1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/MachineScheduler.h" 40 #include "llvm/CodeGen/MultiHazardRecognizer.h" 41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 42 #include "llvm/CodeGen/SelectionDAGNodes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSchedule.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/MC/MCAsmInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <new> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "arm-instrinfo" 73 74 #define GET_INSTRINFO_CTOR_DTOR 75 #include "ARMGenInstrInfo.inc" 76 77 static cl::opt<bool> 78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 79 cl::desc("Enable ARM 2-addr to 3-addr conv")); 80 81 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 82 struct ARM_MLxEntry { 83 uint16_t MLxOpc; // MLA / MLS opcode 84 uint16_t MulOpc; // Expanded multiplication opcode 85 uint16_t AddSubOpc; // Expanded add / sub opcode 86 bool NegAcc; // True if the acc is negated before the add / sub. 87 bool HasLane; // True if instruction has an extra "lane" operand. 88 }; 89 90 static const ARM_MLxEntry ARM_MLxTable[] = { 91 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 92 // fp scalar ops 93 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 94 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 95 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 96 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 97 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 98 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 99 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 100 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 101 102 // fp SIMD ops 103 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 104 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 105 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 106 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 107 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 108 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 109 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 110 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 111 }; 112 113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 114 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 115 Subtarget(STI) { 116 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 117 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 118 llvm_unreachable("Duplicated entries?"); 119 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 120 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 121 } 122 } 123 124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 125 // currently defaults to no prepass hazard recognizer. 126 ScheduleHazardRecognizer * 127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 128 const ScheduleDAG *DAG) const { 129 if (usePreRAHazardRecognizer()) { 130 const InstrItineraryData *II = 131 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 132 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 133 } 134 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 135 } 136 137 // Called during: 138 // - pre-RA scheduling 139 // - post-RA scheduling when FeatureUseMISched is set 140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 141 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 142 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 143 144 // We would like to restrict this hazard recognizer to only 145 // post-RA scheduling; we can tell that we're post-RA because we don't 146 // track VRegLiveness. 147 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 148 // banks banked on bit 2. Assume that TCMs are in use. 149 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 150 MHR->AddHazardRecognizer( 151 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 152 153 // Not inserting ARMHazardRecognizerFPMLx because that would change 154 // legacy behavior 155 156 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 157 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 158 return MHR; 159 } 160 161 // Called during post-RA scheduling when FeatureUseMISched is not set 162 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 164 const ScheduleDAG *DAG) const { 165 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 166 167 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 168 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 169 170 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 171 if (BHR) 172 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 173 return MHR; 174 } 175 176 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 177 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 178 // FIXME: Thumb2 support. 179 180 if (!EnableARM3Addr) 181 return nullptr; 182 183 MachineFunction &MF = *MI.getParent()->getParent(); 184 uint64_t TSFlags = MI.getDesc().TSFlags; 185 bool isPre = false; 186 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 187 default: return nullptr; 188 case ARMII::IndexModePre: 189 isPre = true; 190 break; 191 case ARMII::IndexModePost: 192 break; 193 } 194 195 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 196 // operation. 197 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 198 if (MemOpc == 0) 199 return nullptr; 200 201 MachineInstr *UpdateMI = nullptr; 202 MachineInstr *MemMI = nullptr; 203 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 204 const MCInstrDesc &MCID = MI.getDesc(); 205 unsigned NumOps = MCID.getNumOperands(); 206 bool isLoad = !MI.mayStore(); 207 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 208 const MachineOperand &Base = MI.getOperand(2); 209 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 210 Register WBReg = WB.getReg(); 211 Register BaseReg = Base.getReg(); 212 Register OffReg = Offset.getReg(); 213 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 214 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 215 switch (AddrMode) { 216 default: llvm_unreachable("Unknown indexed op!"); 217 case ARMII::AddrMode2: { 218 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 219 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 220 if (OffReg == 0) { 221 if (ARM_AM::getSOImmVal(Amt) == -1) 222 // Can't encode it in a so_imm operand. This transformation will 223 // add more than 1 instruction. Abandon! 224 return nullptr; 225 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 226 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 227 .addReg(BaseReg) 228 .addImm(Amt) 229 .add(predOps(Pred)) 230 .add(condCodeOp()); 231 } else if (Amt != 0) { 232 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 233 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 234 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 235 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 236 .addReg(BaseReg) 237 .addReg(OffReg) 238 .addReg(0) 239 .addImm(SOOpc) 240 .add(predOps(Pred)) 241 .add(condCodeOp()); 242 } else 243 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 244 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 245 .addReg(BaseReg) 246 .addReg(OffReg) 247 .add(predOps(Pred)) 248 .add(condCodeOp()); 249 break; 250 } 251 case ARMII::AddrMode3 : { 252 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 253 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 254 if (OffReg == 0) 255 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 256 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 257 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 258 .addReg(BaseReg) 259 .addImm(Amt) 260 .add(predOps(Pred)) 261 .add(condCodeOp()); 262 else 263 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 264 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 265 .addReg(BaseReg) 266 .addReg(OffReg) 267 .add(predOps(Pred)) 268 .add(condCodeOp()); 269 break; 270 } 271 } 272 273 std::vector<MachineInstr*> NewMIs; 274 if (isPre) { 275 if (isLoad) 276 MemMI = 277 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 278 .addReg(WBReg) 279 .addImm(0) 280 .addImm(Pred); 281 else 282 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 283 .addReg(MI.getOperand(1).getReg()) 284 .addReg(WBReg) 285 .addReg(0) 286 .addImm(0) 287 .addImm(Pred); 288 NewMIs.push_back(MemMI); 289 NewMIs.push_back(UpdateMI); 290 } else { 291 if (isLoad) 292 MemMI = 293 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 294 .addReg(BaseReg) 295 .addImm(0) 296 .addImm(Pred); 297 else 298 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 299 .addReg(MI.getOperand(1).getReg()) 300 .addReg(BaseReg) 301 .addReg(0) 302 .addImm(0) 303 .addImm(Pred); 304 if (WB.isDead()) 305 UpdateMI->getOperand(0).setIsDead(); 306 NewMIs.push_back(UpdateMI); 307 NewMIs.push_back(MemMI); 308 } 309 310 // Transfer LiveVariables states, kill / dead info. 311 if (LV) { 312 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 313 MachineOperand &MO = MI.getOperand(i); 314 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 315 Register Reg = MO.getReg(); 316 317 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 318 if (MO.isDef()) { 319 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 320 if (MO.isDead()) 321 LV->addVirtualRegisterDead(Reg, *NewMI); 322 } 323 if (MO.isUse() && MO.isKill()) { 324 for (unsigned j = 0; j < 2; ++j) { 325 // Look at the two new MI's in reverse order. 326 MachineInstr *NewMI = NewMIs[j]; 327 if (!NewMI->readsRegister(Reg)) 328 continue; 329 LV->addVirtualRegisterKilled(Reg, *NewMI); 330 if (VI.removeKill(MI)) 331 VI.Kills.push_back(NewMI); 332 break; 333 } 334 } 335 } 336 } 337 } 338 339 MachineBasicBlock::iterator MBBI = MI.getIterator(); 340 MFI->insert(MBBI, NewMIs[1]); 341 MFI->insert(MBBI, NewMIs[0]); 342 return NewMIs[0]; 343 } 344 345 // Branch analysis. 346 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 347 MachineBasicBlock *&TBB, 348 MachineBasicBlock *&FBB, 349 SmallVectorImpl<MachineOperand> &Cond, 350 bool AllowModify) const { 351 TBB = nullptr; 352 FBB = nullptr; 353 354 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 355 if (I == MBB.instr_begin()) 356 return false; // Empty blocks are easy. 357 --I; 358 359 // Walk backwards from the end of the basic block until the branch is 360 // analyzed or we give up. 361 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 362 // Flag to be raised on unanalyzeable instructions. This is useful in cases 363 // where we want to clean up on the end of the basic block before we bail 364 // out. 365 bool CantAnalyze = false; 366 367 // Skip over DEBUG values, predicated nonterminators and speculation 368 // barrier terminators. 369 while (I->isDebugInstr() || !I->isTerminator() || 370 isSpeculationBarrierEndBBOpcode(I->getOpcode()) ){ 371 if (I == MBB.instr_begin()) 372 return false; 373 --I; 374 } 375 376 if (isIndirectBranchOpcode(I->getOpcode()) || 377 isJumpTableBranchOpcode(I->getOpcode())) { 378 // Indirect branches and jump tables can't be analyzed, but we still want 379 // to clean up any instructions at the tail of the basic block. 380 CantAnalyze = true; 381 } else if (isUncondBranchOpcode(I->getOpcode())) { 382 TBB = I->getOperand(0).getMBB(); 383 } else if (isCondBranchOpcode(I->getOpcode())) { 384 // Bail out if we encounter multiple conditional branches. 385 if (!Cond.empty()) 386 return true; 387 388 assert(!FBB && "FBB should have been null."); 389 FBB = TBB; 390 TBB = I->getOperand(0).getMBB(); 391 Cond.push_back(I->getOperand(1)); 392 Cond.push_back(I->getOperand(2)); 393 } else if (I->isReturn()) { 394 // Returns can't be analyzed, but we should run cleanup. 395 CantAnalyze = true; 396 } else { 397 // We encountered other unrecognized terminator. Bail out immediately. 398 return true; 399 } 400 401 // Cleanup code - to be run for unpredicated unconditional branches and 402 // returns. 403 if (!isPredicated(*I) && 404 (isUncondBranchOpcode(I->getOpcode()) || 405 isIndirectBranchOpcode(I->getOpcode()) || 406 isJumpTableBranchOpcode(I->getOpcode()) || 407 I->isReturn())) { 408 // Forget any previous condition branch information - it no longer applies. 409 Cond.clear(); 410 FBB = nullptr; 411 412 // If we can modify the function, delete everything below this 413 // unconditional branch. 414 if (AllowModify) { 415 MachineBasicBlock::iterator DI = std::next(I); 416 while (DI != MBB.instr_end()) { 417 MachineInstr &InstToDelete = *DI; 418 ++DI; 419 // Speculation barriers must not be deleted. 420 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 421 continue; 422 InstToDelete.eraseFromParent(); 423 } 424 } 425 } 426 427 if (CantAnalyze) { 428 // We may not be able to analyze the block, but we could still have 429 // an unconditional branch as the last instruction in the block, which 430 // just branches to layout successor. If this is the case, then just 431 // remove it if we're allowed to make modifications. 432 if (AllowModify && !isPredicated(MBB.back()) && 433 isUncondBranchOpcode(MBB.back().getOpcode()) && 434 TBB && MBB.isLayoutSuccessor(TBB)) 435 removeBranch(MBB); 436 return true; 437 } 438 439 if (I == MBB.instr_begin()) 440 return false; 441 442 --I; 443 } 444 445 // We made it past the terminators without bailing out - we must have 446 // analyzed this branch successfully. 447 return false; 448 } 449 450 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 451 int *BytesRemoved) const { 452 assert(!BytesRemoved && "code size not handled"); 453 454 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 455 if (I == MBB.end()) 456 return 0; 457 458 if (!isUncondBranchOpcode(I->getOpcode()) && 459 !isCondBranchOpcode(I->getOpcode())) 460 return 0; 461 462 // Remove the branch. 463 I->eraseFromParent(); 464 465 I = MBB.end(); 466 467 if (I == MBB.begin()) return 1; 468 --I; 469 if (!isCondBranchOpcode(I->getOpcode())) 470 return 1; 471 472 // Remove the branch. 473 I->eraseFromParent(); 474 return 2; 475 } 476 477 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 478 MachineBasicBlock *TBB, 479 MachineBasicBlock *FBB, 480 ArrayRef<MachineOperand> Cond, 481 const DebugLoc &DL, 482 int *BytesAdded) const { 483 assert(!BytesAdded && "code size not handled"); 484 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 485 int BOpc = !AFI->isThumbFunction() 486 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 487 int BccOpc = !AFI->isThumbFunction() 488 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 489 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 490 491 // Shouldn't be a fall through. 492 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 493 assert((Cond.size() == 2 || Cond.size() == 0) && 494 "ARM branch conditions have two components!"); 495 496 // For conditional branches, we use addOperand to preserve CPSR flags. 497 498 if (!FBB) { 499 if (Cond.empty()) { // Unconditional branch? 500 if (isThumb) 501 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 502 else 503 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 504 } else 505 BuildMI(&MBB, DL, get(BccOpc)) 506 .addMBB(TBB) 507 .addImm(Cond[0].getImm()) 508 .add(Cond[1]); 509 return 1; 510 } 511 512 // Two-way conditional branch. 513 BuildMI(&MBB, DL, get(BccOpc)) 514 .addMBB(TBB) 515 .addImm(Cond[0].getImm()) 516 .add(Cond[1]); 517 if (isThumb) 518 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 519 else 520 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 521 return 2; 522 } 523 524 bool ARMBaseInstrInfo:: 525 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 526 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 527 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 528 return false; 529 } 530 531 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 532 if (MI.isBundle()) { 533 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 534 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 535 while (++I != E && I->isInsideBundle()) { 536 int PIdx = I->findFirstPredOperandIdx(); 537 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 538 return true; 539 } 540 return false; 541 } 542 543 int PIdx = MI.findFirstPredOperandIdx(); 544 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 545 } 546 547 std::string ARMBaseInstrInfo::createMIROperandComment( 548 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 549 const TargetRegisterInfo *TRI) const { 550 551 // First, let's see if there is a generic comment for this operand 552 std::string GenericComment = 553 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 554 if (!GenericComment.empty()) 555 return GenericComment; 556 557 // If not, check if we have an immediate operand. 558 if (Op.getType() != MachineOperand::MO_Immediate) 559 return std::string(); 560 561 // And print its corresponding condition code if the immediate is a 562 // predicate. 563 int FirstPredOp = MI.findFirstPredOperandIdx(); 564 if (FirstPredOp != (int) OpIdx) 565 return std::string(); 566 567 std::string CC = "CC::"; 568 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 569 return CC; 570 } 571 572 bool ARMBaseInstrInfo::PredicateInstruction( 573 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 574 unsigned Opc = MI.getOpcode(); 575 if (isUncondBranchOpcode(Opc)) { 576 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 577 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 578 .addImm(Pred[0].getImm()) 579 .addReg(Pred[1].getReg()); 580 return true; 581 } 582 583 int PIdx = MI.findFirstPredOperandIdx(); 584 if (PIdx != -1) { 585 MachineOperand &PMO = MI.getOperand(PIdx); 586 PMO.setImm(Pred[0].getImm()); 587 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 588 589 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 590 // IT block. This affects how they are printed. 591 const MCInstrDesc &MCID = MI.getDesc(); 592 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 593 assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand"); 594 assert((MI.getOperand(1).isDead() || 595 MI.getOperand(1).getReg() != ARM::CPSR) && 596 "if conversion tried to stop defining used CPSR"); 597 MI.getOperand(1).setReg(ARM::NoRegister); 598 } 599 600 return true; 601 } 602 return false; 603 } 604 605 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 606 ArrayRef<MachineOperand> Pred2) const { 607 if (Pred1.size() > 2 || Pred2.size() > 2) 608 return false; 609 610 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 611 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 612 if (CC1 == CC2) 613 return true; 614 615 switch (CC1) { 616 default: 617 return false; 618 case ARMCC::AL: 619 return true; 620 case ARMCC::HS: 621 return CC2 == ARMCC::HI; 622 case ARMCC::LS: 623 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 624 case ARMCC::GE: 625 return CC2 == ARMCC::GT; 626 case ARMCC::LE: 627 return CC2 == ARMCC::LT; 628 } 629 } 630 631 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 632 std::vector<MachineOperand> &Pred, 633 bool SkipDead) const { 634 bool Found = false; 635 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 636 const MachineOperand &MO = MI.getOperand(i); 637 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 638 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 639 if (ClobbersCPSR || IsCPSR) { 640 641 // Filter out T1 instructions that have a dead CPSR, 642 // allowing IT blocks to be generated containing T1 instructions 643 const MCInstrDesc &MCID = MI.getDesc(); 644 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 645 SkipDead) 646 continue; 647 648 Pred.push_back(MO); 649 Found = true; 650 } 651 } 652 653 return Found; 654 } 655 656 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 657 for (const auto &MO : MI.operands()) 658 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 659 return true; 660 return false; 661 } 662 663 static bool isEligibleForITBlock(const MachineInstr *MI) { 664 switch (MI->getOpcode()) { 665 default: return true; 666 case ARM::tADC: // ADC (register) T1 667 case ARM::tADDi3: // ADD (immediate) T1 668 case ARM::tADDi8: // ADD (immediate) T2 669 case ARM::tADDrr: // ADD (register) T1 670 case ARM::tAND: // AND (register) T1 671 case ARM::tASRri: // ASR (immediate) T1 672 case ARM::tASRrr: // ASR (register) T1 673 case ARM::tBIC: // BIC (register) T1 674 case ARM::tEOR: // EOR (register) T1 675 case ARM::tLSLri: // LSL (immediate) T1 676 case ARM::tLSLrr: // LSL (register) T1 677 case ARM::tLSRri: // LSR (immediate) T1 678 case ARM::tLSRrr: // LSR (register) T1 679 case ARM::tMUL: // MUL T1 680 case ARM::tMVN: // MVN (register) T1 681 case ARM::tORR: // ORR (register) T1 682 case ARM::tROR: // ROR (register) T1 683 case ARM::tRSB: // RSB (immediate) T1 684 case ARM::tSBC: // SBC (register) T1 685 case ARM::tSUBi3: // SUB (immediate) T1 686 case ARM::tSUBi8: // SUB (immediate) T2 687 case ARM::tSUBrr: // SUB (register) T1 688 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 689 } 690 } 691 692 /// isPredicable - Return true if the specified instruction can be predicated. 693 /// By default, this returns true for every instruction with a 694 /// PredicateOperand. 695 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 696 if (!MI.isPredicable()) 697 return false; 698 699 if (MI.isBundle()) 700 return false; 701 702 if (!isEligibleForITBlock(&MI)) 703 return false; 704 705 const MachineFunction *MF = MI.getParent()->getParent(); 706 const ARMFunctionInfo *AFI = 707 MF->getInfo<ARMFunctionInfo>(); 708 709 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 710 // In their ARM encoding, they can't be encoded in a conditional form. 711 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 712 return false; 713 714 // Make indirect control flow changes unpredicable when SLS mitigation is 715 // enabled. 716 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 717 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 718 return false; 719 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 720 return false; 721 722 if (AFI->isThumb2Function()) { 723 if (getSubtarget().restrictIT()) 724 return isV8EligibleForIT(&MI); 725 } 726 727 return true; 728 } 729 730 namespace llvm { 731 732 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 733 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 734 const MachineOperand &MO = MI->getOperand(i); 735 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 736 continue; 737 if (MO.getReg() != ARM::CPSR) 738 continue; 739 if (!MO.isDead()) 740 return false; 741 } 742 // all definitions of CPSR are dead 743 return true; 744 } 745 746 } // end namespace llvm 747 748 /// GetInstSize - Return the size of the specified MachineInstr. 749 /// 750 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 751 const MachineBasicBlock &MBB = *MI.getParent(); 752 const MachineFunction *MF = MBB.getParent(); 753 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 754 755 const MCInstrDesc &MCID = MI.getDesc(); 756 if (MCID.getSize()) 757 return MCID.getSize(); 758 759 switch (MI.getOpcode()) { 760 default: 761 // pseudo-instruction sizes are zero. 762 return 0; 763 case TargetOpcode::BUNDLE: 764 return getInstBundleLength(MI); 765 case ARM::MOVi16_ga_pcrel: 766 case ARM::MOVTi16_ga_pcrel: 767 case ARM::t2MOVi16_ga_pcrel: 768 case ARM::t2MOVTi16_ga_pcrel: 769 return 4; 770 case ARM::MOVi32imm: 771 case ARM::t2MOVi32imm: 772 return 8; 773 case ARM::CONSTPOOL_ENTRY: 774 case ARM::JUMPTABLE_INSTS: 775 case ARM::JUMPTABLE_ADDRS: 776 case ARM::JUMPTABLE_TBB: 777 case ARM::JUMPTABLE_TBH: 778 // If this machine instr is a constant pool entry, its size is recorded as 779 // operand #2. 780 return MI.getOperand(2).getImm(); 781 case ARM::Int_eh_sjlj_longjmp: 782 return 16; 783 case ARM::tInt_eh_sjlj_longjmp: 784 return 10; 785 case ARM::tInt_WIN_eh_sjlj_longjmp: 786 return 12; 787 case ARM::Int_eh_sjlj_setjmp: 788 case ARM::Int_eh_sjlj_setjmp_nofp: 789 return 20; 790 case ARM::tInt_eh_sjlj_setjmp: 791 case ARM::t2Int_eh_sjlj_setjmp: 792 case ARM::t2Int_eh_sjlj_setjmp_nofp: 793 return 12; 794 case ARM::SPACE: 795 return MI.getOperand(1).getImm(); 796 case ARM::INLINEASM: 797 case ARM::INLINEASM_BR: { 798 // If this machine instr is an inline asm, measure it. 799 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 800 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 801 Size = alignTo(Size, 4); 802 return Size; 803 } 804 case ARM::SpeculationBarrierISBDSBEndBB: 805 case ARM::t2SpeculationBarrierISBDSBEndBB: 806 // This gets lowered to 2 4-byte instructions. 807 return 8; 808 case ARM::SpeculationBarrierSBEndBB: 809 case ARM::t2SpeculationBarrierSBEndBB: 810 // This gets lowered to 1 4-byte instructions. 811 return 4; 812 } 813 } 814 815 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 816 unsigned Size = 0; 817 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 818 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 819 while (++I != E && I->isInsideBundle()) { 820 assert(!I->isBundle() && "No nested bundle!"); 821 Size += getInstSizeInBytes(*I); 822 } 823 return Size; 824 } 825 826 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 827 MachineBasicBlock::iterator I, 828 unsigned DestReg, bool KillSrc, 829 const ARMSubtarget &Subtarget) const { 830 unsigned Opc = Subtarget.isThumb() 831 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 832 : ARM::MRS; 833 834 MachineInstrBuilder MIB = 835 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 836 837 // There is only 1 A/R class MRS instruction, and it always refers to 838 // APSR. However, there are lots of other possibilities on M-class cores. 839 if (Subtarget.isMClass()) 840 MIB.addImm(0x800); 841 842 MIB.add(predOps(ARMCC::AL)) 843 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 844 } 845 846 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 847 MachineBasicBlock::iterator I, 848 unsigned SrcReg, bool KillSrc, 849 const ARMSubtarget &Subtarget) const { 850 unsigned Opc = Subtarget.isThumb() 851 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 852 : ARM::MSR; 853 854 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 855 856 if (Subtarget.isMClass()) 857 MIB.addImm(0x800); 858 else 859 MIB.addImm(8); 860 861 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 862 .add(predOps(ARMCC::AL)) 863 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 864 } 865 866 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 867 MIB.addImm(ARMVCC::None); 868 MIB.addReg(0); 869 } 870 871 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 872 Register DestReg) { 873 addUnpredicatedMveVpredNOp(MIB); 874 MIB.addReg(DestReg, RegState::Undef); 875 } 876 877 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 878 MIB.addImm(Cond); 879 MIB.addReg(ARM::VPR, RegState::Implicit); 880 } 881 882 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 883 unsigned Cond, unsigned Inactive) { 884 addPredicatedMveVpredNOp(MIB, Cond); 885 MIB.addReg(Inactive); 886 } 887 888 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 889 MachineBasicBlock::iterator I, 890 const DebugLoc &DL, MCRegister DestReg, 891 MCRegister SrcReg, bool KillSrc) const { 892 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 893 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 894 895 if (GPRDest && GPRSrc) { 896 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 897 .addReg(SrcReg, getKillRegState(KillSrc)) 898 .add(predOps(ARMCC::AL)) 899 .add(condCodeOp()); 900 return; 901 } 902 903 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 904 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 905 906 unsigned Opc = 0; 907 if (SPRDest && SPRSrc) 908 Opc = ARM::VMOVS; 909 else if (GPRDest && SPRSrc) 910 Opc = ARM::VMOVRS; 911 else if (SPRDest && GPRSrc) 912 Opc = ARM::VMOVSR; 913 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 914 Opc = ARM::VMOVD; 915 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 916 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 917 918 if (Opc) { 919 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 920 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 921 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 922 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 923 if (Opc == ARM::MVE_VORR) 924 addUnpredicatedMveVpredROp(MIB, DestReg); 925 else 926 MIB.add(predOps(ARMCC::AL)); 927 return; 928 } 929 930 // Handle register classes that require multiple instructions. 931 unsigned BeginIdx = 0; 932 unsigned SubRegs = 0; 933 int Spacing = 1; 934 935 // Use VORRq when possible. 936 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 937 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 938 BeginIdx = ARM::qsub_0; 939 SubRegs = 2; 940 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 941 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 942 BeginIdx = ARM::qsub_0; 943 SubRegs = 4; 944 // Fall back to VMOVD. 945 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 946 Opc = ARM::VMOVD; 947 BeginIdx = ARM::dsub_0; 948 SubRegs = 2; 949 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 950 Opc = ARM::VMOVD; 951 BeginIdx = ARM::dsub_0; 952 SubRegs = 3; 953 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 954 Opc = ARM::VMOVD; 955 BeginIdx = ARM::dsub_0; 956 SubRegs = 4; 957 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 958 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 959 BeginIdx = ARM::gsub_0; 960 SubRegs = 2; 961 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 962 Opc = ARM::VMOVD; 963 BeginIdx = ARM::dsub_0; 964 SubRegs = 2; 965 Spacing = 2; 966 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 967 Opc = ARM::VMOVD; 968 BeginIdx = ARM::dsub_0; 969 SubRegs = 3; 970 Spacing = 2; 971 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 972 Opc = ARM::VMOVD; 973 BeginIdx = ARM::dsub_0; 974 SubRegs = 4; 975 Spacing = 2; 976 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 977 !Subtarget.hasFP64()) { 978 Opc = ARM::VMOVS; 979 BeginIdx = ARM::ssub_0; 980 SubRegs = 2; 981 } else if (SrcReg == ARM::CPSR) { 982 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 983 return; 984 } else if (DestReg == ARM::CPSR) { 985 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 986 return; 987 } else if (DestReg == ARM::VPR) { 988 assert(ARM::GPRRegClass.contains(SrcReg)); 989 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 990 .addReg(SrcReg, getKillRegState(KillSrc)) 991 .add(predOps(ARMCC::AL)); 992 return; 993 } else if (SrcReg == ARM::VPR) { 994 assert(ARM::GPRRegClass.contains(DestReg)); 995 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 996 .addReg(SrcReg, getKillRegState(KillSrc)) 997 .add(predOps(ARMCC::AL)); 998 return; 999 } else if (DestReg == ARM::FPSCR_NZCV) { 1000 assert(ARM::GPRRegClass.contains(SrcReg)); 1001 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1002 .addReg(SrcReg, getKillRegState(KillSrc)) 1003 .add(predOps(ARMCC::AL)); 1004 return; 1005 } else if (SrcReg == ARM::FPSCR_NZCV) { 1006 assert(ARM::GPRRegClass.contains(DestReg)); 1007 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1008 .addReg(SrcReg, getKillRegState(KillSrc)) 1009 .add(predOps(ARMCC::AL)); 1010 return; 1011 } 1012 1013 assert(Opc && "Impossible reg-to-reg copy"); 1014 1015 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1016 MachineInstrBuilder Mov; 1017 1018 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1019 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1020 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1021 Spacing = -Spacing; 1022 } 1023 #ifndef NDEBUG 1024 SmallSet<unsigned, 4> DstRegs; 1025 #endif 1026 for (unsigned i = 0; i != SubRegs; ++i) { 1027 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1028 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1029 assert(Dst && Src && "Bad sub-register"); 1030 #ifndef NDEBUG 1031 assert(!DstRegs.count(Src) && "destructive vector copy"); 1032 DstRegs.insert(Dst); 1033 #endif 1034 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1035 // VORR (NEON or MVE) takes two source operands. 1036 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1037 Mov.addReg(Src); 1038 } 1039 // MVE VORR takes predicate operands in place of an ordinary condition. 1040 if (Opc == ARM::MVE_VORR) 1041 addUnpredicatedMveVpredROp(Mov, Dst); 1042 else 1043 Mov = Mov.add(predOps(ARMCC::AL)); 1044 // MOVr can set CC. 1045 if (Opc == ARM::MOVr) 1046 Mov = Mov.add(condCodeOp()); 1047 } 1048 // Add implicit super-register defs and kills to the last instruction. 1049 Mov->addRegisterDefined(DestReg, TRI); 1050 if (KillSrc) 1051 Mov->addRegisterKilled(SrcReg, TRI); 1052 } 1053 1054 Optional<DestSourcePair> 1055 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1056 // VMOVRRD is also a copy instruction but it requires 1057 // special way of handling. It is more complex copy version 1058 // and since that we are not considering it. For recognition 1059 // of such instruction isExtractSubregLike MI interface fuction 1060 // could be used. 1061 // VORRq is considered as a move only if two inputs are 1062 // the same register. 1063 if (!MI.isMoveReg() || 1064 (MI.getOpcode() == ARM::VORRq && 1065 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1066 return None; 1067 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1068 } 1069 1070 Optional<ParamLoadedValue> 1071 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1072 Register Reg) const { 1073 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1074 Register DstReg = DstSrcPair->Destination->getReg(); 1075 1076 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1077 // than the copy registers. Consider for example: 1078 // 1079 // s16 = VMOVS s0 1080 // s17 = VMOVS s1 1081 // call @callee(d0) 1082 // 1083 // We'd like to describe the call site value of d0 as d8, but this requires 1084 // gathering and merging the descriptions for the two VMOVS instructions. 1085 // 1086 // We also don't handle the reverse situation, where the forwarding reg is 1087 // narrower than the copy destination: 1088 // 1089 // d8 = VMOVD d0 1090 // call @callee(s1) 1091 // 1092 // We need to produce a fragment description (the call site value of s1 is 1093 // /not/ just d8). 1094 if (DstReg != Reg) 1095 return None; 1096 } 1097 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1098 } 1099 1100 const MachineInstrBuilder & 1101 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1102 unsigned SubIdx, unsigned State, 1103 const TargetRegisterInfo *TRI) const { 1104 if (!SubIdx) 1105 return MIB.addReg(Reg, State); 1106 1107 if (Register::isPhysicalRegister(Reg)) 1108 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1109 return MIB.addReg(Reg, State, SubIdx); 1110 } 1111 1112 void ARMBaseInstrInfo:: 1113 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1114 Register SrcReg, bool isKill, int FI, 1115 const TargetRegisterClass *RC, 1116 const TargetRegisterInfo *TRI) const { 1117 MachineFunction &MF = *MBB.getParent(); 1118 MachineFrameInfo &MFI = MF.getFrameInfo(); 1119 Align Alignment = MFI.getObjectAlign(FI); 1120 1121 MachineMemOperand *MMO = MF.getMachineMemOperand( 1122 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1123 MFI.getObjectSize(FI), Alignment); 1124 1125 switch (TRI->getSpillSize(*RC)) { 1126 case 2: 1127 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1128 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1129 .addReg(SrcReg, getKillRegState(isKill)) 1130 .addFrameIndex(FI) 1131 .addImm(0) 1132 .addMemOperand(MMO) 1133 .add(predOps(ARMCC::AL)); 1134 } else 1135 llvm_unreachable("Unknown reg class!"); 1136 break; 1137 case 4: 1138 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1139 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1140 .addReg(SrcReg, getKillRegState(isKill)) 1141 .addFrameIndex(FI) 1142 .addImm(0) 1143 .addMemOperand(MMO) 1144 .add(predOps(ARMCC::AL)); 1145 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1146 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1147 .addReg(SrcReg, getKillRegState(isKill)) 1148 .addFrameIndex(FI) 1149 .addImm(0) 1150 .addMemOperand(MMO) 1151 .add(predOps(ARMCC::AL)); 1152 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1153 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1154 .addReg(SrcReg, getKillRegState(isKill)) 1155 .addFrameIndex(FI) 1156 .addImm(0) 1157 .addMemOperand(MMO) 1158 .add(predOps(ARMCC::AL)); 1159 } else 1160 llvm_unreachable("Unknown reg class!"); 1161 break; 1162 case 8: 1163 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1164 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1165 .addReg(SrcReg, getKillRegState(isKill)) 1166 .addFrameIndex(FI) 1167 .addImm(0) 1168 .addMemOperand(MMO) 1169 .add(predOps(ARMCC::AL)); 1170 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1171 if (Subtarget.hasV5TEOps()) { 1172 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1173 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1174 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1175 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1176 .add(predOps(ARMCC::AL)); 1177 } else { 1178 // Fallback to STM instruction, which has existed since the dawn of 1179 // time. 1180 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1181 .addFrameIndex(FI) 1182 .addMemOperand(MMO) 1183 .add(predOps(ARMCC::AL)); 1184 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1185 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1186 } 1187 } else 1188 llvm_unreachable("Unknown reg class!"); 1189 break; 1190 case 16: 1191 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1192 // Use aligned spills if the stack can be realigned. 1193 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1194 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1195 .addFrameIndex(FI) 1196 .addImm(16) 1197 .addReg(SrcReg, getKillRegState(isKill)) 1198 .addMemOperand(MMO) 1199 .add(predOps(ARMCC::AL)); 1200 } else { 1201 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1202 .addReg(SrcReg, getKillRegState(isKill)) 1203 .addFrameIndex(FI) 1204 .addMemOperand(MMO) 1205 .add(predOps(ARMCC::AL)); 1206 } 1207 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1208 Subtarget.hasMVEIntegerOps()) { 1209 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1210 MIB.addReg(SrcReg, getKillRegState(isKill)) 1211 .addFrameIndex(FI) 1212 .addImm(0) 1213 .addMemOperand(MMO); 1214 addUnpredicatedMveVpredNOp(MIB); 1215 } else 1216 llvm_unreachable("Unknown reg class!"); 1217 break; 1218 case 24: 1219 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1220 // Use aligned spills if the stack can be realigned. 1221 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1222 Subtarget.hasNEON()) { 1223 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1224 .addFrameIndex(FI) 1225 .addImm(16) 1226 .addReg(SrcReg, getKillRegState(isKill)) 1227 .addMemOperand(MMO) 1228 .add(predOps(ARMCC::AL)); 1229 } else { 1230 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1231 get(ARM::VSTMDIA)) 1232 .addFrameIndex(FI) 1233 .add(predOps(ARMCC::AL)) 1234 .addMemOperand(MMO); 1235 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1236 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1237 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1238 } 1239 } else 1240 llvm_unreachable("Unknown reg class!"); 1241 break; 1242 case 32: 1243 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1244 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1245 Subtarget.hasNEON()) { 1246 // FIXME: It's possible to only store part of the QQ register if the 1247 // spilled def has a sub-register index. 1248 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1249 .addFrameIndex(FI) 1250 .addImm(16) 1251 .addReg(SrcReg, getKillRegState(isKill)) 1252 .addMemOperand(MMO) 1253 .add(predOps(ARMCC::AL)); 1254 } else { 1255 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1256 get(ARM::VSTMDIA)) 1257 .addFrameIndex(FI) 1258 .add(predOps(ARMCC::AL)) 1259 .addMemOperand(MMO); 1260 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1261 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1262 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1263 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1264 } 1265 } else 1266 llvm_unreachable("Unknown reg class!"); 1267 break; 1268 case 64: 1269 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1270 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1271 .addFrameIndex(FI) 1272 .add(predOps(ARMCC::AL)) 1273 .addMemOperand(MMO); 1274 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1275 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1276 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1277 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1278 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1279 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1280 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1281 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1282 } else 1283 llvm_unreachable("Unknown reg class!"); 1284 break; 1285 default: 1286 llvm_unreachable("Unknown reg class!"); 1287 } 1288 } 1289 1290 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1291 int &FrameIndex) const { 1292 switch (MI.getOpcode()) { 1293 default: break; 1294 case ARM::STRrs: 1295 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1296 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1297 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1298 MI.getOperand(3).getImm() == 0) { 1299 FrameIndex = MI.getOperand(1).getIndex(); 1300 return MI.getOperand(0).getReg(); 1301 } 1302 break; 1303 case ARM::STRi12: 1304 case ARM::t2STRi12: 1305 case ARM::tSTRspi: 1306 case ARM::VSTRD: 1307 case ARM::VSTRS: 1308 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1309 MI.getOperand(2).getImm() == 0) { 1310 FrameIndex = MI.getOperand(1).getIndex(); 1311 return MI.getOperand(0).getReg(); 1312 } 1313 break; 1314 case ARM::VSTR_P0_off: 1315 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1316 MI.getOperand(1).getImm() == 0) { 1317 FrameIndex = MI.getOperand(0).getIndex(); 1318 return ARM::P0; 1319 } 1320 break; 1321 case ARM::VST1q64: 1322 case ARM::VST1d64TPseudo: 1323 case ARM::VST1d64QPseudo: 1324 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1325 FrameIndex = MI.getOperand(0).getIndex(); 1326 return MI.getOperand(2).getReg(); 1327 } 1328 break; 1329 case ARM::VSTMQIA: 1330 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1331 FrameIndex = MI.getOperand(1).getIndex(); 1332 return MI.getOperand(0).getReg(); 1333 } 1334 break; 1335 } 1336 1337 return 0; 1338 } 1339 1340 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1341 int &FrameIndex) const { 1342 SmallVector<const MachineMemOperand *, 1> Accesses; 1343 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1344 Accesses.size() == 1) { 1345 FrameIndex = 1346 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1347 ->getFrameIndex(); 1348 return true; 1349 } 1350 return false; 1351 } 1352 1353 void ARMBaseInstrInfo:: 1354 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1355 Register DestReg, int FI, 1356 const TargetRegisterClass *RC, 1357 const TargetRegisterInfo *TRI) const { 1358 DebugLoc DL; 1359 if (I != MBB.end()) DL = I->getDebugLoc(); 1360 MachineFunction &MF = *MBB.getParent(); 1361 MachineFrameInfo &MFI = MF.getFrameInfo(); 1362 const Align Alignment = MFI.getObjectAlign(FI); 1363 MachineMemOperand *MMO = MF.getMachineMemOperand( 1364 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1365 MFI.getObjectSize(FI), Alignment); 1366 1367 switch (TRI->getSpillSize(*RC)) { 1368 case 2: 1369 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1370 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1371 .addFrameIndex(FI) 1372 .addImm(0) 1373 .addMemOperand(MMO) 1374 .add(predOps(ARMCC::AL)); 1375 } else 1376 llvm_unreachable("Unknown reg class!"); 1377 break; 1378 case 4: 1379 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1380 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1381 .addFrameIndex(FI) 1382 .addImm(0) 1383 .addMemOperand(MMO) 1384 .add(predOps(ARMCC::AL)); 1385 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1386 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1387 .addFrameIndex(FI) 1388 .addImm(0) 1389 .addMemOperand(MMO) 1390 .add(predOps(ARMCC::AL)); 1391 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1392 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1393 .addFrameIndex(FI) 1394 .addImm(0) 1395 .addMemOperand(MMO) 1396 .add(predOps(ARMCC::AL)); 1397 } else 1398 llvm_unreachable("Unknown reg class!"); 1399 break; 1400 case 8: 1401 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1402 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1403 .addFrameIndex(FI) 1404 .addImm(0) 1405 .addMemOperand(MMO) 1406 .add(predOps(ARMCC::AL)); 1407 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1408 MachineInstrBuilder MIB; 1409 1410 if (Subtarget.hasV5TEOps()) { 1411 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1412 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1413 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1414 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1415 .add(predOps(ARMCC::AL)); 1416 } else { 1417 // Fallback to LDM instruction, which has existed since the dawn of 1418 // time. 1419 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1420 .addFrameIndex(FI) 1421 .addMemOperand(MMO) 1422 .add(predOps(ARMCC::AL)); 1423 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1424 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1425 } 1426 1427 if (Register::isPhysicalRegister(DestReg)) 1428 MIB.addReg(DestReg, RegState::ImplicitDefine); 1429 } else 1430 llvm_unreachable("Unknown reg class!"); 1431 break; 1432 case 16: 1433 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1434 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1435 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1436 .addFrameIndex(FI) 1437 .addImm(16) 1438 .addMemOperand(MMO) 1439 .add(predOps(ARMCC::AL)); 1440 } else { 1441 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1442 .addFrameIndex(FI) 1443 .addMemOperand(MMO) 1444 .add(predOps(ARMCC::AL)); 1445 } 1446 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1447 Subtarget.hasMVEIntegerOps()) { 1448 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1449 MIB.addFrameIndex(FI) 1450 .addImm(0) 1451 .addMemOperand(MMO); 1452 addUnpredicatedMveVpredNOp(MIB); 1453 } else 1454 llvm_unreachable("Unknown reg class!"); 1455 break; 1456 case 24: 1457 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1458 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1459 Subtarget.hasNEON()) { 1460 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1461 .addFrameIndex(FI) 1462 .addImm(16) 1463 .addMemOperand(MMO) 1464 .add(predOps(ARMCC::AL)); 1465 } else { 1466 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1467 .addFrameIndex(FI) 1468 .addMemOperand(MMO) 1469 .add(predOps(ARMCC::AL)); 1470 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1471 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1472 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1473 if (Register::isPhysicalRegister(DestReg)) 1474 MIB.addReg(DestReg, RegState::ImplicitDefine); 1475 } 1476 } else 1477 llvm_unreachable("Unknown reg class!"); 1478 break; 1479 case 32: 1480 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1481 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1482 Subtarget.hasNEON()) { 1483 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1484 .addFrameIndex(FI) 1485 .addImm(16) 1486 .addMemOperand(MMO) 1487 .add(predOps(ARMCC::AL)); 1488 } else { 1489 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1490 .addFrameIndex(FI) 1491 .add(predOps(ARMCC::AL)) 1492 .addMemOperand(MMO); 1493 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1494 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1495 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1496 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1497 if (Register::isPhysicalRegister(DestReg)) 1498 MIB.addReg(DestReg, RegState::ImplicitDefine); 1499 } 1500 } else 1501 llvm_unreachable("Unknown reg class!"); 1502 break; 1503 case 64: 1504 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1505 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1506 .addFrameIndex(FI) 1507 .add(predOps(ARMCC::AL)) 1508 .addMemOperand(MMO); 1509 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1510 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1511 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1512 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1513 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1514 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1515 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1516 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1517 if (Register::isPhysicalRegister(DestReg)) 1518 MIB.addReg(DestReg, RegState::ImplicitDefine); 1519 } else 1520 llvm_unreachable("Unknown reg class!"); 1521 break; 1522 default: 1523 llvm_unreachable("Unknown regclass!"); 1524 } 1525 } 1526 1527 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1528 int &FrameIndex) const { 1529 switch (MI.getOpcode()) { 1530 default: break; 1531 case ARM::LDRrs: 1532 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1533 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1534 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1535 MI.getOperand(3).getImm() == 0) { 1536 FrameIndex = MI.getOperand(1).getIndex(); 1537 return MI.getOperand(0).getReg(); 1538 } 1539 break; 1540 case ARM::LDRi12: 1541 case ARM::t2LDRi12: 1542 case ARM::tLDRspi: 1543 case ARM::VLDRD: 1544 case ARM::VLDRS: 1545 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1546 MI.getOperand(2).getImm() == 0) { 1547 FrameIndex = MI.getOperand(1).getIndex(); 1548 return MI.getOperand(0).getReg(); 1549 } 1550 break; 1551 case ARM::VLDR_P0_off: 1552 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1553 MI.getOperand(1).getImm() == 0) { 1554 FrameIndex = MI.getOperand(0).getIndex(); 1555 return ARM::P0; 1556 } 1557 break; 1558 case ARM::VLD1q64: 1559 case ARM::VLD1d8TPseudo: 1560 case ARM::VLD1d16TPseudo: 1561 case ARM::VLD1d32TPseudo: 1562 case ARM::VLD1d64TPseudo: 1563 case ARM::VLD1d8QPseudo: 1564 case ARM::VLD1d16QPseudo: 1565 case ARM::VLD1d32QPseudo: 1566 case ARM::VLD1d64QPseudo: 1567 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1568 FrameIndex = MI.getOperand(1).getIndex(); 1569 return MI.getOperand(0).getReg(); 1570 } 1571 break; 1572 case ARM::VLDMQIA: 1573 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1574 FrameIndex = MI.getOperand(1).getIndex(); 1575 return MI.getOperand(0).getReg(); 1576 } 1577 break; 1578 } 1579 1580 return 0; 1581 } 1582 1583 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1584 int &FrameIndex) const { 1585 SmallVector<const MachineMemOperand *, 1> Accesses; 1586 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1587 Accesses.size() == 1) { 1588 FrameIndex = 1589 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1590 ->getFrameIndex(); 1591 return true; 1592 } 1593 return false; 1594 } 1595 1596 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1597 /// depending on whether the result is used. 1598 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1599 bool isThumb1 = Subtarget.isThumb1Only(); 1600 bool isThumb2 = Subtarget.isThumb2(); 1601 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1602 1603 DebugLoc dl = MI->getDebugLoc(); 1604 MachineBasicBlock *BB = MI->getParent(); 1605 1606 MachineInstrBuilder LDM, STM; 1607 if (isThumb1 || !MI->getOperand(1).isDead()) { 1608 MachineOperand LDWb(MI->getOperand(1)); 1609 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1610 : isThumb1 ? ARM::tLDMIA_UPD 1611 : ARM::LDMIA_UPD)) 1612 .add(LDWb); 1613 } else { 1614 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1615 } 1616 1617 if (isThumb1 || !MI->getOperand(0).isDead()) { 1618 MachineOperand STWb(MI->getOperand(0)); 1619 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1620 : isThumb1 ? ARM::tSTMIA_UPD 1621 : ARM::STMIA_UPD)) 1622 .add(STWb); 1623 } else { 1624 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1625 } 1626 1627 MachineOperand LDBase(MI->getOperand(3)); 1628 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1629 1630 MachineOperand STBase(MI->getOperand(2)); 1631 STM.add(STBase).add(predOps(ARMCC::AL)); 1632 1633 // Sort the scratch registers into ascending order. 1634 const TargetRegisterInfo &TRI = getRegisterInfo(); 1635 SmallVector<unsigned, 6> ScratchRegs; 1636 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1637 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1638 llvm::sort(ScratchRegs, 1639 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1640 return TRI.getEncodingValue(Reg1) < 1641 TRI.getEncodingValue(Reg2); 1642 }); 1643 1644 for (const auto &Reg : ScratchRegs) { 1645 LDM.addReg(Reg, RegState::Define); 1646 STM.addReg(Reg, RegState::Kill); 1647 } 1648 1649 BB->erase(MI); 1650 } 1651 1652 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1653 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1654 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1655 "LOAD_STACK_GUARD currently supported only for MachO."); 1656 expandLoadStackGuard(MI); 1657 MI.getParent()->erase(MI); 1658 return true; 1659 } 1660 1661 if (MI.getOpcode() == ARM::MEMCPY) { 1662 expandMEMCPY(MI); 1663 return true; 1664 } 1665 1666 // This hook gets to expand COPY instructions before they become 1667 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1668 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1669 // changed into a VORR that can go down the NEON pipeline. 1670 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1671 return false; 1672 1673 // Look for a copy between even S-registers. That is where we keep floats 1674 // when using NEON v2f32 instructions for f32 arithmetic. 1675 Register DstRegS = MI.getOperand(0).getReg(); 1676 Register SrcRegS = MI.getOperand(1).getReg(); 1677 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1678 return false; 1679 1680 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1681 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1682 &ARM::DPRRegClass); 1683 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1684 &ARM::DPRRegClass); 1685 if (!DstRegD || !SrcRegD) 1686 return false; 1687 1688 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1689 // legal if the COPY already defines the full DstRegD, and it isn't a 1690 // sub-register insertion. 1691 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1692 return false; 1693 1694 // A dead copy shouldn't show up here, but reject it just in case. 1695 if (MI.getOperand(0).isDead()) 1696 return false; 1697 1698 // All clear, widen the COPY. 1699 LLVM_DEBUG(dbgs() << "widening: " << MI); 1700 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1701 1702 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1703 // or some other super-register. 1704 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1705 if (ImpDefIdx != -1) 1706 MI.RemoveOperand(ImpDefIdx); 1707 1708 // Change the opcode and operands. 1709 MI.setDesc(get(ARM::VMOVD)); 1710 MI.getOperand(0).setReg(DstRegD); 1711 MI.getOperand(1).setReg(SrcRegD); 1712 MIB.add(predOps(ARMCC::AL)); 1713 1714 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1715 // register scavenger and machine verifier, so we need to indicate that we 1716 // are reading an undefined value from SrcRegD, but a proper value from 1717 // SrcRegS. 1718 MI.getOperand(1).setIsUndef(); 1719 MIB.addReg(SrcRegS, RegState::Implicit); 1720 1721 // SrcRegD may actually contain an unrelated value in the ssub_1 1722 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1723 if (MI.getOperand(1).isKill()) { 1724 MI.getOperand(1).setIsKill(false); 1725 MI.addRegisterKilled(SrcRegS, TRI, true); 1726 } 1727 1728 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1729 return true; 1730 } 1731 1732 /// Create a copy of a const pool value. Update CPI to the new index and return 1733 /// the label UID. 1734 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1735 MachineConstantPool *MCP = MF.getConstantPool(); 1736 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1737 1738 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1739 assert(MCPE.isMachineConstantPoolEntry() && 1740 "Expecting a machine constantpool entry!"); 1741 ARMConstantPoolValue *ACPV = 1742 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1743 1744 unsigned PCLabelId = AFI->createPICLabelUId(); 1745 ARMConstantPoolValue *NewCPV = nullptr; 1746 1747 // FIXME: The below assumes PIC relocation model and that the function 1748 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1749 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1750 // instructions, so that's probably OK, but is PIC always correct when 1751 // we get here? 1752 if (ACPV->isGlobalValue()) 1753 NewCPV = ARMConstantPoolConstant::Create( 1754 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1755 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1756 else if (ACPV->isExtSymbol()) 1757 NewCPV = ARMConstantPoolSymbol:: 1758 Create(MF.getFunction().getContext(), 1759 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1760 else if (ACPV->isBlockAddress()) 1761 NewCPV = ARMConstantPoolConstant:: 1762 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1763 ARMCP::CPBlockAddress, 4); 1764 else if (ACPV->isLSDA()) 1765 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1766 ARMCP::CPLSDA, 4); 1767 else if (ACPV->isMachineBasicBlock()) 1768 NewCPV = ARMConstantPoolMBB:: 1769 Create(MF.getFunction().getContext(), 1770 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1771 else 1772 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1773 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1774 return PCLabelId; 1775 } 1776 1777 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1778 MachineBasicBlock::iterator I, 1779 Register DestReg, unsigned SubIdx, 1780 const MachineInstr &Orig, 1781 const TargetRegisterInfo &TRI) const { 1782 unsigned Opcode = Orig.getOpcode(); 1783 switch (Opcode) { 1784 default: { 1785 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1786 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1787 MBB.insert(I, MI); 1788 break; 1789 } 1790 case ARM::tLDRpci_pic: 1791 case ARM::t2LDRpci_pic: { 1792 MachineFunction &MF = *MBB.getParent(); 1793 unsigned CPI = Orig.getOperand(1).getIndex(); 1794 unsigned PCLabelId = duplicateCPV(MF, CPI); 1795 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1796 .addConstantPoolIndex(CPI) 1797 .addImm(PCLabelId) 1798 .cloneMemRefs(Orig); 1799 break; 1800 } 1801 } 1802 } 1803 1804 MachineInstr & 1805 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1806 MachineBasicBlock::iterator InsertBefore, 1807 const MachineInstr &Orig) const { 1808 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1809 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1810 for (;;) { 1811 switch (I->getOpcode()) { 1812 case ARM::tLDRpci_pic: 1813 case ARM::t2LDRpci_pic: { 1814 MachineFunction &MF = *MBB.getParent(); 1815 unsigned CPI = I->getOperand(1).getIndex(); 1816 unsigned PCLabelId = duplicateCPV(MF, CPI); 1817 I->getOperand(1).setIndex(CPI); 1818 I->getOperand(2).setImm(PCLabelId); 1819 break; 1820 } 1821 } 1822 if (!I->isBundledWithSucc()) 1823 break; 1824 ++I; 1825 } 1826 return Cloned; 1827 } 1828 1829 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1830 const MachineInstr &MI1, 1831 const MachineRegisterInfo *MRI) const { 1832 unsigned Opcode = MI0.getOpcode(); 1833 if (Opcode == ARM::t2LDRpci || 1834 Opcode == ARM::t2LDRpci_pic || 1835 Opcode == ARM::tLDRpci || 1836 Opcode == ARM::tLDRpci_pic || 1837 Opcode == ARM::LDRLIT_ga_pcrel || 1838 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1839 Opcode == ARM::tLDRLIT_ga_pcrel || 1840 Opcode == ARM::MOV_ga_pcrel || 1841 Opcode == ARM::MOV_ga_pcrel_ldr || 1842 Opcode == ARM::t2MOV_ga_pcrel) { 1843 if (MI1.getOpcode() != Opcode) 1844 return false; 1845 if (MI0.getNumOperands() != MI1.getNumOperands()) 1846 return false; 1847 1848 const MachineOperand &MO0 = MI0.getOperand(1); 1849 const MachineOperand &MO1 = MI1.getOperand(1); 1850 if (MO0.getOffset() != MO1.getOffset()) 1851 return false; 1852 1853 if (Opcode == ARM::LDRLIT_ga_pcrel || 1854 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1855 Opcode == ARM::tLDRLIT_ga_pcrel || 1856 Opcode == ARM::MOV_ga_pcrel || 1857 Opcode == ARM::MOV_ga_pcrel_ldr || 1858 Opcode == ARM::t2MOV_ga_pcrel) 1859 // Ignore the PC labels. 1860 return MO0.getGlobal() == MO1.getGlobal(); 1861 1862 const MachineFunction *MF = MI0.getParent()->getParent(); 1863 const MachineConstantPool *MCP = MF->getConstantPool(); 1864 int CPI0 = MO0.getIndex(); 1865 int CPI1 = MO1.getIndex(); 1866 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1867 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1868 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1869 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1870 if (isARMCP0 && isARMCP1) { 1871 ARMConstantPoolValue *ACPV0 = 1872 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1873 ARMConstantPoolValue *ACPV1 = 1874 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1875 return ACPV0->hasSameValue(ACPV1); 1876 } else if (!isARMCP0 && !isARMCP1) { 1877 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1878 } 1879 return false; 1880 } else if (Opcode == ARM::PICLDR) { 1881 if (MI1.getOpcode() != Opcode) 1882 return false; 1883 if (MI0.getNumOperands() != MI1.getNumOperands()) 1884 return false; 1885 1886 Register Addr0 = MI0.getOperand(1).getReg(); 1887 Register Addr1 = MI1.getOperand(1).getReg(); 1888 if (Addr0 != Addr1) { 1889 if (!MRI || !Register::isVirtualRegister(Addr0) || 1890 !Register::isVirtualRegister(Addr1)) 1891 return false; 1892 1893 // This assumes SSA form. 1894 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1895 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1896 // Check if the loaded value, e.g. a constantpool of a global address, are 1897 // the same. 1898 if (!produceSameValue(*Def0, *Def1, MRI)) 1899 return false; 1900 } 1901 1902 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1903 // %12 = PICLDR %11, 0, 14, %noreg 1904 const MachineOperand &MO0 = MI0.getOperand(i); 1905 const MachineOperand &MO1 = MI1.getOperand(i); 1906 if (!MO0.isIdenticalTo(MO1)) 1907 return false; 1908 } 1909 return true; 1910 } 1911 1912 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1913 } 1914 1915 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1916 /// determine if two loads are loading from the same base address. It should 1917 /// only return true if the base pointers are the same and the only differences 1918 /// between the two addresses is the offset. It also returns the offsets by 1919 /// reference. 1920 /// 1921 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1922 /// is permanently disabled. 1923 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1924 int64_t &Offset1, 1925 int64_t &Offset2) const { 1926 // Don't worry about Thumb: just ARM and Thumb2. 1927 if (Subtarget.isThumb1Only()) return false; 1928 1929 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1930 return false; 1931 1932 switch (Load1->getMachineOpcode()) { 1933 default: 1934 return false; 1935 case ARM::LDRi12: 1936 case ARM::LDRBi12: 1937 case ARM::LDRD: 1938 case ARM::LDRH: 1939 case ARM::LDRSB: 1940 case ARM::LDRSH: 1941 case ARM::VLDRD: 1942 case ARM::VLDRS: 1943 case ARM::t2LDRi8: 1944 case ARM::t2LDRBi8: 1945 case ARM::t2LDRDi8: 1946 case ARM::t2LDRSHi8: 1947 case ARM::t2LDRi12: 1948 case ARM::t2LDRBi12: 1949 case ARM::t2LDRSHi12: 1950 break; 1951 } 1952 1953 switch (Load2->getMachineOpcode()) { 1954 default: 1955 return false; 1956 case ARM::LDRi12: 1957 case ARM::LDRBi12: 1958 case ARM::LDRD: 1959 case ARM::LDRH: 1960 case ARM::LDRSB: 1961 case ARM::LDRSH: 1962 case ARM::VLDRD: 1963 case ARM::VLDRS: 1964 case ARM::t2LDRi8: 1965 case ARM::t2LDRBi8: 1966 case ARM::t2LDRSHi8: 1967 case ARM::t2LDRi12: 1968 case ARM::t2LDRBi12: 1969 case ARM::t2LDRSHi12: 1970 break; 1971 } 1972 1973 // Check if base addresses and chain operands match. 1974 if (Load1->getOperand(0) != Load2->getOperand(0) || 1975 Load1->getOperand(4) != Load2->getOperand(4)) 1976 return false; 1977 1978 // Index should be Reg0. 1979 if (Load1->getOperand(3) != Load2->getOperand(3)) 1980 return false; 1981 1982 // Determine the offsets. 1983 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1984 isa<ConstantSDNode>(Load2->getOperand(1))) { 1985 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1986 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1987 return true; 1988 } 1989 1990 return false; 1991 } 1992 1993 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1994 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1995 /// be scheduled togther. On some targets if two loads are loading from 1996 /// addresses in the same cache line, it's better if they are scheduled 1997 /// together. This function takes two integers that represent the load offsets 1998 /// from the common base address. It returns true if it decides it's desirable 1999 /// to schedule the two loads together. "NumLoads" is the number of loads that 2000 /// have already been scheduled after Load1. 2001 /// 2002 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2003 /// is permanently disabled. 2004 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2005 int64_t Offset1, int64_t Offset2, 2006 unsigned NumLoads) const { 2007 // Don't worry about Thumb: just ARM and Thumb2. 2008 if (Subtarget.isThumb1Only()) return false; 2009 2010 assert(Offset2 > Offset1); 2011 2012 if ((Offset2 - Offset1) / 8 > 64) 2013 return false; 2014 2015 // Check if the machine opcodes are different. If they are different 2016 // then we consider them to not be of the same base address, 2017 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2018 // In this case, they are considered to be the same because they are different 2019 // encoding forms of the same basic instruction. 2020 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2021 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2022 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2023 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2024 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2025 return false; // FIXME: overly conservative? 2026 2027 // Four loads in a row should be sufficient. 2028 if (NumLoads >= 3) 2029 return false; 2030 2031 return true; 2032 } 2033 2034 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2035 const MachineBasicBlock *MBB, 2036 const MachineFunction &MF) const { 2037 // Debug info is never a scheduling boundary. It's necessary to be explicit 2038 // due to the special treatment of IT instructions below, otherwise a 2039 // dbg_value followed by an IT will result in the IT instruction being 2040 // considered a scheduling hazard, which is wrong. It should be the actual 2041 // instruction preceding the dbg_value instruction(s), just like it is 2042 // when debug info is not present. 2043 if (MI.isDebugInstr()) 2044 return false; 2045 2046 // Terminators and labels can't be scheduled around. 2047 if (MI.isTerminator() || MI.isPosition()) 2048 return true; 2049 2050 // INLINEASM_BR can jump to another block 2051 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2052 return true; 2053 2054 // Treat the start of the IT block as a scheduling boundary, but schedule 2055 // t2IT along with all instructions following it. 2056 // FIXME: This is a big hammer. But the alternative is to add all potential 2057 // true and anti dependencies to IT block instructions as implicit operands 2058 // to the t2IT instruction. The added compile time and complexity does not 2059 // seem worth it. 2060 MachineBasicBlock::const_iterator I = MI; 2061 // Make sure to skip any debug instructions 2062 while (++I != MBB->end() && I->isDebugInstr()) 2063 ; 2064 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2065 return true; 2066 2067 // Don't attempt to schedule around any instruction that defines 2068 // a stack-oriented pointer, as it's unlikely to be profitable. This 2069 // saves compile time, because it doesn't require every single 2070 // stack slot reference to depend on the instruction that does the 2071 // modification. 2072 // Calls don't actually change the stack pointer, even if they have imp-defs. 2073 // No ARM calling conventions change the stack pointer. (X86 calling 2074 // conventions sometimes do). 2075 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 2076 return true; 2077 2078 return false; 2079 } 2080 2081 bool ARMBaseInstrInfo:: 2082 isProfitableToIfCvt(MachineBasicBlock &MBB, 2083 unsigned NumCycles, unsigned ExtraPredCycles, 2084 BranchProbability Probability) const { 2085 if (!NumCycles) 2086 return false; 2087 2088 // If we are optimizing for size, see if the branch in the predecessor can be 2089 // lowered to cbn?z by the constant island lowering pass, and return false if 2090 // so. This results in a shorter instruction sequence. 2091 if (MBB.getParent()->getFunction().hasOptSize()) { 2092 MachineBasicBlock *Pred = *MBB.pred_begin(); 2093 if (!Pred->empty()) { 2094 MachineInstr *LastMI = &*Pred->rbegin(); 2095 if (LastMI->getOpcode() == ARM::t2Bcc) { 2096 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2097 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2098 if (CmpMI) 2099 return false; 2100 } 2101 } 2102 } 2103 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2104 MBB, 0, 0, Probability); 2105 } 2106 2107 bool ARMBaseInstrInfo:: 2108 isProfitableToIfCvt(MachineBasicBlock &TBB, 2109 unsigned TCycles, unsigned TExtra, 2110 MachineBasicBlock &FBB, 2111 unsigned FCycles, unsigned FExtra, 2112 BranchProbability Probability) const { 2113 if (!TCycles) 2114 return false; 2115 2116 // In thumb code we often end up trading one branch for a IT block, and 2117 // if we are cloning the instruction can increase code size. Prevent 2118 // blocks with multiple predecesors from being ifcvted to prevent this 2119 // cloning. 2120 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2121 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2122 return false; 2123 } 2124 2125 // Attempt to estimate the relative costs of predication versus branching. 2126 // Here we scale up each component of UnpredCost to avoid precision issue when 2127 // scaling TCycles/FCycles by Probability. 2128 const unsigned ScalingUpFactor = 1024; 2129 2130 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2131 unsigned UnpredCost; 2132 if (!Subtarget.hasBranchPredictor()) { 2133 // When we don't have a branch predictor it's always cheaper to not take a 2134 // branch than take it, so we have to take that into account. 2135 unsigned NotTakenBranchCost = 1; 2136 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2137 unsigned TUnpredCycles, FUnpredCycles; 2138 if (!FCycles) { 2139 // Triangle: TBB is the fallthrough 2140 TUnpredCycles = TCycles + NotTakenBranchCost; 2141 FUnpredCycles = TakenBranchCost; 2142 } else { 2143 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2144 TUnpredCycles = TCycles + TakenBranchCost; 2145 FUnpredCycles = FCycles + NotTakenBranchCost; 2146 // The branch at the end of FBB will disappear when it's predicated, so 2147 // discount it from PredCost. 2148 PredCost -= 1 * ScalingUpFactor; 2149 } 2150 // The total cost is the cost of each path scaled by their probabilites 2151 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2152 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2153 UnpredCost = TUnpredCost + FUnpredCost; 2154 // When predicating assume that the first IT can be folded away but later 2155 // ones cost one cycle each 2156 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2157 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2158 } 2159 } else { 2160 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2161 unsigned FUnpredCost = 2162 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2163 UnpredCost = TUnpredCost + FUnpredCost; 2164 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2165 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2166 } 2167 2168 return PredCost <= UnpredCost; 2169 } 2170 2171 unsigned 2172 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2173 unsigned NumInsts) const { 2174 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2175 // ARM has a condition code field in every predicable instruction, using it 2176 // doesn't change code size. 2177 if (!Subtarget.isThumb2()) 2178 return 0; 2179 2180 // It's possible that the size of the IT is restricted to a single block. 2181 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2182 return divideCeil(NumInsts, MaxInsts) * 2; 2183 } 2184 2185 unsigned 2186 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2187 // If this branch is likely to be folded into the comparison to form a 2188 // CB(N)Z, then removing it won't reduce code size at all, because that will 2189 // just replace the CB(N)Z with a CMP. 2190 if (MI.getOpcode() == ARM::t2Bcc && 2191 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2192 return 0; 2193 2194 unsigned Size = getInstSizeInBytes(MI); 2195 2196 // For Thumb2, all branches are 32-bit instructions during the if conversion 2197 // pass, but may be replaced with 16-bit instructions during size reduction. 2198 // Since the branches considered by if conversion tend to be forward branches 2199 // over small basic blocks, they are very likely to be in range for the 2200 // narrow instructions, so we assume the final code size will be half what it 2201 // currently is. 2202 if (Subtarget.isThumb2()) 2203 Size /= 2; 2204 2205 return Size; 2206 } 2207 2208 bool 2209 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2210 MachineBasicBlock &FMBB) const { 2211 // Reduce false anti-dependencies to let the target's out-of-order execution 2212 // engine do its thing. 2213 return Subtarget.isProfitableToUnpredicate(); 2214 } 2215 2216 /// getInstrPredicate - If instruction is predicated, returns its predicate 2217 /// condition, otherwise returns AL. It also returns the condition code 2218 /// register by reference. 2219 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2220 Register &PredReg) { 2221 int PIdx = MI.findFirstPredOperandIdx(); 2222 if (PIdx == -1) { 2223 PredReg = 0; 2224 return ARMCC::AL; 2225 } 2226 2227 PredReg = MI.getOperand(PIdx+1).getReg(); 2228 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2229 } 2230 2231 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2232 if (Opc == ARM::B) 2233 return ARM::Bcc; 2234 if (Opc == ARM::tB) 2235 return ARM::tBcc; 2236 if (Opc == ARM::t2B) 2237 return ARM::t2Bcc; 2238 2239 llvm_unreachable("Unknown unconditional branch opcode!"); 2240 } 2241 2242 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2243 bool NewMI, 2244 unsigned OpIdx1, 2245 unsigned OpIdx2) const { 2246 switch (MI.getOpcode()) { 2247 case ARM::MOVCCr: 2248 case ARM::t2MOVCCr: { 2249 // MOVCC can be commuted by inverting the condition. 2250 Register PredReg; 2251 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2252 // MOVCC AL can't be inverted. Shouldn't happen. 2253 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2254 return nullptr; 2255 MachineInstr *CommutedMI = 2256 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2257 if (!CommutedMI) 2258 return nullptr; 2259 // After swapping the MOVCC operands, also invert the condition. 2260 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2261 .setImm(ARMCC::getOppositeCondition(CC)); 2262 return CommutedMI; 2263 } 2264 } 2265 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2266 } 2267 2268 /// Identify instructions that can be folded into a MOVCC instruction, and 2269 /// return the defining instruction. 2270 MachineInstr * 2271 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2272 const TargetInstrInfo *TII) const { 2273 if (!Reg.isVirtual()) 2274 return nullptr; 2275 if (!MRI.hasOneNonDBGUse(Reg)) 2276 return nullptr; 2277 MachineInstr *MI = MRI.getVRegDef(Reg); 2278 if (!MI) 2279 return nullptr; 2280 // Check if MI can be predicated and folded into the MOVCC. 2281 if (!isPredicable(*MI)) 2282 return nullptr; 2283 // Check if MI has any non-dead defs or physreg uses. This also detects 2284 // predicated instructions which will be reading CPSR. 2285 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2286 const MachineOperand &MO = MI->getOperand(i); 2287 // Reject frame index operands, PEI can't handle the predicated pseudos. 2288 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2289 return nullptr; 2290 if (!MO.isReg()) 2291 continue; 2292 // MI can't have any tied operands, that would conflict with predication. 2293 if (MO.isTied()) 2294 return nullptr; 2295 if (Register::isPhysicalRegister(MO.getReg())) 2296 return nullptr; 2297 if (MO.isDef() && !MO.isDead()) 2298 return nullptr; 2299 } 2300 bool DontMoveAcrossStores = true; 2301 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2302 return nullptr; 2303 return MI; 2304 } 2305 2306 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2307 SmallVectorImpl<MachineOperand> &Cond, 2308 unsigned &TrueOp, unsigned &FalseOp, 2309 bool &Optimizable) const { 2310 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2311 "Unknown select instruction"); 2312 // MOVCC operands: 2313 // 0: Def. 2314 // 1: True use. 2315 // 2: False use. 2316 // 3: Condition code. 2317 // 4: CPSR use. 2318 TrueOp = 1; 2319 FalseOp = 2; 2320 Cond.push_back(MI.getOperand(3)); 2321 Cond.push_back(MI.getOperand(4)); 2322 // We can always fold a def. 2323 Optimizable = true; 2324 return false; 2325 } 2326 2327 MachineInstr * 2328 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2329 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2330 bool PreferFalse) const { 2331 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2332 "Unknown select instruction"); 2333 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2334 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2335 bool Invert = !DefMI; 2336 if (!DefMI) 2337 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2338 if (!DefMI) 2339 return nullptr; 2340 2341 // Find new register class to use. 2342 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2343 Register DestReg = MI.getOperand(0).getReg(); 2344 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2345 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2346 return nullptr; 2347 2348 // Create a new predicated version of DefMI. 2349 // Rfalse is the first use. 2350 MachineInstrBuilder NewMI = 2351 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2352 2353 // Copy all the DefMI operands, excluding its (null) predicate. 2354 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2355 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2356 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2357 NewMI.add(DefMI->getOperand(i)); 2358 2359 unsigned CondCode = MI.getOperand(3).getImm(); 2360 if (Invert) 2361 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2362 else 2363 NewMI.addImm(CondCode); 2364 NewMI.add(MI.getOperand(4)); 2365 2366 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2367 if (NewMI->hasOptionalDef()) 2368 NewMI.add(condCodeOp()); 2369 2370 // The output register value when the predicate is false is an implicit 2371 // register operand tied to the first def. 2372 // The tie makes the register allocator ensure the FalseReg is allocated the 2373 // same register as operand 0. 2374 FalseReg.setImplicit(); 2375 NewMI.add(FalseReg); 2376 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2377 2378 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2379 SeenMIs.insert(NewMI); 2380 SeenMIs.erase(DefMI); 2381 2382 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2383 // DefMI would be invalid when tranferred inside the loop. Checking for a 2384 // loop is expensive, but at least remove kill flags if they are in different 2385 // BBs. 2386 if (DefMI->getParent() != MI.getParent()) 2387 NewMI->clearKillInfo(); 2388 2389 // The caller will erase MI, but not DefMI. 2390 DefMI->eraseFromParent(); 2391 return NewMI; 2392 } 2393 2394 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2395 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2396 /// def operand. 2397 /// 2398 /// This will go away once we can teach tblgen how to set the optional CPSR def 2399 /// operand itself. 2400 struct AddSubFlagsOpcodePair { 2401 uint16_t PseudoOpc; 2402 uint16_t MachineOpc; 2403 }; 2404 2405 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2406 {ARM::ADDSri, ARM::ADDri}, 2407 {ARM::ADDSrr, ARM::ADDrr}, 2408 {ARM::ADDSrsi, ARM::ADDrsi}, 2409 {ARM::ADDSrsr, ARM::ADDrsr}, 2410 2411 {ARM::SUBSri, ARM::SUBri}, 2412 {ARM::SUBSrr, ARM::SUBrr}, 2413 {ARM::SUBSrsi, ARM::SUBrsi}, 2414 {ARM::SUBSrsr, ARM::SUBrsr}, 2415 2416 {ARM::RSBSri, ARM::RSBri}, 2417 {ARM::RSBSrsi, ARM::RSBrsi}, 2418 {ARM::RSBSrsr, ARM::RSBrsr}, 2419 2420 {ARM::tADDSi3, ARM::tADDi3}, 2421 {ARM::tADDSi8, ARM::tADDi8}, 2422 {ARM::tADDSrr, ARM::tADDrr}, 2423 {ARM::tADCS, ARM::tADC}, 2424 2425 {ARM::tSUBSi3, ARM::tSUBi3}, 2426 {ARM::tSUBSi8, ARM::tSUBi8}, 2427 {ARM::tSUBSrr, ARM::tSUBrr}, 2428 {ARM::tSBCS, ARM::tSBC}, 2429 {ARM::tRSBS, ARM::tRSB}, 2430 {ARM::tLSLSri, ARM::tLSLri}, 2431 2432 {ARM::t2ADDSri, ARM::t2ADDri}, 2433 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2434 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2435 2436 {ARM::t2SUBSri, ARM::t2SUBri}, 2437 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2438 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2439 2440 {ARM::t2RSBSri, ARM::t2RSBri}, 2441 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2442 }; 2443 2444 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2445 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2446 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2447 return AddSubFlagsOpcodeMap[i].MachineOpc; 2448 return 0; 2449 } 2450 2451 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2452 MachineBasicBlock::iterator &MBBI, 2453 const DebugLoc &dl, Register DestReg, 2454 Register BaseReg, int NumBytes, 2455 ARMCC::CondCodes Pred, Register PredReg, 2456 const ARMBaseInstrInfo &TII, 2457 unsigned MIFlags) { 2458 if (NumBytes == 0 && DestReg != BaseReg) { 2459 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2460 .addReg(BaseReg, RegState::Kill) 2461 .add(predOps(Pred, PredReg)) 2462 .add(condCodeOp()) 2463 .setMIFlags(MIFlags); 2464 return; 2465 } 2466 2467 bool isSub = NumBytes < 0; 2468 if (isSub) NumBytes = -NumBytes; 2469 2470 while (NumBytes) { 2471 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2472 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2473 assert(ThisVal && "Didn't extract field correctly"); 2474 2475 // We will handle these bits from offset, clear them. 2476 NumBytes &= ~ThisVal; 2477 2478 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2479 2480 // Build the new ADD / SUB. 2481 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2482 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2483 .addReg(BaseReg, RegState::Kill) 2484 .addImm(ThisVal) 2485 .add(predOps(Pred, PredReg)) 2486 .add(condCodeOp()) 2487 .setMIFlags(MIFlags); 2488 BaseReg = DestReg; 2489 } 2490 } 2491 2492 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2493 MachineFunction &MF, MachineInstr *MI, 2494 unsigned NumBytes) { 2495 // This optimisation potentially adds lots of load and store 2496 // micro-operations, it's only really a great benefit to code-size. 2497 if (!Subtarget.hasMinSize()) 2498 return false; 2499 2500 // If only one register is pushed/popped, LLVM can use an LDR/STR 2501 // instead. We can't modify those so make sure we're dealing with an 2502 // instruction we understand. 2503 bool IsPop = isPopOpcode(MI->getOpcode()); 2504 bool IsPush = isPushOpcode(MI->getOpcode()); 2505 if (!IsPush && !IsPop) 2506 return false; 2507 2508 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2509 MI->getOpcode() == ARM::VLDMDIA_UPD; 2510 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2511 MI->getOpcode() == ARM::tPOP || 2512 MI->getOpcode() == ARM::tPOP_RET; 2513 2514 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2515 MI->getOperand(1).getReg() == ARM::SP)) && 2516 "trying to fold sp update into non-sp-updating push/pop"); 2517 2518 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2519 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2520 // if this is violated. 2521 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2522 return false; 2523 2524 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2525 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2526 int RegListIdx = IsT1PushPop ? 2 : 4; 2527 2528 // Calculate the space we'll need in terms of registers. 2529 unsigned RegsNeeded; 2530 const TargetRegisterClass *RegClass; 2531 if (IsVFPPushPop) { 2532 RegsNeeded = NumBytes / 8; 2533 RegClass = &ARM::DPRRegClass; 2534 } else { 2535 RegsNeeded = NumBytes / 4; 2536 RegClass = &ARM::GPRRegClass; 2537 } 2538 2539 // We're going to have to strip all list operands off before 2540 // re-adding them since the order matters, so save the existing ones 2541 // for later. 2542 SmallVector<MachineOperand, 4> RegList; 2543 2544 // We're also going to need the first register transferred by this 2545 // instruction, which won't necessarily be the first register in the list. 2546 unsigned FirstRegEnc = -1; 2547 2548 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2549 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2550 MachineOperand &MO = MI->getOperand(i); 2551 RegList.push_back(MO); 2552 2553 if (MO.isReg() && !MO.isImplicit() && 2554 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2555 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2556 } 2557 2558 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2559 2560 // Now try to find enough space in the reglist to allocate NumBytes. 2561 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2562 --CurRegEnc) { 2563 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2564 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2565 continue; 2566 if (!IsPop) { 2567 // Pushing any register is completely harmless, mark the register involved 2568 // as undef since we don't care about its value and must not restore it 2569 // during stack unwinding. 2570 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2571 false, false, true)); 2572 --RegsNeeded; 2573 continue; 2574 } 2575 2576 // However, we can only pop an extra register if it's not live. For 2577 // registers live within the function we might clobber a return value 2578 // register; the other way a register can be live here is if it's 2579 // callee-saved. 2580 if (isCalleeSavedRegister(CurReg, CSRegs) || 2581 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2582 MachineBasicBlock::LQR_Dead) { 2583 // VFP pops don't allow holes in the register list, so any skip is fatal 2584 // for our transformation. GPR pops do, so we should just keep looking. 2585 if (IsVFPPushPop) 2586 return false; 2587 else 2588 continue; 2589 } 2590 2591 // Mark the unimportant registers as <def,dead> in the POP. 2592 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2593 true)); 2594 --RegsNeeded; 2595 } 2596 2597 if (RegsNeeded > 0) 2598 return false; 2599 2600 // Finally we know we can profitably perform the optimisation so go 2601 // ahead: strip all existing registers off and add them back again 2602 // in the right order. 2603 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2604 MI->RemoveOperand(i); 2605 2606 // Add the complete list back in. 2607 MachineInstrBuilder MIB(MF, &*MI); 2608 for (int i = RegList.size() - 1; i >= 0; --i) 2609 MIB.add(RegList[i]); 2610 2611 return true; 2612 } 2613 2614 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2615 Register FrameReg, int &Offset, 2616 const ARMBaseInstrInfo &TII) { 2617 unsigned Opcode = MI.getOpcode(); 2618 const MCInstrDesc &Desc = MI.getDesc(); 2619 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2620 bool isSub = false; 2621 2622 // Memory operands in inline assembly always use AddrMode2. 2623 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2624 AddrMode = ARMII::AddrMode2; 2625 2626 if (Opcode == ARM::ADDri) { 2627 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2628 if (Offset == 0) { 2629 // Turn it into a move. 2630 MI.setDesc(TII.get(ARM::MOVr)); 2631 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2632 MI.RemoveOperand(FrameRegIdx+1); 2633 Offset = 0; 2634 return true; 2635 } else if (Offset < 0) { 2636 Offset = -Offset; 2637 isSub = true; 2638 MI.setDesc(TII.get(ARM::SUBri)); 2639 } 2640 2641 // Common case: small offset, fits into instruction. 2642 if (ARM_AM::getSOImmVal(Offset) != -1) { 2643 // Replace the FrameIndex with sp / fp 2644 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2645 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2646 Offset = 0; 2647 return true; 2648 } 2649 2650 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2651 // as possible. 2652 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2653 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2654 2655 // We will handle these bits from offset, clear them. 2656 Offset &= ~ThisImmVal; 2657 2658 // Get the properly encoded SOImmVal field. 2659 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2660 "Bit extraction didn't work?"); 2661 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2662 } else { 2663 unsigned ImmIdx = 0; 2664 int InstrOffs = 0; 2665 unsigned NumBits = 0; 2666 unsigned Scale = 1; 2667 switch (AddrMode) { 2668 case ARMII::AddrMode_i12: 2669 ImmIdx = FrameRegIdx + 1; 2670 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2671 NumBits = 12; 2672 break; 2673 case ARMII::AddrMode2: 2674 ImmIdx = FrameRegIdx+2; 2675 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2676 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2677 InstrOffs *= -1; 2678 NumBits = 12; 2679 break; 2680 case ARMII::AddrMode3: 2681 ImmIdx = FrameRegIdx+2; 2682 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2683 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2684 InstrOffs *= -1; 2685 NumBits = 8; 2686 break; 2687 case ARMII::AddrMode4: 2688 case ARMII::AddrMode6: 2689 // Can't fold any offset even if it's zero. 2690 return false; 2691 case ARMII::AddrMode5: 2692 ImmIdx = FrameRegIdx+1; 2693 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2694 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2695 InstrOffs *= -1; 2696 NumBits = 8; 2697 Scale = 4; 2698 break; 2699 case ARMII::AddrMode5FP16: 2700 ImmIdx = FrameRegIdx+1; 2701 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2702 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2703 InstrOffs *= -1; 2704 NumBits = 8; 2705 Scale = 2; 2706 break; 2707 case ARMII::AddrModeT2_i7: 2708 case ARMII::AddrModeT2_i7s2: 2709 case ARMII::AddrModeT2_i7s4: 2710 ImmIdx = FrameRegIdx+1; 2711 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2712 NumBits = 7; 2713 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2714 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2715 break; 2716 default: 2717 llvm_unreachable("Unsupported addressing mode!"); 2718 } 2719 2720 Offset += InstrOffs * Scale; 2721 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2722 if (Offset < 0) { 2723 Offset = -Offset; 2724 isSub = true; 2725 } 2726 2727 // Attempt to fold address comp. if opcode has offset bits 2728 if (NumBits > 0) { 2729 // Common case: small offset, fits into instruction. 2730 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2731 int ImmedOffset = Offset / Scale; 2732 unsigned Mask = (1 << NumBits) - 1; 2733 if ((unsigned)Offset <= Mask * Scale) { 2734 // Replace the FrameIndex with sp 2735 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2736 // FIXME: When addrmode2 goes away, this will simplify (like the 2737 // T2 version), as the LDR.i12 versions don't need the encoding 2738 // tricks for the offset value. 2739 if (isSub) { 2740 if (AddrMode == ARMII::AddrMode_i12) 2741 ImmedOffset = -ImmedOffset; 2742 else 2743 ImmedOffset |= 1 << NumBits; 2744 } 2745 ImmOp.ChangeToImmediate(ImmedOffset); 2746 Offset = 0; 2747 return true; 2748 } 2749 2750 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2751 ImmedOffset = ImmedOffset & Mask; 2752 if (isSub) { 2753 if (AddrMode == ARMII::AddrMode_i12) 2754 ImmedOffset = -ImmedOffset; 2755 else 2756 ImmedOffset |= 1 << NumBits; 2757 } 2758 ImmOp.ChangeToImmediate(ImmedOffset); 2759 Offset &= ~(Mask*Scale); 2760 } 2761 } 2762 2763 Offset = (isSub) ? -Offset : Offset; 2764 return Offset == 0; 2765 } 2766 2767 /// analyzeCompare - For a comparison instruction, return the source registers 2768 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2769 /// compares against in CmpValue. Return true if the comparison instruction 2770 /// can be analyzed. 2771 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2772 Register &SrcReg2, int &CmpMask, 2773 int &CmpValue) const { 2774 switch (MI.getOpcode()) { 2775 default: break; 2776 case ARM::CMPri: 2777 case ARM::t2CMPri: 2778 case ARM::tCMPi8: 2779 SrcReg = MI.getOperand(0).getReg(); 2780 SrcReg2 = 0; 2781 CmpMask = ~0; 2782 CmpValue = MI.getOperand(1).getImm(); 2783 return true; 2784 case ARM::CMPrr: 2785 case ARM::t2CMPrr: 2786 case ARM::tCMPr: 2787 SrcReg = MI.getOperand(0).getReg(); 2788 SrcReg2 = MI.getOperand(1).getReg(); 2789 CmpMask = ~0; 2790 CmpValue = 0; 2791 return true; 2792 case ARM::TSTri: 2793 case ARM::t2TSTri: 2794 SrcReg = MI.getOperand(0).getReg(); 2795 SrcReg2 = 0; 2796 CmpMask = MI.getOperand(1).getImm(); 2797 CmpValue = 0; 2798 return true; 2799 } 2800 2801 return false; 2802 } 2803 2804 /// isSuitableForMask - Identify a suitable 'and' instruction that 2805 /// operates on the given source register and applies the same mask 2806 /// as a 'tst' instruction. Provide a limited look-through for copies. 2807 /// When successful, MI will hold the found instruction. 2808 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2809 int CmpMask, bool CommonUse) { 2810 switch (MI->getOpcode()) { 2811 case ARM::ANDri: 2812 case ARM::t2ANDri: 2813 if (CmpMask != MI->getOperand(2).getImm()) 2814 return false; 2815 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2816 return true; 2817 break; 2818 } 2819 2820 return false; 2821 } 2822 2823 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2824 /// the condition code if we modify the instructions such that flags are 2825 /// set by ADD(a,b,X). 2826 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2827 switch (CC) { 2828 default: return ARMCC::AL; 2829 case ARMCC::HS: return ARMCC::LO; 2830 case ARMCC::LO: return ARMCC::HS; 2831 case ARMCC::VS: return ARMCC::VS; 2832 case ARMCC::VC: return ARMCC::VC; 2833 } 2834 } 2835 2836 /// isRedundantFlagInstr - check whether the first instruction, whose only 2837 /// purpose is to update flags, can be made redundant. 2838 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2839 /// CMPri can be made redundant by SUBri if the operands are the same. 2840 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2841 /// This function can be extended later on. 2842 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2843 Register SrcReg, Register SrcReg2, 2844 int ImmValue, const MachineInstr *OI, 2845 bool &IsThumb1) { 2846 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2847 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2848 ((OI->getOperand(1).getReg() == SrcReg && 2849 OI->getOperand(2).getReg() == SrcReg2) || 2850 (OI->getOperand(1).getReg() == SrcReg2 && 2851 OI->getOperand(2).getReg() == SrcReg))) { 2852 IsThumb1 = false; 2853 return true; 2854 } 2855 2856 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2857 ((OI->getOperand(2).getReg() == SrcReg && 2858 OI->getOperand(3).getReg() == SrcReg2) || 2859 (OI->getOperand(2).getReg() == SrcReg2 && 2860 OI->getOperand(3).getReg() == SrcReg))) { 2861 IsThumb1 = true; 2862 return true; 2863 } 2864 2865 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2866 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2867 OI->getOperand(1).getReg() == SrcReg && 2868 OI->getOperand(2).getImm() == ImmValue) { 2869 IsThumb1 = false; 2870 return true; 2871 } 2872 2873 if (CmpI->getOpcode() == ARM::tCMPi8 && 2874 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2875 OI->getOperand(2).getReg() == SrcReg && 2876 OI->getOperand(3).getImm() == ImmValue) { 2877 IsThumb1 = true; 2878 return true; 2879 } 2880 2881 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2882 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2883 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2884 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2885 OI->getOperand(0).getReg() == SrcReg && 2886 OI->getOperand(1).getReg() == SrcReg2) { 2887 IsThumb1 = false; 2888 return true; 2889 } 2890 2891 if (CmpI->getOpcode() == ARM::tCMPr && 2892 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2893 OI->getOpcode() == ARM::tADDrr) && 2894 OI->getOperand(0).getReg() == SrcReg && 2895 OI->getOperand(2).getReg() == SrcReg2) { 2896 IsThumb1 = true; 2897 return true; 2898 } 2899 2900 return false; 2901 } 2902 2903 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2904 switch (MI->getOpcode()) { 2905 default: return false; 2906 case ARM::tLSLri: 2907 case ARM::tLSRri: 2908 case ARM::tLSLrr: 2909 case ARM::tLSRrr: 2910 case ARM::tSUBrr: 2911 case ARM::tADDrr: 2912 case ARM::tADDi3: 2913 case ARM::tADDi8: 2914 case ARM::tSUBi3: 2915 case ARM::tSUBi8: 2916 case ARM::tMUL: 2917 case ARM::tADC: 2918 case ARM::tSBC: 2919 case ARM::tRSB: 2920 case ARM::tAND: 2921 case ARM::tORR: 2922 case ARM::tEOR: 2923 case ARM::tBIC: 2924 case ARM::tMVN: 2925 case ARM::tASRri: 2926 case ARM::tASRrr: 2927 case ARM::tROR: 2928 IsThumb1 = true; 2929 LLVM_FALLTHROUGH; 2930 case ARM::RSBrr: 2931 case ARM::RSBri: 2932 case ARM::RSCrr: 2933 case ARM::RSCri: 2934 case ARM::ADDrr: 2935 case ARM::ADDri: 2936 case ARM::ADCrr: 2937 case ARM::ADCri: 2938 case ARM::SUBrr: 2939 case ARM::SUBri: 2940 case ARM::SBCrr: 2941 case ARM::SBCri: 2942 case ARM::t2RSBri: 2943 case ARM::t2ADDrr: 2944 case ARM::t2ADDri: 2945 case ARM::t2ADCrr: 2946 case ARM::t2ADCri: 2947 case ARM::t2SUBrr: 2948 case ARM::t2SUBri: 2949 case ARM::t2SBCrr: 2950 case ARM::t2SBCri: 2951 case ARM::ANDrr: 2952 case ARM::ANDri: 2953 case ARM::t2ANDrr: 2954 case ARM::t2ANDri: 2955 case ARM::ORRrr: 2956 case ARM::ORRri: 2957 case ARM::t2ORRrr: 2958 case ARM::t2ORRri: 2959 case ARM::EORrr: 2960 case ARM::EORri: 2961 case ARM::t2EORrr: 2962 case ARM::t2EORri: 2963 case ARM::t2LSRri: 2964 case ARM::t2LSRrr: 2965 case ARM::t2LSLri: 2966 case ARM::t2LSLrr: 2967 return true; 2968 } 2969 } 2970 2971 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2972 /// comparison into one that sets the zero bit in the flags register; 2973 /// Remove a redundant Compare instruction if an earlier instruction can set the 2974 /// flags in the same way as Compare. 2975 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2976 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2977 /// condition code of instructions which use the flags. 2978 bool ARMBaseInstrInfo::optimizeCompareInstr( 2979 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask, 2980 int CmpValue, const MachineRegisterInfo *MRI) const { 2981 // Get the unique definition of SrcReg. 2982 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2983 if (!MI) return false; 2984 2985 // Masked compares sometimes use the same register as the corresponding 'and'. 2986 if (CmpMask != ~0) { 2987 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2988 MI = nullptr; 2989 for (MachineRegisterInfo::use_instr_iterator 2990 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2991 UI != UE; ++UI) { 2992 if (UI->getParent() != CmpInstr.getParent()) 2993 continue; 2994 MachineInstr *PotentialAND = &*UI; 2995 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2996 isPredicated(*PotentialAND)) 2997 continue; 2998 MI = PotentialAND; 2999 break; 3000 } 3001 if (!MI) return false; 3002 } 3003 } 3004 3005 // Get ready to iterate backward from CmpInstr. 3006 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3007 B = CmpInstr.getParent()->begin(); 3008 3009 // Early exit if CmpInstr is at the beginning of the BB. 3010 if (I == B) return false; 3011 3012 // There are two possible candidates which can be changed to set CPSR: 3013 // One is MI, the other is a SUB or ADD instruction. 3014 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3015 // ADDr[ri](r1, r2, X). 3016 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3017 MachineInstr *SubAdd = nullptr; 3018 if (SrcReg2 != 0) 3019 // MI is not a candidate for CMPrr. 3020 MI = nullptr; 3021 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3022 // Conservatively refuse to convert an instruction which isn't in the same 3023 // BB as the comparison. 3024 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3025 // Thus we cannot return here. 3026 if (CmpInstr.getOpcode() == ARM::CMPri || 3027 CmpInstr.getOpcode() == ARM::t2CMPri || 3028 CmpInstr.getOpcode() == ARM::tCMPi8) 3029 MI = nullptr; 3030 else 3031 return false; 3032 } 3033 3034 bool IsThumb1 = false; 3035 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3036 return false; 3037 3038 // We also want to do this peephole for cases like this: if (a*b == 0), 3039 // and optimise away the CMP instruction from the generated code sequence: 3040 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3041 // resulting from the select instruction, but these MOVS instructions for 3042 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3043 // However, if we only have MOVS instructions in between the CMP and the 3044 // other instruction (the MULS in this example), then the CPSR is dead so we 3045 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3046 // reordering and then continue the analysis hoping we can eliminate the 3047 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3048 // consequence, the movs won't redefine/kill the MUL operands which would 3049 // make this reordering illegal. 3050 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3051 if (MI && IsThumb1) { 3052 --I; 3053 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3054 bool CanReorder = true; 3055 for (; I != E; --I) { 3056 if (I->getOpcode() != ARM::tMOVi8) { 3057 CanReorder = false; 3058 break; 3059 } 3060 } 3061 if (CanReorder) { 3062 MI = MI->removeFromParent(); 3063 E = CmpInstr; 3064 CmpInstr.getParent()->insert(E, MI); 3065 } 3066 } 3067 I = CmpInstr; 3068 E = MI; 3069 } 3070 3071 // Check that CPSR isn't set between the comparison instruction and the one we 3072 // want to change. At the same time, search for SubAdd. 3073 bool SubAddIsThumb1 = false; 3074 do { 3075 const MachineInstr &Instr = *--I; 3076 3077 // Check whether CmpInstr can be made redundant by the current instruction. 3078 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3079 SubAddIsThumb1)) { 3080 SubAdd = &*I; 3081 break; 3082 } 3083 3084 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3085 if (I == E) 3086 break; 3087 3088 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3089 Instr.readsRegister(ARM::CPSR, TRI)) 3090 // This instruction modifies or uses CPSR after the one we want to 3091 // change. We can't do this transformation. 3092 return false; 3093 3094 if (I == B) { 3095 // In some cases, we scan the use-list of an instruction for an AND; 3096 // that AND is in the same BB, but may not be scheduled before the 3097 // corresponding TST. In that case, bail out. 3098 // 3099 // FIXME: We could try to reschedule the AND. 3100 return false; 3101 } 3102 } while (true); 3103 3104 // Return false if no candidates exist. 3105 if (!MI && !SubAdd) 3106 return false; 3107 3108 // If we found a SubAdd, use it as it will be closer to the CMP 3109 if (SubAdd) { 3110 MI = SubAdd; 3111 IsThumb1 = SubAddIsThumb1; 3112 } 3113 3114 // We can't use a predicated instruction - it doesn't always write the flags. 3115 if (isPredicated(*MI)) 3116 return false; 3117 3118 // Scan forward for the use of CPSR 3119 // When checking against MI: if it's a conditional code that requires 3120 // checking of the V bit or C bit, then this is not safe to do. 3121 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3122 // If we are done with the basic block, we need to check whether CPSR is 3123 // live-out. 3124 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3125 OperandsToUpdate; 3126 bool isSafe = false; 3127 I = CmpInstr; 3128 E = CmpInstr.getParent()->end(); 3129 while (!isSafe && ++I != E) { 3130 const MachineInstr &Instr = *I; 3131 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3132 !isSafe && IO != EO; ++IO) { 3133 const MachineOperand &MO = Instr.getOperand(IO); 3134 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3135 isSafe = true; 3136 break; 3137 } 3138 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3139 continue; 3140 if (MO.isDef()) { 3141 isSafe = true; 3142 break; 3143 } 3144 // Condition code is after the operand before CPSR except for VSELs. 3145 ARMCC::CondCodes CC; 3146 bool IsInstrVSel = true; 3147 switch (Instr.getOpcode()) { 3148 default: 3149 IsInstrVSel = false; 3150 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3151 break; 3152 case ARM::VSELEQD: 3153 case ARM::VSELEQS: 3154 case ARM::VSELEQH: 3155 CC = ARMCC::EQ; 3156 break; 3157 case ARM::VSELGTD: 3158 case ARM::VSELGTS: 3159 case ARM::VSELGTH: 3160 CC = ARMCC::GT; 3161 break; 3162 case ARM::VSELGED: 3163 case ARM::VSELGES: 3164 case ARM::VSELGEH: 3165 CC = ARMCC::GE; 3166 break; 3167 case ARM::VSELVSD: 3168 case ARM::VSELVSS: 3169 case ARM::VSELVSH: 3170 CC = ARMCC::VS; 3171 break; 3172 } 3173 3174 if (SubAdd) { 3175 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3176 // on CMP needs to be updated to be based on SUB. 3177 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3178 // needs to be modified. 3179 // Push the condition code operands to OperandsToUpdate. 3180 // If it is safe to remove CmpInstr, the condition code of these 3181 // operands will be modified. 3182 unsigned Opc = SubAdd->getOpcode(); 3183 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3184 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3185 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3186 Opc == ARM::tSUBi8; 3187 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3188 if (!IsSub || 3189 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3190 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3191 // VSel doesn't support condition code update. 3192 if (IsInstrVSel) 3193 return false; 3194 // Ensure we can swap the condition. 3195 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3196 if (NewCC == ARMCC::AL) 3197 return false; 3198 OperandsToUpdate.push_back( 3199 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3200 } 3201 } else { 3202 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3203 switch (CC) { 3204 case ARMCC::EQ: // Z 3205 case ARMCC::NE: // Z 3206 case ARMCC::MI: // N 3207 case ARMCC::PL: // N 3208 case ARMCC::AL: // none 3209 // CPSR can be used multiple times, we should continue. 3210 break; 3211 case ARMCC::HS: // C 3212 case ARMCC::LO: // C 3213 case ARMCC::VS: // V 3214 case ARMCC::VC: // V 3215 case ARMCC::HI: // C Z 3216 case ARMCC::LS: // C Z 3217 case ARMCC::GE: // N V 3218 case ARMCC::LT: // N V 3219 case ARMCC::GT: // Z N V 3220 case ARMCC::LE: // Z N V 3221 // The instruction uses the V bit or C bit which is not safe. 3222 return false; 3223 } 3224 } 3225 } 3226 } 3227 3228 // If CPSR is not killed nor re-defined, we should check whether it is 3229 // live-out. If it is live-out, do not optimize. 3230 if (!isSafe) { 3231 MachineBasicBlock *MBB = CmpInstr.getParent(); 3232 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 3233 SE = MBB->succ_end(); SI != SE; ++SI) 3234 if ((*SI)->isLiveIn(ARM::CPSR)) 3235 return false; 3236 } 3237 3238 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3239 // set CPSR so this is represented as an explicit output) 3240 if (!IsThumb1) { 3241 MI->getOperand(5).setReg(ARM::CPSR); 3242 MI->getOperand(5).setIsDef(true); 3243 } 3244 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3245 CmpInstr.eraseFromParent(); 3246 3247 // Modify the condition code of operands in OperandsToUpdate. 3248 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3249 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3250 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3251 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3252 3253 MI->clearRegisterDeads(ARM::CPSR); 3254 3255 return true; 3256 } 3257 3258 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3259 // Do not sink MI if it might be used to optimize a redundant compare. 3260 // We heuristically only look at the instruction immediately following MI to 3261 // avoid potentially searching the entire basic block. 3262 if (isPredicated(MI)) 3263 return true; 3264 MachineBasicBlock::const_iterator Next = &MI; 3265 ++Next; 3266 Register SrcReg, SrcReg2; 3267 int CmpMask, CmpValue; 3268 bool IsThumb1; 3269 if (Next != MI.getParent()->end() && 3270 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3271 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3272 return false; 3273 return true; 3274 } 3275 3276 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3277 Register Reg, 3278 MachineRegisterInfo *MRI) const { 3279 // Fold large immediates into add, sub, or, xor. 3280 unsigned DefOpc = DefMI.getOpcode(); 3281 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3282 return false; 3283 if (!DefMI.getOperand(1).isImm()) 3284 // Could be t2MOVi32imm @xx 3285 return false; 3286 3287 if (!MRI->hasOneNonDBGUse(Reg)) 3288 return false; 3289 3290 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3291 if (DefMCID.hasOptionalDef()) { 3292 unsigned NumOps = DefMCID.getNumOperands(); 3293 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3294 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3295 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3296 // to delete DefMI. 3297 return false; 3298 } 3299 3300 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3301 if (UseMCID.hasOptionalDef()) { 3302 unsigned NumOps = UseMCID.getNumOperands(); 3303 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3304 // If the instruction sets the flag, do not attempt this optimization 3305 // since it may change the semantics of the code. 3306 return false; 3307 } 3308 3309 unsigned UseOpc = UseMI.getOpcode(); 3310 unsigned NewUseOpc = 0; 3311 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3312 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3313 bool Commute = false; 3314 switch (UseOpc) { 3315 default: return false; 3316 case ARM::SUBrr: 3317 case ARM::ADDrr: 3318 case ARM::ORRrr: 3319 case ARM::EORrr: 3320 case ARM::t2SUBrr: 3321 case ARM::t2ADDrr: 3322 case ARM::t2ORRrr: 3323 case ARM::t2EORrr: { 3324 Commute = UseMI.getOperand(2).getReg() != Reg; 3325 switch (UseOpc) { 3326 default: break; 3327 case ARM::ADDrr: 3328 case ARM::SUBrr: 3329 if (UseOpc == ARM::SUBrr && Commute) 3330 return false; 3331 3332 // ADD/SUB are special because they're essentially the same operation, so 3333 // we can handle a larger range of immediates. 3334 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3335 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3336 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3337 ImmVal = -ImmVal; 3338 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3339 } else 3340 return false; 3341 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3342 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3343 break; 3344 case ARM::ORRrr: 3345 case ARM::EORrr: 3346 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3347 return false; 3348 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3349 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3350 switch (UseOpc) { 3351 default: break; 3352 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3353 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3354 } 3355 break; 3356 case ARM::t2ADDrr: 3357 case ARM::t2SUBrr: { 3358 if (UseOpc == ARM::t2SUBrr && Commute) 3359 return false; 3360 3361 // ADD/SUB are special because they're essentially the same operation, so 3362 // we can handle a larger range of immediates. 3363 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3364 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3365 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3366 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3367 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3368 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3369 ImmVal = -ImmVal; 3370 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3371 } else 3372 return false; 3373 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3374 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3375 break; 3376 } 3377 case ARM::t2ORRrr: 3378 case ARM::t2EORrr: 3379 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3380 return false; 3381 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3382 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3383 switch (UseOpc) { 3384 default: break; 3385 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3386 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3387 } 3388 break; 3389 } 3390 } 3391 } 3392 3393 unsigned OpIdx = Commute ? 2 : 1; 3394 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3395 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3396 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3397 Register NewReg = MRI->createVirtualRegister(TRC); 3398 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3399 NewReg) 3400 .addReg(Reg1, getKillRegState(isKill)) 3401 .addImm(SOImmValV1) 3402 .add(predOps(ARMCC::AL)) 3403 .add(condCodeOp()); 3404 UseMI.setDesc(get(NewUseOpc)); 3405 UseMI.getOperand(1).setReg(NewReg); 3406 UseMI.getOperand(1).setIsKill(); 3407 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3408 DefMI.eraseFromParent(); 3409 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3410 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3411 // Then the below code will not be needed, as the input/output register 3412 // classes will be rgpr or gprSP. 3413 // For now, we fix the UseMI operand explicitly here: 3414 switch(NewUseOpc){ 3415 case ARM::t2ADDspImm: 3416 case ARM::t2SUBspImm: 3417 case ARM::t2ADDri: 3418 case ARM::t2SUBri: 3419 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3420 } 3421 return true; 3422 } 3423 3424 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3425 const MachineInstr &MI) { 3426 switch (MI.getOpcode()) { 3427 default: { 3428 const MCInstrDesc &Desc = MI.getDesc(); 3429 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3430 assert(UOps >= 0 && "bad # UOps"); 3431 return UOps; 3432 } 3433 3434 case ARM::LDRrs: 3435 case ARM::LDRBrs: 3436 case ARM::STRrs: 3437 case ARM::STRBrs: { 3438 unsigned ShOpVal = MI.getOperand(3).getImm(); 3439 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3440 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3441 if (!isSub && 3442 (ShImm == 0 || 3443 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3444 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3445 return 1; 3446 return 2; 3447 } 3448 3449 case ARM::LDRH: 3450 case ARM::STRH: { 3451 if (!MI.getOperand(2).getReg()) 3452 return 1; 3453 3454 unsigned ShOpVal = MI.getOperand(3).getImm(); 3455 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3456 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3457 if (!isSub && 3458 (ShImm == 0 || 3459 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3460 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3461 return 1; 3462 return 2; 3463 } 3464 3465 case ARM::LDRSB: 3466 case ARM::LDRSH: 3467 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3468 3469 case ARM::LDRSB_POST: 3470 case ARM::LDRSH_POST: { 3471 Register Rt = MI.getOperand(0).getReg(); 3472 Register Rm = MI.getOperand(3).getReg(); 3473 return (Rt == Rm) ? 4 : 3; 3474 } 3475 3476 case ARM::LDR_PRE_REG: 3477 case ARM::LDRB_PRE_REG: { 3478 Register Rt = MI.getOperand(0).getReg(); 3479 Register Rm = MI.getOperand(3).getReg(); 3480 if (Rt == Rm) 3481 return 3; 3482 unsigned ShOpVal = MI.getOperand(4).getImm(); 3483 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3484 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3485 if (!isSub && 3486 (ShImm == 0 || 3487 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3488 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3489 return 2; 3490 return 3; 3491 } 3492 3493 case ARM::STR_PRE_REG: 3494 case ARM::STRB_PRE_REG: { 3495 unsigned ShOpVal = MI.getOperand(4).getImm(); 3496 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3497 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3498 if (!isSub && 3499 (ShImm == 0 || 3500 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3501 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3502 return 2; 3503 return 3; 3504 } 3505 3506 case ARM::LDRH_PRE: 3507 case ARM::STRH_PRE: { 3508 Register Rt = MI.getOperand(0).getReg(); 3509 Register Rm = MI.getOperand(3).getReg(); 3510 if (!Rm) 3511 return 2; 3512 if (Rt == Rm) 3513 return 3; 3514 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3515 } 3516 3517 case ARM::LDR_POST_REG: 3518 case ARM::LDRB_POST_REG: 3519 case ARM::LDRH_POST: { 3520 Register Rt = MI.getOperand(0).getReg(); 3521 Register Rm = MI.getOperand(3).getReg(); 3522 return (Rt == Rm) ? 3 : 2; 3523 } 3524 3525 case ARM::LDR_PRE_IMM: 3526 case ARM::LDRB_PRE_IMM: 3527 case ARM::LDR_POST_IMM: 3528 case ARM::LDRB_POST_IMM: 3529 case ARM::STRB_POST_IMM: 3530 case ARM::STRB_POST_REG: 3531 case ARM::STRB_PRE_IMM: 3532 case ARM::STRH_POST: 3533 case ARM::STR_POST_IMM: 3534 case ARM::STR_POST_REG: 3535 case ARM::STR_PRE_IMM: 3536 return 2; 3537 3538 case ARM::LDRSB_PRE: 3539 case ARM::LDRSH_PRE: { 3540 Register Rm = MI.getOperand(3).getReg(); 3541 if (Rm == 0) 3542 return 3; 3543 Register Rt = MI.getOperand(0).getReg(); 3544 if (Rt == Rm) 3545 return 4; 3546 unsigned ShOpVal = MI.getOperand(4).getImm(); 3547 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3548 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3549 if (!isSub && 3550 (ShImm == 0 || 3551 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3552 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3553 return 3; 3554 return 4; 3555 } 3556 3557 case ARM::LDRD: { 3558 Register Rt = MI.getOperand(0).getReg(); 3559 Register Rn = MI.getOperand(2).getReg(); 3560 Register Rm = MI.getOperand(3).getReg(); 3561 if (Rm) 3562 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3563 : 3; 3564 return (Rt == Rn) ? 3 : 2; 3565 } 3566 3567 case ARM::STRD: { 3568 Register Rm = MI.getOperand(3).getReg(); 3569 if (Rm) 3570 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3571 : 3; 3572 return 2; 3573 } 3574 3575 case ARM::LDRD_POST: 3576 case ARM::t2LDRD_POST: 3577 return 3; 3578 3579 case ARM::STRD_POST: 3580 case ARM::t2STRD_POST: 3581 return 4; 3582 3583 case ARM::LDRD_PRE: { 3584 Register Rt = MI.getOperand(0).getReg(); 3585 Register Rn = MI.getOperand(3).getReg(); 3586 Register Rm = MI.getOperand(4).getReg(); 3587 if (Rm) 3588 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3589 : 4; 3590 return (Rt == Rn) ? 4 : 3; 3591 } 3592 3593 case ARM::t2LDRD_PRE: { 3594 Register Rt = MI.getOperand(0).getReg(); 3595 Register Rn = MI.getOperand(3).getReg(); 3596 return (Rt == Rn) ? 4 : 3; 3597 } 3598 3599 case ARM::STRD_PRE: { 3600 Register Rm = MI.getOperand(4).getReg(); 3601 if (Rm) 3602 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3603 : 4; 3604 return 3; 3605 } 3606 3607 case ARM::t2STRD_PRE: 3608 return 3; 3609 3610 case ARM::t2LDR_POST: 3611 case ARM::t2LDRB_POST: 3612 case ARM::t2LDRB_PRE: 3613 case ARM::t2LDRSBi12: 3614 case ARM::t2LDRSBi8: 3615 case ARM::t2LDRSBpci: 3616 case ARM::t2LDRSBs: 3617 case ARM::t2LDRH_POST: 3618 case ARM::t2LDRH_PRE: 3619 case ARM::t2LDRSBT: 3620 case ARM::t2LDRSB_POST: 3621 case ARM::t2LDRSB_PRE: 3622 case ARM::t2LDRSH_POST: 3623 case ARM::t2LDRSH_PRE: 3624 case ARM::t2LDRSHi12: 3625 case ARM::t2LDRSHi8: 3626 case ARM::t2LDRSHpci: 3627 case ARM::t2LDRSHs: 3628 return 2; 3629 3630 case ARM::t2LDRDi8: { 3631 Register Rt = MI.getOperand(0).getReg(); 3632 Register Rn = MI.getOperand(2).getReg(); 3633 return (Rt == Rn) ? 3 : 2; 3634 } 3635 3636 case ARM::t2STRB_POST: 3637 case ARM::t2STRB_PRE: 3638 case ARM::t2STRBs: 3639 case ARM::t2STRDi8: 3640 case ARM::t2STRH_POST: 3641 case ARM::t2STRH_PRE: 3642 case ARM::t2STRHs: 3643 case ARM::t2STR_POST: 3644 case ARM::t2STR_PRE: 3645 case ARM::t2STRs: 3646 return 2; 3647 } 3648 } 3649 3650 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3651 // can't be easily determined return 0 (missing MachineMemOperand). 3652 // 3653 // FIXME: The current MachineInstr design does not support relying on machine 3654 // mem operands to determine the width of a memory access. Instead, we expect 3655 // the target to provide this information based on the instruction opcode and 3656 // operands. However, using MachineMemOperand is the best solution now for 3657 // two reasons: 3658 // 3659 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3660 // operands. This is much more dangerous than using the MachineMemOperand 3661 // sizes because CodeGen passes can insert/remove optional machine operands. In 3662 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3663 // postRA passes as well. 3664 // 3665 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3666 // machine model that calls this should handle the unknown (zero size) case. 3667 // 3668 // Long term, we should require a target hook that verifies MachineMemOperand 3669 // sizes during MC lowering. That target hook should be local to MC lowering 3670 // because we can't ensure that it is aware of other MI forms. Doing this will 3671 // ensure that MachineMemOperands are correctly propagated through all passes. 3672 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3673 unsigned Size = 0; 3674 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3675 E = MI.memoperands_end(); 3676 I != E; ++I) { 3677 Size += (*I)->getSize(); 3678 } 3679 // FIXME: The scheduler currently can't handle values larger than 16. But 3680 // the values can actually go up to 32 for floating-point load/store 3681 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3682 // operations isn't right; we could end up with "extra" memory operands for 3683 // various reasons, like tail merge merging two memory operations. 3684 return std::min(Size / 4, 16U); 3685 } 3686 3687 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3688 unsigned NumRegs) { 3689 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3690 switch (Opc) { 3691 default: 3692 break; 3693 case ARM::VLDMDIA_UPD: 3694 case ARM::VLDMDDB_UPD: 3695 case ARM::VLDMSIA_UPD: 3696 case ARM::VLDMSDB_UPD: 3697 case ARM::VSTMDIA_UPD: 3698 case ARM::VSTMDDB_UPD: 3699 case ARM::VSTMSIA_UPD: 3700 case ARM::VSTMSDB_UPD: 3701 case ARM::LDMIA_UPD: 3702 case ARM::LDMDA_UPD: 3703 case ARM::LDMDB_UPD: 3704 case ARM::LDMIB_UPD: 3705 case ARM::STMIA_UPD: 3706 case ARM::STMDA_UPD: 3707 case ARM::STMDB_UPD: 3708 case ARM::STMIB_UPD: 3709 case ARM::tLDMIA_UPD: 3710 case ARM::tSTMIA_UPD: 3711 case ARM::t2LDMIA_UPD: 3712 case ARM::t2LDMDB_UPD: 3713 case ARM::t2STMIA_UPD: 3714 case ARM::t2STMDB_UPD: 3715 ++UOps; // One for base register writeback. 3716 break; 3717 case ARM::LDMIA_RET: 3718 case ARM::tPOP_RET: 3719 case ARM::t2LDMIA_RET: 3720 UOps += 2; // One for base reg wb, one for write to pc. 3721 break; 3722 } 3723 return UOps; 3724 } 3725 3726 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3727 const MachineInstr &MI) const { 3728 if (!ItinData || ItinData->isEmpty()) 3729 return 1; 3730 3731 const MCInstrDesc &Desc = MI.getDesc(); 3732 unsigned Class = Desc.getSchedClass(); 3733 int ItinUOps = ItinData->getNumMicroOps(Class); 3734 if (ItinUOps >= 0) { 3735 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3736 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3737 3738 return ItinUOps; 3739 } 3740 3741 unsigned Opc = MI.getOpcode(); 3742 switch (Opc) { 3743 default: 3744 llvm_unreachable("Unexpected multi-uops instruction!"); 3745 case ARM::VLDMQIA: 3746 case ARM::VSTMQIA: 3747 return 2; 3748 3749 // The number of uOps for load / store multiple are determined by the number 3750 // registers. 3751 // 3752 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3753 // same cycle. The scheduling for the first load / store must be done 3754 // separately by assuming the address is not 64-bit aligned. 3755 // 3756 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3757 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3758 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3759 case ARM::VLDMDIA: 3760 case ARM::VLDMDIA_UPD: 3761 case ARM::VLDMDDB_UPD: 3762 case ARM::VLDMSIA: 3763 case ARM::VLDMSIA_UPD: 3764 case ARM::VLDMSDB_UPD: 3765 case ARM::VSTMDIA: 3766 case ARM::VSTMDIA_UPD: 3767 case ARM::VSTMDDB_UPD: 3768 case ARM::VSTMSIA: 3769 case ARM::VSTMSIA_UPD: 3770 case ARM::VSTMSDB_UPD: { 3771 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3772 return (NumRegs / 2) + (NumRegs % 2) + 1; 3773 } 3774 3775 case ARM::LDMIA_RET: 3776 case ARM::LDMIA: 3777 case ARM::LDMDA: 3778 case ARM::LDMDB: 3779 case ARM::LDMIB: 3780 case ARM::LDMIA_UPD: 3781 case ARM::LDMDA_UPD: 3782 case ARM::LDMDB_UPD: 3783 case ARM::LDMIB_UPD: 3784 case ARM::STMIA: 3785 case ARM::STMDA: 3786 case ARM::STMDB: 3787 case ARM::STMIB: 3788 case ARM::STMIA_UPD: 3789 case ARM::STMDA_UPD: 3790 case ARM::STMDB_UPD: 3791 case ARM::STMIB_UPD: 3792 case ARM::tLDMIA: 3793 case ARM::tLDMIA_UPD: 3794 case ARM::tSTMIA_UPD: 3795 case ARM::tPOP_RET: 3796 case ARM::tPOP: 3797 case ARM::tPUSH: 3798 case ARM::t2LDMIA_RET: 3799 case ARM::t2LDMIA: 3800 case ARM::t2LDMDB: 3801 case ARM::t2LDMIA_UPD: 3802 case ARM::t2LDMDB_UPD: 3803 case ARM::t2STMIA: 3804 case ARM::t2STMDB: 3805 case ARM::t2STMIA_UPD: 3806 case ARM::t2STMDB_UPD: { 3807 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3808 switch (Subtarget.getLdStMultipleTiming()) { 3809 case ARMSubtarget::SingleIssuePlusExtras: 3810 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3811 case ARMSubtarget::SingleIssue: 3812 // Assume the worst. 3813 return NumRegs; 3814 case ARMSubtarget::DoubleIssue: { 3815 if (NumRegs < 4) 3816 return 2; 3817 // 4 registers would be issued: 2, 2. 3818 // 5 registers would be issued: 2, 2, 1. 3819 unsigned UOps = (NumRegs / 2); 3820 if (NumRegs % 2) 3821 ++UOps; 3822 return UOps; 3823 } 3824 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3825 unsigned UOps = (NumRegs / 2); 3826 // If there are odd number of registers or if it's not 64-bit aligned, 3827 // then it takes an extra AGU (Address Generation Unit) cycle. 3828 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3829 (*MI.memoperands_begin())->getAlign() < Align(8)) 3830 ++UOps; 3831 return UOps; 3832 } 3833 } 3834 } 3835 } 3836 llvm_unreachable("Didn't find the number of microops"); 3837 } 3838 3839 int 3840 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3841 const MCInstrDesc &DefMCID, 3842 unsigned DefClass, 3843 unsigned DefIdx, unsigned DefAlign) const { 3844 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3845 if (RegNo <= 0) 3846 // Def is the address writeback. 3847 return ItinData->getOperandCycle(DefClass, DefIdx); 3848 3849 int DefCycle; 3850 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3851 // (regno / 2) + (regno % 2) + 1 3852 DefCycle = RegNo / 2 + 1; 3853 if (RegNo % 2) 3854 ++DefCycle; 3855 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3856 DefCycle = RegNo; 3857 bool isSLoad = false; 3858 3859 switch (DefMCID.getOpcode()) { 3860 default: break; 3861 case ARM::VLDMSIA: 3862 case ARM::VLDMSIA_UPD: 3863 case ARM::VLDMSDB_UPD: 3864 isSLoad = true; 3865 break; 3866 } 3867 3868 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3869 // then it takes an extra cycle. 3870 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3871 ++DefCycle; 3872 } else { 3873 // Assume the worst. 3874 DefCycle = RegNo + 2; 3875 } 3876 3877 return DefCycle; 3878 } 3879 3880 int 3881 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3882 const MCInstrDesc &DefMCID, 3883 unsigned DefClass, 3884 unsigned DefIdx, unsigned DefAlign) const { 3885 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3886 if (RegNo <= 0) 3887 // Def is the address writeback. 3888 return ItinData->getOperandCycle(DefClass, DefIdx); 3889 3890 int DefCycle; 3891 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3892 // 4 registers would be issued: 1, 2, 1. 3893 // 5 registers would be issued: 1, 2, 2. 3894 DefCycle = RegNo / 2; 3895 if (DefCycle < 1) 3896 DefCycle = 1; 3897 // Result latency is issue cycle + 2: E2. 3898 DefCycle += 2; 3899 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3900 DefCycle = (RegNo / 2); 3901 // If there are odd number of registers or if it's not 64-bit aligned, 3902 // then it takes an extra AGU (Address Generation Unit) cycle. 3903 if ((RegNo % 2) || DefAlign < 8) 3904 ++DefCycle; 3905 // Result latency is AGU cycles + 2. 3906 DefCycle += 2; 3907 } else { 3908 // Assume the worst. 3909 DefCycle = RegNo + 2; 3910 } 3911 3912 return DefCycle; 3913 } 3914 3915 int 3916 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3917 const MCInstrDesc &UseMCID, 3918 unsigned UseClass, 3919 unsigned UseIdx, unsigned UseAlign) const { 3920 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3921 if (RegNo <= 0) 3922 return ItinData->getOperandCycle(UseClass, UseIdx); 3923 3924 int UseCycle; 3925 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3926 // (regno / 2) + (regno % 2) + 1 3927 UseCycle = RegNo / 2 + 1; 3928 if (RegNo % 2) 3929 ++UseCycle; 3930 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3931 UseCycle = RegNo; 3932 bool isSStore = false; 3933 3934 switch (UseMCID.getOpcode()) { 3935 default: break; 3936 case ARM::VSTMSIA: 3937 case ARM::VSTMSIA_UPD: 3938 case ARM::VSTMSDB_UPD: 3939 isSStore = true; 3940 break; 3941 } 3942 3943 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3944 // then it takes an extra cycle. 3945 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3946 ++UseCycle; 3947 } else { 3948 // Assume the worst. 3949 UseCycle = RegNo + 2; 3950 } 3951 3952 return UseCycle; 3953 } 3954 3955 int 3956 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3957 const MCInstrDesc &UseMCID, 3958 unsigned UseClass, 3959 unsigned UseIdx, unsigned UseAlign) const { 3960 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3961 if (RegNo <= 0) 3962 return ItinData->getOperandCycle(UseClass, UseIdx); 3963 3964 int UseCycle; 3965 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3966 UseCycle = RegNo / 2; 3967 if (UseCycle < 2) 3968 UseCycle = 2; 3969 // Read in E3. 3970 UseCycle += 2; 3971 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3972 UseCycle = (RegNo / 2); 3973 // If there are odd number of registers or if it's not 64-bit aligned, 3974 // then it takes an extra AGU (Address Generation Unit) cycle. 3975 if ((RegNo % 2) || UseAlign < 8) 3976 ++UseCycle; 3977 } else { 3978 // Assume the worst. 3979 UseCycle = 1; 3980 } 3981 return UseCycle; 3982 } 3983 3984 int 3985 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3986 const MCInstrDesc &DefMCID, 3987 unsigned DefIdx, unsigned DefAlign, 3988 const MCInstrDesc &UseMCID, 3989 unsigned UseIdx, unsigned UseAlign) const { 3990 unsigned DefClass = DefMCID.getSchedClass(); 3991 unsigned UseClass = UseMCID.getSchedClass(); 3992 3993 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3994 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3995 3996 // This may be a def / use of a variable_ops instruction, the operand 3997 // latency might be determinable dynamically. Let the target try to 3998 // figure it out. 3999 int DefCycle = -1; 4000 bool LdmBypass = false; 4001 switch (DefMCID.getOpcode()) { 4002 default: 4003 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4004 break; 4005 4006 case ARM::VLDMDIA: 4007 case ARM::VLDMDIA_UPD: 4008 case ARM::VLDMDDB_UPD: 4009 case ARM::VLDMSIA: 4010 case ARM::VLDMSIA_UPD: 4011 case ARM::VLDMSDB_UPD: 4012 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4013 break; 4014 4015 case ARM::LDMIA_RET: 4016 case ARM::LDMIA: 4017 case ARM::LDMDA: 4018 case ARM::LDMDB: 4019 case ARM::LDMIB: 4020 case ARM::LDMIA_UPD: 4021 case ARM::LDMDA_UPD: 4022 case ARM::LDMDB_UPD: 4023 case ARM::LDMIB_UPD: 4024 case ARM::tLDMIA: 4025 case ARM::tLDMIA_UPD: 4026 case ARM::tPUSH: 4027 case ARM::t2LDMIA_RET: 4028 case ARM::t2LDMIA: 4029 case ARM::t2LDMDB: 4030 case ARM::t2LDMIA_UPD: 4031 case ARM::t2LDMDB_UPD: 4032 LdmBypass = true; 4033 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4034 break; 4035 } 4036 4037 if (DefCycle == -1) 4038 // We can't seem to determine the result latency of the def, assume it's 2. 4039 DefCycle = 2; 4040 4041 int UseCycle = -1; 4042 switch (UseMCID.getOpcode()) { 4043 default: 4044 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4045 break; 4046 4047 case ARM::VSTMDIA: 4048 case ARM::VSTMDIA_UPD: 4049 case ARM::VSTMDDB_UPD: 4050 case ARM::VSTMSIA: 4051 case ARM::VSTMSIA_UPD: 4052 case ARM::VSTMSDB_UPD: 4053 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4054 break; 4055 4056 case ARM::STMIA: 4057 case ARM::STMDA: 4058 case ARM::STMDB: 4059 case ARM::STMIB: 4060 case ARM::STMIA_UPD: 4061 case ARM::STMDA_UPD: 4062 case ARM::STMDB_UPD: 4063 case ARM::STMIB_UPD: 4064 case ARM::tSTMIA_UPD: 4065 case ARM::tPOP_RET: 4066 case ARM::tPOP: 4067 case ARM::t2STMIA: 4068 case ARM::t2STMDB: 4069 case ARM::t2STMIA_UPD: 4070 case ARM::t2STMDB_UPD: 4071 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4072 break; 4073 } 4074 4075 if (UseCycle == -1) 4076 // Assume it's read in the first stage. 4077 UseCycle = 1; 4078 4079 UseCycle = DefCycle - UseCycle + 1; 4080 if (UseCycle > 0) { 4081 if (LdmBypass) { 4082 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4083 // first def operand. 4084 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4085 UseClass, UseIdx)) 4086 --UseCycle; 4087 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4088 UseClass, UseIdx)) { 4089 --UseCycle; 4090 } 4091 } 4092 4093 return UseCycle; 4094 } 4095 4096 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4097 const MachineInstr *MI, unsigned Reg, 4098 unsigned &DefIdx, unsigned &Dist) { 4099 Dist = 0; 4100 4101 MachineBasicBlock::const_iterator I = MI; ++I; 4102 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4103 assert(II->isInsideBundle() && "Empty bundle?"); 4104 4105 int Idx = -1; 4106 while (II->isInsideBundle()) { 4107 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4108 if (Idx != -1) 4109 break; 4110 --II; 4111 ++Dist; 4112 } 4113 4114 assert(Idx != -1 && "Cannot find bundled definition!"); 4115 DefIdx = Idx; 4116 return &*II; 4117 } 4118 4119 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4120 const MachineInstr &MI, unsigned Reg, 4121 unsigned &UseIdx, unsigned &Dist) { 4122 Dist = 0; 4123 4124 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4125 assert(II->isInsideBundle() && "Empty bundle?"); 4126 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4127 4128 // FIXME: This doesn't properly handle multiple uses. 4129 int Idx = -1; 4130 while (II != E && II->isInsideBundle()) { 4131 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4132 if (Idx != -1) 4133 break; 4134 if (II->getOpcode() != ARM::t2IT) 4135 ++Dist; 4136 ++II; 4137 } 4138 4139 if (Idx == -1) { 4140 Dist = 0; 4141 return nullptr; 4142 } 4143 4144 UseIdx = Idx; 4145 return &*II; 4146 } 4147 4148 /// Return the number of cycles to add to (or subtract from) the static 4149 /// itinerary based on the def opcode and alignment. The caller will ensure that 4150 /// adjusted latency is at least one cycle. 4151 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4152 const MachineInstr &DefMI, 4153 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4154 int Adjust = 0; 4155 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4156 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4157 // variants are one cycle cheaper. 4158 switch (DefMCID.getOpcode()) { 4159 default: break; 4160 case ARM::LDRrs: 4161 case ARM::LDRBrs: { 4162 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4163 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4164 if (ShImm == 0 || 4165 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4166 --Adjust; 4167 break; 4168 } 4169 case ARM::t2LDRs: 4170 case ARM::t2LDRBs: 4171 case ARM::t2LDRHs: 4172 case ARM::t2LDRSHs: { 4173 // Thumb2 mode: lsl only. 4174 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4175 if (ShAmt == 0 || ShAmt == 2) 4176 --Adjust; 4177 break; 4178 } 4179 } 4180 } else if (Subtarget.isSwift()) { 4181 // FIXME: Properly handle all of the latency adjustments for address 4182 // writeback. 4183 switch (DefMCID.getOpcode()) { 4184 default: break; 4185 case ARM::LDRrs: 4186 case ARM::LDRBrs: { 4187 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4188 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4189 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4190 if (!isSub && 4191 (ShImm == 0 || 4192 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4193 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4194 Adjust -= 2; 4195 else if (!isSub && 4196 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4197 --Adjust; 4198 break; 4199 } 4200 case ARM::t2LDRs: 4201 case ARM::t2LDRBs: 4202 case ARM::t2LDRHs: 4203 case ARM::t2LDRSHs: { 4204 // Thumb2 mode: lsl only. 4205 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4206 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4207 Adjust -= 2; 4208 break; 4209 } 4210 } 4211 } 4212 4213 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4214 switch (DefMCID.getOpcode()) { 4215 default: break; 4216 case ARM::VLD1q8: 4217 case ARM::VLD1q16: 4218 case ARM::VLD1q32: 4219 case ARM::VLD1q64: 4220 case ARM::VLD1q8wb_fixed: 4221 case ARM::VLD1q16wb_fixed: 4222 case ARM::VLD1q32wb_fixed: 4223 case ARM::VLD1q64wb_fixed: 4224 case ARM::VLD1q8wb_register: 4225 case ARM::VLD1q16wb_register: 4226 case ARM::VLD1q32wb_register: 4227 case ARM::VLD1q64wb_register: 4228 case ARM::VLD2d8: 4229 case ARM::VLD2d16: 4230 case ARM::VLD2d32: 4231 case ARM::VLD2q8: 4232 case ARM::VLD2q16: 4233 case ARM::VLD2q32: 4234 case ARM::VLD2d8wb_fixed: 4235 case ARM::VLD2d16wb_fixed: 4236 case ARM::VLD2d32wb_fixed: 4237 case ARM::VLD2q8wb_fixed: 4238 case ARM::VLD2q16wb_fixed: 4239 case ARM::VLD2q32wb_fixed: 4240 case ARM::VLD2d8wb_register: 4241 case ARM::VLD2d16wb_register: 4242 case ARM::VLD2d32wb_register: 4243 case ARM::VLD2q8wb_register: 4244 case ARM::VLD2q16wb_register: 4245 case ARM::VLD2q32wb_register: 4246 case ARM::VLD3d8: 4247 case ARM::VLD3d16: 4248 case ARM::VLD3d32: 4249 case ARM::VLD1d64T: 4250 case ARM::VLD3d8_UPD: 4251 case ARM::VLD3d16_UPD: 4252 case ARM::VLD3d32_UPD: 4253 case ARM::VLD1d64Twb_fixed: 4254 case ARM::VLD1d64Twb_register: 4255 case ARM::VLD3q8_UPD: 4256 case ARM::VLD3q16_UPD: 4257 case ARM::VLD3q32_UPD: 4258 case ARM::VLD4d8: 4259 case ARM::VLD4d16: 4260 case ARM::VLD4d32: 4261 case ARM::VLD1d64Q: 4262 case ARM::VLD4d8_UPD: 4263 case ARM::VLD4d16_UPD: 4264 case ARM::VLD4d32_UPD: 4265 case ARM::VLD1d64Qwb_fixed: 4266 case ARM::VLD1d64Qwb_register: 4267 case ARM::VLD4q8_UPD: 4268 case ARM::VLD4q16_UPD: 4269 case ARM::VLD4q32_UPD: 4270 case ARM::VLD1DUPq8: 4271 case ARM::VLD1DUPq16: 4272 case ARM::VLD1DUPq32: 4273 case ARM::VLD1DUPq8wb_fixed: 4274 case ARM::VLD1DUPq16wb_fixed: 4275 case ARM::VLD1DUPq32wb_fixed: 4276 case ARM::VLD1DUPq8wb_register: 4277 case ARM::VLD1DUPq16wb_register: 4278 case ARM::VLD1DUPq32wb_register: 4279 case ARM::VLD2DUPd8: 4280 case ARM::VLD2DUPd16: 4281 case ARM::VLD2DUPd32: 4282 case ARM::VLD2DUPd8wb_fixed: 4283 case ARM::VLD2DUPd16wb_fixed: 4284 case ARM::VLD2DUPd32wb_fixed: 4285 case ARM::VLD2DUPd8wb_register: 4286 case ARM::VLD2DUPd16wb_register: 4287 case ARM::VLD2DUPd32wb_register: 4288 case ARM::VLD4DUPd8: 4289 case ARM::VLD4DUPd16: 4290 case ARM::VLD4DUPd32: 4291 case ARM::VLD4DUPd8_UPD: 4292 case ARM::VLD4DUPd16_UPD: 4293 case ARM::VLD4DUPd32_UPD: 4294 case ARM::VLD1LNd8: 4295 case ARM::VLD1LNd16: 4296 case ARM::VLD1LNd32: 4297 case ARM::VLD1LNd8_UPD: 4298 case ARM::VLD1LNd16_UPD: 4299 case ARM::VLD1LNd32_UPD: 4300 case ARM::VLD2LNd8: 4301 case ARM::VLD2LNd16: 4302 case ARM::VLD2LNd32: 4303 case ARM::VLD2LNq16: 4304 case ARM::VLD2LNq32: 4305 case ARM::VLD2LNd8_UPD: 4306 case ARM::VLD2LNd16_UPD: 4307 case ARM::VLD2LNd32_UPD: 4308 case ARM::VLD2LNq16_UPD: 4309 case ARM::VLD2LNq32_UPD: 4310 case ARM::VLD4LNd8: 4311 case ARM::VLD4LNd16: 4312 case ARM::VLD4LNd32: 4313 case ARM::VLD4LNq16: 4314 case ARM::VLD4LNq32: 4315 case ARM::VLD4LNd8_UPD: 4316 case ARM::VLD4LNd16_UPD: 4317 case ARM::VLD4LNd32_UPD: 4318 case ARM::VLD4LNq16_UPD: 4319 case ARM::VLD4LNq32_UPD: 4320 // If the address is not 64-bit aligned, the latencies of these 4321 // instructions increases by one. 4322 ++Adjust; 4323 break; 4324 } 4325 } 4326 return Adjust; 4327 } 4328 4329 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4330 const MachineInstr &DefMI, 4331 unsigned DefIdx, 4332 const MachineInstr &UseMI, 4333 unsigned UseIdx) const { 4334 // No operand latency. The caller may fall back to getInstrLatency. 4335 if (!ItinData || ItinData->isEmpty()) 4336 return -1; 4337 4338 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4339 Register Reg = DefMO.getReg(); 4340 4341 const MachineInstr *ResolvedDefMI = &DefMI; 4342 unsigned DefAdj = 0; 4343 if (DefMI.isBundle()) 4344 ResolvedDefMI = 4345 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4346 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4347 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4348 return 1; 4349 } 4350 4351 const MachineInstr *ResolvedUseMI = &UseMI; 4352 unsigned UseAdj = 0; 4353 if (UseMI.isBundle()) { 4354 ResolvedUseMI = 4355 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4356 if (!ResolvedUseMI) 4357 return -1; 4358 } 4359 4360 return getOperandLatencyImpl( 4361 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4362 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4363 } 4364 4365 int ARMBaseInstrInfo::getOperandLatencyImpl( 4366 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4367 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4368 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4369 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4370 if (Reg == ARM::CPSR) { 4371 if (DefMI.getOpcode() == ARM::FMSTAT) { 4372 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4373 return Subtarget.isLikeA9() ? 1 : 20; 4374 } 4375 4376 // CPSR set and branch can be paired in the same cycle. 4377 if (UseMI.isBranch()) 4378 return 0; 4379 4380 // Otherwise it takes the instruction latency (generally one). 4381 unsigned Latency = getInstrLatency(ItinData, DefMI); 4382 4383 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4384 // its uses. Instructions which are otherwise scheduled between them may 4385 // incur a code size penalty (not able to use the CPSR setting 16-bit 4386 // instructions). 4387 if (Latency > 0 && Subtarget.isThumb2()) { 4388 const MachineFunction *MF = DefMI.getParent()->getParent(); 4389 // FIXME: Use Function::hasOptSize(). 4390 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4391 --Latency; 4392 } 4393 return Latency; 4394 } 4395 4396 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4397 return -1; 4398 4399 unsigned DefAlign = DefMI.hasOneMemOperand() 4400 ? (*DefMI.memoperands_begin())->getAlign().value() 4401 : 0; 4402 unsigned UseAlign = UseMI.hasOneMemOperand() 4403 ? (*UseMI.memoperands_begin())->getAlign().value() 4404 : 0; 4405 4406 // Get the itinerary's latency if possible, and handle variable_ops. 4407 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4408 UseIdx, UseAlign); 4409 // Unable to find operand latency. The caller may resort to getInstrLatency. 4410 if (Latency < 0) 4411 return Latency; 4412 4413 // Adjust for IT block position. 4414 int Adj = DefAdj + UseAdj; 4415 4416 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4417 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4418 if (Adj >= 0 || (int)Latency > -Adj) { 4419 return Latency + Adj; 4420 } 4421 // Return the itinerary latency, which may be zero but not less than zero. 4422 return Latency; 4423 } 4424 4425 int 4426 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4427 SDNode *DefNode, unsigned DefIdx, 4428 SDNode *UseNode, unsigned UseIdx) const { 4429 if (!DefNode->isMachineOpcode()) 4430 return 1; 4431 4432 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4433 4434 if (isZeroCost(DefMCID.Opcode)) 4435 return 0; 4436 4437 if (!ItinData || ItinData->isEmpty()) 4438 return DefMCID.mayLoad() ? 3 : 1; 4439 4440 if (!UseNode->isMachineOpcode()) { 4441 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4442 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4443 int Threshold = 1 + Adj; 4444 return Latency <= Threshold ? 1 : Latency - Adj; 4445 } 4446 4447 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4448 auto *DefMN = cast<MachineSDNode>(DefNode); 4449 unsigned DefAlign = !DefMN->memoperands_empty() 4450 ? (*DefMN->memoperands_begin())->getAlign().value() 4451 : 0; 4452 auto *UseMN = cast<MachineSDNode>(UseNode); 4453 unsigned UseAlign = !UseMN->memoperands_empty() 4454 ? (*UseMN->memoperands_begin())->getAlign().value() 4455 : 0; 4456 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4457 UseMCID, UseIdx, UseAlign); 4458 4459 if (Latency > 1 && 4460 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4461 Subtarget.isCortexA7())) { 4462 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4463 // variants are one cycle cheaper. 4464 switch (DefMCID.getOpcode()) { 4465 default: break; 4466 case ARM::LDRrs: 4467 case ARM::LDRBrs: { 4468 unsigned ShOpVal = 4469 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4470 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4471 if (ShImm == 0 || 4472 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4473 --Latency; 4474 break; 4475 } 4476 case ARM::t2LDRs: 4477 case ARM::t2LDRBs: 4478 case ARM::t2LDRHs: 4479 case ARM::t2LDRSHs: { 4480 // Thumb2 mode: lsl only. 4481 unsigned ShAmt = 4482 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4483 if (ShAmt == 0 || ShAmt == 2) 4484 --Latency; 4485 break; 4486 } 4487 } 4488 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4489 // FIXME: Properly handle all of the latency adjustments for address 4490 // writeback. 4491 switch (DefMCID.getOpcode()) { 4492 default: break; 4493 case ARM::LDRrs: 4494 case ARM::LDRBrs: { 4495 unsigned ShOpVal = 4496 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4497 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4498 if (ShImm == 0 || 4499 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4500 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4501 Latency -= 2; 4502 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4503 --Latency; 4504 break; 4505 } 4506 case ARM::t2LDRs: 4507 case ARM::t2LDRBs: 4508 case ARM::t2LDRHs: 4509 case ARM::t2LDRSHs: 4510 // Thumb2 mode: lsl 0-3 only. 4511 Latency -= 2; 4512 break; 4513 } 4514 } 4515 4516 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4517 switch (DefMCID.getOpcode()) { 4518 default: break; 4519 case ARM::VLD1q8: 4520 case ARM::VLD1q16: 4521 case ARM::VLD1q32: 4522 case ARM::VLD1q64: 4523 case ARM::VLD1q8wb_register: 4524 case ARM::VLD1q16wb_register: 4525 case ARM::VLD1q32wb_register: 4526 case ARM::VLD1q64wb_register: 4527 case ARM::VLD1q8wb_fixed: 4528 case ARM::VLD1q16wb_fixed: 4529 case ARM::VLD1q32wb_fixed: 4530 case ARM::VLD1q64wb_fixed: 4531 case ARM::VLD2d8: 4532 case ARM::VLD2d16: 4533 case ARM::VLD2d32: 4534 case ARM::VLD2q8Pseudo: 4535 case ARM::VLD2q16Pseudo: 4536 case ARM::VLD2q32Pseudo: 4537 case ARM::VLD2d8wb_fixed: 4538 case ARM::VLD2d16wb_fixed: 4539 case ARM::VLD2d32wb_fixed: 4540 case ARM::VLD2q8PseudoWB_fixed: 4541 case ARM::VLD2q16PseudoWB_fixed: 4542 case ARM::VLD2q32PseudoWB_fixed: 4543 case ARM::VLD2d8wb_register: 4544 case ARM::VLD2d16wb_register: 4545 case ARM::VLD2d32wb_register: 4546 case ARM::VLD2q8PseudoWB_register: 4547 case ARM::VLD2q16PseudoWB_register: 4548 case ARM::VLD2q32PseudoWB_register: 4549 case ARM::VLD3d8Pseudo: 4550 case ARM::VLD3d16Pseudo: 4551 case ARM::VLD3d32Pseudo: 4552 case ARM::VLD1d8TPseudo: 4553 case ARM::VLD1d16TPseudo: 4554 case ARM::VLD1d32TPseudo: 4555 case ARM::VLD1d64TPseudo: 4556 case ARM::VLD1d64TPseudoWB_fixed: 4557 case ARM::VLD1d64TPseudoWB_register: 4558 case ARM::VLD3d8Pseudo_UPD: 4559 case ARM::VLD3d16Pseudo_UPD: 4560 case ARM::VLD3d32Pseudo_UPD: 4561 case ARM::VLD3q8Pseudo_UPD: 4562 case ARM::VLD3q16Pseudo_UPD: 4563 case ARM::VLD3q32Pseudo_UPD: 4564 case ARM::VLD3q8oddPseudo: 4565 case ARM::VLD3q16oddPseudo: 4566 case ARM::VLD3q32oddPseudo: 4567 case ARM::VLD3q8oddPseudo_UPD: 4568 case ARM::VLD3q16oddPseudo_UPD: 4569 case ARM::VLD3q32oddPseudo_UPD: 4570 case ARM::VLD4d8Pseudo: 4571 case ARM::VLD4d16Pseudo: 4572 case ARM::VLD4d32Pseudo: 4573 case ARM::VLD1d8QPseudo: 4574 case ARM::VLD1d16QPseudo: 4575 case ARM::VLD1d32QPseudo: 4576 case ARM::VLD1d64QPseudo: 4577 case ARM::VLD1d64QPseudoWB_fixed: 4578 case ARM::VLD1d64QPseudoWB_register: 4579 case ARM::VLD1q8HighQPseudo: 4580 case ARM::VLD1q8LowQPseudo_UPD: 4581 case ARM::VLD1q8HighTPseudo: 4582 case ARM::VLD1q8LowTPseudo_UPD: 4583 case ARM::VLD1q16HighQPseudo: 4584 case ARM::VLD1q16LowQPseudo_UPD: 4585 case ARM::VLD1q16HighTPseudo: 4586 case ARM::VLD1q16LowTPseudo_UPD: 4587 case ARM::VLD1q32HighQPseudo: 4588 case ARM::VLD1q32LowQPseudo_UPD: 4589 case ARM::VLD1q32HighTPseudo: 4590 case ARM::VLD1q32LowTPseudo_UPD: 4591 case ARM::VLD1q64HighQPseudo: 4592 case ARM::VLD1q64LowQPseudo_UPD: 4593 case ARM::VLD1q64HighTPseudo: 4594 case ARM::VLD1q64LowTPseudo_UPD: 4595 case ARM::VLD4d8Pseudo_UPD: 4596 case ARM::VLD4d16Pseudo_UPD: 4597 case ARM::VLD4d32Pseudo_UPD: 4598 case ARM::VLD4q8Pseudo_UPD: 4599 case ARM::VLD4q16Pseudo_UPD: 4600 case ARM::VLD4q32Pseudo_UPD: 4601 case ARM::VLD4q8oddPseudo: 4602 case ARM::VLD4q16oddPseudo: 4603 case ARM::VLD4q32oddPseudo: 4604 case ARM::VLD4q8oddPseudo_UPD: 4605 case ARM::VLD4q16oddPseudo_UPD: 4606 case ARM::VLD4q32oddPseudo_UPD: 4607 case ARM::VLD1DUPq8: 4608 case ARM::VLD1DUPq16: 4609 case ARM::VLD1DUPq32: 4610 case ARM::VLD1DUPq8wb_fixed: 4611 case ARM::VLD1DUPq16wb_fixed: 4612 case ARM::VLD1DUPq32wb_fixed: 4613 case ARM::VLD1DUPq8wb_register: 4614 case ARM::VLD1DUPq16wb_register: 4615 case ARM::VLD1DUPq32wb_register: 4616 case ARM::VLD2DUPd8: 4617 case ARM::VLD2DUPd16: 4618 case ARM::VLD2DUPd32: 4619 case ARM::VLD2DUPd8wb_fixed: 4620 case ARM::VLD2DUPd16wb_fixed: 4621 case ARM::VLD2DUPd32wb_fixed: 4622 case ARM::VLD2DUPd8wb_register: 4623 case ARM::VLD2DUPd16wb_register: 4624 case ARM::VLD2DUPd32wb_register: 4625 case ARM::VLD2DUPq8EvenPseudo: 4626 case ARM::VLD2DUPq8OddPseudo: 4627 case ARM::VLD2DUPq16EvenPseudo: 4628 case ARM::VLD2DUPq16OddPseudo: 4629 case ARM::VLD2DUPq32EvenPseudo: 4630 case ARM::VLD2DUPq32OddPseudo: 4631 case ARM::VLD3DUPq8EvenPseudo: 4632 case ARM::VLD3DUPq8OddPseudo: 4633 case ARM::VLD3DUPq16EvenPseudo: 4634 case ARM::VLD3DUPq16OddPseudo: 4635 case ARM::VLD3DUPq32EvenPseudo: 4636 case ARM::VLD3DUPq32OddPseudo: 4637 case ARM::VLD4DUPd8Pseudo: 4638 case ARM::VLD4DUPd16Pseudo: 4639 case ARM::VLD4DUPd32Pseudo: 4640 case ARM::VLD4DUPd8Pseudo_UPD: 4641 case ARM::VLD4DUPd16Pseudo_UPD: 4642 case ARM::VLD4DUPd32Pseudo_UPD: 4643 case ARM::VLD4DUPq8EvenPseudo: 4644 case ARM::VLD4DUPq8OddPseudo: 4645 case ARM::VLD4DUPq16EvenPseudo: 4646 case ARM::VLD4DUPq16OddPseudo: 4647 case ARM::VLD4DUPq32EvenPseudo: 4648 case ARM::VLD4DUPq32OddPseudo: 4649 case ARM::VLD1LNq8Pseudo: 4650 case ARM::VLD1LNq16Pseudo: 4651 case ARM::VLD1LNq32Pseudo: 4652 case ARM::VLD1LNq8Pseudo_UPD: 4653 case ARM::VLD1LNq16Pseudo_UPD: 4654 case ARM::VLD1LNq32Pseudo_UPD: 4655 case ARM::VLD2LNd8Pseudo: 4656 case ARM::VLD2LNd16Pseudo: 4657 case ARM::VLD2LNd32Pseudo: 4658 case ARM::VLD2LNq16Pseudo: 4659 case ARM::VLD2LNq32Pseudo: 4660 case ARM::VLD2LNd8Pseudo_UPD: 4661 case ARM::VLD2LNd16Pseudo_UPD: 4662 case ARM::VLD2LNd32Pseudo_UPD: 4663 case ARM::VLD2LNq16Pseudo_UPD: 4664 case ARM::VLD2LNq32Pseudo_UPD: 4665 case ARM::VLD4LNd8Pseudo: 4666 case ARM::VLD4LNd16Pseudo: 4667 case ARM::VLD4LNd32Pseudo: 4668 case ARM::VLD4LNq16Pseudo: 4669 case ARM::VLD4LNq32Pseudo: 4670 case ARM::VLD4LNd8Pseudo_UPD: 4671 case ARM::VLD4LNd16Pseudo_UPD: 4672 case ARM::VLD4LNd32Pseudo_UPD: 4673 case ARM::VLD4LNq16Pseudo_UPD: 4674 case ARM::VLD4LNq32Pseudo_UPD: 4675 // If the address is not 64-bit aligned, the latencies of these 4676 // instructions increases by one. 4677 ++Latency; 4678 break; 4679 } 4680 4681 return Latency; 4682 } 4683 4684 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4685 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4686 MI.isImplicitDef()) 4687 return 0; 4688 4689 if (MI.isBundle()) 4690 return 0; 4691 4692 const MCInstrDesc &MCID = MI.getDesc(); 4693 4694 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4695 !Subtarget.cheapPredicableCPSRDef())) { 4696 // When predicated, CPSR is an additional source operand for CPSR updating 4697 // instructions, this apparently increases their latencies. 4698 return 1; 4699 } 4700 return 0; 4701 } 4702 4703 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4704 const MachineInstr &MI, 4705 unsigned *PredCost) const { 4706 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4707 MI.isImplicitDef()) 4708 return 1; 4709 4710 // An instruction scheduler typically runs on unbundled instructions, however 4711 // other passes may query the latency of a bundled instruction. 4712 if (MI.isBundle()) { 4713 unsigned Latency = 0; 4714 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4715 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4716 while (++I != E && I->isInsideBundle()) { 4717 if (I->getOpcode() != ARM::t2IT) 4718 Latency += getInstrLatency(ItinData, *I, PredCost); 4719 } 4720 return Latency; 4721 } 4722 4723 const MCInstrDesc &MCID = MI.getDesc(); 4724 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4725 !Subtarget.cheapPredicableCPSRDef()))) { 4726 // When predicated, CPSR is an additional source operand for CPSR updating 4727 // instructions, this apparently increases their latencies. 4728 *PredCost = 1; 4729 } 4730 // Be sure to call getStageLatency for an empty itinerary in case it has a 4731 // valid MinLatency property. 4732 if (!ItinData) 4733 return MI.mayLoad() ? 3 : 1; 4734 4735 unsigned Class = MCID.getSchedClass(); 4736 4737 // For instructions with variable uops, use uops as latency. 4738 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4739 return getNumMicroOps(ItinData, MI); 4740 4741 // For the common case, fall back on the itinerary's latency. 4742 unsigned Latency = ItinData->getStageLatency(Class); 4743 4744 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4745 unsigned DefAlign = 4746 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4747 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4748 if (Adj >= 0 || (int)Latency > -Adj) { 4749 return Latency + Adj; 4750 } 4751 return Latency; 4752 } 4753 4754 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4755 SDNode *Node) const { 4756 if (!Node->isMachineOpcode()) 4757 return 1; 4758 4759 if (!ItinData || ItinData->isEmpty()) 4760 return 1; 4761 4762 unsigned Opcode = Node->getMachineOpcode(); 4763 switch (Opcode) { 4764 default: 4765 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4766 case ARM::VLDMQIA: 4767 case ARM::VSTMQIA: 4768 return 2; 4769 } 4770 } 4771 4772 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4773 const MachineRegisterInfo *MRI, 4774 const MachineInstr &DefMI, 4775 unsigned DefIdx, 4776 const MachineInstr &UseMI, 4777 unsigned UseIdx) const { 4778 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4779 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4780 if (Subtarget.nonpipelinedVFP() && 4781 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4782 return true; 4783 4784 // Hoist VFP / NEON instructions with 4 or higher latency. 4785 unsigned Latency = 4786 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4787 if (Latency <= 3) 4788 return false; 4789 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4790 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4791 } 4792 4793 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4794 const MachineInstr &DefMI, 4795 unsigned DefIdx) const { 4796 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4797 if (!ItinData || ItinData->isEmpty()) 4798 return false; 4799 4800 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4801 if (DDomain == ARMII::DomainGeneral) { 4802 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4803 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4804 return (DefCycle != -1 && DefCycle <= 2); 4805 } 4806 return false; 4807 } 4808 4809 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4810 StringRef &ErrInfo) const { 4811 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4812 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4813 return false; 4814 } 4815 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4816 // Make sure we don't generate a lo-lo mov that isn't supported. 4817 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4818 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4819 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4820 return false; 4821 } 4822 } 4823 if (MI.getOpcode() == ARM::tPUSH || 4824 MI.getOpcode() == ARM::tPOP || 4825 MI.getOpcode() == ARM::tPOP_RET) { 4826 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) { 4827 if (MI.getOperand(i).isImplicit() || 4828 !MI.getOperand(i).isReg()) 4829 continue; 4830 Register Reg = MI.getOperand(i).getReg(); 4831 if (Reg < ARM::R0 || Reg > ARM::R7) { 4832 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4833 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4834 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4835 return false; 4836 } 4837 } 4838 } 4839 } 4840 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4841 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4842 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4843 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4844 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4845 return false; 4846 } 4847 } 4848 return true; 4849 } 4850 4851 // LoadStackGuard has so far only been implemented for MachO. Different code 4852 // sequence is needed for other targets. 4853 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4854 unsigned LoadImmOpc, 4855 unsigned LoadOpc) const { 4856 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4857 "ROPI/RWPI not currently supported with stack guard"); 4858 4859 MachineBasicBlock &MBB = *MI->getParent(); 4860 DebugLoc DL = MI->getDebugLoc(); 4861 Register Reg = MI->getOperand(0).getReg(); 4862 const GlobalValue *GV = 4863 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4864 MachineInstrBuilder MIB; 4865 4866 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4867 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4868 4869 if (Subtarget.isGVIndirectSymbol(GV)) { 4870 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4871 MIB.addReg(Reg, RegState::Kill).addImm(0); 4872 auto Flags = MachineMemOperand::MOLoad | 4873 MachineMemOperand::MODereferenceable | 4874 MachineMemOperand::MOInvariant; 4875 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4876 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4877 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4878 } 4879 4880 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4881 MIB.addReg(Reg, RegState::Kill) 4882 .addImm(0) 4883 .cloneMemRefs(*MI) 4884 .add(predOps(ARMCC::AL)); 4885 } 4886 4887 bool 4888 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4889 unsigned &AddSubOpc, 4890 bool &NegAcc, bool &HasLane) const { 4891 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4892 if (I == MLxEntryMap.end()) 4893 return false; 4894 4895 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4896 MulOpc = Entry.MulOpc; 4897 AddSubOpc = Entry.AddSubOpc; 4898 NegAcc = Entry.NegAcc; 4899 HasLane = Entry.HasLane; 4900 return true; 4901 } 4902 4903 //===----------------------------------------------------------------------===// 4904 // Execution domains. 4905 //===----------------------------------------------------------------------===// 4906 // 4907 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4908 // and some can go down both. The vmov instructions go down the VFP pipeline, 4909 // but they can be changed to vorr equivalents that are executed by the NEON 4910 // pipeline. 4911 // 4912 // We use the following execution domain numbering: 4913 // 4914 enum ARMExeDomain { 4915 ExeGeneric = 0, 4916 ExeVFP = 1, 4917 ExeNEON = 2 4918 }; 4919 4920 // 4921 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4922 // 4923 std::pair<uint16_t, uint16_t> 4924 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4925 // If we don't have access to NEON instructions then we won't be able 4926 // to swizzle anything to the NEON domain. Check to make sure. 4927 if (Subtarget.hasNEON()) { 4928 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4929 // if they are not predicated. 4930 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4931 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4932 4933 // CortexA9 is particularly picky about mixing the two and wants these 4934 // converted. 4935 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4936 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4937 MI.getOpcode() == ARM::VMOVS)) 4938 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4939 } 4940 // No other instructions can be swizzled, so just determine their domain. 4941 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4942 4943 if (Domain & ARMII::DomainNEON) 4944 return std::make_pair(ExeNEON, 0); 4945 4946 // Certain instructions can go either way on Cortex-A8. 4947 // Treat them as NEON instructions. 4948 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4949 return std::make_pair(ExeNEON, 0); 4950 4951 if (Domain & ARMII::DomainVFP) 4952 return std::make_pair(ExeVFP, 0); 4953 4954 return std::make_pair(ExeGeneric, 0); 4955 } 4956 4957 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4958 unsigned SReg, unsigned &Lane) { 4959 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4960 Lane = 0; 4961 4962 if (DReg != ARM::NoRegister) 4963 return DReg; 4964 4965 Lane = 1; 4966 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4967 4968 assert(DReg && "S-register with no D super-register?"); 4969 return DReg; 4970 } 4971 4972 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4973 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4974 /// zero if no register needs to be defined as implicit-use. 4975 /// 4976 /// If the function cannot determine if an SPR should be marked implicit use or 4977 /// not, it returns false. 4978 /// 4979 /// This function handles cases where an instruction is being modified from taking 4980 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4981 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4982 /// lane of the DPR). 4983 /// 4984 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4985 /// (including the case where the DPR itself is defined), it should not. 4986 /// 4987 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4988 MachineInstr &MI, unsigned DReg, 4989 unsigned Lane, unsigned &ImplicitSReg) { 4990 // If the DPR is defined or used already, the other SPR lane will be chained 4991 // correctly, so there is nothing to be done. 4992 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4993 ImplicitSReg = 0; 4994 return true; 4995 } 4996 4997 // Otherwise we need to go searching to see if the SPR is set explicitly. 4998 ImplicitSReg = TRI->getSubReg(DReg, 4999 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5000 MachineBasicBlock::LivenessQueryResult LQR = 5001 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5002 5003 if (LQR == MachineBasicBlock::LQR_Live) 5004 return true; 5005 else if (LQR == MachineBasicBlock::LQR_Unknown) 5006 return false; 5007 5008 // If the register is known not to be live, there is no need to add an 5009 // implicit-use. 5010 ImplicitSReg = 0; 5011 return true; 5012 } 5013 5014 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5015 unsigned Domain) const { 5016 unsigned DstReg, SrcReg, DReg; 5017 unsigned Lane; 5018 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5019 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5020 switch (MI.getOpcode()) { 5021 default: 5022 llvm_unreachable("cannot handle opcode!"); 5023 break; 5024 case ARM::VMOVD: 5025 if (Domain != ExeNEON) 5026 break; 5027 5028 // Zap the predicate operands. 5029 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5030 5031 // Make sure we've got NEON instructions. 5032 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5033 5034 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5035 DstReg = MI.getOperand(0).getReg(); 5036 SrcReg = MI.getOperand(1).getReg(); 5037 5038 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5039 MI.RemoveOperand(i - 1); 5040 5041 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5042 MI.setDesc(get(ARM::VORRd)); 5043 MIB.addReg(DstReg, RegState::Define) 5044 .addReg(SrcReg) 5045 .addReg(SrcReg) 5046 .add(predOps(ARMCC::AL)); 5047 break; 5048 case ARM::VMOVRS: 5049 if (Domain != ExeNEON) 5050 break; 5051 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5052 5053 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5054 DstReg = MI.getOperand(0).getReg(); 5055 SrcReg = MI.getOperand(1).getReg(); 5056 5057 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5058 MI.RemoveOperand(i - 1); 5059 5060 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5061 5062 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5063 // Note that DSrc has been widened and the other lane may be undef, which 5064 // contaminates the entire register. 5065 MI.setDesc(get(ARM::VGETLNi32)); 5066 MIB.addReg(DstReg, RegState::Define) 5067 .addReg(DReg, RegState::Undef) 5068 .addImm(Lane) 5069 .add(predOps(ARMCC::AL)); 5070 5071 // The old source should be an implicit use, otherwise we might think it 5072 // was dead before here. 5073 MIB.addReg(SrcReg, RegState::Implicit); 5074 break; 5075 case ARM::VMOVSR: { 5076 if (Domain != ExeNEON) 5077 break; 5078 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5079 5080 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5081 DstReg = MI.getOperand(0).getReg(); 5082 SrcReg = MI.getOperand(1).getReg(); 5083 5084 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5085 5086 unsigned ImplicitSReg; 5087 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5088 break; 5089 5090 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5091 MI.RemoveOperand(i - 1); 5092 5093 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5094 // Again DDst may be undefined at the beginning of this instruction. 5095 MI.setDesc(get(ARM::VSETLNi32)); 5096 MIB.addReg(DReg, RegState::Define) 5097 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5098 .addReg(SrcReg) 5099 .addImm(Lane) 5100 .add(predOps(ARMCC::AL)); 5101 5102 // The narrower destination must be marked as set to keep previous chains 5103 // in place. 5104 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5105 if (ImplicitSReg != 0) 5106 MIB.addReg(ImplicitSReg, RegState::Implicit); 5107 break; 5108 } 5109 case ARM::VMOVS: { 5110 if (Domain != ExeNEON) 5111 break; 5112 5113 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5114 DstReg = MI.getOperand(0).getReg(); 5115 SrcReg = MI.getOperand(1).getReg(); 5116 5117 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5118 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5119 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5120 5121 unsigned ImplicitSReg; 5122 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5123 break; 5124 5125 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5126 MI.RemoveOperand(i - 1); 5127 5128 if (DSrc == DDst) { 5129 // Destination can be: 5130 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5131 MI.setDesc(get(ARM::VDUPLN32d)); 5132 MIB.addReg(DDst, RegState::Define) 5133 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5134 .addImm(SrcLane) 5135 .add(predOps(ARMCC::AL)); 5136 5137 // Neither the source or the destination are naturally represented any 5138 // more, so add them in manually. 5139 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5140 MIB.addReg(SrcReg, RegState::Implicit); 5141 if (ImplicitSReg != 0) 5142 MIB.addReg(ImplicitSReg, RegState::Implicit); 5143 break; 5144 } 5145 5146 // In general there's no single instruction that can perform an S <-> S 5147 // move in NEON space, but a pair of VEXT instructions *can* do the 5148 // job. It turns out that the VEXTs needed will only use DSrc once, with 5149 // the position based purely on the combination of lane-0 and lane-1 5150 // involved. For example 5151 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5152 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5153 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5154 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5155 // 5156 // Pattern of the MachineInstrs is: 5157 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5158 MachineInstrBuilder NewMIB; 5159 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5160 DDst); 5161 5162 // On the first instruction, both DSrc and DDst may be undef if present. 5163 // Specifically when the original instruction didn't have them as an 5164 // <imp-use>. 5165 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5166 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5167 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5168 5169 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5170 CurUndef = !MI.readsRegister(CurReg, TRI); 5171 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5172 .addImm(1) 5173 .add(predOps(ARMCC::AL)); 5174 5175 if (SrcLane == DstLane) 5176 NewMIB.addReg(SrcReg, RegState::Implicit); 5177 5178 MI.setDesc(get(ARM::VEXTd32)); 5179 MIB.addReg(DDst, RegState::Define); 5180 5181 // On the second instruction, DDst has definitely been defined above, so 5182 // it is not undef. DSrc, if present, can be undef as above. 5183 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5184 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5185 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5186 5187 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5188 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5189 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5190 .addImm(1) 5191 .add(predOps(ARMCC::AL)); 5192 5193 if (SrcLane != DstLane) 5194 MIB.addReg(SrcReg, RegState::Implicit); 5195 5196 // As before, the original destination is no longer represented, add it 5197 // implicitly. 5198 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5199 if (ImplicitSReg != 0) 5200 MIB.addReg(ImplicitSReg, RegState::Implicit); 5201 break; 5202 } 5203 } 5204 } 5205 5206 //===----------------------------------------------------------------------===// 5207 // Partial register updates 5208 //===----------------------------------------------------------------------===// 5209 // 5210 // Swift renames NEON registers with 64-bit granularity. That means any 5211 // instruction writing an S-reg implicitly reads the containing D-reg. The 5212 // problem is mostly avoided by translating f32 operations to v2f32 operations 5213 // on D-registers, but f32 loads are still a problem. 5214 // 5215 // These instructions can load an f32 into a NEON register: 5216 // 5217 // VLDRS - Only writes S, partial D update. 5218 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5219 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5220 // 5221 // FCONSTD can be used as a dependency-breaking instruction. 5222 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5223 const MachineInstr &MI, unsigned OpNum, 5224 const TargetRegisterInfo *TRI) const { 5225 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5226 if (!PartialUpdateClearance) 5227 return 0; 5228 5229 assert(TRI && "Need TRI instance"); 5230 5231 const MachineOperand &MO = MI.getOperand(OpNum); 5232 if (MO.readsReg()) 5233 return 0; 5234 Register Reg = MO.getReg(); 5235 int UseOp = -1; 5236 5237 switch (MI.getOpcode()) { 5238 // Normal instructions writing only an S-register. 5239 case ARM::VLDRS: 5240 case ARM::FCONSTS: 5241 case ARM::VMOVSR: 5242 case ARM::VMOVv8i8: 5243 case ARM::VMOVv4i16: 5244 case ARM::VMOVv2i32: 5245 case ARM::VMOVv2f32: 5246 case ARM::VMOVv1i64: 5247 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5248 break; 5249 5250 // Explicitly reads the dependency. 5251 case ARM::VLD1LNd32: 5252 UseOp = 3; 5253 break; 5254 default: 5255 return 0; 5256 } 5257 5258 // If this instruction actually reads a value from Reg, there is no unwanted 5259 // dependency. 5260 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5261 return 0; 5262 5263 // We must be able to clobber the whole D-reg. 5264 if (Register::isVirtualRegister(Reg)) { 5265 // Virtual register must be a def undef foo:ssub_0 operand. 5266 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5267 return 0; 5268 } else if (ARM::SPRRegClass.contains(Reg)) { 5269 // Physical register: MI must define the full D-reg. 5270 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5271 &ARM::DPRRegClass); 5272 if (!DReg || !MI.definesRegister(DReg, TRI)) 5273 return 0; 5274 } 5275 5276 // MI has an unwanted D-register dependency. 5277 // Avoid defs in the previous N instructrions. 5278 return PartialUpdateClearance; 5279 } 5280 5281 // Break a partial register dependency after getPartialRegUpdateClearance 5282 // returned non-zero. 5283 void ARMBaseInstrInfo::breakPartialRegDependency( 5284 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5285 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5286 assert(TRI && "Need TRI instance"); 5287 5288 const MachineOperand &MO = MI.getOperand(OpNum); 5289 Register Reg = MO.getReg(); 5290 assert(Register::isPhysicalRegister(Reg) && 5291 "Can't break virtual register dependencies."); 5292 unsigned DReg = Reg; 5293 5294 // If MI defines an S-reg, find the corresponding D super-register. 5295 if (ARM::SPRRegClass.contains(Reg)) { 5296 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5297 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5298 } 5299 5300 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5301 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5302 5303 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5304 // the full D-register by loading the same value to both lanes. The 5305 // instruction is micro-coded with 2 uops, so don't do this until we can 5306 // properly schedule micro-coded instructions. The dispatcher stalls cause 5307 // too big regressions. 5308 5309 // Insert the dependency-breaking FCONSTD before MI. 5310 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5311 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5312 .addImm(96) 5313 .add(predOps(ARMCC::AL)); 5314 MI.addRegisterKilled(DReg, TRI, true); 5315 } 5316 5317 bool ARMBaseInstrInfo::hasNOP() const { 5318 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5319 } 5320 5321 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5322 if (MI->getNumOperands() < 4) 5323 return true; 5324 unsigned ShOpVal = MI->getOperand(3).getImm(); 5325 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5326 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5327 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5328 ((ShImm == 1 || ShImm == 2) && 5329 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5330 return true; 5331 5332 return false; 5333 } 5334 5335 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5336 const MachineInstr &MI, unsigned DefIdx, 5337 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5338 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5339 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5340 5341 switch (MI.getOpcode()) { 5342 case ARM::VMOVDRR: 5343 // dX = VMOVDRR rY, rZ 5344 // is the same as: 5345 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5346 // Populate the InputRegs accordingly. 5347 // rY 5348 const MachineOperand *MOReg = &MI.getOperand(1); 5349 if (!MOReg->isUndef()) 5350 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5351 MOReg->getSubReg(), ARM::ssub_0)); 5352 // rZ 5353 MOReg = &MI.getOperand(2); 5354 if (!MOReg->isUndef()) 5355 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5356 MOReg->getSubReg(), ARM::ssub_1)); 5357 return true; 5358 } 5359 llvm_unreachable("Target dependent opcode missing"); 5360 } 5361 5362 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5363 const MachineInstr &MI, unsigned DefIdx, 5364 RegSubRegPairAndIdx &InputReg) const { 5365 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5366 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5367 5368 switch (MI.getOpcode()) { 5369 case ARM::VMOVRRD: 5370 // rX, rY = VMOVRRD dZ 5371 // is the same as: 5372 // rX = EXTRACT_SUBREG dZ, ssub_0 5373 // rY = EXTRACT_SUBREG dZ, ssub_1 5374 const MachineOperand &MOReg = MI.getOperand(2); 5375 if (MOReg.isUndef()) 5376 return false; 5377 InputReg.Reg = MOReg.getReg(); 5378 InputReg.SubReg = MOReg.getSubReg(); 5379 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5380 return true; 5381 } 5382 llvm_unreachable("Target dependent opcode missing"); 5383 } 5384 5385 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5386 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5387 RegSubRegPairAndIdx &InsertedReg) const { 5388 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5389 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5390 5391 switch (MI.getOpcode()) { 5392 case ARM::VSETLNi32: 5393 // dX = VSETLNi32 dY, rZ, imm 5394 const MachineOperand &MOBaseReg = MI.getOperand(1); 5395 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5396 if (MOInsertedReg.isUndef()) 5397 return false; 5398 const MachineOperand &MOIndex = MI.getOperand(3); 5399 BaseReg.Reg = MOBaseReg.getReg(); 5400 BaseReg.SubReg = MOBaseReg.getSubReg(); 5401 5402 InsertedReg.Reg = MOInsertedReg.getReg(); 5403 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5404 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 5405 return true; 5406 } 5407 llvm_unreachable("Target dependent opcode missing"); 5408 } 5409 5410 std::pair<unsigned, unsigned> 5411 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5412 const unsigned Mask = ARMII::MO_OPTION_MASK; 5413 return std::make_pair(TF & Mask, TF & ~Mask); 5414 } 5415 5416 ArrayRef<std::pair<unsigned, const char *>> 5417 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5418 using namespace ARMII; 5419 5420 static const std::pair<unsigned, const char *> TargetFlags[] = { 5421 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5422 return makeArrayRef(TargetFlags); 5423 } 5424 5425 ArrayRef<std::pair<unsigned, const char *>> 5426 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5427 using namespace ARMII; 5428 5429 static const std::pair<unsigned, const char *> TargetFlags[] = { 5430 {MO_COFFSTUB, "arm-coffstub"}, 5431 {MO_GOT, "arm-got"}, 5432 {MO_SBREL, "arm-sbrel"}, 5433 {MO_DLLIMPORT, "arm-dllimport"}, 5434 {MO_SECREL, "arm-secrel"}, 5435 {MO_NONLAZY, "arm-nonlazy"}}; 5436 return makeArrayRef(TargetFlags); 5437 } 5438 5439 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, 5440 Register Reg) const { 5441 int Sign = 1; 5442 unsigned Opcode = MI.getOpcode(); 5443 int64_t Offset = 0; 5444 5445 // TODO: Handle cases where Reg is a super- or sub-register of the 5446 // destination register. 5447 const MachineOperand &Op0 = MI.getOperand(0); 5448 if (!Op0.isReg() || Reg != Op0.getReg()) 5449 return None; 5450 5451 // We describe SUBri or ADDri instructions. 5452 if (Opcode == ARM::SUBri) 5453 Sign = -1; 5454 else if (Opcode != ARM::ADDri) 5455 return None; 5456 5457 // TODO: Third operand can be global address (usually some string). Since 5458 // strings can be relocated we cannot calculate their offsets for 5459 // now. 5460 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5461 return None; 5462 5463 Offset = MI.getOperand(2).getImm() * Sign; 5464 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5465 } 5466 5467 bool llvm::registerDefinedBetween(unsigned Reg, 5468 MachineBasicBlock::iterator From, 5469 MachineBasicBlock::iterator To, 5470 const TargetRegisterInfo *TRI) { 5471 for (auto I = From; I != To; ++I) 5472 if (I->modifiesRegister(Reg, TRI)) 5473 return true; 5474 return false; 5475 } 5476 5477 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5478 const TargetRegisterInfo *TRI) { 5479 // Search backwards to the instruction that defines CSPR. This may or not 5480 // be a CMP, we check that after this loop. If we find another instruction 5481 // that reads cpsr, we return nullptr. 5482 MachineBasicBlock::iterator CmpMI = Br; 5483 while (CmpMI != Br->getParent()->begin()) { 5484 --CmpMI; 5485 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5486 break; 5487 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5488 break; 5489 } 5490 5491 // Check that this inst is a CMP r[0-7], #0 and that the register 5492 // is not redefined between the cmp and the br. 5493 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5494 return nullptr; 5495 Register Reg = CmpMI->getOperand(0).getReg(); 5496 Register PredReg; 5497 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5498 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5499 return nullptr; 5500 if (!isARMLowRegister(Reg)) 5501 return nullptr; 5502 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5503 return nullptr; 5504 5505 return &*CmpMI; 5506 } 5507 5508 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5509 const ARMSubtarget *Subtarget, 5510 bool ForCodesize) { 5511 if (Subtarget->isThumb()) { 5512 if (Val <= 255) // MOV 5513 return ForCodesize ? 2 : 1; 5514 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5515 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5516 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5517 return ForCodesize ? 4 : 1; 5518 if (Val <= 510) // MOV + ADDi8 5519 return ForCodesize ? 4 : 2; 5520 if (~Val <= 255) // MOV + MVN 5521 return ForCodesize ? 4 : 2; 5522 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5523 return ForCodesize ? 4 : 2; 5524 } else { 5525 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5526 return ForCodesize ? 4 : 1; 5527 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5528 return ForCodesize ? 4 : 1; 5529 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5530 return ForCodesize ? 4 : 1; 5531 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5532 return ForCodesize ? 8 : 2; 5533 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5534 return ForCodesize ? 8 : 2; 5535 } 5536 if (Subtarget->useMovt()) // MOVW + MOVT 5537 return ForCodesize ? 8 : 2; 5538 return ForCodesize ? 8 : 3; // Literal pool load 5539 } 5540 5541 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5542 const ARMSubtarget *Subtarget, 5543 bool ForCodesize) { 5544 // Check with ForCodesize 5545 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5546 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5547 if (Cost1 < Cost2) 5548 return true; 5549 if (Cost1 > Cost2) 5550 return false; 5551 5552 // If they are equal, try with !ForCodesize 5553 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5554 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5555 } 5556 5557 /// Constants defining how certain sequences should be outlined. 5558 /// This encompasses how an outlined function should be called, and what kind of 5559 /// frame should be emitted for that outlined function. 5560 /// 5561 /// \p MachineOutlinerTailCall implies that the function is being created from 5562 /// a sequence of instructions ending in a return. 5563 /// 5564 /// That is, 5565 /// 5566 /// I1 OUTLINED_FUNCTION: 5567 /// I2 --> B OUTLINED_FUNCTION I1 5568 /// BX LR I2 5569 /// BX LR 5570 /// 5571 /// +-------------------------+--------+-----+ 5572 /// | | Thumb2 | ARM | 5573 /// +-------------------------+--------+-----+ 5574 /// | Call overhead in Bytes | 4 | 4 | 5575 /// | Frame overhead in Bytes | 0 | 0 | 5576 /// | Stack fixup required | No | No | 5577 /// +-------------------------+--------+-----+ 5578 /// 5579 /// \p MachineOutlinerThunk implies that the function is being created from 5580 /// a sequence of instructions ending in a call. The outlined function is 5581 /// called with a BL instruction, and the outlined function tail-calls the 5582 /// original call destination. 5583 /// 5584 /// That is, 5585 /// 5586 /// I1 OUTLINED_FUNCTION: 5587 /// I2 --> BL OUTLINED_FUNCTION I1 5588 /// BL f I2 5589 /// B f 5590 /// 5591 /// +-------------------------+--------+-----+ 5592 /// | | Thumb2 | ARM | 5593 /// +-------------------------+--------+-----+ 5594 /// | Call overhead in Bytes | 4 | 4 | 5595 /// | Frame overhead in Bytes | 0 | 0 | 5596 /// | Stack fixup required | No | No | 5597 /// +-------------------------+--------+-----+ 5598 /// 5599 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5600 /// a BL instruction, but doesn't require LR to be saved and restored. This 5601 /// happens when LR is known to be dead. 5602 /// 5603 /// That is, 5604 /// 5605 /// I1 OUTLINED_FUNCTION: 5606 /// I2 --> BL OUTLINED_FUNCTION I1 5607 /// I3 I2 5608 /// I3 5609 /// BX LR 5610 /// 5611 /// +-------------------------+--------+-----+ 5612 /// | | Thumb2 | ARM | 5613 /// +-------------------------+--------+-----+ 5614 /// | Call overhead in Bytes | 4 | 4 | 5615 /// | Frame overhead in Bytes | 4 | 4 | 5616 /// | Stack fixup required | No | No | 5617 /// +-------------------------+--------+-----+ 5618 /// 5619 /// \p MachineOutlinerRegSave implies that the function should be called with a 5620 /// save and restore of LR to an available register. This allows us to avoid 5621 /// stack fixups. Note that this outlining variant is compatible with the 5622 /// NoLRSave case. 5623 /// 5624 /// That is, 5625 /// 5626 /// I1 Save LR OUTLINED_FUNCTION: 5627 /// I2 --> BL OUTLINED_FUNCTION I1 5628 /// I3 Restore LR I2 5629 /// I3 5630 /// BX LR 5631 /// 5632 /// +-------------------------+--------+-----+ 5633 /// | | Thumb2 | ARM | 5634 /// +-------------------------+--------+-----+ 5635 /// | Call overhead in Bytes | 8 | 12 | 5636 /// | Frame overhead in Bytes | 2 | 4 | 5637 /// | Stack fixup required | No | No | 5638 /// +-------------------------+--------+-----+ 5639 /// 5640 /// \p MachineOutlinerDefault implies that the function should be called with 5641 /// a save and restore of LR to the stack. 5642 /// 5643 /// That is, 5644 /// 5645 /// I1 Save LR OUTLINED_FUNCTION: 5646 /// I2 --> BL OUTLINED_FUNCTION I1 5647 /// I3 Restore LR I2 5648 /// I3 5649 /// BX LR 5650 /// 5651 /// +-------------------------+--------+-----+ 5652 /// | | Thumb2 | ARM | 5653 /// +-------------------------+--------+-----+ 5654 /// | Call overhead in Bytes | 8 | 12 | 5655 /// | Frame overhead in Bytes | 2 | 4 | 5656 /// | Stack fixup required | Yes | Yes | 5657 /// +-------------------------+--------+-----+ 5658 5659 enum MachineOutlinerClass { 5660 MachineOutlinerTailCall, 5661 MachineOutlinerThunk, 5662 MachineOutlinerNoLRSave, 5663 MachineOutlinerRegSave, 5664 MachineOutlinerDefault 5665 }; 5666 5667 enum MachineOutlinerMBBFlags { 5668 LRUnavailableSomewhere = 0x2, 5669 HasCalls = 0x4, 5670 UnsafeRegsDead = 0x8 5671 }; 5672 5673 struct OutlinerCosts { 5674 const int CallTailCall; 5675 const int FrameTailCall; 5676 const int CallThunk; 5677 const int FrameThunk; 5678 const int CallNoLRSave; 5679 const int FrameNoLRSave; 5680 const int CallRegSave; 5681 const int FrameRegSave; 5682 const int CallDefault; 5683 const int FrameDefault; 5684 const int SaveRestoreLROnStack; 5685 5686 OutlinerCosts(const ARMSubtarget &target) 5687 : CallTailCall(target.isThumb() ? 4 : 4), 5688 FrameTailCall(target.isThumb() ? 0 : 0), 5689 CallThunk(target.isThumb() ? 4 : 4), 5690 FrameThunk(target.isThumb() ? 0 : 0), 5691 CallNoLRSave(target.isThumb() ? 4 : 4), 5692 FrameNoLRSave(target.isThumb() ? 4 : 4), 5693 CallRegSave(target.isThumb() ? 8 : 12), 5694 FrameRegSave(target.isThumb() ? 2 : 4), 5695 CallDefault(target.isThumb() ? 8 : 12), 5696 FrameDefault(target.isThumb() ? 2 : 4), 5697 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5698 }; 5699 5700 unsigned 5701 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const { 5702 assert(C.LRUWasSet && "LRU wasn't set?"); 5703 MachineFunction *MF = C.getMF(); 5704 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>( 5705 MF->getSubtarget().getRegisterInfo()); 5706 5707 BitVector regsReserved = ARI->getReservedRegs(*MF); 5708 // Check if there is an available register across the sequence that we can 5709 // use. 5710 for (unsigned Reg : ARM::rGPRRegClass) { 5711 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5712 Reg != ARM::LR && // LR is not reserved, but don't use it. 5713 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5714 C.LRU.available(Reg) && C.UsedInSequence.available(Reg)) 5715 return Reg; 5716 } 5717 5718 // No suitable register. Return 0. 5719 return 0u; 5720 } 5721 5722 // Compute liveness of LR at the point after the interval [I, E), which 5723 // denotes a *backward* iteration through instructions. Used only for return 5724 // basic blocks, which do not end with a tail call. 5725 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5726 MachineBasicBlock::reverse_iterator I, 5727 MachineBasicBlock::reverse_iterator E) { 5728 // At the end of the function LR dead. 5729 bool Live = false; 5730 for (; I != E; ++I) { 5731 const MachineInstr &MI = *I; 5732 5733 // Check defs of LR. 5734 if (MI.modifiesRegister(ARM::LR, &TRI)) 5735 Live = false; 5736 5737 // Check uses of LR. 5738 unsigned Opcode = MI.getOpcode(); 5739 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5740 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5741 Opcode == ARM::tBXNS_RET) { 5742 // These instructions use LR, but it's not an (explicit or implicit) 5743 // operand. 5744 Live = true; 5745 continue; 5746 } 5747 if (MI.readsRegister(ARM::LR, &TRI)) 5748 Live = true; 5749 } 5750 return !Live; 5751 } 5752 5753 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo( 5754 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5755 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 5756 unsigned SequenceSize = 5757 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 5758 [this](unsigned Sum, const MachineInstr &MI) { 5759 return Sum + getInstSizeInBytes(MI); 5760 }); 5761 5762 // Properties about candidate MBBs that hold for all of them. 5763 unsigned FlagsSetInAll = 0xF; 5764 5765 // Compute liveness information for each candidate, and set FlagsSetInAll. 5766 const TargetRegisterInfo &TRI = getRegisterInfo(); 5767 std::for_each( 5768 RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), 5769 [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; }); 5770 5771 // According to the ARM Procedure Call Standard, the following are 5772 // undefined on entry/exit from a function call: 5773 // 5774 // * Register R12(IP), 5775 // * Condition codes (and thus the CPSR register) 5776 // 5777 // Since we control the instructions which are part of the outlined regions 5778 // we don't need to be fully compliant with the AAPCS, but we have to 5779 // guarantee that if a veneer is inserted at link time the code is still 5780 // correct. Because of this, we can't outline any sequence of instructions 5781 // where one of these registers is live into/across it. Thus, we need to 5782 // delete those candidates. 5783 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5784 // If the unsafe registers in this block are all dead, then we don't need 5785 // to compute liveness here. 5786 if (C.Flags & UnsafeRegsDead) 5787 return false; 5788 C.initLRU(TRI); 5789 LiveRegUnits LRU = C.LRU; 5790 return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR)); 5791 }; 5792 5793 // Are there any candidates where those registers are live? 5794 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5795 // Erase every candidate that violates the restrictions above. (It could be 5796 // true that we have viable candidates, so it's not worth bailing out in 5797 // the case that, say, 1 out of 20 candidates violate the restructions.) 5798 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5799 5800 // If the sequence doesn't have enough candidates left, then we're done. 5801 if (RepeatedSequenceLocs.size() < 2) 5802 return outliner::OutlinedFunction(); 5803 } 5804 5805 // At this point, we have only "safe" candidates to outline. Figure out 5806 // frame + call instruction information. 5807 5808 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 5809 5810 // Helper lambda which sets call information for every candidate. 5811 auto SetCandidateCallInfo = 5812 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5813 for (outliner::Candidate &C : RepeatedSequenceLocs) 5814 C.setCallInfo(CallID, NumBytesForCall); 5815 }; 5816 5817 OutlinerCosts Costs(Subtarget); 5818 unsigned FrameID = MachineOutlinerDefault; 5819 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 5820 5821 // If the last instruction in any candidate is a terminator, then we should 5822 // tail call all of the candidates. 5823 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 5824 FrameID = MachineOutlinerTailCall; 5825 NumBytesToCreateFrame = Costs.FrameTailCall; 5826 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 5827 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 5828 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 5829 LastInstrOpcode == ARM::tBLXr || 5830 LastInstrOpcode == ARM::tBLXr_noip || 5831 LastInstrOpcode == ARM::tBLXi) { 5832 FrameID = MachineOutlinerThunk; 5833 NumBytesToCreateFrame = Costs.FrameThunk; 5834 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 5835 } else { 5836 // We need to decide how to emit calls + frames. We can always emit the same 5837 // frame if we don't need to save to the stack. If we have to save to the 5838 // stack, then we need a different frame. 5839 unsigned NumBytesNoStackCalls = 0; 5840 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 5841 5842 for (outliner::Candidate &C : RepeatedSequenceLocs) { 5843 C.initLRU(TRI); 5844 // LR liveness is overestimated in return blocks, unless they end with a 5845 // tail call. 5846 const auto Last = C.getMBB()->rbegin(); 5847 const bool LRIsAvailable = 5848 C.getMBB()->isReturnBlock() && !Last->isCall() 5849 ? isLRAvailable(TRI, Last, 5850 (MachineBasicBlock::reverse_iterator)C.front()) 5851 : C.LRU.available(ARM::LR); 5852 if (LRIsAvailable) { 5853 FrameID = MachineOutlinerNoLRSave; 5854 NumBytesNoStackCalls += Costs.CallNoLRSave; 5855 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 5856 CandidatesWithoutStackFixups.push_back(C); 5857 } 5858 5859 // Is an unused register available? If so, we won't modify the stack, so 5860 // we can outline with the same frame type as those that don't save LR. 5861 else if (findRegisterToSaveLRTo(C)) { 5862 FrameID = MachineOutlinerRegSave; 5863 NumBytesNoStackCalls += Costs.CallRegSave; 5864 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 5865 CandidatesWithoutStackFixups.push_back(C); 5866 } 5867 5868 // Is SP used in the sequence at all? If not, we don't have to modify 5869 // the stack, so we are guaranteed to get the same frame. 5870 else if (C.UsedInSequence.available(ARM::SP)) { 5871 NumBytesNoStackCalls += Costs.CallDefault; 5872 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 5873 CandidatesWithoutStackFixups.push_back(C); 5874 } 5875 5876 // If we outline this, we need to modify the stack. Pretend we don't 5877 // outline this by saving all of its bytes. 5878 else 5879 NumBytesNoStackCalls += SequenceSize; 5880 } 5881 5882 // If there are no places where we have to save LR, then note that we don't 5883 // have to update the stack. Otherwise, give every candidate the default 5884 // call type 5885 if (NumBytesNoStackCalls <= 5886 RepeatedSequenceLocs.size() * Costs.CallDefault) { 5887 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 5888 FrameID = MachineOutlinerNoLRSave; 5889 } else 5890 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 5891 } 5892 5893 // Does every candidate's MBB contain a call? If so, then we might have a 5894 // call in the range. 5895 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 5896 // check if the range contains a call. These require a save + restore of 5897 // the link register. 5898 if (std::any_of(FirstCand.front(), FirstCand.back(), 5899 [](const MachineInstr &MI) { return MI.isCall(); })) 5900 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 5901 5902 // Handle the last instruction separately. If it is tail call, then the 5903 // last instruction is a call, we don't want to save + restore in this 5904 // case. However, it could be possible that the last instruction is a 5905 // call without it being valid to tail call this sequence. We should 5906 // consider this as well. 5907 else if (FrameID != MachineOutlinerThunk && 5908 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) 5909 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 5910 } 5911 5912 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 5913 NumBytesToCreateFrame, FrameID); 5914 } 5915 5916 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 5917 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 5918 const Function &F = MF.getFunction(); 5919 5920 // Can F be deduplicated by the linker? If it can, don't outline from it. 5921 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 5922 return false; 5923 5924 // Don't outline from functions with section markings; the program could 5925 // expect that all the code is in the named section. 5926 // FIXME: Allow outlining from multiple functions with the same section 5927 // marking. 5928 if (F.hasSection()) 5929 return false; 5930 5931 // FIXME: Thumb1 outlining is not handled 5932 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 5933 return false; 5934 5935 // It's safe to outline from MF. 5936 return true; 5937 } 5938 5939 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 5940 unsigned &Flags) const { 5941 // Check if LR is available through all of the MBB. If it's not, then set 5942 // a flag. 5943 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 5944 "Suitable Machine Function for outlining must track liveness"); 5945 5946 LiveRegUnits LRU(getRegisterInfo()); 5947 5948 std::for_each(MBB.rbegin(), MBB.rend(), 5949 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); }); 5950 5951 // Check if each of the unsafe registers are available... 5952 bool R12AvailableInBlock = LRU.available(ARM::R12); 5953 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 5954 5955 // If all of these are dead (and not live out), we know we don't have to check 5956 // them later. 5957 if (R12AvailableInBlock && CPSRAvailableInBlock) 5958 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 5959 5960 // Now, add the live outs to the set. 5961 LRU.addLiveOuts(MBB); 5962 5963 // If any of these registers is available in the MBB, but also a live out of 5964 // the block, then we know outlining is unsafe. 5965 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 5966 return false; 5967 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 5968 return false; 5969 5970 // Check if there's a call inside this MachineBasicBlock. If there is, then 5971 // set a flag. 5972 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 5973 Flags |= MachineOutlinerMBBFlags::HasCalls; 5974 5975 // LR liveness is overestimated in return blocks. 5976 5977 bool LRIsAvailable = 5978 MBB.isReturnBlock() && !MBB.back().isCall() 5979 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 5980 : LRU.available(ARM::LR); 5981 if (!LRIsAvailable) 5982 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 5983 5984 return true; 5985 } 5986 5987 outliner::InstrType 5988 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, 5989 unsigned Flags) const { 5990 MachineInstr &MI = *MIT; 5991 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5992 5993 // Be conservative with inline ASM 5994 if (MI.isInlineAsm()) 5995 return outliner::InstrType::Illegal; 5996 5997 // Don't allow debug values to impact outlining type. 5998 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 5999 return outliner::InstrType::Invisible; 6000 6001 // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much 6002 // so we can go ahead and skip over them. 6003 if (MI.isKill() || MI.isImplicitDef()) 6004 return outliner::InstrType::Invisible; 6005 6006 // PIC instructions contain labels, outlining them would break offset 6007 // computing. unsigned Opc = MI.getOpcode(); 6008 unsigned Opc = MI.getOpcode(); 6009 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6010 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6011 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6012 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6013 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6014 Opc == ARM::t2MOV_ga_pcrel) 6015 return outliner::InstrType::Illegal; 6016 6017 // Be conservative with ARMv8.1 MVE instructions. 6018 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6019 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6020 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6021 Opc == ARM::t2LoopEndDec) 6022 return outliner::InstrType::Illegal; 6023 6024 const MCInstrDesc &MCID = MI.getDesc(); 6025 uint64_t MIFlags = MCID.TSFlags; 6026 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6027 return outliner::InstrType::Illegal; 6028 6029 // Is this a terminator for a basic block? 6030 if (MI.isTerminator()) { 6031 // Don't outline if the branch is not unconditional. 6032 if (isPredicated(MI)) 6033 return outliner::InstrType::Illegal; 6034 6035 // Is this the end of a function? 6036 if (MI.getParent()->succ_empty()) 6037 return outliner::InstrType::Legal; 6038 6039 // It's not, so don't outline it. 6040 return outliner::InstrType::Illegal; 6041 } 6042 6043 // Make sure none of the operands are un-outlinable. 6044 for (const MachineOperand &MOP : MI.operands()) { 6045 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 6046 MOP.isTargetIndex()) 6047 return outliner::InstrType::Illegal; 6048 } 6049 6050 // Don't outline if link register or program counter value are used. 6051 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6052 return outliner::InstrType::Illegal; 6053 6054 if (MI.isCall()) { 6055 // Get the function associated with the call. Look at each operand and find 6056 // the one that represents the calle and get its name. 6057 const Function *Callee = nullptr; 6058 for (const MachineOperand &MOP : MI.operands()) { 6059 if (MOP.isGlobal()) { 6060 Callee = dyn_cast<Function>(MOP.getGlobal()); 6061 break; 6062 } 6063 } 6064 6065 // Dont't outline calls to "mcount" like functions, in particular Linux 6066 // kernel function tracing relies on it. 6067 if (Callee && 6068 (Callee->getName() == "\01__gnu_mcount_nc" || 6069 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6070 return outliner::InstrType::Illegal; 6071 6072 // If we don't know anything about the callee, assume it depends on the 6073 // stack layout of the caller. In that case, it's only legal to outline 6074 // as a tail-call. Explicitly list the call instructions we know about so 6075 // we don't get unexpected results with call pseudo-instructions. 6076 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6077 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6078 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6079 Opc == ARM::tBLXi) 6080 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6081 6082 if (!Callee) 6083 return UnknownCallOutlineType; 6084 6085 // We have a function we have information about. Check if it's something we 6086 // can safely outline. 6087 MachineFunction *MF = MI.getParent()->getParent(); 6088 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 6089 6090 // We don't know what's going on with the callee at all. Don't touch it. 6091 if (!CalleeMF) 6092 return UnknownCallOutlineType; 6093 6094 // Check if we know anything about the callee saves on the function. If we 6095 // don't, then don't touch it, since that implies that we haven't computed 6096 // anything about its stack frame yet. 6097 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6098 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6099 MFI.getNumObjects() > 0) 6100 return UnknownCallOutlineType; 6101 6102 // At this point, we can say that CalleeMF ought to not pass anything on the 6103 // stack. Therefore, we can outline it. 6104 return outliner::InstrType::Legal; 6105 } 6106 6107 // Since calls are handled, don't touch LR or PC 6108 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6109 return outliner::InstrType::Illegal; 6110 6111 // Does this use the stack? 6112 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6113 // True if there is no chance that any outlined candidate from this range 6114 // could require stack fixups. That is, both 6115 // * LR is available in the range (No save/restore around call) 6116 // * The range doesn't include calls (No save/restore in outlined frame) 6117 // are true. 6118 // FIXME: This is very restrictive; the flags check the whole block, 6119 // not just the bit we will try to outline. 6120 bool MightNeedStackFixUp = 6121 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6122 MachineOutlinerMBBFlags::HasCalls)); 6123 6124 if (!MightNeedStackFixUp) 6125 return outliner::InstrType::Legal; 6126 6127 return outliner::InstrType::Illegal; 6128 } 6129 6130 // Be conservative with IT blocks. 6131 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6132 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6133 return outliner::InstrType::Illegal; 6134 6135 // Don't outline positions. 6136 if (MI.isPosition()) 6137 return outliner::InstrType::Illegal; 6138 6139 return outliner::InstrType::Legal; 6140 } 6141 6142 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6143 MachineBasicBlock::iterator It) const { 6144 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6145 int Align = -Subtarget.getStackAlignment().value(); 6146 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6147 .addReg(ARM::LR, RegState::Kill) 6148 .addReg(ARM::SP) 6149 .addImm(Align) 6150 .add(predOps(ARMCC::AL)); 6151 } 6152 6153 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack( 6154 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6155 MachineFunction &MF = *MBB.getParent(); 6156 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6157 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6158 int Align = Subtarget.getStackAlignment().value(); 6159 // Add a CFI saying the stack was moved down. 6160 int64_t StackPosEntry = 6161 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6162 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6163 .addCFIIndex(StackPosEntry) 6164 .setMIFlags(MachineInstr::FrameSetup); 6165 6166 // Add a CFI saying that the LR that we want to find is now higher than 6167 // before. 6168 int64_t LRPosEntry = 6169 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align)); 6170 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6171 .addCFIIndex(LRPosEntry) 6172 .setMIFlags(MachineInstr::FrameSetup); 6173 } 6174 6175 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6176 MachineBasicBlock::iterator It, 6177 Register Reg) const { 6178 MachineFunction &MF = *MBB.getParent(); 6179 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6180 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6181 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6182 6183 int64_t LRPosEntry = MF.addFrameInst( 6184 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6185 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6186 .addCFIIndex(LRPosEntry) 6187 .setMIFlags(MachineInstr::FrameSetup); 6188 } 6189 6190 void ARMBaseInstrInfo::restoreLRFromStack( 6191 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6192 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6193 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6194 .addReg(ARM::SP, RegState::Define) 6195 .addReg(ARM::SP); 6196 if (!Subtarget.isThumb()) 6197 MIB.addReg(0); 6198 MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL)); 6199 } 6200 6201 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack( 6202 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6203 // Now stack has moved back up... 6204 MachineFunction &MF = *MBB.getParent(); 6205 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6206 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6207 int64_t StackPosEntry = 6208 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6209 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6210 .addCFIIndex(StackPosEntry) 6211 .setMIFlags(MachineInstr::FrameDestroy); 6212 6213 // ... and we have restored LR. 6214 int64_t LRPosEntry = 6215 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6216 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6217 .addCFIIndex(LRPosEntry) 6218 .setMIFlags(MachineInstr::FrameDestroy); 6219 } 6220 6221 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6222 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6223 MachineFunction &MF = *MBB.getParent(); 6224 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6225 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6226 6227 int64_t LRPosEntry = 6228 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6229 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6230 .addCFIIndex(LRPosEntry) 6231 .setMIFlags(MachineInstr::FrameDestroy); 6232 } 6233 6234 void ARMBaseInstrInfo::buildOutlinedFrame( 6235 MachineBasicBlock &MBB, MachineFunction &MF, 6236 const outliner::OutlinedFunction &OF) const { 6237 // For thunk outlining, rewrite the last instruction from a call to a 6238 // tail-call. 6239 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6240 MachineInstr *Call = &*--MBB.instr_end(); 6241 bool isThumb = Subtarget.isThumb(); 6242 unsigned FuncOp = isThumb ? 2 : 0; 6243 unsigned Opc = Call->getOperand(FuncOp).isReg() 6244 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6245 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6246 : ARM::tTAILJMPdND 6247 : ARM::TAILJMPd; 6248 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6249 .add(Call->getOperand(FuncOp)); 6250 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6251 MIB.add(predOps(ARMCC::AL)); 6252 Call->eraseFromParent(); 6253 } 6254 6255 // Is there a call in the outlined range? 6256 auto IsNonTailCall = [](MachineInstr &MI) { 6257 return MI.isCall() && !MI.isReturn(); 6258 }; 6259 if (std::any_of(MBB.instr_begin(), MBB.instr_end(), IsNonTailCall)) { 6260 MachineBasicBlock::iterator It = MBB.begin(); 6261 MachineBasicBlock::iterator Et = MBB.end(); 6262 6263 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6264 OF.FrameConstructionID == MachineOutlinerThunk) 6265 Et = std::prev(MBB.end()); 6266 6267 // We have to save and restore LR, we need to add it to the liveins if it 6268 // is not already part of the set. This is suffient since outlined 6269 // functions only have one block. 6270 if (!MBB.isLiveIn(ARM::LR)) 6271 MBB.addLiveIn(ARM::LR); 6272 6273 // Insert a save before the outlined region 6274 saveLROnStack(MBB, It); 6275 emitCFIForLRSaveOnStack(MBB, It); 6276 6277 // Insert a restore before the terminator for the function. Restore LR. 6278 restoreLRFromStack(MBB, Et); 6279 emitCFIForLRRestoreFromStack(MBB, Et); 6280 } 6281 6282 // If this is a tail call outlined function, then there's already a return. 6283 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6284 OF.FrameConstructionID == MachineOutlinerThunk) 6285 return; 6286 6287 // Here we have to insert the return ourselves. Get the correct opcode from 6288 // current feature set. 6289 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6290 .add(predOps(ARMCC::AL)); 6291 } 6292 6293 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6294 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6295 MachineFunction &MF, const outliner::Candidate &C) const { 6296 MachineInstrBuilder MIB; 6297 MachineBasicBlock::iterator CallPt; 6298 unsigned Opc; 6299 bool isThumb = Subtarget.isThumb(); 6300 6301 // Are we tail calling? 6302 if (C.CallConstructionID == MachineOutlinerTailCall) { 6303 // If yes, then we can just branch to the label. 6304 Opc = isThumb 6305 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6306 : ARM::TAILJMPd; 6307 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6308 .addGlobalAddress(M.getNamedValue(MF.getName())); 6309 if (isThumb) 6310 MIB.add(predOps(ARMCC::AL)); 6311 It = MBB.insert(It, MIB); 6312 return It; 6313 } 6314 6315 // Create the call instruction. 6316 Opc = isThumb ? ARM::tBL : ARM::BL; 6317 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6318 if (isThumb) 6319 CallMIB.add(predOps(ARMCC::AL)); 6320 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6321 6322 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6323 C.CallConstructionID == MachineOutlinerThunk) { 6324 // No, so just insert the call. 6325 It = MBB.insert(It, CallMIB); 6326 return It; 6327 } 6328 6329 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6330 // Can we save to a register? 6331 if (C.CallConstructionID == MachineOutlinerRegSave) { 6332 unsigned Reg = findRegisterToSaveLRTo(C); 6333 assert(Reg != 0 && "No callee-saved register available?"); 6334 6335 // Save and restore LR from that register. 6336 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6337 if (!AFI.isLRSpilled()) 6338 emitCFIForLRSaveToReg(MBB, It, Reg); 6339 CallPt = MBB.insert(It, CallMIB); 6340 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6341 if (!AFI.isLRSpilled()) 6342 emitCFIForLRRestoreFromReg(MBB, It); 6343 It--; 6344 return CallPt; 6345 } 6346 // We have the default case. Save and restore from SP. 6347 saveLROnStack(MBB, It); 6348 if (!AFI.isLRSpilled()) 6349 emitCFIForLRSaveOnStack(MBB, It); 6350 CallPt = MBB.insert(It, CallMIB); 6351 restoreLRFromStack(MBB, It); 6352 if (!AFI.isLRSpilled()) 6353 emitCFIForLRRestoreFromStack(MBB, It); 6354 It--; 6355 return CallPt; 6356 } 6357 6358 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6359 MachineFunction &MF) const { 6360 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6361 } 6362 6363 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 6364 AAResults *AA) const { 6365 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6366 // the tail predication conversion. This means that the element count 6367 // register has to be live for longer, but that has to be better than 6368 // spill/restore and VPT predication. 6369 return isVCTP(&MI) && !isPredicated(MI); 6370 } 6371 6372 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6373 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6374 : ARM::BLX; 6375 } 6376 6377 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6378 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6379 : ARM::tBLXr; 6380 } 6381 6382 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6383 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6384 : ARM::BLX_pred; 6385 } 6386 6387