1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/MachineScheduler.h" 40 #include "llvm/CodeGen/MultiHazardRecognizer.h" 41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 42 #include "llvm/CodeGen/SelectionDAGNodes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSchedule.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/MC/MCAsmInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <new> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "arm-instrinfo" 73 74 #define GET_INSTRINFO_CTOR_DTOR 75 #include "ARMGenInstrInfo.inc" 76 77 static cl::opt<bool> 78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 79 cl::desc("Enable ARM 2-addr to 3-addr conv")); 80 81 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 82 struct ARM_MLxEntry { 83 uint16_t MLxOpc; // MLA / MLS opcode 84 uint16_t MulOpc; // Expanded multiplication opcode 85 uint16_t AddSubOpc; // Expanded add / sub opcode 86 bool NegAcc; // True if the acc is negated before the add / sub. 87 bool HasLane; // True if instruction has an extra "lane" operand. 88 }; 89 90 static const ARM_MLxEntry ARM_MLxTable[] = { 91 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 92 // fp scalar ops 93 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 94 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 95 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 96 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 97 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 98 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 99 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 100 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 101 102 // fp SIMD ops 103 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 104 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 105 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 106 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 107 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 108 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 109 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 110 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 111 }; 112 113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 114 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 115 Subtarget(STI) { 116 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 117 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 118 llvm_unreachable("Duplicated entries?"); 119 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 120 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 121 } 122 } 123 124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 125 // currently defaults to no prepass hazard recognizer. 126 ScheduleHazardRecognizer * 127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 128 const ScheduleDAG *DAG) const { 129 if (usePreRAHazardRecognizer()) { 130 const InstrItineraryData *II = 131 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 132 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 133 } 134 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 135 } 136 137 // Called during: 138 // - pre-RA scheduling 139 // - post-RA scheduling when FeatureUseMISched is set 140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 141 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 142 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 143 144 // We would like to restrict this hazard recognizer to only 145 // post-RA scheduling; we can tell that we're post-RA because we don't 146 // track VRegLiveness. 147 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 148 // banks banked on bit 2. Assume that TCMs are in use. 149 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 150 MHR->AddHazardRecognizer( 151 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 152 153 // Not inserting ARMHazardRecognizerFPMLx because that would change 154 // legacy behavior 155 156 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 157 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 158 return MHR; 159 } 160 161 // Called during post-RA scheduling when FeatureUseMISched is not set 162 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 164 const ScheduleDAG *DAG) const { 165 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 166 167 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 168 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 169 170 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 171 if (BHR) 172 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 173 return MHR; 174 } 175 176 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 177 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 178 // FIXME: Thumb2 support. 179 180 if (!EnableARM3Addr) 181 return nullptr; 182 183 MachineFunction &MF = *MI.getParent()->getParent(); 184 uint64_t TSFlags = MI.getDesc().TSFlags; 185 bool isPre = false; 186 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 187 default: return nullptr; 188 case ARMII::IndexModePre: 189 isPre = true; 190 break; 191 case ARMII::IndexModePost: 192 break; 193 } 194 195 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 196 // operation. 197 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 198 if (MemOpc == 0) 199 return nullptr; 200 201 MachineInstr *UpdateMI = nullptr; 202 MachineInstr *MemMI = nullptr; 203 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 204 const MCInstrDesc &MCID = MI.getDesc(); 205 unsigned NumOps = MCID.getNumOperands(); 206 bool isLoad = !MI.mayStore(); 207 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 208 const MachineOperand &Base = MI.getOperand(2); 209 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 210 Register WBReg = WB.getReg(); 211 Register BaseReg = Base.getReg(); 212 Register OffReg = Offset.getReg(); 213 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 214 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 215 switch (AddrMode) { 216 default: llvm_unreachable("Unknown indexed op!"); 217 case ARMII::AddrMode2: { 218 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 219 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 220 if (OffReg == 0) { 221 if (ARM_AM::getSOImmVal(Amt) == -1) 222 // Can't encode it in a so_imm operand. This transformation will 223 // add more than 1 instruction. Abandon! 224 return nullptr; 225 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 226 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 227 .addReg(BaseReg) 228 .addImm(Amt) 229 .add(predOps(Pred)) 230 .add(condCodeOp()); 231 } else if (Amt != 0) { 232 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 233 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 234 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 235 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 236 .addReg(BaseReg) 237 .addReg(OffReg) 238 .addReg(0) 239 .addImm(SOOpc) 240 .add(predOps(Pred)) 241 .add(condCodeOp()); 242 } else 243 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 244 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 245 .addReg(BaseReg) 246 .addReg(OffReg) 247 .add(predOps(Pred)) 248 .add(condCodeOp()); 249 break; 250 } 251 case ARMII::AddrMode3 : { 252 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 253 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 254 if (OffReg == 0) 255 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 256 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 257 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 258 .addReg(BaseReg) 259 .addImm(Amt) 260 .add(predOps(Pred)) 261 .add(condCodeOp()); 262 else 263 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 264 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 265 .addReg(BaseReg) 266 .addReg(OffReg) 267 .add(predOps(Pred)) 268 .add(condCodeOp()); 269 break; 270 } 271 } 272 273 std::vector<MachineInstr*> NewMIs; 274 if (isPre) { 275 if (isLoad) 276 MemMI = 277 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 278 .addReg(WBReg) 279 .addImm(0) 280 .addImm(Pred); 281 else 282 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 283 .addReg(MI.getOperand(1).getReg()) 284 .addReg(WBReg) 285 .addReg(0) 286 .addImm(0) 287 .addImm(Pred); 288 NewMIs.push_back(MemMI); 289 NewMIs.push_back(UpdateMI); 290 } else { 291 if (isLoad) 292 MemMI = 293 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 294 .addReg(BaseReg) 295 .addImm(0) 296 .addImm(Pred); 297 else 298 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 299 .addReg(MI.getOperand(1).getReg()) 300 .addReg(BaseReg) 301 .addReg(0) 302 .addImm(0) 303 .addImm(Pred); 304 if (WB.isDead()) 305 UpdateMI->getOperand(0).setIsDead(); 306 NewMIs.push_back(UpdateMI); 307 NewMIs.push_back(MemMI); 308 } 309 310 // Transfer LiveVariables states, kill / dead info. 311 if (LV) { 312 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 313 MachineOperand &MO = MI.getOperand(i); 314 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 315 Register Reg = MO.getReg(); 316 317 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 318 if (MO.isDef()) { 319 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 320 if (MO.isDead()) 321 LV->addVirtualRegisterDead(Reg, *NewMI); 322 } 323 if (MO.isUse() && MO.isKill()) { 324 for (unsigned j = 0; j < 2; ++j) { 325 // Look at the two new MI's in reverse order. 326 MachineInstr *NewMI = NewMIs[j]; 327 if (!NewMI->readsRegister(Reg)) 328 continue; 329 LV->addVirtualRegisterKilled(Reg, *NewMI); 330 if (VI.removeKill(MI)) 331 VI.Kills.push_back(NewMI); 332 break; 333 } 334 } 335 } 336 } 337 } 338 339 MachineBasicBlock::iterator MBBI = MI.getIterator(); 340 MFI->insert(MBBI, NewMIs[1]); 341 MFI->insert(MBBI, NewMIs[0]); 342 return NewMIs[0]; 343 } 344 345 // Branch analysis. 346 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 347 MachineBasicBlock *&TBB, 348 MachineBasicBlock *&FBB, 349 SmallVectorImpl<MachineOperand> &Cond, 350 bool AllowModify) const { 351 TBB = nullptr; 352 FBB = nullptr; 353 354 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 355 if (I == MBB.instr_begin()) 356 return false; // Empty blocks are easy. 357 --I; 358 359 // Walk backwards from the end of the basic block until the branch is 360 // analyzed or we give up. 361 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 362 // Flag to be raised on unanalyzeable instructions. This is useful in cases 363 // where we want to clean up on the end of the basic block before we bail 364 // out. 365 bool CantAnalyze = false; 366 367 // Skip over DEBUG values, predicated nonterminators and speculation 368 // barrier terminators. 369 while (I->isDebugInstr() || !I->isTerminator() || 370 isSpeculationBarrierEndBBOpcode(I->getOpcode()) || 371 I->getOpcode() == ARM::t2DoLoopStartTP){ 372 if (I == MBB.instr_begin()) 373 return false; 374 --I; 375 } 376 377 if (isIndirectBranchOpcode(I->getOpcode()) || 378 isJumpTableBranchOpcode(I->getOpcode())) { 379 // Indirect branches and jump tables can't be analyzed, but we still want 380 // to clean up any instructions at the tail of the basic block. 381 CantAnalyze = true; 382 } else if (isUncondBranchOpcode(I->getOpcode())) { 383 TBB = I->getOperand(0).getMBB(); 384 } else if (isCondBranchOpcode(I->getOpcode())) { 385 // Bail out if we encounter multiple conditional branches. 386 if (!Cond.empty()) 387 return true; 388 389 assert(!FBB && "FBB should have been null."); 390 FBB = TBB; 391 TBB = I->getOperand(0).getMBB(); 392 Cond.push_back(I->getOperand(1)); 393 Cond.push_back(I->getOperand(2)); 394 } else if (I->isReturn()) { 395 // Returns can't be analyzed, but we should run cleanup. 396 CantAnalyze = true; 397 } else { 398 // We encountered other unrecognized terminator. Bail out immediately. 399 return true; 400 } 401 402 // Cleanup code - to be run for unpredicated unconditional branches and 403 // returns. 404 if (!isPredicated(*I) && 405 (isUncondBranchOpcode(I->getOpcode()) || 406 isIndirectBranchOpcode(I->getOpcode()) || 407 isJumpTableBranchOpcode(I->getOpcode()) || 408 I->isReturn())) { 409 // Forget any previous condition branch information - it no longer applies. 410 Cond.clear(); 411 FBB = nullptr; 412 413 // If we can modify the function, delete everything below this 414 // unconditional branch. 415 if (AllowModify) { 416 MachineBasicBlock::iterator DI = std::next(I); 417 while (DI != MBB.instr_end()) { 418 MachineInstr &InstToDelete = *DI; 419 ++DI; 420 // Speculation barriers must not be deleted. 421 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 422 continue; 423 InstToDelete.eraseFromParent(); 424 } 425 } 426 } 427 428 if (CantAnalyze) { 429 // We may not be able to analyze the block, but we could still have 430 // an unconditional branch as the last instruction in the block, which 431 // just branches to layout successor. If this is the case, then just 432 // remove it if we're allowed to make modifications. 433 if (AllowModify && !isPredicated(MBB.back()) && 434 isUncondBranchOpcode(MBB.back().getOpcode()) && 435 TBB && MBB.isLayoutSuccessor(TBB)) 436 removeBranch(MBB); 437 return true; 438 } 439 440 if (I == MBB.instr_begin()) 441 return false; 442 443 --I; 444 } 445 446 // We made it past the terminators without bailing out - we must have 447 // analyzed this branch successfully. 448 return false; 449 } 450 451 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 452 int *BytesRemoved) const { 453 assert(!BytesRemoved && "code size not handled"); 454 455 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 456 if (I == MBB.end()) 457 return 0; 458 459 if (!isUncondBranchOpcode(I->getOpcode()) && 460 !isCondBranchOpcode(I->getOpcode())) 461 return 0; 462 463 // Remove the branch. 464 I->eraseFromParent(); 465 466 I = MBB.end(); 467 468 if (I == MBB.begin()) return 1; 469 --I; 470 if (!isCondBranchOpcode(I->getOpcode())) 471 return 1; 472 473 // Remove the branch. 474 I->eraseFromParent(); 475 return 2; 476 } 477 478 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 479 MachineBasicBlock *TBB, 480 MachineBasicBlock *FBB, 481 ArrayRef<MachineOperand> Cond, 482 const DebugLoc &DL, 483 int *BytesAdded) const { 484 assert(!BytesAdded && "code size not handled"); 485 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 486 int BOpc = !AFI->isThumbFunction() 487 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 488 int BccOpc = !AFI->isThumbFunction() 489 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 490 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 491 492 // Shouldn't be a fall through. 493 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 494 assert((Cond.size() == 2 || Cond.size() == 0) && 495 "ARM branch conditions have two components!"); 496 497 // For conditional branches, we use addOperand to preserve CPSR flags. 498 499 if (!FBB) { 500 if (Cond.empty()) { // Unconditional branch? 501 if (isThumb) 502 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 503 else 504 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 505 } else 506 BuildMI(&MBB, DL, get(BccOpc)) 507 .addMBB(TBB) 508 .addImm(Cond[0].getImm()) 509 .add(Cond[1]); 510 return 1; 511 } 512 513 // Two-way conditional branch. 514 BuildMI(&MBB, DL, get(BccOpc)) 515 .addMBB(TBB) 516 .addImm(Cond[0].getImm()) 517 .add(Cond[1]); 518 if (isThumb) 519 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 520 else 521 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 522 return 2; 523 } 524 525 bool ARMBaseInstrInfo:: 526 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 527 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 528 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 529 return false; 530 } 531 532 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 533 if (MI.isBundle()) { 534 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 535 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 536 while (++I != E && I->isInsideBundle()) { 537 int PIdx = I->findFirstPredOperandIdx(); 538 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 539 return true; 540 } 541 return false; 542 } 543 544 int PIdx = MI.findFirstPredOperandIdx(); 545 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 546 } 547 548 std::string ARMBaseInstrInfo::createMIROperandComment( 549 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 550 const TargetRegisterInfo *TRI) const { 551 552 // First, let's see if there is a generic comment for this operand 553 std::string GenericComment = 554 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 555 if (!GenericComment.empty()) 556 return GenericComment; 557 558 // If not, check if we have an immediate operand. 559 if (Op.getType() != MachineOperand::MO_Immediate) 560 return std::string(); 561 562 // And print its corresponding condition code if the immediate is a 563 // predicate. 564 int FirstPredOp = MI.findFirstPredOperandIdx(); 565 if (FirstPredOp != (int) OpIdx) 566 return std::string(); 567 568 std::string CC = "CC::"; 569 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 570 return CC; 571 } 572 573 bool ARMBaseInstrInfo::PredicateInstruction( 574 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 575 unsigned Opc = MI.getOpcode(); 576 if (isUncondBranchOpcode(Opc)) { 577 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 578 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 579 .addImm(Pred[0].getImm()) 580 .addReg(Pred[1].getReg()); 581 return true; 582 } 583 584 int PIdx = MI.findFirstPredOperandIdx(); 585 if (PIdx != -1) { 586 MachineOperand &PMO = MI.getOperand(PIdx); 587 PMO.setImm(Pred[0].getImm()); 588 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 589 590 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 591 // IT block. This affects how they are printed. 592 const MCInstrDesc &MCID = MI.getDesc(); 593 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 594 assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand"); 595 assert((MI.getOperand(1).isDead() || 596 MI.getOperand(1).getReg() != ARM::CPSR) && 597 "if conversion tried to stop defining used CPSR"); 598 MI.getOperand(1).setReg(ARM::NoRegister); 599 } 600 601 return true; 602 } 603 return false; 604 } 605 606 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 607 ArrayRef<MachineOperand> Pred2) const { 608 if (Pred1.size() > 2 || Pred2.size() > 2) 609 return false; 610 611 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 612 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 613 if (CC1 == CC2) 614 return true; 615 616 switch (CC1) { 617 default: 618 return false; 619 case ARMCC::AL: 620 return true; 621 case ARMCC::HS: 622 return CC2 == ARMCC::HI; 623 case ARMCC::LS: 624 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 625 case ARMCC::GE: 626 return CC2 == ARMCC::GT; 627 case ARMCC::LE: 628 return CC2 == ARMCC::LT; 629 } 630 } 631 632 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 633 std::vector<MachineOperand> &Pred, 634 bool SkipDead) const { 635 bool Found = false; 636 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 637 const MachineOperand &MO = MI.getOperand(i); 638 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 639 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 640 if (ClobbersCPSR || IsCPSR) { 641 642 // Filter out T1 instructions that have a dead CPSR, 643 // allowing IT blocks to be generated containing T1 instructions 644 const MCInstrDesc &MCID = MI.getDesc(); 645 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 646 SkipDead) 647 continue; 648 649 Pred.push_back(MO); 650 Found = true; 651 } 652 } 653 654 return Found; 655 } 656 657 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 658 for (const auto &MO : MI.operands()) 659 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 660 return true; 661 return false; 662 } 663 664 static bool isEligibleForITBlock(const MachineInstr *MI) { 665 switch (MI->getOpcode()) { 666 default: return true; 667 case ARM::tADC: // ADC (register) T1 668 case ARM::tADDi3: // ADD (immediate) T1 669 case ARM::tADDi8: // ADD (immediate) T2 670 case ARM::tADDrr: // ADD (register) T1 671 case ARM::tAND: // AND (register) T1 672 case ARM::tASRri: // ASR (immediate) T1 673 case ARM::tASRrr: // ASR (register) T1 674 case ARM::tBIC: // BIC (register) T1 675 case ARM::tEOR: // EOR (register) T1 676 case ARM::tLSLri: // LSL (immediate) T1 677 case ARM::tLSLrr: // LSL (register) T1 678 case ARM::tLSRri: // LSR (immediate) T1 679 case ARM::tLSRrr: // LSR (register) T1 680 case ARM::tMUL: // MUL T1 681 case ARM::tMVN: // MVN (register) T1 682 case ARM::tORR: // ORR (register) T1 683 case ARM::tROR: // ROR (register) T1 684 case ARM::tRSB: // RSB (immediate) T1 685 case ARM::tSBC: // SBC (register) T1 686 case ARM::tSUBi3: // SUB (immediate) T1 687 case ARM::tSUBi8: // SUB (immediate) T2 688 case ARM::tSUBrr: // SUB (register) T1 689 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 690 } 691 } 692 693 /// isPredicable - Return true if the specified instruction can be predicated. 694 /// By default, this returns true for every instruction with a 695 /// PredicateOperand. 696 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 697 if (!MI.isPredicable()) 698 return false; 699 700 if (MI.isBundle()) 701 return false; 702 703 if (!isEligibleForITBlock(&MI)) 704 return false; 705 706 const MachineFunction *MF = MI.getParent()->getParent(); 707 const ARMFunctionInfo *AFI = 708 MF->getInfo<ARMFunctionInfo>(); 709 710 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 711 // In their ARM encoding, they can't be encoded in a conditional form. 712 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 713 return false; 714 715 // Make indirect control flow changes unpredicable when SLS mitigation is 716 // enabled. 717 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 718 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 719 return false; 720 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 721 return false; 722 723 if (AFI->isThumb2Function()) { 724 if (getSubtarget().restrictIT()) 725 return isV8EligibleForIT(&MI); 726 } 727 728 return true; 729 } 730 731 namespace llvm { 732 733 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 734 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 735 const MachineOperand &MO = MI->getOperand(i); 736 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 737 continue; 738 if (MO.getReg() != ARM::CPSR) 739 continue; 740 if (!MO.isDead()) 741 return false; 742 } 743 // all definitions of CPSR are dead 744 return true; 745 } 746 747 } // end namespace llvm 748 749 /// GetInstSize - Return the size of the specified MachineInstr. 750 /// 751 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 752 const MachineBasicBlock &MBB = *MI.getParent(); 753 const MachineFunction *MF = MBB.getParent(); 754 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 755 756 const MCInstrDesc &MCID = MI.getDesc(); 757 if (MCID.getSize()) 758 return MCID.getSize(); 759 760 switch (MI.getOpcode()) { 761 default: 762 // pseudo-instruction sizes are zero. 763 return 0; 764 case TargetOpcode::BUNDLE: 765 return getInstBundleLength(MI); 766 case ARM::MOVi16_ga_pcrel: 767 case ARM::MOVTi16_ga_pcrel: 768 case ARM::t2MOVi16_ga_pcrel: 769 case ARM::t2MOVTi16_ga_pcrel: 770 return 4; 771 case ARM::MOVi32imm: 772 case ARM::t2MOVi32imm: 773 return 8; 774 case ARM::CONSTPOOL_ENTRY: 775 case ARM::JUMPTABLE_INSTS: 776 case ARM::JUMPTABLE_ADDRS: 777 case ARM::JUMPTABLE_TBB: 778 case ARM::JUMPTABLE_TBH: 779 // If this machine instr is a constant pool entry, its size is recorded as 780 // operand #2. 781 return MI.getOperand(2).getImm(); 782 case ARM::Int_eh_sjlj_longjmp: 783 return 16; 784 case ARM::tInt_eh_sjlj_longjmp: 785 return 10; 786 case ARM::tInt_WIN_eh_sjlj_longjmp: 787 return 12; 788 case ARM::Int_eh_sjlj_setjmp: 789 case ARM::Int_eh_sjlj_setjmp_nofp: 790 return 20; 791 case ARM::tInt_eh_sjlj_setjmp: 792 case ARM::t2Int_eh_sjlj_setjmp: 793 case ARM::t2Int_eh_sjlj_setjmp_nofp: 794 return 12; 795 case ARM::SPACE: 796 return MI.getOperand(1).getImm(); 797 case ARM::INLINEASM: 798 case ARM::INLINEASM_BR: { 799 // If this machine instr is an inline asm, measure it. 800 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 801 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 802 Size = alignTo(Size, 4); 803 return Size; 804 } 805 case ARM::SpeculationBarrierISBDSBEndBB: 806 case ARM::t2SpeculationBarrierISBDSBEndBB: 807 // This gets lowered to 2 4-byte instructions. 808 return 8; 809 case ARM::SpeculationBarrierSBEndBB: 810 case ARM::t2SpeculationBarrierSBEndBB: 811 // This gets lowered to 1 4-byte instructions. 812 return 4; 813 } 814 } 815 816 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 817 unsigned Size = 0; 818 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 819 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 820 while (++I != E && I->isInsideBundle()) { 821 assert(!I->isBundle() && "No nested bundle!"); 822 Size += getInstSizeInBytes(*I); 823 } 824 return Size; 825 } 826 827 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 828 MachineBasicBlock::iterator I, 829 unsigned DestReg, bool KillSrc, 830 const ARMSubtarget &Subtarget) const { 831 unsigned Opc = Subtarget.isThumb() 832 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 833 : ARM::MRS; 834 835 MachineInstrBuilder MIB = 836 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 837 838 // There is only 1 A/R class MRS instruction, and it always refers to 839 // APSR. However, there are lots of other possibilities on M-class cores. 840 if (Subtarget.isMClass()) 841 MIB.addImm(0x800); 842 843 MIB.add(predOps(ARMCC::AL)) 844 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 845 } 846 847 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 848 MachineBasicBlock::iterator I, 849 unsigned SrcReg, bool KillSrc, 850 const ARMSubtarget &Subtarget) const { 851 unsigned Opc = Subtarget.isThumb() 852 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 853 : ARM::MSR; 854 855 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 856 857 if (Subtarget.isMClass()) 858 MIB.addImm(0x800); 859 else 860 MIB.addImm(8); 861 862 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 863 .add(predOps(ARMCC::AL)) 864 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 865 } 866 867 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 868 MIB.addImm(ARMVCC::None); 869 MIB.addReg(0); 870 MIB.addReg(0); // tp_reg 871 } 872 873 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 874 Register DestReg) { 875 addUnpredicatedMveVpredNOp(MIB); 876 MIB.addReg(DestReg, RegState::Undef); 877 } 878 879 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 880 MIB.addImm(Cond); 881 MIB.addReg(ARM::VPR, RegState::Implicit); 882 MIB.addReg(0); // tp_reg 883 } 884 885 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 886 unsigned Cond, unsigned Inactive) { 887 addPredicatedMveVpredNOp(MIB, Cond); 888 MIB.addReg(Inactive); 889 } 890 891 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 892 MachineBasicBlock::iterator I, 893 const DebugLoc &DL, MCRegister DestReg, 894 MCRegister SrcReg, bool KillSrc) const { 895 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 896 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 897 898 if (GPRDest && GPRSrc) { 899 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 900 .addReg(SrcReg, getKillRegState(KillSrc)) 901 .add(predOps(ARMCC::AL)) 902 .add(condCodeOp()); 903 return; 904 } 905 906 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 907 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 908 909 unsigned Opc = 0; 910 if (SPRDest && SPRSrc) 911 Opc = ARM::VMOVS; 912 else if (GPRDest && SPRSrc) 913 Opc = ARM::VMOVRS; 914 else if (SPRDest && GPRSrc) 915 Opc = ARM::VMOVSR; 916 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 917 Opc = ARM::VMOVD; 918 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 919 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 920 921 if (Opc) { 922 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 923 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 924 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 925 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 926 if (Opc == ARM::MVE_VORR) 927 addUnpredicatedMveVpredROp(MIB, DestReg); 928 else 929 MIB.add(predOps(ARMCC::AL)); 930 return; 931 } 932 933 // Handle register classes that require multiple instructions. 934 unsigned BeginIdx = 0; 935 unsigned SubRegs = 0; 936 int Spacing = 1; 937 938 // Use VORRq when possible. 939 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 940 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 941 BeginIdx = ARM::qsub_0; 942 SubRegs = 2; 943 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 944 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 945 BeginIdx = ARM::qsub_0; 946 SubRegs = 4; 947 // Fall back to VMOVD. 948 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 949 Opc = ARM::VMOVD; 950 BeginIdx = ARM::dsub_0; 951 SubRegs = 2; 952 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 953 Opc = ARM::VMOVD; 954 BeginIdx = ARM::dsub_0; 955 SubRegs = 3; 956 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 957 Opc = ARM::VMOVD; 958 BeginIdx = ARM::dsub_0; 959 SubRegs = 4; 960 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 961 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 962 BeginIdx = ARM::gsub_0; 963 SubRegs = 2; 964 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 965 Opc = ARM::VMOVD; 966 BeginIdx = ARM::dsub_0; 967 SubRegs = 2; 968 Spacing = 2; 969 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 970 Opc = ARM::VMOVD; 971 BeginIdx = ARM::dsub_0; 972 SubRegs = 3; 973 Spacing = 2; 974 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 975 Opc = ARM::VMOVD; 976 BeginIdx = ARM::dsub_0; 977 SubRegs = 4; 978 Spacing = 2; 979 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 980 !Subtarget.hasFP64()) { 981 Opc = ARM::VMOVS; 982 BeginIdx = ARM::ssub_0; 983 SubRegs = 2; 984 } else if (SrcReg == ARM::CPSR) { 985 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 986 return; 987 } else if (DestReg == ARM::CPSR) { 988 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 989 return; 990 } else if (DestReg == ARM::VPR) { 991 assert(ARM::GPRRegClass.contains(SrcReg)); 992 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 993 .addReg(SrcReg, getKillRegState(KillSrc)) 994 .add(predOps(ARMCC::AL)); 995 return; 996 } else if (SrcReg == ARM::VPR) { 997 assert(ARM::GPRRegClass.contains(DestReg)); 998 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 999 .addReg(SrcReg, getKillRegState(KillSrc)) 1000 .add(predOps(ARMCC::AL)); 1001 return; 1002 } else if (DestReg == ARM::FPSCR_NZCV) { 1003 assert(ARM::GPRRegClass.contains(SrcReg)); 1004 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1005 .addReg(SrcReg, getKillRegState(KillSrc)) 1006 .add(predOps(ARMCC::AL)); 1007 return; 1008 } else if (SrcReg == ARM::FPSCR_NZCV) { 1009 assert(ARM::GPRRegClass.contains(DestReg)); 1010 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1011 .addReg(SrcReg, getKillRegState(KillSrc)) 1012 .add(predOps(ARMCC::AL)); 1013 return; 1014 } 1015 1016 assert(Opc && "Impossible reg-to-reg copy"); 1017 1018 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1019 MachineInstrBuilder Mov; 1020 1021 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1022 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1023 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1024 Spacing = -Spacing; 1025 } 1026 #ifndef NDEBUG 1027 SmallSet<unsigned, 4> DstRegs; 1028 #endif 1029 for (unsigned i = 0; i != SubRegs; ++i) { 1030 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1031 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1032 assert(Dst && Src && "Bad sub-register"); 1033 #ifndef NDEBUG 1034 assert(!DstRegs.count(Src) && "destructive vector copy"); 1035 DstRegs.insert(Dst); 1036 #endif 1037 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1038 // VORR (NEON or MVE) takes two source operands. 1039 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1040 Mov.addReg(Src); 1041 } 1042 // MVE VORR takes predicate operands in place of an ordinary condition. 1043 if (Opc == ARM::MVE_VORR) 1044 addUnpredicatedMveVpredROp(Mov, Dst); 1045 else 1046 Mov = Mov.add(predOps(ARMCC::AL)); 1047 // MOVr can set CC. 1048 if (Opc == ARM::MOVr) 1049 Mov = Mov.add(condCodeOp()); 1050 } 1051 // Add implicit super-register defs and kills to the last instruction. 1052 Mov->addRegisterDefined(DestReg, TRI); 1053 if (KillSrc) 1054 Mov->addRegisterKilled(SrcReg, TRI); 1055 } 1056 1057 Optional<DestSourcePair> 1058 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1059 // VMOVRRD is also a copy instruction but it requires 1060 // special way of handling. It is more complex copy version 1061 // and since that we are not considering it. For recognition 1062 // of such instruction isExtractSubregLike MI interface fuction 1063 // could be used. 1064 // VORRq is considered as a move only if two inputs are 1065 // the same register. 1066 if (!MI.isMoveReg() || 1067 (MI.getOpcode() == ARM::VORRq && 1068 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1069 return None; 1070 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1071 } 1072 1073 Optional<ParamLoadedValue> 1074 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1075 Register Reg) const { 1076 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1077 Register DstReg = DstSrcPair->Destination->getReg(); 1078 1079 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1080 // than the copy registers. Consider for example: 1081 // 1082 // s16 = VMOVS s0 1083 // s17 = VMOVS s1 1084 // call @callee(d0) 1085 // 1086 // We'd like to describe the call site value of d0 as d8, but this requires 1087 // gathering and merging the descriptions for the two VMOVS instructions. 1088 // 1089 // We also don't handle the reverse situation, where the forwarding reg is 1090 // narrower than the copy destination: 1091 // 1092 // d8 = VMOVD d0 1093 // call @callee(s1) 1094 // 1095 // We need to produce a fragment description (the call site value of s1 is 1096 // /not/ just d8). 1097 if (DstReg != Reg) 1098 return None; 1099 } 1100 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1101 } 1102 1103 const MachineInstrBuilder & 1104 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1105 unsigned SubIdx, unsigned State, 1106 const TargetRegisterInfo *TRI) const { 1107 if (!SubIdx) 1108 return MIB.addReg(Reg, State); 1109 1110 if (Register::isPhysicalRegister(Reg)) 1111 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1112 return MIB.addReg(Reg, State, SubIdx); 1113 } 1114 1115 void ARMBaseInstrInfo:: 1116 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1117 Register SrcReg, bool isKill, int FI, 1118 const TargetRegisterClass *RC, 1119 const TargetRegisterInfo *TRI) const { 1120 MachineFunction &MF = *MBB.getParent(); 1121 MachineFrameInfo &MFI = MF.getFrameInfo(); 1122 Align Alignment = MFI.getObjectAlign(FI); 1123 1124 MachineMemOperand *MMO = MF.getMachineMemOperand( 1125 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1126 MFI.getObjectSize(FI), Alignment); 1127 1128 switch (TRI->getSpillSize(*RC)) { 1129 case 2: 1130 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1131 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1132 .addReg(SrcReg, getKillRegState(isKill)) 1133 .addFrameIndex(FI) 1134 .addImm(0) 1135 .addMemOperand(MMO) 1136 .add(predOps(ARMCC::AL)); 1137 } else 1138 llvm_unreachable("Unknown reg class!"); 1139 break; 1140 case 4: 1141 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1142 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1143 .addReg(SrcReg, getKillRegState(isKill)) 1144 .addFrameIndex(FI) 1145 .addImm(0) 1146 .addMemOperand(MMO) 1147 .add(predOps(ARMCC::AL)); 1148 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1149 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1150 .addReg(SrcReg, getKillRegState(isKill)) 1151 .addFrameIndex(FI) 1152 .addImm(0) 1153 .addMemOperand(MMO) 1154 .add(predOps(ARMCC::AL)); 1155 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1156 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1157 .addReg(SrcReg, getKillRegState(isKill)) 1158 .addFrameIndex(FI) 1159 .addImm(0) 1160 .addMemOperand(MMO) 1161 .add(predOps(ARMCC::AL)); 1162 } else 1163 llvm_unreachable("Unknown reg class!"); 1164 break; 1165 case 8: 1166 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1167 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1168 .addReg(SrcReg, getKillRegState(isKill)) 1169 .addFrameIndex(FI) 1170 .addImm(0) 1171 .addMemOperand(MMO) 1172 .add(predOps(ARMCC::AL)); 1173 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1174 if (Subtarget.hasV5TEOps()) { 1175 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1176 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1177 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1178 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1179 .add(predOps(ARMCC::AL)); 1180 } else { 1181 // Fallback to STM instruction, which has existed since the dawn of 1182 // time. 1183 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1184 .addFrameIndex(FI) 1185 .addMemOperand(MMO) 1186 .add(predOps(ARMCC::AL)); 1187 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1188 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1189 } 1190 } else 1191 llvm_unreachable("Unknown reg class!"); 1192 break; 1193 case 16: 1194 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1195 // Use aligned spills if the stack can be realigned. 1196 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1197 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1198 .addFrameIndex(FI) 1199 .addImm(16) 1200 .addReg(SrcReg, getKillRegState(isKill)) 1201 .addMemOperand(MMO) 1202 .add(predOps(ARMCC::AL)); 1203 } else { 1204 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1205 .addReg(SrcReg, getKillRegState(isKill)) 1206 .addFrameIndex(FI) 1207 .addMemOperand(MMO) 1208 .add(predOps(ARMCC::AL)); 1209 } 1210 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1211 Subtarget.hasMVEIntegerOps()) { 1212 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1213 MIB.addReg(SrcReg, getKillRegState(isKill)) 1214 .addFrameIndex(FI) 1215 .addImm(0) 1216 .addMemOperand(MMO); 1217 addUnpredicatedMveVpredNOp(MIB); 1218 } else 1219 llvm_unreachable("Unknown reg class!"); 1220 break; 1221 case 24: 1222 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1223 // Use aligned spills if the stack can be realigned. 1224 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1225 Subtarget.hasNEON()) { 1226 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1227 .addFrameIndex(FI) 1228 .addImm(16) 1229 .addReg(SrcReg, getKillRegState(isKill)) 1230 .addMemOperand(MMO) 1231 .add(predOps(ARMCC::AL)); 1232 } else { 1233 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1234 get(ARM::VSTMDIA)) 1235 .addFrameIndex(FI) 1236 .add(predOps(ARMCC::AL)) 1237 .addMemOperand(MMO); 1238 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1239 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1240 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1241 } 1242 } else 1243 llvm_unreachable("Unknown reg class!"); 1244 break; 1245 case 32: 1246 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1247 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1248 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1249 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1250 Subtarget.hasNEON()) { 1251 // FIXME: It's possible to only store part of the QQ register if the 1252 // spilled def has a sub-register index. 1253 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1254 .addFrameIndex(FI) 1255 .addImm(16) 1256 .addReg(SrcReg, getKillRegState(isKill)) 1257 .addMemOperand(MMO) 1258 .add(predOps(ARMCC::AL)); 1259 } else if (Subtarget.hasMVEIntegerOps()) { 1260 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) 1261 .addReg(SrcReg, getKillRegState(isKill)) 1262 .addFrameIndex(FI) 1263 .addMemOperand(MMO); 1264 } else { 1265 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1266 get(ARM::VSTMDIA)) 1267 .addFrameIndex(FI) 1268 .add(predOps(ARMCC::AL)) 1269 .addMemOperand(MMO); 1270 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1271 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1272 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1273 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1274 } 1275 } else 1276 llvm_unreachable("Unknown reg class!"); 1277 break; 1278 case 64: 1279 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1280 Subtarget.hasMVEIntegerOps()) { 1281 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) 1282 .addReg(SrcReg, getKillRegState(isKill)) 1283 .addFrameIndex(FI) 1284 .addMemOperand(MMO); 1285 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1286 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1287 .addFrameIndex(FI) 1288 .add(predOps(ARMCC::AL)) 1289 .addMemOperand(MMO); 1290 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1291 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1294 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1295 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1296 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1297 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1298 } else 1299 llvm_unreachable("Unknown reg class!"); 1300 break; 1301 default: 1302 llvm_unreachable("Unknown reg class!"); 1303 } 1304 } 1305 1306 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1307 int &FrameIndex) const { 1308 switch (MI.getOpcode()) { 1309 default: break; 1310 case ARM::STRrs: 1311 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1312 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1313 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1314 MI.getOperand(3).getImm() == 0) { 1315 FrameIndex = MI.getOperand(1).getIndex(); 1316 return MI.getOperand(0).getReg(); 1317 } 1318 break; 1319 case ARM::STRi12: 1320 case ARM::t2STRi12: 1321 case ARM::tSTRspi: 1322 case ARM::VSTRD: 1323 case ARM::VSTRS: 1324 case ARM::VSTR_P0_off: 1325 case ARM::MVE_VSTRWU32: 1326 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1327 MI.getOperand(2).getImm() == 0) { 1328 FrameIndex = MI.getOperand(1).getIndex(); 1329 return MI.getOperand(0).getReg(); 1330 } 1331 break; 1332 case ARM::VST1q64: 1333 case ARM::VST1d64TPseudo: 1334 case ARM::VST1d64QPseudo: 1335 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1336 FrameIndex = MI.getOperand(0).getIndex(); 1337 return MI.getOperand(2).getReg(); 1338 } 1339 break; 1340 case ARM::VSTMQIA: 1341 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1342 FrameIndex = MI.getOperand(1).getIndex(); 1343 return MI.getOperand(0).getReg(); 1344 } 1345 break; 1346 case ARM::MQQPRStore: 1347 case ARM::MQQQQPRStore: 1348 if (MI.getOperand(1).isFI()) { 1349 FrameIndex = MI.getOperand(1).getIndex(); 1350 return MI.getOperand(0).getReg(); 1351 } 1352 break; 1353 } 1354 1355 return 0; 1356 } 1357 1358 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1359 int &FrameIndex) const { 1360 SmallVector<const MachineMemOperand *, 1> Accesses; 1361 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1362 Accesses.size() == 1) { 1363 FrameIndex = 1364 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1365 ->getFrameIndex(); 1366 return true; 1367 } 1368 return false; 1369 } 1370 1371 void ARMBaseInstrInfo:: 1372 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1373 Register DestReg, int FI, 1374 const TargetRegisterClass *RC, 1375 const TargetRegisterInfo *TRI) const { 1376 DebugLoc DL; 1377 if (I != MBB.end()) DL = I->getDebugLoc(); 1378 MachineFunction &MF = *MBB.getParent(); 1379 MachineFrameInfo &MFI = MF.getFrameInfo(); 1380 const Align Alignment = MFI.getObjectAlign(FI); 1381 MachineMemOperand *MMO = MF.getMachineMemOperand( 1382 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1383 MFI.getObjectSize(FI), Alignment); 1384 1385 switch (TRI->getSpillSize(*RC)) { 1386 case 2: 1387 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1388 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1389 .addFrameIndex(FI) 1390 .addImm(0) 1391 .addMemOperand(MMO) 1392 .add(predOps(ARMCC::AL)); 1393 } else 1394 llvm_unreachable("Unknown reg class!"); 1395 break; 1396 case 4: 1397 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1398 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1399 .addFrameIndex(FI) 1400 .addImm(0) 1401 .addMemOperand(MMO) 1402 .add(predOps(ARMCC::AL)); 1403 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1404 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1405 .addFrameIndex(FI) 1406 .addImm(0) 1407 .addMemOperand(MMO) 1408 .add(predOps(ARMCC::AL)); 1409 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1410 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1411 .addFrameIndex(FI) 1412 .addImm(0) 1413 .addMemOperand(MMO) 1414 .add(predOps(ARMCC::AL)); 1415 } else 1416 llvm_unreachable("Unknown reg class!"); 1417 break; 1418 case 8: 1419 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1420 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1421 .addFrameIndex(FI) 1422 .addImm(0) 1423 .addMemOperand(MMO) 1424 .add(predOps(ARMCC::AL)); 1425 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1426 MachineInstrBuilder MIB; 1427 1428 if (Subtarget.hasV5TEOps()) { 1429 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1430 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1431 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1432 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1433 .add(predOps(ARMCC::AL)); 1434 } else { 1435 // Fallback to LDM instruction, which has existed since the dawn of 1436 // time. 1437 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1438 .addFrameIndex(FI) 1439 .addMemOperand(MMO) 1440 .add(predOps(ARMCC::AL)); 1441 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1442 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1443 } 1444 1445 if (Register::isPhysicalRegister(DestReg)) 1446 MIB.addReg(DestReg, RegState::ImplicitDefine); 1447 } else 1448 llvm_unreachable("Unknown reg class!"); 1449 break; 1450 case 16: 1451 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1452 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1453 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1454 .addFrameIndex(FI) 1455 .addImm(16) 1456 .addMemOperand(MMO) 1457 .add(predOps(ARMCC::AL)); 1458 } else { 1459 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1460 .addFrameIndex(FI) 1461 .addMemOperand(MMO) 1462 .add(predOps(ARMCC::AL)); 1463 } 1464 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1465 Subtarget.hasMVEIntegerOps()) { 1466 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1467 MIB.addFrameIndex(FI) 1468 .addImm(0) 1469 .addMemOperand(MMO); 1470 addUnpredicatedMveVpredNOp(MIB); 1471 } else 1472 llvm_unreachable("Unknown reg class!"); 1473 break; 1474 case 24: 1475 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1476 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1477 Subtarget.hasNEON()) { 1478 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1479 .addFrameIndex(FI) 1480 .addImm(16) 1481 .addMemOperand(MMO) 1482 .add(predOps(ARMCC::AL)); 1483 } else { 1484 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1485 .addFrameIndex(FI) 1486 .addMemOperand(MMO) 1487 .add(predOps(ARMCC::AL)); 1488 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1489 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1490 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1491 if (Register::isPhysicalRegister(DestReg)) 1492 MIB.addReg(DestReg, RegState::ImplicitDefine); 1493 } 1494 } else 1495 llvm_unreachable("Unknown reg class!"); 1496 break; 1497 case 32: 1498 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1499 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1500 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1501 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1502 Subtarget.hasNEON()) { 1503 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1504 .addFrameIndex(FI) 1505 .addImm(16) 1506 .addMemOperand(MMO) 1507 .add(predOps(ARMCC::AL)); 1508 } else if (Subtarget.hasMVEIntegerOps()) { 1509 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) 1510 .addFrameIndex(FI) 1511 .addMemOperand(MMO); 1512 } else { 1513 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1514 .addFrameIndex(FI) 1515 .add(predOps(ARMCC::AL)) 1516 .addMemOperand(MMO); 1517 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1518 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1519 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1520 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1521 if (Register::isPhysicalRegister(DestReg)) 1522 MIB.addReg(DestReg, RegState::ImplicitDefine); 1523 } 1524 } else 1525 llvm_unreachable("Unknown reg class!"); 1526 break; 1527 case 64: 1528 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1529 Subtarget.hasMVEIntegerOps()) { 1530 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) 1531 .addFrameIndex(FI) 1532 .addMemOperand(MMO); 1533 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1534 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1535 .addFrameIndex(FI) 1536 .add(predOps(ARMCC::AL)) 1537 .addMemOperand(MMO); 1538 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1539 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1540 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1543 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1544 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1545 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1546 if (Register::isPhysicalRegister(DestReg)) 1547 MIB.addReg(DestReg, RegState::ImplicitDefine); 1548 } else 1549 llvm_unreachable("Unknown reg class!"); 1550 break; 1551 default: 1552 llvm_unreachable("Unknown regclass!"); 1553 } 1554 } 1555 1556 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1557 int &FrameIndex) const { 1558 switch (MI.getOpcode()) { 1559 default: break; 1560 case ARM::LDRrs: 1561 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1562 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1563 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1564 MI.getOperand(3).getImm() == 0) { 1565 FrameIndex = MI.getOperand(1).getIndex(); 1566 return MI.getOperand(0).getReg(); 1567 } 1568 break; 1569 case ARM::LDRi12: 1570 case ARM::t2LDRi12: 1571 case ARM::tLDRspi: 1572 case ARM::VLDRD: 1573 case ARM::VLDRS: 1574 case ARM::VLDR_P0_off: 1575 case ARM::MVE_VLDRWU32: 1576 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1577 MI.getOperand(2).getImm() == 0) { 1578 FrameIndex = MI.getOperand(1).getIndex(); 1579 return MI.getOperand(0).getReg(); 1580 } 1581 break; 1582 case ARM::VLD1q64: 1583 case ARM::VLD1d8TPseudo: 1584 case ARM::VLD1d16TPseudo: 1585 case ARM::VLD1d32TPseudo: 1586 case ARM::VLD1d64TPseudo: 1587 case ARM::VLD1d8QPseudo: 1588 case ARM::VLD1d16QPseudo: 1589 case ARM::VLD1d32QPseudo: 1590 case ARM::VLD1d64QPseudo: 1591 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1592 FrameIndex = MI.getOperand(1).getIndex(); 1593 return MI.getOperand(0).getReg(); 1594 } 1595 break; 1596 case ARM::VLDMQIA: 1597 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1598 FrameIndex = MI.getOperand(1).getIndex(); 1599 return MI.getOperand(0).getReg(); 1600 } 1601 break; 1602 case ARM::MQQPRLoad: 1603 case ARM::MQQQQPRLoad: 1604 if (MI.getOperand(1).isFI()) { 1605 FrameIndex = MI.getOperand(1).getIndex(); 1606 return MI.getOperand(0).getReg(); 1607 } 1608 break; 1609 } 1610 1611 return 0; 1612 } 1613 1614 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1615 int &FrameIndex) const { 1616 SmallVector<const MachineMemOperand *, 1> Accesses; 1617 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1618 Accesses.size() == 1) { 1619 FrameIndex = 1620 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1621 ->getFrameIndex(); 1622 return true; 1623 } 1624 return false; 1625 } 1626 1627 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1628 /// depending on whether the result is used. 1629 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1630 bool isThumb1 = Subtarget.isThumb1Only(); 1631 bool isThumb2 = Subtarget.isThumb2(); 1632 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1633 1634 DebugLoc dl = MI->getDebugLoc(); 1635 MachineBasicBlock *BB = MI->getParent(); 1636 1637 MachineInstrBuilder LDM, STM; 1638 if (isThumb1 || !MI->getOperand(1).isDead()) { 1639 MachineOperand LDWb(MI->getOperand(1)); 1640 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1641 : isThumb1 ? ARM::tLDMIA_UPD 1642 : ARM::LDMIA_UPD)) 1643 .add(LDWb); 1644 } else { 1645 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1646 } 1647 1648 if (isThumb1 || !MI->getOperand(0).isDead()) { 1649 MachineOperand STWb(MI->getOperand(0)); 1650 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1651 : isThumb1 ? ARM::tSTMIA_UPD 1652 : ARM::STMIA_UPD)) 1653 .add(STWb); 1654 } else { 1655 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1656 } 1657 1658 MachineOperand LDBase(MI->getOperand(3)); 1659 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1660 1661 MachineOperand STBase(MI->getOperand(2)); 1662 STM.add(STBase).add(predOps(ARMCC::AL)); 1663 1664 // Sort the scratch registers into ascending order. 1665 const TargetRegisterInfo &TRI = getRegisterInfo(); 1666 SmallVector<unsigned, 6> ScratchRegs; 1667 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1668 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1669 llvm::sort(ScratchRegs, 1670 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1671 return TRI.getEncodingValue(Reg1) < 1672 TRI.getEncodingValue(Reg2); 1673 }); 1674 1675 for (const auto &Reg : ScratchRegs) { 1676 LDM.addReg(Reg, RegState::Define); 1677 STM.addReg(Reg, RegState::Kill); 1678 } 1679 1680 BB->erase(MI); 1681 } 1682 1683 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1684 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1685 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1686 "LOAD_STACK_GUARD currently supported only for MachO."); 1687 expandLoadStackGuard(MI); 1688 MI.getParent()->erase(MI); 1689 return true; 1690 } 1691 1692 if (MI.getOpcode() == ARM::MEMCPY) { 1693 expandMEMCPY(MI); 1694 return true; 1695 } 1696 1697 // This hook gets to expand COPY instructions before they become 1698 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1699 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1700 // changed into a VORR that can go down the NEON pipeline. 1701 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1702 return false; 1703 1704 // Look for a copy between even S-registers. That is where we keep floats 1705 // when using NEON v2f32 instructions for f32 arithmetic. 1706 Register DstRegS = MI.getOperand(0).getReg(); 1707 Register SrcRegS = MI.getOperand(1).getReg(); 1708 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1709 return false; 1710 1711 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1712 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1713 &ARM::DPRRegClass); 1714 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1715 &ARM::DPRRegClass); 1716 if (!DstRegD || !SrcRegD) 1717 return false; 1718 1719 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1720 // legal if the COPY already defines the full DstRegD, and it isn't a 1721 // sub-register insertion. 1722 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1723 return false; 1724 1725 // A dead copy shouldn't show up here, but reject it just in case. 1726 if (MI.getOperand(0).isDead()) 1727 return false; 1728 1729 // All clear, widen the COPY. 1730 LLVM_DEBUG(dbgs() << "widening: " << MI); 1731 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1732 1733 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1734 // or some other super-register. 1735 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1736 if (ImpDefIdx != -1) 1737 MI.RemoveOperand(ImpDefIdx); 1738 1739 // Change the opcode and operands. 1740 MI.setDesc(get(ARM::VMOVD)); 1741 MI.getOperand(0).setReg(DstRegD); 1742 MI.getOperand(1).setReg(SrcRegD); 1743 MIB.add(predOps(ARMCC::AL)); 1744 1745 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1746 // register scavenger and machine verifier, so we need to indicate that we 1747 // are reading an undefined value from SrcRegD, but a proper value from 1748 // SrcRegS. 1749 MI.getOperand(1).setIsUndef(); 1750 MIB.addReg(SrcRegS, RegState::Implicit); 1751 1752 // SrcRegD may actually contain an unrelated value in the ssub_1 1753 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1754 if (MI.getOperand(1).isKill()) { 1755 MI.getOperand(1).setIsKill(false); 1756 MI.addRegisterKilled(SrcRegS, TRI, true); 1757 } 1758 1759 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1760 return true; 1761 } 1762 1763 /// Create a copy of a const pool value. Update CPI to the new index and return 1764 /// the label UID. 1765 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1766 MachineConstantPool *MCP = MF.getConstantPool(); 1767 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1768 1769 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1770 assert(MCPE.isMachineConstantPoolEntry() && 1771 "Expecting a machine constantpool entry!"); 1772 ARMConstantPoolValue *ACPV = 1773 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1774 1775 unsigned PCLabelId = AFI->createPICLabelUId(); 1776 ARMConstantPoolValue *NewCPV = nullptr; 1777 1778 // FIXME: The below assumes PIC relocation model and that the function 1779 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1780 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1781 // instructions, so that's probably OK, but is PIC always correct when 1782 // we get here? 1783 if (ACPV->isGlobalValue()) 1784 NewCPV = ARMConstantPoolConstant::Create( 1785 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1786 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1787 else if (ACPV->isExtSymbol()) 1788 NewCPV = ARMConstantPoolSymbol:: 1789 Create(MF.getFunction().getContext(), 1790 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1791 else if (ACPV->isBlockAddress()) 1792 NewCPV = ARMConstantPoolConstant:: 1793 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1794 ARMCP::CPBlockAddress, 4); 1795 else if (ACPV->isLSDA()) 1796 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1797 ARMCP::CPLSDA, 4); 1798 else if (ACPV->isMachineBasicBlock()) 1799 NewCPV = ARMConstantPoolMBB:: 1800 Create(MF.getFunction().getContext(), 1801 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1802 else 1803 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1804 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1805 return PCLabelId; 1806 } 1807 1808 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1809 MachineBasicBlock::iterator I, 1810 Register DestReg, unsigned SubIdx, 1811 const MachineInstr &Orig, 1812 const TargetRegisterInfo &TRI) const { 1813 unsigned Opcode = Orig.getOpcode(); 1814 switch (Opcode) { 1815 default: { 1816 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1817 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1818 MBB.insert(I, MI); 1819 break; 1820 } 1821 case ARM::tLDRpci_pic: 1822 case ARM::t2LDRpci_pic: { 1823 MachineFunction &MF = *MBB.getParent(); 1824 unsigned CPI = Orig.getOperand(1).getIndex(); 1825 unsigned PCLabelId = duplicateCPV(MF, CPI); 1826 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1827 .addConstantPoolIndex(CPI) 1828 .addImm(PCLabelId) 1829 .cloneMemRefs(Orig); 1830 break; 1831 } 1832 } 1833 } 1834 1835 MachineInstr & 1836 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1837 MachineBasicBlock::iterator InsertBefore, 1838 const MachineInstr &Orig) const { 1839 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1840 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1841 for (;;) { 1842 switch (I->getOpcode()) { 1843 case ARM::tLDRpci_pic: 1844 case ARM::t2LDRpci_pic: { 1845 MachineFunction &MF = *MBB.getParent(); 1846 unsigned CPI = I->getOperand(1).getIndex(); 1847 unsigned PCLabelId = duplicateCPV(MF, CPI); 1848 I->getOperand(1).setIndex(CPI); 1849 I->getOperand(2).setImm(PCLabelId); 1850 break; 1851 } 1852 } 1853 if (!I->isBundledWithSucc()) 1854 break; 1855 ++I; 1856 } 1857 return Cloned; 1858 } 1859 1860 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1861 const MachineInstr &MI1, 1862 const MachineRegisterInfo *MRI) const { 1863 unsigned Opcode = MI0.getOpcode(); 1864 if (Opcode == ARM::t2LDRpci || 1865 Opcode == ARM::t2LDRpci_pic || 1866 Opcode == ARM::tLDRpci || 1867 Opcode == ARM::tLDRpci_pic || 1868 Opcode == ARM::LDRLIT_ga_pcrel || 1869 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1870 Opcode == ARM::tLDRLIT_ga_pcrel || 1871 Opcode == ARM::MOV_ga_pcrel || 1872 Opcode == ARM::MOV_ga_pcrel_ldr || 1873 Opcode == ARM::t2MOV_ga_pcrel) { 1874 if (MI1.getOpcode() != Opcode) 1875 return false; 1876 if (MI0.getNumOperands() != MI1.getNumOperands()) 1877 return false; 1878 1879 const MachineOperand &MO0 = MI0.getOperand(1); 1880 const MachineOperand &MO1 = MI1.getOperand(1); 1881 if (MO0.getOffset() != MO1.getOffset()) 1882 return false; 1883 1884 if (Opcode == ARM::LDRLIT_ga_pcrel || 1885 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1886 Opcode == ARM::tLDRLIT_ga_pcrel || 1887 Opcode == ARM::MOV_ga_pcrel || 1888 Opcode == ARM::MOV_ga_pcrel_ldr || 1889 Opcode == ARM::t2MOV_ga_pcrel) 1890 // Ignore the PC labels. 1891 return MO0.getGlobal() == MO1.getGlobal(); 1892 1893 const MachineFunction *MF = MI0.getParent()->getParent(); 1894 const MachineConstantPool *MCP = MF->getConstantPool(); 1895 int CPI0 = MO0.getIndex(); 1896 int CPI1 = MO1.getIndex(); 1897 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1898 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1899 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1900 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1901 if (isARMCP0 && isARMCP1) { 1902 ARMConstantPoolValue *ACPV0 = 1903 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1904 ARMConstantPoolValue *ACPV1 = 1905 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1906 return ACPV0->hasSameValue(ACPV1); 1907 } else if (!isARMCP0 && !isARMCP1) { 1908 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1909 } 1910 return false; 1911 } else if (Opcode == ARM::PICLDR) { 1912 if (MI1.getOpcode() != Opcode) 1913 return false; 1914 if (MI0.getNumOperands() != MI1.getNumOperands()) 1915 return false; 1916 1917 Register Addr0 = MI0.getOperand(1).getReg(); 1918 Register Addr1 = MI1.getOperand(1).getReg(); 1919 if (Addr0 != Addr1) { 1920 if (!MRI || !Register::isVirtualRegister(Addr0) || 1921 !Register::isVirtualRegister(Addr1)) 1922 return false; 1923 1924 // This assumes SSA form. 1925 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1926 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1927 // Check if the loaded value, e.g. a constantpool of a global address, are 1928 // the same. 1929 if (!produceSameValue(*Def0, *Def1, MRI)) 1930 return false; 1931 } 1932 1933 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1934 // %12 = PICLDR %11, 0, 14, %noreg 1935 const MachineOperand &MO0 = MI0.getOperand(i); 1936 const MachineOperand &MO1 = MI1.getOperand(i); 1937 if (!MO0.isIdenticalTo(MO1)) 1938 return false; 1939 } 1940 return true; 1941 } 1942 1943 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1944 } 1945 1946 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1947 /// determine if two loads are loading from the same base address. It should 1948 /// only return true if the base pointers are the same and the only differences 1949 /// between the two addresses is the offset. It also returns the offsets by 1950 /// reference. 1951 /// 1952 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1953 /// is permanently disabled. 1954 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1955 int64_t &Offset1, 1956 int64_t &Offset2) const { 1957 // Don't worry about Thumb: just ARM and Thumb2. 1958 if (Subtarget.isThumb1Only()) return false; 1959 1960 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1961 return false; 1962 1963 switch (Load1->getMachineOpcode()) { 1964 default: 1965 return false; 1966 case ARM::LDRi12: 1967 case ARM::LDRBi12: 1968 case ARM::LDRD: 1969 case ARM::LDRH: 1970 case ARM::LDRSB: 1971 case ARM::LDRSH: 1972 case ARM::VLDRD: 1973 case ARM::VLDRS: 1974 case ARM::t2LDRi8: 1975 case ARM::t2LDRBi8: 1976 case ARM::t2LDRDi8: 1977 case ARM::t2LDRSHi8: 1978 case ARM::t2LDRi12: 1979 case ARM::t2LDRBi12: 1980 case ARM::t2LDRSHi12: 1981 break; 1982 } 1983 1984 switch (Load2->getMachineOpcode()) { 1985 default: 1986 return false; 1987 case ARM::LDRi12: 1988 case ARM::LDRBi12: 1989 case ARM::LDRD: 1990 case ARM::LDRH: 1991 case ARM::LDRSB: 1992 case ARM::LDRSH: 1993 case ARM::VLDRD: 1994 case ARM::VLDRS: 1995 case ARM::t2LDRi8: 1996 case ARM::t2LDRBi8: 1997 case ARM::t2LDRSHi8: 1998 case ARM::t2LDRi12: 1999 case ARM::t2LDRBi12: 2000 case ARM::t2LDRSHi12: 2001 break; 2002 } 2003 2004 // Check if base addresses and chain operands match. 2005 if (Load1->getOperand(0) != Load2->getOperand(0) || 2006 Load1->getOperand(4) != Load2->getOperand(4)) 2007 return false; 2008 2009 // Index should be Reg0. 2010 if (Load1->getOperand(3) != Load2->getOperand(3)) 2011 return false; 2012 2013 // Determine the offsets. 2014 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 2015 isa<ConstantSDNode>(Load2->getOperand(1))) { 2016 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 2017 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 2018 return true; 2019 } 2020 2021 return false; 2022 } 2023 2024 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 2025 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 2026 /// be scheduled togther. On some targets if two loads are loading from 2027 /// addresses in the same cache line, it's better if they are scheduled 2028 /// together. This function takes two integers that represent the load offsets 2029 /// from the common base address. It returns true if it decides it's desirable 2030 /// to schedule the two loads together. "NumLoads" is the number of loads that 2031 /// have already been scheduled after Load1. 2032 /// 2033 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2034 /// is permanently disabled. 2035 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2036 int64_t Offset1, int64_t Offset2, 2037 unsigned NumLoads) const { 2038 // Don't worry about Thumb: just ARM and Thumb2. 2039 if (Subtarget.isThumb1Only()) return false; 2040 2041 assert(Offset2 > Offset1); 2042 2043 if ((Offset2 - Offset1) / 8 > 64) 2044 return false; 2045 2046 // Check if the machine opcodes are different. If they are different 2047 // then we consider them to not be of the same base address, 2048 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2049 // In this case, they are considered to be the same because they are different 2050 // encoding forms of the same basic instruction. 2051 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2052 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2053 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2054 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2055 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2056 return false; // FIXME: overly conservative? 2057 2058 // Four loads in a row should be sufficient. 2059 if (NumLoads >= 3) 2060 return false; 2061 2062 return true; 2063 } 2064 2065 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2066 const MachineBasicBlock *MBB, 2067 const MachineFunction &MF) const { 2068 // Debug info is never a scheduling boundary. It's necessary to be explicit 2069 // due to the special treatment of IT instructions below, otherwise a 2070 // dbg_value followed by an IT will result in the IT instruction being 2071 // considered a scheduling hazard, which is wrong. It should be the actual 2072 // instruction preceding the dbg_value instruction(s), just like it is 2073 // when debug info is not present. 2074 if (MI.isDebugInstr()) 2075 return false; 2076 2077 // Terminators and labels can't be scheduled around. 2078 if (MI.isTerminator() || MI.isPosition()) 2079 return true; 2080 2081 // INLINEASM_BR can jump to another block 2082 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2083 return true; 2084 2085 // Treat the start of the IT block as a scheduling boundary, but schedule 2086 // t2IT along with all instructions following it. 2087 // FIXME: This is a big hammer. But the alternative is to add all potential 2088 // true and anti dependencies to IT block instructions as implicit operands 2089 // to the t2IT instruction. The added compile time and complexity does not 2090 // seem worth it. 2091 MachineBasicBlock::const_iterator I = MI; 2092 // Make sure to skip any debug instructions 2093 while (++I != MBB->end() && I->isDebugInstr()) 2094 ; 2095 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2096 return true; 2097 2098 // Don't attempt to schedule around any instruction that defines 2099 // a stack-oriented pointer, as it's unlikely to be profitable. This 2100 // saves compile time, because it doesn't require every single 2101 // stack slot reference to depend on the instruction that does the 2102 // modification. 2103 // Calls don't actually change the stack pointer, even if they have imp-defs. 2104 // No ARM calling conventions change the stack pointer. (X86 calling 2105 // conventions sometimes do). 2106 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 2107 return true; 2108 2109 return false; 2110 } 2111 2112 bool ARMBaseInstrInfo:: 2113 isProfitableToIfCvt(MachineBasicBlock &MBB, 2114 unsigned NumCycles, unsigned ExtraPredCycles, 2115 BranchProbability Probability) const { 2116 if (!NumCycles) 2117 return false; 2118 2119 // If we are optimizing for size, see if the branch in the predecessor can be 2120 // lowered to cbn?z by the constant island lowering pass, and return false if 2121 // so. This results in a shorter instruction sequence. 2122 if (MBB.getParent()->getFunction().hasOptSize()) { 2123 MachineBasicBlock *Pred = *MBB.pred_begin(); 2124 if (!Pred->empty()) { 2125 MachineInstr *LastMI = &*Pred->rbegin(); 2126 if (LastMI->getOpcode() == ARM::t2Bcc) { 2127 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2128 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2129 if (CmpMI) 2130 return false; 2131 } 2132 } 2133 } 2134 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2135 MBB, 0, 0, Probability); 2136 } 2137 2138 bool ARMBaseInstrInfo:: 2139 isProfitableToIfCvt(MachineBasicBlock &TBB, 2140 unsigned TCycles, unsigned TExtra, 2141 MachineBasicBlock &FBB, 2142 unsigned FCycles, unsigned FExtra, 2143 BranchProbability Probability) const { 2144 if (!TCycles) 2145 return false; 2146 2147 // In thumb code we often end up trading one branch for a IT block, and 2148 // if we are cloning the instruction can increase code size. Prevent 2149 // blocks with multiple predecesors from being ifcvted to prevent this 2150 // cloning. 2151 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2152 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2153 return false; 2154 } 2155 2156 // Attempt to estimate the relative costs of predication versus branching. 2157 // Here we scale up each component of UnpredCost to avoid precision issue when 2158 // scaling TCycles/FCycles by Probability. 2159 const unsigned ScalingUpFactor = 1024; 2160 2161 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2162 unsigned UnpredCost; 2163 if (!Subtarget.hasBranchPredictor()) { 2164 // When we don't have a branch predictor it's always cheaper to not take a 2165 // branch than take it, so we have to take that into account. 2166 unsigned NotTakenBranchCost = 1; 2167 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2168 unsigned TUnpredCycles, FUnpredCycles; 2169 if (!FCycles) { 2170 // Triangle: TBB is the fallthrough 2171 TUnpredCycles = TCycles + NotTakenBranchCost; 2172 FUnpredCycles = TakenBranchCost; 2173 } else { 2174 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2175 TUnpredCycles = TCycles + TakenBranchCost; 2176 FUnpredCycles = FCycles + NotTakenBranchCost; 2177 // The branch at the end of FBB will disappear when it's predicated, so 2178 // discount it from PredCost. 2179 PredCost -= 1 * ScalingUpFactor; 2180 } 2181 // The total cost is the cost of each path scaled by their probabilites 2182 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2183 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2184 UnpredCost = TUnpredCost + FUnpredCost; 2185 // When predicating assume that the first IT can be folded away but later 2186 // ones cost one cycle each 2187 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2188 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2189 } 2190 } else { 2191 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2192 unsigned FUnpredCost = 2193 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2194 UnpredCost = TUnpredCost + FUnpredCost; 2195 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2196 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2197 } 2198 2199 return PredCost <= UnpredCost; 2200 } 2201 2202 unsigned 2203 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2204 unsigned NumInsts) const { 2205 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2206 // ARM has a condition code field in every predicable instruction, using it 2207 // doesn't change code size. 2208 if (!Subtarget.isThumb2()) 2209 return 0; 2210 2211 // It's possible that the size of the IT is restricted to a single block. 2212 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2213 return divideCeil(NumInsts, MaxInsts) * 2; 2214 } 2215 2216 unsigned 2217 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2218 // If this branch is likely to be folded into the comparison to form a 2219 // CB(N)Z, then removing it won't reduce code size at all, because that will 2220 // just replace the CB(N)Z with a CMP. 2221 if (MI.getOpcode() == ARM::t2Bcc && 2222 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2223 return 0; 2224 2225 unsigned Size = getInstSizeInBytes(MI); 2226 2227 // For Thumb2, all branches are 32-bit instructions during the if conversion 2228 // pass, but may be replaced with 16-bit instructions during size reduction. 2229 // Since the branches considered by if conversion tend to be forward branches 2230 // over small basic blocks, they are very likely to be in range for the 2231 // narrow instructions, so we assume the final code size will be half what it 2232 // currently is. 2233 if (Subtarget.isThumb2()) 2234 Size /= 2; 2235 2236 return Size; 2237 } 2238 2239 bool 2240 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2241 MachineBasicBlock &FMBB) const { 2242 // Reduce false anti-dependencies to let the target's out-of-order execution 2243 // engine do its thing. 2244 return Subtarget.isProfitableToUnpredicate(); 2245 } 2246 2247 /// getInstrPredicate - If instruction is predicated, returns its predicate 2248 /// condition, otherwise returns AL. It also returns the condition code 2249 /// register by reference. 2250 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2251 Register &PredReg) { 2252 int PIdx = MI.findFirstPredOperandIdx(); 2253 if (PIdx == -1) { 2254 PredReg = 0; 2255 return ARMCC::AL; 2256 } 2257 2258 PredReg = MI.getOperand(PIdx+1).getReg(); 2259 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2260 } 2261 2262 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2263 if (Opc == ARM::B) 2264 return ARM::Bcc; 2265 if (Opc == ARM::tB) 2266 return ARM::tBcc; 2267 if (Opc == ARM::t2B) 2268 return ARM::t2Bcc; 2269 2270 llvm_unreachable("Unknown unconditional branch opcode!"); 2271 } 2272 2273 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2274 bool NewMI, 2275 unsigned OpIdx1, 2276 unsigned OpIdx2) const { 2277 switch (MI.getOpcode()) { 2278 case ARM::MOVCCr: 2279 case ARM::t2MOVCCr: { 2280 // MOVCC can be commuted by inverting the condition. 2281 Register PredReg; 2282 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2283 // MOVCC AL can't be inverted. Shouldn't happen. 2284 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2285 return nullptr; 2286 MachineInstr *CommutedMI = 2287 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2288 if (!CommutedMI) 2289 return nullptr; 2290 // After swapping the MOVCC operands, also invert the condition. 2291 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2292 .setImm(ARMCC::getOppositeCondition(CC)); 2293 return CommutedMI; 2294 } 2295 } 2296 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2297 } 2298 2299 /// Identify instructions that can be folded into a MOVCC instruction, and 2300 /// return the defining instruction. 2301 MachineInstr * 2302 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2303 const TargetInstrInfo *TII) const { 2304 if (!Reg.isVirtual()) 2305 return nullptr; 2306 if (!MRI.hasOneNonDBGUse(Reg)) 2307 return nullptr; 2308 MachineInstr *MI = MRI.getVRegDef(Reg); 2309 if (!MI) 2310 return nullptr; 2311 // Check if MI can be predicated and folded into the MOVCC. 2312 if (!isPredicable(*MI)) 2313 return nullptr; 2314 // Check if MI has any non-dead defs or physreg uses. This also detects 2315 // predicated instructions which will be reading CPSR. 2316 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2317 const MachineOperand &MO = MI->getOperand(i); 2318 // Reject frame index operands, PEI can't handle the predicated pseudos. 2319 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2320 return nullptr; 2321 if (!MO.isReg()) 2322 continue; 2323 // MI can't have any tied operands, that would conflict with predication. 2324 if (MO.isTied()) 2325 return nullptr; 2326 if (Register::isPhysicalRegister(MO.getReg())) 2327 return nullptr; 2328 if (MO.isDef() && !MO.isDead()) 2329 return nullptr; 2330 } 2331 bool DontMoveAcrossStores = true; 2332 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2333 return nullptr; 2334 return MI; 2335 } 2336 2337 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2338 SmallVectorImpl<MachineOperand> &Cond, 2339 unsigned &TrueOp, unsigned &FalseOp, 2340 bool &Optimizable) const { 2341 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2342 "Unknown select instruction"); 2343 // MOVCC operands: 2344 // 0: Def. 2345 // 1: True use. 2346 // 2: False use. 2347 // 3: Condition code. 2348 // 4: CPSR use. 2349 TrueOp = 1; 2350 FalseOp = 2; 2351 Cond.push_back(MI.getOperand(3)); 2352 Cond.push_back(MI.getOperand(4)); 2353 // We can always fold a def. 2354 Optimizable = true; 2355 return false; 2356 } 2357 2358 MachineInstr * 2359 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2360 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2361 bool PreferFalse) const { 2362 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2363 "Unknown select instruction"); 2364 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2365 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2366 bool Invert = !DefMI; 2367 if (!DefMI) 2368 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2369 if (!DefMI) 2370 return nullptr; 2371 2372 // Find new register class to use. 2373 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2374 Register DestReg = MI.getOperand(0).getReg(); 2375 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2376 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2377 return nullptr; 2378 2379 // Create a new predicated version of DefMI. 2380 // Rfalse is the first use. 2381 MachineInstrBuilder NewMI = 2382 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2383 2384 // Copy all the DefMI operands, excluding its (null) predicate. 2385 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2386 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2387 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2388 NewMI.add(DefMI->getOperand(i)); 2389 2390 unsigned CondCode = MI.getOperand(3).getImm(); 2391 if (Invert) 2392 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2393 else 2394 NewMI.addImm(CondCode); 2395 NewMI.add(MI.getOperand(4)); 2396 2397 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2398 if (NewMI->hasOptionalDef()) 2399 NewMI.add(condCodeOp()); 2400 2401 // The output register value when the predicate is false is an implicit 2402 // register operand tied to the first def. 2403 // The tie makes the register allocator ensure the FalseReg is allocated the 2404 // same register as operand 0. 2405 FalseReg.setImplicit(); 2406 NewMI.add(FalseReg); 2407 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2408 2409 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2410 SeenMIs.insert(NewMI); 2411 SeenMIs.erase(DefMI); 2412 2413 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2414 // DefMI would be invalid when tranferred inside the loop. Checking for a 2415 // loop is expensive, but at least remove kill flags if they are in different 2416 // BBs. 2417 if (DefMI->getParent() != MI.getParent()) 2418 NewMI->clearKillInfo(); 2419 2420 // The caller will erase MI, but not DefMI. 2421 DefMI->eraseFromParent(); 2422 return NewMI; 2423 } 2424 2425 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2426 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2427 /// def operand. 2428 /// 2429 /// This will go away once we can teach tblgen how to set the optional CPSR def 2430 /// operand itself. 2431 struct AddSubFlagsOpcodePair { 2432 uint16_t PseudoOpc; 2433 uint16_t MachineOpc; 2434 }; 2435 2436 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2437 {ARM::ADDSri, ARM::ADDri}, 2438 {ARM::ADDSrr, ARM::ADDrr}, 2439 {ARM::ADDSrsi, ARM::ADDrsi}, 2440 {ARM::ADDSrsr, ARM::ADDrsr}, 2441 2442 {ARM::SUBSri, ARM::SUBri}, 2443 {ARM::SUBSrr, ARM::SUBrr}, 2444 {ARM::SUBSrsi, ARM::SUBrsi}, 2445 {ARM::SUBSrsr, ARM::SUBrsr}, 2446 2447 {ARM::RSBSri, ARM::RSBri}, 2448 {ARM::RSBSrsi, ARM::RSBrsi}, 2449 {ARM::RSBSrsr, ARM::RSBrsr}, 2450 2451 {ARM::tADDSi3, ARM::tADDi3}, 2452 {ARM::tADDSi8, ARM::tADDi8}, 2453 {ARM::tADDSrr, ARM::tADDrr}, 2454 {ARM::tADCS, ARM::tADC}, 2455 2456 {ARM::tSUBSi3, ARM::tSUBi3}, 2457 {ARM::tSUBSi8, ARM::tSUBi8}, 2458 {ARM::tSUBSrr, ARM::tSUBrr}, 2459 {ARM::tSBCS, ARM::tSBC}, 2460 {ARM::tRSBS, ARM::tRSB}, 2461 {ARM::tLSLSri, ARM::tLSLri}, 2462 2463 {ARM::t2ADDSri, ARM::t2ADDri}, 2464 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2465 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2466 2467 {ARM::t2SUBSri, ARM::t2SUBri}, 2468 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2469 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2470 2471 {ARM::t2RSBSri, ARM::t2RSBri}, 2472 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2473 }; 2474 2475 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2476 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2477 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2478 return AddSubFlagsOpcodeMap[i].MachineOpc; 2479 return 0; 2480 } 2481 2482 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2483 MachineBasicBlock::iterator &MBBI, 2484 const DebugLoc &dl, Register DestReg, 2485 Register BaseReg, int NumBytes, 2486 ARMCC::CondCodes Pred, Register PredReg, 2487 const ARMBaseInstrInfo &TII, 2488 unsigned MIFlags) { 2489 if (NumBytes == 0 && DestReg != BaseReg) { 2490 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2491 .addReg(BaseReg, RegState::Kill) 2492 .add(predOps(Pred, PredReg)) 2493 .add(condCodeOp()) 2494 .setMIFlags(MIFlags); 2495 return; 2496 } 2497 2498 bool isSub = NumBytes < 0; 2499 if (isSub) NumBytes = -NumBytes; 2500 2501 while (NumBytes) { 2502 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2503 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2504 assert(ThisVal && "Didn't extract field correctly"); 2505 2506 // We will handle these bits from offset, clear them. 2507 NumBytes &= ~ThisVal; 2508 2509 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2510 2511 // Build the new ADD / SUB. 2512 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2513 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2514 .addReg(BaseReg, RegState::Kill) 2515 .addImm(ThisVal) 2516 .add(predOps(Pred, PredReg)) 2517 .add(condCodeOp()) 2518 .setMIFlags(MIFlags); 2519 BaseReg = DestReg; 2520 } 2521 } 2522 2523 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2524 MachineFunction &MF, MachineInstr *MI, 2525 unsigned NumBytes) { 2526 // This optimisation potentially adds lots of load and store 2527 // micro-operations, it's only really a great benefit to code-size. 2528 if (!Subtarget.hasMinSize()) 2529 return false; 2530 2531 // If only one register is pushed/popped, LLVM can use an LDR/STR 2532 // instead. We can't modify those so make sure we're dealing with an 2533 // instruction we understand. 2534 bool IsPop = isPopOpcode(MI->getOpcode()); 2535 bool IsPush = isPushOpcode(MI->getOpcode()); 2536 if (!IsPush && !IsPop) 2537 return false; 2538 2539 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2540 MI->getOpcode() == ARM::VLDMDIA_UPD; 2541 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2542 MI->getOpcode() == ARM::tPOP || 2543 MI->getOpcode() == ARM::tPOP_RET; 2544 2545 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2546 MI->getOperand(1).getReg() == ARM::SP)) && 2547 "trying to fold sp update into non-sp-updating push/pop"); 2548 2549 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2550 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2551 // if this is violated. 2552 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2553 return false; 2554 2555 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2556 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2557 int RegListIdx = IsT1PushPop ? 2 : 4; 2558 2559 // Calculate the space we'll need in terms of registers. 2560 unsigned RegsNeeded; 2561 const TargetRegisterClass *RegClass; 2562 if (IsVFPPushPop) { 2563 RegsNeeded = NumBytes / 8; 2564 RegClass = &ARM::DPRRegClass; 2565 } else { 2566 RegsNeeded = NumBytes / 4; 2567 RegClass = &ARM::GPRRegClass; 2568 } 2569 2570 // We're going to have to strip all list operands off before 2571 // re-adding them since the order matters, so save the existing ones 2572 // for later. 2573 SmallVector<MachineOperand, 4> RegList; 2574 2575 // We're also going to need the first register transferred by this 2576 // instruction, which won't necessarily be the first register in the list. 2577 unsigned FirstRegEnc = -1; 2578 2579 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2580 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2581 MachineOperand &MO = MI->getOperand(i); 2582 RegList.push_back(MO); 2583 2584 if (MO.isReg() && !MO.isImplicit() && 2585 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2586 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2587 } 2588 2589 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2590 2591 // Now try to find enough space in the reglist to allocate NumBytes. 2592 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2593 --CurRegEnc) { 2594 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2595 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2596 continue; 2597 if (!IsPop) { 2598 // Pushing any register is completely harmless, mark the register involved 2599 // as undef since we don't care about its value and must not restore it 2600 // during stack unwinding. 2601 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2602 false, false, true)); 2603 --RegsNeeded; 2604 continue; 2605 } 2606 2607 // However, we can only pop an extra register if it's not live. For 2608 // registers live within the function we might clobber a return value 2609 // register; the other way a register can be live here is if it's 2610 // callee-saved. 2611 if (isCalleeSavedRegister(CurReg, CSRegs) || 2612 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2613 MachineBasicBlock::LQR_Dead) { 2614 // VFP pops don't allow holes in the register list, so any skip is fatal 2615 // for our transformation. GPR pops do, so we should just keep looking. 2616 if (IsVFPPushPop) 2617 return false; 2618 else 2619 continue; 2620 } 2621 2622 // Mark the unimportant registers as <def,dead> in the POP. 2623 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2624 true)); 2625 --RegsNeeded; 2626 } 2627 2628 if (RegsNeeded > 0) 2629 return false; 2630 2631 // Finally we know we can profitably perform the optimisation so go 2632 // ahead: strip all existing registers off and add them back again 2633 // in the right order. 2634 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2635 MI->RemoveOperand(i); 2636 2637 // Add the complete list back in. 2638 MachineInstrBuilder MIB(MF, &*MI); 2639 for (int i = RegList.size() - 1; i >= 0; --i) 2640 MIB.add(RegList[i]); 2641 2642 return true; 2643 } 2644 2645 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2646 Register FrameReg, int &Offset, 2647 const ARMBaseInstrInfo &TII) { 2648 unsigned Opcode = MI.getOpcode(); 2649 const MCInstrDesc &Desc = MI.getDesc(); 2650 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2651 bool isSub = false; 2652 2653 // Memory operands in inline assembly always use AddrMode2. 2654 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2655 AddrMode = ARMII::AddrMode2; 2656 2657 if (Opcode == ARM::ADDri) { 2658 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2659 if (Offset == 0) { 2660 // Turn it into a move. 2661 MI.setDesc(TII.get(ARM::MOVr)); 2662 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2663 MI.RemoveOperand(FrameRegIdx+1); 2664 Offset = 0; 2665 return true; 2666 } else if (Offset < 0) { 2667 Offset = -Offset; 2668 isSub = true; 2669 MI.setDesc(TII.get(ARM::SUBri)); 2670 } 2671 2672 // Common case: small offset, fits into instruction. 2673 if (ARM_AM::getSOImmVal(Offset) != -1) { 2674 // Replace the FrameIndex with sp / fp 2675 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2676 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2677 Offset = 0; 2678 return true; 2679 } 2680 2681 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2682 // as possible. 2683 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2684 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2685 2686 // We will handle these bits from offset, clear them. 2687 Offset &= ~ThisImmVal; 2688 2689 // Get the properly encoded SOImmVal field. 2690 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2691 "Bit extraction didn't work?"); 2692 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2693 } else { 2694 unsigned ImmIdx = 0; 2695 int InstrOffs = 0; 2696 unsigned NumBits = 0; 2697 unsigned Scale = 1; 2698 switch (AddrMode) { 2699 case ARMII::AddrMode_i12: 2700 ImmIdx = FrameRegIdx + 1; 2701 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2702 NumBits = 12; 2703 break; 2704 case ARMII::AddrMode2: 2705 ImmIdx = FrameRegIdx+2; 2706 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2707 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2708 InstrOffs *= -1; 2709 NumBits = 12; 2710 break; 2711 case ARMII::AddrMode3: 2712 ImmIdx = FrameRegIdx+2; 2713 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2714 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2715 InstrOffs *= -1; 2716 NumBits = 8; 2717 break; 2718 case ARMII::AddrMode4: 2719 case ARMII::AddrMode6: 2720 // Can't fold any offset even if it's zero. 2721 return false; 2722 case ARMII::AddrMode5: 2723 ImmIdx = FrameRegIdx+1; 2724 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2725 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2726 InstrOffs *= -1; 2727 NumBits = 8; 2728 Scale = 4; 2729 break; 2730 case ARMII::AddrMode5FP16: 2731 ImmIdx = FrameRegIdx+1; 2732 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2733 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2734 InstrOffs *= -1; 2735 NumBits = 8; 2736 Scale = 2; 2737 break; 2738 case ARMII::AddrModeT2_i7: 2739 case ARMII::AddrModeT2_i7s2: 2740 case ARMII::AddrModeT2_i7s4: 2741 ImmIdx = FrameRegIdx+1; 2742 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2743 NumBits = 7; 2744 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2745 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2746 break; 2747 default: 2748 llvm_unreachable("Unsupported addressing mode!"); 2749 } 2750 2751 Offset += InstrOffs * Scale; 2752 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2753 if (Offset < 0) { 2754 Offset = -Offset; 2755 isSub = true; 2756 } 2757 2758 // Attempt to fold address comp. if opcode has offset bits 2759 if (NumBits > 0) { 2760 // Common case: small offset, fits into instruction. 2761 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2762 int ImmedOffset = Offset / Scale; 2763 unsigned Mask = (1 << NumBits) - 1; 2764 if ((unsigned)Offset <= Mask * Scale) { 2765 // Replace the FrameIndex with sp 2766 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2767 // FIXME: When addrmode2 goes away, this will simplify (like the 2768 // T2 version), as the LDR.i12 versions don't need the encoding 2769 // tricks for the offset value. 2770 if (isSub) { 2771 if (AddrMode == ARMII::AddrMode_i12) 2772 ImmedOffset = -ImmedOffset; 2773 else 2774 ImmedOffset |= 1 << NumBits; 2775 } 2776 ImmOp.ChangeToImmediate(ImmedOffset); 2777 Offset = 0; 2778 return true; 2779 } 2780 2781 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2782 ImmedOffset = ImmedOffset & Mask; 2783 if (isSub) { 2784 if (AddrMode == ARMII::AddrMode_i12) 2785 ImmedOffset = -ImmedOffset; 2786 else 2787 ImmedOffset |= 1 << NumBits; 2788 } 2789 ImmOp.ChangeToImmediate(ImmedOffset); 2790 Offset &= ~(Mask*Scale); 2791 } 2792 } 2793 2794 Offset = (isSub) ? -Offset : Offset; 2795 return Offset == 0; 2796 } 2797 2798 /// analyzeCompare - For a comparison instruction, return the source registers 2799 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2800 /// compares against in CmpValue. Return true if the comparison instruction 2801 /// can be analyzed. 2802 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2803 Register &SrcReg2, int64_t &CmpMask, 2804 int64_t &CmpValue) const { 2805 switch (MI.getOpcode()) { 2806 default: break; 2807 case ARM::CMPri: 2808 case ARM::t2CMPri: 2809 case ARM::tCMPi8: 2810 SrcReg = MI.getOperand(0).getReg(); 2811 SrcReg2 = 0; 2812 CmpMask = ~0; 2813 CmpValue = MI.getOperand(1).getImm(); 2814 return true; 2815 case ARM::CMPrr: 2816 case ARM::t2CMPrr: 2817 case ARM::tCMPr: 2818 SrcReg = MI.getOperand(0).getReg(); 2819 SrcReg2 = MI.getOperand(1).getReg(); 2820 CmpMask = ~0; 2821 CmpValue = 0; 2822 return true; 2823 case ARM::TSTri: 2824 case ARM::t2TSTri: 2825 SrcReg = MI.getOperand(0).getReg(); 2826 SrcReg2 = 0; 2827 CmpMask = MI.getOperand(1).getImm(); 2828 CmpValue = 0; 2829 return true; 2830 } 2831 2832 return false; 2833 } 2834 2835 /// isSuitableForMask - Identify a suitable 'and' instruction that 2836 /// operates on the given source register and applies the same mask 2837 /// as a 'tst' instruction. Provide a limited look-through for copies. 2838 /// When successful, MI will hold the found instruction. 2839 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2840 int CmpMask, bool CommonUse) { 2841 switch (MI->getOpcode()) { 2842 case ARM::ANDri: 2843 case ARM::t2ANDri: 2844 if (CmpMask != MI->getOperand(2).getImm()) 2845 return false; 2846 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2847 return true; 2848 break; 2849 } 2850 2851 return false; 2852 } 2853 2854 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2855 /// the condition code if we modify the instructions such that flags are 2856 /// set by ADD(a,b,X). 2857 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2858 switch (CC) { 2859 default: return ARMCC::AL; 2860 case ARMCC::HS: return ARMCC::LO; 2861 case ARMCC::LO: return ARMCC::HS; 2862 case ARMCC::VS: return ARMCC::VS; 2863 case ARMCC::VC: return ARMCC::VC; 2864 } 2865 } 2866 2867 /// isRedundantFlagInstr - check whether the first instruction, whose only 2868 /// purpose is to update flags, can be made redundant. 2869 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2870 /// CMPri can be made redundant by SUBri if the operands are the same. 2871 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2872 /// This function can be extended later on. 2873 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2874 Register SrcReg, Register SrcReg2, 2875 int64_t ImmValue, 2876 const MachineInstr *OI, 2877 bool &IsThumb1) { 2878 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2879 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2880 ((OI->getOperand(1).getReg() == SrcReg && 2881 OI->getOperand(2).getReg() == SrcReg2) || 2882 (OI->getOperand(1).getReg() == SrcReg2 && 2883 OI->getOperand(2).getReg() == SrcReg))) { 2884 IsThumb1 = false; 2885 return true; 2886 } 2887 2888 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2889 ((OI->getOperand(2).getReg() == SrcReg && 2890 OI->getOperand(3).getReg() == SrcReg2) || 2891 (OI->getOperand(2).getReg() == SrcReg2 && 2892 OI->getOperand(3).getReg() == SrcReg))) { 2893 IsThumb1 = true; 2894 return true; 2895 } 2896 2897 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2898 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2899 OI->getOperand(1).getReg() == SrcReg && 2900 OI->getOperand(2).getImm() == ImmValue) { 2901 IsThumb1 = false; 2902 return true; 2903 } 2904 2905 if (CmpI->getOpcode() == ARM::tCMPi8 && 2906 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2907 OI->getOperand(2).getReg() == SrcReg && 2908 OI->getOperand(3).getImm() == ImmValue) { 2909 IsThumb1 = true; 2910 return true; 2911 } 2912 2913 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2914 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2915 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2916 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2917 OI->getOperand(0).getReg() == SrcReg && 2918 OI->getOperand(1).getReg() == SrcReg2) { 2919 IsThumb1 = false; 2920 return true; 2921 } 2922 2923 if (CmpI->getOpcode() == ARM::tCMPr && 2924 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2925 OI->getOpcode() == ARM::tADDrr) && 2926 OI->getOperand(0).getReg() == SrcReg && 2927 OI->getOperand(2).getReg() == SrcReg2) { 2928 IsThumb1 = true; 2929 return true; 2930 } 2931 2932 return false; 2933 } 2934 2935 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2936 switch (MI->getOpcode()) { 2937 default: return false; 2938 case ARM::tLSLri: 2939 case ARM::tLSRri: 2940 case ARM::tLSLrr: 2941 case ARM::tLSRrr: 2942 case ARM::tSUBrr: 2943 case ARM::tADDrr: 2944 case ARM::tADDi3: 2945 case ARM::tADDi8: 2946 case ARM::tSUBi3: 2947 case ARM::tSUBi8: 2948 case ARM::tMUL: 2949 case ARM::tADC: 2950 case ARM::tSBC: 2951 case ARM::tRSB: 2952 case ARM::tAND: 2953 case ARM::tORR: 2954 case ARM::tEOR: 2955 case ARM::tBIC: 2956 case ARM::tMVN: 2957 case ARM::tASRri: 2958 case ARM::tASRrr: 2959 case ARM::tROR: 2960 IsThumb1 = true; 2961 LLVM_FALLTHROUGH; 2962 case ARM::RSBrr: 2963 case ARM::RSBri: 2964 case ARM::RSCrr: 2965 case ARM::RSCri: 2966 case ARM::ADDrr: 2967 case ARM::ADDri: 2968 case ARM::ADCrr: 2969 case ARM::ADCri: 2970 case ARM::SUBrr: 2971 case ARM::SUBri: 2972 case ARM::SBCrr: 2973 case ARM::SBCri: 2974 case ARM::t2RSBri: 2975 case ARM::t2ADDrr: 2976 case ARM::t2ADDri: 2977 case ARM::t2ADCrr: 2978 case ARM::t2ADCri: 2979 case ARM::t2SUBrr: 2980 case ARM::t2SUBri: 2981 case ARM::t2SBCrr: 2982 case ARM::t2SBCri: 2983 case ARM::ANDrr: 2984 case ARM::ANDri: 2985 case ARM::t2ANDrr: 2986 case ARM::t2ANDri: 2987 case ARM::ORRrr: 2988 case ARM::ORRri: 2989 case ARM::t2ORRrr: 2990 case ARM::t2ORRri: 2991 case ARM::EORrr: 2992 case ARM::EORri: 2993 case ARM::t2EORrr: 2994 case ARM::t2EORri: 2995 case ARM::t2LSRri: 2996 case ARM::t2LSRrr: 2997 case ARM::t2LSLri: 2998 case ARM::t2LSLrr: 2999 return true; 3000 } 3001 } 3002 3003 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 3004 /// comparison into one that sets the zero bit in the flags register; 3005 /// Remove a redundant Compare instruction if an earlier instruction can set the 3006 /// flags in the same way as Compare. 3007 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 3008 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 3009 /// condition code of instructions which use the flags. 3010 bool ARMBaseInstrInfo::optimizeCompareInstr( 3011 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, 3012 int64_t CmpValue, const MachineRegisterInfo *MRI) const { 3013 // Get the unique definition of SrcReg. 3014 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 3015 if (!MI) return false; 3016 3017 // Masked compares sometimes use the same register as the corresponding 'and'. 3018 if (CmpMask != ~0) { 3019 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 3020 MI = nullptr; 3021 for (MachineRegisterInfo::use_instr_iterator 3022 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 3023 UI != UE; ++UI) { 3024 if (UI->getParent() != CmpInstr.getParent()) 3025 continue; 3026 MachineInstr *PotentialAND = &*UI; 3027 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 3028 isPredicated(*PotentialAND)) 3029 continue; 3030 MI = PotentialAND; 3031 break; 3032 } 3033 if (!MI) return false; 3034 } 3035 } 3036 3037 // Get ready to iterate backward from CmpInstr. 3038 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3039 B = CmpInstr.getParent()->begin(); 3040 3041 // Early exit if CmpInstr is at the beginning of the BB. 3042 if (I == B) return false; 3043 3044 // There are two possible candidates which can be changed to set CPSR: 3045 // One is MI, the other is a SUB or ADD instruction. 3046 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3047 // ADDr[ri](r1, r2, X). 3048 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3049 MachineInstr *SubAdd = nullptr; 3050 if (SrcReg2 != 0) 3051 // MI is not a candidate for CMPrr. 3052 MI = nullptr; 3053 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3054 // Conservatively refuse to convert an instruction which isn't in the same 3055 // BB as the comparison. 3056 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3057 // Thus we cannot return here. 3058 if (CmpInstr.getOpcode() == ARM::CMPri || 3059 CmpInstr.getOpcode() == ARM::t2CMPri || 3060 CmpInstr.getOpcode() == ARM::tCMPi8) 3061 MI = nullptr; 3062 else 3063 return false; 3064 } 3065 3066 bool IsThumb1 = false; 3067 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3068 return false; 3069 3070 // We also want to do this peephole for cases like this: if (a*b == 0), 3071 // and optimise away the CMP instruction from the generated code sequence: 3072 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3073 // resulting from the select instruction, but these MOVS instructions for 3074 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3075 // However, if we only have MOVS instructions in between the CMP and the 3076 // other instruction (the MULS in this example), then the CPSR is dead so we 3077 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3078 // reordering and then continue the analysis hoping we can eliminate the 3079 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3080 // consequence, the movs won't redefine/kill the MUL operands which would 3081 // make this reordering illegal. 3082 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3083 if (MI && IsThumb1) { 3084 --I; 3085 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3086 bool CanReorder = true; 3087 for (; I != E; --I) { 3088 if (I->getOpcode() != ARM::tMOVi8) { 3089 CanReorder = false; 3090 break; 3091 } 3092 } 3093 if (CanReorder) { 3094 MI = MI->removeFromParent(); 3095 E = CmpInstr; 3096 CmpInstr.getParent()->insert(E, MI); 3097 } 3098 } 3099 I = CmpInstr; 3100 E = MI; 3101 } 3102 3103 // Check that CPSR isn't set between the comparison instruction and the one we 3104 // want to change. At the same time, search for SubAdd. 3105 bool SubAddIsThumb1 = false; 3106 do { 3107 const MachineInstr &Instr = *--I; 3108 3109 // Check whether CmpInstr can be made redundant by the current instruction. 3110 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3111 SubAddIsThumb1)) { 3112 SubAdd = &*I; 3113 break; 3114 } 3115 3116 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3117 if (I == E) 3118 break; 3119 3120 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3121 Instr.readsRegister(ARM::CPSR, TRI)) 3122 // This instruction modifies or uses CPSR after the one we want to 3123 // change. We can't do this transformation. 3124 return false; 3125 3126 if (I == B) { 3127 // In some cases, we scan the use-list of an instruction for an AND; 3128 // that AND is in the same BB, but may not be scheduled before the 3129 // corresponding TST. In that case, bail out. 3130 // 3131 // FIXME: We could try to reschedule the AND. 3132 return false; 3133 } 3134 } while (true); 3135 3136 // Return false if no candidates exist. 3137 if (!MI && !SubAdd) 3138 return false; 3139 3140 // If we found a SubAdd, use it as it will be closer to the CMP 3141 if (SubAdd) { 3142 MI = SubAdd; 3143 IsThumb1 = SubAddIsThumb1; 3144 } 3145 3146 // We can't use a predicated instruction - it doesn't always write the flags. 3147 if (isPredicated(*MI)) 3148 return false; 3149 3150 // Scan forward for the use of CPSR 3151 // When checking against MI: if it's a conditional code that requires 3152 // checking of the V bit or C bit, then this is not safe to do. 3153 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3154 // If we are done with the basic block, we need to check whether CPSR is 3155 // live-out. 3156 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3157 OperandsToUpdate; 3158 bool isSafe = false; 3159 I = CmpInstr; 3160 E = CmpInstr.getParent()->end(); 3161 while (!isSafe && ++I != E) { 3162 const MachineInstr &Instr = *I; 3163 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3164 !isSafe && IO != EO; ++IO) { 3165 const MachineOperand &MO = Instr.getOperand(IO); 3166 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3167 isSafe = true; 3168 break; 3169 } 3170 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3171 continue; 3172 if (MO.isDef()) { 3173 isSafe = true; 3174 break; 3175 } 3176 // Condition code is after the operand before CPSR except for VSELs. 3177 ARMCC::CondCodes CC; 3178 bool IsInstrVSel = true; 3179 switch (Instr.getOpcode()) { 3180 default: 3181 IsInstrVSel = false; 3182 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3183 break; 3184 case ARM::VSELEQD: 3185 case ARM::VSELEQS: 3186 case ARM::VSELEQH: 3187 CC = ARMCC::EQ; 3188 break; 3189 case ARM::VSELGTD: 3190 case ARM::VSELGTS: 3191 case ARM::VSELGTH: 3192 CC = ARMCC::GT; 3193 break; 3194 case ARM::VSELGED: 3195 case ARM::VSELGES: 3196 case ARM::VSELGEH: 3197 CC = ARMCC::GE; 3198 break; 3199 case ARM::VSELVSD: 3200 case ARM::VSELVSS: 3201 case ARM::VSELVSH: 3202 CC = ARMCC::VS; 3203 break; 3204 } 3205 3206 if (SubAdd) { 3207 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3208 // on CMP needs to be updated to be based on SUB. 3209 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3210 // needs to be modified. 3211 // Push the condition code operands to OperandsToUpdate. 3212 // If it is safe to remove CmpInstr, the condition code of these 3213 // operands will be modified. 3214 unsigned Opc = SubAdd->getOpcode(); 3215 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3216 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3217 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3218 Opc == ARM::tSUBi8; 3219 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3220 if (!IsSub || 3221 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3222 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3223 // VSel doesn't support condition code update. 3224 if (IsInstrVSel) 3225 return false; 3226 // Ensure we can swap the condition. 3227 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3228 if (NewCC == ARMCC::AL) 3229 return false; 3230 OperandsToUpdate.push_back( 3231 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3232 } 3233 } else { 3234 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3235 switch (CC) { 3236 case ARMCC::EQ: // Z 3237 case ARMCC::NE: // Z 3238 case ARMCC::MI: // N 3239 case ARMCC::PL: // N 3240 case ARMCC::AL: // none 3241 // CPSR can be used multiple times, we should continue. 3242 break; 3243 case ARMCC::HS: // C 3244 case ARMCC::LO: // C 3245 case ARMCC::VS: // V 3246 case ARMCC::VC: // V 3247 case ARMCC::HI: // C Z 3248 case ARMCC::LS: // C Z 3249 case ARMCC::GE: // N V 3250 case ARMCC::LT: // N V 3251 case ARMCC::GT: // Z N V 3252 case ARMCC::LE: // Z N V 3253 // The instruction uses the V bit or C bit which is not safe. 3254 return false; 3255 } 3256 } 3257 } 3258 } 3259 3260 // If CPSR is not killed nor re-defined, we should check whether it is 3261 // live-out. If it is live-out, do not optimize. 3262 if (!isSafe) { 3263 MachineBasicBlock *MBB = CmpInstr.getParent(); 3264 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 3265 SE = MBB->succ_end(); SI != SE; ++SI) 3266 if ((*SI)->isLiveIn(ARM::CPSR)) 3267 return false; 3268 } 3269 3270 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3271 // set CPSR so this is represented as an explicit output) 3272 if (!IsThumb1) { 3273 MI->getOperand(5).setReg(ARM::CPSR); 3274 MI->getOperand(5).setIsDef(true); 3275 } 3276 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3277 CmpInstr.eraseFromParent(); 3278 3279 // Modify the condition code of operands in OperandsToUpdate. 3280 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3281 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3282 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3283 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3284 3285 MI->clearRegisterDeads(ARM::CPSR); 3286 3287 return true; 3288 } 3289 3290 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3291 // Do not sink MI if it might be used to optimize a redundant compare. 3292 // We heuristically only look at the instruction immediately following MI to 3293 // avoid potentially searching the entire basic block. 3294 if (isPredicated(MI)) 3295 return true; 3296 MachineBasicBlock::const_iterator Next = &MI; 3297 ++Next; 3298 Register SrcReg, SrcReg2; 3299 int64_t CmpMask, CmpValue; 3300 bool IsThumb1; 3301 if (Next != MI.getParent()->end() && 3302 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3303 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3304 return false; 3305 return true; 3306 } 3307 3308 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3309 Register Reg, 3310 MachineRegisterInfo *MRI) const { 3311 // Fold large immediates into add, sub, or, xor. 3312 unsigned DefOpc = DefMI.getOpcode(); 3313 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3314 return false; 3315 if (!DefMI.getOperand(1).isImm()) 3316 // Could be t2MOVi32imm @xx 3317 return false; 3318 3319 if (!MRI->hasOneNonDBGUse(Reg)) 3320 return false; 3321 3322 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3323 if (DefMCID.hasOptionalDef()) { 3324 unsigned NumOps = DefMCID.getNumOperands(); 3325 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3326 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3327 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3328 // to delete DefMI. 3329 return false; 3330 } 3331 3332 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3333 if (UseMCID.hasOptionalDef()) { 3334 unsigned NumOps = UseMCID.getNumOperands(); 3335 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3336 // If the instruction sets the flag, do not attempt this optimization 3337 // since it may change the semantics of the code. 3338 return false; 3339 } 3340 3341 unsigned UseOpc = UseMI.getOpcode(); 3342 unsigned NewUseOpc = 0; 3343 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3344 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3345 bool Commute = false; 3346 switch (UseOpc) { 3347 default: return false; 3348 case ARM::SUBrr: 3349 case ARM::ADDrr: 3350 case ARM::ORRrr: 3351 case ARM::EORrr: 3352 case ARM::t2SUBrr: 3353 case ARM::t2ADDrr: 3354 case ARM::t2ORRrr: 3355 case ARM::t2EORrr: { 3356 Commute = UseMI.getOperand(2).getReg() != Reg; 3357 switch (UseOpc) { 3358 default: break; 3359 case ARM::ADDrr: 3360 case ARM::SUBrr: 3361 if (UseOpc == ARM::SUBrr && Commute) 3362 return false; 3363 3364 // ADD/SUB are special because they're essentially the same operation, so 3365 // we can handle a larger range of immediates. 3366 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3367 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3368 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3369 ImmVal = -ImmVal; 3370 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3371 } else 3372 return false; 3373 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3374 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3375 break; 3376 case ARM::ORRrr: 3377 case ARM::EORrr: 3378 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3379 return false; 3380 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3381 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3382 switch (UseOpc) { 3383 default: break; 3384 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3385 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3386 } 3387 break; 3388 case ARM::t2ADDrr: 3389 case ARM::t2SUBrr: { 3390 if (UseOpc == ARM::t2SUBrr && Commute) 3391 return false; 3392 3393 // ADD/SUB are special because they're essentially the same operation, so 3394 // we can handle a larger range of immediates. 3395 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3396 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3397 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3398 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3399 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3400 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3401 ImmVal = -ImmVal; 3402 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3403 } else 3404 return false; 3405 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3406 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3407 break; 3408 } 3409 case ARM::t2ORRrr: 3410 case ARM::t2EORrr: 3411 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3412 return false; 3413 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3414 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3415 switch (UseOpc) { 3416 default: break; 3417 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3418 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3419 } 3420 break; 3421 } 3422 } 3423 } 3424 3425 unsigned OpIdx = Commute ? 2 : 1; 3426 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3427 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3428 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3429 Register NewReg = MRI->createVirtualRegister(TRC); 3430 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3431 NewReg) 3432 .addReg(Reg1, getKillRegState(isKill)) 3433 .addImm(SOImmValV1) 3434 .add(predOps(ARMCC::AL)) 3435 .add(condCodeOp()); 3436 UseMI.setDesc(get(NewUseOpc)); 3437 UseMI.getOperand(1).setReg(NewReg); 3438 UseMI.getOperand(1).setIsKill(); 3439 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3440 DefMI.eraseFromParent(); 3441 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3442 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3443 // Then the below code will not be needed, as the input/output register 3444 // classes will be rgpr or gprSP. 3445 // For now, we fix the UseMI operand explicitly here: 3446 switch(NewUseOpc){ 3447 case ARM::t2ADDspImm: 3448 case ARM::t2SUBspImm: 3449 case ARM::t2ADDri: 3450 case ARM::t2SUBri: 3451 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3452 } 3453 return true; 3454 } 3455 3456 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3457 const MachineInstr &MI) { 3458 switch (MI.getOpcode()) { 3459 default: { 3460 const MCInstrDesc &Desc = MI.getDesc(); 3461 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3462 assert(UOps >= 0 && "bad # UOps"); 3463 return UOps; 3464 } 3465 3466 case ARM::LDRrs: 3467 case ARM::LDRBrs: 3468 case ARM::STRrs: 3469 case ARM::STRBrs: { 3470 unsigned ShOpVal = MI.getOperand(3).getImm(); 3471 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3472 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3473 if (!isSub && 3474 (ShImm == 0 || 3475 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3476 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3477 return 1; 3478 return 2; 3479 } 3480 3481 case ARM::LDRH: 3482 case ARM::STRH: { 3483 if (!MI.getOperand(2).getReg()) 3484 return 1; 3485 3486 unsigned ShOpVal = MI.getOperand(3).getImm(); 3487 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3488 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3489 if (!isSub && 3490 (ShImm == 0 || 3491 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3492 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3493 return 1; 3494 return 2; 3495 } 3496 3497 case ARM::LDRSB: 3498 case ARM::LDRSH: 3499 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3500 3501 case ARM::LDRSB_POST: 3502 case ARM::LDRSH_POST: { 3503 Register Rt = MI.getOperand(0).getReg(); 3504 Register Rm = MI.getOperand(3).getReg(); 3505 return (Rt == Rm) ? 4 : 3; 3506 } 3507 3508 case ARM::LDR_PRE_REG: 3509 case ARM::LDRB_PRE_REG: { 3510 Register Rt = MI.getOperand(0).getReg(); 3511 Register Rm = MI.getOperand(3).getReg(); 3512 if (Rt == Rm) 3513 return 3; 3514 unsigned ShOpVal = MI.getOperand(4).getImm(); 3515 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3516 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3517 if (!isSub && 3518 (ShImm == 0 || 3519 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3520 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3521 return 2; 3522 return 3; 3523 } 3524 3525 case ARM::STR_PRE_REG: 3526 case ARM::STRB_PRE_REG: { 3527 unsigned ShOpVal = MI.getOperand(4).getImm(); 3528 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3529 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3530 if (!isSub && 3531 (ShImm == 0 || 3532 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3533 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3534 return 2; 3535 return 3; 3536 } 3537 3538 case ARM::LDRH_PRE: 3539 case ARM::STRH_PRE: { 3540 Register Rt = MI.getOperand(0).getReg(); 3541 Register Rm = MI.getOperand(3).getReg(); 3542 if (!Rm) 3543 return 2; 3544 if (Rt == Rm) 3545 return 3; 3546 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3547 } 3548 3549 case ARM::LDR_POST_REG: 3550 case ARM::LDRB_POST_REG: 3551 case ARM::LDRH_POST: { 3552 Register Rt = MI.getOperand(0).getReg(); 3553 Register Rm = MI.getOperand(3).getReg(); 3554 return (Rt == Rm) ? 3 : 2; 3555 } 3556 3557 case ARM::LDR_PRE_IMM: 3558 case ARM::LDRB_PRE_IMM: 3559 case ARM::LDR_POST_IMM: 3560 case ARM::LDRB_POST_IMM: 3561 case ARM::STRB_POST_IMM: 3562 case ARM::STRB_POST_REG: 3563 case ARM::STRB_PRE_IMM: 3564 case ARM::STRH_POST: 3565 case ARM::STR_POST_IMM: 3566 case ARM::STR_POST_REG: 3567 case ARM::STR_PRE_IMM: 3568 return 2; 3569 3570 case ARM::LDRSB_PRE: 3571 case ARM::LDRSH_PRE: { 3572 Register Rm = MI.getOperand(3).getReg(); 3573 if (Rm == 0) 3574 return 3; 3575 Register Rt = MI.getOperand(0).getReg(); 3576 if (Rt == Rm) 3577 return 4; 3578 unsigned ShOpVal = MI.getOperand(4).getImm(); 3579 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3580 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3581 if (!isSub && 3582 (ShImm == 0 || 3583 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3584 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3585 return 3; 3586 return 4; 3587 } 3588 3589 case ARM::LDRD: { 3590 Register Rt = MI.getOperand(0).getReg(); 3591 Register Rn = MI.getOperand(2).getReg(); 3592 Register Rm = MI.getOperand(3).getReg(); 3593 if (Rm) 3594 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3595 : 3; 3596 return (Rt == Rn) ? 3 : 2; 3597 } 3598 3599 case ARM::STRD: { 3600 Register Rm = MI.getOperand(3).getReg(); 3601 if (Rm) 3602 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3603 : 3; 3604 return 2; 3605 } 3606 3607 case ARM::LDRD_POST: 3608 case ARM::t2LDRD_POST: 3609 return 3; 3610 3611 case ARM::STRD_POST: 3612 case ARM::t2STRD_POST: 3613 return 4; 3614 3615 case ARM::LDRD_PRE: { 3616 Register Rt = MI.getOperand(0).getReg(); 3617 Register Rn = MI.getOperand(3).getReg(); 3618 Register Rm = MI.getOperand(4).getReg(); 3619 if (Rm) 3620 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3621 : 4; 3622 return (Rt == Rn) ? 4 : 3; 3623 } 3624 3625 case ARM::t2LDRD_PRE: { 3626 Register Rt = MI.getOperand(0).getReg(); 3627 Register Rn = MI.getOperand(3).getReg(); 3628 return (Rt == Rn) ? 4 : 3; 3629 } 3630 3631 case ARM::STRD_PRE: { 3632 Register Rm = MI.getOperand(4).getReg(); 3633 if (Rm) 3634 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3635 : 4; 3636 return 3; 3637 } 3638 3639 case ARM::t2STRD_PRE: 3640 return 3; 3641 3642 case ARM::t2LDR_POST: 3643 case ARM::t2LDRB_POST: 3644 case ARM::t2LDRB_PRE: 3645 case ARM::t2LDRSBi12: 3646 case ARM::t2LDRSBi8: 3647 case ARM::t2LDRSBpci: 3648 case ARM::t2LDRSBs: 3649 case ARM::t2LDRH_POST: 3650 case ARM::t2LDRH_PRE: 3651 case ARM::t2LDRSBT: 3652 case ARM::t2LDRSB_POST: 3653 case ARM::t2LDRSB_PRE: 3654 case ARM::t2LDRSH_POST: 3655 case ARM::t2LDRSH_PRE: 3656 case ARM::t2LDRSHi12: 3657 case ARM::t2LDRSHi8: 3658 case ARM::t2LDRSHpci: 3659 case ARM::t2LDRSHs: 3660 return 2; 3661 3662 case ARM::t2LDRDi8: { 3663 Register Rt = MI.getOperand(0).getReg(); 3664 Register Rn = MI.getOperand(2).getReg(); 3665 return (Rt == Rn) ? 3 : 2; 3666 } 3667 3668 case ARM::t2STRB_POST: 3669 case ARM::t2STRB_PRE: 3670 case ARM::t2STRBs: 3671 case ARM::t2STRDi8: 3672 case ARM::t2STRH_POST: 3673 case ARM::t2STRH_PRE: 3674 case ARM::t2STRHs: 3675 case ARM::t2STR_POST: 3676 case ARM::t2STR_PRE: 3677 case ARM::t2STRs: 3678 return 2; 3679 } 3680 } 3681 3682 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3683 // can't be easily determined return 0 (missing MachineMemOperand). 3684 // 3685 // FIXME: The current MachineInstr design does not support relying on machine 3686 // mem operands to determine the width of a memory access. Instead, we expect 3687 // the target to provide this information based on the instruction opcode and 3688 // operands. However, using MachineMemOperand is the best solution now for 3689 // two reasons: 3690 // 3691 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3692 // operands. This is much more dangerous than using the MachineMemOperand 3693 // sizes because CodeGen passes can insert/remove optional machine operands. In 3694 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3695 // postRA passes as well. 3696 // 3697 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3698 // machine model that calls this should handle the unknown (zero size) case. 3699 // 3700 // Long term, we should require a target hook that verifies MachineMemOperand 3701 // sizes during MC lowering. That target hook should be local to MC lowering 3702 // because we can't ensure that it is aware of other MI forms. Doing this will 3703 // ensure that MachineMemOperands are correctly propagated through all passes. 3704 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3705 unsigned Size = 0; 3706 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3707 E = MI.memoperands_end(); 3708 I != E; ++I) { 3709 Size += (*I)->getSize(); 3710 } 3711 // FIXME: The scheduler currently can't handle values larger than 16. But 3712 // the values can actually go up to 32 for floating-point load/store 3713 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3714 // operations isn't right; we could end up with "extra" memory operands for 3715 // various reasons, like tail merge merging two memory operations. 3716 return std::min(Size / 4, 16U); 3717 } 3718 3719 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3720 unsigned NumRegs) { 3721 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3722 switch (Opc) { 3723 default: 3724 break; 3725 case ARM::VLDMDIA_UPD: 3726 case ARM::VLDMDDB_UPD: 3727 case ARM::VLDMSIA_UPD: 3728 case ARM::VLDMSDB_UPD: 3729 case ARM::VSTMDIA_UPD: 3730 case ARM::VSTMDDB_UPD: 3731 case ARM::VSTMSIA_UPD: 3732 case ARM::VSTMSDB_UPD: 3733 case ARM::LDMIA_UPD: 3734 case ARM::LDMDA_UPD: 3735 case ARM::LDMDB_UPD: 3736 case ARM::LDMIB_UPD: 3737 case ARM::STMIA_UPD: 3738 case ARM::STMDA_UPD: 3739 case ARM::STMDB_UPD: 3740 case ARM::STMIB_UPD: 3741 case ARM::tLDMIA_UPD: 3742 case ARM::tSTMIA_UPD: 3743 case ARM::t2LDMIA_UPD: 3744 case ARM::t2LDMDB_UPD: 3745 case ARM::t2STMIA_UPD: 3746 case ARM::t2STMDB_UPD: 3747 ++UOps; // One for base register writeback. 3748 break; 3749 case ARM::LDMIA_RET: 3750 case ARM::tPOP_RET: 3751 case ARM::t2LDMIA_RET: 3752 UOps += 2; // One for base reg wb, one for write to pc. 3753 break; 3754 } 3755 return UOps; 3756 } 3757 3758 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3759 const MachineInstr &MI) const { 3760 if (!ItinData || ItinData->isEmpty()) 3761 return 1; 3762 3763 const MCInstrDesc &Desc = MI.getDesc(); 3764 unsigned Class = Desc.getSchedClass(); 3765 int ItinUOps = ItinData->getNumMicroOps(Class); 3766 if (ItinUOps >= 0) { 3767 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3768 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3769 3770 return ItinUOps; 3771 } 3772 3773 unsigned Opc = MI.getOpcode(); 3774 switch (Opc) { 3775 default: 3776 llvm_unreachable("Unexpected multi-uops instruction!"); 3777 case ARM::VLDMQIA: 3778 case ARM::VSTMQIA: 3779 return 2; 3780 3781 // The number of uOps for load / store multiple are determined by the number 3782 // registers. 3783 // 3784 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3785 // same cycle. The scheduling for the first load / store must be done 3786 // separately by assuming the address is not 64-bit aligned. 3787 // 3788 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3789 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3790 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3791 case ARM::VLDMDIA: 3792 case ARM::VLDMDIA_UPD: 3793 case ARM::VLDMDDB_UPD: 3794 case ARM::VLDMSIA: 3795 case ARM::VLDMSIA_UPD: 3796 case ARM::VLDMSDB_UPD: 3797 case ARM::VSTMDIA: 3798 case ARM::VSTMDIA_UPD: 3799 case ARM::VSTMDDB_UPD: 3800 case ARM::VSTMSIA: 3801 case ARM::VSTMSIA_UPD: 3802 case ARM::VSTMSDB_UPD: { 3803 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3804 return (NumRegs / 2) + (NumRegs % 2) + 1; 3805 } 3806 3807 case ARM::LDMIA_RET: 3808 case ARM::LDMIA: 3809 case ARM::LDMDA: 3810 case ARM::LDMDB: 3811 case ARM::LDMIB: 3812 case ARM::LDMIA_UPD: 3813 case ARM::LDMDA_UPD: 3814 case ARM::LDMDB_UPD: 3815 case ARM::LDMIB_UPD: 3816 case ARM::STMIA: 3817 case ARM::STMDA: 3818 case ARM::STMDB: 3819 case ARM::STMIB: 3820 case ARM::STMIA_UPD: 3821 case ARM::STMDA_UPD: 3822 case ARM::STMDB_UPD: 3823 case ARM::STMIB_UPD: 3824 case ARM::tLDMIA: 3825 case ARM::tLDMIA_UPD: 3826 case ARM::tSTMIA_UPD: 3827 case ARM::tPOP_RET: 3828 case ARM::tPOP: 3829 case ARM::tPUSH: 3830 case ARM::t2LDMIA_RET: 3831 case ARM::t2LDMIA: 3832 case ARM::t2LDMDB: 3833 case ARM::t2LDMIA_UPD: 3834 case ARM::t2LDMDB_UPD: 3835 case ARM::t2STMIA: 3836 case ARM::t2STMDB: 3837 case ARM::t2STMIA_UPD: 3838 case ARM::t2STMDB_UPD: { 3839 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3840 switch (Subtarget.getLdStMultipleTiming()) { 3841 case ARMSubtarget::SingleIssuePlusExtras: 3842 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3843 case ARMSubtarget::SingleIssue: 3844 // Assume the worst. 3845 return NumRegs; 3846 case ARMSubtarget::DoubleIssue: { 3847 if (NumRegs < 4) 3848 return 2; 3849 // 4 registers would be issued: 2, 2. 3850 // 5 registers would be issued: 2, 2, 1. 3851 unsigned UOps = (NumRegs / 2); 3852 if (NumRegs % 2) 3853 ++UOps; 3854 return UOps; 3855 } 3856 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3857 unsigned UOps = (NumRegs / 2); 3858 // If there are odd number of registers or if it's not 64-bit aligned, 3859 // then it takes an extra AGU (Address Generation Unit) cycle. 3860 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3861 (*MI.memoperands_begin())->getAlign() < Align(8)) 3862 ++UOps; 3863 return UOps; 3864 } 3865 } 3866 } 3867 } 3868 llvm_unreachable("Didn't find the number of microops"); 3869 } 3870 3871 int 3872 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3873 const MCInstrDesc &DefMCID, 3874 unsigned DefClass, 3875 unsigned DefIdx, unsigned DefAlign) const { 3876 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3877 if (RegNo <= 0) 3878 // Def is the address writeback. 3879 return ItinData->getOperandCycle(DefClass, DefIdx); 3880 3881 int DefCycle; 3882 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3883 // (regno / 2) + (regno % 2) + 1 3884 DefCycle = RegNo / 2 + 1; 3885 if (RegNo % 2) 3886 ++DefCycle; 3887 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3888 DefCycle = RegNo; 3889 bool isSLoad = false; 3890 3891 switch (DefMCID.getOpcode()) { 3892 default: break; 3893 case ARM::VLDMSIA: 3894 case ARM::VLDMSIA_UPD: 3895 case ARM::VLDMSDB_UPD: 3896 isSLoad = true; 3897 break; 3898 } 3899 3900 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3901 // then it takes an extra cycle. 3902 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3903 ++DefCycle; 3904 } else { 3905 // Assume the worst. 3906 DefCycle = RegNo + 2; 3907 } 3908 3909 return DefCycle; 3910 } 3911 3912 int 3913 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3914 const MCInstrDesc &DefMCID, 3915 unsigned DefClass, 3916 unsigned DefIdx, unsigned DefAlign) const { 3917 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3918 if (RegNo <= 0) 3919 // Def is the address writeback. 3920 return ItinData->getOperandCycle(DefClass, DefIdx); 3921 3922 int DefCycle; 3923 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3924 // 4 registers would be issued: 1, 2, 1. 3925 // 5 registers would be issued: 1, 2, 2. 3926 DefCycle = RegNo / 2; 3927 if (DefCycle < 1) 3928 DefCycle = 1; 3929 // Result latency is issue cycle + 2: E2. 3930 DefCycle += 2; 3931 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3932 DefCycle = (RegNo / 2); 3933 // If there are odd number of registers or if it's not 64-bit aligned, 3934 // then it takes an extra AGU (Address Generation Unit) cycle. 3935 if ((RegNo % 2) || DefAlign < 8) 3936 ++DefCycle; 3937 // Result latency is AGU cycles + 2. 3938 DefCycle += 2; 3939 } else { 3940 // Assume the worst. 3941 DefCycle = RegNo + 2; 3942 } 3943 3944 return DefCycle; 3945 } 3946 3947 int 3948 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3949 const MCInstrDesc &UseMCID, 3950 unsigned UseClass, 3951 unsigned UseIdx, unsigned UseAlign) const { 3952 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3953 if (RegNo <= 0) 3954 return ItinData->getOperandCycle(UseClass, UseIdx); 3955 3956 int UseCycle; 3957 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3958 // (regno / 2) + (regno % 2) + 1 3959 UseCycle = RegNo / 2 + 1; 3960 if (RegNo % 2) 3961 ++UseCycle; 3962 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3963 UseCycle = RegNo; 3964 bool isSStore = false; 3965 3966 switch (UseMCID.getOpcode()) { 3967 default: break; 3968 case ARM::VSTMSIA: 3969 case ARM::VSTMSIA_UPD: 3970 case ARM::VSTMSDB_UPD: 3971 isSStore = true; 3972 break; 3973 } 3974 3975 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3976 // then it takes an extra cycle. 3977 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3978 ++UseCycle; 3979 } else { 3980 // Assume the worst. 3981 UseCycle = RegNo + 2; 3982 } 3983 3984 return UseCycle; 3985 } 3986 3987 int 3988 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3989 const MCInstrDesc &UseMCID, 3990 unsigned UseClass, 3991 unsigned UseIdx, unsigned UseAlign) const { 3992 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3993 if (RegNo <= 0) 3994 return ItinData->getOperandCycle(UseClass, UseIdx); 3995 3996 int UseCycle; 3997 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3998 UseCycle = RegNo / 2; 3999 if (UseCycle < 2) 4000 UseCycle = 2; 4001 // Read in E3. 4002 UseCycle += 2; 4003 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 4004 UseCycle = (RegNo / 2); 4005 // If there are odd number of registers or if it's not 64-bit aligned, 4006 // then it takes an extra AGU (Address Generation Unit) cycle. 4007 if ((RegNo % 2) || UseAlign < 8) 4008 ++UseCycle; 4009 } else { 4010 // Assume the worst. 4011 UseCycle = 1; 4012 } 4013 return UseCycle; 4014 } 4015 4016 int 4017 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4018 const MCInstrDesc &DefMCID, 4019 unsigned DefIdx, unsigned DefAlign, 4020 const MCInstrDesc &UseMCID, 4021 unsigned UseIdx, unsigned UseAlign) const { 4022 unsigned DefClass = DefMCID.getSchedClass(); 4023 unsigned UseClass = UseMCID.getSchedClass(); 4024 4025 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 4026 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 4027 4028 // This may be a def / use of a variable_ops instruction, the operand 4029 // latency might be determinable dynamically. Let the target try to 4030 // figure it out. 4031 int DefCycle = -1; 4032 bool LdmBypass = false; 4033 switch (DefMCID.getOpcode()) { 4034 default: 4035 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4036 break; 4037 4038 case ARM::VLDMDIA: 4039 case ARM::VLDMDIA_UPD: 4040 case ARM::VLDMDDB_UPD: 4041 case ARM::VLDMSIA: 4042 case ARM::VLDMSIA_UPD: 4043 case ARM::VLDMSDB_UPD: 4044 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4045 break; 4046 4047 case ARM::LDMIA_RET: 4048 case ARM::LDMIA: 4049 case ARM::LDMDA: 4050 case ARM::LDMDB: 4051 case ARM::LDMIB: 4052 case ARM::LDMIA_UPD: 4053 case ARM::LDMDA_UPD: 4054 case ARM::LDMDB_UPD: 4055 case ARM::LDMIB_UPD: 4056 case ARM::tLDMIA: 4057 case ARM::tLDMIA_UPD: 4058 case ARM::tPUSH: 4059 case ARM::t2LDMIA_RET: 4060 case ARM::t2LDMIA: 4061 case ARM::t2LDMDB: 4062 case ARM::t2LDMIA_UPD: 4063 case ARM::t2LDMDB_UPD: 4064 LdmBypass = true; 4065 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4066 break; 4067 } 4068 4069 if (DefCycle == -1) 4070 // We can't seem to determine the result latency of the def, assume it's 2. 4071 DefCycle = 2; 4072 4073 int UseCycle = -1; 4074 switch (UseMCID.getOpcode()) { 4075 default: 4076 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4077 break; 4078 4079 case ARM::VSTMDIA: 4080 case ARM::VSTMDIA_UPD: 4081 case ARM::VSTMDDB_UPD: 4082 case ARM::VSTMSIA: 4083 case ARM::VSTMSIA_UPD: 4084 case ARM::VSTMSDB_UPD: 4085 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4086 break; 4087 4088 case ARM::STMIA: 4089 case ARM::STMDA: 4090 case ARM::STMDB: 4091 case ARM::STMIB: 4092 case ARM::STMIA_UPD: 4093 case ARM::STMDA_UPD: 4094 case ARM::STMDB_UPD: 4095 case ARM::STMIB_UPD: 4096 case ARM::tSTMIA_UPD: 4097 case ARM::tPOP_RET: 4098 case ARM::tPOP: 4099 case ARM::t2STMIA: 4100 case ARM::t2STMDB: 4101 case ARM::t2STMIA_UPD: 4102 case ARM::t2STMDB_UPD: 4103 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4104 break; 4105 } 4106 4107 if (UseCycle == -1) 4108 // Assume it's read in the first stage. 4109 UseCycle = 1; 4110 4111 UseCycle = DefCycle - UseCycle + 1; 4112 if (UseCycle > 0) { 4113 if (LdmBypass) { 4114 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4115 // first def operand. 4116 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4117 UseClass, UseIdx)) 4118 --UseCycle; 4119 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4120 UseClass, UseIdx)) { 4121 --UseCycle; 4122 } 4123 } 4124 4125 return UseCycle; 4126 } 4127 4128 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4129 const MachineInstr *MI, unsigned Reg, 4130 unsigned &DefIdx, unsigned &Dist) { 4131 Dist = 0; 4132 4133 MachineBasicBlock::const_iterator I = MI; ++I; 4134 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4135 assert(II->isInsideBundle() && "Empty bundle?"); 4136 4137 int Idx = -1; 4138 while (II->isInsideBundle()) { 4139 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4140 if (Idx != -1) 4141 break; 4142 --II; 4143 ++Dist; 4144 } 4145 4146 assert(Idx != -1 && "Cannot find bundled definition!"); 4147 DefIdx = Idx; 4148 return &*II; 4149 } 4150 4151 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4152 const MachineInstr &MI, unsigned Reg, 4153 unsigned &UseIdx, unsigned &Dist) { 4154 Dist = 0; 4155 4156 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4157 assert(II->isInsideBundle() && "Empty bundle?"); 4158 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4159 4160 // FIXME: This doesn't properly handle multiple uses. 4161 int Idx = -1; 4162 while (II != E && II->isInsideBundle()) { 4163 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4164 if (Idx != -1) 4165 break; 4166 if (II->getOpcode() != ARM::t2IT) 4167 ++Dist; 4168 ++II; 4169 } 4170 4171 if (Idx == -1) { 4172 Dist = 0; 4173 return nullptr; 4174 } 4175 4176 UseIdx = Idx; 4177 return &*II; 4178 } 4179 4180 /// Return the number of cycles to add to (or subtract from) the static 4181 /// itinerary based on the def opcode and alignment. The caller will ensure that 4182 /// adjusted latency is at least one cycle. 4183 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4184 const MachineInstr &DefMI, 4185 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4186 int Adjust = 0; 4187 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4188 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4189 // variants are one cycle cheaper. 4190 switch (DefMCID.getOpcode()) { 4191 default: break; 4192 case ARM::LDRrs: 4193 case ARM::LDRBrs: { 4194 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4195 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4196 if (ShImm == 0 || 4197 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4198 --Adjust; 4199 break; 4200 } 4201 case ARM::t2LDRs: 4202 case ARM::t2LDRBs: 4203 case ARM::t2LDRHs: 4204 case ARM::t2LDRSHs: { 4205 // Thumb2 mode: lsl only. 4206 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4207 if (ShAmt == 0 || ShAmt == 2) 4208 --Adjust; 4209 break; 4210 } 4211 } 4212 } else if (Subtarget.isSwift()) { 4213 // FIXME: Properly handle all of the latency adjustments for address 4214 // writeback. 4215 switch (DefMCID.getOpcode()) { 4216 default: break; 4217 case ARM::LDRrs: 4218 case ARM::LDRBrs: { 4219 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4220 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4221 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4222 if (!isSub && 4223 (ShImm == 0 || 4224 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4225 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4226 Adjust -= 2; 4227 else if (!isSub && 4228 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4229 --Adjust; 4230 break; 4231 } 4232 case ARM::t2LDRs: 4233 case ARM::t2LDRBs: 4234 case ARM::t2LDRHs: 4235 case ARM::t2LDRSHs: { 4236 // Thumb2 mode: lsl only. 4237 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4238 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4239 Adjust -= 2; 4240 break; 4241 } 4242 } 4243 } 4244 4245 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4246 switch (DefMCID.getOpcode()) { 4247 default: break; 4248 case ARM::VLD1q8: 4249 case ARM::VLD1q16: 4250 case ARM::VLD1q32: 4251 case ARM::VLD1q64: 4252 case ARM::VLD1q8wb_fixed: 4253 case ARM::VLD1q16wb_fixed: 4254 case ARM::VLD1q32wb_fixed: 4255 case ARM::VLD1q64wb_fixed: 4256 case ARM::VLD1q8wb_register: 4257 case ARM::VLD1q16wb_register: 4258 case ARM::VLD1q32wb_register: 4259 case ARM::VLD1q64wb_register: 4260 case ARM::VLD2d8: 4261 case ARM::VLD2d16: 4262 case ARM::VLD2d32: 4263 case ARM::VLD2q8: 4264 case ARM::VLD2q16: 4265 case ARM::VLD2q32: 4266 case ARM::VLD2d8wb_fixed: 4267 case ARM::VLD2d16wb_fixed: 4268 case ARM::VLD2d32wb_fixed: 4269 case ARM::VLD2q8wb_fixed: 4270 case ARM::VLD2q16wb_fixed: 4271 case ARM::VLD2q32wb_fixed: 4272 case ARM::VLD2d8wb_register: 4273 case ARM::VLD2d16wb_register: 4274 case ARM::VLD2d32wb_register: 4275 case ARM::VLD2q8wb_register: 4276 case ARM::VLD2q16wb_register: 4277 case ARM::VLD2q32wb_register: 4278 case ARM::VLD3d8: 4279 case ARM::VLD3d16: 4280 case ARM::VLD3d32: 4281 case ARM::VLD1d64T: 4282 case ARM::VLD3d8_UPD: 4283 case ARM::VLD3d16_UPD: 4284 case ARM::VLD3d32_UPD: 4285 case ARM::VLD1d64Twb_fixed: 4286 case ARM::VLD1d64Twb_register: 4287 case ARM::VLD3q8_UPD: 4288 case ARM::VLD3q16_UPD: 4289 case ARM::VLD3q32_UPD: 4290 case ARM::VLD4d8: 4291 case ARM::VLD4d16: 4292 case ARM::VLD4d32: 4293 case ARM::VLD1d64Q: 4294 case ARM::VLD4d8_UPD: 4295 case ARM::VLD4d16_UPD: 4296 case ARM::VLD4d32_UPD: 4297 case ARM::VLD1d64Qwb_fixed: 4298 case ARM::VLD1d64Qwb_register: 4299 case ARM::VLD4q8_UPD: 4300 case ARM::VLD4q16_UPD: 4301 case ARM::VLD4q32_UPD: 4302 case ARM::VLD1DUPq8: 4303 case ARM::VLD1DUPq16: 4304 case ARM::VLD1DUPq32: 4305 case ARM::VLD1DUPq8wb_fixed: 4306 case ARM::VLD1DUPq16wb_fixed: 4307 case ARM::VLD1DUPq32wb_fixed: 4308 case ARM::VLD1DUPq8wb_register: 4309 case ARM::VLD1DUPq16wb_register: 4310 case ARM::VLD1DUPq32wb_register: 4311 case ARM::VLD2DUPd8: 4312 case ARM::VLD2DUPd16: 4313 case ARM::VLD2DUPd32: 4314 case ARM::VLD2DUPd8wb_fixed: 4315 case ARM::VLD2DUPd16wb_fixed: 4316 case ARM::VLD2DUPd32wb_fixed: 4317 case ARM::VLD2DUPd8wb_register: 4318 case ARM::VLD2DUPd16wb_register: 4319 case ARM::VLD2DUPd32wb_register: 4320 case ARM::VLD4DUPd8: 4321 case ARM::VLD4DUPd16: 4322 case ARM::VLD4DUPd32: 4323 case ARM::VLD4DUPd8_UPD: 4324 case ARM::VLD4DUPd16_UPD: 4325 case ARM::VLD4DUPd32_UPD: 4326 case ARM::VLD1LNd8: 4327 case ARM::VLD1LNd16: 4328 case ARM::VLD1LNd32: 4329 case ARM::VLD1LNd8_UPD: 4330 case ARM::VLD1LNd16_UPD: 4331 case ARM::VLD1LNd32_UPD: 4332 case ARM::VLD2LNd8: 4333 case ARM::VLD2LNd16: 4334 case ARM::VLD2LNd32: 4335 case ARM::VLD2LNq16: 4336 case ARM::VLD2LNq32: 4337 case ARM::VLD2LNd8_UPD: 4338 case ARM::VLD2LNd16_UPD: 4339 case ARM::VLD2LNd32_UPD: 4340 case ARM::VLD2LNq16_UPD: 4341 case ARM::VLD2LNq32_UPD: 4342 case ARM::VLD4LNd8: 4343 case ARM::VLD4LNd16: 4344 case ARM::VLD4LNd32: 4345 case ARM::VLD4LNq16: 4346 case ARM::VLD4LNq32: 4347 case ARM::VLD4LNd8_UPD: 4348 case ARM::VLD4LNd16_UPD: 4349 case ARM::VLD4LNd32_UPD: 4350 case ARM::VLD4LNq16_UPD: 4351 case ARM::VLD4LNq32_UPD: 4352 // If the address is not 64-bit aligned, the latencies of these 4353 // instructions increases by one. 4354 ++Adjust; 4355 break; 4356 } 4357 } 4358 return Adjust; 4359 } 4360 4361 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4362 const MachineInstr &DefMI, 4363 unsigned DefIdx, 4364 const MachineInstr &UseMI, 4365 unsigned UseIdx) const { 4366 // No operand latency. The caller may fall back to getInstrLatency. 4367 if (!ItinData || ItinData->isEmpty()) 4368 return -1; 4369 4370 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4371 Register Reg = DefMO.getReg(); 4372 4373 const MachineInstr *ResolvedDefMI = &DefMI; 4374 unsigned DefAdj = 0; 4375 if (DefMI.isBundle()) 4376 ResolvedDefMI = 4377 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4378 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4379 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4380 return 1; 4381 } 4382 4383 const MachineInstr *ResolvedUseMI = &UseMI; 4384 unsigned UseAdj = 0; 4385 if (UseMI.isBundle()) { 4386 ResolvedUseMI = 4387 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4388 if (!ResolvedUseMI) 4389 return -1; 4390 } 4391 4392 return getOperandLatencyImpl( 4393 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4394 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4395 } 4396 4397 int ARMBaseInstrInfo::getOperandLatencyImpl( 4398 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4399 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4400 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4401 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4402 if (Reg == ARM::CPSR) { 4403 if (DefMI.getOpcode() == ARM::FMSTAT) { 4404 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4405 return Subtarget.isLikeA9() ? 1 : 20; 4406 } 4407 4408 // CPSR set and branch can be paired in the same cycle. 4409 if (UseMI.isBranch()) 4410 return 0; 4411 4412 // Otherwise it takes the instruction latency (generally one). 4413 unsigned Latency = getInstrLatency(ItinData, DefMI); 4414 4415 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4416 // its uses. Instructions which are otherwise scheduled between them may 4417 // incur a code size penalty (not able to use the CPSR setting 16-bit 4418 // instructions). 4419 if (Latency > 0 && Subtarget.isThumb2()) { 4420 const MachineFunction *MF = DefMI.getParent()->getParent(); 4421 // FIXME: Use Function::hasOptSize(). 4422 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4423 --Latency; 4424 } 4425 return Latency; 4426 } 4427 4428 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4429 return -1; 4430 4431 unsigned DefAlign = DefMI.hasOneMemOperand() 4432 ? (*DefMI.memoperands_begin())->getAlign().value() 4433 : 0; 4434 unsigned UseAlign = UseMI.hasOneMemOperand() 4435 ? (*UseMI.memoperands_begin())->getAlign().value() 4436 : 0; 4437 4438 // Get the itinerary's latency if possible, and handle variable_ops. 4439 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4440 UseIdx, UseAlign); 4441 // Unable to find operand latency. The caller may resort to getInstrLatency. 4442 if (Latency < 0) 4443 return Latency; 4444 4445 // Adjust for IT block position. 4446 int Adj = DefAdj + UseAdj; 4447 4448 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4449 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4450 if (Adj >= 0 || (int)Latency > -Adj) { 4451 return Latency + Adj; 4452 } 4453 // Return the itinerary latency, which may be zero but not less than zero. 4454 return Latency; 4455 } 4456 4457 int 4458 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4459 SDNode *DefNode, unsigned DefIdx, 4460 SDNode *UseNode, unsigned UseIdx) const { 4461 if (!DefNode->isMachineOpcode()) 4462 return 1; 4463 4464 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4465 4466 if (isZeroCost(DefMCID.Opcode)) 4467 return 0; 4468 4469 if (!ItinData || ItinData->isEmpty()) 4470 return DefMCID.mayLoad() ? 3 : 1; 4471 4472 if (!UseNode->isMachineOpcode()) { 4473 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4474 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4475 int Threshold = 1 + Adj; 4476 return Latency <= Threshold ? 1 : Latency - Adj; 4477 } 4478 4479 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4480 auto *DefMN = cast<MachineSDNode>(DefNode); 4481 unsigned DefAlign = !DefMN->memoperands_empty() 4482 ? (*DefMN->memoperands_begin())->getAlign().value() 4483 : 0; 4484 auto *UseMN = cast<MachineSDNode>(UseNode); 4485 unsigned UseAlign = !UseMN->memoperands_empty() 4486 ? (*UseMN->memoperands_begin())->getAlign().value() 4487 : 0; 4488 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4489 UseMCID, UseIdx, UseAlign); 4490 4491 if (Latency > 1 && 4492 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4493 Subtarget.isCortexA7())) { 4494 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4495 // variants are one cycle cheaper. 4496 switch (DefMCID.getOpcode()) { 4497 default: break; 4498 case ARM::LDRrs: 4499 case ARM::LDRBrs: { 4500 unsigned ShOpVal = 4501 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4502 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4503 if (ShImm == 0 || 4504 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4505 --Latency; 4506 break; 4507 } 4508 case ARM::t2LDRs: 4509 case ARM::t2LDRBs: 4510 case ARM::t2LDRHs: 4511 case ARM::t2LDRSHs: { 4512 // Thumb2 mode: lsl only. 4513 unsigned ShAmt = 4514 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4515 if (ShAmt == 0 || ShAmt == 2) 4516 --Latency; 4517 break; 4518 } 4519 } 4520 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4521 // FIXME: Properly handle all of the latency adjustments for address 4522 // writeback. 4523 switch (DefMCID.getOpcode()) { 4524 default: break; 4525 case ARM::LDRrs: 4526 case ARM::LDRBrs: { 4527 unsigned ShOpVal = 4528 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4529 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4530 if (ShImm == 0 || 4531 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4532 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4533 Latency -= 2; 4534 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4535 --Latency; 4536 break; 4537 } 4538 case ARM::t2LDRs: 4539 case ARM::t2LDRBs: 4540 case ARM::t2LDRHs: 4541 case ARM::t2LDRSHs: 4542 // Thumb2 mode: lsl 0-3 only. 4543 Latency -= 2; 4544 break; 4545 } 4546 } 4547 4548 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4549 switch (DefMCID.getOpcode()) { 4550 default: break; 4551 case ARM::VLD1q8: 4552 case ARM::VLD1q16: 4553 case ARM::VLD1q32: 4554 case ARM::VLD1q64: 4555 case ARM::VLD1q8wb_register: 4556 case ARM::VLD1q16wb_register: 4557 case ARM::VLD1q32wb_register: 4558 case ARM::VLD1q64wb_register: 4559 case ARM::VLD1q8wb_fixed: 4560 case ARM::VLD1q16wb_fixed: 4561 case ARM::VLD1q32wb_fixed: 4562 case ARM::VLD1q64wb_fixed: 4563 case ARM::VLD2d8: 4564 case ARM::VLD2d16: 4565 case ARM::VLD2d32: 4566 case ARM::VLD2q8Pseudo: 4567 case ARM::VLD2q16Pseudo: 4568 case ARM::VLD2q32Pseudo: 4569 case ARM::VLD2d8wb_fixed: 4570 case ARM::VLD2d16wb_fixed: 4571 case ARM::VLD2d32wb_fixed: 4572 case ARM::VLD2q8PseudoWB_fixed: 4573 case ARM::VLD2q16PseudoWB_fixed: 4574 case ARM::VLD2q32PseudoWB_fixed: 4575 case ARM::VLD2d8wb_register: 4576 case ARM::VLD2d16wb_register: 4577 case ARM::VLD2d32wb_register: 4578 case ARM::VLD2q8PseudoWB_register: 4579 case ARM::VLD2q16PseudoWB_register: 4580 case ARM::VLD2q32PseudoWB_register: 4581 case ARM::VLD3d8Pseudo: 4582 case ARM::VLD3d16Pseudo: 4583 case ARM::VLD3d32Pseudo: 4584 case ARM::VLD1d8TPseudo: 4585 case ARM::VLD1d16TPseudo: 4586 case ARM::VLD1d32TPseudo: 4587 case ARM::VLD1d64TPseudo: 4588 case ARM::VLD1d64TPseudoWB_fixed: 4589 case ARM::VLD1d64TPseudoWB_register: 4590 case ARM::VLD3d8Pseudo_UPD: 4591 case ARM::VLD3d16Pseudo_UPD: 4592 case ARM::VLD3d32Pseudo_UPD: 4593 case ARM::VLD3q8Pseudo_UPD: 4594 case ARM::VLD3q16Pseudo_UPD: 4595 case ARM::VLD3q32Pseudo_UPD: 4596 case ARM::VLD3q8oddPseudo: 4597 case ARM::VLD3q16oddPseudo: 4598 case ARM::VLD3q32oddPseudo: 4599 case ARM::VLD3q8oddPseudo_UPD: 4600 case ARM::VLD3q16oddPseudo_UPD: 4601 case ARM::VLD3q32oddPseudo_UPD: 4602 case ARM::VLD4d8Pseudo: 4603 case ARM::VLD4d16Pseudo: 4604 case ARM::VLD4d32Pseudo: 4605 case ARM::VLD1d8QPseudo: 4606 case ARM::VLD1d16QPseudo: 4607 case ARM::VLD1d32QPseudo: 4608 case ARM::VLD1d64QPseudo: 4609 case ARM::VLD1d64QPseudoWB_fixed: 4610 case ARM::VLD1d64QPseudoWB_register: 4611 case ARM::VLD1q8HighQPseudo: 4612 case ARM::VLD1q8LowQPseudo_UPD: 4613 case ARM::VLD1q8HighTPseudo: 4614 case ARM::VLD1q8LowTPseudo_UPD: 4615 case ARM::VLD1q16HighQPseudo: 4616 case ARM::VLD1q16LowQPseudo_UPD: 4617 case ARM::VLD1q16HighTPseudo: 4618 case ARM::VLD1q16LowTPseudo_UPD: 4619 case ARM::VLD1q32HighQPseudo: 4620 case ARM::VLD1q32LowQPseudo_UPD: 4621 case ARM::VLD1q32HighTPseudo: 4622 case ARM::VLD1q32LowTPseudo_UPD: 4623 case ARM::VLD1q64HighQPseudo: 4624 case ARM::VLD1q64LowQPseudo_UPD: 4625 case ARM::VLD1q64HighTPseudo: 4626 case ARM::VLD1q64LowTPseudo_UPD: 4627 case ARM::VLD4d8Pseudo_UPD: 4628 case ARM::VLD4d16Pseudo_UPD: 4629 case ARM::VLD4d32Pseudo_UPD: 4630 case ARM::VLD4q8Pseudo_UPD: 4631 case ARM::VLD4q16Pseudo_UPD: 4632 case ARM::VLD4q32Pseudo_UPD: 4633 case ARM::VLD4q8oddPseudo: 4634 case ARM::VLD4q16oddPseudo: 4635 case ARM::VLD4q32oddPseudo: 4636 case ARM::VLD4q8oddPseudo_UPD: 4637 case ARM::VLD4q16oddPseudo_UPD: 4638 case ARM::VLD4q32oddPseudo_UPD: 4639 case ARM::VLD1DUPq8: 4640 case ARM::VLD1DUPq16: 4641 case ARM::VLD1DUPq32: 4642 case ARM::VLD1DUPq8wb_fixed: 4643 case ARM::VLD1DUPq16wb_fixed: 4644 case ARM::VLD1DUPq32wb_fixed: 4645 case ARM::VLD1DUPq8wb_register: 4646 case ARM::VLD1DUPq16wb_register: 4647 case ARM::VLD1DUPq32wb_register: 4648 case ARM::VLD2DUPd8: 4649 case ARM::VLD2DUPd16: 4650 case ARM::VLD2DUPd32: 4651 case ARM::VLD2DUPd8wb_fixed: 4652 case ARM::VLD2DUPd16wb_fixed: 4653 case ARM::VLD2DUPd32wb_fixed: 4654 case ARM::VLD2DUPd8wb_register: 4655 case ARM::VLD2DUPd16wb_register: 4656 case ARM::VLD2DUPd32wb_register: 4657 case ARM::VLD2DUPq8EvenPseudo: 4658 case ARM::VLD2DUPq8OddPseudo: 4659 case ARM::VLD2DUPq16EvenPseudo: 4660 case ARM::VLD2DUPq16OddPseudo: 4661 case ARM::VLD2DUPq32EvenPseudo: 4662 case ARM::VLD2DUPq32OddPseudo: 4663 case ARM::VLD3DUPq8EvenPseudo: 4664 case ARM::VLD3DUPq8OddPseudo: 4665 case ARM::VLD3DUPq16EvenPseudo: 4666 case ARM::VLD3DUPq16OddPseudo: 4667 case ARM::VLD3DUPq32EvenPseudo: 4668 case ARM::VLD3DUPq32OddPseudo: 4669 case ARM::VLD4DUPd8Pseudo: 4670 case ARM::VLD4DUPd16Pseudo: 4671 case ARM::VLD4DUPd32Pseudo: 4672 case ARM::VLD4DUPd8Pseudo_UPD: 4673 case ARM::VLD4DUPd16Pseudo_UPD: 4674 case ARM::VLD4DUPd32Pseudo_UPD: 4675 case ARM::VLD4DUPq8EvenPseudo: 4676 case ARM::VLD4DUPq8OddPseudo: 4677 case ARM::VLD4DUPq16EvenPseudo: 4678 case ARM::VLD4DUPq16OddPseudo: 4679 case ARM::VLD4DUPq32EvenPseudo: 4680 case ARM::VLD4DUPq32OddPseudo: 4681 case ARM::VLD1LNq8Pseudo: 4682 case ARM::VLD1LNq16Pseudo: 4683 case ARM::VLD1LNq32Pseudo: 4684 case ARM::VLD1LNq8Pseudo_UPD: 4685 case ARM::VLD1LNq16Pseudo_UPD: 4686 case ARM::VLD1LNq32Pseudo_UPD: 4687 case ARM::VLD2LNd8Pseudo: 4688 case ARM::VLD2LNd16Pseudo: 4689 case ARM::VLD2LNd32Pseudo: 4690 case ARM::VLD2LNq16Pseudo: 4691 case ARM::VLD2LNq32Pseudo: 4692 case ARM::VLD2LNd8Pseudo_UPD: 4693 case ARM::VLD2LNd16Pseudo_UPD: 4694 case ARM::VLD2LNd32Pseudo_UPD: 4695 case ARM::VLD2LNq16Pseudo_UPD: 4696 case ARM::VLD2LNq32Pseudo_UPD: 4697 case ARM::VLD4LNd8Pseudo: 4698 case ARM::VLD4LNd16Pseudo: 4699 case ARM::VLD4LNd32Pseudo: 4700 case ARM::VLD4LNq16Pseudo: 4701 case ARM::VLD4LNq32Pseudo: 4702 case ARM::VLD4LNd8Pseudo_UPD: 4703 case ARM::VLD4LNd16Pseudo_UPD: 4704 case ARM::VLD4LNd32Pseudo_UPD: 4705 case ARM::VLD4LNq16Pseudo_UPD: 4706 case ARM::VLD4LNq32Pseudo_UPD: 4707 // If the address is not 64-bit aligned, the latencies of these 4708 // instructions increases by one. 4709 ++Latency; 4710 break; 4711 } 4712 4713 return Latency; 4714 } 4715 4716 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4717 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4718 MI.isImplicitDef()) 4719 return 0; 4720 4721 if (MI.isBundle()) 4722 return 0; 4723 4724 const MCInstrDesc &MCID = MI.getDesc(); 4725 4726 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4727 !Subtarget.cheapPredicableCPSRDef())) { 4728 // When predicated, CPSR is an additional source operand for CPSR updating 4729 // instructions, this apparently increases their latencies. 4730 return 1; 4731 } 4732 return 0; 4733 } 4734 4735 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4736 const MachineInstr &MI, 4737 unsigned *PredCost) const { 4738 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4739 MI.isImplicitDef()) 4740 return 1; 4741 4742 // An instruction scheduler typically runs on unbundled instructions, however 4743 // other passes may query the latency of a bundled instruction. 4744 if (MI.isBundle()) { 4745 unsigned Latency = 0; 4746 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4747 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4748 while (++I != E && I->isInsideBundle()) { 4749 if (I->getOpcode() != ARM::t2IT) 4750 Latency += getInstrLatency(ItinData, *I, PredCost); 4751 } 4752 return Latency; 4753 } 4754 4755 const MCInstrDesc &MCID = MI.getDesc(); 4756 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4757 !Subtarget.cheapPredicableCPSRDef()))) { 4758 // When predicated, CPSR is an additional source operand for CPSR updating 4759 // instructions, this apparently increases their latencies. 4760 *PredCost = 1; 4761 } 4762 // Be sure to call getStageLatency for an empty itinerary in case it has a 4763 // valid MinLatency property. 4764 if (!ItinData) 4765 return MI.mayLoad() ? 3 : 1; 4766 4767 unsigned Class = MCID.getSchedClass(); 4768 4769 // For instructions with variable uops, use uops as latency. 4770 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4771 return getNumMicroOps(ItinData, MI); 4772 4773 // For the common case, fall back on the itinerary's latency. 4774 unsigned Latency = ItinData->getStageLatency(Class); 4775 4776 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4777 unsigned DefAlign = 4778 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4779 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4780 if (Adj >= 0 || (int)Latency > -Adj) { 4781 return Latency + Adj; 4782 } 4783 return Latency; 4784 } 4785 4786 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4787 SDNode *Node) const { 4788 if (!Node->isMachineOpcode()) 4789 return 1; 4790 4791 if (!ItinData || ItinData->isEmpty()) 4792 return 1; 4793 4794 unsigned Opcode = Node->getMachineOpcode(); 4795 switch (Opcode) { 4796 default: 4797 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4798 case ARM::VLDMQIA: 4799 case ARM::VSTMQIA: 4800 return 2; 4801 } 4802 } 4803 4804 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4805 const MachineRegisterInfo *MRI, 4806 const MachineInstr &DefMI, 4807 unsigned DefIdx, 4808 const MachineInstr &UseMI, 4809 unsigned UseIdx) const { 4810 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4811 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4812 if (Subtarget.nonpipelinedVFP() && 4813 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4814 return true; 4815 4816 // Hoist VFP / NEON instructions with 4 or higher latency. 4817 unsigned Latency = 4818 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4819 if (Latency <= 3) 4820 return false; 4821 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4822 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4823 } 4824 4825 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4826 const MachineInstr &DefMI, 4827 unsigned DefIdx) const { 4828 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4829 if (!ItinData || ItinData->isEmpty()) 4830 return false; 4831 4832 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4833 if (DDomain == ARMII::DomainGeneral) { 4834 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4835 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4836 return (DefCycle != -1 && DefCycle <= 2); 4837 } 4838 return false; 4839 } 4840 4841 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4842 StringRef &ErrInfo) const { 4843 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4844 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4845 return false; 4846 } 4847 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4848 // Make sure we don't generate a lo-lo mov that isn't supported. 4849 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4850 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4851 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4852 return false; 4853 } 4854 } 4855 if (MI.getOpcode() == ARM::tPUSH || 4856 MI.getOpcode() == ARM::tPOP || 4857 MI.getOpcode() == ARM::tPOP_RET) { 4858 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) { 4859 if (MI.getOperand(i).isImplicit() || 4860 !MI.getOperand(i).isReg()) 4861 continue; 4862 Register Reg = MI.getOperand(i).getReg(); 4863 if (Reg < ARM::R0 || Reg > ARM::R7) { 4864 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4865 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4866 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4867 return false; 4868 } 4869 } 4870 } 4871 } 4872 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4873 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4874 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4875 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4876 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4877 return false; 4878 } 4879 } 4880 return true; 4881 } 4882 4883 // LoadStackGuard has so far only been implemented for MachO. Different code 4884 // sequence is needed for other targets. 4885 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4886 unsigned LoadImmOpc, 4887 unsigned LoadOpc) const { 4888 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4889 "ROPI/RWPI not currently supported with stack guard"); 4890 4891 MachineBasicBlock &MBB = *MI->getParent(); 4892 DebugLoc DL = MI->getDebugLoc(); 4893 Register Reg = MI->getOperand(0).getReg(); 4894 const GlobalValue *GV = 4895 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4896 MachineInstrBuilder MIB; 4897 4898 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4899 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4900 4901 if (Subtarget.isGVIndirectSymbol(GV)) { 4902 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4903 MIB.addReg(Reg, RegState::Kill).addImm(0); 4904 auto Flags = MachineMemOperand::MOLoad | 4905 MachineMemOperand::MODereferenceable | 4906 MachineMemOperand::MOInvariant; 4907 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4908 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4909 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4910 } 4911 4912 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4913 MIB.addReg(Reg, RegState::Kill) 4914 .addImm(0) 4915 .cloneMemRefs(*MI) 4916 .add(predOps(ARMCC::AL)); 4917 } 4918 4919 bool 4920 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4921 unsigned &AddSubOpc, 4922 bool &NegAcc, bool &HasLane) const { 4923 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4924 if (I == MLxEntryMap.end()) 4925 return false; 4926 4927 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4928 MulOpc = Entry.MulOpc; 4929 AddSubOpc = Entry.AddSubOpc; 4930 NegAcc = Entry.NegAcc; 4931 HasLane = Entry.HasLane; 4932 return true; 4933 } 4934 4935 //===----------------------------------------------------------------------===// 4936 // Execution domains. 4937 //===----------------------------------------------------------------------===// 4938 // 4939 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4940 // and some can go down both. The vmov instructions go down the VFP pipeline, 4941 // but they can be changed to vorr equivalents that are executed by the NEON 4942 // pipeline. 4943 // 4944 // We use the following execution domain numbering: 4945 // 4946 enum ARMExeDomain { 4947 ExeGeneric = 0, 4948 ExeVFP = 1, 4949 ExeNEON = 2 4950 }; 4951 4952 // 4953 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4954 // 4955 std::pair<uint16_t, uint16_t> 4956 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4957 // If we don't have access to NEON instructions then we won't be able 4958 // to swizzle anything to the NEON domain. Check to make sure. 4959 if (Subtarget.hasNEON()) { 4960 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4961 // if they are not predicated. 4962 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4963 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4964 4965 // CortexA9 is particularly picky about mixing the two and wants these 4966 // converted. 4967 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4968 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4969 MI.getOpcode() == ARM::VMOVS)) 4970 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4971 } 4972 // No other instructions can be swizzled, so just determine their domain. 4973 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4974 4975 if (Domain & ARMII::DomainNEON) 4976 return std::make_pair(ExeNEON, 0); 4977 4978 // Certain instructions can go either way on Cortex-A8. 4979 // Treat them as NEON instructions. 4980 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4981 return std::make_pair(ExeNEON, 0); 4982 4983 if (Domain & ARMII::DomainVFP) 4984 return std::make_pair(ExeVFP, 0); 4985 4986 return std::make_pair(ExeGeneric, 0); 4987 } 4988 4989 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4990 unsigned SReg, unsigned &Lane) { 4991 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4992 Lane = 0; 4993 4994 if (DReg != ARM::NoRegister) 4995 return DReg; 4996 4997 Lane = 1; 4998 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4999 5000 assert(DReg && "S-register with no D super-register?"); 5001 return DReg; 5002 } 5003 5004 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 5005 /// set ImplicitSReg to a register number that must be marked as implicit-use or 5006 /// zero if no register needs to be defined as implicit-use. 5007 /// 5008 /// If the function cannot determine if an SPR should be marked implicit use or 5009 /// not, it returns false. 5010 /// 5011 /// This function handles cases where an instruction is being modified from taking 5012 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 5013 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 5014 /// lane of the DPR). 5015 /// 5016 /// If the other SPR is defined, an implicit-use of it should be added. Else, 5017 /// (including the case where the DPR itself is defined), it should not. 5018 /// 5019 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 5020 MachineInstr &MI, unsigned DReg, 5021 unsigned Lane, unsigned &ImplicitSReg) { 5022 // If the DPR is defined or used already, the other SPR lane will be chained 5023 // correctly, so there is nothing to be done. 5024 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 5025 ImplicitSReg = 0; 5026 return true; 5027 } 5028 5029 // Otherwise we need to go searching to see if the SPR is set explicitly. 5030 ImplicitSReg = TRI->getSubReg(DReg, 5031 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5032 MachineBasicBlock::LivenessQueryResult LQR = 5033 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5034 5035 if (LQR == MachineBasicBlock::LQR_Live) 5036 return true; 5037 else if (LQR == MachineBasicBlock::LQR_Unknown) 5038 return false; 5039 5040 // If the register is known not to be live, there is no need to add an 5041 // implicit-use. 5042 ImplicitSReg = 0; 5043 return true; 5044 } 5045 5046 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5047 unsigned Domain) const { 5048 unsigned DstReg, SrcReg, DReg; 5049 unsigned Lane; 5050 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5051 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5052 switch (MI.getOpcode()) { 5053 default: 5054 llvm_unreachable("cannot handle opcode!"); 5055 break; 5056 case ARM::VMOVD: 5057 if (Domain != ExeNEON) 5058 break; 5059 5060 // Zap the predicate operands. 5061 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5062 5063 // Make sure we've got NEON instructions. 5064 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5065 5066 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5067 DstReg = MI.getOperand(0).getReg(); 5068 SrcReg = MI.getOperand(1).getReg(); 5069 5070 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5071 MI.RemoveOperand(i - 1); 5072 5073 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5074 MI.setDesc(get(ARM::VORRd)); 5075 MIB.addReg(DstReg, RegState::Define) 5076 .addReg(SrcReg) 5077 .addReg(SrcReg) 5078 .add(predOps(ARMCC::AL)); 5079 break; 5080 case ARM::VMOVRS: 5081 if (Domain != ExeNEON) 5082 break; 5083 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5084 5085 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5086 DstReg = MI.getOperand(0).getReg(); 5087 SrcReg = MI.getOperand(1).getReg(); 5088 5089 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5090 MI.RemoveOperand(i - 1); 5091 5092 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5093 5094 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5095 // Note that DSrc has been widened and the other lane may be undef, which 5096 // contaminates the entire register. 5097 MI.setDesc(get(ARM::VGETLNi32)); 5098 MIB.addReg(DstReg, RegState::Define) 5099 .addReg(DReg, RegState::Undef) 5100 .addImm(Lane) 5101 .add(predOps(ARMCC::AL)); 5102 5103 // The old source should be an implicit use, otherwise we might think it 5104 // was dead before here. 5105 MIB.addReg(SrcReg, RegState::Implicit); 5106 break; 5107 case ARM::VMOVSR: { 5108 if (Domain != ExeNEON) 5109 break; 5110 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5111 5112 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5113 DstReg = MI.getOperand(0).getReg(); 5114 SrcReg = MI.getOperand(1).getReg(); 5115 5116 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5117 5118 unsigned ImplicitSReg; 5119 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5120 break; 5121 5122 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5123 MI.RemoveOperand(i - 1); 5124 5125 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5126 // Again DDst may be undefined at the beginning of this instruction. 5127 MI.setDesc(get(ARM::VSETLNi32)); 5128 MIB.addReg(DReg, RegState::Define) 5129 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5130 .addReg(SrcReg) 5131 .addImm(Lane) 5132 .add(predOps(ARMCC::AL)); 5133 5134 // The narrower destination must be marked as set to keep previous chains 5135 // in place. 5136 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5137 if (ImplicitSReg != 0) 5138 MIB.addReg(ImplicitSReg, RegState::Implicit); 5139 break; 5140 } 5141 case ARM::VMOVS: { 5142 if (Domain != ExeNEON) 5143 break; 5144 5145 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5146 DstReg = MI.getOperand(0).getReg(); 5147 SrcReg = MI.getOperand(1).getReg(); 5148 5149 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5150 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5151 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5152 5153 unsigned ImplicitSReg; 5154 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5155 break; 5156 5157 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5158 MI.RemoveOperand(i - 1); 5159 5160 if (DSrc == DDst) { 5161 // Destination can be: 5162 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5163 MI.setDesc(get(ARM::VDUPLN32d)); 5164 MIB.addReg(DDst, RegState::Define) 5165 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5166 .addImm(SrcLane) 5167 .add(predOps(ARMCC::AL)); 5168 5169 // Neither the source or the destination are naturally represented any 5170 // more, so add them in manually. 5171 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5172 MIB.addReg(SrcReg, RegState::Implicit); 5173 if (ImplicitSReg != 0) 5174 MIB.addReg(ImplicitSReg, RegState::Implicit); 5175 break; 5176 } 5177 5178 // In general there's no single instruction that can perform an S <-> S 5179 // move in NEON space, but a pair of VEXT instructions *can* do the 5180 // job. It turns out that the VEXTs needed will only use DSrc once, with 5181 // the position based purely on the combination of lane-0 and lane-1 5182 // involved. For example 5183 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5184 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5185 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5186 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5187 // 5188 // Pattern of the MachineInstrs is: 5189 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5190 MachineInstrBuilder NewMIB; 5191 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5192 DDst); 5193 5194 // On the first instruction, both DSrc and DDst may be undef if present. 5195 // Specifically when the original instruction didn't have them as an 5196 // <imp-use>. 5197 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5198 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5199 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5200 5201 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5202 CurUndef = !MI.readsRegister(CurReg, TRI); 5203 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5204 .addImm(1) 5205 .add(predOps(ARMCC::AL)); 5206 5207 if (SrcLane == DstLane) 5208 NewMIB.addReg(SrcReg, RegState::Implicit); 5209 5210 MI.setDesc(get(ARM::VEXTd32)); 5211 MIB.addReg(DDst, RegState::Define); 5212 5213 // On the second instruction, DDst has definitely been defined above, so 5214 // it is not undef. DSrc, if present, can be undef as above. 5215 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5216 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5217 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5218 5219 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5220 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5221 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5222 .addImm(1) 5223 .add(predOps(ARMCC::AL)); 5224 5225 if (SrcLane != DstLane) 5226 MIB.addReg(SrcReg, RegState::Implicit); 5227 5228 // As before, the original destination is no longer represented, add it 5229 // implicitly. 5230 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5231 if (ImplicitSReg != 0) 5232 MIB.addReg(ImplicitSReg, RegState::Implicit); 5233 break; 5234 } 5235 } 5236 } 5237 5238 //===----------------------------------------------------------------------===// 5239 // Partial register updates 5240 //===----------------------------------------------------------------------===// 5241 // 5242 // Swift renames NEON registers with 64-bit granularity. That means any 5243 // instruction writing an S-reg implicitly reads the containing D-reg. The 5244 // problem is mostly avoided by translating f32 operations to v2f32 operations 5245 // on D-registers, but f32 loads are still a problem. 5246 // 5247 // These instructions can load an f32 into a NEON register: 5248 // 5249 // VLDRS - Only writes S, partial D update. 5250 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5251 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5252 // 5253 // FCONSTD can be used as a dependency-breaking instruction. 5254 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5255 const MachineInstr &MI, unsigned OpNum, 5256 const TargetRegisterInfo *TRI) const { 5257 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5258 if (!PartialUpdateClearance) 5259 return 0; 5260 5261 assert(TRI && "Need TRI instance"); 5262 5263 const MachineOperand &MO = MI.getOperand(OpNum); 5264 if (MO.readsReg()) 5265 return 0; 5266 Register Reg = MO.getReg(); 5267 int UseOp = -1; 5268 5269 switch (MI.getOpcode()) { 5270 // Normal instructions writing only an S-register. 5271 case ARM::VLDRS: 5272 case ARM::FCONSTS: 5273 case ARM::VMOVSR: 5274 case ARM::VMOVv8i8: 5275 case ARM::VMOVv4i16: 5276 case ARM::VMOVv2i32: 5277 case ARM::VMOVv2f32: 5278 case ARM::VMOVv1i64: 5279 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5280 break; 5281 5282 // Explicitly reads the dependency. 5283 case ARM::VLD1LNd32: 5284 UseOp = 3; 5285 break; 5286 default: 5287 return 0; 5288 } 5289 5290 // If this instruction actually reads a value from Reg, there is no unwanted 5291 // dependency. 5292 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5293 return 0; 5294 5295 // We must be able to clobber the whole D-reg. 5296 if (Register::isVirtualRegister(Reg)) { 5297 // Virtual register must be a def undef foo:ssub_0 operand. 5298 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5299 return 0; 5300 } else if (ARM::SPRRegClass.contains(Reg)) { 5301 // Physical register: MI must define the full D-reg. 5302 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5303 &ARM::DPRRegClass); 5304 if (!DReg || !MI.definesRegister(DReg, TRI)) 5305 return 0; 5306 } 5307 5308 // MI has an unwanted D-register dependency. 5309 // Avoid defs in the previous N instructrions. 5310 return PartialUpdateClearance; 5311 } 5312 5313 // Break a partial register dependency after getPartialRegUpdateClearance 5314 // returned non-zero. 5315 void ARMBaseInstrInfo::breakPartialRegDependency( 5316 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5317 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5318 assert(TRI && "Need TRI instance"); 5319 5320 const MachineOperand &MO = MI.getOperand(OpNum); 5321 Register Reg = MO.getReg(); 5322 assert(Register::isPhysicalRegister(Reg) && 5323 "Can't break virtual register dependencies."); 5324 unsigned DReg = Reg; 5325 5326 // If MI defines an S-reg, find the corresponding D super-register. 5327 if (ARM::SPRRegClass.contains(Reg)) { 5328 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5329 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5330 } 5331 5332 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5333 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5334 5335 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5336 // the full D-register by loading the same value to both lanes. The 5337 // instruction is micro-coded with 2 uops, so don't do this until we can 5338 // properly schedule micro-coded instructions. The dispatcher stalls cause 5339 // too big regressions. 5340 5341 // Insert the dependency-breaking FCONSTD before MI. 5342 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5343 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5344 .addImm(96) 5345 .add(predOps(ARMCC::AL)); 5346 MI.addRegisterKilled(DReg, TRI, true); 5347 } 5348 5349 bool ARMBaseInstrInfo::hasNOP() const { 5350 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5351 } 5352 5353 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5354 if (MI->getNumOperands() < 4) 5355 return true; 5356 unsigned ShOpVal = MI->getOperand(3).getImm(); 5357 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5358 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5359 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5360 ((ShImm == 1 || ShImm == 2) && 5361 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5362 return true; 5363 5364 return false; 5365 } 5366 5367 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5368 const MachineInstr &MI, unsigned DefIdx, 5369 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5370 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5371 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5372 5373 switch (MI.getOpcode()) { 5374 case ARM::VMOVDRR: 5375 // dX = VMOVDRR rY, rZ 5376 // is the same as: 5377 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5378 // Populate the InputRegs accordingly. 5379 // rY 5380 const MachineOperand *MOReg = &MI.getOperand(1); 5381 if (!MOReg->isUndef()) 5382 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5383 MOReg->getSubReg(), ARM::ssub_0)); 5384 // rZ 5385 MOReg = &MI.getOperand(2); 5386 if (!MOReg->isUndef()) 5387 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5388 MOReg->getSubReg(), ARM::ssub_1)); 5389 return true; 5390 } 5391 llvm_unreachable("Target dependent opcode missing"); 5392 } 5393 5394 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5395 const MachineInstr &MI, unsigned DefIdx, 5396 RegSubRegPairAndIdx &InputReg) const { 5397 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5398 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5399 5400 switch (MI.getOpcode()) { 5401 case ARM::VMOVRRD: 5402 // rX, rY = VMOVRRD dZ 5403 // is the same as: 5404 // rX = EXTRACT_SUBREG dZ, ssub_0 5405 // rY = EXTRACT_SUBREG dZ, ssub_1 5406 const MachineOperand &MOReg = MI.getOperand(2); 5407 if (MOReg.isUndef()) 5408 return false; 5409 InputReg.Reg = MOReg.getReg(); 5410 InputReg.SubReg = MOReg.getSubReg(); 5411 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5412 return true; 5413 } 5414 llvm_unreachable("Target dependent opcode missing"); 5415 } 5416 5417 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5418 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5419 RegSubRegPairAndIdx &InsertedReg) const { 5420 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5421 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5422 5423 switch (MI.getOpcode()) { 5424 case ARM::VSETLNi32: 5425 case ARM::MVE_VMOV_to_lane_32: 5426 // dX = VSETLNi32 dY, rZ, imm 5427 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm 5428 const MachineOperand &MOBaseReg = MI.getOperand(1); 5429 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5430 if (MOInsertedReg.isUndef()) 5431 return false; 5432 const MachineOperand &MOIndex = MI.getOperand(3); 5433 BaseReg.Reg = MOBaseReg.getReg(); 5434 BaseReg.SubReg = MOBaseReg.getSubReg(); 5435 5436 InsertedReg.Reg = MOInsertedReg.getReg(); 5437 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5438 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); 5439 return true; 5440 } 5441 llvm_unreachable("Target dependent opcode missing"); 5442 } 5443 5444 std::pair<unsigned, unsigned> 5445 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5446 const unsigned Mask = ARMII::MO_OPTION_MASK; 5447 return std::make_pair(TF & Mask, TF & ~Mask); 5448 } 5449 5450 ArrayRef<std::pair<unsigned, const char *>> 5451 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5452 using namespace ARMII; 5453 5454 static const std::pair<unsigned, const char *> TargetFlags[] = { 5455 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5456 return makeArrayRef(TargetFlags); 5457 } 5458 5459 ArrayRef<std::pair<unsigned, const char *>> 5460 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5461 using namespace ARMII; 5462 5463 static const std::pair<unsigned, const char *> TargetFlags[] = { 5464 {MO_COFFSTUB, "arm-coffstub"}, 5465 {MO_GOT, "arm-got"}, 5466 {MO_SBREL, "arm-sbrel"}, 5467 {MO_DLLIMPORT, "arm-dllimport"}, 5468 {MO_SECREL, "arm-secrel"}, 5469 {MO_NONLAZY, "arm-nonlazy"}}; 5470 return makeArrayRef(TargetFlags); 5471 } 5472 5473 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, 5474 Register Reg) const { 5475 int Sign = 1; 5476 unsigned Opcode = MI.getOpcode(); 5477 int64_t Offset = 0; 5478 5479 // TODO: Handle cases where Reg is a super- or sub-register of the 5480 // destination register. 5481 const MachineOperand &Op0 = MI.getOperand(0); 5482 if (!Op0.isReg() || Reg != Op0.getReg()) 5483 return None; 5484 5485 // We describe SUBri or ADDri instructions. 5486 if (Opcode == ARM::SUBri) 5487 Sign = -1; 5488 else if (Opcode != ARM::ADDri) 5489 return None; 5490 5491 // TODO: Third operand can be global address (usually some string). Since 5492 // strings can be relocated we cannot calculate their offsets for 5493 // now. 5494 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5495 return None; 5496 5497 Offset = MI.getOperand(2).getImm() * Sign; 5498 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5499 } 5500 5501 bool llvm::registerDefinedBetween(unsigned Reg, 5502 MachineBasicBlock::iterator From, 5503 MachineBasicBlock::iterator To, 5504 const TargetRegisterInfo *TRI) { 5505 for (auto I = From; I != To; ++I) 5506 if (I->modifiesRegister(Reg, TRI)) 5507 return true; 5508 return false; 5509 } 5510 5511 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5512 const TargetRegisterInfo *TRI) { 5513 // Search backwards to the instruction that defines CSPR. This may or not 5514 // be a CMP, we check that after this loop. If we find another instruction 5515 // that reads cpsr, we return nullptr. 5516 MachineBasicBlock::iterator CmpMI = Br; 5517 while (CmpMI != Br->getParent()->begin()) { 5518 --CmpMI; 5519 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5520 break; 5521 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5522 break; 5523 } 5524 5525 // Check that this inst is a CMP r[0-7], #0 and that the register 5526 // is not redefined between the cmp and the br. 5527 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5528 return nullptr; 5529 Register Reg = CmpMI->getOperand(0).getReg(); 5530 Register PredReg; 5531 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5532 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5533 return nullptr; 5534 if (!isARMLowRegister(Reg)) 5535 return nullptr; 5536 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5537 return nullptr; 5538 5539 return &*CmpMI; 5540 } 5541 5542 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5543 const ARMSubtarget *Subtarget, 5544 bool ForCodesize) { 5545 if (Subtarget->isThumb()) { 5546 if (Val <= 255) // MOV 5547 return ForCodesize ? 2 : 1; 5548 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5549 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5550 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5551 return ForCodesize ? 4 : 1; 5552 if (Val <= 510) // MOV + ADDi8 5553 return ForCodesize ? 4 : 2; 5554 if (~Val <= 255) // MOV + MVN 5555 return ForCodesize ? 4 : 2; 5556 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5557 return ForCodesize ? 4 : 2; 5558 } else { 5559 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5560 return ForCodesize ? 4 : 1; 5561 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5562 return ForCodesize ? 4 : 1; 5563 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5564 return ForCodesize ? 4 : 1; 5565 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5566 return ForCodesize ? 8 : 2; 5567 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5568 return ForCodesize ? 8 : 2; 5569 } 5570 if (Subtarget->useMovt()) // MOVW + MOVT 5571 return ForCodesize ? 8 : 2; 5572 return ForCodesize ? 8 : 3; // Literal pool load 5573 } 5574 5575 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5576 const ARMSubtarget *Subtarget, 5577 bool ForCodesize) { 5578 // Check with ForCodesize 5579 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5580 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5581 if (Cost1 < Cost2) 5582 return true; 5583 if (Cost1 > Cost2) 5584 return false; 5585 5586 // If they are equal, try with !ForCodesize 5587 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5588 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5589 } 5590 5591 /// Constants defining how certain sequences should be outlined. 5592 /// This encompasses how an outlined function should be called, and what kind of 5593 /// frame should be emitted for that outlined function. 5594 /// 5595 /// \p MachineOutlinerTailCall implies that the function is being created from 5596 /// a sequence of instructions ending in a return. 5597 /// 5598 /// That is, 5599 /// 5600 /// I1 OUTLINED_FUNCTION: 5601 /// I2 --> B OUTLINED_FUNCTION I1 5602 /// BX LR I2 5603 /// BX LR 5604 /// 5605 /// +-------------------------+--------+-----+ 5606 /// | | Thumb2 | ARM | 5607 /// +-------------------------+--------+-----+ 5608 /// | Call overhead in Bytes | 4 | 4 | 5609 /// | Frame overhead in Bytes | 0 | 0 | 5610 /// | Stack fixup required | No | No | 5611 /// +-------------------------+--------+-----+ 5612 /// 5613 /// \p MachineOutlinerThunk implies that the function is being created from 5614 /// a sequence of instructions ending in a call. The outlined function is 5615 /// called with a BL instruction, and the outlined function tail-calls the 5616 /// original call destination. 5617 /// 5618 /// That is, 5619 /// 5620 /// I1 OUTLINED_FUNCTION: 5621 /// I2 --> BL OUTLINED_FUNCTION I1 5622 /// BL f I2 5623 /// B f 5624 /// 5625 /// +-------------------------+--------+-----+ 5626 /// | | Thumb2 | ARM | 5627 /// +-------------------------+--------+-----+ 5628 /// | Call overhead in Bytes | 4 | 4 | 5629 /// | Frame overhead in Bytes | 0 | 0 | 5630 /// | Stack fixup required | No | No | 5631 /// +-------------------------+--------+-----+ 5632 /// 5633 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5634 /// a BL instruction, but doesn't require LR to be saved and restored. This 5635 /// happens when LR is known to be dead. 5636 /// 5637 /// That is, 5638 /// 5639 /// I1 OUTLINED_FUNCTION: 5640 /// I2 --> BL OUTLINED_FUNCTION I1 5641 /// I3 I2 5642 /// I3 5643 /// BX LR 5644 /// 5645 /// +-------------------------+--------+-----+ 5646 /// | | Thumb2 | ARM | 5647 /// +-------------------------+--------+-----+ 5648 /// | Call overhead in Bytes | 4 | 4 | 5649 /// | Frame overhead in Bytes | 4 | 4 | 5650 /// | Stack fixup required | No | No | 5651 /// +-------------------------+--------+-----+ 5652 /// 5653 /// \p MachineOutlinerRegSave implies that the function should be called with a 5654 /// save and restore of LR to an available register. This allows us to avoid 5655 /// stack fixups. Note that this outlining variant is compatible with the 5656 /// NoLRSave case. 5657 /// 5658 /// That is, 5659 /// 5660 /// I1 Save LR OUTLINED_FUNCTION: 5661 /// I2 --> BL OUTLINED_FUNCTION I1 5662 /// I3 Restore LR I2 5663 /// I3 5664 /// BX LR 5665 /// 5666 /// +-------------------------+--------+-----+ 5667 /// | | Thumb2 | ARM | 5668 /// +-------------------------+--------+-----+ 5669 /// | Call overhead in Bytes | 8 | 12 | 5670 /// | Frame overhead in Bytes | 2 | 4 | 5671 /// | Stack fixup required | No | No | 5672 /// +-------------------------+--------+-----+ 5673 /// 5674 /// \p MachineOutlinerDefault implies that the function should be called with 5675 /// a save and restore of LR to the stack. 5676 /// 5677 /// That is, 5678 /// 5679 /// I1 Save LR OUTLINED_FUNCTION: 5680 /// I2 --> BL OUTLINED_FUNCTION I1 5681 /// I3 Restore LR I2 5682 /// I3 5683 /// BX LR 5684 /// 5685 /// +-------------------------+--------+-----+ 5686 /// | | Thumb2 | ARM | 5687 /// +-------------------------+--------+-----+ 5688 /// | Call overhead in Bytes | 8 | 12 | 5689 /// | Frame overhead in Bytes | 2 | 4 | 5690 /// | Stack fixup required | Yes | Yes | 5691 /// +-------------------------+--------+-----+ 5692 5693 enum MachineOutlinerClass { 5694 MachineOutlinerTailCall, 5695 MachineOutlinerThunk, 5696 MachineOutlinerNoLRSave, 5697 MachineOutlinerRegSave, 5698 MachineOutlinerDefault 5699 }; 5700 5701 enum MachineOutlinerMBBFlags { 5702 LRUnavailableSomewhere = 0x2, 5703 HasCalls = 0x4, 5704 UnsafeRegsDead = 0x8 5705 }; 5706 5707 struct OutlinerCosts { 5708 const int CallTailCall; 5709 const int FrameTailCall; 5710 const int CallThunk; 5711 const int FrameThunk; 5712 const int CallNoLRSave; 5713 const int FrameNoLRSave; 5714 const int CallRegSave; 5715 const int FrameRegSave; 5716 const int CallDefault; 5717 const int FrameDefault; 5718 const int SaveRestoreLROnStack; 5719 5720 OutlinerCosts(const ARMSubtarget &target) 5721 : CallTailCall(target.isThumb() ? 4 : 4), 5722 FrameTailCall(target.isThumb() ? 0 : 0), 5723 CallThunk(target.isThumb() ? 4 : 4), 5724 FrameThunk(target.isThumb() ? 0 : 0), 5725 CallNoLRSave(target.isThumb() ? 4 : 4), 5726 FrameNoLRSave(target.isThumb() ? 4 : 4), 5727 CallRegSave(target.isThumb() ? 8 : 12), 5728 FrameRegSave(target.isThumb() ? 2 : 4), 5729 CallDefault(target.isThumb() ? 8 : 12), 5730 FrameDefault(target.isThumb() ? 2 : 4), 5731 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5732 }; 5733 5734 unsigned 5735 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const { 5736 assert(C.LRUWasSet && "LRU wasn't set?"); 5737 MachineFunction *MF = C.getMF(); 5738 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>( 5739 MF->getSubtarget().getRegisterInfo()); 5740 5741 BitVector regsReserved = ARI->getReservedRegs(*MF); 5742 // Check if there is an available register across the sequence that we can 5743 // use. 5744 for (unsigned Reg : ARM::rGPRRegClass) { 5745 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5746 Reg != ARM::LR && // LR is not reserved, but don't use it. 5747 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5748 C.LRU.available(Reg) && C.UsedInSequence.available(Reg)) 5749 return Reg; 5750 } 5751 5752 // No suitable register. Return 0. 5753 return 0u; 5754 } 5755 5756 // Compute liveness of LR at the point after the interval [I, E), which 5757 // denotes a *backward* iteration through instructions. Used only for return 5758 // basic blocks, which do not end with a tail call. 5759 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5760 MachineBasicBlock::reverse_iterator I, 5761 MachineBasicBlock::reverse_iterator E) { 5762 // At the end of the function LR dead. 5763 bool Live = false; 5764 for (; I != E; ++I) { 5765 const MachineInstr &MI = *I; 5766 5767 // Check defs of LR. 5768 if (MI.modifiesRegister(ARM::LR, &TRI)) 5769 Live = false; 5770 5771 // Check uses of LR. 5772 unsigned Opcode = MI.getOpcode(); 5773 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5774 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5775 Opcode == ARM::tBXNS_RET) { 5776 // These instructions use LR, but it's not an (explicit or implicit) 5777 // operand. 5778 Live = true; 5779 continue; 5780 } 5781 if (MI.readsRegister(ARM::LR, &TRI)) 5782 Live = true; 5783 } 5784 return !Live; 5785 } 5786 5787 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo( 5788 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5789 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 5790 unsigned SequenceSize = 5791 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 5792 [this](unsigned Sum, const MachineInstr &MI) { 5793 return Sum + getInstSizeInBytes(MI); 5794 }); 5795 5796 // Properties about candidate MBBs that hold for all of them. 5797 unsigned FlagsSetInAll = 0xF; 5798 5799 // Compute liveness information for each candidate, and set FlagsSetInAll. 5800 const TargetRegisterInfo &TRI = getRegisterInfo(); 5801 std::for_each( 5802 RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), 5803 [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; }); 5804 5805 // According to the ARM Procedure Call Standard, the following are 5806 // undefined on entry/exit from a function call: 5807 // 5808 // * Register R12(IP), 5809 // * Condition codes (and thus the CPSR register) 5810 // 5811 // Since we control the instructions which are part of the outlined regions 5812 // we don't need to be fully compliant with the AAPCS, but we have to 5813 // guarantee that if a veneer is inserted at link time the code is still 5814 // correct. Because of this, we can't outline any sequence of instructions 5815 // where one of these registers is live into/across it. Thus, we need to 5816 // delete those candidates. 5817 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5818 // If the unsafe registers in this block are all dead, then we don't need 5819 // to compute liveness here. 5820 if (C.Flags & UnsafeRegsDead) 5821 return false; 5822 C.initLRU(TRI); 5823 LiveRegUnits LRU = C.LRU; 5824 return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR)); 5825 }; 5826 5827 // Are there any candidates where those registers are live? 5828 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5829 // Erase every candidate that violates the restrictions above. (It could be 5830 // true that we have viable candidates, so it's not worth bailing out in 5831 // the case that, say, 1 out of 20 candidates violate the restructions.) 5832 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5833 5834 // If the sequence doesn't have enough candidates left, then we're done. 5835 if (RepeatedSequenceLocs.size() < 2) 5836 return outliner::OutlinedFunction(); 5837 } 5838 5839 // At this point, we have only "safe" candidates to outline. Figure out 5840 // frame + call instruction information. 5841 5842 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 5843 5844 // Helper lambda which sets call information for every candidate. 5845 auto SetCandidateCallInfo = 5846 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5847 for (outliner::Candidate &C : RepeatedSequenceLocs) 5848 C.setCallInfo(CallID, NumBytesForCall); 5849 }; 5850 5851 OutlinerCosts Costs(Subtarget); 5852 unsigned FrameID = MachineOutlinerDefault; 5853 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 5854 5855 // If the last instruction in any candidate is a terminator, then we should 5856 // tail call all of the candidates. 5857 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 5858 FrameID = MachineOutlinerTailCall; 5859 NumBytesToCreateFrame = Costs.FrameTailCall; 5860 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 5861 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 5862 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 5863 LastInstrOpcode == ARM::tBLXr || 5864 LastInstrOpcode == ARM::tBLXr_noip || 5865 LastInstrOpcode == ARM::tBLXi) { 5866 FrameID = MachineOutlinerThunk; 5867 NumBytesToCreateFrame = Costs.FrameThunk; 5868 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 5869 } else { 5870 // We need to decide how to emit calls + frames. We can always emit the same 5871 // frame if we don't need to save to the stack. If we have to save to the 5872 // stack, then we need a different frame. 5873 unsigned NumBytesNoStackCalls = 0; 5874 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 5875 5876 for (outliner::Candidate &C : RepeatedSequenceLocs) { 5877 C.initLRU(TRI); 5878 // LR liveness is overestimated in return blocks, unless they end with a 5879 // tail call. 5880 const auto Last = C.getMBB()->rbegin(); 5881 const bool LRIsAvailable = 5882 C.getMBB()->isReturnBlock() && !Last->isCall() 5883 ? isLRAvailable(TRI, Last, 5884 (MachineBasicBlock::reverse_iterator)C.front()) 5885 : C.LRU.available(ARM::LR); 5886 if (LRIsAvailable) { 5887 FrameID = MachineOutlinerNoLRSave; 5888 NumBytesNoStackCalls += Costs.CallNoLRSave; 5889 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 5890 CandidatesWithoutStackFixups.push_back(C); 5891 } 5892 5893 // Is an unused register available? If so, we won't modify the stack, so 5894 // we can outline with the same frame type as those that don't save LR. 5895 else if (findRegisterToSaveLRTo(C)) { 5896 FrameID = MachineOutlinerRegSave; 5897 NumBytesNoStackCalls += Costs.CallRegSave; 5898 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 5899 CandidatesWithoutStackFixups.push_back(C); 5900 } 5901 5902 // Is SP used in the sequence at all? If not, we don't have to modify 5903 // the stack, so we are guaranteed to get the same frame. 5904 else if (C.UsedInSequence.available(ARM::SP)) { 5905 NumBytesNoStackCalls += Costs.CallDefault; 5906 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 5907 CandidatesWithoutStackFixups.push_back(C); 5908 } 5909 5910 // If we outline this, we need to modify the stack. Pretend we don't 5911 // outline this by saving all of its bytes. 5912 else 5913 NumBytesNoStackCalls += SequenceSize; 5914 } 5915 5916 // If there are no places where we have to save LR, then note that we don't 5917 // have to update the stack. Otherwise, give every candidate the default 5918 // call type 5919 if (NumBytesNoStackCalls <= 5920 RepeatedSequenceLocs.size() * Costs.CallDefault) { 5921 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 5922 FrameID = MachineOutlinerNoLRSave; 5923 } else 5924 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 5925 } 5926 5927 // Does every candidate's MBB contain a call? If so, then we might have a 5928 // call in the range. 5929 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 5930 // check if the range contains a call. These require a save + restore of 5931 // the link register. 5932 if (std::any_of(FirstCand.front(), FirstCand.back(), 5933 [](const MachineInstr &MI) { return MI.isCall(); })) 5934 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 5935 5936 // Handle the last instruction separately. If it is tail call, then the 5937 // last instruction is a call, we don't want to save + restore in this 5938 // case. However, it could be possible that the last instruction is a 5939 // call without it being valid to tail call this sequence. We should 5940 // consider this as well. 5941 else if (FrameID != MachineOutlinerThunk && 5942 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) 5943 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 5944 } 5945 5946 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 5947 NumBytesToCreateFrame, FrameID); 5948 } 5949 5950 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, 5951 int64_t Fixup, 5952 bool Updt) const { 5953 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP); 5954 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); 5955 if (SPIdx < 0) 5956 // No SP operand 5957 return true; 5958 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) 5959 // If SP is not the base register we can't do much 5960 return false; 5961 5962 // Stack might be involved but addressing mode doesn't handle any offset. 5963 // Rq: AddrModeT1_[1|2|4] don't operate on SP 5964 if (AddrMode == ARMII::AddrMode1 // Arithmetic instructions 5965 || AddrMode == ARMII::AddrMode4 // Load/Store Multiple 5966 || AddrMode == ARMII::AddrMode6 // Neon Load/Store Multiple 5967 || AddrMode == ARMII::AddrModeT2_so // SP can't be used as based register 5968 || AddrMode == ARMII::AddrModeT2_pc // PCrel access 5969 || AddrMode == ARMII::AddrMode2 // Used by PRE and POST indexed LD/ST 5970 || AddrMode == ARMII::AddrModeT2_i7 // v8.1-M MVE 5971 || AddrMode == ARMII::AddrModeT2_i7s2 // v8.1-M MVE 5972 || AddrMode == ARMII::AddrModeT2_i7s4 // v8.1-M sys regs VLDR/VSTR 5973 || AddrMode == ARMII::AddrModeNone) 5974 return false; 5975 5976 unsigned NumOps = MI->getDesc().getNumOperands(); 5977 unsigned ImmIdx = NumOps - 3; 5978 5979 const MachineOperand &Offset = MI->getOperand(ImmIdx); 5980 assert(Offset.isImm() && "Is not an immediate"); 5981 int64_t OffVal = Offset.getImm(); 5982 5983 if (OffVal < 0) 5984 // Don't override data if the are below SP. 5985 return false; 5986 5987 unsigned NumBits = 0; 5988 unsigned Scale = 1; 5989 5990 switch (AddrMode) { 5991 case ARMII::AddrMode3: 5992 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) 5993 return false; 5994 OffVal = ARM_AM::getAM3Offset(OffVal); 5995 NumBits = 8; 5996 break; 5997 case ARMII::AddrMode5: 5998 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) 5999 return false; 6000 OffVal = ARM_AM::getAM5Offset(OffVal); 6001 NumBits = 8; 6002 Scale = 4; 6003 break; 6004 case ARMII::AddrMode5FP16: 6005 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) 6006 return false; 6007 OffVal = ARM_AM::getAM5FP16Offset(OffVal); 6008 NumBits = 8; 6009 Scale = 2; 6010 break; 6011 case ARMII::AddrModeT2_i8: 6012 NumBits = 8; 6013 break; 6014 case ARMII::AddrModeT2_i8s4: 6015 // FIXME: Values are already scaled in this addressing mode. 6016 assert((Fixup & 3) == 0 && "Can't encode this offset!"); 6017 NumBits = 10; 6018 break; 6019 case ARMII::AddrModeT2_ldrex: 6020 NumBits = 8; 6021 Scale = 4; 6022 break; 6023 case ARMII::AddrModeT2_i12: 6024 case ARMII::AddrMode_i12: 6025 NumBits = 12; 6026 break; 6027 case ARMII::AddrModeT1_s: // SP-relative LD/ST 6028 NumBits = 8; 6029 Scale = 4; 6030 break; 6031 default: 6032 llvm_unreachable("Unsupported addressing mode!"); 6033 } 6034 // Make sure the offset is encodable for instructions that scale the 6035 // immediate. 6036 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && 6037 "Can't encode this offset!"); 6038 OffVal += Fixup / Scale; 6039 6040 unsigned Mask = (1 << NumBits) - 1; 6041 6042 if (OffVal <= Mask) { 6043 if (Updt) 6044 MI->getOperand(ImmIdx).setImm(OffVal); 6045 return true; 6046 } 6047 6048 return false; 6049 6050 } 6051 6052 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 6053 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 6054 const Function &F = MF.getFunction(); 6055 6056 // Can F be deduplicated by the linker? If it can, don't outline from it. 6057 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 6058 return false; 6059 6060 // Don't outline from functions with section markings; the program could 6061 // expect that all the code is in the named section. 6062 // FIXME: Allow outlining from multiple functions with the same section 6063 // marking. 6064 if (F.hasSection()) 6065 return false; 6066 6067 // FIXME: Thumb1 outlining is not handled 6068 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 6069 return false; 6070 6071 // It's safe to outline from MF. 6072 return true; 6073 } 6074 6075 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 6076 unsigned &Flags) const { 6077 // Check if LR is available through all of the MBB. If it's not, then set 6078 // a flag. 6079 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 6080 "Suitable Machine Function for outlining must track liveness"); 6081 6082 LiveRegUnits LRU(getRegisterInfo()); 6083 6084 std::for_each(MBB.rbegin(), MBB.rend(), 6085 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); }); 6086 6087 // Check if each of the unsafe registers are available... 6088 bool R12AvailableInBlock = LRU.available(ARM::R12); 6089 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 6090 6091 // If all of these are dead (and not live out), we know we don't have to check 6092 // them later. 6093 if (R12AvailableInBlock && CPSRAvailableInBlock) 6094 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 6095 6096 // Now, add the live outs to the set. 6097 LRU.addLiveOuts(MBB); 6098 6099 // If any of these registers is available in the MBB, but also a live out of 6100 // the block, then we know outlining is unsafe. 6101 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 6102 return false; 6103 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 6104 return false; 6105 6106 // Check if there's a call inside this MachineBasicBlock. If there is, then 6107 // set a flag. 6108 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 6109 Flags |= MachineOutlinerMBBFlags::HasCalls; 6110 6111 // LR liveness is overestimated in return blocks. 6112 6113 bool LRIsAvailable = 6114 MBB.isReturnBlock() && !MBB.back().isCall() 6115 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 6116 : LRU.available(ARM::LR); 6117 if (!LRIsAvailable) 6118 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 6119 6120 return true; 6121 } 6122 6123 outliner::InstrType 6124 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, 6125 unsigned Flags) const { 6126 MachineInstr &MI = *MIT; 6127 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6128 6129 // Be conservative with inline ASM 6130 if (MI.isInlineAsm()) 6131 return outliner::InstrType::Illegal; 6132 6133 // Don't allow debug values to impact outlining type. 6134 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 6135 return outliner::InstrType::Invisible; 6136 6137 // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much 6138 // so we can go ahead and skip over them. 6139 if (MI.isKill() || MI.isImplicitDef()) 6140 return outliner::InstrType::Invisible; 6141 6142 // PIC instructions contain labels, outlining them would break offset 6143 // computing. unsigned Opc = MI.getOpcode(); 6144 unsigned Opc = MI.getOpcode(); 6145 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6146 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6147 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6148 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6149 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6150 Opc == ARM::t2MOV_ga_pcrel) 6151 return outliner::InstrType::Illegal; 6152 6153 // Be conservative with ARMv8.1 MVE instructions. 6154 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6155 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6156 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || 6157 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6158 Opc == ARM::t2LoopEndDec) 6159 return outliner::InstrType::Illegal; 6160 6161 const MCInstrDesc &MCID = MI.getDesc(); 6162 uint64_t MIFlags = MCID.TSFlags; 6163 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6164 return outliner::InstrType::Illegal; 6165 6166 // Is this a terminator for a basic block? 6167 if (MI.isTerminator()) { 6168 // Don't outline if the branch is not unconditional. 6169 if (isPredicated(MI)) 6170 return outliner::InstrType::Illegal; 6171 6172 // Is this the end of a function? 6173 if (MI.getParent()->succ_empty()) 6174 return outliner::InstrType::Legal; 6175 6176 // It's not, so don't outline it. 6177 return outliner::InstrType::Illegal; 6178 } 6179 6180 // Make sure none of the operands are un-outlinable. 6181 for (const MachineOperand &MOP : MI.operands()) { 6182 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 6183 MOP.isTargetIndex()) 6184 return outliner::InstrType::Illegal; 6185 } 6186 6187 // Don't outline if link register or program counter value are used. 6188 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6189 return outliner::InstrType::Illegal; 6190 6191 if (MI.isCall()) { 6192 // Get the function associated with the call. Look at each operand and find 6193 // the one that represents the calle and get its name. 6194 const Function *Callee = nullptr; 6195 for (const MachineOperand &MOP : MI.operands()) { 6196 if (MOP.isGlobal()) { 6197 Callee = dyn_cast<Function>(MOP.getGlobal()); 6198 break; 6199 } 6200 } 6201 6202 // Dont't outline calls to "mcount" like functions, in particular Linux 6203 // kernel function tracing relies on it. 6204 if (Callee && 6205 (Callee->getName() == "\01__gnu_mcount_nc" || 6206 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6207 return outliner::InstrType::Illegal; 6208 6209 // If we don't know anything about the callee, assume it depends on the 6210 // stack layout of the caller. In that case, it's only legal to outline 6211 // as a tail-call. Explicitly list the call instructions we know about so 6212 // we don't get unexpected results with call pseudo-instructions. 6213 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6214 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6215 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6216 Opc == ARM::tBLXi) 6217 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6218 6219 if (!Callee) 6220 return UnknownCallOutlineType; 6221 6222 // We have a function we have information about. Check if it's something we 6223 // can safely outline. 6224 MachineFunction *MF = MI.getParent()->getParent(); 6225 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 6226 6227 // We don't know what's going on with the callee at all. Don't touch it. 6228 if (!CalleeMF) 6229 return UnknownCallOutlineType; 6230 6231 // Check if we know anything about the callee saves on the function. If we 6232 // don't, then don't touch it, since that implies that we haven't computed 6233 // anything about its stack frame yet. 6234 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6235 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6236 MFI.getNumObjects() > 0) 6237 return UnknownCallOutlineType; 6238 6239 // At this point, we can say that CalleeMF ought to not pass anything on the 6240 // stack. Therefore, we can outline it. 6241 return outliner::InstrType::Legal; 6242 } 6243 6244 // Since calls are handled, don't touch LR or PC 6245 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6246 return outliner::InstrType::Illegal; 6247 6248 // Does this use the stack? 6249 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6250 // True if there is no chance that any outlined candidate from this range 6251 // could require stack fixups. That is, both 6252 // * LR is available in the range (No save/restore around call) 6253 // * The range doesn't include calls (No save/restore in outlined frame) 6254 // are true. 6255 // FIXME: This is very restrictive; the flags check the whole block, 6256 // not just the bit we will try to outline. 6257 bool MightNeedStackFixUp = 6258 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6259 MachineOutlinerMBBFlags::HasCalls)); 6260 6261 if (!MightNeedStackFixUp) 6262 return outliner::InstrType::Legal; 6263 6264 // Any modification of SP will break our code to save/restore LR. 6265 // FIXME: We could handle some instructions which add a constant offset to 6266 // SP, with a bit more work. 6267 if (MI.modifiesRegister(ARM::SP, TRI)) 6268 return outliner::InstrType::Illegal; 6269 6270 // At this point, we have a stack instruction that we might need to fix up. 6271 // up. We'll handle it if it's a load or store. 6272 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), 6273 false)) 6274 return outliner::InstrType::Legal; 6275 6276 // We can't fix it up, so don't outline it. 6277 return outliner::InstrType::Illegal; 6278 } 6279 6280 // Be conservative with IT blocks. 6281 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6282 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6283 return outliner::InstrType::Illegal; 6284 6285 // Don't outline positions. 6286 if (MI.isPosition()) 6287 return outliner::InstrType::Illegal; 6288 6289 return outliner::InstrType::Legal; 6290 } 6291 6292 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 6293 for (MachineInstr &MI : MBB) { 6294 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); 6295 } 6296 } 6297 6298 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6299 MachineBasicBlock::iterator It) const { 6300 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6301 int Align = -Subtarget.getStackAlignment().value(); 6302 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6303 .addReg(ARM::LR, RegState::Kill) 6304 .addReg(ARM::SP) 6305 .addImm(Align) 6306 .add(predOps(ARMCC::AL)); 6307 } 6308 6309 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack( 6310 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6311 MachineFunction &MF = *MBB.getParent(); 6312 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6313 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6314 int Align = Subtarget.getStackAlignment().value(); 6315 // Add a CFI saying the stack was moved down. 6316 int64_t StackPosEntry = 6317 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6318 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6319 .addCFIIndex(StackPosEntry) 6320 .setMIFlags(MachineInstr::FrameSetup); 6321 6322 // Add a CFI saying that the LR that we want to find is now higher than 6323 // before. 6324 int64_t LRPosEntry = 6325 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align)); 6326 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6327 .addCFIIndex(LRPosEntry) 6328 .setMIFlags(MachineInstr::FrameSetup); 6329 } 6330 6331 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6332 MachineBasicBlock::iterator It, 6333 Register Reg) const { 6334 MachineFunction &MF = *MBB.getParent(); 6335 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6336 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6337 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6338 6339 int64_t LRPosEntry = MF.addFrameInst( 6340 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6341 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6342 .addCFIIndex(LRPosEntry) 6343 .setMIFlags(MachineInstr::FrameSetup); 6344 } 6345 6346 void ARMBaseInstrInfo::restoreLRFromStack( 6347 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6348 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6349 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6350 .addReg(ARM::SP, RegState::Define) 6351 .addReg(ARM::SP); 6352 if (!Subtarget.isThumb()) 6353 MIB.addReg(0); 6354 MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL)); 6355 } 6356 6357 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack( 6358 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6359 // Now stack has moved back up... 6360 MachineFunction &MF = *MBB.getParent(); 6361 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6362 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6363 int64_t StackPosEntry = 6364 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6365 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6366 .addCFIIndex(StackPosEntry) 6367 .setMIFlags(MachineInstr::FrameDestroy); 6368 6369 // ... and we have restored LR. 6370 int64_t LRPosEntry = 6371 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6372 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6373 .addCFIIndex(LRPosEntry) 6374 .setMIFlags(MachineInstr::FrameDestroy); 6375 } 6376 6377 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6378 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6379 MachineFunction &MF = *MBB.getParent(); 6380 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6381 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6382 6383 int64_t LRPosEntry = 6384 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6385 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6386 .addCFIIndex(LRPosEntry) 6387 .setMIFlags(MachineInstr::FrameDestroy); 6388 } 6389 6390 void ARMBaseInstrInfo::buildOutlinedFrame( 6391 MachineBasicBlock &MBB, MachineFunction &MF, 6392 const outliner::OutlinedFunction &OF) const { 6393 // For thunk outlining, rewrite the last instruction from a call to a 6394 // tail-call. 6395 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6396 MachineInstr *Call = &*--MBB.instr_end(); 6397 bool isThumb = Subtarget.isThumb(); 6398 unsigned FuncOp = isThumb ? 2 : 0; 6399 unsigned Opc = Call->getOperand(FuncOp).isReg() 6400 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6401 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6402 : ARM::tTAILJMPdND 6403 : ARM::TAILJMPd; 6404 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6405 .add(Call->getOperand(FuncOp)); 6406 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6407 MIB.add(predOps(ARMCC::AL)); 6408 Call->eraseFromParent(); 6409 } 6410 6411 // Is there a call in the outlined range? 6412 auto IsNonTailCall = [](MachineInstr &MI) { 6413 return MI.isCall() && !MI.isReturn(); 6414 }; 6415 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 6416 MachineBasicBlock::iterator It = MBB.begin(); 6417 MachineBasicBlock::iterator Et = MBB.end(); 6418 6419 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6420 OF.FrameConstructionID == MachineOutlinerThunk) 6421 Et = std::prev(MBB.end()); 6422 6423 // We have to save and restore LR, we need to add it to the liveins if it 6424 // is not already part of the set. This is suffient since outlined 6425 // functions only have one block. 6426 if (!MBB.isLiveIn(ARM::LR)) 6427 MBB.addLiveIn(ARM::LR); 6428 6429 // Insert a save before the outlined region 6430 saveLROnStack(MBB, It); 6431 emitCFIForLRSaveOnStack(MBB, It); 6432 6433 // Fix up the instructions in the range, since we're going to modify the 6434 // stack. 6435 assert(OF.FrameConstructionID != MachineOutlinerDefault && 6436 "Can only fix up stack references once"); 6437 fixupPostOutline(MBB); 6438 6439 // Insert a restore before the terminator for the function. Restore LR. 6440 restoreLRFromStack(MBB, Et); 6441 emitCFIForLRRestoreFromStack(MBB, Et); 6442 } 6443 6444 // If this is a tail call outlined function, then there's already a return. 6445 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6446 OF.FrameConstructionID == MachineOutlinerThunk) 6447 return; 6448 6449 // Here we have to insert the return ourselves. Get the correct opcode from 6450 // current feature set. 6451 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6452 .add(predOps(ARMCC::AL)); 6453 6454 // Did we have to modify the stack by saving the link register? 6455 if (OF.FrameConstructionID != MachineOutlinerDefault && 6456 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) 6457 return; 6458 6459 // We modified the stack. 6460 // Walk over the basic block and fix up all the stack accesses. 6461 fixupPostOutline(MBB); 6462 } 6463 6464 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6465 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6466 MachineFunction &MF, const outliner::Candidate &C) const { 6467 MachineInstrBuilder MIB; 6468 MachineBasicBlock::iterator CallPt; 6469 unsigned Opc; 6470 bool isThumb = Subtarget.isThumb(); 6471 6472 // Are we tail calling? 6473 if (C.CallConstructionID == MachineOutlinerTailCall) { 6474 // If yes, then we can just branch to the label. 6475 Opc = isThumb 6476 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6477 : ARM::TAILJMPd; 6478 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6479 .addGlobalAddress(M.getNamedValue(MF.getName())); 6480 if (isThumb) 6481 MIB.add(predOps(ARMCC::AL)); 6482 It = MBB.insert(It, MIB); 6483 return It; 6484 } 6485 6486 // Create the call instruction. 6487 Opc = isThumb ? ARM::tBL : ARM::BL; 6488 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6489 if (isThumb) 6490 CallMIB.add(predOps(ARMCC::AL)); 6491 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6492 6493 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6494 C.CallConstructionID == MachineOutlinerThunk) { 6495 // No, so just insert the call. 6496 It = MBB.insert(It, CallMIB); 6497 return It; 6498 } 6499 6500 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6501 // Can we save to a register? 6502 if (C.CallConstructionID == MachineOutlinerRegSave) { 6503 unsigned Reg = findRegisterToSaveLRTo(C); 6504 assert(Reg != 0 && "No callee-saved register available?"); 6505 6506 // Save and restore LR from that register. 6507 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6508 if (!AFI.isLRSpilled()) 6509 emitCFIForLRSaveToReg(MBB, It, Reg); 6510 CallPt = MBB.insert(It, CallMIB); 6511 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6512 if (!AFI.isLRSpilled()) 6513 emitCFIForLRRestoreFromReg(MBB, It); 6514 It--; 6515 return CallPt; 6516 } 6517 // We have the default case. Save and restore from SP. 6518 if (!MBB.isLiveIn(ARM::LR)) 6519 MBB.addLiveIn(ARM::LR); 6520 saveLROnStack(MBB, It); 6521 if (!AFI.isLRSpilled()) 6522 emitCFIForLRSaveOnStack(MBB, It); 6523 CallPt = MBB.insert(It, CallMIB); 6524 restoreLRFromStack(MBB, It); 6525 if (!AFI.isLRSpilled()) 6526 emitCFIForLRRestoreFromStack(MBB, It); 6527 It--; 6528 return CallPt; 6529 } 6530 6531 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6532 MachineFunction &MF) const { 6533 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6534 } 6535 6536 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 6537 AAResults *AA) const { 6538 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6539 // the tail predication conversion. This means that the element count 6540 // register has to be live for longer, but that has to be better than 6541 // spill/restore and VPT predication. 6542 return isVCTP(&MI) && !isPredicated(MI); 6543 } 6544 6545 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6546 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6547 : ARM::BLX; 6548 } 6549 6550 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6551 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6552 : ARM::tBLXr; 6553 } 6554 6555 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6556 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6557 : ARM::BLX_pred; 6558 } 6559 6560