649       .addImm(0)
4650       .cloneMemRefs(*MI)
4651       .add(predOps(ARMCC::AL));
4652 }
4653 
4654 bool
4655 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4656                                      unsigned &AddSubOpc,
4657                                      bool &NegAcc, bool &HasLane) const {
4658   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4659   if (I == MLxEntryMap.end())
4660     return false;
4661 
4662   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4663   MulOpc = Entry.MulOpc;
4664   AddSubOpc = Entry.AddSubOpc;
4665   NegAcc = Entry.NegAcc;
4666   HasLane = Entry.HasLane;
4667   return true;
4668 }
4669 
4670 //===----------------------------------------------------------------------===//
4671 // Execution domains.
4672 //===----------------------------------------------------------------------===//
4673 //
4674 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4675 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4676 // but they can be changed to vorr equivalents that are executed by the NEON
4677 // pipeline.
4678 //
4679 // We use the following execution domain numbering:
4680 //
4681 enum ARMExeDomain {
4682   ExeGeneric = 0,
4683   ExeVFP = 1,
4684   ExeNEON = 2
4685 };
4686 
4687 //
4688 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4689 //
4690 std::pair<uint16_t, uint16_t>
4691 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4692   // If we don't have access to NEON instructions then we won't be able
4693   // to swizzle anything to the NEON domain. Check to make sure.
4694   if (Subtarget.hasNEON()) {
4695     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4696     // if they are not predicated.
4697     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4698       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4699 
4700     // CortexA9 is particularly picky about mixing the two and wants these
4701     // converted.
4702     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4703         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4704          MI.getOpcode() == ARM::VMOVS))
4705       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4706   }
4707   // No other instructions can be swizzled, so just determine their domain.
4708   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4709 
4710   if (Domain & ARMII::DomainNEON)
4711     return std::make_pair(ExeNEON, 0);
4712 
4713   // Certain instructions can go either way on Cortex-A8.
4714   // Treat them as NEON instructions.
4715   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4716     return std::make_pair(ExeNEON, 0);
4717 
4718   if (Domain & ARMII::DomainVFP)
4719     return std::make_pair(ExeVFP, 0);
4720 
4721   return std::make_pair(ExeGeneric, 0);
4722 }
4723 
4724 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4725                                             unsigned SReg, unsigned &Lane) {
4726   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4727   Lane = 0;
4728 
4729   if (DReg != ARM::NoRegister)
4730    return DReg;
4731 
4732   Lane = 1;
4733   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4734 
4735   assert(DReg && "S-register with no D super-register?");
4736   return DReg;
4737 }
4738 
4739 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4740 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4741 /// zero if no register needs to be defined as implicit-use.
4742 ///
4743 /// If the function cannot determine if an SPR should be marked implicit use or
4744 /// not, it returns false.
4745 ///
4746 /// This function handles cases where an instruction is being modified from taking
4747 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4748 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4749 /// lane of the DPR).
4750 ///
4751 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4752 /// (including the case where the DPR itself is defined), it should not.
4753 ///
4754 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4755                                        MachineInstr &MI, unsigned DReg,
4756                                        unsigned Lane, unsigned &ImplicitSReg) {
4757   // If the DPR is defined or used already, the other SPR lane will be chained
4758   // correctly, so there is nothing to be done.
4759   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4760     ImplicitSReg = 0;
4761     return true;
4762   }
4763 
4764   // Otherwise we need to go searching to see if the SPR is set explicitly.
4765   ImplicitSReg = TRI->getSubReg(DReg,
4766                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4767   MachineBasicBlock::LivenessQueryResult LQR =
4768       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4769 
4770   if (LQR == MachineBasicBlock::LQR_Live)
4771     return true;
4772   else if (LQR == MachineBasicBlock::LQR_Unknown)
4773     return false;
4774 
4775   // If the register is known not to be live, there is no need to add an
4776   // implicit-use.
4777   ImplicitSReg = 0;
4778   return true;
4779 }
4780 
4781 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4782                                           unsigned Domain) const {
4783   unsigned DstReg, SrcReg, DReg;
4784   unsigned Lane;
4785   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4786   const TargetRegisterInfo *TRI = &getRegisterInfo();
4787   switch (MI.getOpcode()) {
4788   default:
4789     llvm_unreachable("cannot handle opcode!");
4790     break;
4791   case ARM::VMOVD:
4792     if (Domain != ExeNEON)
4793       break;
4794 
4795     // Zap the predicate operands.
4796     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4797 
4798     // Make sure we've got NEON instructions.
4799     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4800 
4801     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4802     DstReg = MI.getOperand(0).getReg();
4803     SrcReg = MI.getOperand(1).getReg();
4804 
4805     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4806       MI.RemoveOperand(i - 1);
4807 
4808     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4809     MI.setDesc(get(ARM::VORRd));
4810     MIB.addReg(DstReg, RegState::Define)
4811         .addReg(SrcReg)
4812         .addReg(SrcReg)
4813         .add(predOps(ARMCC::AL));
4814     break;
4815   case ARM::VMOVRS:
4816     if (Domain != ExeNEON)
4817       break;
4818     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4819 
4820     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4821     DstReg = MI.getOperand(0).getReg();
4822     SrcReg = MI.getOperand(1).getReg();
4823 
4824     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4825       MI.RemoveOperand(i - 1);
4826 
4827     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4828 
4829     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4830     // Note that DSrc has been widened and the other lane may be undef, which
4831     // contaminates the entire register.
4832     MI.setDesc(get(ARM::VGETLNi32));
4833     MIB.addReg(DstReg, RegState::Define)
4834         .addReg(DReg, RegState::Undef)
4835         .addImm(Lane)
4836         .add(predOps(ARMCC::AL));
4837 
4838     // The old source should be an implicit use, otherwise we might think it
4839     // was dead before here.
4840     MIB.addReg(SrcReg, RegState::Implicit);
4841     break;
4842   case ARM::VMOVSR: {
4843     if (Domain != ExeNEON)
4844       break;
4845     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4846 
4847     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4848     DstReg = MI.getOperand(0).getReg();
4849     SrcReg = MI.getOperand(1).getReg();
4850 
4851     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4852 
4853     unsigned ImplicitSReg;
4854     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4855       break;
4856 
4857     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4858       MI.RemoveOperand(i - 1);
4859 
4860     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4861     // Again DDst may be undefined at the beginning of this instruction.
4862     MI.setDesc(get(ARM::VSETLNi32));
4863     MIB.addReg(DReg, RegState::Define)
4864         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4865         .addReg(SrcReg)
4866         .addImm(Lane)
4867         .add(predOps(ARMCC::AL));
4868 
4869     // The narrower destination must be marked as set to keep previous chains
4870     // in place.
4871     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4872     if (ImplicitSReg != 0)
4873       MIB.addReg(ImplicitSReg, RegState::Implicit);
4874     break;
4875     }
4876     case ARM::VMOVS: {
4877       if (Domain != ExeNEON)
4878         break;
4879 
4880       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4881       DstReg = MI.getOperand(0).getReg();
4882       SrcReg = MI.getOperand(1).getReg();
4883 
4884       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4885       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4886       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4887 
4888       unsigned ImplicitSReg;
4889       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4890         break;
4891 
4892       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4893         MI.RemoveOperand(i - 1);
4894 
4895       if (DSrc == DDst) {
4896         // Destination can be:
4897         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4898         MI.setDesc(get(ARM::VDUPLN32d));
4899         MIB.addReg(DDst, RegState::Define)
4900             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
4901             .addImm(SrcLane)
4902             .add(predOps(ARMCC::AL));
4903 
4904         // Neither the source or the destination are naturally represented any
4905         // more, so add them in manually.
4906         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4907         MIB.addReg(SrcReg, RegState::Implicit);
4908         if (ImplicitSReg != 0)
4909           MIB.addReg(ImplicitSReg, RegState::Implicit);
4910         break;
4911       }
4912 
4913       // In general there's no single instruction that can perform an S <-> S
4914       // move in NEON space, but a pair of VEXT instructions *can* do the
4915       // job. It turns out that the VEXTs needed will only use DSrc once, with
4916       // the position based purely on the combination of lane-0 and lane-1
4917       // involved. For example
4918       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
4919       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
4920       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
4921       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
4922       //
4923       // Pattern of the MachineInstrs is:
4924       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4925       MachineInstrBuilder NewMIB;
4926       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
4927                        DDst);
4928 
4929       // On the first instruction, both DSrc and DDst may be undef if present.
4930       // Specifically when the original instruction didn't have them as an
4931       // <imp-use>.
4932       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4933       bool CurUndef = !MI.readsRegister(CurReg, TRI);
4934       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4935 
4936       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4937       CurUndef = !MI.readsRegister(CurReg, TRI);
4938       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
4939             .addImm(1)
4940             .add(predOps(ARMCC::AL));
4941 
4942       if (SrcLane == DstLane)
4943         NewMIB.addReg(SrcReg, RegState::Implicit);
4944 
4945       MI.setDesc(get(ARM::VEXTd32));
4946       MIB.addReg(DDst, RegState::Define);
4947 
4948       // On the second instruction, DDst has definitely been defined above, so
4949       // it is not undef. DSrc, if present, can be undef as above.
4950       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4951       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4952       MIB.addReg(CurReg, getUndefRegState(CurUndef));
4953 
4954       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4955       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
4956       MIB.addReg(CurReg, getUndefRegState(CurUndef))
4957          .addImm(1)
4958          .add(predOps(ARMCC::AL));
4959 
4960       if (SrcLane != DstLane)
4961         MIB.addReg(SrcReg, RegState::Implicit);
4962 
4963       // As before, the original destination is no longer represented, add it
4964       // implicitly.
4965       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4966       if (ImplicitSReg != 0)
4967         MIB.addReg(ImplicitSReg, RegState::Implicit);
4968       break;
4969     }
4970   }
4971 }
4972 
4973 //===----------------------------------------------------------------------===//
4974 // Partial register updates
4975 //===----------------------------------------------------------------------===//
4976 //
4977 // Swift renames NEON registers with 64-bit granularity.  That means any
4978 // instruction writing an S-reg implicitly reads the containing D-reg.  The
4979 // problem is mostly avoided by translating f32 operations to v2f32 operations
4980 // on D-registers, but f32 loads are still a problem.
4981 //
4982 // These instructions can load an f32 into a NEON register:
4983 //
4984 // VLDRS - Only writes S, partial D update.
4985 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4986 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4987 //
4988 // FCONSTD can be used as a dependency-breaking instruction.
4989 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
4990     const MachineInstr &MI, unsigned OpNum,
4991     const TargetRegisterInfo *TRI) const {
4992   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
4993   if (!PartialUpdateClearance)
4994     return 0;
4995 
4996   assert(TRI && "Need TRI instance");
4997 
4998   const MachineOperand &MO = MI.getOperand(OpNum);
4999   if (MO.readsReg())
5000     return 0;
5001   unsigned Reg = MO.getReg();
5002   int UseOp = -1;
5003 
5004   switch (MI.getOpcode()) {
5005   // Normal instructions writing only an S-register.
5006   case ARM::VLDRS:
5007   case ARM::FCONSTS:
5008   case ARM::VMOVSR:
5009   case ARM::VMOVv8i8:
5010   case ARM::VMOVv4i16:
5011   case ARM::VMOVv2i32:
5012   case ARM::VMOVv2f32:
5013   case ARM::VMOVv1i64:
5014     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5015     break;
5016 
5017     // Explicitly reads the dependency.
5018   case ARM::VLD1LNd32:
5019     UseOp = 3;
5020     break;
5021   default:
5022     return 0;
5023   }
5024 
5025   // If this instruction actually reads a value from Reg, there is no unwanted
5026   // dependency.
5027   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5028     return 0;
5029 
5030   // We must be able to clobber the whole D-reg.
5031   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
5032     // Virtual register must be a def undef foo:ssub_0 operand.
5033     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5034       return 0;
5035   } else if (ARM::SPRRegClass.contains(Reg)) {
5036     // Physical register: MI must define the full D-reg.
5037     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5038                                              &ARM::DPRRegClass);
5039     if (!DReg || !MI.definesRegister(DReg, TRI))
5040       return 0;
5041   }
5042 
5043   // MI has an unwanted D-register dependency.
5044   // Avoid defs in the previous N instructrions.
5045   return PartialUpdateClearance;
5046 }
5047 
5048 // Break a partial register dependency after getPartialRegUpdateClearance
5049 // returned non-zero.
5050 void ARMBaseInstrInfo::breakPartialRegDependency(
5051     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5052   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5053   assert(TRI && "Need TRI instance");
5054 
5055   const MachineOperand &MO = MI.getOperand(OpNum);
5056   unsigned Reg = MO.getReg();
5057   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
5058          "Can't break virtual register dependencies.");
5059   unsigned DReg = Reg;
5060 
5061   // If MI defines an S-reg, find the corresponding D super-register.
5062   if (ARM::SPRRegClass.contains(Reg)) {
5063     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5064     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5065   }
5066 
5067   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5068   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5069 
5070   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5071   // the full D-register by loading the same value to both lanes.  The
5072   // instruction is micro-coded with 2 uops, so don't do this until we can
5073   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5074   // too big regressions.
5075 
5076   // Insert the dependency-breaking FCONSTD before MI.
5077   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5078   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5079       .addImm(96)
5080       .add(predOps(ARMCC::AL));
5081   MI.addRegisterKilled(DReg, TRI, true);
5082 }
5083 
5084 bool ARMBaseInstrInfo::hasNOP() const {
5085   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5086 }
5087 
5088 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5089   if (MI->getNumOperands() < 4)
5090     return true;
5091   unsigned ShOpVal = MI->getOperand(3).getImm();
5092   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5093   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5094   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5095       ((ShImm == 1 || ShImm == 2) &&
5096        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5097     return true;
5098 
5099   return false;
5100 }
5101 
5102 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5103     const MachineInstr &MI, unsigned DefIdx,
5104     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5105   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5106   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5107 
5108   switch (MI.getOpcode()) {
5109   case ARM::VMOVDRR:
5110     // dX = VMOVDRR rY, rZ
5111     // is the same as:
5112     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5113     // Populate the InputRegs accordingly.
5114     // rY
5115     const MachineOperand *MOReg = &MI.getOperand(1);
5116     if (!MOReg->isUndef())
5117       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5118                                               MOReg->getSubReg(), ARM::ssub_0));
5119     // rZ
5120     MOReg = &MI.getOperand(2);
5121     if (!MOReg->isUndef())
5122       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5123                                               MOReg->getSubReg(), ARM::ssub_1));
5124     return true;
5125   }
5126   llvm_unreachable("Target dependent opcode missing");
5127 }
5128 
5129 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5130     const MachineInstr &MI, unsigned DefIdx,
5131     RegSubRegPairAndIdx &InputReg) const {
5132   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5133   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5134 
5135   switch (MI.getOpcode()) {
5136   case ARM::VMOVRRD:
5137     // rX, rY = VMOVRRD dZ
5138     // is the same as:
5139     // rX = EXTRACT_SUBREG dZ, ssub_0
5140     // rY = EXTRACT_SUBREG dZ, ssub_1
5141     const MachineOperand &MOReg = MI.getOperand(2);
5142     if (MOReg.isUndef())
5143       return false;
5144     InputReg.Reg = MOReg.getReg();
5145     InputReg.SubReg = MOReg.getSubReg();
5146     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5147     return true;
5148   }
5149   llvm_unreachable("Target dependent opcode missing");
5150 }
5151 
5152 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5153     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5154     RegSubRegPairAndIdx &InsertedReg) const {
5155   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5156   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5157 
5158   switch (MI.getOpcode()) {
5159   case ARM::VSETLNi32:
5160     // dX = VSETLNi32 dY, rZ, imm
5161     const MachineOperand &MOBaseReg = MI.getOperand(1);
5162     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5163     if (MOInsertedReg.isUndef())
5164       return false;
5165     const MachineOperand &MOIndex = MI.getOperand(3);
5166     BaseReg.Reg = MOBaseReg.getReg();
5167     BaseReg.SubReg = MOBaseReg.getSubReg();
5168 
5169     InsertedReg.Reg = MOInsertedReg.getReg();
5170     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5171     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5172     return true;
5173   }
5174   llvm_unreachable("Target dependent opcode missing");
5175 }
5176 
5177 std::pair<unsigned, unsigned>
5178 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5179   const unsigned Mask = ARMII::MO_OPTION_MASK;
5180   return std::make_pair(TF & Mask, TF & ~Mask);
5181 }
5182 
5183 ArrayRef<std::pair<unsigned, const char *>>
5184 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5185   using namespace ARMII;
5186 
5187   static const std::pair<unsigned, const char *> TargetFlags[] = {
5188       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5189   return makeArrayRef(TargetFlags);
5190 }
5191 
5192 ArrayRef<std::pair<unsigned, const char *>>
5193 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5194   using namespace ARMII;
5195 
5196   static const std::pair<unsigned, const char *> TargetFlags[] = {
5197       {MO_COFFSTUB, "arm-coffstub"},
5198       {MO_GOT, "arm-got"},
5199       {MO_SBREL, "arm-sbrel"},
5200       {MO_DLLIMPORT, "arm-dllimport"},
5201       {MO_SECREL, "arm-secrel"},
5202       {MO_NONLAZY, "arm-nonlazy"}};
5203   return makeArrayRef(TargetFlags);
5204 }
5205 
5206 bool llvm::registerDefinedBetween(unsigned Reg,
5207                                   MachineBasicBlock::iterator From,
5208                                   MachineBasicBlock::iterator To,
5209                                   const TargetRegisterInfo *TRI) {
5210   for (auto I = From; I != To; ++I)
5211     if (I->modifiesRegister(Reg, TRI))
5212       return true;
5213   return false;
5214 }
5215 
5216 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5217                                          const TargetRegisterInfo *TRI) {
5218   // Search backwards to the instruction that defines CSPR. This may or not
5219   // be a CMP, we check that after this loop. If we find another instruction
5220   // that reads cpsr, we return nullptr.
5221   MachineBasicBlock::iterator CmpMI = Br;
5222   while (CmpMI != Br->getParent()->begin()) {
5223     --CmpMI;
5224     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5225       break;
5226     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5227       break;
5228   }
5229 
5230   // Check that this inst is a CMP r[0-7], #0 and that the register
5231   // is not redefined between the cmp and the br.
5232   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5233     return nullptr;
5234   unsigned Reg = CmpMI->getOperand(0).getReg();
5235   unsigned PredReg = 0;
5236   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5237   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5238     return nullptr;
5239   if (!isARMLowRegister(Reg))
5240     return nullptr;
5241   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5242     return nullptr;
5243 
5244   return &*CmpMI;
5245 }
5246