1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <new>
63 #include <utility>
64 #include <vector>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "arm-instrinfo"
69 
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
72 
73 static cl::opt<bool>
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
75                cl::desc("Enable ARM 2-addr to 3-addr conv"));
76 
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
78 struct ARM_MLxEntry {
79   uint16_t MLxOpc;     // MLA / MLS opcode
80   uint16_t MulOpc;     // Expanded multiplication opcode
81   uint16_t AddSubOpc;  // Expanded add / sub opcode
82   bool NegAcc;         // True if the acc is negated before the add / sub.
83   bool HasLane;        // True if instruction has an extra "lane" operand.
84 };
85 
86 static const ARM_MLxEntry ARM_MLxTable[] = {
87   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
88   // fp scalar ops
89   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
90   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
91   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
92   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
93   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
94   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
95   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
96   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
97 
98   // fp SIMD ops
99   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
100   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
101   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
102   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
103   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
104   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
105   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
106   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
107 };
108 
109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
110   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
111     Subtarget(STI) {
112   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
113     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
114       llvm_unreachable("Duplicated entries?");
115     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
116     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
117   }
118 }
119 
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer *
123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
124                                                const ScheduleDAG *DAG) const {
125   if (usePreRAHazardRecognizer()) {
126     const InstrItineraryData *II =
127         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
128     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
129   }
130   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
131 }
132 
133 ScheduleHazardRecognizer *ARMBaseInstrInfo::
134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
135                                    const ScheduleDAG *DAG) const {
136   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
137     return new ARMHazardRecognizer(II, DAG);
138   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
139 }
140 
141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
142     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
143   // FIXME: Thumb2 support.
144 
145   if (!EnableARM3Addr)
146     return nullptr;
147 
148   MachineFunction &MF = *MI.getParent()->getParent();
149   uint64_t TSFlags = MI.getDesc().TSFlags;
150   bool isPre = false;
151   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
152   default: return nullptr;
153   case ARMII::IndexModePre:
154     isPre = true;
155     break;
156   case ARMII::IndexModePost:
157     break;
158   }
159 
160   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
161   // operation.
162   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
163   if (MemOpc == 0)
164     return nullptr;
165 
166   MachineInstr *UpdateMI = nullptr;
167   MachineInstr *MemMI = nullptr;
168   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
169   const MCInstrDesc &MCID = MI.getDesc();
170   unsigned NumOps = MCID.getNumOperands();
171   bool isLoad = !MI.mayStore();
172   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
173   const MachineOperand &Base = MI.getOperand(2);
174   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
175   Register WBReg = WB.getReg();
176   Register BaseReg = Base.getReg();
177   Register OffReg = Offset.getReg();
178   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
179   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
180   switch (AddrMode) {
181   default: llvm_unreachable("Unknown indexed op!");
182   case ARMII::AddrMode2: {
183     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
184     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
185     if (OffReg == 0) {
186       if (ARM_AM::getSOImmVal(Amt) == -1)
187         // Can't encode it in a so_imm operand. This transformation will
188         // add more than 1 instruction. Abandon!
189         return nullptr;
190       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
191                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
192                      .addReg(BaseReg)
193                      .addImm(Amt)
194                      .add(predOps(Pred))
195                      .add(condCodeOp());
196     } else if (Amt != 0) {
197       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
198       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
199       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
200                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
201                      .addReg(BaseReg)
202                      .addReg(OffReg)
203                      .addReg(0)
204                      .addImm(SOOpc)
205                      .add(predOps(Pred))
206                      .add(condCodeOp());
207     } else
208       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
209                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
210                      .addReg(BaseReg)
211                      .addReg(OffReg)
212                      .add(predOps(Pred))
213                      .add(condCodeOp());
214     break;
215   }
216   case ARMII::AddrMode3 : {
217     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
218     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
219     if (OffReg == 0)
220       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
222                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
223                      .addReg(BaseReg)
224                      .addImm(Amt)
225                      .add(predOps(Pred))
226                      .add(condCodeOp());
227     else
228       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
230                      .addReg(BaseReg)
231                      .addReg(OffReg)
232                      .add(predOps(Pred))
233                      .add(condCodeOp());
234     break;
235   }
236   }
237 
238   std::vector<MachineInstr*> NewMIs;
239   if (isPre) {
240     if (isLoad)
241       MemMI =
242           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
243               .addReg(WBReg)
244               .addImm(0)
245               .addImm(Pred);
246     else
247       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
248                   .addReg(MI.getOperand(1).getReg())
249                   .addReg(WBReg)
250                   .addReg(0)
251                   .addImm(0)
252                   .addImm(Pred);
253     NewMIs.push_back(MemMI);
254     NewMIs.push_back(UpdateMI);
255   } else {
256     if (isLoad)
257       MemMI =
258           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
259               .addReg(BaseReg)
260               .addImm(0)
261               .addImm(Pred);
262     else
263       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
264                   .addReg(MI.getOperand(1).getReg())
265                   .addReg(BaseReg)
266                   .addReg(0)
267                   .addImm(0)
268                   .addImm(Pred);
269     if (WB.isDead())
270       UpdateMI->getOperand(0).setIsDead();
271     NewMIs.push_back(UpdateMI);
272     NewMIs.push_back(MemMI);
273   }
274 
275   // Transfer LiveVariables states, kill / dead info.
276   if (LV) {
277     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
278       MachineOperand &MO = MI.getOperand(i);
279       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
280         Register Reg = MO.getReg();
281 
282         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
283         if (MO.isDef()) {
284           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
285           if (MO.isDead())
286             LV->addVirtualRegisterDead(Reg, *NewMI);
287         }
288         if (MO.isUse() && MO.isKill()) {
289           for (unsigned j = 0; j < 2; ++j) {
290             // Look at the two new MI's in reverse order.
291             MachineInstr *NewMI = NewMIs[j];
292             if (!NewMI->readsRegister(Reg))
293               continue;
294             LV->addVirtualRegisterKilled(Reg, *NewMI);
295             if (VI.removeKill(MI))
296               VI.Kills.push_back(NewMI);
297             break;
298           }
299         }
300       }
301     }
302   }
303 
304   MachineBasicBlock::iterator MBBI = MI.getIterator();
305   MFI->insert(MBBI, NewMIs[1]);
306   MFI->insert(MBBI, NewMIs[0]);
307   return NewMIs[0];
308 }
309 
310 // Branch analysis.
311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
312                                      MachineBasicBlock *&TBB,
313                                      MachineBasicBlock *&FBB,
314                                      SmallVectorImpl<MachineOperand> &Cond,
315                                      bool AllowModify) const {
316   TBB = nullptr;
317   FBB = nullptr;
318 
319   MachineBasicBlock::iterator I = MBB.end();
320   if (I == MBB.begin())
321     return false; // Empty blocks are easy.
322   --I;
323 
324   // Walk backwards from the end of the basic block until the branch is
325   // analyzed or we give up.
326   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
327     // Flag to be raised on unanalyzeable instructions. This is useful in cases
328     // where we want to clean up on the end of the basic block before we bail
329     // out.
330     bool CantAnalyze = false;
331 
332     // Skip over DEBUG values and predicated nonterminators.
333     while (I->isDebugInstr() || !I->isTerminator()) {
334       if (I == MBB.begin())
335         return false;
336       --I;
337     }
338 
339     if (isIndirectBranchOpcode(I->getOpcode()) ||
340         isJumpTableBranchOpcode(I->getOpcode())) {
341       // Indirect branches and jump tables can't be analyzed, but we still want
342       // to clean up any instructions at the tail of the basic block.
343       CantAnalyze = true;
344     } else if (isUncondBranchOpcode(I->getOpcode())) {
345       TBB = I->getOperand(0).getMBB();
346     } else if (isCondBranchOpcode(I->getOpcode())) {
347       // Bail out if we encounter multiple conditional branches.
348       if (!Cond.empty())
349         return true;
350 
351       assert(!FBB && "FBB should have been null.");
352       FBB = TBB;
353       TBB = I->getOperand(0).getMBB();
354       Cond.push_back(I->getOperand(1));
355       Cond.push_back(I->getOperand(2));
356     } else if (I->isReturn()) {
357       // Returns can't be analyzed, but we should run cleanup.
358       CantAnalyze = !isPredicated(*I);
359     } else {
360       // We encountered other unrecognized terminator. Bail out immediately.
361       return true;
362     }
363 
364     // Cleanup code - to be run for unpredicated unconditional branches and
365     //                returns.
366     if (!isPredicated(*I) &&
367           (isUncondBranchOpcode(I->getOpcode()) ||
368            isIndirectBranchOpcode(I->getOpcode()) ||
369            isJumpTableBranchOpcode(I->getOpcode()) ||
370            I->isReturn())) {
371       // Forget any previous condition branch information - it no longer applies.
372       Cond.clear();
373       FBB = nullptr;
374 
375       // If we can modify the function, delete everything below this
376       // unconditional branch.
377       if (AllowModify) {
378         MachineBasicBlock::iterator DI = std::next(I);
379         while (DI != MBB.end()) {
380           MachineInstr &InstToDelete = *DI;
381           ++DI;
382           InstToDelete.eraseFromParent();
383         }
384       }
385     }
386 
387     if (CantAnalyze)
388       return true;
389 
390     if (I == MBB.begin())
391       return false;
392 
393     --I;
394   }
395 
396   // We made it past the terminators without bailing out - we must have
397   // analyzed this branch successfully.
398   return false;
399 }
400 
401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
402                                         int *BytesRemoved) const {
403   assert(!BytesRemoved && "code size not handled");
404 
405   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
406   if (I == MBB.end())
407     return 0;
408 
409   if (!isUncondBranchOpcode(I->getOpcode()) &&
410       !isCondBranchOpcode(I->getOpcode()))
411     return 0;
412 
413   // Remove the branch.
414   I->eraseFromParent();
415 
416   I = MBB.end();
417 
418   if (I == MBB.begin()) return 1;
419   --I;
420   if (!isCondBranchOpcode(I->getOpcode()))
421     return 1;
422 
423   // Remove the branch.
424   I->eraseFromParent();
425   return 2;
426 }
427 
428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
429                                         MachineBasicBlock *TBB,
430                                         MachineBasicBlock *FBB,
431                                         ArrayRef<MachineOperand> Cond,
432                                         const DebugLoc &DL,
433                                         int *BytesAdded) const {
434   assert(!BytesAdded && "code size not handled");
435   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
436   int BOpc   = !AFI->isThumbFunction()
437     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
438   int BccOpc = !AFI->isThumbFunction()
439     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
440   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
441 
442   // Shouldn't be a fall through.
443   assert(TBB && "insertBranch must not be told to insert a fallthrough");
444   assert((Cond.size() == 2 || Cond.size() == 0) &&
445          "ARM branch conditions have two components!");
446 
447   // For conditional branches, we use addOperand to preserve CPSR flags.
448 
449   if (!FBB) {
450     if (Cond.empty()) { // Unconditional branch?
451       if (isThumb)
452         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
453       else
454         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
455     } else
456       BuildMI(&MBB, DL, get(BccOpc))
457           .addMBB(TBB)
458           .addImm(Cond[0].getImm())
459           .add(Cond[1]);
460     return 1;
461   }
462 
463   // Two-way conditional branch.
464   BuildMI(&MBB, DL, get(BccOpc))
465       .addMBB(TBB)
466       .addImm(Cond[0].getImm())
467       .add(Cond[1]);
468   if (isThumb)
469     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
470   else
471     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
472   return 2;
473 }
474 
475 bool ARMBaseInstrInfo::
476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
478   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
479   return false;
480 }
481 
482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
483   if (MI.isBundle()) {
484     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
485     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
486     while (++I != E && I->isInsideBundle()) {
487       int PIdx = I->findFirstPredOperandIdx();
488       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
489         return true;
490     }
491     return false;
492   }
493 
494   int PIdx = MI.findFirstPredOperandIdx();
495   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
496 }
497 
498 std::string ARMBaseInstrInfo::createMIROperandComment(
499     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
500     const TargetRegisterInfo *TRI) const {
501 
502   // First, let's see if there is a generic comment for this operand
503   std::string GenericComment =
504       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
505   if (!GenericComment.empty())
506     return GenericComment;
507 
508   // If not, check if we have an immediate operand.
509   if (Op.getType() != MachineOperand::MO_Immediate)
510     return std::string();
511 
512   // And print its corresponding condition code if the immediate is a
513   // predicate.
514   int FirstPredOp = MI.findFirstPredOperandIdx();
515   if (FirstPredOp != (int) OpIdx)
516     return std::string();
517 
518   std::string CC = "CC::";
519   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
520   return CC;
521 }
522 
523 bool ARMBaseInstrInfo::PredicateInstruction(
524     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
525   unsigned Opc = MI.getOpcode();
526   if (isUncondBranchOpcode(Opc)) {
527     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
528     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
529       .addImm(Pred[0].getImm())
530       .addReg(Pred[1].getReg());
531     return true;
532   }
533 
534   int PIdx = MI.findFirstPredOperandIdx();
535   if (PIdx != -1) {
536     MachineOperand &PMO = MI.getOperand(PIdx);
537     PMO.setImm(Pred[0].getImm());
538     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
539     return true;
540   }
541   return false;
542 }
543 
544 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
545                                          ArrayRef<MachineOperand> Pred2) const {
546   if (Pred1.size() > 2 || Pred2.size() > 2)
547     return false;
548 
549   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
550   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
551   if (CC1 == CC2)
552     return true;
553 
554   switch (CC1) {
555   default:
556     return false;
557   case ARMCC::AL:
558     return true;
559   case ARMCC::HS:
560     return CC2 == ARMCC::HI;
561   case ARMCC::LS:
562     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
563   case ARMCC::GE:
564     return CC2 == ARMCC::GT;
565   case ARMCC::LE:
566     return CC2 == ARMCC::LT;
567   }
568 }
569 
570 bool ARMBaseInstrInfo::DefinesPredicate(
571     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
572   bool Found = false;
573   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
574     const MachineOperand &MO = MI.getOperand(i);
575     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
576         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
577       Pred.push_back(MO);
578       Found = true;
579     }
580   }
581 
582   return Found;
583 }
584 
585 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
586   for (const auto &MO : MI.operands())
587     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
588       return true;
589   return false;
590 }
591 
592 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
593                                         unsigned Op) const {
594   const MachineOperand &Offset = MI.getOperand(Op + 1);
595   return Offset.getReg() != 0;
596 }
597 
598 // Load with negative register offset requires additional 1cyc and +I unit
599 // for Cortex A57
600 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
601                                              unsigned Op) const {
602   const MachineOperand &Offset = MI.getOperand(Op + 1);
603   const MachineOperand &Opc = MI.getOperand(Op + 2);
604   assert(Opc.isImm());
605   assert(Offset.isReg());
606   int64_t OpcImm = Opc.getImm();
607 
608   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
609   return (isSub && Offset.getReg() != 0);
610 }
611 
612 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
613                                        unsigned Op) const {
614   const MachineOperand &Opc = MI.getOperand(Op + 2);
615   unsigned OffImm = Opc.getImm();
616   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
617 }
618 
619 // Load, scaled register offset, not plus LSL2
620 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
621                                                   unsigned Op) const {
622   const MachineOperand &Opc = MI.getOperand(Op + 2);
623   unsigned OffImm = Opc.getImm();
624 
625   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
626   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
627   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
628   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
629   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
630   return !SimpleScaled;
631 }
632 
633 // Minus reg for ldstso addr mode
634 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
635                                         unsigned Op) const {
636   unsigned OffImm = MI.getOperand(Op + 2).getImm();
637   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
638 }
639 
640 // Load, scaled register offset
641 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
642                                       unsigned Op) const {
643   unsigned OffImm = MI.getOperand(Op + 2).getImm();
644   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
645 }
646 
647 static bool isEligibleForITBlock(const MachineInstr *MI) {
648   switch (MI->getOpcode()) {
649   default: return true;
650   case ARM::tADC:   // ADC (register) T1
651   case ARM::tADDi3: // ADD (immediate) T1
652   case ARM::tADDi8: // ADD (immediate) T2
653   case ARM::tADDrr: // ADD (register) T1
654   case ARM::tAND:   // AND (register) T1
655   case ARM::tASRri: // ASR (immediate) T1
656   case ARM::tASRrr: // ASR (register) T1
657   case ARM::tBIC:   // BIC (register) T1
658   case ARM::tEOR:   // EOR (register) T1
659   case ARM::tLSLri: // LSL (immediate) T1
660   case ARM::tLSLrr: // LSL (register) T1
661   case ARM::tLSRri: // LSR (immediate) T1
662   case ARM::tLSRrr: // LSR (register) T1
663   case ARM::tMUL:   // MUL T1
664   case ARM::tMVN:   // MVN (register) T1
665   case ARM::tORR:   // ORR (register) T1
666   case ARM::tROR:   // ROR (register) T1
667   case ARM::tRSB:   // RSB (immediate) T1
668   case ARM::tSBC:   // SBC (register) T1
669   case ARM::tSUBi3: // SUB (immediate) T1
670   case ARM::tSUBi8: // SUB (immediate) T2
671   case ARM::tSUBrr: // SUB (register) T1
672     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
673   }
674 }
675 
676 /// isPredicable - Return true if the specified instruction can be predicated.
677 /// By default, this returns true for every instruction with a
678 /// PredicateOperand.
679 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
680   if (!MI.isPredicable())
681     return false;
682 
683   if (MI.isBundle())
684     return false;
685 
686   if (!isEligibleForITBlock(&MI))
687     return false;
688 
689   const ARMFunctionInfo *AFI =
690       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
691 
692   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
693   // In their ARM encoding, they can't be encoded in a conditional form.
694   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
695     return false;
696 
697   if (AFI->isThumb2Function()) {
698     if (getSubtarget().restrictIT())
699       return isV8EligibleForIT(&MI);
700   }
701 
702   return true;
703 }
704 
705 namespace llvm {
706 
707 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
708   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
709     const MachineOperand &MO = MI->getOperand(i);
710     if (!MO.isReg() || MO.isUndef() || MO.isUse())
711       continue;
712     if (MO.getReg() != ARM::CPSR)
713       continue;
714     if (!MO.isDead())
715       return false;
716   }
717   // all definitions of CPSR are dead
718   return true;
719 }
720 
721 } // end namespace llvm
722 
723 /// GetInstSize - Return the size of the specified MachineInstr.
724 ///
725 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
726   const MachineBasicBlock &MBB = *MI.getParent();
727   const MachineFunction *MF = MBB.getParent();
728   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
729 
730   const MCInstrDesc &MCID = MI.getDesc();
731   if (MCID.getSize())
732     return MCID.getSize();
733 
734   switch (MI.getOpcode()) {
735   default:
736     // pseudo-instruction sizes are zero.
737     return 0;
738   case TargetOpcode::BUNDLE:
739     return getInstBundleLength(MI);
740   case ARM::MOVi16_ga_pcrel:
741   case ARM::MOVTi16_ga_pcrel:
742   case ARM::t2MOVi16_ga_pcrel:
743   case ARM::t2MOVTi16_ga_pcrel:
744     return 4;
745   case ARM::MOVi32imm:
746   case ARM::t2MOVi32imm:
747     return 8;
748   case ARM::CONSTPOOL_ENTRY:
749   case ARM::JUMPTABLE_INSTS:
750   case ARM::JUMPTABLE_ADDRS:
751   case ARM::JUMPTABLE_TBB:
752   case ARM::JUMPTABLE_TBH:
753     // If this machine instr is a constant pool entry, its size is recorded as
754     // operand #2.
755     return MI.getOperand(2).getImm();
756   case ARM::Int_eh_sjlj_longjmp:
757     return 16;
758   case ARM::tInt_eh_sjlj_longjmp:
759     return 10;
760   case ARM::tInt_WIN_eh_sjlj_longjmp:
761     return 12;
762   case ARM::Int_eh_sjlj_setjmp:
763   case ARM::Int_eh_sjlj_setjmp_nofp:
764     return 20;
765   case ARM::tInt_eh_sjlj_setjmp:
766   case ARM::t2Int_eh_sjlj_setjmp:
767   case ARM::t2Int_eh_sjlj_setjmp_nofp:
768     return 12;
769   case ARM::SPACE:
770     return MI.getOperand(1).getImm();
771   case ARM::INLINEASM:
772   case ARM::INLINEASM_BR: {
773     // If this machine instr is an inline asm, measure it.
774     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
775     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
776       Size = alignTo(Size, 4);
777     return Size;
778   }
779   }
780 }
781 
782 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
783   unsigned Size = 0;
784   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
785   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
786   while (++I != E && I->isInsideBundle()) {
787     assert(!I->isBundle() && "No nested bundle!");
788     Size += getInstSizeInBytes(*I);
789   }
790   return Size;
791 }
792 
793 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
794                                     MachineBasicBlock::iterator I,
795                                     unsigned DestReg, bool KillSrc,
796                                     const ARMSubtarget &Subtarget) const {
797   unsigned Opc = Subtarget.isThumb()
798                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
799                      : ARM::MRS;
800 
801   MachineInstrBuilder MIB =
802       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
803 
804   // There is only 1 A/R class MRS instruction, and it always refers to
805   // APSR. However, there are lots of other possibilities on M-class cores.
806   if (Subtarget.isMClass())
807     MIB.addImm(0x800);
808 
809   MIB.add(predOps(ARMCC::AL))
810      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
811 }
812 
813 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
814                                   MachineBasicBlock::iterator I,
815                                   unsigned SrcReg, bool KillSrc,
816                                   const ARMSubtarget &Subtarget) const {
817   unsigned Opc = Subtarget.isThumb()
818                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
819                      : ARM::MSR;
820 
821   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
822 
823   if (Subtarget.isMClass())
824     MIB.addImm(0x800);
825   else
826     MIB.addImm(8);
827 
828   MIB.addReg(SrcReg, getKillRegState(KillSrc))
829      .add(predOps(ARMCC::AL))
830      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
831 }
832 
833 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
834   MIB.addImm(ARMVCC::None);
835   MIB.addReg(0);
836 }
837 
838 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
839                                       Register DestReg) {
840   addUnpredicatedMveVpredNOp(MIB);
841   MIB.addReg(DestReg, RegState::Undef);
842 }
843 
844 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
845   MIB.addImm(Cond);
846   MIB.addReg(ARM::VPR, RegState::Implicit);
847 }
848 
849 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
850                                     unsigned Cond, unsigned Inactive) {
851   addPredicatedMveVpredNOp(MIB, Cond);
852   MIB.addReg(Inactive);
853 }
854 
855 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
856                                    MachineBasicBlock::iterator I,
857                                    const DebugLoc &DL, MCRegister DestReg,
858                                    MCRegister SrcReg, bool KillSrc) const {
859   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
860   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
861 
862   if (GPRDest && GPRSrc) {
863     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
864         .addReg(SrcReg, getKillRegState(KillSrc))
865         .add(predOps(ARMCC::AL))
866         .add(condCodeOp());
867     return;
868   }
869 
870   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
871   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
872 
873   unsigned Opc = 0;
874   if (SPRDest && SPRSrc)
875     Opc = ARM::VMOVS;
876   else if (GPRDest && SPRSrc)
877     Opc = ARM::VMOVRS;
878   else if (SPRDest && GPRSrc)
879     Opc = ARM::VMOVSR;
880   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
881     Opc = ARM::VMOVD;
882   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
883     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
884 
885   if (Opc) {
886     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
887     MIB.addReg(SrcReg, getKillRegState(KillSrc));
888     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
889       MIB.addReg(SrcReg, getKillRegState(KillSrc));
890     if (Opc == ARM::MVE_VORR)
891       addUnpredicatedMveVpredROp(MIB, DestReg);
892     else
893       MIB.add(predOps(ARMCC::AL));
894     return;
895   }
896 
897   // Handle register classes that require multiple instructions.
898   unsigned BeginIdx = 0;
899   unsigned SubRegs = 0;
900   int Spacing = 1;
901 
902   // Use VORRq when possible.
903   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
904     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
905     BeginIdx = ARM::qsub_0;
906     SubRegs = 2;
907   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
908     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
909     BeginIdx = ARM::qsub_0;
910     SubRegs = 4;
911   // Fall back to VMOVD.
912   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
913     Opc = ARM::VMOVD;
914     BeginIdx = ARM::dsub_0;
915     SubRegs = 2;
916   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
917     Opc = ARM::VMOVD;
918     BeginIdx = ARM::dsub_0;
919     SubRegs = 3;
920   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
921     Opc = ARM::VMOVD;
922     BeginIdx = ARM::dsub_0;
923     SubRegs = 4;
924   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
925     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
926     BeginIdx = ARM::gsub_0;
927     SubRegs = 2;
928   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
929     Opc = ARM::VMOVD;
930     BeginIdx = ARM::dsub_0;
931     SubRegs = 2;
932     Spacing = 2;
933   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
934     Opc = ARM::VMOVD;
935     BeginIdx = ARM::dsub_0;
936     SubRegs = 3;
937     Spacing = 2;
938   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
939     Opc = ARM::VMOVD;
940     BeginIdx = ARM::dsub_0;
941     SubRegs = 4;
942     Spacing = 2;
943   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
944              !Subtarget.hasFP64()) {
945     Opc = ARM::VMOVS;
946     BeginIdx = ARM::ssub_0;
947     SubRegs = 2;
948   } else if (SrcReg == ARM::CPSR) {
949     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
950     return;
951   } else if (DestReg == ARM::CPSR) {
952     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
953     return;
954   } else if (DestReg == ARM::VPR) {
955     assert(ARM::GPRRegClass.contains(SrcReg));
956     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
957         .addReg(SrcReg, getKillRegState(KillSrc))
958         .add(predOps(ARMCC::AL));
959     return;
960   } else if (SrcReg == ARM::VPR) {
961     assert(ARM::GPRRegClass.contains(DestReg));
962     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
963         .addReg(SrcReg, getKillRegState(KillSrc))
964         .add(predOps(ARMCC::AL));
965     return;
966   } else if (DestReg == ARM::FPSCR_NZCV) {
967     assert(ARM::GPRRegClass.contains(SrcReg));
968     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
969         .addReg(SrcReg, getKillRegState(KillSrc))
970         .add(predOps(ARMCC::AL));
971     return;
972   } else if (SrcReg == ARM::FPSCR_NZCV) {
973     assert(ARM::GPRRegClass.contains(DestReg));
974     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
975         .addReg(SrcReg, getKillRegState(KillSrc))
976         .add(predOps(ARMCC::AL));
977     return;
978   }
979 
980   assert(Opc && "Impossible reg-to-reg copy");
981 
982   const TargetRegisterInfo *TRI = &getRegisterInfo();
983   MachineInstrBuilder Mov;
984 
985   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
986   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
987     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
988     Spacing = -Spacing;
989   }
990 #ifndef NDEBUG
991   SmallSet<unsigned, 4> DstRegs;
992 #endif
993   for (unsigned i = 0; i != SubRegs; ++i) {
994     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
995     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
996     assert(Dst && Src && "Bad sub-register");
997 #ifndef NDEBUG
998     assert(!DstRegs.count(Src) && "destructive vector copy");
999     DstRegs.insert(Dst);
1000 #endif
1001     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1002     // VORR (NEON or MVE) takes two source operands.
1003     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1004       Mov.addReg(Src);
1005     }
1006     // MVE VORR takes predicate operands in place of an ordinary condition.
1007     if (Opc == ARM::MVE_VORR)
1008       addUnpredicatedMveVpredROp(Mov, Dst);
1009     else
1010       Mov = Mov.add(predOps(ARMCC::AL));
1011     // MOVr can set CC.
1012     if (Opc == ARM::MOVr)
1013       Mov = Mov.add(condCodeOp());
1014   }
1015   // Add implicit super-register defs and kills to the last instruction.
1016   Mov->addRegisterDefined(DestReg, TRI);
1017   if (KillSrc)
1018     Mov->addRegisterKilled(SrcReg, TRI);
1019 }
1020 
1021 Optional<DestSourcePair>
1022 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1023   // VMOVRRD is also a copy instruction but it requires
1024   // special way of handling. It is more complex copy version
1025   // and since that we are not considering it. For recognition
1026   // of such instruction isExtractSubregLike MI interface fuction
1027   // could be used.
1028   // VORRq is considered as a move only if two inputs are
1029   // the same register.
1030   if (!MI.isMoveReg() ||
1031       (MI.getOpcode() == ARM::VORRq &&
1032        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1033     return None;
1034   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1035 }
1036 
1037 Optional<ParamLoadedValue>
1038 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1039                                       Register Reg) const {
1040   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1041     Register DstReg = DstSrcPair->Destination->getReg();
1042 
1043     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1044     // than the copy registers. Consider for example:
1045     //
1046     //   s16 = VMOVS s0
1047     //   s17 = VMOVS s1
1048     //   call @callee(d0)
1049     //
1050     // We'd like to describe the call site value of d0 as d8, but this requires
1051     // gathering and merging the descriptions for the two VMOVS instructions.
1052     //
1053     // We also don't handle the reverse situation, where the forwarding reg is
1054     // narrower than the copy destination:
1055     //
1056     //   d8 = VMOVD d0
1057     //   call @callee(s1)
1058     //
1059     // We need to produce a fragment description (the call site value of s1 is
1060     // /not/ just d8).
1061     if (DstReg != Reg)
1062       return None;
1063   }
1064   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1065 }
1066 
1067 const MachineInstrBuilder &
1068 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1069                           unsigned SubIdx, unsigned State,
1070                           const TargetRegisterInfo *TRI) const {
1071   if (!SubIdx)
1072     return MIB.addReg(Reg, State);
1073 
1074   if (Register::isPhysicalRegister(Reg))
1075     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1076   return MIB.addReg(Reg, State, SubIdx);
1077 }
1078 
1079 void ARMBaseInstrInfo::
1080 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1081                     Register SrcReg, bool isKill, int FI,
1082                     const TargetRegisterClass *RC,
1083                     const TargetRegisterInfo *TRI) const {
1084   MachineFunction &MF = *MBB.getParent();
1085   MachineFrameInfo &MFI = MF.getFrameInfo();
1086   Align Alignment = MFI.getObjectAlign(FI);
1087 
1088   MachineMemOperand *MMO = MF.getMachineMemOperand(
1089       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1090       MFI.getObjectSize(FI), Alignment);
1091 
1092   switch (TRI->getSpillSize(*RC)) {
1093     case 2:
1094       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1095         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1096             .addReg(SrcReg, getKillRegState(isKill))
1097             .addFrameIndex(FI)
1098             .addImm(0)
1099             .addMemOperand(MMO)
1100             .add(predOps(ARMCC::AL));
1101       } else
1102         llvm_unreachable("Unknown reg class!");
1103       break;
1104     case 4:
1105       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1106         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1107             .addReg(SrcReg, getKillRegState(isKill))
1108             .addFrameIndex(FI)
1109             .addImm(0)
1110             .addMemOperand(MMO)
1111             .add(predOps(ARMCC::AL));
1112       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1113         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1114             .addReg(SrcReg, getKillRegState(isKill))
1115             .addFrameIndex(FI)
1116             .addImm(0)
1117             .addMemOperand(MMO)
1118             .add(predOps(ARMCC::AL));
1119       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1120         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1121             .addReg(SrcReg, getKillRegState(isKill))
1122             .addFrameIndex(FI)
1123             .addImm(0)
1124             .addMemOperand(MMO)
1125             .add(predOps(ARMCC::AL));
1126       } else
1127         llvm_unreachable("Unknown reg class!");
1128       break;
1129     case 8:
1130       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1131         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1132             .addReg(SrcReg, getKillRegState(isKill))
1133             .addFrameIndex(FI)
1134             .addImm(0)
1135             .addMemOperand(MMO)
1136             .add(predOps(ARMCC::AL));
1137       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1138         if (Subtarget.hasV5TEOps()) {
1139           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1140           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1141           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1142           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1143              .add(predOps(ARMCC::AL));
1144         } else {
1145           // Fallback to STM instruction, which has existed since the dawn of
1146           // time.
1147           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1148                                         .addFrameIndex(FI)
1149                                         .addMemOperand(MMO)
1150                                         .add(predOps(ARMCC::AL));
1151           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1152           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1153         }
1154       } else
1155         llvm_unreachable("Unknown reg class!");
1156       break;
1157     case 16:
1158       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1159         // Use aligned spills if the stack can be realigned.
1160         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1161           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1162               .addFrameIndex(FI)
1163               .addImm(16)
1164               .addReg(SrcReg, getKillRegState(isKill))
1165               .addMemOperand(MMO)
1166               .add(predOps(ARMCC::AL));
1167         } else {
1168           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1169               .addReg(SrcReg, getKillRegState(isKill))
1170               .addFrameIndex(FI)
1171               .addMemOperand(MMO)
1172               .add(predOps(ARMCC::AL));
1173         }
1174       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1175                  Subtarget.hasMVEIntegerOps()) {
1176         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1177         MIB.addReg(SrcReg, getKillRegState(isKill))
1178           .addFrameIndex(FI)
1179           .addImm(0)
1180           .addMemOperand(MMO);
1181         addUnpredicatedMveVpredNOp(MIB);
1182       } else
1183         llvm_unreachable("Unknown reg class!");
1184       break;
1185     case 24:
1186       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1187         // Use aligned spills if the stack can be realigned.
1188         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1189             Subtarget.hasNEON()) {
1190           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1191               .addFrameIndex(FI)
1192               .addImm(16)
1193               .addReg(SrcReg, getKillRegState(isKill))
1194               .addMemOperand(MMO)
1195               .add(predOps(ARMCC::AL));
1196         } else {
1197           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1198                                             get(ARM::VSTMDIA))
1199                                         .addFrameIndex(FI)
1200                                         .add(predOps(ARMCC::AL))
1201                                         .addMemOperand(MMO);
1202           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1203           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1204           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1205         }
1206       } else
1207         llvm_unreachable("Unknown reg class!");
1208       break;
1209     case 32:
1210       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1211         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1212             Subtarget.hasNEON()) {
1213           // FIXME: It's possible to only store part of the QQ register if the
1214           // spilled def has a sub-register index.
1215           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1216               .addFrameIndex(FI)
1217               .addImm(16)
1218               .addReg(SrcReg, getKillRegState(isKill))
1219               .addMemOperand(MMO)
1220               .add(predOps(ARMCC::AL));
1221         } else {
1222           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1223                                             get(ARM::VSTMDIA))
1224                                         .addFrameIndex(FI)
1225                                         .add(predOps(ARMCC::AL))
1226                                         .addMemOperand(MMO);
1227           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1228           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1229           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1230                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1231         }
1232       } else
1233         llvm_unreachable("Unknown reg class!");
1234       break;
1235     case 64:
1236       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1237         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1238                                       .addFrameIndex(FI)
1239                                       .add(predOps(ARMCC::AL))
1240                                       .addMemOperand(MMO);
1241         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1242         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1243         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1244         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1245         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1246         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1247         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1248               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1249       } else
1250         llvm_unreachable("Unknown reg class!");
1251       break;
1252     default:
1253       llvm_unreachable("Unknown reg class!");
1254   }
1255 }
1256 
1257 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1258                                               int &FrameIndex) const {
1259   switch (MI.getOpcode()) {
1260   default: break;
1261   case ARM::STRrs:
1262   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1263     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1264         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1265         MI.getOperand(3).getImm() == 0) {
1266       FrameIndex = MI.getOperand(1).getIndex();
1267       return MI.getOperand(0).getReg();
1268     }
1269     break;
1270   case ARM::STRi12:
1271   case ARM::t2STRi12:
1272   case ARM::tSTRspi:
1273   case ARM::VSTRD:
1274   case ARM::VSTRS:
1275     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1276         MI.getOperand(2).getImm() == 0) {
1277       FrameIndex = MI.getOperand(1).getIndex();
1278       return MI.getOperand(0).getReg();
1279     }
1280     break;
1281   case ARM::VSTR_P0_off:
1282     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1283         MI.getOperand(1).getImm() == 0) {
1284       FrameIndex = MI.getOperand(0).getIndex();
1285       return ARM::P0;
1286     }
1287     break;
1288   case ARM::VST1q64:
1289   case ARM::VST1d64TPseudo:
1290   case ARM::VST1d64QPseudo:
1291     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1292       FrameIndex = MI.getOperand(0).getIndex();
1293       return MI.getOperand(2).getReg();
1294     }
1295     break;
1296   case ARM::VSTMQIA:
1297     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1298       FrameIndex = MI.getOperand(1).getIndex();
1299       return MI.getOperand(0).getReg();
1300     }
1301     break;
1302   }
1303 
1304   return 0;
1305 }
1306 
1307 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1308                                                     int &FrameIndex) const {
1309   SmallVector<const MachineMemOperand *, 1> Accesses;
1310   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1311       Accesses.size() == 1) {
1312     FrameIndex =
1313         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1314             ->getFrameIndex();
1315     return true;
1316   }
1317   return false;
1318 }
1319 
1320 void ARMBaseInstrInfo::
1321 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1322                      Register DestReg, int FI,
1323                      const TargetRegisterClass *RC,
1324                      const TargetRegisterInfo *TRI) const {
1325   DebugLoc DL;
1326   if (I != MBB.end()) DL = I->getDebugLoc();
1327   MachineFunction &MF = *MBB.getParent();
1328   MachineFrameInfo &MFI = MF.getFrameInfo();
1329   const Align Alignment = MFI.getObjectAlign(FI);
1330   MachineMemOperand *MMO = MF.getMachineMemOperand(
1331       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1332       MFI.getObjectSize(FI), Alignment);
1333 
1334   switch (TRI->getSpillSize(*RC)) {
1335   case 2:
1336     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1337       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1338           .addFrameIndex(FI)
1339           .addImm(0)
1340           .addMemOperand(MMO)
1341           .add(predOps(ARMCC::AL));
1342     } else
1343       llvm_unreachable("Unknown reg class!");
1344     break;
1345   case 4:
1346     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1347       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1348           .addFrameIndex(FI)
1349           .addImm(0)
1350           .addMemOperand(MMO)
1351           .add(predOps(ARMCC::AL));
1352     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1353       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1354           .addFrameIndex(FI)
1355           .addImm(0)
1356           .addMemOperand(MMO)
1357           .add(predOps(ARMCC::AL));
1358     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1359       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1360           .addFrameIndex(FI)
1361           .addImm(0)
1362           .addMemOperand(MMO)
1363           .add(predOps(ARMCC::AL));
1364     } else
1365       llvm_unreachable("Unknown reg class!");
1366     break;
1367   case 8:
1368     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1369       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1370           .addFrameIndex(FI)
1371           .addImm(0)
1372           .addMemOperand(MMO)
1373           .add(predOps(ARMCC::AL));
1374     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1375       MachineInstrBuilder MIB;
1376 
1377       if (Subtarget.hasV5TEOps()) {
1378         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1379         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1380         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1381         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1382            .add(predOps(ARMCC::AL));
1383       } else {
1384         // Fallback to LDM instruction, which has existed since the dawn of
1385         // time.
1386         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1387                   .addFrameIndex(FI)
1388                   .addMemOperand(MMO)
1389                   .add(predOps(ARMCC::AL));
1390         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1391         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1392       }
1393 
1394       if (Register::isPhysicalRegister(DestReg))
1395         MIB.addReg(DestReg, RegState::ImplicitDefine);
1396     } else
1397       llvm_unreachable("Unknown reg class!");
1398     break;
1399   case 16:
1400     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1401       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1402         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1403             .addFrameIndex(FI)
1404             .addImm(16)
1405             .addMemOperand(MMO)
1406             .add(predOps(ARMCC::AL));
1407       } else {
1408         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1409             .addFrameIndex(FI)
1410             .addMemOperand(MMO)
1411             .add(predOps(ARMCC::AL));
1412       }
1413     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1414                Subtarget.hasMVEIntegerOps()) {
1415       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1416       MIB.addFrameIndex(FI)
1417         .addImm(0)
1418         .addMemOperand(MMO);
1419       addUnpredicatedMveVpredNOp(MIB);
1420     } else
1421       llvm_unreachable("Unknown reg class!");
1422     break;
1423   case 24:
1424     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1425       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1426           Subtarget.hasNEON()) {
1427         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1428             .addFrameIndex(FI)
1429             .addImm(16)
1430             .addMemOperand(MMO)
1431             .add(predOps(ARMCC::AL));
1432       } else {
1433         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1434                                       .addFrameIndex(FI)
1435                                       .addMemOperand(MMO)
1436                                       .add(predOps(ARMCC::AL));
1437         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1438         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1439         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1440         if (Register::isPhysicalRegister(DestReg))
1441           MIB.addReg(DestReg, RegState::ImplicitDefine);
1442       }
1443     } else
1444       llvm_unreachable("Unknown reg class!");
1445     break;
1446    case 32:
1447     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1448       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1449           Subtarget.hasNEON()) {
1450         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1451             .addFrameIndex(FI)
1452             .addImm(16)
1453             .addMemOperand(MMO)
1454             .add(predOps(ARMCC::AL));
1455       } else {
1456         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1457                                       .addFrameIndex(FI)
1458                                       .add(predOps(ARMCC::AL))
1459                                       .addMemOperand(MMO);
1460         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1461         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1462         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1463         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1464         if (Register::isPhysicalRegister(DestReg))
1465           MIB.addReg(DestReg, RegState::ImplicitDefine);
1466       }
1467     } else
1468       llvm_unreachable("Unknown reg class!");
1469     break;
1470   case 64:
1471     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1472       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1473                                     .addFrameIndex(FI)
1474                                     .add(predOps(ARMCC::AL))
1475                                     .addMemOperand(MMO);
1476       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1477       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1478       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1479       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1480       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1481       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1482       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1483       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1484       if (Register::isPhysicalRegister(DestReg))
1485         MIB.addReg(DestReg, RegState::ImplicitDefine);
1486     } else
1487       llvm_unreachable("Unknown reg class!");
1488     break;
1489   default:
1490     llvm_unreachable("Unknown regclass!");
1491   }
1492 }
1493 
1494 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1495                                                int &FrameIndex) const {
1496   switch (MI.getOpcode()) {
1497   default: break;
1498   case ARM::LDRrs:
1499   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1500     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1501         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1502         MI.getOperand(3).getImm() == 0) {
1503       FrameIndex = MI.getOperand(1).getIndex();
1504       return MI.getOperand(0).getReg();
1505     }
1506     break;
1507   case ARM::LDRi12:
1508   case ARM::t2LDRi12:
1509   case ARM::tLDRspi:
1510   case ARM::VLDRD:
1511   case ARM::VLDRS:
1512     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1513         MI.getOperand(2).getImm() == 0) {
1514       FrameIndex = MI.getOperand(1).getIndex();
1515       return MI.getOperand(0).getReg();
1516     }
1517     break;
1518   case ARM::VLDR_P0_off:
1519     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1520         MI.getOperand(1).getImm() == 0) {
1521       FrameIndex = MI.getOperand(0).getIndex();
1522       return ARM::P0;
1523     }
1524     break;
1525   case ARM::VLD1q64:
1526   case ARM::VLD1d8TPseudo:
1527   case ARM::VLD1d16TPseudo:
1528   case ARM::VLD1d32TPseudo:
1529   case ARM::VLD1d64TPseudo:
1530   case ARM::VLD1d8QPseudo:
1531   case ARM::VLD1d16QPseudo:
1532   case ARM::VLD1d32QPseudo:
1533   case ARM::VLD1d64QPseudo:
1534     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1535       FrameIndex = MI.getOperand(1).getIndex();
1536       return MI.getOperand(0).getReg();
1537     }
1538     break;
1539   case ARM::VLDMQIA:
1540     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1541       FrameIndex = MI.getOperand(1).getIndex();
1542       return MI.getOperand(0).getReg();
1543     }
1544     break;
1545   }
1546 
1547   return 0;
1548 }
1549 
1550 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1551                                                      int &FrameIndex) const {
1552   SmallVector<const MachineMemOperand *, 1> Accesses;
1553   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1554       Accesses.size() == 1) {
1555     FrameIndex =
1556         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1557             ->getFrameIndex();
1558     return true;
1559   }
1560   return false;
1561 }
1562 
1563 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1564 /// depending on whether the result is used.
1565 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1566   bool isThumb1 = Subtarget.isThumb1Only();
1567   bool isThumb2 = Subtarget.isThumb2();
1568   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1569 
1570   DebugLoc dl = MI->getDebugLoc();
1571   MachineBasicBlock *BB = MI->getParent();
1572 
1573   MachineInstrBuilder LDM, STM;
1574   if (isThumb1 || !MI->getOperand(1).isDead()) {
1575     MachineOperand LDWb(MI->getOperand(1));
1576     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1577                                                  : isThumb1 ? ARM::tLDMIA_UPD
1578                                                             : ARM::LDMIA_UPD))
1579               .add(LDWb);
1580   } else {
1581     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1582   }
1583 
1584   if (isThumb1 || !MI->getOperand(0).isDead()) {
1585     MachineOperand STWb(MI->getOperand(0));
1586     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1587                                                  : isThumb1 ? ARM::tSTMIA_UPD
1588                                                             : ARM::STMIA_UPD))
1589               .add(STWb);
1590   } else {
1591     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1592   }
1593 
1594   MachineOperand LDBase(MI->getOperand(3));
1595   LDM.add(LDBase).add(predOps(ARMCC::AL));
1596 
1597   MachineOperand STBase(MI->getOperand(2));
1598   STM.add(STBase).add(predOps(ARMCC::AL));
1599 
1600   // Sort the scratch registers into ascending order.
1601   const TargetRegisterInfo &TRI = getRegisterInfo();
1602   SmallVector<unsigned, 6> ScratchRegs;
1603   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1604     ScratchRegs.push_back(MI->getOperand(I).getReg());
1605   llvm::sort(ScratchRegs,
1606              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1607                return TRI.getEncodingValue(Reg1) <
1608                       TRI.getEncodingValue(Reg2);
1609              });
1610 
1611   for (const auto &Reg : ScratchRegs) {
1612     LDM.addReg(Reg, RegState::Define);
1613     STM.addReg(Reg, RegState::Kill);
1614   }
1615 
1616   BB->erase(MI);
1617 }
1618 
1619 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1620   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1621     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1622            "LOAD_STACK_GUARD currently supported only for MachO.");
1623     expandLoadStackGuard(MI);
1624     MI.getParent()->erase(MI);
1625     return true;
1626   }
1627 
1628   if (MI.getOpcode() == ARM::MEMCPY) {
1629     expandMEMCPY(MI);
1630     return true;
1631   }
1632 
1633   // This hook gets to expand COPY instructions before they become
1634   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1635   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1636   // changed into a VORR that can go down the NEON pipeline.
1637   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1638     return false;
1639 
1640   // Look for a copy between even S-registers.  That is where we keep floats
1641   // when using NEON v2f32 instructions for f32 arithmetic.
1642   Register DstRegS = MI.getOperand(0).getReg();
1643   Register SrcRegS = MI.getOperand(1).getReg();
1644   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1645     return false;
1646 
1647   const TargetRegisterInfo *TRI = &getRegisterInfo();
1648   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1649                                               &ARM::DPRRegClass);
1650   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1651                                               &ARM::DPRRegClass);
1652   if (!DstRegD || !SrcRegD)
1653     return false;
1654 
1655   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1656   // legal if the COPY already defines the full DstRegD, and it isn't a
1657   // sub-register insertion.
1658   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1659     return false;
1660 
1661   // A dead copy shouldn't show up here, but reject it just in case.
1662   if (MI.getOperand(0).isDead())
1663     return false;
1664 
1665   // All clear, widen the COPY.
1666   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1667   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1668 
1669   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1670   // or some other super-register.
1671   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1672   if (ImpDefIdx != -1)
1673     MI.RemoveOperand(ImpDefIdx);
1674 
1675   // Change the opcode and operands.
1676   MI.setDesc(get(ARM::VMOVD));
1677   MI.getOperand(0).setReg(DstRegD);
1678   MI.getOperand(1).setReg(SrcRegD);
1679   MIB.add(predOps(ARMCC::AL));
1680 
1681   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1682   // register scavenger and machine verifier, so we need to indicate that we
1683   // are reading an undefined value from SrcRegD, but a proper value from
1684   // SrcRegS.
1685   MI.getOperand(1).setIsUndef();
1686   MIB.addReg(SrcRegS, RegState::Implicit);
1687 
1688   // SrcRegD may actually contain an unrelated value in the ssub_1
1689   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1690   if (MI.getOperand(1).isKill()) {
1691     MI.getOperand(1).setIsKill(false);
1692     MI.addRegisterKilled(SrcRegS, TRI, true);
1693   }
1694 
1695   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1696   return true;
1697 }
1698 
1699 /// Create a copy of a const pool value. Update CPI to the new index and return
1700 /// the label UID.
1701 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1702   MachineConstantPool *MCP = MF.getConstantPool();
1703   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1704 
1705   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1706   assert(MCPE.isMachineConstantPoolEntry() &&
1707          "Expecting a machine constantpool entry!");
1708   ARMConstantPoolValue *ACPV =
1709     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1710 
1711   unsigned PCLabelId = AFI->createPICLabelUId();
1712   ARMConstantPoolValue *NewCPV = nullptr;
1713 
1714   // FIXME: The below assumes PIC relocation model and that the function
1715   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1716   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1717   // instructions, so that's probably OK, but is PIC always correct when
1718   // we get here?
1719   if (ACPV->isGlobalValue())
1720     NewCPV = ARMConstantPoolConstant::Create(
1721         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1722         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1723   else if (ACPV->isExtSymbol())
1724     NewCPV = ARMConstantPoolSymbol::
1725       Create(MF.getFunction().getContext(),
1726              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1727   else if (ACPV->isBlockAddress())
1728     NewCPV = ARMConstantPoolConstant::
1729       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1730              ARMCP::CPBlockAddress, 4);
1731   else if (ACPV->isLSDA())
1732     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1733                                              ARMCP::CPLSDA, 4);
1734   else if (ACPV->isMachineBasicBlock())
1735     NewCPV = ARMConstantPoolMBB::
1736       Create(MF.getFunction().getContext(),
1737              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1738   else
1739     llvm_unreachable("Unexpected ARM constantpool value type!!");
1740   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1741   return PCLabelId;
1742 }
1743 
1744 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1745                                      MachineBasicBlock::iterator I,
1746                                      Register DestReg, unsigned SubIdx,
1747                                      const MachineInstr &Orig,
1748                                      const TargetRegisterInfo &TRI) const {
1749   unsigned Opcode = Orig.getOpcode();
1750   switch (Opcode) {
1751   default: {
1752     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1753     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1754     MBB.insert(I, MI);
1755     break;
1756   }
1757   case ARM::tLDRpci_pic:
1758   case ARM::t2LDRpci_pic: {
1759     MachineFunction &MF = *MBB.getParent();
1760     unsigned CPI = Orig.getOperand(1).getIndex();
1761     unsigned PCLabelId = duplicateCPV(MF, CPI);
1762     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1763         .addConstantPoolIndex(CPI)
1764         .addImm(PCLabelId)
1765         .cloneMemRefs(Orig);
1766     break;
1767   }
1768   }
1769 }
1770 
1771 MachineInstr &
1772 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1773     MachineBasicBlock::iterator InsertBefore,
1774     const MachineInstr &Orig) const {
1775   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1776   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1777   for (;;) {
1778     switch (I->getOpcode()) {
1779     case ARM::tLDRpci_pic:
1780     case ARM::t2LDRpci_pic: {
1781       MachineFunction &MF = *MBB.getParent();
1782       unsigned CPI = I->getOperand(1).getIndex();
1783       unsigned PCLabelId = duplicateCPV(MF, CPI);
1784       I->getOperand(1).setIndex(CPI);
1785       I->getOperand(2).setImm(PCLabelId);
1786       break;
1787     }
1788     }
1789     if (!I->isBundledWithSucc())
1790       break;
1791     ++I;
1792   }
1793   return Cloned;
1794 }
1795 
1796 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1797                                         const MachineInstr &MI1,
1798                                         const MachineRegisterInfo *MRI) const {
1799   unsigned Opcode = MI0.getOpcode();
1800   if (Opcode == ARM::t2LDRpci ||
1801       Opcode == ARM::t2LDRpci_pic ||
1802       Opcode == ARM::tLDRpci ||
1803       Opcode == ARM::tLDRpci_pic ||
1804       Opcode == ARM::LDRLIT_ga_pcrel ||
1805       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1806       Opcode == ARM::tLDRLIT_ga_pcrel ||
1807       Opcode == ARM::MOV_ga_pcrel ||
1808       Opcode == ARM::MOV_ga_pcrel_ldr ||
1809       Opcode == ARM::t2MOV_ga_pcrel) {
1810     if (MI1.getOpcode() != Opcode)
1811       return false;
1812     if (MI0.getNumOperands() != MI1.getNumOperands())
1813       return false;
1814 
1815     const MachineOperand &MO0 = MI0.getOperand(1);
1816     const MachineOperand &MO1 = MI1.getOperand(1);
1817     if (MO0.getOffset() != MO1.getOffset())
1818       return false;
1819 
1820     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1821         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1822         Opcode == ARM::tLDRLIT_ga_pcrel ||
1823         Opcode == ARM::MOV_ga_pcrel ||
1824         Opcode == ARM::MOV_ga_pcrel_ldr ||
1825         Opcode == ARM::t2MOV_ga_pcrel)
1826       // Ignore the PC labels.
1827       return MO0.getGlobal() == MO1.getGlobal();
1828 
1829     const MachineFunction *MF = MI0.getParent()->getParent();
1830     const MachineConstantPool *MCP = MF->getConstantPool();
1831     int CPI0 = MO0.getIndex();
1832     int CPI1 = MO1.getIndex();
1833     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1834     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1835     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1836     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1837     if (isARMCP0 && isARMCP1) {
1838       ARMConstantPoolValue *ACPV0 =
1839         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1840       ARMConstantPoolValue *ACPV1 =
1841         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1842       return ACPV0->hasSameValue(ACPV1);
1843     } else if (!isARMCP0 && !isARMCP1) {
1844       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1845     }
1846     return false;
1847   } else if (Opcode == ARM::PICLDR) {
1848     if (MI1.getOpcode() != Opcode)
1849       return false;
1850     if (MI0.getNumOperands() != MI1.getNumOperands())
1851       return false;
1852 
1853     Register Addr0 = MI0.getOperand(1).getReg();
1854     Register Addr1 = MI1.getOperand(1).getReg();
1855     if (Addr0 != Addr1) {
1856       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1857           !Register::isVirtualRegister(Addr1))
1858         return false;
1859 
1860       // This assumes SSA form.
1861       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1862       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1863       // Check if the loaded value, e.g. a constantpool of a global address, are
1864       // the same.
1865       if (!produceSameValue(*Def0, *Def1, MRI))
1866         return false;
1867     }
1868 
1869     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1870       // %12 = PICLDR %11, 0, 14, %noreg
1871       const MachineOperand &MO0 = MI0.getOperand(i);
1872       const MachineOperand &MO1 = MI1.getOperand(i);
1873       if (!MO0.isIdenticalTo(MO1))
1874         return false;
1875     }
1876     return true;
1877   }
1878 
1879   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1880 }
1881 
1882 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1883 /// determine if two loads are loading from the same base address. It should
1884 /// only return true if the base pointers are the same and the only differences
1885 /// between the two addresses is the offset. It also returns the offsets by
1886 /// reference.
1887 ///
1888 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1889 /// is permanently disabled.
1890 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1891                                                int64_t &Offset1,
1892                                                int64_t &Offset2) const {
1893   // Don't worry about Thumb: just ARM and Thumb2.
1894   if (Subtarget.isThumb1Only()) return false;
1895 
1896   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1897     return false;
1898 
1899   switch (Load1->getMachineOpcode()) {
1900   default:
1901     return false;
1902   case ARM::LDRi12:
1903   case ARM::LDRBi12:
1904   case ARM::LDRD:
1905   case ARM::LDRH:
1906   case ARM::LDRSB:
1907   case ARM::LDRSH:
1908   case ARM::VLDRD:
1909   case ARM::VLDRS:
1910   case ARM::t2LDRi8:
1911   case ARM::t2LDRBi8:
1912   case ARM::t2LDRDi8:
1913   case ARM::t2LDRSHi8:
1914   case ARM::t2LDRi12:
1915   case ARM::t2LDRBi12:
1916   case ARM::t2LDRSHi12:
1917     break;
1918   }
1919 
1920   switch (Load2->getMachineOpcode()) {
1921   default:
1922     return false;
1923   case ARM::LDRi12:
1924   case ARM::LDRBi12:
1925   case ARM::LDRD:
1926   case ARM::LDRH:
1927   case ARM::LDRSB:
1928   case ARM::LDRSH:
1929   case ARM::VLDRD:
1930   case ARM::VLDRS:
1931   case ARM::t2LDRi8:
1932   case ARM::t2LDRBi8:
1933   case ARM::t2LDRSHi8:
1934   case ARM::t2LDRi12:
1935   case ARM::t2LDRBi12:
1936   case ARM::t2LDRSHi12:
1937     break;
1938   }
1939 
1940   // Check if base addresses and chain operands match.
1941   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1942       Load1->getOperand(4) != Load2->getOperand(4))
1943     return false;
1944 
1945   // Index should be Reg0.
1946   if (Load1->getOperand(3) != Load2->getOperand(3))
1947     return false;
1948 
1949   // Determine the offsets.
1950   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1951       isa<ConstantSDNode>(Load2->getOperand(1))) {
1952     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1953     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1954     return true;
1955   }
1956 
1957   return false;
1958 }
1959 
1960 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1961 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1962 /// be scheduled togther. On some targets if two loads are loading from
1963 /// addresses in the same cache line, it's better if they are scheduled
1964 /// together. This function takes two integers that represent the load offsets
1965 /// from the common base address. It returns true if it decides it's desirable
1966 /// to schedule the two loads together. "NumLoads" is the number of loads that
1967 /// have already been scheduled after Load1.
1968 ///
1969 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1970 /// is permanently disabled.
1971 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1972                                                int64_t Offset1, int64_t Offset2,
1973                                                unsigned NumLoads) const {
1974   // Don't worry about Thumb: just ARM and Thumb2.
1975   if (Subtarget.isThumb1Only()) return false;
1976 
1977   assert(Offset2 > Offset1);
1978 
1979   if ((Offset2 - Offset1) / 8 > 64)
1980     return false;
1981 
1982   // Check if the machine opcodes are different. If they are different
1983   // then we consider them to not be of the same base address,
1984   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1985   // In this case, they are considered to be the same because they are different
1986   // encoding forms of the same basic instruction.
1987   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1988       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1989          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1990         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1991          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1992     return false;  // FIXME: overly conservative?
1993 
1994   // Four loads in a row should be sufficient.
1995   if (NumLoads >= 3)
1996     return false;
1997 
1998   return true;
1999 }
2000 
2001 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2002                                             const MachineBasicBlock *MBB,
2003                                             const MachineFunction &MF) const {
2004   // Debug info is never a scheduling boundary. It's necessary to be explicit
2005   // due to the special treatment of IT instructions below, otherwise a
2006   // dbg_value followed by an IT will result in the IT instruction being
2007   // considered a scheduling hazard, which is wrong. It should be the actual
2008   // instruction preceding the dbg_value instruction(s), just like it is
2009   // when debug info is not present.
2010   if (MI.isDebugInstr())
2011     return false;
2012 
2013   // Terminators and labels can't be scheduled around.
2014   if (MI.isTerminator() || MI.isPosition())
2015     return true;
2016 
2017   // Treat the start of the IT block as a scheduling boundary, but schedule
2018   // t2IT along with all instructions following it.
2019   // FIXME: This is a big hammer. But the alternative is to add all potential
2020   // true and anti dependencies to IT block instructions as implicit operands
2021   // to the t2IT instruction. The added compile time and complexity does not
2022   // seem worth it.
2023   MachineBasicBlock::const_iterator I = MI;
2024   // Make sure to skip any debug instructions
2025   while (++I != MBB->end() && I->isDebugInstr())
2026     ;
2027   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2028     return true;
2029 
2030   // Don't attempt to schedule around any instruction that defines
2031   // a stack-oriented pointer, as it's unlikely to be profitable. This
2032   // saves compile time, because it doesn't require every single
2033   // stack slot reference to depend on the instruction that does the
2034   // modification.
2035   // Calls don't actually change the stack pointer, even if they have imp-defs.
2036   // No ARM calling conventions change the stack pointer. (X86 calling
2037   // conventions sometimes do).
2038   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2039     return true;
2040 
2041   return false;
2042 }
2043 
2044 bool ARMBaseInstrInfo::
2045 isProfitableToIfCvt(MachineBasicBlock &MBB,
2046                     unsigned NumCycles, unsigned ExtraPredCycles,
2047                     BranchProbability Probability) const {
2048   if (!NumCycles)
2049     return false;
2050 
2051   // If we are optimizing for size, see if the branch in the predecessor can be
2052   // lowered to cbn?z by the constant island lowering pass, and return false if
2053   // so. This results in a shorter instruction sequence.
2054   if (MBB.getParent()->getFunction().hasOptSize()) {
2055     MachineBasicBlock *Pred = *MBB.pred_begin();
2056     if (!Pred->empty()) {
2057       MachineInstr *LastMI = &*Pred->rbegin();
2058       if (LastMI->getOpcode() == ARM::t2Bcc) {
2059         const TargetRegisterInfo *TRI = &getRegisterInfo();
2060         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2061         if (CmpMI)
2062           return false;
2063       }
2064     }
2065   }
2066   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2067                              MBB, 0, 0, Probability);
2068 }
2069 
2070 bool ARMBaseInstrInfo::
2071 isProfitableToIfCvt(MachineBasicBlock &TBB,
2072                     unsigned TCycles, unsigned TExtra,
2073                     MachineBasicBlock &FBB,
2074                     unsigned FCycles, unsigned FExtra,
2075                     BranchProbability Probability) const {
2076   if (!TCycles)
2077     return false;
2078 
2079   // In thumb code we often end up trading one branch for a IT block, and
2080   // if we are cloning the instruction can increase code size. Prevent
2081   // blocks with multiple predecesors from being ifcvted to prevent this
2082   // cloning.
2083   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2084     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2085       return false;
2086   }
2087 
2088   // Attempt to estimate the relative costs of predication versus branching.
2089   // Here we scale up each component of UnpredCost to avoid precision issue when
2090   // scaling TCycles/FCycles by Probability.
2091   const unsigned ScalingUpFactor = 1024;
2092 
2093   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2094   unsigned UnpredCost;
2095   if (!Subtarget.hasBranchPredictor()) {
2096     // When we don't have a branch predictor it's always cheaper to not take a
2097     // branch than take it, so we have to take that into account.
2098     unsigned NotTakenBranchCost = 1;
2099     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2100     unsigned TUnpredCycles, FUnpredCycles;
2101     if (!FCycles) {
2102       // Triangle: TBB is the fallthrough
2103       TUnpredCycles = TCycles + NotTakenBranchCost;
2104       FUnpredCycles = TakenBranchCost;
2105     } else {
2106       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2107       TUnpredCycles = TCycles + TakenBranchCost;
2108       FUnpredCycles = FCycles + NotTakenBranchCost;
2109       // The branch at the end of FBB will disappear when it's predicated, so
2110       // discount it from PredCost.
2111       PredCost -= 1 * ScalingUpFactor;
2112     }
2113     // The total cost is the cost of each path scaled by their probabilites
2114     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2115     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2116     UnpredCost = TUnpredCost + FUnpredCost;
2117     // When predicating assume that the first IT can be folded away but later
2118     // ones cost one cycle each
2119     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2120       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2121     }
2122   } else {
2123     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2124     unsigned FUnpredCost =
2125       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2126     UnpredCost = TUnpredCost + FUnpredCost;
2127     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2128     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2129   }
2130 
2131   return PredCost <= UnpredCost;
2132 }
2133 
2134 unsigned
2135 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2136                                                    unsigned NumInsts) const {
2137   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2138   // ARM has a condition code field in every predicable instruction, using it
2139   // doesn't change code size.
2140   return Subtarget.isThumb2() ? divideCeil(NumInsts, 4) * 2 : 0;
2141 }
2142 
2143 unsigned
2144 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2145   // If this branch is likely to be folded into the comparison to form a
2146   // CB(N)Z, then removing it won't reduce code size at all, because that will
2147   // just replace the CB(N)Z with a CMP.
2148   if (MI.getOpcode() == ARM::t2Bcc &&
2149       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2150     return 0;
2151 
2152   unsigned Size = getInstSizeInBytes(MI);
2153 
2154   // For Thumb2, all branches are 32-bit instructions during the if conversion
2155   // pass, but may be replaced with 16-bit instructions during size reduction.
2156   // Since the branches considered by if conversion tend to be forward branches
2157   // over small basic blocks, they are very likely to be in range for the
2158   // narrow instructions, so we assume the final code size will be half what it
2159   // currently is.
2160   if (Subtarget.isThumb2())
2161     Size /= 2;
2162 
2163   return Size;
2164 }
2165 
2166 bool
2167 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2168                                             MachineBasicBlock &FMBB) const {
2169   // Reduce false anti-dependencies to let the target's out-of-order execution
2170   // engine do its thing.
2171   return Subtarget.isProfitableToUnpredicate();
2172 }
2173 
2174 /// getInstrPredicate - If instruction is predicated, returns its predicate
2175 /// condition, otherwise returns AL. It also returns the condition code
2176 /// register by reference.
2177 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2178                                          Register &PredReg) {
2179   int PIdx = MI.findFirstPredOperandIdx();
2180   if (PIdx == -1) {
2181     PredReg = 0;
2182     return ARMCC::AL;
2183   }
2184 
2185   PredReg = MI.getOperand(PIdx+1).getReg();
2186   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2187 }
2188 
2189 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2190   if (Opc == ARM::B)
2191     return ARM::Bcc;
2192   if (Opc == ARM::tB)
2193     return ARM::tBcc;
2194   if (Opc == ARM::t2B)
2195     return ARM::t2Bcc;
2196 
2197   llvm_unreachable("Unknown unconditional branch opcode!");
2198 }
2199 
2200 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2201                                                        bool NewMI,
2202                                                        unsigned OpIdx1,
2203                                                        unsigned OpIdx2) const {
2204   switch (MI.getOpcode()) {
2205   case ARM::MOVCCr:
2206   case ARM::t2MOVCCr: {
2207     // MOVCC can be commuted by inverting the condition.
2208     Register PredReg;
2209     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2210     // MOVCC AL can't be inverted. Shouldn't happen.
2211     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2212       return nullptr;
2213     MachineInstr *CommutedMI =
2214         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2215     if (!CommutedMI)
2216       return nullptr;
2217     // After swapping the MOVCC operands, also invert the condition.
2218     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2219         .setImm(ARMCC::getOppositeCondition(CC));
2220     return CommutedMI;
2221   }
2222   }
2223   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2224 }
2225 
2226 /// Identify instructions that can be folded into a MOVCC instruction, and
2227 /// return the defining instruction.
2228 MachineInstr *
2229 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2230                                    const TargetInstrInfo *TII) const {
2231   if (!Reg.isVirtual())
2232     return nullptr;
2233   if (!MRI.hasOneNonDBGUse(Reg))
2234     return nullptr;
2235   MachineInstr *MI = MRI.getVRegDef(Reg);
2236   if (!MI)
2237     return nullptr;
2238   // Check if MI can be predicated and folded into the MOVCC.
2239   if (!isPredicable(*MI))
2240     return nullptr;
2241   // Check if MI has any non-dead defs or physreg uses. This also detects
2242   // predicated instructions which will be reading CPSR.
2243   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2244     const MachineOperand &MO = MI->getOperand(i);
2245     // Reject frame index operands, PEI can't handle the predicated pseudos.
2246     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2247       return nullptr;
2248     if (!MO.isReg())
2249       continue;
2250     // MI can't have any tied operands, that would conflict with predication.
2251     if (MO.isTied())
2252       return nullptr;
2253     if (Register::isPhysicalRegister(MO.getReg()))
2254       return nullptr;
2255     if (MO.isDef() && !MO.isDead())
2256       return nullptr;
2257   }
2258   bool DontMoveAcrossStores = true;
2259   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2260     return nullptr;
2261   return MI;
2262 }
2263 
2264 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2265                                      SmallVectorImpl<MachineOperand> &Cond,
2266                                      unsigned &TrueOp, unsigned &FalseOp,
2267                                      bool &Optimizable) const {
2268   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2269          "Unknown select instruction");
2270   // MOVCC operands:
2271   // 0: Def.
2272   // 1: True use.
2273   // 2: False use.
2274   // 3: Condition code.
2275   // 4: CPSR use.
2276   TrueOp = 1;
2277   FalseOp = 2;
2278   Cond.push_back(MI.getOperand(3));
2279   Cond.push_back(MI.getOperand(4));
2280   // We can always fold a def.
2281   Optimizable = true;
2282   return false;
2283 }
2284 
2285 MachineInstr *
2286 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2287                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2288                                  bool PreferFalse) const {
2289   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2290          "Unknown select instruction");
2291   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2292   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2293   bool Invert = !DefMI;
2294   if (!DefMI)
2295     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2296   if (!DefMI)
2297     return nullptr;
2298 
2299   // Find new register class to use.
2300   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2301   Register DestReg = MI.getOperand(0).getReg();
2302   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2303   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2304     return nullptr;
2305 
2306   // Create a new predicated version of DefMI.
2307   // Rfalse is the first use.
2308   MachineInstrBuilder NewMI =
2309       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2310 
2311   // Copy all the DefMI operands, excluding its (null) predicate.
2312   const MCInstrDesc &DefDesc = DefMI->getDesc();
2313   for (unsigned i = 1, e = DefDesc.getNumOperands();
2314        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2315     NewMI.add(DefMI->getOperand(i));
2316 
2317   unsigned CondCode = MI.getOperand(3).getImm();
2318   if (Invert)
2319     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2320   else
2321     NewMI.addImm(CondCode);
2322   NewMI.add(MI.getOperand(4));
2323 
2324   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2325   if (NewMI->hasOptionalDef())
2326     NewMI.add(condCodeOp());
2327 
2328   // The output register value when the predicate is false is an implicit
2329   // register operand tied to the first def.
2330   // The tie makes the register allocator ensure the FalseReg is allocated the
2331   // same register as operand 0.
2332   FalseReg.setImplicit();
2333   NewMI.add(FalseReg);
2334   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2335 
2336   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2337   SeenMIs.insert(NewMI);
2338   SeenMIs.erase(DefMI);
2339 
2340   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2341   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2342   // loop is expensive, but at least remove kill flags if they are in different
2343   // BBs.
2344   if (DefMI->getParent() != MI.getParent())
2345     NewMI->clearKillInfo();
2346 
2347   // The caller will erase MI, but not DefMI.
2348   DefMI->eraseFromParent();
2349   return NewMI;
2350 }
2351 
2352 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2353 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2354 /// def operand.
2355 ///
2356 /// This will go away once we can teach tblgen how to set the optional CPSR def
2357 /// operand itself.
2358 struct AddSubFlagsOpcodePair {
2359   uint16_t PseudoOpc;
2360   uint16_t MachineOpc;
2361 };
2362 
2363 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2364   {ARM::ADDSri, ARM::ADDri},
2365   {ARM::ADDSrr, ARM::ADDrr},
2366   {ARM::ADDSrsi, ARM::ADDrsi},
2367   {ARM::ADDSrsr, ARM::ADDrsr},
2368 
2369   {ARM::SUBSri, ARM::SUBri},
2370   {ARM::SUBSrr, ARM::SUBrr},
2371   {ARM::SUBSrsi, ARM::SUBrsi},
2372   {ARM::SUBSrsr, ARM::SUBrsr},
2373 
2374   {ARM::RSBSri, ARM::RSBri},
2375   {ARM::RSBSrsi, ARM::RSBrsi},
2376   {ARM::RSBSrsr, ARM::RSBrsr},
2377 
2378   {ARM::tADDSi3, ARM::tADDi3},
2379   {ARM::tADDSi8, ARM::tADDi8},
2380   {ARM::tADDSrr, ARM::tADDrr},
2381   {ARM::tADCS, ARM::tADC},
2382 
2383   {ARM::tSUBSi3, ARM::tSUBi3},
2384   {ARM::tSUBSi8, ARM::tSUBi8},
2385   {ARM::tSUBSrr, ARM::tSUBrr},
2386   {ARM::tSBCS, ARM::tSBC},
2387   {ARM::tRSBS, ARM::tRSB},
2388   {ARM::tLSLSri, ARM::tLSLri},
2389 
2390   {ARM::t2ADDSri, ARM::t2ADDri},
2391   {ARM::t2ADDSrr, ARM::t2ADDrr},
2392   {ARM::t2ADDSrs, ARM::t2ADDrs},
2393 
2394   {ARM::t2SUBSri, ARM::t2SUBri},
2395   {ARM::t2SUBSrr, ARM::t2SUBrr},
2396   {ARM::t2SUBSrs, ARM::t2SUBrs},
2397 
2398   {ARM::t2RSBSri, ARM::t2RSBri},
2399   {ARM::t2RSBSrs, ARM::t2RSBrs},
2400 };
2401 
2402 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2403   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2404     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2405       return AddSubFlagsOpcodeMap[i].MachineOpc;
2406   return 0;
2407 }
2408 
2409 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2410                                    MachineBasicBlock::iterator &MBBI,
2411                                    const DebugLoc &dl, Register DestReg,
2412                                    Register BaseReg, int NumBytes,
2413                                    ARMCC::CondCodes Pred, Register PredReg,
2414                                    const ARMBaseInstrInfo &TII,
2415                                    unsigned MIFlags) {
2416   if (NumBytes == 0 && DestReg != BaseReg) {
2417     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2418         .addReg(BaseReg, RegState::Kill)
2419         .add(predOps(Pred, PredReg))
2420         .add(condCodeOp())
2421         .setMIFlags(MIFlags);
2422     return;
2423   }
2424 
2425   bool isSub = NumBytes < 0;
2426   if (isSub) NumBytes = -NumBytes;
2427 
2428   while (NumBytes) {
2429     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2430     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2431     assert(ThisVal && "Didn't extract field correctly");
2432 
2433     // We will handle these bits from offset, clear them.
2434     NumBytes &= ~ThisVal;
2435 
2436     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2437 
2438     // Build the new ADD / SUB.
2439     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2440     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2441         .addReg(BaseReg, RegState::Kill)
2442         .addImm(ThisVal)
2443         .add(predOps(Pred, PredReg))
2444         .add(condCodeOp())
2445         .setMIFlags(MIFlags);
2446     BaseReg = DestReg;
2447   }
2448 }
2449 
2450 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2451                                       MachineFunction &MF, MachineInstr *MI,
2452                                       unsigned NumBytes) {
2453   // This optimisation potentially adds lots of load and store
2454   // micro-operations, it's only really a great benefit to code-size.
2455   if (!Subtarget.hasMinSize())
2456     return false;
2457 
2458   // If only one register is pushed/popped, LLVM can use an LDR/STR
2459   // instead. We can't modify those so make sure we're dealing with an
2460   // instruction we understand.
2461   bool IsPop = isPopOpcode(MI->getOpcode());
2462   bool IsPush = isPushOpcode(MI->getOpcode());
2463   if (!IsPush && !IsPop)
2464     return false;
2465 
2466   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2467                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2468   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2469                      MI->getOpcode() == ARM::tPOP ||
2470                      MI->getOpcode() == ARM::tPOP_RET;
2471 
2472   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2473                           MI->getOperand(1).getReg() == ARM::SP)) &&
2474          "trying to fold sp update into non-sp-updating push/pop");
2475 
2476   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2477   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2478   // if this is violated.
2479   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2480     return false;
2481 
2482   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2483   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2484   int RegListIdx = IsT1PushPop ? 2 : 4;
2485 
2486   // Calculate the space we'll need in terms of registers.
2487   unsigned RegsNeeded;
2488   const TargetRegisterClass *RegClass;
2489   if (IsVFPPushPop) {
2490     RegsNeeded = NumBytes / 8;
2491     RegClass = &ARM::DPRRegClass;
2492   } else {
2493     RegsNeeded = NumBytes / 4;
2494     RegClass = &ARM::GPRRegClass;
2495   }
2496 
2497   // We're going to have to strip all list operands off before
2498   // re-adding them since the order matters, so save the existing ones
2499   // for later.
2500   SmallVector<MachineOperand, 4> RegList;
2501 
2502   // We're also going to need the first register transferred by this
2503   // instruction, which won't necessarily be the first register in the list.
2504   unsigned FirstRegEnc = -1;
2505 
2506   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2507   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2508     MachineOperand &MO = MI->getOperand(i);
2509     RegList.push_back(MO);
2510 
2511     if (MO.isReg() && !MO.isImplicit() &&
2512         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2513       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2514   }
2515 
2516   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2517 
2518   // Now try to find enough space in the reglist to allocate NumBytes.
2519   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2520        --CurRegEnc) {
2521     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2522     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2523       continue;
2524     if (!IsPop) {
2525       // Pushing any register is completely harmless, mark the register involved
2526       // as undef since we don't care about its value and must not restore it
2527       // during stack unwinding.
2528       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2529                                                   false, false, true));
2530       --RegsNeeded;
2531       continue;
2532     }
2533 
2534     // However, we can only pop an extra register if it's not live. For
2535     // registers live within the function we might clobber a return value
2536     // register; the other way a register can be live here is if it's
2537     // callee-saved.
2538     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2539         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2540         MachineBasicBlock::LQR_Dead) {
2541       // VFP pops don't allow holes in the register list, so any skip is fatal
2542       // for our transformation. GPR pops do, so we should just keep looking.
2543       if (IsVFPPushPop)
2544         return false;
2545       else
2546         continue;
2547     }
2548 
2549     // Mark the unimportant registers as <def,dead> in the POP.
2550     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2551                                                 true));
2552     --RegsNeeded;
2553   }
2554 
2555   if (RegsNeeded > 0)
2556     return false;
2557 
2558   // Finally we know we can profitably perform the optimisation so go
2559   // ahead: strip all existing registers off and add them back again
2560   // in the right order.
2561   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2562     MI->RemoveOperand(i);
2563 
2564   // Add the complete list back in.
2565   MachineInstrBuilder MIB(MF, &*MI);
2566   for (int i = RegList.size() - 1; i >= 0; --i)
2567     MIB.add(RegList[i]);
2568 
2569   return true;
2570 }
2571 
2572 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2573                                 Register FrameReg, int &Offset,
2574                                 const ARMBaseInstrInfo &TII) {
2575   unsigned Opcode = MI.getOpcode();
2576   const MCInstrDesc &Desc = MI.getDesc();
2577   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2578   bool isSub = false;
2579 
2580   // Memory operands in inline assembly always use AddrMode2.
2581   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2582     AddrMode = ARMII::AddrMode2;
2583 
2584   if (Opcode == ARM::ADDri) {
2585     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2586     if (Offset == 0) {
2587       // Turn it into a move.
2588       MI.setDesc(TII.get(ARM::MOVr));
2589       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2590       MI.RemoveOperand(FrameRegIdx+1);
2591       Offset = 0;
2592       return true;
2593     } else if (Offset < 0) {
2594       Offset = -Offset;
2595       isSub = true;
2596       MI.setDesc(TII.get(ARM::SUBri));
2597     }
2598 
2599     // Common case: small offset, fits into instruction.
2600     if (ARM_AM::getSOImmVal(Offset) != -1) {
2601       // Replace the FrameIndex with sp / fp
2602       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2603       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2604       Offset = 0;
2605       return true;
2606     }
2607 
2608     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2609     // as possible.
2610     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2611     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2612 
2613     // We will handle these bits from offset, clear them.
2614     Offset &= ~ThisImmVal;
2615 
2616     // Get the properly encoded SOImmVal field.
2617     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2618            "Bit extraction didn't work?");
2619     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2620  } else {
2621     unsigned ImmIdx = 0;
2622     int InstrOffs = 0;
2623     unsigned NumBits = 0;
2624     unsigned Scale = 1;
2625     switch (AddrMode) {
2626     case ARMII::AddrMode_i12:
2627       ImmIdx = FrameRegIdx + 1;
2628       InstrOffs = MI.getOperand(ImmIdx).getImm();
2629       NumBits = 12;
2630       break;
2631     case ARMII::AddrMode2:
2632       ImmIdx = FrameRegIdx+2;
2633       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2634       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2635         InstrOffs *= -1;
2636       NumBits = 12;
2637       break;
2638     case ARMII::AddrMode3:
2639       ImmIdx = FrameRegIdx+2;
2640       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2641       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2642         InstrOffs *= -1;
2643       NumBits = 8;
2644       break;
2645     case ARMII::AddrMode4:
2646     case ARMII::AddrMode6:
2647       // Can't fold any offset even if it's zero.
2648       return false;
2649     case ARMII::AddrMode5:
2650       ImmIdx = FrameRegIdx+1;
2651       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2652       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2653         InstrOffs *= -1;
2654       NumBits = 8;
2655       Scale = 4;
2656       break;
2657     case ARMII::AddrMode5FP16:
2658       ImmIdx = FrameRegIdx+1;
2659       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2660       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2661         InstrOffs *= -1;
2662       NumBits = 8;
2663       Scale = 2;
2664       break;
2665     case ARMII::AddrModeT2_i7:
2666     case ARMII::AddrModeT2_i7s2:
2667     case ARMII::AddrModeT2_i7s4:
2668       ImmIdx = FrameRegIdx+1;
2669       InstrOffs = MI.getOperand(ImmIdx).getImm();
2670       NumBits = 7;
2671       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2672                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2673       break;
2674     default:
2675       llvm_unreachable("Unsupported addressing mode!");
2676     }
2677 
2678     Offset += InstrOffs * Scale;
2679     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2680     if (Offset < 0) {
2681       Offset = -Offset;
2682       isSub = true;
2683     }
2684 
2685     // Attempt to fold address comp. if opcode has offset bits
2686     if (NumBits > 0) {
2687       // Common case: small offset, fits into instruction.
2688       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2689       int ImmedOffset = Offset / Scale;
2690       unsigned Mask = (1 << NumBits) - 1;
2691       if ((unsigned)Offset <= Mask * Scale) {
2692         // Replace the FrameIndex with sp
2693         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2694         // FIXME: When addrmode2 goes away, this will simplify (like the
2695         // T2 version), as the LDR.i12 versions don't need the encoding
2696         // tricks for the offset value.
2697         if (isSub) {
2698           if (AddrMode == ARMII::AddrMode_i12)
2699             ImmedOffset = -ImmedOffset;
2700           else
2701             ImmedOffset |= 1 << NumBits;
2702         }
2703         ImmOp.ChangeToImmediate(ImmedOffset);
2704         Offset = 0;
2705         return true;
2706       }
2707 
2708       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2709       ImmedOffset = ImmedOffset & Mask;
2710       if (isSub) {
2711         if (AddrMode == ARMII::AddrMode_i12)
2712           ImmedOffset = -ImmedOffset;
2713         else
2714           ImmedOffset |= 1 << NumBits;
2715       }
2716       ImmOp.ChangeToImmediate(ImmedOffset);
2717       Offset &= ~(Mask*Scale);
2718     }
2719   }
2720 
2721   Offset = (isSub) ? -Offset : Offset;
2722   return Offset == 0;
2723 }
2724 
2725 /// analyzeCompare - For a comparison instruction, return the source registers
2726 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2727 /// compares against in CmpValue. Return true if the comparison instruction
2728 /// can be analyzed.
2729 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2730                                       Register &SrcReg2, int &CmpMask,
2731                                       int &CmpValue) const {
2732   switch (MI.getOpcode()) {
2733   default: break;
2734   case ARM::CMPri:
2735   case ARM::t2CMPri:
2736   case ARM::tCMPi8:
2737     SrcReg = MI.getOperand(0).getReg();
2738     SrcReg2 = 0;
2739     CmpMask = ~0;
2740     CmpValue = MI.getOperand(1).getImm();
2741     return true;
2742   case ARM::CMPrr:
2743   case ARM::t2CMPrr:
2744   case ARM::tCMPr:
2745     SrcReg = MI.getOperand(0).getReg();
2746     SrcReg2 = MI.getOperand(1).getReg();
2747     CmpMask = ~0;
2748     CmpValue = 0;
2749     return true;
2750   case ARM::TSTri:
2751   case ARM::t2TSTri:
2752     SrcReg = MI.getOperand(0).getReg();
2753     SrcReg2 = 0;
2754     CmpMask = MI.getOperand(1).getImm();
2755     CmpValue = 0;
2756     return true;
2757   }
2758 
2759   return false;
2760 }
2761 
2762 /// isSuitableForMask - Identify a suitable 'and' instruction that
2763 /// operates on the given source register and applies the same mask
2764 /// as a 'tst' instruction. Provide a limited look-through for copies.
2765 /// When successful, MI will hold the found instruction.
2766 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2767                               int CmpMask, bool CommonUse) {
2768   switch (MI->getOpcode()) {
2769     case ARM::ANDri:
2770     case ARM::t2ANDri:
2771       if (CmpMask != MI->getOperand(2).getImm())
2772         return false;
2773       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2774         return true;
2775       break;
2776   }
2777 
2778   return false;
2779 }
2780 
2781 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2782 /// the condition code if we modify the instructions such that flags are
2783 /// set by ADD(a,b,X).
2784 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2785   switch (CC) {
2786   default: return ARMCC::AL;
2787   case ARMCC::HS: return ARMCC::LO;
2788   case ARMCC::LO: return ARMCC::HS;
2789   case ARMCC::VS: return ARMCC::VS;
2790   case ARMCC::VC: return ARMCC::VC;
2791   }
2792 }
2793 
2794 /// isRedundantFlagInstr - check whether the first instruction, whose only
2795 /// purpose is to update flags, can be made redundant.
2796 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2797 /// CMPri can be made redundant by SUBri if the operands are the same.
2798 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2799 /// This function can be extended later on.
2800 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2801                                         Register SrcReg, Register SrcReg2,
2802                                         int ImmValue, const MachineInstr *OI,
2803                                         bool &IsThumb1) {
2804   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2805       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2806       ((OI->getOperand(1).getReg() == SrcReg &&
2807         OI->getOperand(2).getReg() == SrcReg2) ||
2808        (OI->getOperand(1).getReg() == SrcReg2 &&
2809         OI->getOperand(2).getReg() == SrcReg))) {
2810     IsThumb1 = false;
2811     return true;
2812   }
2813 
2814   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2815       ((OI->getOperand(2).getReg() == SrcReg &&
2816         OI->getOperand(3).getReg() == SrcReg2) ||
2817        (OI->getOperand(2).getReg() == SrcReg2 &&
2818         OI->getOperand(3).getReg() == SrcReg))) {
2819     IsThumb1 = true;
2820     return true;
2821   }
2822 
2823   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2824       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2825       OI->getOperand(1).getReg() == SrcReg &&
2826       OI->getOperand(2).getImm() == ImmValue) {
2827     IsThumb1 = false;
2828     return true;
2829   }
2830 
2831   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2832       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2833       OI->getOperand(2).getReg() == SrcReg &&
2834       OI->getOperand(3).getImm() == ImmValue) {
2835     IsThumb1 = true;
2836     return true;
2837   }
2838 
2839   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2840       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2841        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2842       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2843       OI->getOperand(0).getReg() == SrcReg &&
2844       OI->getOperand(1).getReg() == SrcReg2) {
2845     IsThumb1 = false;
2846     return true;
2847   }
2848 
2849   if (CmpI->getOpcode() == ARM::tCMPr &&
2850       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2851        OI->getOpcode() == ARM::tADDrr) &&
2852       OI->getOperand(0).getReg() == SrcReg &&
2853       OI->getOperand(2).getReg() == SrcReg2) {
2854     IsThumb1 = true;
2855     return true;
2856   }
2857 
2858   return false;
2859 }
2860 
2861 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2862   switch (MI->getOpcode()) {
2863   default: return false;
2864   case ARM::tLSLri:
2865   case ARM::tLSRri:
2866   case ARM::tLSLrr:
2867   case ARM::tLSRrr:
2868   case ARM::tSUBrr:
2869   case ARM::tADDrr:
2870   case ARM::tADDi3:
2871   case ARM::tADDi8:
2872   case ARM::tSUBi3:
2873   case ARM::tSUBi8:
2874   case ARM::tMUL:
2875   case ARM::tADC:
2876   case ARM::tSBC:
2877   case ARM::tRSB:
2878   case ARM::tAND:
2879   case ARM::tORR:
2880   case ARM::tEOR:
2881   case ARM::tBIC:
2882   case ARM::tMVN:
2883   case ARM::tASRri:
2884   case ARM::tASRrr:
2885   case ARM::tROR:
2886     IsThumb1 = true;
2887     LLVM_FALLTHROUGH;
2888   case ARM::RSBrr:
2889   case ARM::RSBri:
2890   case ARM::RSCrr:
2891   case ARM::RSCri:
2892   case ARM::ADDrr:
2893   case ARM::ADDri:
2894   case ARM::ADCrr:
2895   case ARM::ADCri:
2896   case ARM::SUBrr:
2897   case ARM::SUBri:
2898   case ARM::SBCrr:
2899   case ARM::SBCri:
2900   case ARM::t2RSBri:
2901   case ARM::t2ADDrr:
2902   case ARM::t2ADDri:
2903   case ARM::t2ADCrr:
2904   case ARM::t2ADCri:
2905   case ARM::t2SUBrr:
2906   case ARM::t2SUBri:
2907   case ARM::t2SBCrr:
2908   case ARM::t2SBCri:
2909   case ARM::ANDrr:
2910   case ARM::ANDri:
2911   case ARM::t2ANDrr:
2912   case ARM::t2ANDri:
2913   case ARM::ORRrr:
2914   case ARM::ORRri:
2915   case ARM::t2ORRrr:
2916   case ARM::t2ORRri:
2917   case ARM::EORrr:
2918   case ARM::EORri:
2919   case ARM::t2EORrr:
2920   case ARM::t2EORri:
2921   case ARM::t2LSRri:
2922   case ARM::t2LSRrr:
2923   case ARM::t2LSLri:
2924   case ARM::t2LSLrr:
2925     return true;
2926   }
2927 }
2928 
2929 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2930 /// comparison into one that sets the zero bit in the flags register;
2931 /// Remove a redundant Compare instruction if an earlier instruction can set the
2932 /// flags in the same way as Compare.
2933 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2934 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2935 /// condition code of instructions which use the flags.
2936 bool ARMBaseInstrInfo::optimizeCompareInstr(
2937     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask,
2938     int CmpValue, const MachineRegisterInfo *MRI) const {
2939   // Get the unique definition of SrcReg.
2940   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2941   if (!MI) return false;
2942 
2943   // Masked compares sometimes use the same register as the corresponding 'and'.
2944   if (CmpMask != ~0) {
2945     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2946       MI = nullptr;
2947       for (MachineRegisterInfo::use_instr_iterator
2948            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2949            UI != UE; ++UI) {
2950         if (UI->getParent() != CmpInstr.getParent())
2951           continue;
2952         MachineInstr *PotentialAND = &*UI;
2953         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2954             isPredicated(*PotentialAND))
2955           continue;
2956         MI = PotentialAND;
2957         break;
2958       }
2959       if (!MI) return false;
2960     }
2961   }
2962 
2963   // Get ready to iterate backward from CmpInstr.
2964   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2965                               B = CmpInstr.getParent()->begin();
2966 
2967   // Early exit if CmpInstr is at the beginning of the BB.
2968   if (I == B) return false;
2969 
2970   // There are two possible candidates which can be changed to set CPSR:
2971   // One is MI, the other is a SUB or ADD instruction.
2972   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2973   // ADDr[ri](r1, r2, X).
2974   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2975   MachineInstr *SubAdd = nullptr;
2976   if (SrcReg2 != 0)
2977     // MI is not a candidate for CMPrr.
2978     MI = nullptr;
2979   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2980     // Conservatively refuse to convert an instruction which isn't in the same
2981     // BB as the comparison.
2982     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2983     // Thus we cannot return here.
2984     if (CmpInstr.getOpcode() == ARM::CMPri ||
2985         CmpInstr.getOpcode() == ARM::t2CMPri ||
2986         CmpInstr.getOpcode() == ARM::tCMPi8)
2987       MI = nullptr;
2988     else
2989       return false;
2990   }
2991 
2992   bool IsThumb1 = false;
2993   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2994     return false;
2995 
2996   // We also want to do this peephole for cases like this: if (a*b == 0),
2997   // and optimise away the CMP instruction from the generated code sequence:
2998   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2999   // resulting from the select instruction, but these MOVS instructions for
3000   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3001   // However, if we only have MOVS instructions in between the CMP and the
3002   // other instruction (the MULS in this example), then the CPSR is dead so we
3003   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3004   // reordering and then continue the analysis hoping we can eliminate the
3005   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3006   // consequence, the movs won't redefine/kill the MUL operands which would
3007   // make this reordering illegal.
3008   const TargetRegisterInfo *TRI = &getRegisterInfo();
3009   if (MI && IsThumb1) {
3010     --I;
3011     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3012       bool CanReorder = true;
3013       for (; I != E; --I) {
3014         if (I->getOpcode() != ARM::tMOVi8) {
3015           CanReorder = false;
3016           break;
3017         }
3018       }
3019       if (CanReorder) {
3020         MI = MI->removeFromParent();
3021         E = CmpInstr;
3022         CmpInstr.getParent()->insert(E, MI);
3023       }
3024     }
3025     I = CmpInstr;
3026     E = MI;
3027   }
3028 
3029   // Check that CPSR isn't set between the comparison instruction and the one we
3030   // want to change. At the same time, search for SubAdd.
3031   bool SubAddIsThumb1 = false;
3032   do {
3033     const MachineInstr &Instr = *--I;
3034 
3035     // Check whether CmpInstr can be made redundant by the current instruction.
3036     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3037                              SubAddIsThumb1)) {
3038       SubAdd = &*I;
3039       break;
3040     }
3041 
3042     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3043     if (I == E)
3044       break;
3045 
3046     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3047         Instr.readsRegister(ARM::CPSR, TRI))
3048       // This instruction modifies or uses CPSR after the one we want to
3049       // change. We can't do this transformation.
3050       return false;
3051 
3052     if (I == B) {
3053       // In some cases, we scan the use-list of an instruction for an AND;
3054       // that AND is in the same BB, but may not be scheduled before the
3055       // corresponding TST.  In that case, bail out.
3056       //
3057       // FIXME: We could try to reschedule the AND.
3058       return false;
3059     }
3060   } while (true);
3061 
3062   // Return false if no candidates exist.
3063   if (!MI && !SubAdd)
3064     return false;
3065 
3066   // If we found a SubAdd, use it as it will be closer to the CMP
3067   if (SubAdd) {
3068     MI = SubAdd;
3069     IsThumb1 = SubAddIsThumb1;
3070   }
3071 
3072   // We can't use a predicated instruction - it doesn't always write the flags.
3073   if (isPredicated(*MI))
3074     return false;
3075 
3076   // Scan forward for the use of CPSR
3077   // When checking against MI: if it's a conditional code that requires
3078   // checking of the V bit or C bit, then this is not safe to do.
3079   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3080   // If we are done with the basic block, we need to check whether CPSR is
3081   // live-out.
3082   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3083       OperandsToUpdate;
3084   bool isSafe = false;
3085   I = CmpInstr;
3086   E = CmpInstr.getParent()->end();
3087   while (!isSafe && ++I != E) {
3088     const MachineInstr &Instr = *I;
3089     for (unsigned IO = 0, EO = Instr.getNumOperands();
3090          !isSafe && IO != EO; ++IO) {
3091       const MachineOperand &MO = Instr.getOperand(IO);
3092       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3093         isSafe = true;
3094         break;
3095       }
3096       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3097         continue;
3098       if (MO.isDef()) {
3099         isSafe = true;
3100         break;
3101       }
3102       // Condition code is after the operand before CPSR except for VSELs.
3103       ARMCC::CondCodes CC;
3104       bool IsInstrVSel = true;
3105       switch (Instr.getOpcode()) {
3106       default:
3107         IsInstrVSel = false;
3108         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3109         break;
3110       case ARM::VSELEQD:
3111       case ARM::VSELEQS:
3112       case ARM::VSELEQH:
3113         CC = ARMCC::EQ;
3114         break;
3115       case ARM::VSELGTD:
3116       case ARM::VSELGTS:
3117       case ARM::VSELGTH:
3118         CC = ARMCC::GT;
3119         break;
3120       case ARM::VSELGED:
3121       case ARM::VSELGES:
3122       case ARM::VSELGEH:
3123         CC = ARMCC::GE;
3124         break;
3125       case ARM::VSELVSD:
3126       case ARM::VSELVSS:
3127       case ARM::VSELVSH:
3128         CC = ARMCC::VS;
3129         break;
3130       }
3131 
3132       if (SubAdd) {
3133         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3134         // on CMP needs to be updated to be based on SUB.
3135         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3136         // needs to be modified.
3137         // Push the condition code operands to OperandsToUpdate.
3138         // If it is safe to remove CmpInstr, the condition code of these
3139         // operands will be modified.
3140         unsigned Opc = SubAdd->getOpcode();
3141         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3142                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3143                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3144                      Opc == ARM::tSUBi8;
3145         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3146         if (!IsSub ||
3147             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3148              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3149           // VSel doesn't support condition code update.
3150           if (IsInstrVSel)
3151             return false;
3152           // Ensure we can swap the condition.
3153           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3154           if (NewCC == ARMCC::AL)
3155             return false;
3156           OperandsToUpdate.push_back(
3157               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3158         }
3159       } else {
3160         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3161         switch (CC) {
3162         case ARMCC::EQ: // Z
3163         case ARMCC::NE: // Z
3164         case ARMCC::MI: // N
3165         case ARMCC::PL: // N
3166         case ARMCC::AL: // none
3167           // CPSR can be used multiple times, we should continue.
3168           break;
3169         case ARMCC::HS: // C
3170         case ARMCC::LO: // C
3171         case ARMCC::VS: // V
3172         case ARMCC::VC: // V
3173         case ARMCC::HI: // C Z
3174         case ARMCC::LS: // C Z
3175         case ARMCC::GE: // N V
3176         case ARMCC::LT: // N V
3177         case ARMCC::GT: // Z N V
3178         case ARMCC::LE: // Z N V
3179           // The instruction uses the V bit or C bit which is not safe.
3180           return false;
3181         }
3182       }
3183     }
3184   }
3185 
3186   // If CPSR is not killed nor re-defined, we should check whether it is
3187   // live-out. If it is live-out, do not optimize.
3188   if (!isSafe) {
3189     MachineBasicBlock *MBB = CmpInstr.getParent();
3190     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3191              SE = MBB->succ_end(); SI != SE; ++SI)
3192       if ((*SI)->isLiveIn(ARM::CPSR))
3193         return false;
3194   }
3195 
3196   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3197   // set CPSR so this is represented as an explicit output)
3198   if (!IsThumb1) {
3199     MI->getOperand(5).setReg(ARM::CPSR);
3200     MI->getOperand(5).setIsDef(true);
3201   }
3202   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3203   CmpInstr.eraseFromParent();
3204 
3205   // Modify the condition code of operands in OperandsToUpdate.
3206   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3207   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3208   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3209     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3210 
3211   MI->clearRegisterDeads(ARM::CPSR);
3212 
3213   return true;
3214 }
3215 
3216 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3217   // Do not sink MI if it might be used to optimize a redundant compare.
3218   // We heuristically only look at the instruction immediately following MI to
3219   // avoid potentially searching the entire basic block.
3220   if (isPredicated(MI))
3221     return true;
3222   MachineBasicBlock::const_iterator Next = &MI;
3223   ++Next;
3224   Register SrcReg, SrcReg2;
3225   int CmpMask, CmpValue;
3226   bool IsThumb1;
3227   if (Next != MI.getParent()->end() &&
3228       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3229       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3230     return false;
3231   return true;
3232 }
3233 
3234 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3235                                      Register Reg,
3236                                      MachineRegisterInfo *MRI) const {
3237   // Fold large immediates into add, sub, or, xor.
3238   unsigned DefOpc = DefMI.getOpcode();
3239   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3240     return false;
3241   if (!DefMI.getOperand(1).isImm())
3242     // Could be t2MOVi32imm @xx
3243     return false;
3244 
3245   if (!MRI->hasOneNonDBGUse(Reg))
3246     return false;
3247 
3248   const MCInstrDesc &DefMCID = DefMI.getDesc();
3249   if (DefMCID.hasOptionalDef()) {
3250     unsigned NumOps = DefMCID.getNumOperands();
3251     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3252     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3253       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3254       // to delete DefMI.
3255       return false;
3256   }
3257 
3258   const MCInstrDesc &UseMCID = UseMI.getDesc();
3259   if (UseMCID.hasOptionalDef()) {
3260     unsigned NumOps = UseMCID.getNumOperands();
3261     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3262       // If the instruction sets the flag, do not attempt this optimization
3263       // since it may change the semantics of the code.
3264       return false;
3265   }
3266 
3267   unsigned UseOpc = UseMI.getOpcode();
3268   unsigned NewUseOpc = 0;
3269   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3270   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3271   bool Commute = false;
3272   switch (UseOpc) {
3273   default: return false;
3274   case ARM::SUBrr:
3275   case ARM::ADDrr:
3276   case ARM::ORRrr:
3277   case ARM::EORrr:
3278   case ARM::t2SUBrr:
3279   case ARM::t2ADDrr:
3280   case ARM::t2ORRrr:
3281   case ARM::t2EORrr: {
3282     Commute = UseMI.getOperand(2).getReg() != Reg;
3283     switch (UseOpc) {
3284     default: break;
3285     case ARM::ADDrr:
3286     case ARM::SUBrr:
3287       if (UseOpc == ARM::SUBrr && Commute)
3288         return false;
3289 
3290       // ADD/SUB are special because they're essentially the same operation, so
3291       // we can handle a larger range of immediates.
3292       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3293         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3294       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3295         ImmVal = -ImmVal;
3296         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3297       } else
3298         return false;
3299       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3300       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3301       break;
3302     case ARM::ORRrr:
3303     case ARM::EORrr:
3304       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3305         return false;
3306       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3307       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3308       switch (UseOpc) {
3309       default: break;
3310       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3311       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3312       }
3313       break;
3314     case ARM::t2ADDrr:
3315     case ARM::t2SUBrr: {
3316       if (UseOpc == ARM::t2SUBrr && Commute)
3317         return false;
3318 
3319       // ADD/SUB are special because they're essentially the same operation, so
3320       // we can handle a larger range of immediates.
3321       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3322       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3323       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3324       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3325         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3326       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3327         ImmVal = -ImmVal;
3328         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3329       } else
3330         return false;
3331       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3332       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3333       break;
3334     }
3335     case ARM::t2ORRrr:
3336     case ARM::t2EORrr:
3337       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3338         return false;
3339       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3340       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3341       switch (UseOpc) {
3342       default: break;
3343       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3344       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3345       }
3346       break;
3347     }
3348   }
3349   }
3350 
3351   unsigned OpIdx = Commute ? 2 : 1;
3352   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3353   bool isKill = UseMI.getOperand(OpIdx).isKill();
3354   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3355   Register NewReg = MRI->createVirtualRegister(TRC);
3356   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3357           NewReg)
3358       .addReg(Reg1, getKillRegState(isKill))
3359       .addImm(SOImmValV1)
3360       .add(predOps(ARMCC::AL))
3361       .add(condCodeOp());
3362   UseMI.setDesc(get(NewUseOpc));
3363   UseMI.getOperand(1).setReg(NewReg);
3364   UseMI.getOperand(1).setIsKill();
3365   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3366   DefMI.eraseFromParent();
3367   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3368   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3369   // Then the below code will not be needed, as the input/output register
3370   // classes will be rgpr or gprSP.
3371   // For now, we fix the UseMI operand explicitly here:
3372   switch(NewUseOpc){
3373     case ARM::t2ADDspImm:
3374     case ARM::t2SUBspImm:
3375     case ARM::t2ADDri:
3376     case ARM::t2SUBri:
3377       MRI->setRegClass(UseMI.getOperand(0).getReg(), TRC);
3378   }
3379   return true;
3380 }
3381 
3382 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3383                                         const MachineInstr &MI) {
3384   switch (MI.getOpcode()) {
3385   default: {
3386     const MCInstrDesc &Desc = MI.getDesc();
3387     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3388     assert(UOps >= 0 && "bad # UOps");
3389     return UOps;
3390   }
3391 
3392   case ARM::LDRrs:
3393   case ARM::LDRBrs:
3394   case ARM::STRrs:
3395   case ARM::STRBrs: {
3396     unsigned ShOpVal = MI.getOperand(3).getImm();
3397     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3398     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3399     if (!isSub &&
3400         (ShImm == 0 ||
3401          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3402           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3403       return 1;
3404     return 2;
3405   }
3406 
3407   case ARM::LDRH:
3408   case ARM::STRH: {
3409     if (!MI.getOperand(2).getReg())
3410       return 1;
3411 
3412     unsigned ShOpVal = MI.getOperand(3).getImm();
3413     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3414     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3415     if (!isSub &&
3416         (ShImm == 0 ||
3417          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3418           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3419       return 1;
3420     return 2;
3421   }
3422 
3423   case ARM::LDRSB:
3424   case ARM::LDRSH:
3425     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3426 
3427   case ARM::LDRSB_POST:
3428   case ARM::LDRSH_POST: {
3429     Register Rt = MI.getOperand(0).getReg();
3430     Register Rm = MI.getOperand(3).getReg();
3431     return (Rt == Rm) ? 4 : 3;
3432   }
3433 
3434   case ARM::LDR_PRE_REG:
3435   case ARM::LDRB_PRE_REG: {
3436     Register Rt = MI.getOperand(0).getReg();
3437     Register Rm = MI.getOperand(3).getReg();
3438     if (Rt == Rm)
3439       return 3;
3440     unsigned ShOpVal = MI.getOperand(4).getImm();
3441     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3442     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3443     if (!isSub &&
3444         (ShImm == 0 ||
3445          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3446           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3447       return 2;
3448     return 3;
3449   }
3450 
3451   case ARM::STR_PRE_REG:
3452   case ARM::STRB_PRE_REG: {
3453     unsigned ShOpVal = MI.getOperand(4).getImm();
3454     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3455     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3456     if (!isSub &&
3457         (ShImm == 0 ||
3458          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3459           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3460       return 2;
3461     return 3;
3462   }
3463 
3464   case ARM::LDRH_PRE:
3465   case ARM::STRH_PRE: {
3466     Register Rt = MI.getOperand(0).getReg();
3467     Register Rm = MI.getOperand(3).getReg();
3468     if (!Rm)
3469       return 2;
3470     if (Rt == Rm)
3471       return 3;
3472     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3473   }
3474 
3475   case ARM::LDR_POST_REG:
3476   case ARM::LDRB_POST_REG:
3477   case ARM::LDRH_POST: {
3478     Register Rt = MI.getOperand(0).getReg();
3479     Register Rm = MI.getOperand(3).getReg();
3480     return (Rt == Rm) ? 3 : 2;
3481   }
3482 
3483   case ARM::LDR_PRE_IMM:
3484   case ARM::LDRB_PRE_IMM:
3485   case ARM::LDR_POST_IMM:
3486   case ARM::LDRB_POST_IMM:
3487   case ARM::STRB_POST_IMM:
3488   case ARM::STRB_POST_REG:
3489   case ARM::STRB_PRE_IMM:
3490   case ARM::STRH_POST:
3491   case ARM::STR_POST_IMM:
3492   case ARM::STR_POST_REG:
3493   case ARM::STR_PRE_IMM:
3494     return 2;
3495 
3496   case ARM::LDRSB_PRE:
3497   case ARM::LDRSH_PRE: {
3498     Register Rm = MI.getOperand(3).getReg();
3499     if (Rm == 0)
3500       return 3;
3501     Register Rt = MI.getOperand(0).getReg();
3502     if (Rt == Rm)
3503       return 4;
3504     unsigned ShOpVal = MI.getOperand(4).getImm();
3505     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3506     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3507     if (!isSub &&
3508         (ShImm == 0 ||
3509          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3510           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3511       return 3;
3512     return 4;
3513   }
3514 
3515   case ARM::LDRD: {
3516     Register Rt = MI.getOperand(0).getReg();
3517     Register Rn = MI.getOperand(2).getReg();
3518     Register Rm = MI.getOperand(3).getReg();
3519     if (Rm)
3520       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3521                                                                           : 3;
3522     return (Rt == Rn) ? 3 : 2;
3523   }
3524 
3525   case ARM::STRD: {
3526     Register Rm = MI.getOperand(3).getReg();
3527     if (Rm)
3528       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3529                                                                           : 3;
3530     return 2;
3531   }
3532 
3533   case ARM::LDRD_POST:
3534   case ARM::t2LDRD_POST:
3535     return 3;
3536 
3537   case ARM::STRD_POST:
3538   case ARM::t2STRD_POST:
3539     return 4;
3540 
3541   case ARM::LDRD_PRE: {
3542     Register Rt = MI.getOperand(0).getReg();
3543     Register Rn = MI.getOperand(3).getReg();
3544     Register Rm = MI.getOperand(4).getReg();
3545     if (Rm)
3546       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3547                                                                           : 4;
3548     return (Rt == Rn) ? 4 : 3;
3549   }
3550 
3551   case ARM::t2LDRD_PRE: {
3552     Register Rt = MI.getOperand(0).getReg();
3553     Register Rn = MI.getOperand(3).getReg();
3554     return (Rt == Rn) ? 4 : 3;
3555   }
3556 
3557   case ARM::STRD_PRE: {
3558     Register Rm = MI.getOperand(4).getReg();
3559     if (Rm)
3560       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3561                                                                           : 4;
3562     return 3;
3563   }
3564 
3565   case ARM::t2STRD_PRE:
3566     return 3;
3567 
3568   case ARM::t2LDR_POST:
3569   case ARM::t2LDRB_POST:
3570   case ARM::t2LDRB_PRE:
3571   case ARM::t2LDRSBi12:
3572   case ARM::t2LDRSBi8:
3573   case ARM::t2LDRSBpci:
3574   case ARM::t2LDRSBs:
3575   case ARM::t2LDRH_POST:
3576   case ARM::t2LDRH_PRE:
3577   case ARM::t2LDRSBT:
3578   case ARM::t2LDRSB_POST:
3579   case ARM::t2LDRSB_PRE:
3580   case ARM::t2LDRSH_POST:
3581   case ARM::t2LDRSH_PRE:
3582   case ARM::t2LDRSHi12:
3583   case ARM::t2LDRSHi8:
3584   case ARM::t2LDRSHpci:
3585   case ARM::t2LDRSHs:
3586     return 2;
3587 
3588   case ARM::t2LDRDi8: {
3589     Register Rt = MI.getOperand(0).getReg();
3590     Register Rn = MI.getOperand(2).getReg();
3591     return (Rt == Rn) ? 3 : 2;
3592   }
3593 
3594   case ARM::t2STRB_POST:
3595   case ARM::t2STRB_PRE:
3596   case ARM::t2STRBs:
3597   case ARM::t2STRDi8:
3598   case ARM::t2STRH_POST:
3599   case ARM::t2STRH_PRE:
3600   case ARM::t2STRHs:
3601   case ARM::t2STR_POST:
3602   case ARM::t2STR_PRE:
3603   case ARM::t2STRs:
3604     return 2;
3605   }
3606 }
3607 
3608 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3609 // can't be easily determined return 0 (missing MachineMemOperand).
3610 //
3611 // FIXME: The current MachineInstr design does not support relying on machine
3612 // mem operands to determine the width of a memory access. Instead, we expect
3613 // the target to provide this information based on the instruction opcode and
3614 // operands. However, using MachineMemOperand is the best solution now for
3615 // two reasons:
3616 //
3617 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3618 // operands. This is much more dangerous than using the MachineMemOperand
3619 // sizes because CodeGen passes can insert/remove optional machine operands. In
3620 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3621 // postRA passes as well.
3622 //
3623 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3624 // machine model that calls this should handle the unknown (zero size) case.
3625 //
3626 // Long term, we should require a target hook that verifies MachineMemOperand
3627 // sizes during MC lowering. That target hook should be local to MC lowering
3628 // because we can't ensure that it is aware of other MI forms. Doing this will
3629 // ensure that MachineMemOperands are correctly propagated through all passes.
3630 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3631   unsigned Size = 0;
3632   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3633                                   E = MI.memoperands_end();
3634        I != E; ++I) {
3635     Size += (*I)->getSize();
3636   }
3637   // FIXME: The scheduler currently can't handle values larger than 16. But
3638   // the values can actually go up to 32 for floating-point load/store
3639   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3640   // operations isn't right; we could end up with "extra" memory operands for
3641   // various reasons, like tail merge merging two memory operations.
3642   return std::min(Size / 4, 16U);
3643 }
3644 
3645 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3646                                                     unsigned NumRegs) {
3647   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3648   switch (Opc) {
3649   default:
3650     break;
3651   case ARM::VLDMDIA_UPD:
3652   case ARM::VLDMDDB_UPD:
3653   case ARM::VLDMSIA_UPD:
3654   case ARM::VLDMSDB_UPD:
3655   case ARM::VSTMDIA_UPD:
3656   case ARM::VSTMDDB_UPD:
3657   case ARM::VSTMSIA_UPD:
3658   case ARM::VSTMSDB_UPD:
3659   case ARM::LDMIA_UPD:
3660   case ARM::LDMDA_UPD:
3661   case ARM::LDMDB_UPD:
3662   case ARM::LDMIB_UPD:
3663   case ARM::STMIA_UPD:
3664   case ARM::STMDA_UPD:
3665   case ARM::STMDB_UPD:
3666   case ARM::STMIB_UPD:
3667   case ARM::tLDMIA_UPD:
3668   case ARM::tSTMIA_UPD:
3669   case ARM::t2LDMIA_UPD:
3670   case ARM::t2LDMDB_UPD:
3671   case ARM::t2STMIA_UPD:
3672   case ARM::t2STMDB_UPD:
3673     ++UOps; // One for base register writeback.
3674     break;
3675   case ARM::LDMIA_RET:
3676   case ARM::tPOP_RET:
3677   case ARM::t2LDMIA_RET:
3678     UOps += 2; // One for base reg wb, one for write to pc.
3679     break;
3680   }
3681   return UOps;
3682 }
3683 
3684 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3685                                           const MachineInstr &MI) const {
3686   if (!ItinData || ItinData->isEmpty())
3687     return 1;
3688 
3689   const MCInstrDesc &Desc = MI.getDesc();
3690   unsigned Class = Desc.getSchedClass();
3691   int ItinUOps = ItinData->getNumMicroOps(Class);
3692   if (ItinUOps >= 0) {
3693     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3694       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3695 
3696     return ItinUOps;
3697   }
3698 
3699   unsigned Opc = MI.getOpcode();
3700   switch (Opc) {
3701   default:
3702     llvm_unreachable("Unexpected multi-uops instruction!");
3703   case ARM::VLDMQIA:
3704   case ARM::VSTMQIA:
3705     return 2;
3706 
3707   // The number of uOps for load / store multiple are determined by the number
3708   // registers.
3709   //
3710   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3711   // same cycle. The scheduling for the first load / store must be done
3712   // separately by assuming the address is not 64-bit aligned.
3713   //
3714   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3715   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3716   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3717   case ARM::VLDMDIA:
3718   case ARM::VLDMDIA_UPD:
3719   case ARM::VLDMDDB_UPD:
3720   case ARM::VLDMSIA:
3721   case ARM::VLDMSIA_UPD:
3722   case ARM::VLDMSDB_UPD:
3723   case ARM::VSTMDIA:
3724   case ARM::VSTMDIA_UPD:
3725   case ARM::VSTMDDB_UPD:
3726   case ARM::VSTMSIA:
3727   case ARM::VSTMSIA_UPD:
3728   case ARM::VSTMSDB_UPD: {
3729     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3730     return (NumRegs / 2) + (NumRegs % 2) + 1;
3731   }
3732 
3733   case ARM::LDMIA_RET:
3734   case ARM::LDMIA:
3735   case ARM::LDMDA:
3736   case ARM::LDMDB:
3737   case ARM::LDMIB:
3738   case ARM::LDMIA_UPD:
3739   case ARM::LDMDA_UPD:
3740   case ARM::LDMDB_UPD:
3741   case ARM::LDMIB_UPD:
3742   case ARM::STMIA:
3743   case ARM::STMDA:
3744   case ARM::STMDB:
3745   case ARM::STMIB:
3746   case ARM::STMIA_UPD:
3747   case ARM::STMDA_UPD:
3748   case ARM::STMDB_UPD:
3749   case ARM::STMIB_UPD:
3750   case ARM::tLDMIA:
3751   case ARM::tLDMIA_UPD:
3752   case ARM::tSTMIA_UPD:
3753   case ARM::tPOP_RET:
3754   case ARM::tPOP:
3755   case ARM::tPUSH:
3756   case ARM::t2LDMIA_RET:
3757   case ARM::t2LDMIA:
3758   case ARM::t2LDMDB:
3759   case ARM::t2LDMIA_UPD:
3760   case ARM::t2LDMDB_UPD:
3761   case ARM::t2STMIA:
3762   case ARM::t2STMDB:
3763   case ARM::t2STMIA_UPD:
3764   case ARM::t2STMDB_UPD: {
3765     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3766     switch (Subtarget.getLdStMultipleTiming()) {
3767     case ARMSubtarget::SingleIssuePlusExtras:
3768       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3769     case ARMSubtarget::SingleIssue:
3770       // Assume the worst.
3771       return NumRegs;
3772     case ARMSubtarget::DoubleIssue: {
3773       if (NumRegs < 4)
3774         return 2;
3775       // 4 registers would be issued: 2, 2.
3776       // 5 registers would be issued: 2, 2, 1.
3777       unsigned UOps = (NumRegs / 2);
3778       if (NumRegs % 2)
3779         ++UOps;
3780       return UOps;
3781     }
3782     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3783       unsigned UOps = (NumRegs / 2);
3784       // If there are odd number of registers or if it's not 64-bit aligned,
3785       // then it takes an extra AGU (Address Generation Unit) cycle.
3786       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3787           (*MI.memoperands_begin())->getAlign() < Align(8))
3788         ++UOps;
3789       return UOps;
3790       }
3791     }
3792   }
3793   }
3794   llvm_unreachable("Didn't find the number of microops");
3795 }
3796 
3797 int
3798 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3799                                   const MCInstrDesc &DefMCID,
3800                                   unsigned DefClass,
3801                                   unsigned DefIdx, unsigned DefAlign) const {
3802   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3803   if (RegNo <= 0)
3804     // Def is the address writeback.
3805     return ItinData->getOperandCycle(DefClass, DefIdx);
3806 
3807   int DefCycle;
3808   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3809     // (regno / 2) + (regno % 2) + 1
3810     DefCycle = RegNo / 2 + 1;
3811     if (RegNo % 2)
3812       ++DefCycle;
3813   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3814     DefCycle = RegNo;
3815     bool isSLoad = false;
3816 
3817     switch (DefMCID.getOpcode()) {
3818     default: break;
3819     case ARM::VLDMSIA:
3820     case ARM::VLDMSIA_UPD:
3821     case ARM::VLDMSDB_UPD:
3822       isSLoad = true;
3823       break;
3824     }
3825 
3826     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3827     // then it takes an extra cycle.
3828     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3829       ++DefCycle;
3830   } else {
3831     // Assume the worst.
3832     DefCycle = RegNo + 2;
3833   }
3834 
3835   return DefCycle;
3836 }
3837 
3838 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3839   Register BaseReg = MI.getOperand(0).getReg();
3840   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3841     const auto &Op = MI.getOperand(i);
3842     if (Op.isReg() && Op.getReg() == BaseReg)
3843       return true;
3844   }
3845   return false;
3846 }
3847 unsigned
3848 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3849   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3850   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3851   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3852 }
3853 
3854 int
3855 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3856                                  const MCInstrDesc &DefMCID,
3857                                  unsigned DefClass,
3858                                  unsigned DefIdx, unsigned DefAlign) const {
3859   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3860   if (RegNo <= 0)
3861     // Def is the address writeback.
3862     return ItinData->getOperandCycle(DefClass, DefIdx);
3863 
3864   int DefCycle;
3865   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3866     // 4 registers would be issued: 1, 2, 1.
3867     // 5 registers would be issued: 1, 2, 2.
3868     DefCycle = RegNo / 2;
3869     if (DefCycle < 1)
3870       DefCycle = 1;
3871     // Result latency is issue cycle + 2: E2.
3872     DefCycle += 2;
3873   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3874     DefCycle = (RegNo / 2);
3875     // If there are odd number of registers or if it's not 64-bit aligned,
3876     // then it takes an extra AGU (Address Generation Unit) cycle.
3877     if ((RegNo % 2) || DefAlign < 8)
3878       ++DefCycle;
3879     // Result latency is AGU cycles + 2.
3880     DefCycle += 2;
3881   } else {
3882     // Assume the worst.
3883     DefCycle = RegNo + 2;
3884   }
3885 
3886   return DefCycle;
3887 }
3888 
3889 int
3890 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3891                                   const MCInstrDesc &UseMCID,
3892                                   unsigned UseClass,
3893                                   unsigned UseIdx, unsigned UseAlign) const {
3894   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3895   if (RegNo <= 0)
3896     return ItinData->getOperandCycle(UseClass, UseIdx);
3897 
3898   int UseCycle;
3899   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3900     // (regno / 2) + (regno % 2) + 1
3901     UseCycle = RegNo / 2 + 1;
3902     if (RegNo % 2)
3903       ++UseCycle;
3904   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3905     UseCycle = RegNo;
3906     bool isSStore = false;
3907 
3908     switch (UseMCID.getOpcode()) {
3909     default: break;
3910     case ARM::VSTMSIA:
3911     case ARM::VSTMSIA_UPD:
3912     case ARM::VSTMSDB_UPD:
3913       isSStore = true;
3914       break;
3915     }
3916 
3917     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3918     // then it takes an extra cycle.
3919     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3920       ++UseCycle;
3921   } else {
3922     // Assume the worst.
3923     UseCycle = RegNo + 2;
3924   }
3925 
3926   return UseCycle;
3927 }
3928 
3929 int
3930 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3931                                  const MCInstrDesc &UseMCID,
3932                                  unsigned UseClass,
3933                                  unsigned UseIdx, unsigned UseAlign) const {
3934   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3935   if (RegNo <= 0)
3936     return ItinData->getOperandCycle(UseClass, UseIdx);
3937 
3938   int UseCycle;
3939   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3940     UseCycle = RegNo / 2;
3941     if (UseCycle < 2)
3942       UseCycle = 2;
3943     // Read in E3.
3944     UseCycle += 2;
3945   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3946     UseCycle = (RegNo / 2);
3947     // If there are odd number of registers or if it's not 64-bit aligned,
3948     // then it takes an extra AGU (Address Generation Unit) cycle.
3949     if ((RegNo % 2) || UseAlign < 8)
3950       ++UseCycle;
3951   } else {
3952     // Assume the worst.
3953     UseCycle = 1;
3954   }
3955   return UseCycle;
3956 }
3957 
3958 int
3959 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3960                                     const MCInstrDesc &DefMCID,
3961                                     unsigned DefIdx, unsigned DefAlign,
3962                                     const MCInstrDesc &UseMCID,
3963                                     unsigned UseIdx, unsigned UseAlign) const {
3964   unsigned DefClass = DefMCID.getSchedClass();
3965   unsigned UseClass = UseMCID.getSchedClass();
3966 
3967   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3968     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3969 
3970   // This may be a def / use of a variable_ops instruction, the operand
3971   // latency might be determinable dynamically. Let the target try to
3972   // figure it out.
3973   int DefCycle = -1;
3974   bool LdmBypass = false;
3975   switch (DefMCID.getOpcode()) {
3976   default:
3977     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3978     break;
3979 
3980   case ARM::VLDMDIA:
3981   case ARM::VLDMDIA_UPD:
3982   case ARM::VLDMDDB_UPD:
3983   case ARM::VLDMSIA:
3984   case ARM::VLDMSIA_UPD:
3985   case ARM::VLDMSDB_UPD:
3986     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3987     break;
3988 
3989   case ARM::LDMIA_RET:
3990   case ARM::LDMIA:
3991   case ARM::LDMDA:
3992   case ARM::LDMDB:
3993   case ARM::LDMIB:
3994   case ARM::LDMIA_UPD:
3995   case ARM::LDMDA_UPD:
3996   case ARM::LDMDB_UPD:
3997   case ARM::LDMIB_UPD:
3998   case ARM::tLDMIA:
3999   case ARM::tLDMIA_UPD:
4000   case ARM::tPUSH:
4001   case ARM::t2LDMIA_RET:
4002   case ARM::t2LDMIA:
4003   case ARM::t2LDMDB:
4004   case ARM::t2LDMIA_UPD:
4005   case ARM::t2LDMDB_UPD:
4006     LdmBypass = true;
4007     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4008     break;
4009   }
4010 
4011   if (DefCycle == -1)
4012     // We can't seem to determine the result latency of the def, assume it's 2.
4013     DefCycle = 2;
4014 
4015   int UseCycle = -1;
4016   switch (UseMCID.getOpcode()) {
4017   default:
4018     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4019     break;
4020 
4021   case ARM::VSTMDIA:
4022   case ARM::VSTMDIA_UPD:
4023   case ARM::VSTMDDB_UPD:
4024   case ARM::VSTMSIA:
4025   case ARM::VSTMSIA_UPD:
4026   case ARM::VSTMSDB_UPD:
4027     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4028     break;
4029 
4030   case ARM::STMIA:
4031   case ARM::STMDA:
4032   case ARM::STMDB:
4033   case ARM::STMIB:
4034   case ARM::STMIA_UPD:
4035   case ARM::STMDA_UPD:
4036   case ARM::STMDB_UPD:
4037   case ARM::STMIB_UPD:
4038   case ARM::tSTMIA_UPD:
4039   case ARM::tPOP_RET:
4040   case ARM::tPOP:
4041   case ARM::t2STMIA:
4042   case ARM::t2STMDB:
4043   case ARM::t2STMIA_UPD:
4044   case ARM::t2STMDB_UPD:
4045     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4046     break;
4047   }
4048 
4049   if (UseCycle == -1)
4050     // Assume it's read in the first stage.
4051     UseCycle = 1;
4052 
4053   UseCycle = DefCycle - UseCycle + 1;
4054   if (UseCycle > 0) {
4055     if (LdmBypass) {
4056       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4057       // first def operand.
4058       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4059                                           UseClass, UseIdx))
4060         --UseCycle;
4061     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4062                                                UseClass, UseIdx)) {
4063       --UseCycle;
4064     }
4065   }
4066 
4067   return UseCycle;
4068 }
4069 
4070 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4071                                            const MachineInstr *MI, unsigned Reg,
4072                                            unsigned &DefIdx, unsigned &Dist) {
4073   Dist = 0;
4074 
4075   MachineBasicBlock::const_iterator I = MI; ++I;
4076   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4077   assert(II->isInsideBundle() && "Empty bundle?");
4078 
4079   int Idx = -1;
4080   while (II->isInsideBundle()) {
4081     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4082     if (Idx != -1)
4083       break;
4084     --II;
4085     ++Dist;
4086   }
4087 
4088   assert(Idx != -1 && "Cannot find bundled definition!");
4089   DefIdx = Idx;
4090   return &*II;
4091 }
4092 
4093 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4094                                            const MachineInstr &MI, unsigned Reg,
4095                                            unsigned &UseIdx, unsigned &Dist) {
4096   Dist = 0;
4097 
4098   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4099   assert(II->isInsideBundle() && "Empty bundle?");
4100   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4101 
4102   // FIXME: This doesn't properly handle multiple uses.
4103   int Idx = -1;
4104   while (II != E && II->isInsideBundle()) {
4105     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4106     if (Idx != -1)
4107       break;
4108     if (II->getOpcode() != ARM::t2IT)
4109       ++Dist;
4110     ++II;
4111   }
4112 
4113   if (Idx == -1) {
4114     Dist = 0;
4115     return nullptr;
4116   }
4117 
4118   UseIdx = Idx;
4119   return &*II;
4120 }
4121 
4122 /// Return the number of cycles to add to (or subtract from) the static
4123 /// itinerary based on the def opcode and alignment. The caller will ensure that
4124 /// adjusted latency is at least one cycle.
4125 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4126                             const MachineInstr &DefMI,
4127                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4128   int Adjust = 0;
4129   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4130     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4131     // variants are one cycle cheaper.
4132     switch (DefMCID.getOpcode()) {
4133     default: break;
4134     case ARM::LDRrs:
4135     case ARM::LDRBrs: {
4136       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4137       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4138       if (ShImm == 0 ||
4139           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4140         --Adjust;
4141       break;
4142     }
4143     case ARM::t2LDRs:
4144     case ARM::t2LDRBs:
4145     case ARM::t2LDRHs:
4146     case ARM::t2LDRSHs: {
4147       // Thumb2 mode: lsl only.
4148       unsigned ShAmt = DefMI.getOperand(3).getImm();
4149       if (ShAmt == 0 || ShAmt == 2)
4150         --Adjust;
4151       break;
4152     }
4153     }
4154   } else if (Subtarget.isSwift()) {
4155     // FIXME: Properly handle all of the latency adjustments for address
4156     // writeback.
4157     switch (DefMCID.getOpcode()) {
4158     default: break;
4159     case ARM::LDRrs:
4160     case ARM::LDRBrs: {
4161       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4162       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4163       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4164       if (!isSub &&
4165           (ShImm == 0 ||
4166            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4167             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4168         Adjust -= 2;
4169       else if (!isSub &&
4170                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4171         --Adjust;
4172       break;
4173     }
4174     case ARM::t2LDRs:
4175     case ARM::t2LDRBs:
4176     case ARM::t2LDRHs:
4177     case ARM::t2LDRSHs: {
4178       // Thumb2 mode: lsl only.
4179       unsigned ShAmt = DefMI.getOperand(3).getImm();
4180       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4181         Adjust -= 2;
4182       break;
4183     }
4184     }
4185   }
4186 
4187   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4188     switch (DefMCID.getOpcode()) {
4189     default: break;
4190     case ARM::VLD1q8:
4191     case ARM::VLD1q16:
4192     case ARM::VLD1q32:
4193     case ARM::VLD1q64:
4194     case ARM::VLD1q8wb_fixed:
4195     case ARM::VLD1q16wb_fixed:
4196     case ARM::VLD1q32wb_fixed:
4197     case ARM::VLD1q64wb_fixed:
4198     case ARM::VLD1q8wb_register:
4199     case ARM::VLD1q16wb_register:
4200     case ARM::VLD1q32wb_register:
4201     case ARM::VLD1q64wb_register:
4202     case ARM::VLD2d8:
4203     case ARM::VLD2d16:
4204     case ARM::VLD2d32:
4205     case ARM::VLD2q8:
4206     case ARM::VLD2q16:
4207     case ARM::VLD2q32:
4208     case ARM::VLD2d8wb_fixed:
4209     case ARM::VLD2d16wb_fixed:
4210     case ARM::VLD2d32wb_fixed:
4211     case ARM::VLD2q8wb_fixed:
4212     case ARM::VLD2q16wb_fixed:
4213     case ARM::VLD2q32wb_fixed:
4214     case ARM::VLD2d8wb_register:
4215     case ARM::VLD2d16wb_register:
4216     case ARM::VLD2d32wb_register:
4217     case ARM::VLD2q8wb_register:
4218     case ARM::VLD2q16wb_register:
4219     case ARM::VLD2q32wb_register:
4220     case ARM::VLD3d8:
4221     case ARM::VLD3d16:
4222     case ARM::VLD3d32:
4223     case ARM::VLD1d64T:
4224     case ARM::VLD3d8_UPD:
4225     case ARM::VLD3d16_UPD:
4226     case ARM::VLD3d32_UPD:
4227     case ARM::VLD1d64Twb_fixed:
4228     case ARM::VLD1d64Twb_register:
4229     case ARM::VLD3q8_UPD:
4230     case ARM::VLD3q16_UPD:
4231     case ARM::VLD3q32_UPD:
4232     case ARM::VLD4d8:
4233     case ARM::VLD4d16:
4234     case ARM::VLD4d32:
4235     case ARM::VLD1d64Q:
4236     case ARM::VLD4d8_UPD:
4237     case ARM::VLD4d16_UPD:
4238     case ARM::VLD4d32_UPD:
4239     case ARM::VLD1d64Qwb_fixed:
4240     case ARM::VLD1d64Qwb_register:
4241     case ARM::VLD4q8_UPD:
4242     case ARM::VLD4q16_UPD:
4243     case ARM::VLD4q32_UPD:
4244     case ARM::VLD1DUPq8:
4245     case ARM::VLD1DUPq16:
4246     case ARM::VLD1DUPq32:
4247     case ARM::VLD1DUPq8wb_fixed:
4248     case ARM::VLD1DUPq16wb_fixed:
4249     case ARM::VLD1DUPq32wb_fixed:
4250     case ARM::VLD1DUPq8wb_register:
4251     case ARM::VLD1DUPq16wb_register:
4252     case ARM::VLD1DUPq32wb_register:
4253     case ARM::VLD2DUPd8:
4254     case ARM::VLD2DUPd16:
4255     case ARM::VLD2DUPd32:
4256     case ARM::VLD2DUPd8wb_fixed:
4257     case ARM::VLD2DUPd16wb_fixed:
4258     case ARM::VLD2DUPd32wb_fixed:
4259     case ARM::VLD2DUPd8wb_register:
4260     case ARM::VLD2DUPd16wb_register:
4261     case ARM::VLD2DUPd32wb_register:
4262     case ARM::VLD4DUPd8:
4263     case ARM::VLD4DUPd16:
4264     case ARM::VLD4DUPd32:
4265     case ARM::VLD4DUPd8_UPD:
4266     case ARM::VLD4DUPd16_UPD:
4267     case ARM::VLD4DUPd32_UPD:
4268     case ARM::VLD1LNd8:
4269     case ARM::VLD1LNd16:
4270     case ARM::VLD1LNd32:
4271     case ARM::VLD1LNd8_UPD:
4272     case ARM::VLD1LNd16_UPD:
4273     case ARM::VLD1LNd32_UPD:
4274     case ARM::VLD2LNd8:
4275     case ARM::VLD2LNd16:
4276     case ARM::VLD2LNd32:
4277     case ARM::VLD2LNq16:
4278     case ARM::VLD2LNq32:
4279     case ARM::VLD2LNd8_UPD:
4280     case ARM::VLD2LNd16_UPD:
4281     case ARM::VLD2LNd32_UPD:
4282     case ARM::VLD2LNq16_UPD:
4283     case ARM::VLD2LNq32_UPD:
4284     case ARM::VLD4LNd8:
4285     case ARM::VLD4LNd16:
4286     case ARM::VLD4LNd32:
4287     case ARM::VLD4LNq16:
4288     case ARM::VLD4LNq32:
4289     case ARM::VLD4LNd8_UPD:
4290     case ARM::VLD4LNd16_UPD:
4291     case ARM::VLD4LNd32_UPD:
4292     case ARM::VLD4LNq16_UPD:
4293     case ARM::VLD4LNq32_UPD:
4294       // If the address is not 64-bit aligned, the latencies of these
4295       // instructions increases by one.
4296       ++Adjust;
4297       break;
4298     }
4299   }
4300   return Adjust;
4301 }
4302 
4303 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4304                                         const MachineInstr &DefMI,
4305                                         unsigned DefIdx,
4306                                         const MachineInstr &UseMI,
4307                                         unsigned UseIdx) const {
4308   // No operand latency. The caller may fall back to getInstrLatency.
4309   if (!ItinData || ItinData->isEmpty())
4310     return -1;
4311 
4312   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4313   Register Reg = DefMO.getReg();
4314 
4315   const MachineInstr *ResolvedDefMI = &DefMI;
4316   unsigned DefAdj = 0;
4317   if (DefMI.isBundle())
4318     ResolvedDefMI =
4319         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4320   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4321       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4322     return 1;
4323   }
4324 
4325   const MachineInstr *ResolvedUseMI = &UseMI;
4326   unsigned UseAdj = 0;
4327   if (UseMI.isBundle()) {
4328     ResolvedUseMI =
4329         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4330     if (!ResolvedUseMI)
4331       return -1;
4332   }
4333 
4334   return getOperandLatencyImpl(
4335       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4336       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4337 }
4338 
4339 int ARMBaseInstrInfo::getOperandLatencyImpl(
4340     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4341     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4342     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4343     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4344   if (Reg == ARM::CPSR) {
4345     if (DefMI.getOpcode() == ARM::FMSTAT) {
4346       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4347       return Subtarget.isLikeA9() ? 1 : 20;
4348     }
4349 
4350     // CPSR set and branch can be paired in the same cycle.
4351     if (UseMI.isBranch())
4352       return 0;
4353 
4354     // Otherwise it takes the instruction latency (generally one).
4355     unsigned Latency = getInstrLatency(ItinData, DefMI);
4356 
4357     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4358     // its uses. Instructions which are otherwise scheduled between them may
4359     // incur a code size penalty (not able to use the CPSR setting 16-bit
4360     // instructions).
4361     if (Latency > 0 && Subtarget.isThumb2()) {
4362       const MachineFunction *MF = DefMI.getParent()->getParent();
4363       // FIXME: Use Function::hasOptSize().
4364       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4365         --Latency;
4366     }
4367     return Latency;
4368   }
4369 
4370   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4371     return -1;
4372 
4373   unsigned DefAlign = DefMI.hasOneMemOperand()
4374                           ? (*DefMI.memoperands_begin())->getAlign().value()
4375                           : 0;
4376   unsigned UseAlign = UseMI.hasOneMemOperand()
4377                           ? (*UseMI.memoperands_begin())->getAlign().value()
4378                           : 0;
4379 
4380   // Get the itinerary's latency if possible, and handle variable_ops.
4381   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4382                                   UseIdx, UseAlign);
4383   // Unable to find operand latency. The caller may resort to getInstrLatency.
4384   if (Latency < 0)
4385     return Latency;
4386 
4387   // Adjust for IT block position.
4388   int Adj = DefAdj + UseAdj;
4389 
4390   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4391   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4392   if (Adj >= 0 || (int)Latency > -Adj) {
4393     return Latency + Adj;
4394   }
4395   // Return the itinerary latency, which may be zero but not less than zero.
4396   return Latency;
4397 }
4398 
4399 int
4400 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4401                                     SDNode *DefNode, unsigned DefIdx,
4402                                     SDNode *UseNode, unsigned UseIdx) const {
4403   if (!DefNode->isMachineOpcode())
4404     return 1;
4405 
4406   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4407 
4408   if (isZeroCost(DefMCID.Opcode))
4409     return 0;
4410 
4411   if (!ItinData || ItinData->isEmpty())
4412     return DefMCID.mayLoad() ? 3 : 1;
4413 
4414   if (!UseNode->isMachineOpcode()) {
4415     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4416     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4417     int Threshold = 1 + Adj;
4418     return Latency <= Threshold ? 1 : Latency - Adj;
4419   }
4420 
4421   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4422   auto *DefMN = cast<MachineSDNode>(DefNode);
4423   unsigned DefAlign = !DefMN->memoperands_empty()
4424                           ? (*DefMN->memoperands_begin())->getAlign().value()
4425                           : 0;
4426   auto *UseMN = cast<MachineSDNode>(UseNode);
4427   unsigned UseAlign = !UseMN->memoperands_empty()
4428                           ? (*UseMN->memoperands_begin())->getAlign().value()
4429                           : 0;
4430   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4431                                   UseMCID, UseIdx, UseAlign);
4432 
4433   if (Latency > 1 &&
4434       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4435        Subtarget.isCortexA7())) {
4436     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4437     // variants are one cycle cheaper.
4438     switch (DefMCID.getOpcode()) {
4439     default: break;
4440     case ARM::LDRrs:
4441     case ARM::LDRBrs: {
4442       unsigned ShOpVal =
4443         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4444       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4445       if (ShImm == 0 ||
4446           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4447         --Latency;
4448       break;
4449     }
4450     case ARM::t2LDRs:
4451     case ARM::t2LDRBs:
4452     case ARM::t2LDRHs:
4453     case ARM::t2LDRSHs: {
4454       // Thumb2 mode: lsl only.
4455       unsigned ShAmt =
4456         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4457       if (ShAmt == 0 || ShAmt == 2)
4458         --Latency;
4459       break;
4460     }
4461     }
4462   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4463     // FIXME: Properly handle all of the latency adjustments for address
4464     // writeback.
4465     switch (DefMCID.getOpcode()) {
4466     default: break;
4467     case ARM::LDRrs:
4468     case ARM::LDRBrs: {
4469       unsigned ShOpVal =
4470         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4471       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4472       if (ShImm == 0 ||
4473           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4474            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4475         Latency -= 2;
4476       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4477         --Latency;
4478       break;
4479     }
4480     case ARM::t2LDRs:
4481     case ARM::t2LDRBs:
4482     case ARM::t2LDRHs:
4483     case ARM::t2LDRSHs:
4484       // Thumb2 mode: lsl 0-3 only.
4485       Latency -= 2;
4486       break;
4487     }
4488   }
4489 
4490   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4491     switch (DefMCID.getOpcode()) {
4492     default: break;
4493     case ARM::VLD1q8:
4494     case ARM::VLD1q16:
4495     case ARM::VLD1q32:
4496     case ARM::VLD1q64:
4497     case ARM::VLD1q8wb_register:
4498     case ARM::VLD1q16wb_register:
4499     case ARM::VLD1q32wb_register:
4500     case ARM::VLD1q64wb_register:
4501     case ARM::VLD1q8wb_fixed:
4502     case ARM::VLD1q16wb_fixed:
4503     case ARM::VLD1q32wb_fixed:
4504     case ARM::VLD1q64wb_fixed:
4505     case ARM::VLD2d8:
4506     case ARM::VLD2d16:
4507     case ARM::VLD2d32:
4508     case ARM::VLD2q8Pseudo:
4509     case ARM::VLD2q16Pseudo:
4510     case ARM::VLD2q32Pseudo:
4511     case ARM::VLD2d8wb_fixed:
4512     case ARM::VLD2d16wb_fixed:
4513     case ARM::VLD2d32wb_fixed:
4514     case ARM::VLD2q8PseudoWB_fixed:
4515     case ARM::VLD2q16PseudoWB_fixed:
4516     case ARM::VLD2q32PseudoWB_fixed:
4517     case ARM::VLD2d8wb_register:
4518     case ARM::VLD2d16wb_register:
4519     case ARM::VLD2d32wb_register:
4520     case ARM::VLD2q8PseudoWB_register:
4521     case ARM::VLD2q16PseudoWB_register:
4522     case ARM::VLD2q32PseudoWB_register:
4523     case ARM::VLD3d8Pseudo:
4524     case ARM::VLD3d16Pseudo:
4525     case ARM::VLD3d32Pseudo:
4526     case ARM::VLD1d8TPseudo:
4527     case ARM::VLD1d16TPseudo:
4528     case ARM::VLD1d32TPseudo:
4529     case ARM::VLD1d64TPseudo:
4530     case ARM::VLD1d64TPseudoWB_fixed:
4531     case ARM::VLD1d64TPseudoWB_register:
4532     case ARM::VLD3d8Pseudo_UPD:
4533     case ARM::VLD3d16Pseudo_UPD:
4534     case ARM::VLD3d32Pseudo_UPD:
4535     case ARM::VLD3q8Pseudo_UPD:
4536     case ARM::VLD3q16Pseudo_UPD:
4537     case ARM::VLD3q32Pseudo_UPD:
4538     case ARM::VLD3q8oddPseudo:
4539     case ARM::VLD3q16oddPseudo:
4540     case ARM::VLD3q32oddPseudo:
4541     case ARM::VLD3q8oddPseudo_UPD:
4542     case ARM::VLD3q16oddPseudo_UPD:
4543     case ARM::VLD3q32oddPseudo_UPD:
4544     case ARM::VLD4d8Pseudo:
4545     case ARM::VLD4d16Pseudo:
4546     case ARM::VLD4d32Pseudo:
4547     case ARM::VLD1d8QPseudo:
4548     case ARM::VLD1d16QPseudo:
4549     case ARM::VLD1d32QPseudo:
4550     case ARM::VLD1d64QPseudo:
4551     case ARM::VLD1d64QPseudoWB_fixed:
4552     case ARM::VLD1d64QPseudoWB_register:
4553     case ARM::VLD1q8HighQPseudo:
4554     case ARM::VLD1q8LowQPseudo_UPD:
4555     case ARM::VLD1q8HighTPseudo:
4556     case ARM::VLD1q8LowTPseudo_UPD:
4557     case ARM::VLD1q16HighQPseudo:
4558     case ARM::VLD1q16LowQPseudo_UPD:
4559     case ARM::VLD1q16HighTPseudo:
4560     case ARM::VLD1q16LowTPseudo_UPD:
4561     case ARM::VLD1q32HighQPseudo:
4562     case ARM::VLD1q32LowQPseudo_UPD:
4563     case ARM::VLD1q32HighTPseudo:
4564     case ARM::VLD1q32LowTPseudo_UPD:
4565     case ARM::VLD1q64HighQPseudo:
4566     case ARM::VLD1q64LowQPseudo_UPD:
4567     case ARM::VLD1q64HighTPseudo:
4568     case ARM::VLD1q64LowTPseudo_UPD:
4569     case ARM::VLD4d8Pseudo_UPD:
4570     case ARM::VLD4d16Pseudo_UPD:
4571     case ARM::VLD4d32Pseudo_UPD:
4572     case ARM::VLD4q8Pseudo_UPD:
4573     case ARM::VLD4q16Pseudo_UPD:
4574     case ARM::VLD4q32Pseudo_UPD:
4575     case ARM::VLD4q8oddPseudo:
4576     case ARM::VLD4q16oddPseudo:
4577     case ARM::VLD4q32oddPseudo:
4578     case ARM::VLD4q8oddPseudo_UPD:
4579     case ARM::VLD4q16oddPseudo_UPD:
4580     case ARM::VLD4q32oddPseudo_UPD:
4581     case ARM::VLD1DUPq8:
4582     case ARM::VLD1DUPq16:
4583     case ARM::VLD1DUPq32:
4584     case ARM::VLD1DUPq8wb_fixed:
4585     case ARM::VLD1DUPq16wb_fixed:
4586     case ARM::VLD1DUPq32wb_fixed:
4587     case ARM::VLD1DUPq8wb_register:
4588     case ARM::VLD1DUPq16wb_register:
4589     case ARM::VLD1DUPq32wb_register:
4590     case ARM::VLD2DUPd8:
4591     case ARM::VLD2DUPd16:
4592     case ARM::VLD2DUPd32:
4593     case ARM::VLD2DUPd8wb_fixed:
4594     case ARM::VLD2DUPd16wb_fixed:
4595     case ARM::VLD2DUPd32wb_fixed:
4596     case ARM::VLD2DUPd8wb_register:
4597     case ARM::VLD2DUPd16wb_register:
4598     case ARM::VLD2DUPd32wb_register:
4599     case ARM::VLD2DUPq8EvenPseudo:
4600     case ARM::VLD2DUPq8OddPseudo:
4601     case ARM::VLD2DUPq16EvenPseudo:
4602     case ARM::VLD2DUPq16OddPseudo:
4603     case ARM::VLD2DUPq32EvenPseudo:
4604     case ARM::VLD2DUPq32OddPseudo:
4605     case ARM::VLD3DUPq8EvenPseudo:
4606     case ARM::VLD3DUPq8OddPseudo:
4607     case ARM::VLD3DUPq16EvenPseudo:
4608     case ARM::VLD3DUPq16OddPseudo:
4609     case ARM::VLD3DUPq32EvenPseudo:
4610     case ARM::VLD3DUPq32OddPseudo:
4611     case ARM::VLD4DUPd8Pseudo:
4612     case ARM::VLD4DUPd16Pseudo:
4613     case ARM::VLD4DUPd32Pseudo:
4614     case ARM::VLD4DUPd8Pseudo_UPD:
4615     case ARM::VLD4DUPd16Pseudo_UPD:
4616     case ARM::VLD4DUPd32Pseudo_UPD:
4617     case ARM::VLD4DUPq8EvenPseudo:
4618     case ARM::VLD4DUPq8OddPseudo:
4619     case ARM::VLD4DUPq16EvenPseudo:
4620     case ARM::VLD4DUPq16OddPseudo:
4621     case ARM::VLD4DUPq32EvenPseudo:
4622     case ARM::VLD4DUPq32OddPseudo:
4623     case ARM::VLD1LNq8Pseudo:
4624     case ARM::VLD1LNq16Pseudo:
4625     case ARM::VLD1LNq32Pseudo:
4626     case ARM::VLD1LNq8Pseudo_UPD:
4627     case ARM::VLD1LNq16Pseudo_UPD:
4628     case ARM::VLD1LNq32Pseudo_UPD:
4629     case ARM::VLD2LNd8Pseudo:
4630     case ARM::VLD2LNd16Pseudo:
4631     case ARM::VLD2LNd32Pseudo:
4632     case ARM::VLD2LNq16Pseudo:
4633     case ARM::VLD2LNq32Pseudo:
4634     case ARM::VLD2LNd8Pseudo_UPD:
4635     case ARM::VLD2LNd16Pseudo_UPD:
4636     case ARM::VLD2LNd32Pseudo_UPD:
4637     case ARM::VLD2LNq16Pseudo_UPD:
4638     case ARM::VLD2LNq32Pseudo_UPD:
4639     case ARM::VLD4LNd8Pseudo:
4640     case ARM::VLD4LNd16Pseudo:
4641     case ARM::VLD4LNd32Pseudo:
4642     case ARM::VLD4LNq16Pseudo:
4643     case ARM::VLD4LNq32Pseudo:
4644     case ARM::VLD4LNd8Pseudo_UPD:
4645     case ARM::VLD4LNd16Pseudo_UPD:
4646     case ARM::VLD4LNd32Pseudo_UPD:
4647     case ARM::VLD4LNq16Pseudo_UPD:
4648     case ARM::VLD4LNq32Pseudo_UPD:
4649       // If the address is not 64-bit aligned, the latencies of these
4650       // instructions increases by one.
4651       ++Latency;
4652       break;
4653     }
4654 
4655   return Latency;
4656 }
4657 
4658 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4659   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4660       MI.isImplicitDef())
4661     return 0;
4662 
4663   if (MI.isBundle())
4664     return 0;
4665 
4666   const MCInstrDesc &MCID = MI.getDesc();
4667 
4668   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4669                         !Subtarget.cheapPredicableCPSRDef())) {
4670     // When predicated, CPSR is an additional source operand for CPSR updating
4671     // instructions, this apparently increases their latencies.
4672     return 1;
4673   }
4674   return 0;
4675 }
4676 
4677 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4678                                            const MachineInstr &MI,
4679                                            unsigned *PredCost) const {
4680   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4681       MI.isImplicitDef())
4682     return 1;
4683 
4684   // An instruction scheduler typically runs on unbundled instructions, however
4685   // other passes may query the latency of a bundled instruction.
4686   if (MI.isBundle()) {
4687     unsigned Latency = 0;
4688     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4689     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4690     while (++I != E && I->isInsideBundle()) {
4691       if (I->getOpcode() != ARM::t2IT)
4692         Latency += getInstrLatency(ItinData, *I, PredCost);
4693     }
4694     return Latency;
4695   }
4696 
4697   const MCInstrDesc &MCID = MI.getDesc();
4698   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4699                                      !Subtarget.cheapPredicableCPSRDef()))) {
4700     // When predicated, CPSR is an additional source operand for CPSR updating
4701     // instructions, this apparently increases their latencies.
4702     *PredCost = 1;
4703   }
4704   // Be sure to call getStageLatency for an empty itinerary in case it has a
4705   // valid MinLatency property.
4706   if (!ItinData)
4707     return MI.mayLoad() ? 3 : 1;
4708 
4709   unsigned Class = MCID.getSchedClass();
4710 
4711   // For instructions with variable uops, use uops as latency.
4712   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4713     return getNumMicroOps(ItinData, MI);
4714 
4715   // For the common case, fall back on the itinerary's latency.
4716   unsigned Latency = ItinData->getStageLatency(Class);
4717 
4718   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4719   unsigned DefAlign =
4720       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4721   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4722   if (Adj >= 0 || (int)Latency > -Adj) {
4723     return Latency + Adj;
4724   }
4725   return Latency;
4726 }
4727 
4728 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4729                                       SDNode *Node) const {
4730   if (!Node->isMachineOpcode())
4731     return 1;
4732 
4733   if (!ItinData || ItinData->isEmpty())
4734     return 1;
4735 
4736   unsigned Opcode = Node->getMachineOpcode();
4737   switch (Opcode) {
4738   default:
4739     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4740   case ARM::VLDMQIA:
4741   case ARM::VSTMQIA:
4742     return 2;
4743   }
4744 }
4745 
4746 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4747                                              const MachineRegisterInfo *MRI,
4748                                              const MachineInstr &DefMI,
4749                                              unsigned DefIdx,
4750                                              const MachineInstr &UseMI,
4751                                              unsigned UseIdx) const {
4752   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4753   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4754   if (Subtarget.nonpipelinedVFP() &&
4755       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4756     return true;
4757 
4758   // Hoist VFP / NEON instructions with 4 or higher latency.
4759   unsigned Latency =
4760       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4761   if (Latency <= 3)
4762     return false;
4763   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4764          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4765 }
4766 
4767 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4768                                         const MachineInstr &DefMI,
4769                                         unsigned DefIdx) const {
4770   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4771   if (!ItinData || ItinData->isEmpty())
4772     return false;
4773 
4774   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4775   if (DDomain == ARMII::DomainGeneral) {
4776     unsigned DefClass = DefMI.getDesc().getSchedClass();
4777     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4778     return (DefCycle != -1 && DefCycle <= 2);
4779   }
4780   return false;
4781 }
4782 
4783 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4784                                          StringRef &ErrInfo) const {
4785   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4786     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4787     return false;
4788   }
4789   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4790     // Make sure we don't generate a lo-lo mov that isn't supported.
4791     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4792         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4793       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4794       return false;
4795     }
4796   }
4797   if (MI.getOpcode() == ARM::tPUSH ||
4798       MI.getOpcode() == ARM::tPOP ||
4799       MI.getOpcode() == ARM::tPOP_RET) {
4800     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4801       if (MI.getOperand(i).isImplicit() ||
4802           !MI.getOperand(i).isReg())
4803         continue;
4804       Register Reg = MI.getOperand(i).getReg();
4805       if (Reg < ARM::R0 || Reg > ARM::R7) {
4806         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4807             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4808           ErrInfo = "Unsupported register in Thumb1 push/pop";
4809           return false;
4810         }
4811       }
4812     }
4813   }
4814   return true;
4815 }
4816 
4817 // LoadStackGuard has so far only been implemented for MachO. Different code
4818 // sequence is needed for other targets.
4819 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4820                                                 unsigned LoadImmOpc,
4821                                                 unsigned LoadOpc) const {
4822   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4823          "ROPI/RWPI not currently supported with stack guard");
4824 
4825   MachineBasicBlock &MBB = *MI->getParent();
4826   DebugLoc DL = MI->getDebugLoc();
4827   Register Reg = MI->getOperand(0).getReg();
4828   const GlobalValue *GV =
4829       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4830   MachineInstrBuilder MIB;
4831 
4832   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4833       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4834 
4835   if (Subtarget.isGVIndirectSymbol(GV)) {
4836     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4837     MIB.addReg(Reg, RegState::Kill).addImm(0);
4838     auto Flags = MachineMemOperand::MOLoad |
4839                  MachineMemOperand::MODereferenceable |
4840                  MachineMemOperand::MOInvariant;
4841     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4842         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4843     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4844   }
4845 
4846   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4847   MIB.addReg(Reg, RegState::Kill)
4848       .addImm(0)
4849       .cloneMemRefs(*MI)
4850       .add(predOps(ARMCC::AL));
4851 }
4852 
4853 bool
4854 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4855                                      unsigned &AddSubOpc,
4856                                      bool &NegAcc, bool &HasLane) const {
4857   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4858   if (I == MLxEntryMap.end())
4859     return false;
4860 
4861   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4862   MulOpc = Entry.MulOpc;
4863   AddSubOpc = Entry.AddSubOpc;
4864   NegAcc = Entry.NegAcc;
4865   HasLane = Entry.HasLane;
4866   return true;
4867 }
4868 
4869 //===----------------------------------------------------------------------===//
4870 // Execution domains.
4871 //===----------------------------------------------------------------------===//
4872 //
4873 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4874 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4875 // but they can be changed to vorr equivalents that are executed by the NEON
4876 // pipeline.
4877 //
4878 // We use the following execution domain numbering:
4879 //
4880 enum ARMExeDomain {
4881   ExeGeneric = 0,
4882   ExeVFP = 1,
4883   ExeNEON = 2
4884 };
4885 
4886 //
4887 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4888 //
4889 std::pair<uint16_t, uint16_t>
4890 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4891   // If we don't have access to NEON instructions then we won't be able
4892   // to swizzle anything to the NEON domain. Check to make sure.
4893   if (Subtarget.hasNEON()) {
4894     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4895     // if they are not predicated.
4896     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4897       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4898 
4899     // CortexA9 is particularly picky about mixing the two and wants these
4900     // converted.
4901     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4902         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4903          MI.getOpcode() == ARM::VMOVS))
4904       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4905   }
4906   // No other instructions can be swizzled, so just determine their domain.
4907   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4908 
4909   if (Domain & ARMII::DomainNEON)
4910     return std::make_pair(ExeNEON, 0);
4911 
4912   // Certain instructions can go either way on Cortex-A8.
4913   // Treat them as NEON instructions.
4914   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4915     return std::make_pair(ExeNEON, 0);
4916 
4917   if (Domain & ARMII::DomainVFP)
4918     return std::make_pair(ExeVFP, 0);
4919 
4920   return std::make_pair(ExeGeneric, 0);
4921 }
4922 
4923 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4924                                             unsigned SReg, unsigned &Lane) {
4925   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4926   Lane = 0;
4927 
4928   if (DReg != ARM::NoRegister)
4929    return DReg;
4930 
4931   Lane = 1;
4932   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4933 
4934   assert(DReg && "S-register with no D super-register?");
4935   return DReg;
4936 }
4937 
4938 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4939 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4940 /// zero if no register needs to be defined as implicit-use.
4941 ///
4942 /// If the function cannot determine if an SPR should be marked implicit use or
4943 /// not, it returns false.
4944 ///
4945 /// This function handles cases where an instruction is being modified from taking
4946 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4947 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4948 /// lane of the DPR).
4949 ///
4950 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4951 /// (including the case where the DPR itself is defined), it should not.
4952 ///
4953 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4954                                        MachineInstr &MI, unsigned DReg,
4955                                        unsigned Lane, unsigned &ImplicitSReg) {
4956   // If the DPR is defined or used already, the other SPR lane will be chained
4957   // correctly, so there is nothing to be done.
4958   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4959     ImplicitSReg = 0;
4960     return true;
4961   }
4962 
4963   // Otherwise we need to go searching to see if the SPR is set explicitly.
4964   ImplicitSReg = TRI->getSubReg(DReg,
4965                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4966   MachineBasicBlock::LivenessQueryResult LQR =
4967       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4968 
4969   if (LQR == MachineBasicBlock::LQR_Live)
4970     return true;
4971   else if (LQR == MachineBasicBlock::LQR_Unknown)
4972     return false;
4973 
4974   // If the register is known not to be live, there is no need to add an
4975   // implicit-use.
4976   ImplicitSReg = 0;
4977   return true;
4978 }
4979 
4980 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4981                                           unsigned Domain) const {
4982   unsigned DstReg, SrcReg, DReg;
4983   unsigned Lane;
4984   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4985   const TargetRegisterInfo *TRI = &getRegisterInfo();
4986   switch (MI.getOpcode()) {
4987   default:
4988     llvm_unreachable("cannot handle opcode!");
4989     break;
4990   case ARM::VMOVD:
4991     if (Domain != ExeNEON)
4992       break;
4993 
4994     // Zap the predicate operands.
4995     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4996 
4997     // Make sure we've got NEON instructions.
4998     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4999 
5000     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5001     DstReg = MI.getOperand(0).getReg();
5002     SrcReg = MI.getOperand(1).getReg();
5003 
5004     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5005       MI.RemoveOperand(i - 1);
5006 
5007     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5008     MI.setDesc(get(ARM::VORRd));
5009     MIB.addReg(DstReg, RegState::Define)
5010         .addReg(SrcReg)
5011         .addReg(SrcReg)
5012         .add(predOps(ARMCC::AL));
5013     break;
5014   case ARM::VMOVRS:
5015     if (Domain != ExeNEON)
5016       break;
5017     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5018 
5019     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5020     DstReg = MI.getOperand(0).getReg();
5021     SrcReg = MI.getOperand(1).getReg();
5022 
5023     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5024       MI.RemoveOperand(i - 1);
5025 
5026     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5027 
5028     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5029     // Note that DSrc has been widened and the other lane may be undef, which
5030     // contaminates the entire register.
5031     MI.setDesc(get(ARM::VGETLNi32));
5032     MIB.addReg(DstReg, RegState::Define)
5033         .addReg(DReg, RegState::Undef)
5034         .addImm(Lane)
5035         .add(predOps(ARMCC::AL));
5036 
5037     // The old source should be an implicit use, otherwise we might think it
5038     // was dead before here.
5039     MIB.addReg(SrcReg, RegState::Implicit);
5040     break;
5041   case ARM::VMOVSR: {
5042     if (Domain != ExeNEON)
5043       break;
5044     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5045 
5046     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5047     DstReg = MI.getOperand(0).getReg();
5048     SrcReg = MI.getOperand(1).getReg();
5049 
5050     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5051 
5052     unsigned ImplicitSReg;
5053     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5054       break;
5055 
5056     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5057       MI.RemoveOperand(i - 1);
5058 
5059     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5060     // Again DDst may be undefined at the beginning of this instruction.
5061     MI.setDesc(get(ARM::VSETLNi32));
5062     MIB.addReg(DReg, RegState::Define)
5063         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5064         .addReg(SrcReg)
5065         .addImm(Lane)
5066         .add(predOps(ARMCC::AL));
5067 
5068     // The narrower destination must be marked as set to keep previous chains
5069     // in place.
5070     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5071     if (ImplicitSReg != 0)
5072       MIB.addReg(ImplicitSReg, RegState::Implicit);
5073     break;
5074     }
5075     case ARM::VMOVS: {
5076       if (Domain != ExeNEON)
5077         break;
5078 
5079       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5080       DstReg = MI.getOperand(0).getReg();
5081       SrcReg = MI.getOperand(1).getReg();
5082 
5083       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5084       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5085       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5086 
5087       unsigned ImplicitSReg;
5088       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5089         break;
5090 
5091       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5092         MI.RemoveOperand(i - 1);
5093 
5094       if (DSrc == DDst) {
5095         // Destination can be:
5096         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5097         MI.setDesc(get(ARM::VDUPLN32d));
5098         MIB.addReg(DDst, RegState::Define)
5099             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5100             .addImm(SrcLane)
5101             .add(predOps(ARMCC::AL));
5102 
5103         // Neither the source or the destination are naturally represented any
5104         // more, so add them in manually.
5105         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5106         MIB.addReg(SrcReg, RegState::Implicit);
5107         if (ImplicitSReg != 0)
5108           MIB.addReg(ImplicitSReg, RegState::Implicit);
5109         break;
5110       }
5111 
5112       // In general there's no single instruction that can perform an S <-> S
5113       // move in NEON space, but a pair of VEXT instructions *can* do the
5114       // job. It turns out that the VEXTs needed will only use DSrc once, with
5115       // the position based purely on the combination of lane-0 and lane-1
5116       // involved. For example
5117       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5118       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5119       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5120       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5121       //
5122       // Pattern of the MachineInstrs is:
5123       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5124       MachineInstrBuilder NewMIB;
5125       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5126                        DDst);
5127 
5128       // On the first instruction, both DSrc and DDst may be undef if present.
5129       // Specifically when the original instruction didn't have them as an
5130       // <imp-use>.
5131       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5132       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5133       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5134 
5135       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5136       CurUndef = !MI.readsRegister(CurReg, TRI);
5137       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5138             .addImm(1)
5139             .add(predOps(ARMCC::AL));
5140 
5141       if (SrcLane == DstLane)
5142         NewMIB.addReg(SrcReg, RegState::Implicit);
5143 
5144       MI.setDesc(get(ARM::VEXTd32));
5145       MIB.addReg(DDst, RegState::Define);
5146 
5147       // On the second instruction, DDst has definitely been defined above, so
5148       // it is not undef. DSrc, if present, can be undef as above.
5149       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5150       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5151       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5152 
5153       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5154       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5155       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5156          .addImm(1)
5157          .add(predOps(ARMCC::AL));
5158 
5159       if (SrcLane != DstLane)
5160         MIB.addReg(SrcReg, RegState::Implicit);
5161 
5162       // As before, the original destination is no longer represented, add it
5163       // implicitly.
5164       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5165       if (ImplicitSReg != 0)
5166         MIB.addReg(ImplicitSReg, RegState::Implicit);
5167       break;
5168     }
5169   }
5170 }
5171 
5172 //===----------------------------------------------------------------------===//
5173 // Partial register updates
5174 //===----------------------------------------------------------------------===//
5175 //
5176 // Swift renames NEON registers with 64-bit granularity.  That means any
5177 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5178 // problem is mostly avoided by translating f32 operations to v2f32 operations
5179 // on D-registers, but f32 loads are still a problem.
5180 //
5181 // These instructions can load an f32 into a NEON register:
5182 //
5183 // VLDRS - Only writes S, partial D update.
5184 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5185 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5186 //
5187 // FCONSTD can be used as a dependency-breaking instruction.
5188 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5189     const MachineInstr &MI, unsigned OpNum,
5190     const TargetRegisterInfo *TRI) const {
5191   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5192   if (!PartialUpdateClearance)
5193     return 0;
5194 
5195   assert(TRI && "Need TRI instance");
5196 
5197   const MachineOperand &MO = MI.getOperand(OpNum);
5198   if (MO.readsReg())
5199     return 0;
5200   Register Reg = MO.getReg();
5201   int UseOp = -1;
5202 
5203   switch (MI.getOpcode()) {
5204   // Normal instructions writing only an S-register.
5205   case ARM::VLDRS:
5206   case ARM::FCONSTS:
5207   case ARM::VMOVSR:
5208   case ARM::VMOVv8i8:
5209   case ARM::VMOVv4i16:
5210   case ARM::VMOVv2i32:
5211   case ARM::VMOVv2f32:
5212   case ARM::VMOVv1i64:
5213     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5214     break;
5215 
5216     // Explicitly reads the dependency.
5217   case ARM::VLD1LNd32:
5218     UseOp = 3;
5219     break;
5220   default:
5221     return 0;
5222   }
5223 
5224   // If this instruction actually reads a value from Reg, there is no unwanted
5225   // dependency.
5226   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5227     return 0;
5228 
5229   // We must be able to clobber the whole D-reg.
5230   if (Register::isVirtualRegister(Reg)) {
5231     // Virtual register must be a def undef foo:ssub_0 operand.
5232     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5233       return 0;
5234   } else if (ARM::SPRRegClass.contains(Reg)) {
5235     // Physical register: MI must define the full D-reg.
5236     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5237                                              &ARM::DPRRegClass);
5238     if (!DReg || !MI.definesRegister(DReg, TRI))
5239       return 0;
5240   }
5241 
5242   // MI has an unwanted D-register dependency.
5243   // Avoid defs in the previous N instructrions.
5244   return PartialUpdateClearance;
5245 }
5246 
5247 // Break a partial register dependency after getPartialRegUpdateClearance
5248 // returned non-zero.
5249 void ARMBaseInstrInfo::breakPartialRegDependency(
5250     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5251   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5252   assert(TRI && "Need TRI instance");
5253 
5254   const MachineOperand &MO = MI.getOperand(OpNum);
5255   Register Reg = MO.getReg();
5256   assert(Register::isPhysicalRegister(Reg) &&
5257          "Can't break virtual register dependencies.");
5258   unsigned DReg = Reg;
5259 
5260   // If MI defines an S-reg, find the corresponding D super-register.
5261   if (ARM::SPRRegClass.contains(Reg)) {
5262     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5263     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5264   }
5265 
5266   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5267   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5268 
5269   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5270   // the full D-register by loading the same value to both lanes.  The
5271   // instruction is micro-coded with 2 uops, so don't do this until we can
5272   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5273   // too big regressions.
5274 
5275   // Insert the dependency-breaking FCONSTD before MI.
5276   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5277   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5278       .addImm(96)
5279       .add(predOps(ARMCC::AL));
5280   MI.addRegisterKilled(DReg, TRI, true);
5281 }
5282 
5283 bool ARMBaseInstrInfo::hasNOP() const {
5284   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5285 }
5286 
5287 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5288   if (MI->getNumOperands() < 4)
5289     return true;
5290   unsigned ShOpVal = MI->getOperand(3).getImm();
5291   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5292   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5293   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5294       ((ShImm == 1 || ShImm == 2) &&
5295        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5296     return true;
5297 
5298   return false;
5299 }
5300 
5301 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5302     const MachineInstr &MI, unsigned DefIdx,
5303     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5304   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5305   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5306 
5307   switch (MI.getOpcode()) {
5308   case ARM::VMOVDRR:
5309     // dX = VMOVDRR rY, rZ
5310     // is the same as:
5311     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5312     // Populate the InputRegs accordingly.
5313     // rY
5314     const MachineOperand *MOReg = &MI.getOperand(1);
5315     if (!MOReg->isUndef())
5316       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5317                                               MOReg->getSubReg(), ARM::ssub_0));
5318     // rZ
5319     MOReg = &MI.getOperand(2);
5320     if (!MOReg->isUndef())
5321       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5322                                               MOReg->getSubReg(), ARM::ssub_1));
5323     return true;
5324   }
5325   llvm_unreachable("Target dependent opcode missing");
5326 }
5327 
5328 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5329     const MachineInstr &MI, unsigned DefIdx,
5330     RegSubRegPairAndIdx &InputReg) const {
5331   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5332   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5333 
5334   switch (MI.getOpcode()) {
5335   case ARM::VMOVRRD:
5336     // rX, rY = VMOVRRD dZ
5337     // is the same as:
5338     // rX = EXTRACT_SUBREG dZ, ssub_0
5339     // rY = EXTRACT_SUBREG dZ, ssub_1
5340     const MachineOperand &MOReg = MI.getOperand(2);
5341     if (MOReg.isUndef())
5342       return false;
5343     InputReg.Reg = MOReg.getReg();
5344     InputReg.SubReg = MOReg.getSubReg();
5345     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5346     return true;
5347   }
5348   llvm_unreachable("Target dependent opcode missing");
5349 }
5350 
5351 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5352     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5353     RegSubRegPairAndIdx &InsertedReg) const {
5354   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5355   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5356 
5357   switch (MI.getOpcode()) {
5358   case ARM::VSETLNi32:
5359     // dX = VSETLNi32 dY, rZ, imm
5360     const MachineOperand &MOBaseReg = MI.getOperand(1);
5361     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5362     if (MOInsertedReg.isUndef())
5363       return false;
5364     const MachineOperand &MOIndex = MI.getOperand(3);
5365     BaseReg.Reg = MOBaseReg.getReg();
5366     BaseReg.SubReg = MOBaseReg.getSubReg();
5367 
5368     InsertedReg.Reg = MOInsertedReg.getReg();
5369     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5370     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5371     return true;
5372   }
5373   llvm_unreachable("Target dependent opcode missing");
5374 }
5375 
5376 std::pair<unsigned, unsigned>
5377 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5378   const unsigned Mask = ARMII::MO_OPTION_MASK;
5379   return std::make_pair(TF & Mask, TF & ~Mask);
5380 }
5381 
5382 ArrayRef<std::pair<unsigned, const char *>>
5383 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5384   using namespace ARMII;
5385 
5386   static const std::pair<unsigned, const char *> TargetFlags[] = {
5387       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5388   return makeArrayRef(TargetFlags);
5389 }
5390 
5391 ArrayRef<std::pair<unsigned, const char *>>
5392 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5393   using namespace ARMII;
5394 
5395   static const std::pair<unsigned, const char *> TargetFlags[] = {
5396       {MO_COFFSTUB, "arm-coffstub"},
5397       {MO_GOT, "arm-got"},
5398       {MO_SBREL, "arm-sbrel"},
5399       {MO_DLLIMPORT, "arm-dllimport"},
5400       {MO_SECREL, "arm-secrel"},
5401       {MO_NONLAZY, "arm-nonlazy"}};
5402   return makeArrayRef(TargetFlags);
5403 }
5404 
5405 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5406                                                       Register Reg) const {
5407   int Sign = 1;
5408   unsigned Opcode = MI.getOpcode();
5409   int64_t Offset = 0;
5410 
5411   // TODO: Handle cases where Reg is a super- or sub-register of the
5412   // destination register.
5413   const MachineOperand &Op0 = MI.getOperand(0);
5414   if (!Op0.isReg() || Reg != Op0.getReg())
5415     return None;
5416 
5417   // We describe SUBri or ADDri instructions.
5418   if (Opcode == ARM::SUBri)
5419     Sign = -1;
5420   else if (Opcode != ARM::ADDri)
5421     return None;
5422 
5423   // TODO: Third operand can be global address (usually some string). Since
5424   //       strings can be relocated we cannot calculate their offsets for
5425   //       now.
5426   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5427     return None;
5428 
5429   Offset = MI.getOperand(2).getImm() * Sign;
5430   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5431 }
5432 
5433 bool llvm::registerDefinedBetween(unsigned Reg,
5434                                   MachineBasicBlock::iterator From,
5435                                   MachineBasicBlock::iterator To,
5436                                   const TargetRegisterInfo *TRI) {
5437   for (auto I = From; I != To; ++I)
5438     if (I->modifiesRegister(Reg, TRI))
5439       return true;
5440   return false;
5441 }
5442 
5443 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5444                                          const TargetRegisterInfo *TRI) {
5445   // Search backwards to the instruction that defines CSPR. This may or not
5446   // be a CMP, we check that after this loop. If we find another instruction
5447   // that reads cpsr, we return nullptr.
5448   MachineBasicBlock::iterator CmpMI = Br;
5449   while (CmpMI != Br->getParent()->begin()) {
5450     --CmpMI;
5451     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5452       break;
5453     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5454       break;
5455   }
5456 
5457   // Check that this inst is a CMP r[0-7], #0 and that the register
5458   // is not redefined between the cmp and the br.
5459   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5460     return nullptr;
5461   Register Reg = CmpMI->getOperand(0).getReg();
5462   Register PredReg;
5463   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5464   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5465     return nullptr;
5466   if (!isARMLowRegister(Reg))
5467     return nullptr;
5468   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5469     return nullptr;
5470 
5471   return &*CmpMI;
5472 }
5473 
5474 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5475                                            const ARMSubtarget *Subtarget,
5476                                            bool ForCodesize) {
5477   if (Subtarget->isThumb()) {
5478     if (Val <= 255) // MOV
5479       return ForCodesize ? 2 : 1;
5480     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5481                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5482                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5483       return ForCodesize ? 4 : 1;
5484     if (Val <= 510) // MOV + ADDi8
5485       return ForCodesize ? 4 : 2;
5486     if (~Val <= 255) // MOV + MVN
5487       return ForCodesize ? 4 : 2;
5488     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5489       return ForCodesize ? 4 : 2;
5490   } else {
5491     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5492       return ForCodesize ? 4 : 1;
5493     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5494       return ForCodesize ? 4 : 1;
5495     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5496       return ForCodesize ? 4 : 1;
5497     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5498       return ForCodesize ? 8 : 2;
5499   }
5500   if (Subtarget->useMovt()) // MOVW + MOVT
5501     return ForCodesize ? 8 : 2;
5502   return ForCodesize ? 8 : 3; // Literal pool load
5503 }
5504 
5505 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5506                                                const ARMSubtarget *Subtarget,
5507                                                bool ForCodesize) {
5508   // Check with ForCodesize
5509   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5510   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5511   if (Cost1 < Cost2)
5512     return true;
5513   if (Cost1 > Cost2)
5514     return false;
5515 
5516   // If they are equal, try with !ForCodesize
5517   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5518          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5519 }
5520