1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/MachineScheduler.h"
40 #include "llvm/CodeGen/MultiHazardRecognizer.h"
41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSchedule.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <new>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "arm-instrinfo"
73 
74 #define GET_INSTRINFO_CTOR_DTOR
75 #include "ARMGenInstrInfo.inc"
76 
77 static cl::opt<bool>
78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
79                cl::desc("Enable ARM 2-addr to 3-addr conv"));
80 
81 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
82 struct ARM_MLxEntry {
83   uint16_t MLxOpc;     // MLA / MLS opcode
84   uint16_t MulOpc;     // Expanded multiplication opcode
85   uint16_t AddSubOpc;  // Expanded add / sub opcode
86   bool NegAcc;         // True if the acc is negated before the add / sub.
87   bool HasLane;        // True if instruction has an extra "lane" operand.
88 };
89 
90 static const ARM_MLxEntry ARM_MLxTable[] = {
91   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
92   // fp scalar ops
93   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
94   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
95   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
96   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
97   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
98   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
99   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
100   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
101 
102   // fp SIMD ops
103   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
104   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
105   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
106   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
107   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
108   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
109   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
110   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
111 };
112 
113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
114   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
115     Subtarget(STI) {
116   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
117     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
118       llvm_unreachable("Duplicated entries?");
119     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
120     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
121   }
122 }
123 
124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
125 // currently defaults to no prepass hazard recognizer.
126 ScheduleHazardRecognizer *
127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
128                                                const ScheduleDAG *DAG) const {
129   if (usePreRAHazardRecognizer()) {
130     const InstrItineraryData *II =
131         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
132     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
133   }
134   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
135 }
136 
137 // Called during:
138 // - pre-RA scheduling
139 // - post-RA scheduling when FeatureUseMISched is set
140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
141     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
142   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
143 
144   // We would like to restrict this hazard recognizer to only
145   // post-RA scheduling; we can tell that we're post-RA because we don't
146   // track VRegLiveness.
147   // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
148   //            banks banked on bit 2.  Assume that TCMs are in use.
149   if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
150     MHR->AddHazardRecognizer(
151         std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
152 
153   // Not inserting ARMHazardRecognizerFPMLx because that would change
154   // legacy behavior
155 
156   auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
157   MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
158   return MHR;
159 }
160 
161 // Called during post-RA scheduling when FeatureUseMISched is not set
162 ScheduleHazardRecognizer *ARMBaseInstrInfo::
163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
164                                    const ScheduleDAG *DAG) const {
165   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
166 
167   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
168     MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
169 
170   auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
171   if (BHR)
172     MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
173   return MHR;
174 }
175 
176 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
177     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
178   // FIXME: Thumb2 support.
179 
180   if (!EnableARM3Addr)
181     return nullptr;
182 
183   MachineFunction &MF = *MI.getParent()->getParent();
184   uint64_t TSFlags = MI.getDesc().TSFlags;
185   bool isPre = false;
186   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
187   default: return nullptr;
188   case ARMII::IndexModePre:
189     isPre = true;
190     break;
191   case ARMII::IndexModePost:
192     break;
193   }
194 
195   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
196   // operation.
197   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
198   if (MemOpc == 0)
199     return nullptr;
200 
201   MachineInstr *UpdateMI = nullptr;
202   MachineInstr *MemMI = nullptr;
203   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
204   const MCInstrDesc &MCID = MI.getDesc();
205   unsigned NumOps = MCID.getNumOperands();
206   bool isLoad = !MI.mayStore();
207   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
208   const MachineOperand &Base = MI.getOperand(2);
209   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
210   Register WBReg = WB.getReg();
211   Register BaseReg = Base.getReg();
212   Register OffReg = Offset.getReg();
213   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
214   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
215   switch (AddrMode) {
216   default: llvm_unreachable("Unknown indexed op!");
217   case ARMII::AddrMode2: {
218     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
219     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
220     if (OffReg == 0) {
221       if (ARM_AM::getSOImmVal(Amt) == -1)
222         // Can't encode it in a so_imm operand. This transformation will
223         // add more than 1 instruction. Abandon!
224         return nullptr;
225       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
226                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
227                      .addReg(BaseReg)
228                      .addImm(Amt)
229                      .add(predOps(Pred))
230                      .add(condCodeOp());
231     } else if (Amt != 0) {
232       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
233       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
234       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
235                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
236                      .addReg(BaseReg)
237                      .addReg(OffReg)
238                      .addReg(0)
239                      .addImm(SOOpc)
240                      .add(predOps(Pred))
241                      .add(condCodeOp());
242     } else
243       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
244                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
245                      .addReg(BaseReg)
246                      .addReg(OffReg)
247                      .add(predOps(Pred))
248                      .add(condCodeOp());
249     break;
250   }
251   case ARMII::AddrMode3 : {
252     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
253     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
254     if (OffReg == 0)
255       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
256       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
257                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
258                      .addReg(BaseReg)
259                      .addImm(Amt)
260                      .add(predOps(Pred))
261                      .add(condCodeOp());
262     else
263       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
264                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
265                      .addReg(BaseReg)
266                      .addReg(OffReg)
267                      .add(predOps(Pred))
268                      .add(condCodeOp());
269     break;
270   }
271   }
272 
273   std::vector<MachineInstr*> NewMIs;
274   if (isPre) {
275     if (isLoad)
276       MemMI =
277           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
278               .addReg(WBReg)
279               .addImm(0)
280               .addImm(Pred);
281     else
282       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
283                   .addReg(MI.getOperand(1).getReg())
284                   .addReg(WBReg)
285                   .addReg(0)
286                   .addImm(0)
287                   .addImm(Pred);
288     NewMIs.push_back(MemMI);
289     NewMIs.push_back(UpdateMI);
290   } else {
291     if (isLoad)
292       MemMI =
293           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
294               .addReg(BaseReg)
295               .addImm(0)
296               .addImm(Pred);
297     else
298       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
299                   .addReg(MI.getOperand(1).getReg())
300                   .addReg(BaseReg)
301                   .addReg(0)
302                   .addImm(0)
303                   .addImm(Pred);
304     if (WB.isDead())
305       UpdateMI->getOperand(0).setIsDead();
306     NewMIs.push_back(UpdateMI);
307     NewMIs.push_back(MemMI);
308   }
309 
310   // Transfer LiveVariables states, kill / dead info.
311   if (LV) {
312     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
313       MachineOperand &MO = MI.getOperand(i);
314       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
315         Register Reg = MO.getReg();
316 
317         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
318         if (MO.isDef()) {
319           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
320           if (MO.isDead())
321             LV->addVirtualRegisterDead(Reg, *NewMI);
322         }
323         if (MO.isUse() && MO.isKill()) {
324           for (unsigned j = 0; j < 2; ++j) {
325             // Look at the two new MI's in reverse order.
326             MachineInstr *NewMI = NewMIs[j];
327             if (!NewMI->readsRegister(Reg))
328               continue;
329             LV->addVirtualRegisterKilled(Reg, *NewMI);
330             if (VI.removeKill(MI))
331               VI.Kills.push_back(NewMI);
332             break;
333           }
334         }
335       }
336     }
337   }
338 
339   MachineBasicBlock::iterator MBBI = MI.getIterator();
340   MFI->insert(MBBI, NewMIs[1]);
341   MFI->insert(MBBI, NewMIs[0]);
342   return NewMIs[0];
343 }
344 
345 // Branch analysis.
346 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
347                                      MachineBasicBlock *&TBB,
348                                      MachineBasicBlock *&FBB,
349                                      SmallVectorImpl<MachineOperand> &Cond,
350                                      bool AllowModify) const {
351   TBB = nullptr;
352   FBB = nullptr;
353 
354   MachineBasicBlock::instr_iterator I = MBB.instr_end();
355   if (I == MBB.instr_begin())
356     return false; // Empty blocks are easy.
357   --I;
358 
359   // Walk backwards from the end of the basic block until the branch is
360   // analyzed or we give up.
361   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
362     // Flag to be raised on unanalyzeable instructions. This is useful in cases
363     // where we want to clean up on the end of the basic block before we bail
364     // out.
365     bool CantAnalyze = false;
366 
367     // Skip over DEBUG values, predicated nonterminators and speculation
368     // barrier terminators.
369     while (I->isDebugInstr() || !I->isTerminator() ||
370            isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
371            I->getOpcode() == ARM::t2DoLoopStartTP){
372       if (I == MBB.instr_begin())
373         return false;
374       --I;
375     }
376 
377     if (isIndirectBranchOpcode(I->getOpcode()) ||
378         isJumpTableBranchOpcode(I->getOpcode())) {
379       // Indirect branches and jump tables can't be analyzed, but we still want
380       // to clean up any instructions at the tail of the basic block.
381       CantAnalyze = true;
382     } else if (isUncondBranchOpcode(I->getOpcode())) {
383       TBB = I->getOperand(0).getMBB();
384     } else if (isCondBranchOpcode(I->getOpcode())) {
385       // Bail out if we encounter multiple conditional branches.
386       if (!Cond.empty())
387         return true;
388 
389       assert(!FBB && "FBB should have been null.");
390       FBB = TBB;
391       TBB = I->getOperand(0).getMBB();
392       Cond.push_back(I->getOperand(1));
393       Cond.push_back(I->getOperand(2));
394     } else if (I->isReturn()) {
395       // Returns can't be analyzed, but we should run cleanup.
396       CantAnalyze = true;
397     } else {
398       // We encountered other unrecognized terminator. Bail out immediately.
399       return true;
400     }
401 
402     // Cleanup code - to be run for unpredicated unconditional branches and
403     //                returns.
404     if (!isPredicated(*I) &&
405           (isUncondBranchOpcode(I->getOpcode()) ||
406            isIndirectBranchOpcode(I->getOpcode()) ||
407            isJumpTableBranchOpcode(I->getOpcode()) ||
408            I->isReturn())) {
409       // Forget any previous condition branch information - it no longer applies.
410       Cond.clear();
411       FBB = nullptr;
412 
413       // If we can modify the function, delete everything below this
414       // unconditional branch.
415       if (AllowModify) {
416         MachineBasicBlock::iterator DI = std::next(I);
417         while (DI != MBB.instr_end()) {
418           MachineInstr &InstToDelete = *DI;
419           ++DI;
420           // Speculation barriers must not be deleted.
421           if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
422             continue;
423           InstToDelete.eraseFromParent();
424         }
425       }
426     }
427 
428     if (CantAnalyze) {
429       // We may not be able to analyze the block, but we could still have
430       // an unconditional branch as the last instruction in the block, which
431       // just branches to layout successor. If this is the case, then just
432       // remove it if we're allowed to make modifications.
433       if (AllowModify && !isPredicated(MBB.back()) &&
434           isUncondBranchOpcode(MBB.back().getOpcode()) &&
435           TBB && MBB.isLayoutSuccessor(TBB))
436         removeBranch(MBB);
437       return true;
438     }
439 
440     if (I == MBB.instr_begin())
441       return false;
442 
443     --I;
444   }
445 
446   // We made it past the terminators without bailing out - we must have
447   // analyzed this branch successfully.
448   return false;
449 }
450 
451 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
452                                         int *BytesRemoved) const {
453   assert(!BytesRemoved && "code size not handled");
454 
455   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
456   if (I == MBB.end())
457     return 0;
458 
459   if (!isUncondBranchOpcode(I->getOpcode()) &&
460       !isCondBranchOpcode(I->getOpcode()))
461     return 0;
462 
463   // Remove the branch.
464   I->eraseFromParent();
465 
466   I = MBB.end();
467 
468   if (I == MBB.begin()) return 1;
469   --I;
470   if (!isCondBranchOpcode(I->getOpcode()))
471     return 1;
472 
473   // Remove the branch.
474   I->eraseFromParent();
475   return 2;
476 }
477 
478 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
479                                         MachineBasicBlock *TBB,
480                                         MachineBasicBlock *FBB,
481                                         ArrayRef<MachineOperand> Cond,
482                                         const DebugLoc &DL,
483                                         int *BytesAdded) const {
484   assert(!BytesAdded && "code size not handled");
485   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
486   int BOpc   = !AFI->isThumbFunction()
487     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
488   int BccOpc = !AFI->isThumbFunction()
489     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
490   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
491 
492   // Shouldn't be a fall through.
493   assert(TBB && "insertBranch must not be told to insert a fallthrough");
494   assert((Cond.size() == 2 || Cond.size() == 0) &&
495          "ARM branch conditions have two components!");
496 
497   // For conditional branches, we use addOperand to preserve CPSR flags.
498 
499   if (!FBB) {
500     if (Cond.empty()) { // Unconditional branch?
501       if (isThumb)
502         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
503       else
504         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
505     } else
506       BuildMI(&MBB, DL, get(BccOpc))
507           .addMBB(TBB)
508           .addImm(Cond[0].getImm())
509           .add(Cond[1]);
510     return 1;
511   }
512 
513   // Two-way conditional branch.
514   BuildMI(&MBB, DL, get(BccOpc))
515       .addMBB(TBB)
516       .addImm(Cond[0].getImm())
517       .add(Cond[1]);
518   if (isThumb)
519     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
520   else
521     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
522   return 2;
523 }
524 
525 bool ARMBaseInstrInfo::
526 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
527   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
528   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
529   return false;
530 }
531 
532 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
533   if (MI.isBundle()) {
534     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
535     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
536     while (++I != E && I->isInsideBundle()) {
537       int PIdx = I->findFirstPredOperandIdx();
538       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
539         return true;
540     }
541     return false;
542   }
543 
544   int PIdx = MI.findFirstPredOperandIdx();
545   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
546 }
547 
548 std::string ARMBaseInstrInfo::createMIROperandComment(
549     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
550     const TargetRegisterInfo *TRI) const {
551 
552   // First, let's see if there is a generic comment for this operand
553   std::string GenericComment =
554       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
555   if (!GenericComment.empty())
556     return GenericComment;
557 
558   // If not, check if we have an immediate operand.
559   if (Op.getType() != MachineOperand::MO_Immediate)
560     return std::string();
561 
562   // And print its corresponding condition code if the immediate is a
563   // predicate.
564   int FirstPredOp = MI.findFirstPredOperandIdx();
565   if (FirstPredOp != (int) OpIdx)
566     return std::string();
567 
568   std::string CC = "CC::";
569   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
570   return CC;
571 }
572 
573 bool ARMBaseInstrInfo::PredicateInstruction(
574     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
575   unsigned Opc = MI.getOpcode();
576   if (isUncondBranchOpcode(Opc)) {
577     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
578     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
579       .addImm(Pred[0].getImm())
580       .addReg(Pred[1].getReg());
581     return true;
582   }
583 
584   int PIdx = MI.findFirstPredOperandIdx();
585   if (PIdx != -1) {
586     MachineOperand &PMO = MI.getOperand(PIdx);
587     PMO.setImm(Pred[0].getImm());
588     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
589 
590     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
591     // IT block. This affects how they are printed.
592     const MCInstrDesc &MCID = MI.getDesc();
593     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
594       assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand");
595       assert((MI.getOperand(1).isDead() ||
596               MI.getOperand(1).getReg() != ARM::CPSR) &&
597              "if conversion tried to stop defining used CPSR");
598       MI.getOperand(1).setReg(ARM::NoRegister);
599     }
600 
601     return true;
602   }
603   return false;
604 }
605 
606 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
607                                          ArrayRef<MachineOperand> Pred2) const {
608   if (Pred1.size() > 2 || Pred2.size() > 2)
609     return false;
610 
611   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
612   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
613   if (CC1 == CC2)
614     return true;
615 
616   switch (CC1) {
617   default:
618     return false;
619   case ARMCC::AL:
620     return true;
621   case ARMCC::HS:
622     return CC2 == ARMCC::HI;
623   case ARMCC::LS:
624     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
625   case ARMCC::GE:
626     return CC2 == ARMCC::GT;
627   case ARMCC::LE:
628     return CC2 == ARMCC::LT;
629   }
630 }
631 
632 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
633                                          std::vector<MachineOperand> &Pred,
634                                          bool SkipDead) const {
635   bool Found = false;
636   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
637     const MachineOperand &MO = MI.getOperand(i);
638     bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
639     bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
640     if (ClobbersCPSR || IsCPSR) {
641 
642       // Filter out T1 instructions that have a dead CPSR,
643       // allowing IT blocks to be generated containing T1 instructions
644       const MCInstrDesc &MCID = MI.getDesc();
645       if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
646           SkipDead)
647         continue;
648 
649       Pred.push_back(MO);
650       Found = true;
651     }
652   }
653 
654   return Found;
655 }
656 
657 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
658   for (const auto &MO : MI.operands())
659     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
660       return true;
661   return false;
662 }
663 
664 static bool isEligibleForITBlock(const MachineInstr *MI) {
665   switch (MI->getOpcode()) {
666   default: return true;
667   case ARM::tADC:   // ADC (register) T1
668   case ARM::tADDi3: // ADD (immediate) T1
669   case ARM::tADDi8: // ADD (immediate) T2
670   case ARM::tADDrr: // ADD (register) T1
671   case ARM::tAND:   // AND (register) T1
672   case ARM::tASRri: // ASR (immediate) T1
673   case ARM::tASRrr: // ASR (register) T1
674   case ARM::tBIC:   // BIC (register) T1
675   case ARM::tEOR:   // EOR (register) T1
676   case ARM::tLSLri: // LSL (immediate) T1
677   case ARM::tLSLrr: // LSL (register) T1
678   case ARM::tLSRri: // LSR (immediate) T1
679   case ARM::tLSRrr: // LSR (register) T1
680   case ARM::tMUL:   // MUL T1
681   case ARM::tMVN:   // MVN (register) T1
682   case ARM::tORR:   // ORR (register) T1
683   case ARM::tROR:   // ROR (register) T1
684   case ARM::tRSB:   // RSB (immediate) T1
685   case ARM::tSBC:   // SBC (register) T1
686   case ARM::tSUBi3: // SUB (immediate) T1
687   case ARM::tSUBi8: // SUB (immediate) T2
688   case ARM::tSUBrr: // SUB (register) T1
689     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
690   }
691 }
692 
693 /// isPredicable - Return true if the specified instruction can be predicated.
694 /// By default, this returns true for every instruction with a
695 /// PredicateOperand.
696 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
697   if (!MI.isPredicable())
698     return false;
699 
700   if (MI.isBundle())
701     return false;
702 
703   if (!isEligibleForITBlock(&MI))
704     return false;
705 
706   const MachineFunction *MF = MI.getParent()->getParent();
707   const ARMFunctionInfo *AFI =
708       MF->getInfo<ARMFunctionInfo>();
709 
710   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
711   // In their ARM encoding, they can't be encoded in a conditional form.
712   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
713     return false;
714 
715   // Make indirect control flow changes unpredicable when SLS mitigation is
716   // enabled.
717   const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
718   if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
719     return false;
720   if (ST.hardenSlsBlr() && isIndirectCall(MI))
721     return false;
722 
723   if (AFI->isThumb2Function()) {
724     if (getSubtarget().restrictIT())
725       return isV8EligibleForIT(&MI);
726   }
727 
728   return true;
729 }
730 
731 namespace llvm {
732 
733 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
734   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
735     const MachineOperand &MO = MI->getOperand(i);
736     if (!MO.isReg() || MO.isUndef() || MO.isUse())
737       continue;
738     if (MO.getReg() != ARM::CPSR)
739       continue;
740     if (!MO.isDead())
741       return false;
742   }
743   // all definitions of CPSR are dead
744   return true;
745 }
746 
747 } // end namespace llvm
748 
749 /// GetInstSize - Return the size of the specified MachineInstr.
750 ///
751 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
752   const MachineBasicBlock &MBB = *MI.getParent();
753   const MachineFunction *MF = MBB.getParent();
754   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
755 
756   const MCInstrDesc &MCID = MI.getDesc();
757   if (MCID.getSize())
758     return MCID.getSize();
759 
760   switch (MI.getOpcode()) {
761   default:
762     // pseudo-instruction sizes are zero.
763     return 0;
764   case TargetOpcode::BUNDLE:
765     return getInstBundleLength(MI);
766   case ARM::MOVi16_ga_pcrel:
767   case ARM::MOVTi16_ga_pcrel:
768   case ARM::t2MOVi16_ga_pcrel:
769   case ARM::t2MOVTi16_ga_pcrel:
770     return 4;
771   case ARM::MOVi32imm:
772   case ARM::t2MOVi32imm:
773     return 8;
774   case ARM::CONSTPOOL_ENTRY:
775   case ARM::JUMPTABLE_INSTS:
776   case ARM::JUMPTABLE_ADDRS:
777   case ARM::JUMPTABLE_TBB:
778   case ARM::JUMPTABLE_TBH:
779     // If this machine instr is a constant pool entry, its size is recorded as
780     // operand #2.
781     return MI.getOperand(2).getImm();
782   case ARM::Int_eh_sjlj_longjmp:
783     return 16;
784   case ARM::tInt_eh_sjlj_longjmp:
785     return 10;
786   case ARM::tInt_WIN_eh_sjlj_longjmp:
787     return 12;
788   case ARM::Int_eh_sjlj_setjmp:
789   case ARM::Int_eh_sjlj_setjmp_nofp:
790     return 20;
791   case ARM::tInt_eh_sjlj_setjmp:
792   case ARM::t2Int_eh_sjlj_setjmp:
793   case ARM::t2Int_eh_sjlj_setjmp_nofp:
794     return 12;
795   case ARM::SPACE:
796     return MI.getOperand(1).getImm();
797   case ARM::INLINEASM:
798   case ARM::INLINEASM_BR: {
799     // If this machine instr is an inline asm, measure it.
800     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
801     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
802       Size = alignTo(Size, 4);
803     return Size;
804   }
805   case ARM::SpeculationBarrierISBDSBEndBB:
806   case ARM::t2SpeculationBarrierISBDSBEndBB:
807     // This gets lowered to 2 4-byte instructions.
808     return 8;
809   case ARM::SpeculationBarrierSBEndBB:
810   case ARM::t2SpeculationBarrierSBEndBB:
811     // This gets lowered to 1 4-byte instructions.
812     return 4;
813   }
814 }
815 
816 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
817   unsigned Size = 0;
818   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
819   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
820   while (++I != E && I->isInsideBundle()) {
821     assert(!I->isBundle() && "No nested bundle!");
822     Size += getInstSizeInBytes(*I);
823   }
824   return Size;
825 }
826 
827 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
828                                     MachineBasicBlock::iterator I,
829                                     unsigned DestReg, bool KillSrc,
830                                     const ARMSubtarget &Subtarget) const {
831   unsigned Opc = Subtarget.isThumb()
832                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
833                      : ARM::MRS;
834 
835   MachineInstrBuilder MIB =
836       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
837 
838   // There is only 1 A/R class MRS instruction, and it always refers to
839   // APSR. However, there are lots of other possibilities on M-class cores.
840   if (Subtarget.isMClass())
841     MIB.addImm(0x800);
842 
843   MIB.add(predOps(ARMCC::AL))
844      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
845 }
846 
847 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
848                                   MachineBasicBlock::iterator I,
849                                   unsigned SrcReg, bool KillSrc,
850                                   const ARMSubtarget &Subtarget) const {
851   unsigned Opc = Subtarget.isThumb()
852                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
853                      : ARM::MSR;
854 
855   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
856 
857   if (Subtarget.isMClass())
858     MIB.addImm(0x800);
859   else
860     MIB.addImm(8);
861 
862   MIB.addReg(SrcReg, getKillRegState(KillSrc))
863      .add(predOps(ARMCC::AL))
864      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
865 }
866 
867 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
868   MIB.addImm(ARMVCC::None);
869   MIB.addReg(0);
870   MIB.addReg(0); // tp_reg
871 }
872 
873 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
874                                       Register DestReg) {
875   addUnpredicatedMveVpredNOp(MIB);
876   MIB.addReg(DestReg, RegState::Undef);
877 }
878 
879 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
880   MIB.addImm(Cond);
881   MIB.addReg(ARM::VPR, RegState::Implicit);
882   MIB.addReg(0); // tp_reg
883 }
884 
885 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
886                                     unsigned Cond, unsigned Inactive) {
887   addPredicatedMveVpredNOp(MIB, Cond);
888   MIB.addReg(Inactive);
889 }
890 
891 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
892                                    MachineBasicBlock::iterator I,
893                                    const DebugLoc &DL, MCRegister DestReg,
894                                    MCRegister SrcReg, bool KillSrc) const {
895   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
896   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
897 
898   if (GPRDest && GPRSrc) {
899     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
900         .addReg(SrcReg, getKillRegState(KillSrc))
901         .add(predOps(ARMCC::AL))
902         .add(condCodeOp());
903     return;
904   }
905 
906   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
907   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
908 
909   unsigned Opc = 0;
910   if (SPRDest && SPRSrc)
911     Opc = ARM::VMOVS;
912   else if (GPRDest && SPRSrc)
913     Opc = ARM::VMOVRS;
914   else if (SPRDest && GPRSrc)
915     Opc = ARM::VMOVSR;
916   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
917     Opc = ARM::VMOVD;
918   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
919     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
920 
921   if (Opc) {
922     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
923     MIB.addReg(SrcReg, getKillRegState(KillSrc));
924     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
925       MIB.addReg(SrcReg, getKillRegState(KillSrc));
926     if (Opc == ARM::MVE_VORR)
927       addUnpredicatedMveVpredROp(MIB, DestReg);
928     else
929       MIB.add(predOps(ARMCC::AL));
930     return;
931   }
932 
933   // Handle register classes that require multiple instructions.
934   unsigned BeginIdx = 0;
935   unsigned SubRegs = 0;
936   int Spacing = 1;
937 
938   // Use VORRq when possible.
939   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
940     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
941     BeginIdx = ARM::qsub_0;
942     SubRegs = 2;
943   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
944     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
945     BeginIdx = ARM::qsub_0;
946     SubRegs = 4;
947   // Fall back to VMOVD.
948   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
949     Opc = ARM::VMOVD;
950     BeginIdx = ARM::dsub_0;
951     SubRegs = 2;
952   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
953     Opc = ARM::VMOVD;
954     BeginIdx = ARM::dsub_0;
955     SubRegs = 3;
956   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
957     Opc = ARM::VMOVD;
958     BeginIdx = ARM::dsub_0;
959     SubRegs = 4;
960   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
961     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
962     BeginIdx = ARM::gsub_0;
963     SubRegs = 2;
964   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
965     Opc = ARM::VMOVD;
966     BeginIdx = ARM::dsub_0;
967     SubRegs = 2;
968     Spacing = 2;
969   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
970     Opc = ARM::VMOVD;
971     BeginIdx = ARM::dsub_0;
972     SubRegs = 3;
973     Spacing = 2;
974   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
975     Opc = ARM::VMOVD;
976     BeginIdx = ARM::dsub_0;
977     SubRegs = 4;
978     Spacing = 2;
979   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
980              !Subtarget.hasFP64()) {
981     Opc = ARM::VMOVS;
982     BeginIdx = ARM::ssub_0;
983     SubRegs = 2;
984   } else if (SrcReg == ARM::CPSR) {
985     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
986     return;
987   } else if (DestReg == ARM::CPSR) {
988     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
989     return;
990   } else if (DestReg == ARM::VPR) {
991     assert(ARM::GPRRegClass.contains(SrcReg));
992     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
993         .addReg(SrcReg, getKillRegState(KillSrc))
994         .add(predOps(ARMCC::AL));
995     return;
996   } else if (SrcReg == ARM::VPR) {
997     assert(ARM::GPRRegClass.contains(DestReg));
998     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
999         .addReg(SrcReg, getKillRegState(KillSrc))
1000         .add(predOps(ARMCC::AL));
1001     return;
1002   } else if (DestReg == ARM::FPSCR_NZCV) {
1003     assert(ARM::GPRRegClass.contains(SrcReg));
1004     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1005         .addReg(SrcReg, getKillRegState(KillSrc))
1006         .add(predOps(ARMCC::AL));
1007     return;
1008   } else if (SrcReg == ARM::FPSCR_NZCV) {
1009     assert(ARM::GPRRegClass.contains(DestReg));
1010     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1011         .addReg(SrcReg, getKillRegState(KillSrc))
1012         .add(predOps(ARMCC::AL));
1013     return;
1014   }
1015 
1016   assert(Opc && "Impossible reg-to-reg copy");
1017 
1018   const TargetRegisterInfo *TRI = &getRegisterInfo();
1019   MachineInstrBuilder Mov;
1020 
1021   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1022   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1023     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1024     Spacing = -Spacing;
1025   }
1026 #ifndef NDEBUG
1027   SmallSet<unsigned, 4> DstRegs;
1028 #endif
1029   for (unsigned i = 0; i != SubRegs; ++i) {
1030     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1031     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1032     assert(Dst && Src && "Bad sub-register");
1033 #ifndef NDEBUG
1034     assert(!DstRegs.count(Src) && "destructive vector copy");
1035     DstRegs.insert(Dst);
1036 #endif
1037     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1038     // VORR (NEON or MVE) takes two source operands.
1039     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1040       Mov.addReg(Src);
1041     }
1042     // MVE VORR takes predicate operands in place of an ordinary condition.
1043     if (Opc == ARM::MVE_VORR)
1044       addUnpredicatedMveVpredROp(Mov, Dst);
1045     else
1046       Mov = Mov.add(predOps(ARMCC::AL));
1047     // MOVr can set CC.
1048     if (Opc == ARM::MOVr)
1049       Mov = Mov.add(condCodeOp());
1050   }
1051   // Add implicit super-register defs and kills to the last instruction.
1052   Mov->addRegisterDefined(DestReg, TRI);
1053   if (KillSrc)
1054     Mov->addRegisterKilled(SrcReg, TRI);
1055 }
1056 
1057 Optional<DestSourcePair>
1058 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1059   // VMOVRRD is also a copy instruction but it requires
1060   // special way of handling. It is more complex copy version
1061   // and since that we are not considering it. For recognition
1062   // of such instruction isExtractSubregLike MI interface fuction
1063   // could be used.
1064   // VORRq is considered as a move only if two inputs are
1065   // the same register.
1066   if (!MI.isMoveReg() ||
1067       (MI.getOpcode() == ARM::VORRq &&
1068        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1069     return None;
1070   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1071 }
1072 
1073 Optional<ParamLoadedValue>
1074 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1075                                       Register Reg) const {
1076   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1077     Register DstReg = DstSrcPair->Destination->getReg();
1078 
1079     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1080     // than the copy registers. Consider for example:
1081     //
1082     //   s16 = VMOVS s0
1083     //   s17 = VMOVS s1
1084     //   call @callee(d0)
1085     //
1086     // We'd like to describe the call site value of d0 as d8, but this requires
1087     // gathering and merging the descriptions for the two VMOVS instructions.
1088     //
1089     // We also don't handle the reverse situation, where the forwarding reg is
1090     // narrower than the copy destination:
1091     //
1092     //   d8 = VMOVD d0
1093     //   call @callee(s1)
1094     //
1095     // We need to produce a fragment description (the call site value of s1 is
1096     // /not/ just d8).
1097     if (DstReg != Reg)
1098       return None;
1099   }
1100   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1101 }
1102 
1103 const MachineInstrBuilder &
1104 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1105                           unsigned SubIdx, unsigned State,
1106                           const TargetRegisterInfo *TRI) const {
1107   if (!SubIdx)
1108     return MIB.addReg(Reg, State);
1109 
1110   if (Register::isPhysicalRegister(Reg))
1111     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1112   return MIB.addReg(Reg, State, SubIdx);
1113 }
1114 
1115 void ARMBaseInstrInfo::
1116 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1117                     Register SrcReg, bool isKill, int FI,
1118                     const TargetRegisterClass *RC,
1119                     const TargetRegisterInfo *TRI) const {
1120   MachineFunction &MF = *MBB.getParent();
1121   MachineFrameInfo &MFI = MF.getFrameInfo();
1122   Align Alignment = MFI.getObjectAlign(FI);
1123 
1124   MachineMemOperand *MMO = MF.getMachineMemOperand(
1125       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1126       MFI.getObjectSize(FI), Alignment);
1127 
1128   switch (TRI->getSpillSize(*RC)) {
1129     case 2:
1130       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1131         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1132             .addReg(SrcReg, getKillRegState(isKill))
1133             .addFrameIndex(FI)
1134             .addImm(0)
1135             .addMemOperand(MMO)
1136             .add(predOps(ARMCC::AL));
1137       } else
1138         llvm_unreachable("Unknown reg class!");
1139       break;
1140     case 4:
1141       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1142         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1143             .addReg(SrcReg, getKillRegState(isKill))
1144             .addFrameIndex(FI)
1145             .addImm(0)
1146             .addMemOperand(MMO)
1147             .add(predOps(ARMCC::AL));
1148       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1149         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1150             .addReg(SrcReg, getKillRegState(isKill))
1151             .addFrameIndex(FI)
1152             .addImm(0)
1153             .addMemOperand(MMO)
1154             .add(predOps(ARMCC::AL));
1155       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1156         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1157             .addReg(SrcReg, getKillRegState(isKill))
1158             .addFrameIndex(FI)
1159             .addImm(0)
1160             .addMemOperand(MMO)
1161             .add(predOps(ARMCC::AL));
1162       } else
1163         llvm_unreachable("Unknown reg class!");
1164       break;
1165     case 8:
1166       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1167         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1168             .addReg(SrcReg, getKillRegState(isKill))
1169             .addFrameIndex(FI)
1170             .addImm(0)
1171             .addMemOperand(MMO)
1172             .add(predOps(ARMCC::AL));
1173       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1174         if (Subtarget.hasV5TEOps()) {
1175           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1176           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1177           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1178           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1179              .add(predOps(ARMCC::AL));
1180         } else {
1181           // Fallback to STM instruction, which has existed since the dawn of
1182           // time.
1183           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1184                                         .addFrameIndex(FI)
1185                                         .addMemOperand(MMO)
1186                                         .add(predOps(ARMCC::AL));
1187           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1188           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1189         }
1190       } else
1191         llvm_unreachable("Unknown reg class!");
1192       break;
1193     case 16:
1194       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1195         // Use aligned spills if the stack can be realigned.
1196         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1197           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1198               .addFrameIndex(FI)
1199               .addImm(16)
1200               .addReg(SrcReg, getKillRegState(isKill))
1201               .addMemOperand(MMO)
1202               .add(predOps(ARMCC::AL));
1203         } else {
1204           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1205               .addReg(SrcReg, getKillRegState(isKill))
1206               .addFrameIndex(FI)
1207               .addMemOperand(MMO)
1208               .add(predOps(ARMCC::AL));
1209         }
1210       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1211                  Subtarget.hasMVEIntegerOps()) {
1212         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1213         MIB.addReg(SrcReg, getKillRegState(isKill))
1214           .addFrameIndex(FI)
1215           .addImm(0)
1216           .addMemOperand(MMO);
1217         addUnpredicatedMveVpredNOp(MIB);
1218       } else
1219         llvm_unreachable("Unknown reg class!");
1220       break;
1221     case 24:
1222       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1223         // Use aligned spills if the stack can be realigned.
1224         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1225             Subtarget.hasNEON()) {
1226           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1227               .addFrameIndex(FI)
1228               .addImm(16)
1229               .addReg(SrcReg, getKillRegState(isKill))
1230               .addMemOperand(MMO)
1231               .add(predOps(ARMCC::AL));
1232         } else {
1233           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1234                                             get(ARM::VSTMDIA))
1235                                         .addFrameIndex(FI)
1236                                         .add(predOps(ARMCC::AL))
1237                                         .addMemOperand(MMO);
1238           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1239           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1240           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1241         }
1242       } else
1243         llvm_unreachable("Unknown reg class!");
1244       break;
1245     case 32:
1246       if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1247           ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1248           ARM::DQuadRegClass.hasSubClassEq(RC)) {
1249         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1250             Subtarget.hasNEON()) {
1251           // FIXME: It's possible to only store part of the QQ register if the
1252           // spilled def has a sub-register index.
1253           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1254               .addFrameIndex(FI)
1255               .addImm(16)
1256               .addReg(SrcReg, getKillRegState(isKill))
1257               .addMemOperand(MMO)
1258               .add(predOps(ARMCC::AL));
1259         } else if (Subtarget.hasMVEIntegerOps()) {
1260           BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1261               .addReg(SrcReg, getKillRegState(isKill))
1262               .addFrameIndex(FI)
1263               .addMemOperand(MMO);
1264         } else {
1265           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1266                                             get(ARM::VSTMDIA))
1267                                         .addFrameIndex(FI)
1268                                         .add(predOps(ARMCC::AL))
1269                                         .addMemOperand(MMO);
1270           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1271           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1272           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1273                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1274         }
1275       } else
1276         llvm_unreachable("Unknown reg class!");
1277       break;
1278     case 64:
1279       if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1280           Subtarget.hasMVEIntegerOps()) {
1281         BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1282             .addReg(SrcReg, getKillRegState(isKill))
1283             .addFrameIndex(FI)
1284             .addMemOperand(MMO);
1285       } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1286         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1287                                       .addFrameIndex(FI)
1288                                       .add(predOps(ARMCC::AL))
1289                                       .addMemOperand(MMO);
1290         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1291         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1292         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1293         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1294         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1295         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1296         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1297               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1298       } else
1299         llvm_unreachable("Unknown reg class!");
1300       break;
1301     default:
1302       llvm_unreachable("Unknown reg class!");
1303   }
1304 }
1305 
1306 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1307                                               int &FrameIndex) const {
1308   switch (MI.getOpcode()) {
1309   default: break;
1310   case ARM::STRrs:
1311   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1312     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1313         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1314         MI.getOperand(3).getImm() == 0) {
1315       FrameIndex = MI.getOperand(1).getIndex();
1316       return MI.getOperand(0).getReg();
1317     }
1318     break;
1319   case ARM::STRi12:
1320   case ARM::t2STRi12:
1321   case ARM::tSTRspi:
1322   case ARM::VSTRD:
1323   case ARM::VSTRS:
1324   case ARM::VSTR_P0_off:
1325   case ARM::MVE_VSTRWU32:
1326     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1327         MI.getOperand(2).getImm() == 0) {
1328       FrameIndex = MI.getOperand(1).getIndex();
1329       return MI.getOperand(0).getReg();
1330     }
1331     break;
1332   case ARM::VST1q64:
1333   case ARM::VST1d64TPseudo:
1334   case ARM::VST1d64QPseudo:
1335     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1336       FrameIndex = MI.getOperand(0).getIndex();
1337       return MI.getOperand(2).getReg();
1338     }
1339     break;
1340   case ARM::VSTMQIA:
1341     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1342       FrameIndex = MI.getOperand(1).getIndex();
1343       return MI.getOperand(0).getReg();
1344     }
1345     break;
1346   case ARM::MQQPRStore:
1347   case ARM::MQQQQPRStore:
1348     if (MI.getOperand(1).isFI()) {
1349       FrameIndex = MI.getOperand(1).getIndex();
1350       return MI.getOperand(0).getReg();
1351     }
1352     break;
1353   }
1354 
1355   return 0;
1356 }
1357 
1358 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1359                                                     int &FrameIndex) const {
1360   SmallVector<const MachineMemOperand *, 1> Accesses;
1361   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1362       Accesses.size() == 1) {
1363     FrameIndex =
1364         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1365             ->getFrameIndex();
1366     return true;
1367   }
1368   return false;
1369 }
1370 
1371 void ARMBaseInstrInfo::
1372 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1373                      Register DestReg, int FI,
1374                      const TargetRegisterClass *RC,
1375                      const TargetRegisterInfo *TRI) const {
1376   DebugLoc DL;
1377   if (I != MBB.end()) DL = I->getDebugLoc();
1378   MachineFunction &MF = *MBB.getParent();
1379   MachineFrameInfo &MFI = MF.getFrameInfo();
1380   const Align Alignment = MFI.getObjectAlign(FI);
1381   MachineMemOperand *MMO = MF.getMachineMemOperand(
1382       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1383       MFI.getObjectSize(FI), Alignment);
1384 
1385   switch (TRI->getSpillSize(*RC)) {
1386   case 2:
1387     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1388       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1389           .addFrameIndex(FI)
1390           .addImm(0)
1391           .addMemOperand(MMO)
1392           .add(predOps(ARMCC::AL));
1393     } else
1394       llvm_unreachable("Unknown reg class!");
1395     break;
1396   case 4:
1397     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1398       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1399           .addFrameIndex(FI)
1400           .addImm(0)
1401           .addMemOperand(MMO)
1402           .add(predOps(ARMCC::AL));
1403     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1404       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1405           .addFrameIndex(FI)
1406           .addImm(0)
1407           .addMemOperand(MMO)
1408           .add(predOps(ARMCC::AL));
1409     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1410       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1411           .addFrameIndex(FI)
1412           .addImm(0)
1413           .addMemOperand(MMO)
1414           .add(predOps(ARMCC::AL));
1415     } else
1416       llvm_unreachable("Unknown reg class!");
1417     break;
1418   case 8:
1419     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1420       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1421           .addFrameIndex(FI)
1422           .addImm(0)
1423           .addMemOperand(MMO)
1424           .add(predOps(ARMCC::AL));
1425     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1426       MachineInstrBuilder MIB;
1427 
1428       if (Subtarget.hasV5TEOps()) {
1429         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1430         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1431         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1432         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1433            .add(predOps(ARMCC::AL));
1434       } else {
1435         // Fallback to LDM instruction, which has existed since the dawn of
1436         // time.
1437         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1438                   .addFrameIndex(FI)
1439                   .addMemOperand(MMO)
1440                   .add(predOps(ARMCC::AL));
1441         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1442         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1443       }
1444 
1445       if (Register::isPhysicalRegister(DestReg))
1446         MIB.addReg(DestReg, RegState::ImplicitDefine);
1447     } else
1448       llvm_unreachable("Unknown reg class!");
1449     break;
1450   case 16:
1451     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1452       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1453         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1454             .addFrameIndex(FI)
1455             .addImm(16)
1456             .addMemOperand(MMO)
1457             .add(predOps(ARMCC::AL));
1458       } else {
1459         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1460             .addFrameIndex(FI)
1461             .addMemOperand(MMO)
1462             .add(predOps(ARMCC::AL));
1463       }
1464     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1465                Subtarget.hasMVEIntegerOps()) {
1466       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1467       MIB.addFrameIndex(FI)
1468         .addImm(0)
1469         .addMemOperand(MMO);
1470       addUnpredicatedMveVpredNOp(MIB);
1471     } else
1472       llvm_unreachable("Unknown reg class!");
1473     break;
1474   case 24:
1475     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1476       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1477           Subtarget.hasNEON()) {
1478         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1479             .addFrameIndex(FI)
1480             .addImm(16)
1481             .addMemOperand(MMO)
1482             .add(predOps(ARMCC::AL));
1483       } else {
1484         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1485                                       .addFrameIndex(FI)
1486                                       .addMemOperand(MMO)
1487                                       .add(predOps(ARMCC::AL));
1488         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1489         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1490         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1491         if (Register::isPhysicalRegister(DestReg))
1492           MIB.addReg(DestReg, RegState::ImplicitDefine);
1493       }
1494     } else
1495       llvm_unreachable("Unknown reg class!");
1496     break;
1497    case 32:
1498      if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1499          ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1500          ARM::DQuadRegClass.hasSubClassEq(RC)) {
1501        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1502            Subtarget.hasNEON()) {
1503          BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1504              .addFrameIndex(FI)
1505              .addImm(16)
1506              .addMemOperand(MMO)
1507              .add(predOps(ARMCC::AL));
1508        } else if (Subtarget.hasMVEIntegerOps()) {
1509          BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1510              .addFrameIndex(FI)
1511              .addMemOperand(MMO);
1512        } else {
1513          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1514                                        .addFrameIndex(FI)
1515                                        .add(predOps(ARMCC::AL))
1516                                        .addMemOperand(MMO);
1517          MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1518          MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1519          MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1520          MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1521          if (Register::isPhysicalRegister(DestReg))
1522            MIB.addReg(DestReg, RegState::ImplicitDefine);
1523        }
1524      } else
1525        llvm_unreachable("Unknown reg class!");
1526      break;
1527   case 64:
1528     if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1529         Subtarget.hasMVEIntegerOps()) {
1530       BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1531           .addFrameIndex(FI)
1532           .addMemOperand(MMO);
1533     } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1534       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1535                                     .addFrameIndex(FI)
1536                                     .add(predOps(ARMCC::AL))
1537                                     .addMemOperand(MMO);
1538       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1539       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1540       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1541       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1542       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1543       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1544       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1545       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1546       if (Register::isPhysicalRegister(DestReg))
1547         MIB.addReg(DestReg, RegState::ImplicitDefine);
1548     } else
1549       llvm_unreachable("Unknown reg class!");
1550     break;
1551   default:
1552     llvm_unreachable("Unknown regclass!");
1553   }
1554 }
1555 
1556 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1557                                                int &FrameIndex) const {
1558   switch (MI.getOpcode()) {
1559   default: break;
1560   case ARM::LDRrs:
1561   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1562     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1563         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1564         MI.getOperand(3).getImm() == 0) {
1565       FrameIndex = MI.getOperand(1).getIndex();
1566       return MI.getOperand(0).getReg();
1567     }
1568     break;
1569   case ARM::LDRi12:
1570   case ARM::t2LDRi12:
1571   case ARM::tLDRspi:
1572   case ARM::VLDRD:
1573   case ARM::VLDRS:
1574   case ARM::VLDR_P0_off:
1575   case ARM::MVE_VLDRWU32:
1576     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1577         MI.getOperand(2).getImm() == 0) {
1578       FrameIndex = MI.getOperand(1).getIndex();
1579       return MI.getOperand(0).getReg();
1580     }
1581     break;
1582   case ARM::VLD1q64:
1583   case ARM::VLD1d8TPseudo:
1584   case ARM::VLD1d16TPseudo:
1585   case ARM::VLD1d32TPseudo:
1586   case ARM::VLD1d64TPseudo:
1587   case ARM::VLD1d8QPseudo:
1588   case ARM::VLD1d16QPseudo:
1589   case ARM::VLD1d32QPseudo:
1590   case ARM::VLD1d64QPseudo:
1591     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1592       FrameIndex = MI.getOperand(1).getIndex();
1593       return MI.getOperand(0).getReg();
1594     }
1595     break;
1596   case ARM::VLDMQIA:
1597     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1598       FrameIndex = MI.getOperand(1).getIndex();
1599       return MI.getOperand(0).getReg();
1600     }
1601     break;
1602   case ARM::MQQPRLoad:
1603   case ARM::MQQQQPRLoad:
1604     if (MI.getOperand(1).isFI()) {
1605       FrameIndex = MI.getOperand(1).getIndex();
1606       return MI.getOperand(0).getReg();
1607     }
1608     break;
1609   }
1610 
1611   return 0;
1612 }
1613 
1614 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1615                                                      int &FrameIndex) const {
1616   SmallVector<const MachineMemOperand *, 1> Accesses;
1617   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1618       Accesses.size() == 1) {
1619     FrameIndex =
1620         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1621             ->getFrameIndex();
1622     return true;
1623   }
1624   return false;
1625 }
1626 
1627 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1628 /// depending on whether the result is used.
1629 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1630   bool isThumb1 = Subtarget.isThumb1Only();
1631   bool isThumb2 = Subtarget.isThumb2();
1632   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1633 
1634   DebugLoc dl = MI->getDebugLoc();
1635   MachineBasicBlock *BB = MI->getParent();
1636 
1637   MachineInstrBuilder LDM, STM;
1638   if (isThumb1 || !MI->getOperand(1).isDead()) {
1639     MachineOperand LDWb(MI->getOperand(1));
1640     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1641                                                  : isThumb1 ? ARM::tLDMIA_UPD
1642                                                             : ARM::LDMIA_UPD))
1643               .add(LDWb);
1644   } else {
1645     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1646   }
1647 
1648   if (isThumb1 || !MI->getOperand(0).isDead()) {
1649     MachineOperand STWb(MI->getOperand(0));
1650     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1651                                                  : isThumb1 ? ARM::tSTMIA_UPD
1652                                                             : ARM::STMIA_UPD))
1653               .add(STWb);
1654   } else {
1655     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1656   }
1657 
1658   MachineOperand LDBase(MI->getOperand(3));
1659   LDM.add(LDBase).add(predOps(ARMCC::AL));
1660 
1661   MachineOperand STBase(MI->getOperand(2));
1662   STM.add(STBase).add(predOps(ARMCC::AL));
1663 
1664   // Sort the scratch registers into ascending order.
1665   const TargetRegisterInfo &TRI = getRegisterInfo();
1666   SmallVector<unsigned, 6> ScratchRegs;
1667   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1668     ScratchRegs.push_back(MI->getOperand(I).getReg());
1669   llvm::sort(ScratchRegs,
1670              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1671                return TRI.getEncodingValue(Reg1) <
1672                       TRI.getEncodingValue(Reg2);
1673              });
1674 
1675   for (const auto &Reg : ScratchRegs) {
1676     LDM.addReg(Reg, RegState::Define);
1677     STM.addReg(Reg, RegState::Kill);
1678   }
1679 
1680   BB->erase(MI);
1681 }
1682 
1683 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1684   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1685     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1686            "LOAD_STACK_GUARD currently supported only for MachO.");
1687     expandLoadStackGuard(MI);
1688     MI.getParent()->erase(MI);
1689     return true;
1690   }
1691 
1692   if (MI.getOpcode() == ARM::MEMCPY) {
1693     expandMEMCPY(MI);
1694     return true;
1695   }
1696 
1697   // This hook gets to expand COPY instructions before they become
1698   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1699   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1700   // changed into a VORR that can go down the NEON pipeline.
1701   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1702     return false;
1703 
1704   // Look for a copy between even S-registers.  That is where we keep floats
1705   // when using NEON v2f32 instructions for f32 arithmetic.
1706   Register DstRegS = MI.getOperand(0).getReg();
1707   Register SrcRegS = MI.getOperand(1).getReg();
1708   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1709     return false;
1710 
1711   const TargetRegisterInfo *TRI = &getRegisterInfo();
1712   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1713                                               &ARM::DPRRegClass);
1714   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1715                                               &ARM::DPRRegClass);
1716   if (!DstRegD || !SrcRegD)
1717     return false;
1718 
1719   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1720   // legal if the COPY already defines the full DstRegD, and it isn't a
1721   // sub-register insertion.
1722   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1723     return false;
1724 
1725   // A dead copy shouldn't show up here, but reject it just in case.
1726   if (MI.getOperand(0).isDead())
1727     return false;
1728 
1729   // All clear, widen the COPY.
1730   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1731   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1732 
1733   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1734   // or some other super-register.
1735   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1736   if (ImpDefIdx != -1)
1737     MI.RemoveOperand(ImpDefIdx);
1738 
1739   // Change the opcode and operands.
1740   MI.setDesc(get(ARM::VMOVD));
1741   MI.getOperand(0).setReg(DstRegD);
1742   MI.getOperand(1).setReg(SrcRegD);
1743   MIB.add(predOps(ARMCC::AL));
1744 
1745   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1746   // register scavenger and machine verifier, so we need to indicate that we
1747   // are reading an undefined value from SrcRegD, but a proper value from
1748   // SrcRegS.
1749   MI.getOperand(1).setIsUndef();
1750   MIB.addReg(SrcRegS, RegState::Implicit);
1751 
1752   // SrcRegD may actually contain an unrelated value in the ssub_1
1753   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1754   if (MI.getOperand(1).isKill()) {
1755     MI.getOperand(1).setIsKill(false);
1756     MI.addRegisterKilled(SrcRegS, TRI, true);
1757   }
1758 
1759   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1760   return true;
1761 }
1762 
1763 /// Create a copy of a const pool value. Update CPI to the new index and return
1764 /// the label UID.
1765 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1766   MachineConstantPool *MCP = MF.getConstantPool();
1767   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1768 
1769   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1770   assert(MCPE.isMachineConstantPoolEntry() &&
1771          "Expecting a machine constantpool entry!");
1772   ARMConstantPoolValue *ACPV =
1773     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1774 
1775   unsigned PCLabelId = AFI->createPICLabelUId();
1776   ARMConstantPoolValue *NewCPV = nullptr;
1777 
1778   // FIXME: The below assumes PIC relocation model and that the function
1779   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1780   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1781   // instructions, so that's probably OK, but is PIC always correct when
1782   // we get here?
1783   if (ACPV->isGlobalValue())
1784     NewCPV = ARMConstantPoolConstant::Create(
1785         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1786         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1787   else if (ACPV->isExtSymbol())
1788     NewCPV = ARMConstantPoolSymbol::
1789       Create(MF.getFunction().getContext(),
1790              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1791   else if (ACPV->isBlockAddress())
1792     NewCPV = ARMConstantPoolConstant::
1793       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1794              ARMCP::CPBlockAddress, 4);
1795   else if (ACPV->isLSDA())
1796     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1797                                              ARMCP::CPLSDA, 4);
1798   else if (ACPV->isMachineBasicBlock())
1799     NewCPV = ARMConstantPoolMBB::
1800       Create(MF.getFunction().getContext(),
1801              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1802   else
1803     llvm_unreachable("Unexpected ARM constantpool value type!!");
1804   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1805   return PCLabelId;
1806 }
1807 
1808 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1809                                      MachineBasicBlock::iterator I,
1810                                      Register DestReg, unsigned SubIdx,
1811                                      const MachineInstr &Orig,
1812                                      const TargetRegisterInfo &TRI) const {
1813   unsigned Opcode = Orig.getOpcode();
1814   switch (Opcode) {
1815   default: {
1816     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1817     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1818     MBB.insert(I, MI);
1819     break;
1820   }
1821   case ARM::tLDRpci_pic:
1822   case ARM::t2LDRpci_pic: {
1823     MachineFunction &MF = *MBB.getParent();
1824     unsigned CPI = Orig.getOperand(1).getIndex();
1825     unsigned PCLabelId = duplicateCPV(MF, CPI);
1826     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1827         .addConstantPoolIndex(CPI)
1828         .addImm(PCLabelId)
1829         .cloneMemRefs(Orig);
1830     break;
1831   }
1832   }
1833 }
1834 
1835 MachineInstr &
1836 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1837     MachineBasicBlock::iterator InsertBefore,
1838     const MachineInstr &Orig) const {
1839   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1840   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1841   for (;;) {
1842     switch (I->getOpcode()) {
1843     case ARM::tLDRpci_pic:
1844     case ARM::t2LDRpci_pic: {
1845       MachineFunction &MF = *MBB.getParent();
1846       unsigned CPI = I->getOperand(1).getIndex();
1847       unsigned PCLabelId = duplicateCPV(MF, CPI);
1848       I->getOperand(1).setIndex(CPI);
1849       I->getOperand(2).setImm(PCLabelId);
1850       break;
1851     }
1852     }
1853     if (!I->isBundledWithSucc())
1854       break;
1855     ++I;
1856   }
1857   return Cloned;
1858 }
1859 
1860 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1861                                         const MachineInstr &MI1,
1862                                         const MachineRegisterInfo *MRI) const {
1863   unsigned Opcode = MI0.getOpcode();
1864   if (Opcode == ARM::t2LDRpci ||
1865       Opcode == ARM::t2LDRpci_pic ||
1866       Opcode == ARM::tLDRpci ||
1867       Opcode == ARM::tLDRpci_pic ||
1868       Opcode == ARM::LDRLIT_ga_pcrel ||
1869       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1870       Opcode == ARM::tLDRLIT_ga_pcrel ||
1871       Opcode == ARM::MOV_ga_pcrel ||
1872       Opcode == ARM::MOV_ga_pcrel_ldr ||
1873       Opcode == ARM::t2MOV_ga_pcrel) {
1874     if (MI1.getOpcode() != Opcode)
1875       return false;
1876     if (MI0.getNumOperands() != MI1.getNumOperands())
1877       return false;
1878 
1879     const MachineOperand &MO0 = MI0.getOperand(1);
1880     const MachineOperand &MO1 = MI1.getOperand(1);
1881     if (MO0.getOffset() != MO1.getOffset())
1882       return false;
1883 
1884     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1885         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1886         Opcode == ARM::tLDRLIT_ga_pcrel ||
1887         Opcode == ARM::MOV_ga_pcrel ||
1888         Opcode == ARM::MOV_ga_pcrel_ldr ||
1889         Opcode == ARM::t2MOV_ga_pcrel)
1890       // Ignore the PC labels.
1891       return MO0.getGlobal() == MO1.getGlobal();
1892 
1893     const MachineFunction *MF = MI0.getParent()->getParent();
1894     const MachineConstantPool *MCP = MF->getConstantPool();
1895     int CPI0 = MO0.getIndex();
1896     int CPI1 = MO1.getIndex();
1897     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1898     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1899     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1900     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1901     if (isARMCP0 && isARMCP1) {
1902       ARMConstantPoolValue *ACPV0 =
1903         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1904       ARMConstantPoolValue *ACPV1 =
1905         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1906       return ACPV0->hasSameValue(ACPV1);
1907     } else if (!isARMCP0 && !isARMCP1) {
1908       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1909     }
1910     return false;
1911   } else if (Opcode == ARM::PICLDR) {
1912     if (MI1.getOpcode() != Opcode)
1913       return false;
1914     if (MI0.getNumOperands() != MI1.getNumOperands())
1915       return false;
1916 
1917     Register Addr0 = MI0.getOperand(1).getReg();
1918     Register Addr1 = MI1.getOperand(1).getReg();
1919     if (Addr0 != Addr1) {
1920       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1921           !Register::isVirtualRegister(Addr1))
1922         return false;
1923 
1924       // This assumes SSA form.
1925       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1926       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1927       // Check if the loaded value, e.g. a constantpool of a global address, are
1928       // the same.
1929       if (!produceSameValue(*Def0, *Def1, MRI))
1930         return false;
1931     }
1932 
1933     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1934       // %12 = PICLDR %11, 0, 14, %noreg
1935       const MachineOperand &MO0 = MI0.getOperand(i);
1936       const MachineOperand &MO1 = MI1.getOperand(i);
1937       if (!MO0.isIdenticalTo(MO1))
1938         return false;
1939     }
1940     return true;
1941   }
1942 
1943   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1944 }
1945 
1946 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1947 /// determine if two loads are loading from the same base address. It should
1948 /// only return true if the base pointers are the same and the only differences
1949 /// between the two addresses is the offset. It also returns the offsets by
1950 /// reference.
1951 ///
1952 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1953 /// is permanently disabled.
1954 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1955                                                int64_t &Offset1,
1956                                                int64_t &Offset2) const {
1957   // Don't worry about Thumb: just ARM and Thumb2.
1958   if (Subtarget.isThumb1Only()) return false;
1959 
1960   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1961     return false;
1962 
1963   switch (Load1->getMachineOpcode()) {
1964   default:
1965     return false;
1966   case ARM::LDRi12:
1967   case ARM::LDRBi12:
1968   case ARM::LDRD:
1969   case ARM::LDRH:
1970   case ARM::LDRSB:
1971   case ARM::LDRSH:
1972   case ARM::VLDRD:
1973   case ARM::VLDRS:
1974   case ARM::t2LDRi8:
1975   case ARM::t2LDRBi8:
1976   case ARM::t2LDRDi8:
1977   case ARM::t2LDRSHi8:
1978   case ARM::t2LDRi12:
1979   case ARM::t2LDRBi12:
1980   case ARM::t2LDRSHi12:
1981     break;
1982   }
1983 
1984   switch (Load2->getMachineOpcode()) {
1985   default:
1986     return false;
1987   case ARM::LDRi12:
1988   case ARM::LDRBi12:
1989   case ARM::LDRD:
1990   case ARM::LDRH:
1991   case ARM::LDRSB:
1992   case ARM::LDRSH:
1993   case ARM::VLDRD:
1994   case ARM::VLDRS:
1995   case ARM::t2LDRi8:
1996   case ARM::t2LDRBi8:
1997   case ARM::t2LDRSHi8:
1998   case ARM::t2LDRi12:
1999   case ARM::t2LDRBi12:
2000   case ARM::t2LDRSHi12:
2001     break;
2002   }
2003 
2004   // Check if base addresses and chain operands match.
2005   if (Load1->getOperand(0) != Load2->getOperand(0) ||
2006       Load1->getOperand(4) != Load2->getOperand(4))
2007     return false;
2008 
2009   // Index should be Reg0.
2010   if (Load1->getOperand(3) != Load2->getOperand(3))
2011     return false;
2012 
2013   // Determine the offsets.
2014   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
2015       isa<ConstantSDNode>(Load2->getOperand(1))) {
2016     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
2017     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
2018     return true;
2019   }
2020 
2021   return false;
2022 }
2023 
2024 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2025 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2026 /// be scheduled togther. On some targets if two loads are loading from
2027 /// addresses in the same cache line, it's better if they are scheduled
2028 /// together. This function takes two integers that represent the load offsets
2029 /// from the common base address. It returns true if it decides it's desirable
2030 /// to schedule the two loads together. "NumLoads" is the number of loads that
2031 /// have already been scheduled after Load1.
2032 ///
2033 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2034 /// is permanently disabled.
2035 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2036                                                int64_t Offset1, int64_t Offset2,
2037                                                unsigned NumLoads) const {
2038   // Don't worry about Thumb: just ARM and Thumb2.
2039   if (Subtarget.isThumb1Only()) return false;
2040 
2041   assert(Offset2 > Offset1);
2042 
2043   if ((Offset2 - Offset1) / 8 > 64)
2044     return false;
2045 
2046   // Check if the machine opcodes are different. If they are different
2047   // then we consider them to not be of the same base address,
2048   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2049   // In this case, they are considered to be the same because they are different
2050   // encoding forms of the same basic instruction.
2051   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2052       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2053          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2054         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2055          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2056     return false;  // FIXME: overly conservative?
2057 
2058   // Four loads in a row should be sufficient.
2059   if (NumLoads >= 3)
2060     return false;
2061 
2062   return true;
2063 }
2064 
2065 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2066                                             const MachineBasicBlock *MBB,
2067                                             const MachineFunction &MF) const {
2068   // Debug info is never a scheduling boundary. It's necessary to be explicit
2069   // due to the special treatment of IT instructions below, otherwise a
2070   // dbg_value followed by an IT will result in the IT instruction being
2071   // considered a scheduling hazard, which is wrong. It should be the actual
2072   // instruction preceding the dbg_value instruction(s), just like it is
2073   // when debug info is not present.
2074   if (MI.isDebugInstr())
2075     return false;
2076 
2077   // Terminators and labels can't be scheduled around.
2078   if (MI.isTerminator() || MI.isPosition())
2079     return true;
2080 
2081   // INLINEASM_BR can jump to another block
2082   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2083     return true;
2084 
2085   // Treat the start of the IT block as a scheduling boundary, but schedule
2086   // t2IT along with all instructions following it.
2087   // FIXME: This is a big hammer. But the alternative is to add all potential
2088   // true and anti dependencies to IT block instructions as implicit operands
2089   // to the t2IT instruction. The added compile time and complexity does not
2090   // seem worth it.
2091   MachineBasicBlock::const_iterator I = MI;
2092   // Make sure to skip any debug instructions
2093   while (++I != MBB->end() && I->isDebugInstr())
2094     ;
2095   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2096     return true;
2097 
2098   // Don't attempt to schedule around any instruction that defines
2099   // a stack-oriented pointer, as it's unlikely to be profitable. This
2100   // saves compile time, because it doesn't require every single
2101   // stack slot reference to depend on the instruction that does the
2102   // modification.
2103   // Calls don't actually change the stack pointer, even if they have imp-defs.
2104   // No ARM calling conventions change the stack pointer. (X86 calling
2105   // conventions sometimes do).
2106   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2107     return true;
2108 
2109   return false;
2110 }
2111 
2112 bool ARMBaseInstrInfo::
2113 isProfitableToIfCvt(MachineBasicBlock &MBB,
2114                     unsigned NumCycles, unsigned ExtraPredCycles,
2115                     BranchProbability Probability) const {
2116   if (!NumCycles)
2117     return false;
2118 
2119   // If we are optimizing for size, see if the branch in the predecessor can be
2120   // lowered to cbn?z by the constant island lowering pass, and return false if
2121   // so. This results in a shorter instruction sequence.
2122   if (MBB.getParent()->getFunction().hasOptSize()) {
2123     MachineBasicBlock *Pred = *MBB.pred_begin();
2124     if (!Pred->empty()) {
2125       MachineInstr *LastMI = &*Pred->rbegin();
2126       if (LastMI->getOpcode() == ARM::t2Bcc) {
2127         const TargetRegisterInfo *TRI = &getRegisterInfo();
2128         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2129         if (CmpMI)
2130           return false;
2131       }
2132     }
2133   }
2134   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2135                              MBB, 0, 0, Probability);
2136 }
2137 
2138 bool ARMBaseInstrInfo::
2139 isProfitableToIfCvt(MachineBasicBlock &TBB,
2140                     unsigned TCycles, unsigned TExtra,
2141                     MachineBasicBlock &FBB,
2142                     unsigned FCycles, unsigned FExtra,
2143                     BranchProbability Probability) const {
2144   if (!TCycles)
2145     return false;
2146 
2147   // In thumb code we often end up trading one branch for a IT block, and
2148   // if we are cloning the instruction can increase code size. Prevent
2149   // blocks with multiple predecesors from being ifcvted to prevent this
2150   // cloning.
2151   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2152     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2153       return false;
2154   }
2155 
2156   // Attempt to estimate the relative costs of predication versus branching.
2157   // Here we scale up each component of UnpredCost to avoid precision issue when
2158   // scaling TCycles/FCycles by Probability.
2159   const unsigned ScalingUpFactor = 1024;
2160 
2161   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2162   unsigned UnpredCost;
2163   if (!Subtarget.hasBranchPredictor()) {
2164     // When we don't have a branch predictor it's always cheaper to not take a
2165     // branch than take it, so we have to take that into account.
2166     unsigned NotTakenBranchCost = 1;
2167     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2168     unsigned TUnpredCycles, FUnpredCycles;
2169     if (!FCycles) {
2170       // Triangle: TBB is the fallthrough
2171       TUnpredCycles = TCycles + NotTakenBranchCost;
2172       FUnpredCycles = TakenBranchCost;
2173     } else {
2174       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2175       TUnpredCycles = TCycles + TakenBranchCost;
2176       FUnpredCycles = FCycles + NotTakenBranchCost;
2177       // The branch at the end of FBB will disappear when it's predicated, so
2178       // discount it from PredCost.
2179       PredCost -= 1 * ScalingUpFactor;
2180     }
2181     // The total cost is the cost of each path scaled by their probabilites
2182     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2183     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2184     UnpredCost = TUnpredCost + FUnpredCost;
2185     // When predicating assume that the first IT can be folded away but later
2186     // ones cost one cycle each
2187     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2188       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2189     }
2190   } else {
2191     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2192     unsigned FUnpredCost =
2193       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2194     UnpredCost = TUnpredCost + FUnpredCost;
2195     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2196     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2197   }
2198 
2199   return PredCost <= UnpredCost;
2200 }
2201 
2202 unsigned
2203 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2204                                                    unsigned NumInsts) const {
2205   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2206   // ARM has a condition code field in every predicable instruction, using it
2207   // doesn't change code size.
2208   if (!Subtarget.isThumb2())
2209     return 0;
2210 
2211   // It's possible that the size of the IT is restricted to a single block.
2212   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2213   return divideCeil(NumInsts, MaxInsts) * 2;
2214 }
2215 
2216 unsigned
2217 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2218   // If this branch is likely to be folded into the comparison to form a
2219   // CB(N)Z, then removing it won't reduce code size at all, because that will
2220   // just replace the CB(N)Z with a CMP.
2221   if (MI.getOpcode() == ARM::t2Bcc &&
2222       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2223     return 0;
2224 
2225   unsigned Size = getInstSizeInBytes(MI);
2226 
2227   // For Thumb2, all branches are 32-bit instructions during the if conversion
2228   // pass, but may be replaced with 16-bit instructions during size reduction.
2229   // Since the branches considered by if conversion tend to be forward branches
2230   // over small basic blocks, they are very likely to be in range for the
2231   // narrow instructions, so we assume the final code size will be half what it
2232   // currently is.
2233   if (Subtarget.isThumb2())
2234     Size /= 2;
2235 
2236   return Size;
2237 }
2238 
2239 bool
2240 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2241                                             MachineBasicBlock &FMBB) const {
2242   // Reduce false anti-dependencies to let the target's out-of-order execution
2243   // engine do its thing.
2244   return Subtarget.isProfitableToUnpredicate();
2245 }
2246 
2247 /// getInstrPredicate - If instruction is predicated, returns its predicate
2248 /// condition, otherwise returns AL. It also returns the condition code
2249 /// register by reference.
2250 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2251                                          Register &PredReg) {
2252   int PIdx = MI.findFirstPredOperandIdx();
2253   if (PIdx == -1) {
2254     PredReg = 0;
2255     return ARMCC::AL;
2256   }
2257 
2258   PredReg = MI.getOperand(PIdx+1).getReg();
2259   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2260 }
2261 
2262 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2263   if (Opc == ARM::B)
2264     return ARM::Bcc;
2265   if (Opc == ARM::tB)
2266     return ARM::tBcc;
2267   if (Opc == ARM::t2B)
2268     return ARM::t2Bcc;
2269 
2270   llvm_unreachable("Unknown unconditional branch opcode!");
2271 }
2272 
2273 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2274                                                        bool NewMI,
2275                                                        unsigned OpIdx1,
2276                                                        unsigned OpIdx2) const {
2277   switch (MI.getOpcode()) {
2278   case ARM::MOVCCr:
2279   case ARM::t2MOVCCr: {
2280     // MOVCC can be commuted by inverting the condition.
2281     Register PredReg;
2282     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2283     // MOVCC AL can't be inverted. Shouldn't happen.
2284     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2285       return nullptr;
2286     MachineInstr *CommutedMI =
2287         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2288     if (!CommutedMI)
2289       return nullptr;
2290     // After swapping the MOVCC operands, also invert the condition.
2291     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2292         .setImm(ARMCC::getOppositeCondition(CC));
2293     return CommutedMI;
2294   }
2295   }
2296   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2297 }
2298 
2299 /// Identify instructions that can be folded into a MOVCC instruction, and
2300 /// return the defining instruction.
2301 MachineInstr *
2302 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2303                                    const TargetInstrInfo *TII) const {
2304   if (!Reg.isVirtual())
2305     return nullptr;
2306   if (!MRI.hasOneNonDBGUse(Reg))
2307     return nullptr;
2308   MachineInstr *MI = MRI.getVRegDef(Reg);
2309   if (!MI)
2310     return nullptr;
2311   // Check if MI can be predicated and folded into the MOVCC.
2312   if (!isPredicable(*MI))
2313     return nullptr;
2314   // Check if MI has any non-dead defs or physreg uses. This also detects
2315   // predicated instructions which will be reading CPSR.
2316   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2317     const MachineOperand &MO = MI->getOperand(i);
2318     // Reject frame index operands, PEI can't handle the predicated pseudos.
2319     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2320       return nullptr;
2321     if (!MO.isReg())
2322       continue;
2323     // MI can't have any tied operands, that would conflict with predication.
2324     if (MO.isTied())
2325       return nullptr;
2326     if (Register::isPhysicalRegister(MO.getReg()))
2327       return nullptr;
2328     if (MO.isDef() && !MO.isDead())
2329       return nullptr;
2330   }
2331   bool DontMoveAcrossStores = true;
2332   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2333     return nullptr;
2334   return MI;
2335 }
2336 
2337 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2338                                      SmallVectorImpl<MachineOperand> &Cond,
2339                                      unsigned &TrueOp, unsigned &FalseOp,
2340                                      bool &Optimizable) const {
2341   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2342          "Unknown select instruction");
2343   // MOVCC operands:
2344   // 0: Def.
2345   // 1: True use.
2346   // 2: False use.
2347   // 3: Condition code.
2348   // 4: CPSR use.
2349   TrueOp = 1;
2350   FalseOp = 2;
2351   Cond.push_back(MI.getOperand(3));
2352   Cond.push_back(MI.getOperand(4));
2353   // We can always fold a def.
2354   Optimizable = true;
2355   return false;
2356 }
2357 
2358 MachineInstr *
2359 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2360                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2361                                  bool PreferFalse) const {
2362   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2363          "Unknown select instruction");
2364   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2365   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2366   bool Invert = !DefMI;
2367   if (!DefMI)
2368     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2369   if (!DefMI)
2370     return nullptr;
2371 
2372   // Find new register class to use.
2373   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2374   Register DestReg = MI.getOperand(0).getReg();
2375   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2376   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2377     return nullptr;
2378 
2379   // Create a new predicated version of DefMI.
2380   // Rfalse is the first use.
2381   MachineInstrBuilder NewMI =
2382       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2383 
2384   // Copy all the DefMI operands, excluding its (null) predicate.
2385   const MCInstrDesc &DefDesc = DefMI->getDesc();
2386   for (unsigned i = 1, e = DefDesc.getNumOperands();
2387        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2388     NewMI.add(DefMI->getOperand(i));
2389 
2390   unsigned CondCode = MI.getOperand(3).getImm();
2391   if (Invert)
2392     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2393   else
2394     NewMI.addImm(CondCode);
2395   NewMI.add(MI.getOperand(4));
2396 
2397   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2398   if (NewMI->hasOptionalDef())
2399     NewMI.add(condCodeOp());
2400 
2401   // The output register value when the predicate is false is an implicit
2402   // register operand tied to the first def.
2403   // The tie makes the register allocator ensure the FalseReg is allocated the
2404   // same register as operand 0.
2405   FalseReg.setImplicit();
2406   NewMI.add(FalseReg);
2407   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2408 
2409   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2410   SeenMIs.insert(NewMI);
2411   SeenMIs.erase(DefMI);
2412 
2413   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2414   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2415   // loop is expensive, but at least remove kill flags if they are in different
2416   // BBs.
2417   if (DefMI->getParent() != MI.getParent())
2418     NewMI->clearKillInfo();
2419 
2420   // The caller will erase MI, but not DefMI.
2421   DefMI->eraseFromParent();
2422   return NewMI;
2423 }
2424 
2425 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2426 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2427 /// def operand.
2428 ///
2429 /// This will go away once we can teach tblgen how to set the optional CPSR def
2430 /// operand itself.
2431 struct AddSubFlagsOpcodePair {
2432   uint16_t PseudoOpc;
2433   uint16_t MachineOpc;
2434 };
2435 
2436 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2437   {ARM::ADDSri, ARM::ADDri},
2438   {ARM::ADDSrr, ARM::ADDrr},
2439   {ARM::ADDSrsi, ARM::ADDrsi},
2440   {ARM::ADDSrsr, ARM::ADDrsr},
2441 
2442   {ARM::SUBSri, ARM::SUBri},
2443   {ARM::SUBSrr, ARM::SUBrr},
2444   {ARM::SUBSrsi, ARM::SUBrsi},
2445   {ARM::SUBSrsr, ARM::SUBrsr},
2446 
2447   {ARM::RSBSri, ARM::RSBri},
2448   {ARM::RSBSrsi, ARM::RSBrsi},
2449   {ARM::RSBSrsr, ARM::RSBrsr},
2450 
2451   {ARM::tADDSi3, ARM::tADDi3},
2452   {ARM::tADDSi8, ARM::tADDi8},
2453   {ARM::tADDSrr, ARM::tADDrr},
2454   {ARM::tADCS, ARM::tADC},
2455 
2456   {ARM::tSUBSi3, ARM::tSUBi3},
2457   {ARM::tSUBSi8, ARM::tSUBi8},
2458   {ARM::tSUBSrr, ARM::tSUBrr},
2459   {ARM::tSBCS, ARM::tSBC},
2460   {ARM::tRSBS, ARM::tRSB},
2461   {ARM::tLSLSri, ARM::tLSLri},
2462 
2463   {ARM::t2ADDSri, ARM::t2ADDri},
2464   {ARM::t2ADDSrr, ARM::t2ADDrr},
2465   {ARM::t2ADDSrs, ARM::t2ADDrs},
2466 
2467   {ARM::t2SUBSri, ARM::t2SUBri},
2468   {ARM::t2SUBSrr, ARM::t2SUBrr},
2469   {ARM::t2SUBSrs, ARM::t2SUBrs},
2470 
2471   {ARM::t2RSBSri, ARM::t2RSBri},
2472   {ARM::t2RSBSrs, ARM::t2RSBrs},
2473 };
2474 
2475 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2476   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2477     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2478       return AddSubFlagsOpcodeMap[i].MachineOpc;
2479   return 0;
2480 }
2481 
2482 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2483                                    MachineBasicBlock::iterator &MBBI,
2484                                    const DebugLoc &dl, Register DestReg,
2485                                    Register BaseReg, int NumBytes,
2486                                    ARMCC::CondCodes Pred, Register PredReg,
2487                                    const ARMBaseInstrInfo &TII,
2488                                    unsigned MIFlags) {
2489   if (NumBytes == 0 && DestReg != BaseReg) {
2490     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2491         .addReg(BaseReg, RegState::Kill)
2492         .add(predOps(Pred, PredReg))
2493         .add(condCodeOp())
2494         .setMIFlags(MIFlags);
2495     return;
2496   }
2497 
2498   bool isSub = NumBytes < 0;
2499   if (isSub) NumBytes = -NumBytes;
2500 
2501   while (NumBytes) {
2502     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2503     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2504     assert(ThisVal && "Didn't extract field correctly");
2505 
2506     // We will handle these bits from offset, clear them.
2507     NumBytes &= ~ThisVal;
2508 
2509     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2510 
2511     // Build the new ADD / SUB.
2512     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2513     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2514         .addReg(BaseReg, RegState::Kill)
2515         .addImm(ThisVal)
2516         .add(predOps(Pred, PredReg))
2517         .add(condCodeOp())
2518         .setMIFlags(MIFlags);
2519     BaseReg = DestReg;
2520   }
2521 }
2522 
2523 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2524                                       MachineFunction &MF, MachineInstr *MI,
2525                                       unsigned NumBytes) {
2526   // This optimisation potentially adds lots of load and store
2527   // micro-operations, it's only really a great benefit to code-size.
2528   if (!Subtarget.hasMinSize())
2529     return false;
2530 
2531   // If only one register is pushed/popped, LLVM can use an LDR/STR
2532   // instead. We can't modify those so make sure we're dealing with an
2533   // instruction we understand.
2534   bool IsPop = isPopOpcode(MI->getOpcode());
2535   bool IsPush = isPushOpcode(MI->getOpcode());
2536   if (!IsPush && !IsPop)
2537     return false;
2538 
2539   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2540                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2541   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2542                      MI->getOpcode() == ARM::tPOP ||
2543                      MI->getOpcode() == ARM::tPOP_RET;
2544 
2545   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2546                           MI->getOperand(1).getReg() == ARM::SP)) &&
2547          "trying to fold sp update into non-sp-updating push/pop");
2548 
2549   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2550   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2551   // if this is violated.
2552   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2553     return false;
2554 
2555   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2556   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2557   int RegListIdx = IsT1PushPop ? 2 : 4;
2558 
2559   // Calculate the space we'll need in terms of registers.
2560   unsigned RegsNeeded;
2561   const TargetRegisterClass *RegClass;
2562   if (IsVFPPushPop) {
2563     RegsNeeded = NumBytes / 8;
2564     RegClass = &ARM::DPRRegClass;
2565   } else {
2566     RegsNeeded = NumBytes / 4;
2567     RegClass = &ARM::GPRRegClass;
2568   }
2569 
2570   // We're going to have to strip all list operands off before
2571   // re-adding them since the order matters, so save the existing ones
2572   // for later.
2573   SmallVector<MachineOperand, 4> RegList;
2574 
2575   // We're also going to need the first register transferred by this
2576   // instruction, which won't necessarily be the first register in the list.
2577   unsigned FirstRegEnc = -1;
2578 
2579   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2580   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2581     MachineOperand &MO = MI->getOperand(i);
2582     RegList.push_back(MO);
2583 
2584     if (MO.isReg() && !MO.isImplicit() &&
2585         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2586       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2587   }
2588 
2589   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2590 
2591   // Now try to find enough space in the reglist to allocate NumBytes.
2592   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2593        --CurRegEnc) {
2594     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2595     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2596       continue;
2597     if (!IsPop) {
2598       // Pushing any register is completely harmless, mark the register involved
2599       // as undef since we don't care about its value and must not restore it
2600       // during stack unwinding.
2601       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2602                                                   false, false, true));
2603       --RegsNeeded;
2604       continue;
2605     }
2606 
2607     // However, we can only pop an extra register if it's not live. For
2608     // registers live within the function we might clobber a return value
2609     // register; the other way a register can be live here is if it's
2610     // callee-saved.
2611     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2612         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2613         MachineBasicBlock::LQR_Dead) {
2614       // VFP pops don't allow holes in the register list, so any skip is fatal
2615       // for our transformation. GPR pops do, so we should just keep looking.
2616       if (IsVFPPushPop)
2617         return false;
2618       else
2619         continue;
2620     }
2621 
2622     // Mark the unimportant registers as <def,dead> in the POP.
2623     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2624                                                 true));
2625     --RegsNeeded;
2626   }
2627 
2628   if (RegsNeeded > 0)
2629     return false;
2630 
2631   // Finally we know we can profitably perform the optimisation so go
2632   // ahead: strip all existing registers off and add them back again
2633   // in the right order.
2634   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2635     MI->RemoveOperand(i);
2636 
2637   // Add the complete list back in.
2638   MachineInstrBuilder MIB(MF, &*MI);
2639   for (int i = RegList.size() - 1; i >= 0; --i)
2640     MIB.add(RegList[i]);
2641 
2642   return true;
2643 }
2644 
2645 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2646                                 Register FrameReg, int &Offset,
2647                                 const ARMBaseInstrInfo &TII) {
2648   unsigned Opcode = MI.getOpcode();
2649   const MCInstrDesc &Desc = MI.getDesc();
2650   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2651   bool isSub = false;
2652 
2653   // Memory operands in inline assembly always use AddrMode2.
2654   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2655     AddrMode = ARMII::AddrMode2;
2656 
2657   if (Opcode == ARM::ADDri) {
2658     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2659     if (Offset == 0) {
2660       // Turn it into a move.
2661       MI.setDesc(TII.get(ARM::MOVr));
2662       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2663       MI.RemoveOperand(FrameRegIdx+1);
2664       Offset = 0;
2665       return true;
2666     } else if (Offset < 0) {
2667       Offset = -Offset;
2668       isSub = true;
2669       MI.setDesc(TII.get(ARM::SUBri));
2670     }
2671 
2672     // Common case: small offset, fits into instruction.
2673     if (ARM_AM::getSOImmVal(Offset) != -1) {
2674       // Replace the FrameIndex with sp / fp
2675       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2676       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2677       Offset = 0;
2678       return true;
2679     }
2680 
2681     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2682     // as possible.
2683     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2684     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2685 
2686     // We will handle these bits from offset, clear them.
2687     Offset &= ~ThisImmVal;
2688 
2689     // Get the properly encoded SOImmVal field.
2690     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2691            "Bit extraction didn't work?");
2692     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2693  } else {
2694     unsigned ImmIdx = 0;
2695     int InstrOffs = 0;
2696     unsigned NumBits = 0;
2697     unsigned Scale = 1;
2698     switch (AddrMode) {
2699     case ARMII::AddrMode_i12:
2700       ImmIdx = FrameRegIdx + 1;
2701       InstrOffs = MI.getOperand(ImmIdx).getImm();
2702       NumBits = 12;
2703       break;
2704     case ARMII::AddrMode2:
2705       ImmIdx = FrameRegIdx+2;
2706       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2707       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2708         InstrOffs *= -1;
2709       NumBits = 12;
2710       break;
2711     case ARMII::AddrMode3:
2712       ImmIdx = FrameRegIdx+2;
2713       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2714       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2715         InstrOffs *= -1;
2716       NumBits = 8;
2717       break;
2718     case ARMII::AddrMode4:
2719     case ARMII::AddrMode6:
2720       // Can't fold any offset even if it's zero.
2721       return false;
2722     case ARMII::AddrMode5:
2723       ImmIdx = FrameRegIdx+1;
2724       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2725       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2726         InstrOffs *= -1;
2727       NumBits = 8;
2728       Scale = 4;
2729       break;
2730     case ARMII::AddrMode5FP16:
2731       ImmIdx = FrameRegIdx+1;
2732       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2733       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2734         InstrOffs *= -1;
2735       NumBits = 8;
2736       Scale = 2;
2737       break;
2738     case ARMII::AddrModeT2_i7:
2739     case ARMII::AddrModeT2_i7s2:
2740     case ARMII::AddrModeT2_i7s4:
2741       ImmIdx = FrameRegIdx+1;
2742       InstrOffs = MI.getOperand(ImmIdx).getImm();
2743       NumBits = 7;
2744       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2745                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2746       break;
2747     default:
2748       llvm_unreachable("Unsupported addressing mode!");
2749     }
2750 
2751     Offset += InstrOffs * Scale;
2752     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2753     if (Offset < 0) {
2754       Offset = -Offset;
2755       isSub = true;
2756     }
2757 
2758     // Attempt to fold address comp. if opcode has offset bits
2759     if (NumBits > 0) {
2760       // Common case: small offset, fits into instruction.
2761       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2762       int ImmedOffset = Offset / Scale;
2763       unsigned Mask = (1 << NumBits) - 1;
2764       if ((unsigned)Offset <= Mask * Scale) {
2765         // Replace the FrameIndex with sp
2766         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2767         // FIXME: When addrmode2 goes away, this will simplify (like the
2768         // T2 version), as the LDR.i12 versions don't need the encoding
2769         // tricks for the offset value.
2770         if (isSub) {
2771           if (AddrMode == ARMII::AddrMode_i12)
2772             ImmedOffset = -ImmedOffset;
2773           else
2774             ImmedOffset |= 1 << NumBits;
2775         }
2776         ImmOp.ChangeToImmediate(ImmedOffset);
2777         Offset = 0;
2778         return true;
2779       }
2780 
2781       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2782       ImmedOffset = ImmedOffset & Mask;
2783       if (isSub) {
2784         if (AddrMode == ARMII::AddrMode_i12)
2785           ImmedOffset = -ImmedOffset;
2786         else
2787           ImmedOffset |= 1 << NumBits;
2788       }
2789       ImmOp.ChangeToImmediate(ImmedOffset);
2790       Offset &= ~(Mask*Scale);
2791     }
2792   }
2793 
2794   Offset = (isSub) ? -Offset : Offset;
2795   return Offset == 0;
2796 }
2797 
2798 /// analyzeCompare - For a comparison instruction, return the source registers
2799 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2800 /// compares against in CmpValue. Return true if the comparison instruction
2801 /// can be analyzed.
2802 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2803                                       Register &SrcReg2, int64_t &CmpMask,
2804                                       int64_t &CmpValue) const {
2805   switch (MI.getOpcode()) {
2806   default: break;
2807   case ARM::CMPri:
2808   case ARM::t2CMPri:
2809   case ARM::tCMPi8:
2810     SrcReg = MI.getOperand(0).getReg();
2811     SrcReg2 = 0;
2812     CmpMask = ~0;
2813     CmpValue = MI.getOperand(1).getImm();
2814     return true;
2815   case ARM::CMPrr:
2816   case ARM::t2CMPrr:
2817   case ARM::tCMPr:
2818     SrcReg = MI.getOperand(0).getReg();
2819     SrcReg2 = MI.getOperand(1).getReg();
2820     CmpMask = ~0;
2821     CmpValue = 0;
2822     return true;
2823   case ARM::TSTri:
2824   case ARM::t2TSTri:
2825     SrcReg = MI.getOperand(0).getReg();
2826     SrcReg2 = 0;
2827     CmpMask = MI.getOperand(1).getImm();
2828     CmpValue = 0;
2829     return true;
2830   }
2831 
2832   return false;
2833 }
2834 
2835 /// isSuitableForMask - Identify a suitable 'and' instruction that
2836 /// operates on the given source register and applies the same mask
2837 /// as a 'tst' instruction. Provide a limited look-through for copies.
2838 /// When successful, MI will hold the found instruction.
2839 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2840                               int CmpMask, bool CommonUse) {
2841   switch (MI->getOpcode()) {
2842     case ARM::ANDri:
2843     case ARM::t2ANDri:
2844       if (CmpMask != MI->getOperand(2).getImm())
2845         return false;
2846       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2847         return true;
2848       break;
2849   }
2850 
2851   return false;
2852 }
2853 
2854 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2855 /// the condition code if we modify the instructions such that flags are
2856 /// set by ADD(a,b,X).
2857 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2858   switch (CC) {
2859   default: return ARMCC::AL;
2860   case ARMCC::HS: return ARMCC::LO;
2861   case ARMCC::LO: return ARMCC::HS;
2862   case ARMCC::VS: return ARMCC::VS;
2863   case ARMCC::VC: return ARMCC::VC;
2864   }
2865 }
2866 
2867 /// isRedundantFlagInstr - check whether the first instruction, whose only
2868 /// purpose is to update flags, can be made redundant.
2869 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2870 /// CMPri can be made redundant by SUBri if the operands are the same.
2871 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2872 /// This function can be extended later on.
2873 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2874                                         Register SrcReg, Register SrcReg2,
2875                                         int64_t ImmValue,
2876                                         const MachineInstr *OI,
2877                                         bool &IsThumb1) {
2878   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2879       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2880       ((OI->getOperand(1).getReg() == SrcReg &&
2881         OI->getOperand(2).getReg() == SrcReg2) ||
2882        (OI->getOperand(1).getReg() == SrcReg2 &&
2883         OI->getOperand(2).getReg() == SrcReg))) {
2884     IsThumb1 = false;
2885     return true;
2886   }
2887 
2888   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2889       ((OI->getOperand(2).getReg() == SrcReg &&
2890         OI->getOperand(3).getReg() == SrcReg2) ||
2891        (OI->getOperand(2).getReg() == SrcReg2 &&
2892         OI->getOperand(3).getReg() == SrcReg))) {
2893     IsThumb1 = true;
2894     return true;
2895   }
2896 
2897   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2898       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2899       OI->getOperand(1).getReg() == SrcReg &&
2900       OI->getOperand(2).getImm() == ImmValue) {
2901     IsThumb1 = false;
2902     return true;
2903   }
2904 
2905   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2906       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2907       OI->getOperand(2).getReg() == SrcReg &&
2908       OI->getOperand(3).getImm() == ImmValue) {
2909     IsThumb1 = true;
2910     return true;
2911   }
2912 
2913   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2914       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2915        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2916       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2917       OI->getOperand(0).getReg() == SrcReg &&
2918       OI->getOperand(1).getReg() == SrcReg2) {
2919     IsThumb1 = false;
2920     return true;
2921   }
2922 
2923   if (CmpI->getOpcode() == ARM::tCMPr &&
2924       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2925        OI->getOpcode() == ARM::tADDrr) &&
2926       OI->getOperand(0).getReg() == SrcReg &&
2927       OI->getOperand(2).getReg() == SrcReg2) {
2928     IsThumb1 = true;
2929     return true;
2930   }
2931 
2932   return false;
2933 }
2934 
2935 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2936   switch (MI->getOpcode()) {
2937   default: return false;
2938   case ARM::tLSLri:
2939   case ARM::tLSRri:
2940   case ARM::tLSLrr:
2941   case ARM::tLSRrr:
2942   case ARM::tSUBrr:
2943   case ARM::tADDrr:
2944   case ARM::tADDi3:
2945   case ARM::tADDi8:
2946   case ARM::tSUBi3:
2947   case ARM::tSUBi8:
2948   case ARM::tMUL:
2949   case ARM::tADC:
2950   case ARM::tSBC:
2951   case ARM::tRSB:
2952   case ARM::tAND:
2953   case ARM::tORR:
2954   case ARM::tEOR:
2955   case ARM::tBIC:
2956   case ARM::tMVN:
2957   case ARM::tASRri:
2958   case ARM::tASRrr:
2959   case ARM::tROR:
2960     IsThumb1 = true;
2961     LLVM_FALLTHROUGH;
2962   case ARM::RSBrr:
2963   case ARM::RSBri:
2964   case ARM::RSCrr:
2965   case ARM::RSCri:
2966   case ARM::ADDrr:
2967   case ARM::ADDri:
2968   case ARM::ADCrr:
2969   case ARM::ADCri:
2970   case ARM::SUBrr:
2971   case ARM::SUBri:
2972   case ARM::SBCrr:
2973   case ARM::SBCri:
2974   case ARM::t2RSBri:
2975   case ARM::t2ADDrr:
2976   case ARM::t2ADDri:
2977   case ARM::t2ADCrr:
2978   case ARM::t2ADCri:
2979   case ARM::t2SUBrr:
2980   case ARM::t2SUBri:
2981   case ARM::t2SBCrr:
2982   case ARM::t2SBCri:
2983   case ARM::ANDrr:
2984   case ARM::ANDri:
2985   case ARM::t2ANDrr:
2986   case ARM::t2ANDri:
2987   case ARM::ORRrr:
2988   case ARM::ORRri:
2989   case ARM::t2ORRrr:
2990   case ARM::t2ORRri:
2991   case ARM::EORrr:
2992   case ARM::EORri:
2993   case ARM::t2EORrr:
2994   case ARM::t2EORri:
2995   case ARM::t2LSRri:
2996   case ARM::t2LSRrr:
2997   case ARM::t2LSLri:
2998   case ARM::t2LSLrr:
2999     return true;
3000   }
3001 }
3002 
3003 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
3004 /// comparison into one that sets the zero bit in the flags register;
3005 /// Remove a redundant Compare instruction if an earlier instruction can set the
3006 /// flags in the same way as Compare.
3007 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3008 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3009 /// condition code of instructions which use the flags.
3010 bool ARMBaseInstrInfo::optimizeCompareInstr(
3011     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3012     int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3013   // Get the unique definition of SrcReg.
3014   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3015   if (!MI) return false;
3016 
3017   // Masked compares sometimes use the same register as the corresponding 'and'.
3018   if (CmpMask != ~0) {
3019     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3020       MI = nullptr;
3021       for (MachineRegisterInfo::use_instr_iterator
3022            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3023            UI != UE; ++UI) {
3024         if (UI->getParent() != CmpInstr.getParent())
3025           continue;
3026         MachineInstr *PotentialAND = &*UI;
3027         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3028             isPredicated(*PotentialAND))
3029           continue;
3030         MI = PotentialAND;
3031         break;
3032       }
3033       if (!MI) return false;
3034     }
3035   }
3036 
3037   // Get ready to iterate backward from CmpInstr.
3038   MachineBasicBlock::iterator I = CmpInstr, E = MI,
3039                               B = CmpInstr.getParent()->begin();
3040 
3041   // Early exit if CmpInstr is at the beginning of the BB.
3042   if (I == B) return false;
3043 
3044   // There are two possible candidates which can be changed to set CPSR:
3045   // One is MI, the other is a SUB or ADD instruction.
3046   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3047   // ADDr[ri](r1, r2, X).
3048   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3049   MachineInstr *SubAdd = nullptr;
3050   if (SrcReg2 != 0)
3051     // MI is not a candidate for CMPrr.
3052     MI = nullptr;
3053   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3054     // Conservatively refuse to convert an instruction which isn't in the same
3055     // BB as the comparison.
3056     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3057     // Thus we cannot return here.
3058     if (CmpInstr.getOpcode() == ARM::CMPri ||
3059         CmpInstr.getOpcode() == ARM::t2CMPri ||
3060         CmpInstr.getOpcode() == ARM::tCMPi8)
3061       MI = nullptr;
3062     else
3063       return false;
3064   }
3065 
3066   bool IsThumb1 = false;
3067   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3068     return false;
3069 
3070   // We also want to do this peephole for cases like this: if (a*b == 0),
3071   // and optimise away the CMP instruction from the generated code sequence:
3072   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3073   // resulting from the select instruction, but these MOVS instructions for
3074   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3075   // However, if we only have MOVS instructions in between the CMP and the
3076   // other instruction (the MULS in this example), then the CPSR is dead so we
3077   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3078   // reordering and then continue the analysis hoping we can eliminate the
3079   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3080   // consequence, the movs won't redefine/kill the MUL operands which would
3081   // make this reordering illegal.
3082   const TargetRegisterInfo *TRI = &getRegisterInfo();
3083   if (MI && IsThumb1) {
3084     --I;
3085     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3086       bool CanReorder = true;
3087       for (; I != E; --I) {
3088         if (I->getOpcode() != ARM::tMOVi8) {
3089           CanReorder = false;
3090           break;
3091         }
3092       }
3093       if (CanReorder) {
3094         MI = MI->removeFromParent();
3095         E = CmpInstr;
3096         CmpInstr.getParent()->insert(E, MI);
3097       }
3098     }
3099     I = CmpInstr;
3100     E = MI;
3101   }
3102 
3103   // Check that CPSR isn't set between the comparison instruction and the one we
3104   // want to change. At the same time, search for SubAdd.
3105   bool SubAddIsThumb1 = false;
3106   do {
3107     const MachineInstr &Instr = *--I;
3108 
3109     // Check whether CmpInstr can be made redundant by the current instruction.
3110     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3111                              SubAddIsThumb1)) {
3112       SubAdd = &*I;
3113       break;
3114     }
3115 
3116     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3117     if (I == E)
3118       break;
3119 
3120     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3121         Instr.readsRegister(ARM::CPSR, TRI))
3122       // This instruction modifies or uses CPSR after the one we want to
3123       // change. We can't do this transformation.
3124       return false;
3125 
3126     if (I == B) {
3127       // In some cases, we scan the use-list of an instruction for an AND;
3128       // that AND is in the same BB, but may not be scheduled before the
3129       // corresponding TST.  In that case, bail out.
3130       //
3131       // FIXME: We could try to reschedule the AND.
3132       return false;
3133     }
3134   } while (true);
3135 
3136   // Return false if no candidates exist.
3137   if (!MI && !SubAdd)
3138     return false;
3139 
3140   // If we found a SubAdd, use it as it will be closer to the CMP
3141   if (SubAdd) {
3142     MI = SubAdd;
3143     IsThumb1 = SubAddIsThumb1;
3144   }
3145 
3146   // We can't use a predicated instruction - it doesn't always write the flags.
3147   if (isPredicated(*MI))
3148     return false;
3149 
3150   // Scan forward for the use of CPSR
3151   // When checking against MI: if it's a conditional code that requires
3152   // checking of the V bit or C bit, then this is not safe to do.
3153   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3154   // If we are done with the basic block, we need to check whether CPSR is
3155   // live-out.
3156   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3157       OperandsToUpdate;
3158   bool isSafe = false;
3159   I = CmpInstr;
3160   E = CmpInstr.getParent()->end();
3161   while (!isSafe && ++I != E) {
3162     const MachineInstr &Instr = *I;
3163     for (unsigned IO = 0, EO = Instr.getNumOperands();
3164          !isSafe && IO != EO; ++IO) {
3165       const MachineOperand &MO = Instr.getOperand(IO);
3166       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3167         isSafe = true;
3168         break;
3169       }
3170       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3171         continue;
3172       if (MO.isDef()) {
3173         isSafe = true;
3174         break;
3175       }
3176       // Condition code is after the operand before CPSR except for VSELs.
3177       ARMCC::CondCodes CC;
3178       bool IsInstrVSel = true;
3179       switch (Instr.getOpcode()) {
3180       default:
3181         IsInstrVSel = false;
3182         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3183         break;
3184       case ARM::VSELEQD:
3185       case ARM::VSELEQS:
3186       case ARM::VSELEQH:
3187         CC = ARMCC::EQ;
3188         break;
3189       case ARM::VSELGTD:
3190       case ARM::VSELGTS:
3191       case ARM::VSELGTH:
3192         CC = ARMCC::GT;
3193         break;
3194       case ARM::VSELGED:
3195       case ARM::VSELGES:
3196       case ARM::VSELGEH:
3197         CC = ARMCC::GE;
3198         break;
3199       case ARM::VSELVSD:
3200       case ARM::VSELVSS:
3201       case ARM::VSELVSH:
3202         CC = ARMCC::VS;
3203         break;
3204       }
3205 
3206       if (SubAdd) {
3207         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3208         // on CMP needs to be updated to be based on SUB.
3209         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3210         // needs to be modified.
3211         // Push the condition code operands to OperandsToUpdate.
3212         // If it is safe to remove CmpInstr, the condition code of these
3213         // operands will be modified.
3214         unsigned Opc = SubAdd->getOpcode();
3215         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3216                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3217                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3218                      Opc == ARM::tSUBi8;
3219         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3220         if (!IsSub ||
3221             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3222              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3223           // VSel doesn't support condition code update.
3224           if (IsInstrVSel)
3225             return false;
3226           // Ensure we can swap the condition.
3227           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3228           if (NewCC == ARMCC::AL)
3229             return false;
3230           OperandsToUpdate.push_back(
3231               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3232         }
3233       } else {
3234         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3235         switch (CC) {
3236         case ARMCC::EQ: // Z
3237         case ARMCC::NE: // Z
3238         case ARMCC::MI: // N
3239         case ARMCC::PL: // N
3240         case ARMCC::AL: // none
3241           // CPSR can be used multiple times, we should continue.
3242           break;
3243         case ARMCC::HS: // C
3244         case ARMCC::LO: // C
3245         case ARMCC::VS: // V
3246         case ARMCC::VC: // V
3247         case ARMCC::HI: // C Z
3248         case ARMCC::LS: // C Z
3249         case ARMCC::GE: // N V
3250         case ARMCC::LT: // N V
3251         case ARMCC::GT: // Z N V
3252         case ARMCC::LE: // Z N V
3253           // The instruction uses the V bit or C bit which is not safe.
3254           return false;
3255         }
3256       }
3257     }
3258   }
3259 
3260   // If CPSR is not killed nor re-defined, we should check whether it is
3261   // live-out. If it is live-out, do not optimize.
3262   if (!isSafe) {
3263     MachineBasicBlock *MBB = CmpInstr.getParent();
3264     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3265              SE = MBB->succ_end(); SI != SE; ++SI)
3266       if ((*SI)->isLiveIn(ARM::CPSR))
3267         return false;
3268   }
3269 
3270   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3271   // set CPSR so this is represented as an explicit output)
3272   if (!IsThumb1) {
3273     MI->getOperand(5).setReg(ARM::CPSR);
3274     MI->getOperand(5).setIsDef(true);
3275   }
3276   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3277   CmpInstr.eraseFromParent();
3278 
3279   // Modify the condition code of operands in OperandsToUpdate.
3280   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3281   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3282   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3283     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3284 
3285   MI->clearRegisterDeads(ARM::CPSR);
3286 
3287   return true;
3288 }
3289 
3290 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3291   // Do not sink MI if it might be used to optimize a redundant compare.
3292   // We heuristically only look at the instruction immediately following MI to
3293   // avoid potentially searching the entire basic block.
3294   if (isPredicated(MI))
3295     return true;
3296   MachineBasicBlock::const_iterator Next = &MI;
3297   ++Next;
3298   Register SrcReg, SrcReg2;
3299   int64_t CmpMask, CmpValue;
3300   bool IsThumb1;
3301   if (Next != MI.getParent()->end() &&
3302       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3303       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3304     return false;
3305   return true;
3306 }
3307 
3308 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3309                                      Register Reg,
3310                                      MachineRegisterInfo *MRI) const {
3311   // Fold large immediates into add, sub, or, xor.
3312   unsigned DefOpc = DefMI.getOpcode();
3313   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3314     return false;
3315   if (!DefMI.getOperand(1).isImm())
3316     // Could be t2MOVi32imm @xx
3317     return false;
3318 
3319   if (!MRI->hasOneNonDBGUse(Reg))
3320     return false;
3321 
3322   const MCInstrDesc &DefMCID = DefMI.getDesc();
3323   if (DefMCID.hasOptionalDef()) {
3324     unsigned NumOps = DefMCID.getNumOperands();
3325     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3326     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3327       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3328       // to delete DefMI.
3329       return false;
3330   }
3331 
3332   const MCInstrDesc &UseMCID = UseMI.getDesc();
3333   if (UseMCID.hasOptionalDef()) {
3334     unsigned NumOps = UseMCID.getNumOperands();
3335     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3336       // If the instruction sets the flag, do not attempt this optimization
3337       // since it may change the semantics of the code.
3338       return false;
3339   }
3340 
3341   unsigned UseOpc = UseMI.getOpcode();
3342   unsigned NewUseOpc = 0;
3343   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3344   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3345   bool Commute = false;
3346   switch (UseOpc) {
3347   default: return false;
3348   case ARM::SUBrr:
3349   case ARM::ADDrr:
3350   case ARM::ORRrr:
3351   case ARM::EORrr:
3352   case ARM::t2SUBrr:
3353   case ARM::t2ADDrr:
3354   case ARM::t2ORRrr:
3355   case ARM::t2EORrr: {
3356     Commute = UseMI.getOperand(2).getReg() != Reg;
3357     switch (UseOpc) {
3358     default: break;
3359     case ARM::ADDrr:
3360     case ARM::SUBrr:
3361       if (UseOpc == ARM::SUBrr && Commute)
3362         return false;
3363 
3364       // ADD/SUB are special because they're essentially the same operation, so
3365       // we can handle a larger range of immediates.
3366       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3367         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3368       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3369         ImmVal = -ImmVal;
3370         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3371       } else
3372         return false;
3373       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3374       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3375       break;
3376     case ARM::ORRrr:
3377     case ARM::EORrr:
3378       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3379         return false;
3380       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3381       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3382       switch (UseOpc) {
3383       default: break;
3384       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3385       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3386       }
3387       break;
3388     case ARM::t2ADDrr:
3389     case ARM::t2SUBrr: {
3390       if (UseOpc == ARM::t2SUBrr && Commute)
3391         return false;
3392 
3393       // ADD/SUB are special because they're essentially the same operation, so
3394       // we can handle a larger range of immediates.
3395       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3396       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3397       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3398       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3399         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3400       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3401         ImmVal = -ImmVal;
3402         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3403       } else
3404         return false;
3405       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3406       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3407       break;
3408     }
3409     case ARM::t2ORRrr:
3410     case ARM::t2EORrr:
3411       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3412         return false;
3413       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3414       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3415       switch (UseOpc) {
3416       default: break;
3417       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3418       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3419       }
3420       break;
3421     }
3422   }
3423   }
3424 
3425   unsigned OpIdx = Commute ? 2 : 1;
3426   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3427   bool isKill = UseMI.getOperand(OpIdx).isKill();
3428   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3429   Register NewReg = MRI->createVirtualRegister(TRC);
3430   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3431           NewReg)
3432       .addReg(Reg1, getKillRegState(isKill))
3433       .addImm(SOImmValV1)
3434       .add(predOps(ARMCC::AL))
3435       .add(condCodeOp());
3436   UseMI.setDesc(get(NewUseOpc));
3437   UseMI.getOperand(1).setReg(NewReg);
3438   UseMI.getOperand(1).setIsKill();
3439   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3440   DefMI.eraseFromParent();
3441   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3442   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3443   // Then the below code will not be needed, as the input/output register
3444   // classes will be rgpr or gprSP.
3445   // For now, we fix the UseMI operand explicitly here:
3446   switch(NewUseOpc){
3447     case ARM::t2ADDspImm:
3448     case ARM::t2SUBspImm:
3449     case ARM::t2ADDri:
3450     case ARM::t2SUBri:
3451       MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3452   }
3453   return true;
3454 }
3455 
3456 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3457                                         const MachineInstr &MI) {
3458   switch (MI.getOpcode()) {
3459   default: {
3460     const MCInstrDesc &Desc = MI.getDesc();
3461     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3462     assert(UOps >= 0 && "bad # UOps");
3463     return UOps;
3464   }
3465 
3466   case ARM::LDRrs:
3467   case ARM::LDRBrs:
3468   case ARM::STRrs:
3469   case ARM::STRBrs: {
3470     unsigned ShOpVal = MI.getOperand(3).getImm();
3471     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3472     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3473     if (!isSub &&
3474         (ShImm == 0 ||
3475          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3476           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3477       return 1;
3478     return 2;
3479   }
3480 
3481   case ARM::LDRH:
3482   case ARM::STRH: {
3483     if (!MI.getOperand(2).getReg())
3484       return 1;
3485 
3486     unsigned ShOpVal = MI.getOperand(3).getImm();
3487     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3488     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3489     if (!isSub &&
3490         (ShImm == 0 ||
3491          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3492           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3493       return 1;
3494     return 2;
3495   }
3496 
3497   case ARM::LDRSB:
3498   case ARM::LDRSH:
3499     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3500 
3501   case ARM::LDRSB_POST:
3502   case ARM::LDRSH_POST: {
3503     Register Rt = MI.getOperand(0).getReg();
3504     Register Rm = MI.getOperand(3).getReg();
3505     return (Rt == Rm) ? 4 : 3;
3506   }
3507 
3508   case ARM::LDR_PRE_REG:
3509   case ARM::LDRB_PRE_REG: {
3510     Register Rt = MI.getOperand(0).getReg();
3511     Register Rm = MI.getOperand(3).getReg();
3512     if (Rt == Rm)
3513       return 3;
3514     unsigned ShOpVal = MI.getOperand(4).getImm();
3515     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3516     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3517     if (!isSub &&
3518         (ShImm == 0 ||
3519          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3520           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3521       return 2;
3522     return 3;
3523   }
3524 
3525   case ARM::STR_PRE_REG:
3526   case ARM::STRB_PRE_REG: {
3527     unsigned ShOpVal = MI.getOperand(4).getImm();
3528     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3529     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3530     if (!isSub &&
3531         (ShImm == 0 ||
3532          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3533           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3534       return 2;
3535     return 3;
3536   }
3537 
3538   case ARM::LDRH_PRE:
3539   case ARM::STRH_PRE: {
3540     Register Rt = MI.getOperand(0).getReg();
3541     Register Rm = MI.getOperand(3).getReg();
3542     if (!Rm)
3543       return 2;
3544     if (Rt == Rm)
3545       return 3;
3546     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3547   }
3548 
3549   case ARM::LDR_POST_REG:
3550   case ARM::LDRB_POST_REG:
3551   case ARM::LDRH_POST: {
3552     Register Rt = MI.getOperand(0).getReg();
3553     Register Rm = MI.getOperand(3).getReg();
3554     return (Rt == Rm) ? 3 : 2;
3555   }
3556 
3557   case ARM::LDR_PRE_IMM:
3558   case ARM::LDRB_PRE_IMM:
3559   case ARM::LDR_POST_IMM:
3560   case ARM::LDRB_POST_IMM:
3561   case ARM::STRB_POST_IMM:
3562   case ARM::STRB_POST_REG:
3563   case ARM::STRB_PRE_IMM:
3564   case ARM::STRH_POST:
3565   case ARM::STR_POST_IMM:
3566   case ARM::STR_POST_REG:
3567   case ARM::STR_PRE_IMM:
3568     return 2;
3569 
3570   case ARM::LDRSB_PRE:
3571   case ARM::LDRSH_PRE: {
3572     Register Rm = MI.getOperand(3).getReg();
3573     if (Rm == 0)
3574       return 3;
3575     Register Rt = MI.getOperand(0).getReg();
3576     if (Rt == Rm)
3577       return 4;
3578     unsigned ShOpVal = MI.getOperand(4).getImm();
3579     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3580     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3581     if (!isSub &&
3582         (ShImm == 0 ||
3583          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3584           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3585       return 3;
3586     return 4;
3587   }
3588 
3589   case ARM::LDRD: {
3590     Register Rt = MI.getOperand(0).getReg();
3591     Register Rn = MI.getOperand(2).getReg();
3592     Register Rm = MI.getOperand(3).getReg();
3593     if (Rm)
3594       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3595                                                                           : 3;
3596     return (Rt == Rn) ? 3 : 2;
3597   }
3598 
3599   case ARM::STRD: {
3600     Register Rm = MI.getOperand(3).getReg();
3601     if (Rm)
3602       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3603                                                                           : 3;
3604     return 2;
3605   }
3606 
3607   case ARM::LDRD_POST:
3608   case ARM::t2LDRD_POST:
3609     return 3;
3610 
3611   case ARM::STRD_POST:
3612   case ARM::t2STRD_POST:
3613     return 4;
3614 
3615   case ARM::LDRD_PRE: {
3616     Register Rt = MI.getOperand(0).getReg();
3617     Register Rn = MI.getOperand(3).getReg();
3618     Register Rm = MI.getOperand(4).getReg();
3619     if (Rm)
3620       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3621                                                                           : 4;
3622     return (Rt == Rn) ? 4 : 3;
3623   }
3624 
3625   case ARM::t2LDRD_PRE: {
3626     Register Rt = MI.getOperand(0).getReg();
3627     Register Rn = MI.getOperand(3).getReg();
3628     return (Rt == Rn) ? 4 : 3;
3629   }
3630 
3631   case ARM::STRD_PRE: {
3632     Register Rm = MI.getOperand(4).getReg();
3633     if (Rm)
3634       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3635                                                                           : 4;
3636     return 3;
3637   }
3638 
3639   case ARM::t2STRD_PRE:
3640     return 3;
3641 
3642   case ARM::t2LDR_POST:
3643   case ARM::t2LDRB_POST:
3644   case ARM::t2LDRB_PRE:
3645   case ARM::t2LDRSBi12:
3646   case ARM::t2LDRSBi8:
3647   case ARM::t2LDRSBpci:
3648   case ARM::t2LDRSBs:
3649   case ARM::t2LDRH_POST:
3650   case ARM::t2LDRH_PRE:
3651   case ARM::t2LDRSBT:
3652   case ARM::t2LDRSB_POST:
3653   case ARM::t2LDRSB_PRE:
3654   case ARM::t2LDRSH_POST:
3655   case ARM::t2LDRSH_PRE:
3656   case ARM::t2LDRSHi12:
3657   case ARM::t2LDRSHi8:
3658   case ARM::t2LDRSHpci:
3659   case ARM::t2LDRSHs:
3660     return 2;
3661 
3662   case ARM::t2LDRDi8: {
3663     Register Rt = MI.getOperand(0).getReg();
3664     Register Rn = MI.getOperand(2).getReg();
3665     return (Rt == Rn) ? 3 : 2;
3666   }
3667 
3668   case ARM::t2STRB_POST:
3669   case ARM::t2STRB_PRE:
3670   case ARM::t2STRBs:
3671   case ARM::t2STRDi8:
3672   case ARM::t2STRH_POST:
3673   case ARM::t2STRH_PRE:
3674   case ARM::t2STRHs:
3675   case ARM::t2STR_POST:
3676   case ARM::t2STR_PRE:
3677   case ARM::t2STRs:
3678     return 2;
3679   }
3680 }
3681 
3682 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3683 // can't be easily determined return 0 (missing MachineMemOperand).
3684 //
3685 // FIXME: The current MachineInstr design does not support relying on machine
3686 // mem operands to determine the width of a memory access. Instead, we expect
3687 // the target to provide this information based on the instruction opcode and
3688 // operands. However, using MachineMemOperand is the best solution now for
3689 // two reasons:
3690 //
3691 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3692 // operands. This is much more dangerous than using the MachineMemOperand
3693 // sizes because CodeGen passes can insert/remove optional machine operands. In
3694 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3695 // postRA passes as well.
3696 //
3697 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3698 // machine model that calls this should handle the unknown (zero size) case.
3699 //
3700 // Long term, we should require a target hook that verifies MachineMemOperand
3701 // sizes during MC lowering. That target hook should be local to MC lowering
3702 // because we can't ensure that it is aware of other MI forms. Doing this will
3703 // ensure that MachineMemOperands are correctly propagated through all passes.
3704 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3705   unsigned Size = 0;
3706   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3707                                   E = MI.memoperands_end();
3708        I != E; ++I) {
3709     Size += (*I)->getSize();
3710   }
3711   // FIXME: The scheduler currently can't handle values larger than 16. But
3712   // the values can actually go up to 32 for floating-point load/store
3713   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3714   // operations isn't right; we could end up with "extra" memory operands for
3715   // various reasons, like tail merge merging two memory operations.
3716   return std::min(Size / 4, 16U);
3717 }
3718 
3719 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3720                                                     unsigned NumRegs) {
3721   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3722   switch (Opc) {
3723   default:
3724     break;
3725   case ARM::VLDMDIA_UPD:
3726   case ARM::VLDMDDB_UPD:
3727   case ARM::VLDMSIA_UPD:
3728   case ARM::VLDMSDB_UPD:
3729   case ARM::VSTMDIA_UPD:
3730   case ARM::VSTMDDB_UPD:
3731   case ARM::VSTMSIA_UPD:
3732   case ARM::VSTMSDB_UPD:
3733   case ARM::LDMIA_UPD:
3734   case ARM::LDMDA_UPD:
3735   case ARM::LDMDB_UPD:
3736   case ARM::LDMIB_UPD:
3737   case ARM::STMIA_UPD:
3738   case ARM::STMDA_UPD:
3739   case ARM::STMDB_UPD:
3740   case ARM::STMIB_UPD:
3741   case ARM::tLDMIA_UPD:
3742   case ARM::tSTMIA_UPD:
3743   case ARM::t2LDMIA_UPD:
3744   case ARM::t2LDMDB_UPD:
3745   case ARM::t2STMIA_UPD:
3746   case ARM::t2STMDB_UPD:
3747     ++UOps; // One for base register writeback.
3748     break;
3749   case ARM::LDMIA_RET:
3750   case ARM::tPOP_RET:
3751   case ARM::t2LDMIA_RET:
3752     UOps += 2; // One for base reg wb, one for write to pc.
3753     break;
3754   }
3755   return UOps;
3756 }
3757 
3758 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3759                                           const MachineInstr &MI) const {
3760   if (!ItinData || ItinData->isEmpty())
3761     return 1;
3762 
3763   const MCInstrDesc &Desc = MI.getDesc();
3764   unsigned Class = Desc.getSchedClass();
3765   int ItinUOps = ItinData->getNumMicroOps(Class);
3766   if (ItinUOps >= 0) {
3767     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3768       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3769 
3770     return ItinUOps;
3771   }
3772 
3773   unsigned Opc = MI.getOpcode();
3774   switch (Opc) {
3775   default:
3776     llvm_unreachable("Unexpected multi-uops instruction!");
3777   case ARM::VLDMQIA:
3778   case ARM::VSTMQIA:
3779     return 2;
3780 
3781   // The number of uOps for load / store multiple are determined by the number
3782   // registers.
3783   //
3784   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3785   // same cycle. The scheduling for the first load / store must be done
3786   // separately by assuming the address is not 64-bit aligned.
3787   //
3788   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3789   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3790   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3791   case ARM::VLDMDIA:
3792   case ARM::VLDMDIA_UPD:
3793   case ARM::VLDMDDB_UPD:
3794   case ARM::VLDMSIA:
3795   case ARM::VLDMSIA_UPD:
3796   case ARM::VLDMSDB_UPD:
3797   case ARM::VSTMDIA:
3798   case ARM::VSTMDIA_UPD:
3799   case ARM::VSTMDDB_UPD:
3800   case ARM::VSTMSIA:
3801   case ARM::VSTMSIA_UPD:
3802   case ARM::VSTMSDB_UPD: {
3803     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3804     return (NumRegs / 2) + (NumRegs % 2) + 1;
3805   }
3806 
3807   case ARM::LDMIA_RET:
3808   case ARM::LDMIA:
3809   case ARM::LDMDA:
3810   case ARM::LDMDB:
3811   case ARM::LDMIB:
3812   case ARM::LDMIA_UPD:
3813   case ARM::LDMDA_UPD:
3814   case ARM::LDMDB_UPD:
3815   case ARM::LDMIB_UPD:
3816   case ARM::STMIA:
3817   case ARM::STMDA:
3818   case ARM::STMDB:
3819   case ARM::STMIB:
3820   case ARM::STMIA_UPD:
3821   case ARM::STMDA_UPD:
3822   case ARM::STMDB_UPD:
3823   case ARM::STMIB_UPD:
3824   case ARM::tLDMIA:
3825   case ARM::tLDMIA_UPD:
3826   case ARM::tSTMIA_UPD:
3827   case ARM::tPOP_RET:
3828   case ARM::tPOP:
3829   case ARM::tPUSH:
3830   case ARM::t2LDMIA_RET:
3831   case ARM::t2LDMIA:
3832   case ARM::t2LDMDB:
3833   case ARM::t2LDMIA_UPD:
3834   case ARM::t2LDMDB_UPD:
3835   case ARM::t2STMIA:
3836   case ARM::t2STMDB:
3837   case ARM::t2STMIA_UPD:
3838   case ARM::t2STMDB_UPD: {
3839     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3840     switch (Subtarget.getLdStMultipleTiming()) {
3841     case ARMSubtarget::SingleIssuePlusExtras:
3842       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3843     case ARMSubtarget::SingleIssue:
3844       // Assume the worst.
3845       return NumRegs;
3846     case ARMSubtarget::DoubleIssue: {
3847       if (NumRegs < 4)
3848         return 2;
3849       // 4 registers would be issued: 2, 2.
3850       // 5 registers would be issued: 2, 2, 1.
3851       unsigned UOps = (NumRegs / 2);
3852       if (NumRegs % 2)
3853         ++UOps;
3854       return UOps;
3855     }
3856     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3857       unsigned UOps = (NumRegs / 2);
3858       // If there are odd number of registers or if it's not 64-bit aligned,
3859       // then it takes an extra AGU (Address Generation Unit) cycle.
3860       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3861           (*MI.memoperands_begin())->getAlign() < Align(8))
3862         ++UOps;
3863       return UOps;
3864       }
3865     }
3866   }
3867   }
3868   llvm_unreachable("Didn't find the number of microops");
3869 }
3870 
3871 int
3872 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3873                                   const MCInstrDesc &DefMCID,
3874                                   unsigned DefClass,
3875                                   unsigned DefIdx, unsigned DefAlign) const {
3876   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3877   if (RegNo <= 0)
3878     // Def is the address writeback.
3879     return ItinData->getOperandCycle(DefClass, DefIdx);
3880 
3881   int DefCycle;
3882   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3883     // (regno / 2) + (regno % 2) + 1
3884     DefCycle = RegNo / 2 + 1;
3885     if (RegNo % 2)
3886       ++DefCycle;
3887   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3888     DefCycle = RegNo;
3889     bool isSLoad = false;
3890 
3891     switch (DefMCID.getOpcode()) {
3892     default: break;
3893     case ARM::VLDMSIA:
3894     case ARM::VLDMSIA_UPD:
3895     case ARM::VLDMSDB_UPD:
3896       isSLoad = true;
3897       break;
3898     }
3899 
3900     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3901     // then it takes an extra cycle.
3902     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3903       ++DefCycle;
3904   } else {
3905     // Assume the worst.
3906     DefCycle = RegNo + 2;
3907   }
3908 
3909   return DefCycle;
3910 }
3911 
3912 int
3913 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3914                                  const MCInstrDesc &DefMCID,
3915                                  unsigned DefClass,
3916                                  unsigned DefIdx, unsigned DefAlign) const {
3917   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3918   if (RegNo <= 0)
3919     // Def is the address writeback.
3920     return ItinData->getOperandCycle(DefClass, DefIdx);
3921 
3922   int DefCycle;
3923   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3924     // 4 registers would be issued: 1, 2, 1.
3925     // 5 registers would be issued: 1, 2, 2.
3926     DefCycle = RegNo / 2;
3927     if (DefCycle < 1)
3928       DefCycle = 1;
3929     // Result latency is issue cycle + 2: E2.
3930     DefCycle += 2;
3931   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3932     DefCycle = (RegNo / 2);
3933     // If there are odd number of registers or if it's not 64-bit aligned,
3934     // then it takes an extra AGU (Address Generation Unit) cycle.
3935     if ((RegNo % 2) || DefAlign < 8)
3936       ++DefCycle;
3937     // Result latency is AGU cycles + 2.
3938     DefCycle += 2;
3939   } else {
3940     // Assume the worst.
3941     DefCycle = RegNo + 2;
3942   }
3943 
3944   return DefCycle;
3945 }
3946 
3947 int
3948 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3949                                   const MCInstrDesc &UseMCID,
3950                                   unsigned UseClass,
3951                                   unsigned UseIdx, unsigned UseAlign) const {
3952   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3953   if (RegNo <= 0)
3954     return ItinData->getOperandCycle(UseClass, UseIdx);
3955 
3956   int UseCycle;
3957   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3958     // (regno / 2) + (regno % 2) + 1
3959     UseCycle = RegNo / 2 + 1;
3960     if (RegNo % 2)
3961       ++UseCycle;
3962   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3963     UseCycle = RegNo;
3964     bool isSStore = false;
3965 
3966     switch (UseMCID.getOpcode()) {
3967     default: break;
3968     case ARM::VSTMSIA:
3969     case ARM::VSTMSIA_UPD:
3970     case ARM::VSTMSDB_UPD:
3971       isSStore = true;
3972       break;
3973     }
3974 
3975     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3976     // then it takes an extra cycle.
3977     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3978       ++UseCycle;
3979   } else {
3980     // Assume the worst.
3981     UseCycle = RegNo + 2;
3982   }
3983 
3984   return UseCycle;
3985 }
3986 
3987 int
3988 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3989                                  const MCInstrDesc &UseMCID,
3990                                  unsigned UseClass,
3991                                  unsigned UseIdx, unsigned UseAlign) const {
3992   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3993   if (RegNo <= 0)
3994     return ItinData->getOperandCycle(UseClass, UseIdx);
3995 
3996   int UseCycle;
3997   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3998     UseCycle = RegNo / 2;
3999     if (UseCycle < 2)
4000       UseCycle = 2;
4001     // Read in E3.
4002     UseCycle += 2;
4003   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4004     UseCycle = (RegNo / 2);
4005     // If there are odd number of registers or if it's not 64-bit aligned,
4006     // then it takes an extra AGU (Address Generation Unit) cycle.
4007     if ((RegNo % 2) || UseAlign < 8)
4008       ++UseCycle;
4009   } else {
4010     // Assume the worst.
4011     UseCycle = 1;
4012   }
4013   return UseCycle;
4014 }
4015 
4016 int
4017 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4018                                     const MCInstrDesc &DefMCID,
4019                                     unsigned DefIdx, unsigned DefAlign,
4020                                     const MCInstrDesc &UseMCID,
4021                                     unsigned UseIdx, unsigned UseAlign) const {
4022   unsigned DefClass = DefMCID.getSchedClass();
4023   unsigned UseClass = UseMCID.getSchedClass();
4024 
4025   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4026     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4027 
4028   // This may be a def / use of a variable_ops instruction, the operand
4029   // latency might be determinable dynamically. Let the target try to
4030   // figure it out.
4031   int DefCycle = -1;
4032   bool LdmBypass = false;
4033   switch (DefMCID.getOpcode()) {
4034   default:
4035     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4036     break;
4037 
4038   case ARM::VLDMDIA:
4039   case ARM::VLDMDIA_UPD:
4040   case ARM::VLDMDDB_UPD:
4041   case ARM::VLDMSIA:
4042   case ARM::VLDMSIA_UPD:
4043   case ARM::VLDMSDB_UPD:
4044     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4045     break;
4046 
4047   case ARM::LDMIA_RET:
4048   case ARM::LDMIA:
4049   case ARM::LDMDA:
4050   case ARM::LDMDB:
4051   case ARM::LDMIB:
4052   case ARM::LDMIA_UPD:
4053   case ARM::LDMDA_UPD:
4054   case ARM::LDMDB_UPD:
4055   case ARM::LDMIB_UPD:
4056   case ARM::tLDMIA:
4057   case ARM::tLDMIA_UPD:
4058   case ARM::tPUSH:
4059   case ARM::t2LDMIA_RET:
4060   case ARM::t2LDMIA:
4061   case ARM::t2LDMDB:
4062   case ARM::t2LDMIA_UPD:
4063   case ARM::t2LDMDB_UPD:
4064     LdmBypass = true;
4065     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4066     break;
4067   }
4068 
4069   if (DefCycle == -1)
4070     // We can't seem to determine the result latency of the def, assume it's 2.
4071     DefCycle = 2;
4072 
4073   int UseCycle = -1;
4074   switch (UseMCID.getOpcode()) {
4075   default:
4076     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4077     break;
4078 
4079   case ARM::VSTMDIA:
4080   case ARM::VSTMDIA_UPD:
4081   case ARM::VSTMDDB_UPD:
4082   case ARM::VSTMSIA:
4083   case ARM::VSTMSIA_UPD:
4084   case ARM::VSTMSDB_UPD:
4085     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4086     break;
4087 
4088   case ARM::STMIA:
4089   case ARM::STMDA:
4090   case ARM::STMDB:
4091   case ARM::STMIB:
4092   case ARM::STMIA_UPD:
4093   case ARM::STMDA_UPD:
4094   case ARM::STMDB_UPD:
4095   case ARM::STMIB_UPD:
4096   case ARM::tSTMIA_UPD:
4097   case ARM::tPOP_RET:
4098   case ARM::tPOP:
4099   case ARM::t2STMIA:
4100   case ARM::t2STMDB:
4101   case ARM::t2STMIA_UPD:
4102   case ARM::t2STMDB_UPD:
4103     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4104     break;
4105   }
4106 
4107   if (UseCycle == -1)
4108     // Assume it's read in the first stage.
4109     UseCycle = 1;
4110 
4111   UseCycle = DefCycle - UseCycle + 1;
4112   if (UseCycle > 0) {
4113     if (LdmBypass) {
4114       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4115       // first def operand.
4116       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4117                                           UseClass, UseIdx))
4118         --UseCycle;
4119     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4120                                                UseClass, UseIdx)) {
4121       --UseCycle;
4122     }
4123   }
4124 
4125   return UseCycle;
4126 }
4127 
4128 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4129                                            const MachineInstr *MI, unsigned Reg,
4130                                            unsigned &DefIdx, unsigned &Dist) {
4131   Dist = 0;
4132 
4133   MachineBasicBlock::const_iterator I = MI; ++I;
4134   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4135   assert(II->isInsideBundle() && "Empty bundle?");
4136 
4137   int Idx = -1;
4138   while (II->isInsideBundle()) {
4139     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4140     if (Idx != -1)
4141       break;
4142     --II;
4143     ++Dist;
4144   }
4145 
4146   assert(Idx != -1 && "Cannot find bundled definition!");
4147   DefIdx = Idx;
4148   return &*II;
4149 }
4150 
4151 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4152                                            const MachineInstr &MI, unsigned Reg,
4153                                            unsigned &UseIdx, unsigned &Dist) {
4154   Dist = 0;
4155 
4156   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4157   assert(II->isInsideBundle() && "Empty bundle?");
4158   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4159 
4160   // FIXME: This doesn't properly handle multiple uses.
4161   int Idx = -1;
4162   while (II != E && II->isInsideBundle()) {
4163     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4164     if (Idx != -1)
4165       break;
4166     if (II->getOpcode() != ARM::t2IT)
4167       ++Dist;
4168     ++II;
4169   }
4170 
4171   if (Idx == -1) {
4172     Dist = 0;
4173     return nullptr;
4174   }
4175 
4176   UseIdx = Idx;
4177   return &*II;
4178 }
4179 
4180 /// Return the number of cycles to add to (or subtract from) the static
4181 /// itinerary based on the def opcode and alignment. The caller will ensure that
4182 /// adjusted latency is at least one cycle.
4183 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4184                             const MachineInstr &DefMI,
4185                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4186   int Adjust = 0;
4187   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4188     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4189     // variants are one cycle cheaper.
4190     switch (DefMCID.getOpcode()) {
4191     default: break;
4192     case ARM::LDRrs:
4193     case ARM::LDRBrs: {
4194       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4195       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4196       if (ShImm == 0 ||
4197           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4198         --Adjust;
4199       break;
4200     }
4201     case ARM::t2LDRs:
4202     case ARM::t2LDRBs:
4203     case ARM::t2LDRHs:
4204     case ARM::t2LDRSHs: {
4205       // Thumb2 mode: lsl only.
4206       unsigned ShAmt = DefMI.getOperand(3).getImm();
4207       if (ShAmt == 0 || ShAmt == 2)
4208         --Adjust;
4209       break;
4210     }
4211     }
4212   } else if (Subtarget.isSwift()) {
4213     // FIXME: Properly handle all of the latency adjustments for address
4214     // writeback.
4215     switch (DefMCID.getOpcode()) {
4216     default: break;
4217     case ARM::LDRrs:
4218     case ARM::LDRBrs: {
4219       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4220       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4221       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4222       if (!isSub &&
4223           (ShImm == 0 ||
4224            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4225             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4226         Adjust -= 2;
4227       else if (!isSub &&
4228                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4229         --Adjust;
4230       break;
4231     }
4232     case ARM::t2LDRs:
4233     case ARM::t2LDRBs:
4234     case ARM::t2LDRHs:
4235     case ARM::t2LDRSHs: {
4236       // Thumb2 mode: lsl only.
4237       unsigned ShAmt = DefMI.getOperand(3).getImm();
4238       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4239         Adjust -= 2;
4240       break;
4241     }
4242     }
4243   }
4244 
4245   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4246     switch (DefMCID.getOpcode()) {
4247     default: break;
4248     case ARM::VLD1q8:
4249     case ARM::VLD1q16:
4250     case ARM::VLD1q32:
4251     case ARM::VLD1q64:
4252     case ARM::VLD1q8wb_fixed:
4253     case ARM::VLD1q16wb_fixed:
4254     case ARM::VLD1q32wb_fixed:
4255     case ARM::VLD1q64wb_fixed:
4256     case ARM::VLD1q8wb_register:
4257     case ARM::VLD1q16wb_register:
4258     case ARM::VLD1q32wb_register:
4259     case ARM::VLD1q64wb_register:
4260     case ARM::VLD2d8:
4261     case ARM::VLD2d16:
4262     case ARM::VLD2d32:
4263     case ARM::VLD2q8:
4264     case ARM::VLD2q16:
4265     case ARM::VLD2q32:
4266     case ARM::VLD2d8wb_fixed:
4267     case ARM::VLD2d16wb_fixed:
4268     case ARM::VLD2d32wb_fixed:
4269     case ARM::VLD2q8wb_fixed:
4270     case ARM::VLD2q16wb_fixed:
4271     case ARM::VLD2q32wb_fixed:
4272     case ARM::VLD2d8wb_register:
4273     case ARM::VLD2d16wb_register:
4274     case ARM::VLD2d32wb_register:
4275     case ARM::VLD2q8wb_register:
4276     case ARM::VLD2q16wb_register:
4277     case ARM::VLD2q32wb_register:
4278     case ARM::VLD3d8:
4279     case ARM::VLD3d16:
4280     case ARM::VLD3d32:
4281     case ARM::VLD1d64T:
4282     case ARM::VLD3d8_UPD:
4283     case ARM::VLD3d16_UPD:
4284     case ARM::VLD3d32_UPD:
4285     case ARM::VLD1d64Twb_fixed:
4286     case ARM::VLD1d64Twb_register:
4287     case ARM::VLD3q8_UPD:
4288     case ARM::VLD3q16_UPD:
4289     case ARM::VLD3q32_UPD:
4290     case ARM::VLD4d8:
4291     case ARM::VLD4d16:
4292     case ARM::VLD4d32:
4293     case ARM::VLD1d64Q:
4294     case ARM::VLD4d8_UPD:
4295     case ARM::VLD4d16_UPD:
4296     case ARM::VLD4d32_UPD:
4297     case ARM::VLD1d64Qwb_fixed:
4298     case ARM::VLD1d64Qwb_register:
4299     case ARM::VLD4q8_UPD:
4300     case ARM::VLD4q16_UPD:
4301     case ARM::VLD4q32_UPD:
4302     case ARM::VLD1DUPq8:
4303     case ARM::VLD1DUPq16:
4304     case ARM::VLD1DUPq32:
4305     case ARM::VLD1DUPq8wb_fixed:
4306     case ARM::VLD1DUPq16wb_fixed:
4307     case ARM::VLD1DUPq32wb_fixed:
4308     case ARM::VLD1DUPq8wb_register:
4309     case ARM::VLD1DUPq16wb_register:
4310     case ARM::VLD1DUPq32wb_register:
4311     case ARM::VLD2DUPd8:
4312     case ARM::VLD2DUPd16:
4313     case ARM::VLD2DUPd32:
4314     case ARM::VLD2DUPd8wb_fixed:
4315     case ARM::VLD2DUPd16wb_fixed:
4316     case ARM::VLD2DUPd32wb_fixed:
4317     case ARM::VLD2DUPd8wb_register:
4318     case ARM::VLD2DUPd16wb_register:
4319     case ARM::VLD2DUPd32wb_register:
4320     case ARM::VLD4DUPd8:
4321     case ARM::VLD4DUPd16:
4322     case ARM::VLD4DUPd32:
4323     case ARM::VLD4DUPd8_UPD:
4324     case ARM::VLD4DUPd16_UPD:
4325     case ARM::VLD4DUPd32_UPD:
4326     case ARM::VLD1LNd8:
4327     case ARM::VLD1LNd16:
4328     case ARM::VLD1LNd32:
4329     case ARM::VLD1LNd8_UPD:
4330     case ARM::VLD1LNd16_UPD:
4331     case ARM::VLD1LNd32_UPD:
4332     case ARM::VLD2LNd8:
4333     case ARM::VLD2LNd16:
4334     case ARM::VLD2LNd32:
4335     case ARM::VLD2LNq16:
4336     case ARM::VLD2LNq32:
4337     case ARM::VLD2LNd8_UPD:
4338     case ARM::VLD2LNd16_UPD:
4339     case ARM::VLD2LNd32_UPD:
4340     case ARM::VLD2LNq16_UPD:
4341     case ARM::VLD2LNq32_UPD:
4342     case ARM::VLD4LNd8:
4343     case ARM::VLD4LNd16:
4344     case ARM::VLD4LNd32:
4345     case ARM::VLD4LNq16:
4346     case ARM::VLD4LNq32:
4347     case ARM::VLD4LNd8_UPD:
4348     case ARM::VLD4LNd16_UPD:
4349     case ARM::VLD4LNd32_UPD:
4350     case ARM::VLD4LNq16_UPD:
4351     case ARM::VLD4LNq32_UPD:
4352       // If the address is not 64-bit aligned, the latencies of these
4353       // instructions increases by one.
4354       ++Adjust;
4355       break;
4356     }
4357   }
4358   return Adjust;
4359 }
4360 
4361 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4362                                         const MachineInstr &DefMI,
4363                                         unsigned DefIdx,
4364                                         const MachineInstr &UseMI,
4365                                         unsigned UseIdx) const {
4366   // No operand latency. The caller may fall back to getInstrLatency.
4367   if (!ItinData || ItinData->isEmpty())
4368     return -1;
4369 
4370   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4371   Register Reg = DefMO.getReg();
4372 
4373   const MachineInstr *ResolvedDefMI = &DefMI;
4374   unsigned DefAdj = 0;
4375   if (DefMI.isBundle())
4376     ResolvedDefMI =
4377         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4378   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4379       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4380     return 1;
4381   }
4382 
4383   const MachineInstr *ResolvedUseMI = &UseMI;
4384   unsigned UseAdj = 0;
4385   if (UseMI.isBundle()) {
4386     ResolvedUseMI =
4387         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4388     if (!ResolvedUseMI)
4389       return -1;
4390   }
4391 
4392   return getOperandLatencyImpl(
4393       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4394       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4395 }
4396 
4397 int ARMBaseInstrInfo::getOperandLatencyImpl(
4398     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4399     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4400     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4401     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4402   if (Reg == ARM::CPSR) {
4403     if (DefMI.getOpcode() == ARM::FMSTAT) {
4404       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4405       return Subtarget.isLikeA9() ? 1 : 20;
4406     }
4407 
4408     // CPSR set and branch can be paired in the same cycle.
4409     if (UseMI.isBranch())
4410       return 0;
4411 
4412     // Otherwise it takes the instruction latency (generally one).
4413     unsigned Latency = getInstrLatency(ItinData, DefMI);
4414 
4415     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4416     // its uses. Instructions which are otherwise scheduled between them may
4417     // incur a code size penalty (not able to use the CPSR setting 16-bit
4418     // instructions).
4419     if (Latency > 0 && Subtarget.isThumb2()) {
4420       const MachineFunction *MF = DefMI.getParent()->getParent();
4421       // FIXME: Use Function::hasOptSize().
4422       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4423         --Latency;
4424     }
4425     return Latency;
4426   }
4427 
4428   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4429     return -1;
4430 
4431   unsigned DefAlign = DefMI.hasOneMemOperand()
4432                           ? (*DefMI.memoperands_begin())->getAlign().value()
4433                           : 0;
4434   unsigned UseAlign = UseMI.hasOneMemOperand()
4435                           ? (*UseMI.memoperands_begin())->getAlign().value()
4436                           : 0;
4437 
4438   // Get the itinerary's latency if possible, and handle variable_ops.
4439   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4440                                   UseIdx, UseAlign);
4441   // Unable to find operand latency. The caller may resort to getInstrLatency.
4442   if (Latency < 0)
4443     return Latency;
4444 
4445   // Adjust for IT block position.
4446   int Adj = DefAdj + UseAdj;
4447 
4448   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4449   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4450   if (Adj >= 0 || (int)Latency > -Adj) {
4451     return Latency + Adj;
4452   }
4453   // Return the itinerary latency, which may be zero but not less than zero.
4454   return Latency;
4455 }
4456 
4457 int
4458 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4459                                     SDNode *DefNode, unsigned DefIdx,
4460                                     SDNode *UseNode, unsigned UseIdx) const {
4461   if (!DefNode->isMachineOpcode())
4462     return 1;
4463 
4464   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4465 
4466   if (isZeroCost(DefMCID.Opcode))
4467     return 0;
4468 
4469   if (!ItinData || ItinData->isEmpty())
4470     return DefMCID.mayLoad() ? 3 : 1;
4471 
4472   if (!UseNode->isMachineOpcode()) {
4473     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4474     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4475     int Threshold = 1 + Adj;
4476     return Latency <= Threshold ? 1 : Latency - Adj;
4477   }
4478 
4479   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4480   auto *DefMN = cast<MachineSDNode>(DefNode);
4481   unsigned DefAlign = !DefMN->memoperands_empty()
4482                           ? (*DefMN->memoperands_begin())->getAlign().value()
4483                           : 0;
4484   auto *UseMN = cast<MachineSDNode>(UseNode);
4485   unsigned UseAlign = !UseMN->memoperands_empty()
4486                           ? (*UseMN->memoperands_begin())->getAlign().value()
4487                           : 0;
4488   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4489                                   UseMCID, UseIdx, UseAlign);
4490 
4491   if (Latency > 1 &&
4492       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4493        Subtarget.isCortexA7())) {
4494     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4495     // variants are one cycle cheaper.
4496     switch (DefMCID.getOpcode()) {
4497     default: break;
4498     case ARM::LDRrs:
4499     case ARM::LDRBrs: {
4500       unsigned ShOpVal =
4501         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4502       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4503       if (ShImm == 0 ||
4504           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4505         --Latency;
4506       break;
4507     }
4508     case ARM::t2LDRs:
4509     case ARM::t2LDRBs:
4510     case ARM::t2LDRHs:
4511     case ARM::t2LDRSHs: {
4512       // Thumb2 mode: lsl only.
4513       unsigned ShAmt =
4514         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4515       if (ShAmt == 0 || ShAmt == 2)
4516         --Latency;
4517       break;
4518     }
4519     }
4520   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4521     // FIXME: Properly handle all of the latency adjustments for address
4522     // writeback.
4523     switch (DefMCID.getOpcode()) {
4524     default: break;
4525     case ARM::LDRrs:
4526     case ARM::LDRBrs: {
4527       unsigned ShOpVal =
4528         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4529       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4530       if (ShImm == 0 ||
4531           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4532            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4533         Latency -= 2;
4534       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4535         --Latency;
4536       break;
4537     }
4538     case ARM::t2LDRs:
4539     case ARM::t2LDRBs:
4540     case ARM::t2LDRHs:
4541     case ARM::t2LDRSHs:
4542       // Thumb2 mode: lsl 0-3 only.
4543       Latency -= 2;
4544       break;
4545     }
4546   }
4547 
4548   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4549     switch (DefMCID.getOpcode()) {
4550     default: break;
4551     case ARM::VLD1q8:
4552     case ARM::VLD1q16:
4553     case ARM::VLD1q32:
4554     case ARM::VLD1q64:
4555     case ARM::VLD1q8wb_register:
4556     case ARM::VLD1q16wb_register:
4557     case ARM::VLD1q32wb_register:
4558     case ARM::VLD1q64wb_register:
4559     case ARM::VLD1q8wb_fixed:
4560     case ARM::VLD1q16wb_fixed:
4561     case ARM::VLD1q32wb_fixed:
4562     case ARM::VLD1q64wb_fixed:
4563     case ARM::VLD2d8:
4564     case ARM::VLD2d16:
4565     case ARM::VLD2d32:
4566     case ARM::VLD2q8Pseudo:
4567     case ARM::VLD2q16Pseudo:
4568     case ARM::VLD2q32Pseudo:
4569     case ARM::VLD2d8wb_fixed:
4570     case ARM::VLD2d16wb_fixed:
4571     case ARM::VLD2d32wb_fixed:
4572     case ARM::VLD2q8PseudoWB_fixed:
4573     case ARM::VLD2q16PseudoWB_fixed:
4574     case ARM::VLD2q32PseudoWB_fixed:
4575     case ARM::VLD2d8wb_register:
4576     case ARM::VLD2d16wb_register:
4577     case ARM::VLD2d32wb_register:
4578     case ARM::VLD2q8PseudoWB_register:
4579     case ARM::VLD2q16PseudoWB_register:
4580     case ARM::VLD2q32PseudoWB_register:
4581     case ARM::VLD3d8Pseudo:
4582     case ARM::VLD3d16Pseudo:
4583     case ARM::VLD3d32Pseudo:
4584     case ARM::VLD1d8TPseudo:
4585     case ARM::VLD1d16TPseudo:
4586     case ARM::VLD1d32TPseudo:
4587     case ARM::VLD1d64TPseudo:
4588     case ARM::VLD1d64TPseudoWB_fixed:
4589     case ARM::VLD1d64TPseudoWB_register:
4590     case ARM::VLD3d8Pseudo_UPD:
4591     case ARM::VLD3d16Pseudo_UPD:
4592     case ARM::VLD3d32Pseudo_UPD:
4593     case ARM::VLD3q8Pseudo_UPD:
4594     case ARM::VLD3q16Pseudo_UPD:
4595     case ARM::VLD3q32Pseudo_UPD:
4596     case ARM::VLD3q8oddPseudo:
4597     case ARM::VLD3q16oddPseudo:
4598     case ARM::VLD3q32oddPseudo:
4599     case ARM::VLD3q8oddPseudo_UPD:
4600     case ARM::VLD3q16oddPseudo_UPD:
4601     case ARM::VLD3q32oddPseudo_UPD:
4602     case ARM::VLD4d8Pseudo:
4603     case ARM::VLD4d16Pseudo:
4604     case ARM::VLD4d32Pseudo:
4605     case ARM::VLD1d8QPseudo:
4606     case ARM::VLD1d16QPseudo:
4607     case ARM::VLD1d32QPseudo:
4608     case ARM::VLD1d64QPseudo:
4609     case ARM::VLD1d64QPseudoWB_fixed:
4610     case ARM::VLD1d64QPseudoWB_register:
4611     case ARM::VLD1q8HighQPseudo:
4612     case ARM::VLD1q8LowQPseudo_UPD:
4613     case ARM::VLD1q8HighTPseudo:
4614     case ARM::VLD1q8LowTPseudo_UPD:
4615     case ARM::VLD1q16HighQPseudo:
4616     case ARM::VLD1q16LowQPseudo_UPD:
4617     case ARM::VLD1q16HighTPseudo:
4618     case ARM::VLD1q16LowTPseudo_UPD:
4619     case ARM::VLD1q32HighQPseudo:
4620     case ARM::VLD1q32LowQPseudo_UPD:
4621     case ARM::VLD1q32HighTPseudo:
4622     case ARM::VLD1q32LowTPseudo_UPD:
4623     case ARM::VLD1q64HighQPseudo:
4624     case ARM::VLD1q64LowQPseudo_UPD:
4625     case ARM::VLD1q64HighTPseudo:
4626     case ARM::VLD1q64LowTPseudo_UPD:
4627     case ARM::VLD4d8Pseudo_UPD:
4628     case ARM::VLD4d16Pseudo_UPD:
4629     case ARM::VLD4d32Pseudo_UPD:
4630     case ARM::VLD4q8Pseudo_UPD:
4631     case ARM::VLD4q16Pseudo_UPD:
4632     case ARM::VLD4q32Pseudo_UPD:
4633     case ARM::VLD4q8oddPseudo:
4634     case ARM::VLD4q16oddPseudo:
4635     case ARM::VLD4q32oddPseudo:
4636     case ARM::VLD4q8oddPseudo_UPD:
4637     case ARM::VLD4q16oddPseudo_UPD:
4638     case ARM::VLD4q32oddPseudo_UPD:
4639     case ARM::VLD1DUPq8:
4640     case ARM::VLD1DUPq16:
4641     case ARM::VLD1DUPq32:
4642     case ARM::VLD1DUPq8wb_fixed:
4643     case ARM::VLD1DUPq16wb_fixed:
4644     case ARM::VLD1DUPq32wb_fixed:
4645     case ARM::VLD1DUPq8wb_register:
4646     case ARM::VLD1DUPq16wb_register:
4647     case ARM::VLD1DUPq32wb_register:
4648     case ARM::VLD2DUPd8:
4649     case ARM::VLD2DUPd16:
4650     case ARM::VLD2DUPd32:
4651     case ARM::VLD2DUPd8wb_fixed:
4652     case ARM::VLD2DUPd16wb_fixed:
4653     case ARM::VLD2DUPd32wb_fixed:
4654     case ARM::VLD2DUPd8wb_register:
4655     case ARM::VLD2DUPd16wb_register:
4656     case ARM::VLD2DUPd32wb_register:
4657     case ARM::VLD2DUPq8EvenPseudo:
4658     case ARM::VLD2DUPq8OddPseudo:
4659     case ARM::VLD2DUPq16EvenPseudo:
4660     case ARM::VLD2DUPq16OddPseudo:
4661     case ARM::VLD2DUPq32EvenPseudo:
4662     case ARM::VLD2DUPq32OddPseudo:
4663     case ARM::VLD3DUPq8EvenPseudo:
4664     case ARM::VLD3DUPq8OddPseudo:
4665     case ARM::VLD3DUPq16EvenPseudo:
4666     case ARM::VLD3DUPq16OddPseudo:
4667     case ARM::VLD3DUPq32EvenPseudo:
4668     case ARM::VLD3DUPq32OddPseudo:
4669     case ARM::VLD4DUPd8Pseudo:
4670     case ARM::VLD4DUPd16Pseudo:
4671     case ARM::VLD4DUPd32Pseudo:
4672     case ARM::VLD4DUPd8Pseudo_UPD:
4673     case ARM::VLD4DUPd16Pseudo_UPD:
4674     case ARM::VLD4DUPd32Pseudo_UPD:
4675     case ARM::VLD4DUPq8EvenPseudo:
4676     case ARM::VLD4DUPq8OddPseudo:
4677     case ARM::VLD4DUPq16EvenPseudo:
4678     case ARM::VLD4DUPq16OddPseudo:
4679     case ARM::VLD4DUPq32EvenPseudo:
4680     case ARM::VLD4DUPq32OddPseudo:
4681     case ARM::VLD1LNq8Pseudo:
4682     case ARM::VLD1LNq16Pseudo:
4683     case ARM::VLD1LNq32Pseudo:
4684     case ARM::VLD1LNq8Pseudo_UPD:
4685     case ARM::VLD1LNq16Pseudo_UPD:
4686     case ARM::VLD1LNq32Pseudo_UPD:
4687     case ARM::VLD2LNd8Pseudo:
4688     case ARM::VLD2LNd16Pseudo:
4689     case ARM::VLD2LNd32Pseudo:
4690     case ARM::VLD2LNq16Pseudo:
4691     case ARM::VLD2LNq32Pseudo:
4692     case ARM::VLD2LNd8Pseudo_UPD:
4693     case ARM::VLD2LNd16Pseudo_UPD:
4694     case ARM::VLD2LNd32Pseudo_UPD:
4695     case ARM::VLD2LNq16Pseudo_UPD:
4696     case ARM::VLD2LNq32Pseudo_UPD:
4697     case ARM::VLD4LNd8Pseudo:
4698     case ARM::VLD4LNd16Pseudo:
4699     case ARM::VLD4LNd32Pseudo:
4700     case ARM::VLD4LNq16Pseudo:
4701     case ARM::VLD4LNq32Pseudo:
4702     case ARM::VLD4LNd8Pseudo_UPD:
4703     case ARM::VLD4LNd16Pseudo_UPD:
4704     case ARM::VLD4LNd32Pseudo_UPD:
4705     case ARM::VLD4LNq16Pseudo_UPD:
4706     case ARM::VLD4LNq32Pseudo_UPD:
4707       // If the address is not 64-bit aligned, the latencies of these
4708       // instructions increases by one.
4709       ++Latency;
4710       break;
4711     }
4712 
4713   return Latency;
4714 }
4715 
4716 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4717   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4718       MI.isImplicitDef())
4719     return 0;
4720 
4721   if (MI.isBundle())
4722     return 0;
4723 
4724   const MCInstrDesc &MCID = MI.getDesc();
4725 
4726   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4727                         !Subtarget.cheapPredicableCPSRDef())) {
4728     // When predicated, CPSR is an additional source operand for CPSR updating
4729     // instructions, this apparently increases their latencies.
4730     return 1;
4731   }
4732   return 0;
4733 }
4734 
4735 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4736                                            const MachineInstr &MI,
4737                                            unsigned *PredCost) const {
4738   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4739       MI.isImplicitDef())
4740     return 1;
4741 
4742   // An instruction scheduler typically runs on unbundled instructions, however
4743   // other passes may query the latency of a bundled instruction.
4744   if (MI.isBundle()) {
4745     unsigned Latency = 0;
4746     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4747     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4748     while (++I != E && I->isInsideBundle()) {
4749       if (I->getOpcode() != ARM::t2IT)
4750         Latency += getInstrLatency(ItinData, *I, PredCost);
4751     }
4752     return Latency;
4753   }
4754 
4755   const MCInstrDesc &MCID = MI.getDesc();
4756   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4757                                      !Subtarget.cheapPredicableCPSRDef()))) {
4758     // When predicated, CPSR is an additional source operand for CPSR updating
4759     // instructions, this apparently increases their latencies.
4760     *PredCost = 1;
4761   }
4762   // Be sure to call getStageLatency for an empty itinerary in case it has a
4763   // valid MinLatency property.
4764   if (!ItinData)
4765     return MI.mayLoad() ? 3 : 1;
4766 
4767   unsigned Class = MCID.getSchedClass();
4768 
4769   // For instructions with variable uops, use uops as latency.
4770   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4771     return getNumMicroOps(ItinData, MI);
4772 
4773   // For the common case, fall back on the itinerary's latency.
4774   unsigned Latency = ItinData->getStageLatency(Class);
4775 
4776   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4777   unsigned DefAlign =
4778       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4779   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4780   if (Adj >= 0 || (int)Latency > -Adj) {
4781     return Latency + Adj;
4782   }
4783   return Latency;
4784 }
4785 
4786 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4787                                       SDNode *Node) const {
4788   if (!Node->isMachineOpcode())
4789     return 1;
4790 
4791   if (!ItinData || ItinData->isEmpty())
4792     return 1;
4793 
4794   unsigned Opcode = Node->getMachineOpcode();
4795   switch (Opcode) {
4796   default:
4797     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4798   case ARM::VLDMQIA:
4799   case ARM::VSTMQIA:
4800     return 2;
4801   }
4802 }
4803 
4804 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4805                                              const MachineRegisterInfo *MRI,
4806                                              const MachineInstr &DefMI,
4807                                              unsigned DefIdx,
4808                                              const MachineInstr &UseMI,
4809                                              unsigned UseIdx) const {
4810   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4811   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4812   if (Subtarget.nonpipelinedVFP() &&
4813       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4814     return true;
4815 
4816   // Hoist VFP / NEON instructions with 4 or higher latency.
4817   unsigned Latency =
4818       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4819   if (Latency <= 3)
4820     return false;
4821   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4822          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4823 }
4824 
4825 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4826                                         const MachineInstr &DefMI,
4827                                         unsigned DefIdx) const {
4828   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4829   if (!ItinData || ItinData->isEmpty())
4830     return false;
4831 
4832   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4833   if (DDomain == ARMII::DomainGeneral) {
4834     unsigned DefClass = DefMI.getDesc().getSchedClass();
4835     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4836     return (DefCycle != -1 && DefCycle <= 2);
4837   }
4838   return false;
4839 }
4840 
4841 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4842                                          StringRef &ErrInfo) const {
4843   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4844     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4845     return false;
4846   }
4847   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4848     // Make sure we don't generate a lo-lo mov that isn't supported.
4849     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4850         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4851       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4852       return false;
4853     }
4854   }
4855   if (MI.getOpcode() == ARM::tPUSH ||
4856       MI.getOpcode() == ARM::tPOP ||
4857       MI.getOpcode() == ARM::tPOP_RET) {
4858     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4859       if (MI.getOperand(i).isImplicit() ||
4860           !MI.getOperand(i).isReg())
4861         continue;
4862       Register Reg = MI.getOperand(i).getReg();
4863       if (Reg < ARM::R0 || Reg > ARM::R7) {
4864         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4865             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4866           ErrInfo = "Unsupported register in Thumb1 push/pop";
4867           return false;
4868         }
4869       }
4870     }
4871   }
4872   if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4873     assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4874     if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4875         MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4876       ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4877       return false;
4878     }
4879   }
4880   return true;
4881 }
4882 
4883 // LoadStackGuard has so far only been implemented for MachO. Different code
4884 // sequence is needed for other targets.
4885 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4886                                                 unsigned LoadImmOpc,
4887                                                 unsigned LoadOpc) const {
4888   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4889          "ROPI/RWPI not currently supported with stack guard");
4890 
4891   MachineBasicBlock &MBB = *MI->getParent();
4892   DebugLoc DL = MI->getDebugLoc();
4893   Register Reg = MI->getOperand(0).getReg();
4894   const GlobalValue *GV =
4895       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4896   MachineInstrBuilder MIB;
4897 
4898   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4899       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4900 
4901   if (Subtarget.isGVIndirectSymbol(GV)) {
4902     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4903     MIB.addReg(Reg, RegState::Kill).addImm(0);
4904     auto Flags = MachineMemOperand::MOLoad |
4905                  MachineMemOperand::MODereferenceable |
4906                  MachineMemOperand::MOInvariant;
4907     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4908         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4909     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4910   }
4911 
4912   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4913   MIB.addReg(Reg, RegState::Kill)
4914       .addImm(0)
4915       .cloneMemRefs(*MI)
4916       .add(predOps(ARMCC::AL));
4917 }
4918 
4919 bool
4920 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4921                                      unsigned &AddSubOpc,
4922                                      bool &NegAcc, bool &HasLane) const {
4923   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4924   if (I == MLxEntryMap.end())
4925     return false;
4926 
4927   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4928   MulOpc = Entry.MulOpc;
4929   AddSubOpc = Entry.AddSubOpc;
4930   NegAcc = Entry.NegAcc;
4931   HasLane = Entry.HasLane;
4932   return true;
4933 }
4934 
4935 //===----------------------------------------------------------------------===//
4936 // Execution domains.
4937 //===----------------------------------------------------------------------===//
4938 //
4939 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4940 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4941 // but they can be changed to vorr equivalents that are executed by the NEON
4942 // pipeline.
4943 //
4944 // We use the following execution domain numbering:
4945 //
4946 enum ARMExeDomain {
4947   ExeGeneric = 0,
4948   ExeVFP = 1,
4949   ExeNEON = 2
4950 };
4951 
4952 //
4953 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4954 //
4955 std::pair<uint16_t, uint16_t>
4956 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4957   // If we don't have access to NEON instructions then we won't be able
4958   // to swizzle anything to the NEON domain. Check to make sure.
4959   if (Subtarget.hasNEON()) {
4960     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4961     // if they are not predicated.
4962     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4963       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4964 
4965     // CortexA9 is particularly picky about mixing the two and wants these
4966     // converted.
4967     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4968         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4969          MI.getOpcode() == ARM::VMOVS))
4970       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4971   }
4972   // No other instructions can be swizzled, so just determine their domain.
4973   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4974 
4975   if (Domain & ARMII::DomainNEON)
4976     return std::make_pair(ExeNEON, 0);
4977 
4978   // Certain instructions can go either way on Cortex-A8.
4979   // Treat them as NEON instructions.
4980   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4981     return std::make_pair(ExeNEON, 0);
4982 
4983   if (Domain & ARMII::DomainVFP)
4984     return std::make_pair(ExeVFP, 0);
4985 
4986   return std::make_pair(ExeGeneric, 0);
4987 }
4988 
4989 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4990                                             unsigned SReg, unsigned &Lane) {
4991   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4992   Lane = 0;
4993 
4994   if (DReg != ARM::NoRegister)
4995    return DReg;
4996 
4997   Lane = 1;
4998   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4999 
5000   assert(DReg && "S-register with no D super-register?");
5001   return DReg;
5002 }
5003 
5004 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5005 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5006 /// zero if no register needs to be defined as implicit-use.
5007 ///
5008 /// If the function cannot determine if an SPR should be marked implicit use or
5009 /// not, it returns false.
5010 ///
5011 /// This function handles cases where an instruction is being modified from taking
5012 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5013 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5014 /// lane of the DPR).
5015 ///
5016 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5017 /// (including the case where the DPR itself is defined), it should not.
5018 ///
5019 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5020                                        MachineInstr &MI, unsigned DReg,
5021                                        unsigned Lane, unsigned &ImplicitSReg) {
5022   // If the DPR is defined or used already, the other SPR lane will be chained
5023   // correctly, so there is nothing to be done.
5024   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5025     ImplicitSReg = 0;
5026     return true;
5027   }
5028 
5029   // Otherwise we need to go searching to see if the SPR is set explicitly.
5030   ImplicitSReg = TRI->getSubReg(DReg,
5031                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5032   MachineBasicBlock::LivenessQueryResult LQR =
5033       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5034 
5035   if (LQR == MachineBasicBlock::LQR_Live)
5036     return true;
5037   else if (LQR == MachineBasicBlock::LQR_Unknown)
5038     return false;
5039 
5040   // If the register is known not to be live, there is no need to add an
5041   // implicit-use.
5042   ImplicitSReg = 0;
5043   return true;
5044 }
5045 
5046 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5047                                           unsigned Domain) const {
5048   unsigned DstReg, SrcReg, DReg;
5049   unsigned Lane;
5050   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5051   const TargetRegisterInfo *TRI = &getRegisterInfo();
5052   switch (MI.getOpcode()) {
5053   default:
5054     llvm_unreachable("cannot handle opcode!");
5055     break;
5056   case ARM::VMOVD:
5057     if (Domain != ExeNEON)
5058       break;
5059 
5060     // Zap the predicate operands.
5061     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5062 
5063     // Make sure we've got NEON instructions.
5064     assert(Subtarget.hasNEON() && "VORRd requires NEON");
5065 
5066     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5067     DstReg = MI.getOperand(0).getReg();
5068     SrcReg = MI.getOperand(1).getReg();
5069 
5070     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5071       MI.RemoveOperand(i - 1);
5072 
5073     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5074     MI.setDesc(get(ARM::VORRd));
5075     MIB.addReg(DstReg, RegState::Define)
5076         .addReg(SrcReg)
5077         .addReg(SrcReg)
5078         .add(predOps(ARMCC::AL));
5079     break;
5080   case ARM::VMOVRS:
5081     if (Domain != ExeNEON)
5082       break;
5083     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5084 
5085     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5086     DstReg = MI.getOperand(0).getReg();
5087     SrcReg = MI.getOperand(1).getReg();
5088 
5089     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5090       MI.RemoveOperand(i - 1);
5091 
5092     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5093 
5094     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5095     // Note that DSrc has been widened and the other lane may be undef, which
5096     // contaminates the entire register.
5097     MI.setDesc(get(ARM::VGETLNi32));
5098     MIB.addReg(DstReg, RegState::Define)
5099         .addReg(DReg, RegState::Undef)
5100         .addImm(Lane)
5101         .add(predOps(ARMCC::AL));
5102 
5103     // The old source should be an implicit use, otherwise we might think it
5104     // was dead before here.
5105     MIB.addReg(SrcReg, RegState::Implicit);
5106     break;
5107   case ARM::VMOVSR: {
5108     if (Domain != ExeNEON)
5109       break;
5110     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5111 
5112     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5113     DstReg = MI.getOperand(0).getReg();
5114     SrcReg = MI.getOperand(1).getReg();
5115 
5116     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5117 
5118     unsigned ImplicitSReg;
5119     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5120       break;
5121 
5122     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5123       MI.RemoveOperand(i - 1);
5124 
5125     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5126     // Again DDst may be undefined at the beginning of this instruction.
5127     MI.setDesc(get(ARM::VSETLNi32));
5128     MIB.addReg(DReg, RegState::Define)
5129         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5130         .addReg(SrcReg)
5131         .addImm(Lane)
5132         .add(predOps(ARMCC::AL));
5133 
5134     // The narrower destination must be marked as set to keep previous chains
5135     // in place.
5136     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5137     if (ImplicitSReg != 0)
5138       MIB.addReg(ImplicitSReg, RegState::Implicit);
5139     break;
5140     }
5141     case ARM::VMOVS: {
5142       if (Domain != ExeNEON)
5143         break;
5144 
5145       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5146       DstReg = MI.getOperand(0).getReg();
5147       SrcReg = MI.getOperand(1).getReg();
5148 
5149       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5150       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5151       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5152 
5153       unsigned ImplicitSReg;
5154       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5155         break;
5156 
5157       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5158         MI.RemoveOperand(i - 1);
5159 
5160       if (DSrc == DDst) {
5161         // Destination can be:
5162         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5163         MI.setDesc(get(ARM::VDUPLN32d));
5164         MIB.addReg(DDst, RegState::Define)
5165             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5166             .addImm(SrcLane)
5167             .add(predOps(ARMCC::AL));
5168 
5169         // Neither the source or the destination are naturally represented any
5170         // more, so add them in manually.
5171         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5172         MIB.addReg(SrcReg, RegState::Implicit);
5173         if (ImplicitSReg != 0)
5174           MIB.addReg(ImplicitSReg, RegState::Implicit);
5175         break;
5176       }
5177 
5178       // In general there's no single instruction that can perform an S <-> S
5179       // move in NEON space, but a pair of VEXT instructions *can* do the
5180       // job. It turns out that the VEXTs needed will only use DSrc once, with
5181       // the position based purely on the combination of lane-0 and lane-1
5182       // involved. For example
5183       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5184       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5185       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5186       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5187       //
5188       // Pattern of the MachineInstrs is:
5189       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5190       MachineInstrBuilder NewMIB;
5191       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5192                        DDst);
5193 
5194       // On the first instruction, both DSrc and DDst may be undef if present.
5195       // Specifically when the original instruction didn't have them as an
5196       // <imp-use>.
5197       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5198       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5199       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5200 
5201       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5202       CurUndef = !MI.readsRegister(CurReg, TRI);
5203       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5204             .addImm(1)
5205             .add(predOps(ARMCC::AL));
5206 
5207       if (SrcLane == DstLane)
5208         NewMIB.addReg(SrcReg, RegState::Implicit);
5209 
5210       MI.setDesc(get(ARM::VEXTd32));
5211       MIB.addReg(DDst, RegState::Define);
5212 
5213       // On the second instruction, DDst has definitely been defined above, so
5214       // it is not undef. DSrc, if present, can be undef as above.
5215       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5216       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5217       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5218 
5219       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5220       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5221       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5222          .addImm(1)
5223          .add(predOps(ARMCC::AL));
5224 
5225       if (SrcLane != DstLane)
5226         MIB.addReg(SrcReg, RegState::Implicit);
5227 
5228       // As before, the original destination is no longer represented, add it
5229       // implicitly.
5230       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5231       if (ImplicitSReg != 0)
5232         MIB.addReg(ImplicitSReg, RegState::Implicit);
5233       break;
5234     }
5235   }
5236 }
5237 
5238 //===----------------------------------------------------------------------===//
5239 // Partial register updates
5240 //===----------------------------------------------------------------------===//
5241 //
5242 // Swift renames NEON registers with 64-bit granularity.  That means any
5243 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5244 // problem is mostly avoided by translating f32 operations to v2f32 operations
5245 // on D-registers, but f32 loads are still a problem.
5246 //
5247 // These instructions can load an f32 into a NEON register:
5248 //
5249 // VLDRS - Only writes S, partial D update.
5250 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5251 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5252 //
5253 // FCONSTD can be used as a dependency-breaking instruction.
5254 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5255     const MachineInstr &MI, unsigned OpNum,
5256     const TargetRegisterInfo *TRI) const {
5257   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5258   if (!PartialUpdateClearance)
5259     return 0;
5260 
5261   assert(TRI && "Need TRI instance");
5262 
5263   const MachineOperand &MO = MI.getOperand(OpNum);
5264   if (MO.readsReg())
5265     return 0;
5266   Register Reg = MO.getReg();
5267   int UseOp = -1;
5268 
5269   switch (MI.getOpcode()) {
5270   // Normal instructions writing only an S-register.
5271   case ARM::VLDRS:
5272   case ARM::FCONSTS:
5273   case ARM::VMOVSR:
5274   case ARM::VMOVv8i8:
5275   case ARM::VMOVv4i16:
5276   case ARM::VMOVv2i32:
5277   case ARM::VMOVv2f32:
5278   case ARM::VMOVv1i64:
5279     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5280     break;
5281 
5282     // Explicitly reads the dependency.
5283   case ARM::VLD1LNd32:
5284     UseOp = 3;
5285     break;
5286   default:
5287     return 0;
5288   }
5289 
5290   // If this instruction actually reads a value from Reg, there is no unwanted
5291   // dependency.
5292   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5293     return 0;
5294 
5295   // We must be able to clobber the whole D-reg.
5296   if (Register::isVirtualRegister(Reg)) {
5297     // Virtual register must be a def undef foo:ssub_0 operand.
5298     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5299       return 0;
5300   } else if (ARM::SPRRegClass.contains(Reg)) {
5301     // Physical register: MI must define the full D-reg.
5302     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5303                                              &ARM::DPRRegClass);
5304     if (!DReg || !MI.definesRegister(DReg, TRI))
5305       return 0;
5306   }
5307 
5308   // MI has an unwanted D-register dependency.
5309   // Avoid defs in the previous N instructrions.
5310   return PartialUpdateClearance;
5311 }
5312 
5313 // Break a partial register dependency after getPartialRegUpdateClearance
5314 // returned non-zero.
5315 void ARMBaseInstrInfo::breakPartialRegDependency(
5316     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5317   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5318   assert(TRI && "Need TRI instance");
5319 
5320   const MachineOperand &MO = MI.getOperand(OpNum);
5321   Register Reg = MO.getReg();
5322   assert(Register::isPhysicalRegister(Reg) &&
5323          "Can't break virtual register dependencies.");
5324   unsigned DReg = Reg;
5325 
5326   // If MI defines an S-reg, find the corresponding D super-register.
5327   if (ARM::SPRRegClass.contains(Reg)) {
5328     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5329     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5330   }
5331 
5332   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5333   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5334 
5335   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5336   // the full D-register by loading the same value to both lanes.  The
5337   // instruction is micro-coded with 2 uops, so don't do this until we can
5338   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5339   // too big regressions.
5340 
5341   // Insert the dependency-breaking FCONSTD before MI.
5342   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5343   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5344       .addImm(96)
5345       .add(predOps(ARMCC::AL));
5346   MI.addRegisterKilled(DReg, TRI, true);
5347 }
5348 
5349 bool ARMBaseInstrInfo::hasNOP() const {
5350   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5351 }
5352 
5353 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5354   if (MI->getNumOperands() < 4)
5355     return true;
5356   unsigned ShOpVal = MI->getOperand(3).getImm();
5357   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5358   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5359   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5360       ((ShImm == 1 || ShImm == 2) &&
5361        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5362     return true;
5363 
5364   return false;
5365 }
5366 
5367 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5368     const MachineInstr &MI, unsigned DefIdx,
5369     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5370   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5371   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5372 
5373   switch (MI.getOpcode()) {
5374   case ARM::VMOVDRR:
5375     // dX = VMOVDRR rY, rZ
5376     // is the same as:
5377     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5378     // Populate the InputRegs accordingly.
5379     // rY
5380     const MachineOperand *MOReg = &MI.getOperand(1);
5381     if (!MOReg->isUndef())
5382       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5383                                               MOReg->getSubReg(), ARM::ssub_0));
5384     // rZ
5385     MOReg = &MI.getOperand(2);
5386     if (!MOReg->isUndef())
5387       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5388                                               MOReg->getSubReg(), ARM::ssub_1));
5389     return true;
5390   }
5391   llvm_unreachable("Target dependent opcode missing");
5392 }
5393 
5394 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5395     const MachineInstr &MI, unsigned DefIdx,
5396     RegSubRegPairAndIdx &InputReg) const {
5397   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5398   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5399 
5400   switch (MI.getOpcode()) {
5401   case ARM::VMOVRRD:
5402     // rX, rY = VMOVRRD dZ
5403     // is the same as:
5404     // rX = EXTRACT_SUBREG dZ, ssub_0
5405     // rY = EXTRACT_SUBREG dZ, ssub_1
5406     const MachineOperand &MOReg = MI.getOperand(2);
5407     if (MOReg.isUndef())
5408       return false;
5409     InputReg.Reg = MOReg.getReg();
5410     InputReg.SubReg = MOReg.getSubReg();
5411     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5412     return true;
5413   }
5414   llvm_unreachable("Target dependent opcode missing");
5415 }
5416 
5417 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5418     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5419     RegSubRegPairAndIdx &InsertedReg) const {
5420   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5421   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5422 
5423   switch (MI.getOpcode()) {
5424   case ARM::VSETLNi32:
5425   case ARM::MVE_VMOV_to_lane_32:
5426     // dX = VSETLNi32 dY, rZ, imm
5427     // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5428     const MachineOperand &MOBaseReg = MI.getOperand(1);
5429     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5430     if (MOInsertedReg.isUndef())
5431       return false;
5432     const MachineOperand &MOIndex = MI.getOperand(3);
5433     BaseReg.Reg = MOBaseReg.getReg();
5434     BaseReg.SubReg = MOBaseReg.getSubReg();
5435 
5436     InsertedReg.Reg = MOInsertedReg.getReg();
5437     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5438     InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5439     return true;
5440   }
5441   llvm_unreachable("Target dependent opcode missing");
5442 }
5443 
5444 std::pair<unsigned, unsigned>
5445 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5446   const unsigned Mask = ARMII::MO_OPTION_MASK;
5447   return std::make_pair(TF & Mask, TF & ~Mask);
5448 }
5449 
5450 ArrayRef<std::pair<unsigned, const char *>>
5451 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5452   using namespace ARMII;
5453 
5454   static const std::pair<unsigned, const char *> TargetFlags[] = {
5455       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5456   return makeArrayRef(TargetFlags);
5457 }
5458 
5459 ArrayRef<std::pair<unsigned, const char *>>
5460 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5461   using namespace ARMII;
5462 
5463   static const std::pair<unsigned, const char *> TargetFlags[] = {
5464       {MO_COFFSTUB, "arm-coffstub"},
5465       {MO_GOT, "arm-got"},
5466       {MO_SBREL, "arm-sbrel"},
5467       {MO_DLLIMPORT, "arm-dllimport"},
5468       {MO_SECREL, "arm-secrel"},
5469       {MO_NONLAZY, "arm-nonlazy"}};
5470   return makeArrayRef(TargetFlags);
5471 }
5472 
5473 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5474                                                       Register Reg) const {
5475   int Sign = 1;
5476   unsigned Opcode = MI.getOpcode();
5477   int64_t Offset = 0;
5478 
5479   // TODO: Handle cases where Reg is a super- or sub-register of the
5480   // destination register.
5481   const MachineOperand &Op0 = MI.getOperand(0);
5482   if (!Op0.isReg() || Reg != Op0.getReg())
5483     return None;
5484 
5485   // We describe SUBri or ADDri instructions.
5486   if (Opcode == ARM::SUBri)
5487     Sign = -1;
5488   else if (Opcode != ARM::ADDri)
5489     return None;
5490 
5491   // TODO: Third operand can be global address (usually some string). Since
5492   //       strings can be relocated we cannot calculate their offsets for
5493   //       now.
5494   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5495     return None;
5496 
5497   Offset = MI.getOperand(2).getImm() * Sign;
5498   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5499 }
5500 
5501 bool llvm::registerDefinedBetween(unsigned Reg,
5502                                   MachineBasicBlock::iterator From,
5503                                   MachineBasicBlock::iterator To,
5504                                   const TargetRegisterInfo *TRI) {
5505   for (auto I = From; I != To; ++I)
5506     if (I->modifiesRegister(Reg, TRI))
5507       return true;
5508   return false;
5509 }
5510 
5511 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5512                                          const TargetRegisterInfo *TRI) {
5513   // Search backwards to the instruction that defines CSPR. This may or not
5514   // be a CMP, we check that after this loop. If we find another instruction
5515   // that reads cpsr, we return nullptr.
5516   MachineBasicBlock::iterator CmpMI = Br;
5517   while (CmpMI != Br->getParent()->begin()) {
5518     --CmpMI;
5519     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5520       break;
5521     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5522       break;
5523   }
5524 
5525   // Check that this inst is a CMP r[0-7], #0 and that the register
5526   // is not redefined between the cmp and the br.
5527   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5528     return nullptr;
5529   Register Reg = CmpMI->getOperand(0).getReg();
5530   Register PredReg;
5531   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5532   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5533     return nullptr;
5534   if (!isARMLowRegister(Reg))
5535     return nullptr;
5536   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5537     return nullptr;
5538 
5539   return &*CmpMI;
5540 }
5541 
5542 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5543                                            const ARMSubtarget *Subtarget,
5544                                            bool ForCodesize) {
5545   if (Subtarget->isThumb()) {
5546     if (Val <= 255) // MOV
5547       return ForCodesize ? 2 : 1;
5548     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5549                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5550                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5551       return ForCodesize ? 4 : 1;
5552     if (Val <= 510) // MOV + ADDi8
5553       return ForCodesize ? 4 : 2;
5554     if (~Val <= 255) // MOV + MVN
5555       return ForCodesize ? 4 : 2;
5556     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5557       return ForCodesize ? 4 : 2;
5558   } else {
5559     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5560       return ForCodesize ? 4 : 1;
5561     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5562       return ForCodesize ? 4 : 1;
5563     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5564       return ForCodesize ? 4 : 1;
5565     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5566       return ForCodesize ? 8 : 2;
5567     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5568       return ForCodesize ? 8 : 2;
5569   }
5570   if (Subtarget->useMovt()) // MOVW + MOVT
5571     return ForCodesize ? 8 : 2;
5572   return ForCodesize ? 8 : 3; // Literal pool load
5573 }
5574 
5575 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5576                                                const ARMSubtarget *Subtarget,
5577                                                bool ForCodesize) {
5578   // Check with ForCodesize
5579   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5580   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5581   if (Cost1 < Cost2)
5582     return true;
5583   if (Cost1 > Cost2)
5584     return false;
5585 
5586   // If they are equal, try with !ForCodesize
5587   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5588          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5589 }
5590 
5591 /// Constants defining how certain sequences should be outlined.
5592 /// This encompasses how an outlined function should be called, and what kind of
5593 /// frame should be emitted for that outlined function.
5594 ///
5595 /// \p MachineOutlinerTailCall implies that the function is being created from
5596 /// a sequence of instructions ending in a return.
5597 ///
5598 /// That is,
5599 ///
5600 /// I1                                OUTLINED_FUNCTION:
5601 /// I2    --> B OUTLINED_FUNCTION     I1
5602 /// BX LR                             I2
5603 ///                                   BX LR
5604 ///
5605 /// +-------------------------+--------+-----+
5606 /// |                         | Thumb2 | ARM |
5607 /// +-------------------------+--------+-----+
5608 /// | Call overhead in Bytes  |      4 |   4 |
5609 /// | Frame overhead in Bytes |      0 |   0 |
5610 /// | Stack fixup required    |     No |  No |
5611 /// +-------------------------+--------+-----+
5612 ///
5613 /// \p MachineOutlinerThunk implies that the function is being created from
5614 /// a sequence of instructions ending in a call. The outlined function is
5615 /// called with a BL instruction, and the outlined function tail-calls the
5616 /// original call destination.
5617 ///
5618 /// That is,
5619 ///
5620 /// I1                                OUTLINED_FUNCTION:
5621 /// I2   --> BL OUTLINED_FUNCTION     I1
5622 /// BL f                              I2
5623 ///                                   B f
5624 ///
5625 /// +-------------------------+--------+-----+
5626 /// |                         | Thumb2 | ARM |
5627 /// +-------------------------+--------+-----+
5628 /// | Call overhead in Bytes  |      4 |   4 |
5629 /// | Frame overhead in Bytes |      0 |   0 |
5630 /// | Stack fixup required    |     No |  No |
5631 /// +-------------------------+--------+-----+
5632 ///
5633 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5634 /// a BL instruction, but doesn't require LR to be saved and restored. This
5635 /// happens when LR is known to be dead.
5636 ///
5637 /// That is,
5638 ///
5639 /// I1                                OUTLINED_FUNCTION:
5640 /// I2 --> BL OUTLINED_FUNCTION       I1
5641 /// I3                                I2
5642 ///                                   I3
5643 ///                                   BX LR
5644 ///
5645 /// +-------------------------+--------+-----+
5646 /// |                         | Thumb2 | ARM |
5647 /// +-------------------------+--------+-----+
5648 /// | Call overhead in Bytes  |      4 |   4 |
5649 /// | Frame overhead in Bytes |      4 |   4 |
5650 /// | Stack fixup required    |     No |  No |
5651 /// +-------------------------+--------+-----+
5652 ///
5653 /// \p MachineOutlinerRegSave implies that the function should be called with a
5654 /// save and restore of LR to an available register. This allows us to avoid
5655 /// stack fixups. Note that this outlining variant is compatible with the
5656 /// NoLRSave case.
5657 ///
5658 /// That is,
5659 ///
5660 /// I1     Save LR                    OUTLINED_FUNCTION:
5661 /// I2 --> BL OUTLINED_FUNCTION       I1
5662 /// I3     Restore LR                 I2
5663 ///                                   I3
5664 ///                                   BX LR
5665 ///
5666 /// +-------------------------+--------+-----+
5667 /// |                         | Thumb2 | ARM |
5668 /// +-------------------------+--------+-----+
5669 /// | Call overhead in Bytes  |      8 |  12 |
5670 /// | Frame overhead in Bytes |      2 |   4 |
5671 /// | Stack fixup required    |     No |  No |
5672 /// +-------------------------+--------+-----+
5673 ///
5674 /// \p MachineOutlinerDefault implies that the function should be called with
5675 /// a save and restore of LR to the stack.
5676 ///
5677 /// That is,
5678 ///
5679 /// I1     Save LR                    OUTLINED_FUNCTION:
5680 /// I2 --> BL OUTLINED_FUNCTION       I1
5681 /// I3     Restore LR                 I2
5682 ///                                   I3
5683 ///                                   BX LR
5684 ///
5685 /// +-------------------------+--------+-----+
5686 /// |                         | Thumb2 | ARM |
5687 /// +-------------------------+--------+-----+
5688 /// | Call overhead in Bytes  |      8 |  12 |
5689 /// | Frame overhead in Bytes |      2 |   4 |
5690 /// | Stack fixup required    |    Yes | Yes |
5691 /// +-------------------------+--------+-----+
5692 
5693 enum MachineOutlinerClass {
5694   MachineOutlinerTailCall,
5695   MachineOutlinerThunk,
5696   MachineOutlinerNoLRSave,
5697   MachineOutlinerRegSave,
5698   MachineOutlinerDefault
5699 };
5700 
5701 enum MachineOutlinerMBBFlags {
5702   LRUnavailableSomewhere = 0x2,
5703   HasCalls = 0x4,
5704   UnsafeRegsDead = 0x8
5705 };
5706 
5707 struct OutlinerCosts {
5708   const int CallTailCall;
5709   const int FrameTailCall;
5710   const int CallThunk;
5711   const int FrameThunk;
5712   const int CallNoLRSave;
5713   const int FrameNoLRSave;
5714   const int CallRegSave;
5715   const int FrameRegSave;
5716   const int CallDefault;
5717   const int FrameDefault;
5718   const int SaveRestoreLROnStack;
5719 
5720   OutlinerCosts(const ARMSubtarget &target)
5721       : CallTailCall(target.isThumb() ? 4 : 4),
5722         FrameTailCall(target.isThumb() ? 0 : 0),
5723         CallThunk(target.isThumb() ? 4 : 4),
5724         FrameThunk(target.isThumb() ? 0 : 0),
5725         CallNoLRSave(target.isThumb() ? 4 : 4),
5726         FrameNoLRSave(target.isThumb() ? 4 : 4),
5727         CallRegSave(target.isThumb() ? 8 : 12),
5728         FrameRegSave(target.isThumb() ? 2 : 4),
5729         CallDefault(target.isThumb() ? 8 : 12),
5730         FrameDefault(target.isThumb() ? 2 : 4),
5731         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5732 };
5733 
5734 unsigned
5735 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
5736   assert(C.LRUWasSet && "LRU wasn't set?");
5737   MachineFunction *MF = C.getMF();
5738   const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>(
5739       MF->getSubtarget().getRegisterInfo());
5740 
5741   BitVector regsReserved = ARI->getReservedRegs(*MF);
5742   // Check if there is an available register across the sequence that we can
5743   // use.
5744   for (unsigned Reg : ARM::rGPRRegClass) {
5745     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5746         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5747         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5748         C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
5749       return Reg;
5750   }
5751 
5752   // No suitable register. Return 0.
5753   return 0u;
5754 }
5755 
5756 // Compute liveness of LR at the point after the interval [I, E), which
5757 // denotes a *backward* iteration through instructions. Used only for return
5758 // basic blocks, which do not end with a tail call.
5759 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5760                           MachineBasicBlock::reverse_iterator I,
5761                           MachineBasicBlock::reverse_iterator E) {
5762   // At the end of the function LR dead.
5763   bool Live = false;
5764   for (; I != E; ++I) {
5765     const MachineInstr &MI = *I;
5766 
5767     // Check defs of LR.
5768     if (MI.modifiesRegister(ARM::LR, &TRI))
5769       Live = false;
5770 
5771     // Check uses of LR.
5772     unsigned Opcode = MI.getOpcode();
5773     if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5774         Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5775         Opcode == ARM::tBXNS_RET) {
5776       // These instructions use LR, but it's not an (explicit or implicit)
5777       // operand.
5778       Live = true;
5779       continue;
5780     }
5781     if (MI.readsRegister(ARM::LR, &TRI))
5782       Live = true;
5783   }
5784   return !Live;
5785 }
5786 
5787 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5788     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5789   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5790   unsigned SequenceSize =
5791       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5792                       [this](unsigned Sum, const MachineInstr &MI) {
5793                         return Sum + getInstSizeInBytes(MI);
5794                       });
5795 
5796   // Properties about candidate MBBs that hold for all of them.
5797   unsigned FlagsSetInAll = 0xF;
5798 
5799   // Compute liveness information for each candidate, and set FlagsSetInAll.
5800   const TargetRegisterInfo &TRI = getRegisterInfo();
5801   std::for_each(
5802       RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5803       [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; });
5804 
5805   // According to the ARM Procedure Call Standard, the following are
5806   // undefined on entry/exit from a function call:
5807   //
5808   // * Register R12(IP),
5809   // * Condition codes (and thus the CPSR register)
5810   //
5811   // Since we control the instructions which are part of the outlined regions
5812   // we don't need to be fully compliant with the AAPCS, but we have to
5813   // guarantee that if a veneer is inserted at link time the code is still
5814   // correct.  Because of this, we can't outline any sequence of instructions
5815   // where one of these registers is live into/across it. Thus, we need to
5816   // delete those candidates.
5817   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5818     // If the unsafe registers in this block are all dead, then we don't need
5819     // to compute liveness here.
5820     if (C.Flags & UnsafeRegsDead)
5821       return false;
5822     C.initLRU(TRI);
5823     LiveRegUnits LRU = C.LRU;
5824     return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR));
5825   };
5826 
5827   // Are there any candidates where those registers are live?
5828   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5829     // Erase every candidate that violates the restrictions above. (It could be
5830     // true that we have viable candidates, so it's not worth bailing out in
5831     // the case that, say, 1 out of 20 candidates violate the restructions.)
5832     llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5833 
5834     // If the sequence doesn't have enough candidates left, then we're done.
5835     if (RepeatedSequenceLocs.size() < 2)
5836       return outliner::OutlinedFunction();
5837   }
5838 
5839   // At this point, we have only "safe" candidates to outline. Figure out
5840   // frame + call instruction information.
5841 
5842   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5843 
5844   // Helper lambda which sets call information for every candidate.
5845   auto SetCandidateCallInfo =
5846       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5847         for (outliner::Candidate &C : RepeatedSequenceLocs)
5848           C.setCallInfo(CallID, NumBytesForCall);
5849       };
5850 
5851   OutlinerCosts Costs(Subtarget);
5852   unsigned FrameID = MachineOutlinerDefault;
5853   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5854 
5855   // If the last instruction in any candidate is a terminator, then we should
5856   // tail call all of the candidates.
5857   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5858     FrameID = MachineOutlinerTailCall;
5859     NumBytesToCreateFrame = Costs.FrameTailCall;
5860     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
5861   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
5862              LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
5863              LastInstrOpcode == ARM::tBLXr ||
5864              LastInstrOpcode == ARM::tBLXr_noip ||
5865              LastInstrOpcode == ARM::tBLXi) {
5866     FrameID = MachineOutlinerThunk;
5867     NumBytesToCreateFrame = Costs.FrameThunk;
5868     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
5869   } else {
5870     // We need to decide how to emit calls + frames. We can always emit the same
5871     // frame if we don't need to save to the stack. If we have to save to the
5872     // stack, then we need a different frame.
5873     unsigned NumBytesNoStackCalls = 0;
5874     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5875 
5876     for (outliner::Candidate &C : RepeatedSequenceLocs) {
5877       C.initLRU(TRI);
5878       // LR liveness is overestimated in return blocks, unless they end with a
5879       // tail call.
5880       const auto Last = C.getMBB()->rbegin();
5881       const bool LRIsAvailable =
5882           C.getMBB()->isReturnBlock() && !Last->isCall()
5883               ? isLRAvailable(TRI, Last,
5884                               (MachineBasicBlock::reverse_iterator)C.front())
5885               : C.LRU.available(ARM::LR);
5886       if (LRIsAvailable) {
5887         FrameID = MachineOutlinerNoLRSave;
5888         NumBytesNoStackCalls += Costs.CallNoLRSave;
5889         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
5890         CandidatesWithoutStackFixups.push_back(C);
5891       }
5892 
5893       // Is an unused register available? If so, we won't modify the stack, so
5894       // we can outline with the same frame type as those that don't save LR.
5895       else if (findRegisterToSaveLRTo(C)) {
5896         FrameID = MachineOutlinerRegSave;
5897         NumBytesNoStackCalls += Costs.CallRegSave;
5898         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
5899         CandidatesWithoutStackFixups.push_back(C);
5900       }
5901 
5902       // Is SP used in the sequence at all? If not, we don't have to modify
5903       // the stack, so we are guaranteed to get the same frame.
5904       else if (C.UsedInSequence.available(ARM::SP)) {
5905         NumBytesNoStackCalls += Costs.CallDefault;
5906         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5907         CandidatesWithoutStackFixups.push_back(C);
5908       }
5909 
5910       // If we outline this, we need to modify the stack. Pretend we don't
5911       // outline this by saving all of its bytes.
5912       else
5913         NumBytesNoStackCalls += SequenceSize;
5914     }
5915 
5916     // If there are no places where we have to save LR, then note that we don't
5917     // have to update the stack. Otherwise, give every candidate the default
5918     // call type
5919     if (NumBytesNoStackCalls <=
5920         RepeatedSequenceLocs.size() * Costs.CallDefault) {
5921       RepeatedSequenceLocs = CandidatesWithoutStackFixups;
5922       FrameID = MachineOutlinerNoLRSave;
5923     } else
5924       SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5925   }
5926 
5927   // Does every candidate's MBB contain a call?  If so, then we might have a
5928   // call in the range.
5929   if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
5930     // check if the range contains a call.  These require a save + restore of
5931     // the link register.
5932     if (std::any_of(FirstCand.front(), FirstCand.back(),
5933                     [](const MachineInstr &MI) { return MI.isCall(); }))
5934       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5935 
5936     // Handle the last instruction separately.  If it is tail call, then the
5937     // last instruction is a call, we don't want to save + restore in this
5938     // case.  However, it could be possible that the last instruction is a
5939     // call without it being valid to tail call this sequence.  We should
5940     // consider this as well.
5941     else if (FrameID != MachineOutlinerThunk &&
5942              FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
5943       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5944   }
5945 
5946   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
5947                                     NumBytesToCreateFrame, FrameID);
5948 }
5949 
5950 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
5951                                                  int64_t Fixup,
5952                                                  bool Updt) const {
5953   int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP);
5954   unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
5955   if (SPIdx < 0)
5956     // No SP operand
5957     return true;
5958   else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
5959     // If SP is not the base register we can't do much
5960     return false;
5961 
5962   // Stack might be involved but addressing mode doesn't handle any offset.
5963   // Rq: AddrModeT1_[1|2|4] don't operate on SP
5964   if (AddrMode == ARMII::AddrMode1        // Arithmetic instructions
5965       || AddrMode == ARMII::AddrMode4     // Load/Store Multiple
5966       || AddrMode == ARMII::AddrMode6     // Neon Load/Store Multiple
5967       || AddrMode == ARMII::AddrModeT2_so // SP can't be used as based register
5968       || AddrMode == ARMII::AddrModeT2_pc // PCrel access
5969       || AddrMode == ARMII::AddrMode2     // Used by PRE and POST indexed LD/ST
5970       || AddrMode == ARMII::AddrModeT2_i7 // v8.1-M MVE
5971       || AddrMode == ARMII::AddrModeT2_i7s2 // v8.1-M MVE
5972       || AddrMode == ARMII::AddrModeT2_i7s4 // v8.1-M sys regs VLDR/VSTR
5973       || AddrMode == ARMII::AddrModeNone)
5974     return false;
5975 
5976   unsigned NumOps = MI->getDesc().getNumOperands();
5977   unsigned ImmIdx = NumOps - 3;
5978 
5979   const MachineOperand &Offset = MI->getOperand(ImmIdx);
5980   assert(Offset.isImm() && "Is not an immediate");
5981   int64_t OffVal = Offset.getImm();
5982 
5983   if (OffVal < 0)
5984     // Don't override data if the are below SP.
5985     return false;
5986 
5987   unsigned NumBits = 0;
5988   unsigned Scale = 1;
5989 
5990   switch (AddrMode) {
5991   case ARMII::AddrMode3:
5992     if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
5993       return false;
5994     OffVal = ARM_AM::getAM3Offset(OffVal);
5995     NumBits = 8;
5996     break;
5997   case ARMII::AddrMode5:
5998     if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
5999       return false;
6000     OffVal = ARM_AM::getAM5Offset(OffVal);
6001     NumBits = 8;
6002     Scale = 4;
6003     break;
6004   case ARMII::AddrMode5FP16:
6005     if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6006       return false;
6007     OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6008     NumBits = 8;
6009     Scale = 2;
6010     break;
6011   case ARMII::AddrModeT2_i8:
6012     NumBits = 8;
6013     break;
6014   case ARMII::AddrModeT2_i8s4:
6015     // FIXME: Values are already scaled in this addressing mode.
6016     assert((Fixup & 3) == 0 && "Can't encode this offset!");
6017     NumBits = 10;
6018     break;
6019   case ARMII::AddrModeT2_ldrex:
6020     NumBits = 8;
6021     Scale = 4;
6022     break;
6023   case ARMII::AddrModeT2_i12:
6024   case ARMII::AddrMode_i12:
6025     NumBits = 12;
6026     break;
6027   case ARMII::AddrModeT1_s: // SP-relative LD/ST
6028     NumBits = 8;
6029     Scale = 4;
6030     break;
6031   default:
6032     llvm_unreachable("Unsupported addressing mode!");
6033   }
6034   // Make sure the offset is encodable for instructions that scale the
6035   // immediate.
6036   assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6037          "Can't encode this offset!");
6038   OffVal += Fixup / Scale;
6039 
6040   unsigned Mask = (1 << NumBits) - 1;
6041 
6042   if (OffVal <= Mask) {
6043     if (Updt)
6044       MI->getOperand(ImmIdx).setImm(OffVal);
6045     return true;
6046   }
6047 
6048   return false;
6049 
6050 }
6051 
6052 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6053     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6054   const Function &F = MF.getFunction();
6055 
6056   // Can F be deduplicated by the linker? If it can, don't outline from it.
6057   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6058     return false;
6059 
6060   // Don't outline from functions with section markings; the program could
6061   // expect that all the code is in the named section.
6062   // FIXME: Allow outlining from multiple functions with the same section
6063   // marking.
6064   if (F.hasSection())
6065     return false;
6066 
6067   // FIXME: Thumb1 outlining is not handled
6068   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6069     return false;
6070 
6071   // It's safe to outline from MF.
6072   return true;
6073 }
6074 
6075 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6076                                               unsigned &Flags) const {
6077   // Check if LR is available through all of the MBB. If it's not, then set
6078   // a flag.
6079   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6080          "Suitable Machine Function for outlining must track liveness");
6081 
6082   LiveRegUnits LRU(getRegisterInfo());
6083 
6084   std::for_each(MBB.rbegin(), MBB.rend(),
6085                 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
6086 
6087   // Check if each of the unsafe registers are available...
6088   bool R12AvailableInBlock = LRU.available(ARM::R12);
6089   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6090 
6091   // If all of these are dead (and not live out), we know we don't have to check
6092   // them later.
6093   if (R12AvailableInBlock && CPSRAvailableInBlock)
6094     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6095 
6096   // Now, add the live outs to the set.
6097   LRU.addLiveOuts(MBB);
6098 
6099   // If any of these registers is available in the MBB, but also a live out of
6100   // the block, then we know outlining is unsafe.
6101   if (R12AvailableInBlock && !LRU.available(ARM::R12))
6102     return false;
6103   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6104     return false;
6105 
6106   // Check if there's a call inside this MachineBasicBlock.  If there is, then
6107   // set a flag.
6108   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6109     Flags |= MachineOutlinerMBBFlags::HasCalls;
6110 
6111   // LR liveness is overestimated in return blocks.
6112 
6113   bool LRIsAvailable =
6114       MBB.isReturnBlock() && !MBB.back().isCall()
6115           ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6116           : LRU.available(ARM::LR);
6117   if (!LRIsAvailable)
6118     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6119 
6120   return true;
6121 }
6122 
6123 outliner::InstrType
6124 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
6125                                    unsigned Flags) const {
6126   MachineInstr &MI = *MIT;
6127   const TargetRegisterInfo *TRI = &getRegisterInfo();
6128 
6129   // Be conservative with inline ASM
6130   if (MI.isInlineAsm())
6131     return outliner::InstrType::Illegal;
6132 
6133   // Don't allow debug values to impact outlining type.
6134   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
6135     return outliner::InstrType::Invisible;
6136 
6137   // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
6138   // so we can go ahead and skip over them.
6139   if (MI.isKill() || MI.isImplicitDef())
6140     return outliner::InstrType::Invisible;
6141 
6142   // PIC instructions contain labels, outlining them would break offset
6143   // computing.  unsigned Opc = MI.getOpcode();
6144   unsigned Opc = MI.getOpcode();
6145   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6146       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6147       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6148       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6149       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6150       Opc == ARM::t2MOV_ga_pcrel)
6151     return outliner::InstrType::Illegal;
6152 
6153   // Be conservative with ARMv8.1 MVE instructions.
6154   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6155       Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6156       Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6157       Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6158       Opc == ARM::t2LoopEndDec)
6159     return outliner::InstrType::Illegal;
6160 
6161   const MCInstrDesc &MCID = MI.getDesc();
6162   uint64_t MIFlags = MCID.TSFlags;
6163   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6164     return outliner::InstrType::Illegal;
6165 
6166   // Is this a terminator for a basic block?
6167   if (MI.isTerminator()) {
6168     // Don't outline if the branch is not unconditional.
6169     if (isPredicated(MI))
6170       return outliner::InstrType::Illegal;
6171 
6172     // Is this the end of a function?
6173     if (MI.getParent()->succ_empty())
6174       return outliner::InstrType::Legal;
6175 
6176     // It's not, so don't outline it.
6177     return outliner::InstrType::Illegal;
6178   }
6179 
6180   // Make sure none of the operands are un-outlinable.
6181   for (const MachineOperand &MOP : MI.operands()) {
6182     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
6183         MOP.isTargetIndex())
6184       return outliner::InstrType::Illegal;
6185   }
6186 
6187   // Don't outline if link register or program counter value are used.
6188   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6189     return outliner::InstrType::Illegal;
6190 
6191   if (MI.isCall()) {
6192     // Get the function associated with the call.  Look at each operand and find
6193     // the one that represents the calle and get its name.
6194     const Function *Callee = nullptr;
6195     for (const MachineOperand &MOP : MI.operands()) {
6196       if (MOP.isGlobal()) {
6197         Callee = dyn_cast<Function>(MOP.getGlobal());
6198         break;
6199       }
6200     }
6201 
6202     // Dont't outline calls to "mcount" like functions, in particular Linux
6203     // kernel function tracing relies on it.
6204     if (Callee &&
6205         (Callee->getName() == "\01__gnu_mcount_nc" ||
6206          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6207       return outliner::InstrType::Illegal;
6208 
6209     // If we don't know anything about the callee, assume it depends on the
6210     // stack layout of the caller. In that case, it's only legal to outline
6211     // as a tail-call. Explicitly list the call instructions we know about so
6212     // we don't get unexpected results with call pseudo-instructions.
6213     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6214     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6215         Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6216         Opc == ARM::tBLXi)
6217       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6218 
6219     if (!Callee)
6220       return UnknownCallOutlineType;
6221 
6222     // We have a function we have information about.  Check if it's something we
6223     // can safely outline.
6224     MachineFunction *MF = MI.getParent()->getParent();
6225     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6226 
6227     // We don't know what's going on with the callee at all.  Don't touch it.
6228     if (!CalleeMF)
6229       return UnknownCallOutlineType;
6230 
6231     // Check if we know anything about the callee saves on the function. If we
6232     // don't, then don't touch it, since that implies that we haven't computed
6233     // anything about its stack frame yet.
6234     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6235     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6236         MFI.getNumObjects() > 0)
6237       return UnknownCallOutlineType;
6238 
6239     // At this point, we can say that CalleeMF ought to not pass anything on the
6240     // stack. Therefore, we can outline it.
6241     return outliner::InstrType::Legal;
6242   }
6243 
6244   // Since calls are handled, don't touch LR or PC
6245   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6246     return outliner::InstrType::Illegal;
6247 
6248   // Does this use the stack?
6249   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6250     // True if there is no chance that any outlined candidate from this range
6251     // could require stack fixups. That is, both
6252     // * LR is available in the range (No save/restore around call)
6253     // * The range doesn't include calls (No save/restore in outlined frame)
6254     // are true.
6255     // FIXME: This is very restrictive; the flags check the whole block,
6256     // not just the bit we will try to outline.
6257     bool MightNeedStackFixUp =
6258         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6259                   MachineOutlinerMBBFlags::HasCalls));
6260 
6261     if (!MightNeedStackFixUp)
6262       return outliner::InstrType::Legal;
6263 
6264     // Any modification of SP will break our code to save/restore LR.
6265     // FIXME: We could handle some instructions which add a constant offset to
6266     // SP, with a bit more work.
6267     if (MI.modifiesRegister(ARM::SP, TRI))
6268       return outliner::InstrType::Illegal;
6269 
6270     // At this point, we have a stack instruction that we might need to fix up.
6271     // up. We'll handle it if it's a load or store.
6272     if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6273                                   false))
6274       return outliner::InstrType::Legal;
6275 
6276     // We can't fix it up, so don't outline it.
6277     return outliner::InstrType::Illegal;
6278   }
6279 
6280   // Be conservative with IT blocks.
6281   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6282       MI.modifiesRegister(ARM::ITSTATE, TRI))
6283     return outliner::InstrType::Illegal;
6284 
6285   // Don't outline positions.
6286   if (MI.isPosition())
6287     return outliner::InstrType::Illegal;
6288 
6289   return outliner::InstrType::Legal;
6290 }
6291 
6292 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6293   for (MachineInstr &MI : MBB) {
6294     checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6295   }
6296 }
6297 
6298 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6299                                      MachineBasicBlock::iterator It) const {
6300   unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6301   int Align = -Subtarget.getStackAlignment().value();
6302   BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6303     .addReg(ARM::LR, RegState::Kill)
6304     .addReg(ARM::SP)
6305     .addImm(Align)
6306     .add(predOps(ARMCC::AL));
6307 }
6308 
6309 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack(
6310     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6311   MachineFunction &MF = *MBB.getParent();
6312   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6313   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6314   int Align = Subtarget.getStackAlignment().value();
6315   // Add a CFI saying the stack was moved down.
6316   int64_t StackPosEntry =
6317       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6318   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6319       .addCFIIndex(StackPosEntry)
6320       .setMIFlags(MachineInstr::FrameSetup);
6321 
6322   // Add a CFI saying that the LR that we want to find is now higher than
6323   // before.
6324   int64_t LRPosEntry =
6325       MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align));
6326   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6327       .addCFIIndex(LRPosEntry)
6328       .setMIFlags(MachineInstr::FrameSetup);
6329 }
6330 
6331 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6332                                              MachineBasicBlock::iterator It,
6333                                              Register Reg) const {
6334   MachineFunction &MF = *MBB.getParent();
6335   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6336   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6337   unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6338 
6339   int64_t LRPosEntry = MF.addFrameInst(
6340       MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6341   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6342       .addCFIIndex(LRPosEntry)
6343       .setMIFlags(MachineInstr::FrameSetup);
6344 }
6345 
6346 void ARMBaseInstrInfo::restoreLRFromStack(
6347     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6348   unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6349   MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6350     .addReg(ARM::SP, RegState::Define)
6351     .addReg(ARM::SP);
6352   if (!Subtarget.isThumb())
6353     MIB.addReg(0);
6354   MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL));
6355 }
6356 
6357 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack(
6358     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6359   // Now stack has moved back up...
6360   MachineFunction &MF = *MBB.getParent();
6361   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6362   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6363   int64_t StackPosEntry =
6364       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6365   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6366       .addCFIIndex(StackPosEntry)
6367       .setMIFlags(MachineInstr::FrameDestroy);
6368 
6369   // ... and we have restored LR.
6370   int64_t LRPosEntry =
6371       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6372   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6373       .addCFIIndex(LRPosEntry)
6374       .setMIFlags(MachineInstr::FrameDestroy);
6375 }
6376 
6377 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6378     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6379   MachineFunction &MF = *MBB.getParent();
6380   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6381   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6382 
6383   int64_t LRPosEntry =
6384       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6385   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6386       .addCFIIndex(LRPosEntry)
6387       .setMIFlags(MachineInstr::FrameDestroy);
6388 }
6389 
6390 void ARMBaseInstrInfo::buildOutlinedFrame(
6391     MachineBasicBlock &MBB, MachineFunction &MF,
6392     const outliner::OutlinedFunction &OF) const {
6393   // For thunk outlining, rewrite the last instruction from a call to a
6394   // tail-call.
6395   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6396     MachineInstr *Call = &*--MBB.instr_end();
6397     bool isThumb = Subtarget.isThumb();
6398     unsigned FuncOp = isThumb ? 2 : 0;
6399     unsigned Opc = Call->getOperand(FuncOp).isReg()
6400                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6401                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6402                                                              : ARM::tTAILJMPdND
6403                                  : ARM::TAILJMPd;
6404     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6405                                   .add(Call->getOperand(FuncOp));
6406     if (isThumb && !Call->getOperand(FuncOp).isReg())
6407       MIB.add(predOps(ARMCC::AL));
6408     Call->eraseFromParent();
6409   }
6410 
6411   // Is there a call in the outlined range?
6412   auto IsNonTailCall = [](MachineInstr &MI) {
6413     return MI.isCall() && !MI.isReturn();
6414   };
6415   if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6416     MachineBasicBlock::iterator It = MBB.begin();
6417     MachineBasicBlock::iterator Et = MBB.end();
6418 
6419     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6420         OF.FrameConstructionID == MachineOutlinerThunk)
6421       Et = std::prev(MBB.end());
6422 
6423     // We have to save and restore LR, we need to add it to the liveins if it
6424     // is not already part of the set.  This is suffient since outlined
6425     // functions only have one block.
6426     if (!MBB.isLiveIn(ARM::LR))
6427       MBB.addLiveIn(ARM::LR);
6428 
6429     // Insert a save before the outlined region
6430     saveLROnStack(MBB, It);
6431     emitCFIForLRSaveOnStack(MBB, It);
6432 
6433     // Fix up the instructions in the range, since we're going to modify the
6434     // stack.
6435     assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6436            "Can only fix up stack references once");
6437     fixupPostOutline(MBB);
6438 
6439     // Insert a restore before the terminator for the function.  Restore LR.
6440     restoreLRFromStack(MBB, Et);
6441     emitCFIForLRRestoreFromStack(MBB, Et);
6442   }
6443 
6444   // If this is a tail call outlined function, then there's already a return.
6445   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6446       OF.FrameConstructionID == MachineOutlinerThunk)
6447     return;
6448 
6449   // Here we have to insert the return ourselves.  Get the correct opcode from
6450   // current feature set.
6451   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6452       .add(predOps(ARMCC::AL));
6453 
6454   // Did we have to modify the stack by saving the link register?
6455   if (OF.FrameConstructionID != MachineOutlinerDefault &&
6456       OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6457     return;
6458 
6459   // We modified the stack.
6460   // Walk over the basic block and fix up all the stack accesses.
6461   fixupPostOutline(MBB);
6462 }
6463 
6464 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6465     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6466     MachineFunction &MF, const outliner::Candidate &C) const {
6467   MachineInstrBuilder MIB;
6468   MachineBasicBlock::iterator CallPt;
6469   unsigned Opc;
6470   bool isThumb = Subtarget.isThumb();
6471 
6472   // Are we tail calling?
6473   if (C.CallConstructionID == MachineOutlinerTailCall) {
6474     // If yes, then we can just branch to the label.
6475     Opc = isThumb
6476               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6477               : ARM::TAILJMPd;
6478     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6479               .addGlobalAddress(M.getNamedValue(MF.getName()));
6480     if (isThumb)
6481       MIB.add(predOps(ARMCC::AL));
6482     It = MBB.insert(It, MIB);
6483     return It;
6484   }
6485 
6486   // Create the call instruction.
6487   Opc = isThumb ? ARM::tBL : ARM::BL;
6488   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6489   if (isThumb)
6490     CallMIB.add(predOps(ARMCC::AL));
6491   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6492 
6493   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6494       C.CallConstructionID == MachineOutlinerThunk) {
6495     // No, so just insert the call.
6496     It = MBB.insert(It, CallMIB);
6497     return It;
6498   }
6499 
6500   const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6501   // Can we save to a register?
6502   if (C.CallConstructionID == MachineOutlinerRegSave) {
6503     unsigned Reg = findRegisterToSaveLRTo(C);
6504     assert(Reg != 0 && "No callee-saved register available?");
6505 
6506     // Save and restore LR from that register.
6507     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6508     if (!AFI.isLRSpilled())
6509       emitCFIForLRSaveToReg(MBB, It, Reg);
6510     CallPt = MBB.insert(It, CallMIB);
6511     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6512     if (!AFI.isLRSpilled())
6513       emitCFIForLRRestoreFromReg(MBB, It);
6514     It--;
6515     return CallPt;
6516   }
6517   // We have the default case. Save and restore from SP.
6518   if (!MBB.isLiveIn(ARM::LR))
6519     MBB.addLiveIn(ARM::LR);
6520   saveLROnStack(MBB, It);
6521   if (!AFI.isLRSpilled())
6522     emitCFIForLRSaveOnStack(MBB, It);
6523   CallPt = MBB.insert(It, CallMIB);
6524   restoreLRFromStack(MBB, It);
6525   if (!AFI.isLRSpilled())
6526     emitCFIForLRRestoreFromStack(MBB, It);
6527   It--;
6528   return CallPt;
6529 }
6530 
6531 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6532     MachineFunction &MF) const {
6533   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6534 }
6535 
6536 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
6537                                                          AAResults *AA) const {
6538   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6539   // the tail predication conversion. This means that the element count
6540   // register has to be live for longer, but that has to be better than
6541   // spill/restore and VPT predication.
6542   return isVCTP(&MI) && !isPredicated(MI);
6543 }
6544 
6545 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6546   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6547                                                           : ARM::BLX;
6548 }
6549 
6550 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6551   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6552                                                           : ARM::tBLXr;
6553 }
6554 
6555 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6556   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6557                                                           : ARM::BLX_pred;
6558 }
6559 
6560