1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Base ARM implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARM.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMFeatures.h" 19 #include "ARMHazardRecognizer.h" 20 #include "ARMMachineFunctionInfo.h" 21 #include "MCTargetDesc/ARMAddressingModes.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAGNodes.h" 31 #include "llvm/CodeGen/TargetSchedule.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCExpr.h" 37 #include "llvm/Support/BranchProbability.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "arm-instrinfo" 46 47 #define GET_INSTRINFO_CTOR_DTOR 48 #include "ARMGenInstrInfo.inc" 49 50 static cl::opt<bool> 51 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 52 cl::desc("Enable ARM 2-addr to 3-addr conv")); 53 54 static cl::opt<bool> 55 WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true), 56 cl::desc("Widen ARM vmovs to vmovd when possible")); 57 58 static cl::opt<unsigned> 59 SwiftPartialUpdateClearance("swift-partial-update-clearance", 60 cl::Hidden, cl::init(12), 61 cl::desc("Clearance before partial register updates")); 62 63 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 64 struct ARM_MLxEntry { 65 uint16_t MLxOpc; // MLA / MLS opcode 66 uint16_t MulOpc; // Expanded multiplication opcode 67 uint16_t AddSubOpc; // Expanded add / sub opcode 68 bool NegAcc; // True if the acc is negated before the add / sub. 69 bool HasLane; // True if instruction has an extra "lane" operand. 70 }; 71 72 static const ARM_MLxEntry ARM_MLxTable[] = { 73 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 74 // fp scalar ops 75 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 76 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 77 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 78 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 79 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 80 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 81 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 82 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 83 84 // fp SIMD ops 85 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 86 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 87 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 88 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 89 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 90 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 91 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 92 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 93 }; 94 95 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 96 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 97 Subtarget(STI) { 98 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 99 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 100 assert(false && "Duplicated entries?"); 101 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 102 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 103 } 104 } 105 106 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 107 // currently defaults to no prepass hazard recognizer. 108 ScheduleHazardRecognizer * 109 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 110 const ScheduleDAG *DAG) const { 111 if (usePreRAHazardRecognizer()) { 112 const InstrItineraryData *II = 113 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 114 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 115 } 116 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 117 } 118 119 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 120 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 121 const ScheduleDAG *DAG) const { 122 if (Subtarget.isThumb2() || Subtarget.hasVFP2()) 123 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG); 124 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 125 } 126 127 MachineInstr * 128 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 129 MachineBasicBlock::iterator &MBBI, 130 LiveVariables *LV) const { 131 // FIXME: Thumb2 support. 132 133 if (!EnableARM3Addr) 134 return nullptr; 135 136 MachineInstr *MI = MBBI; 137 MachineFunction &MF = *MI->getParent()->getParent(); 138 uint64_t TSFlags = MI->getDesc().TSFlags; 139 bool isPre = false; 140 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 141 default: return nullptr; 142 case ARMII::IndexModePre: 143 isPre = true; 144 break; 145 case ARMII::IndexModePost: 146 break; 147 } 148 149 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 150 // operation. 151 unsigned MemOpc = getUnindexedOpcode(MI->getOpcode()); 152 if (MemOpc == 0) 153 return nullptr; 154 155 MachineInstr *UpdateMI = nullptr; 156 MachineInstr *MemMI = nullptr; 157 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 158 const MCInstrDesc &MCID = MI->getDesc(); 159 unsigned NumOps = MCID.getNumOperands(); 160 bool isLoad = !MI->mayStore(); 161 const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0); 162 const MachineOperand &Base = MI->getOperand(2); 163 const MachineOperand &Offset = MI->getOperand(NumOps-3); 164 unsigned WBReg = WB.getReg(); 165 unsigned BaseReg = Base.getReg(); 166 unsigned OffReg = Offset.getReg(); 167 unsigned OffImm = MI->getOperand(NumOps-2).getImm(); 168 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm(); 169 switch (AddrMode) { 170 default: llvm_unreachable("Unknown indexed op!"); 171 case ARMII::AddrMode2: { 172 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 173 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 174 if (OffReg == 0) { 175 if (ARM_AM::getSOImmVal(Amt) == -1) 176 // Can't encode it in a so_imm operand. This transformation will 177 // add more than 1 instruction. Abandon! 178 return nullptr; 179 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 180 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 181 .addReg(BaseReg).addImm(Amt) 182 .addImm(Pred).addReg(0).addReg(0); 183 } else if (Amt != 0) { 184 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 185 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 186 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 187 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 188 .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc) 189 .addImm(Pred).addReg(0).addReg(0); 190 } else 191 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 192 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 193 .addReg(BaseReg).addReg(OffReg) 194 .addImm(Pred).addReg(0).addReg(0); 195 break; 196 } 197 case ARMII::AddrMode3 : { 198 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 199 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 200 if (OffReg == 0) 201 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 202 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 203 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 204 .addReg(BaseReg).addImm(Amt) 205 .addImm(Pred).addReg(0).addReg(0); 206 else 207 UpdateMI = BuildMI(MF, MI->getDebugLoc(), 208 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 209 .addReg(BaseReg).addReg(OffReg) 210 .addImm(Pred).addReg(0).addReg(0); 211 break; 212 } 213 } 214 215 std::vector<MachineInstr*> NewMIs; 216 if (isPre) { 217 if (isLoad) 218 MemMI = BuildMI(MF, MI->getDebugLoc(), 219 get(MemOpc), MI->getOperand(0).getReg()) 220 .addReg(WBReg).addImm(0).addImm(Pred); 221 else 222 MemMI = BuildMI(MF, MI->getDebugLoc(), 223 get(MemOpc)).addReg(MI->getOperand(1).getReg()) 224 .addReg(WBReg).addReg(0).addImm(0).addImm(Pred); 225 NewMIs.push_back(MemMI); 226 NewMIs.push_back(UpdateMI); 227 } else { 228 if (isLoad) 229 MemMI = BuildMI(MF, MI->getDebugLoc(), 230 get(MemOpc), MI->getOperand(0).getReg()) 231 .addReg(BaseReg).addImm(0).addImm(Pred); 232 else 233 MemMI = BuildMI(MF, MI->getDebugLoc(), 234 get(MemOpc)).addReg(MI->getOperand(1).getReg()) 235 .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred); 236 if (WB.isDead()) 237 UpdateMI->getOperand(0).setIsDead(); 238 NewMIs.push_back(UpdateMI); 239 NewMIs.push_back(MemMI); 240 } 241 242 // Transfer LiveVariables states, kill / dead info. 243 if (LV) { 244 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 245 MachineOperand &MO = MI->getOperand(i); 246 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 247 unsigned Reg = MO.getReg(); 248 249 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 250 if (MO.isDef()) { 251 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 252 if (MO.isDead()) 253 LV->addVirtualRegisterDead(Reg, NewMI); 254 } 255 if (MO.isUse() && MO.isKill()) { 256 for (unsigned j = 0; j < 2; ++j) { 257 // Look at the two new MI's in reverse order. 258 MachineInstr *NewMI = NewMIs[j]; 259 if (!NewMI->readsRegister(Reg)) 260 continue; 261 LV->addVirtualRegisterKilled(Reg, NewMI); 262 if (VI.removeKill(MI)) 263 VI.Kills.push_back(NewMI); 264 break; 265 } 266 } 267 } 268 } 269 } 270 271 MFI->insert(MBBI, NewMIs[1]); 272 MFI->insert(MBBI, NewMIs[0]); 273 return NewMIs[0]; 274 } 275 276 // Branch analysis. 277 bool 278 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 279 MachineBasicBlock *&FBB, 280 SmallVectorImpl<MachineOperand> &Cond, 281 bool AllowModify) const { 282 TBB = nullptr; 283 FBB = nullptr; 284 285 MachineBasicBlock::iterator I = MBB.end(); 286 if (I == MBB.begin()) 287 return false; // Empty blocks are easy. 288 --I; 289 290 // Walk backwards from the end of the basic block until the branch is 291 // analyzed or we give up. 292 while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) { 293 294 // Flag to be raised on unanalyzeable instructions. This is useful in cases 295 // where we want to clean up on the end of the basic block before we bail 296 // out. 297 bool CantAnalyze = false; 298 299 // Skip over DEBUG values and predicated nonterminators. 300 while (I->isDebugValue() || !I->isTerminator()) { 301 if (I == MBB.begin()) 302 return false; 303 --I; 304 } 305 306 if (isIndirectBranchOpcode(I->getOpcode()) || 307 isJumpTableBranchOpcode(I->getOpcode())) { 308 // Indirect branches and jump tables can't be analyzed, but we still want 309 // to clean up any instructions at the tail of the basic block. 310 CantAnalyze = true; 311 } else if (isUncondBranchOpcode(I->getOpcode())) { 312 TBB = I->getOperand(0).getMBB(); 313 } else if (isCondBranchOpcode(I->getOpcode())) { 314 // Bail out if we encounter multiple conditional branches. 315 if (!Cond.empty()) 316 return true; 317 318 assert(!FBB && "FBB should have been null."); 319 FBB = TBB; 320 TBB = I->getOperand(0).getMBB(); 321 Cond.push_back(I->getOperand(1)); 322 Cond.push_back(I->getOperand(2)); 323 } else if (I->isReturn()) { 324 // Returns can't be analyzed, but we should run cleanup. 325 CantAnalyze = !isPredicated(I); 326 } else { 327 // We encountered other unrecognized terminator. Bail out immediately. 328 return true; 329 } 330 331 // Cleanup code - to be run for unpredicated unconditional branches and 332 // returns. 333 if (!isPredicated(I) && 334 (isUncondBranchOpcode(I->getOpcode()) || 335 isIndirectBranchOpcode(I->getOpcode()) || 336 isJumpTableBranchOpcode(I->getOpcode()) || 337 I->isReturn())) { 338 // Forget any previous condition branch information - it no longer applies. 339 Cond.clear(); 340 FBB = nullptr; 341 342 // If we can modify the function, delete everything below this 343 // unconditional branch. 344 if (AllowModify) { 345 MachineBasicBlock::iterator DI = std::next(I); 346 while (DI != MBB.end()) { 347 MachineInstr *InstToDelete = DI; 348 ++DI; 349 InstToDelete->eraseFromParent(); 350 } 351 } 352 } 353 354 if (CantAnalyze) 355 return true; 356 357 if (I == MBB.begin()) 358 return false; 359 360 --I; 361 } 362 363 // We made it past the terminators without bailing out - we must have 364 // analyzed this branch successfully. 365 return false; 366 } 367 368 369 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 370 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 371 if (I == MBB.end()) 372 return 0; 373 374 if (!isUncondBranchOpcode(I->getOpcode()) && 375 !isCondBranchOpcode(I->getOpcode())) 376 return 0; 377 378 // Remove the branch. 379 I->eraseFromParent(); 380 381 I = MBB.end(); 382 383 if (I == MBB.begin()) return 1; 384 --I; 385 if (!isCondBranchOpcode(I->getOpcode())) 386 return 1; 387 388 // Remove the branch. 389 I->eraseFromParent(); 390 return 2; 391 } 392 393 unsigned 394 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 395 MachineBasicBlock *FBB, 396 ArrayRef<MachineOperand> Cond, 397 DebugLoc DL) const { 398 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 399 int BOpc = !AFI->isThumbFunction() 400 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 401 int BccOpc = !AFI->isThumbFunction() 402 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 403 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 404 405 // Shouldn't be a fall through. 406 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 407 assert((Cond.size() == 2 || Cond.size() == 0) && 408 "ARM branch conditions have two components!"); 409 410 // For conditional branches, we use addOperand to preserve CPSR flags. 411 412 if (!FBB) { 413 if (Cond.empty()) { // Unconditional branch? 414 if (isThumb) 415 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0); 416 else 417 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 418 } else 419 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) 420 .addImm(Cond[0].getImm()).addOperand(Cond[1]); 421 return 1; 422 } 423 424 // Two-way conditional branch. 425 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB) 426 .addImm(Cond[0].getImm()).addOperand(Cond[1]); 427 if (isThumb) 428 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0); 429 else 430 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 431 return 2; 432 } 433 434 bool ARMBaseInstrInfo:: 435 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 436 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 437 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 438 return false; 439 } 440 441 bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const { 442 if (MI->isBundle()) { 443 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 444 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 445 while (++I != E && I->isInsideBundle()) { 446 int PIdx = I->findFirstPredOperandIdx(); 447 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 448 return true; 449 } 450 return false; 451 } 452 453 int PIdx = MI->findFirstPredOperandIdx(); 454 return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL; 455 } 456 457 bool ARMBaseInstrInfo:: 458 PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const { 459 unsigned Opc = MI->getOpcode(); 460 if (isUncondBranchOpcode(Opc)) { 461 MI->setDesc(get(getMatchingCondBranchOpcode(Opc))); 462 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 463 .addImm(Pred[0].getImm()) 464 .addReg(Pred[1].getReg()); 465 return true; 466 } 467 468 int PIdx = MI->findFirstPredOperandIdx(); 469 if (PIdx != -1) { 470 MachineOperand &PMO = MI->getOperand(PIdx); 471 PMO.setImm(Pred[0].getImm()); 472 MI->getOperand(PIdx+1).setReg(Pred[1].getReg()); 473 return true; 474 } 475 return false; 476 } 477 478 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 479 ArrayRef<MachineOperand> Pred2) const { 480 if (Pred1.size() > 2 || Pred2.size() > 2) 481 return false; 482 483 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 484 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 485 if (CC1 == CC2) 486 return true; 487 488 switch (CC1) { 489 default: 490 return false; 491 case ARMCC::AL: 492 return true; 493 case ARMCC::HS: 494 return CC2 == ARMCC::HI; 495 case ARMCC::LS: 496 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 497 case ARMCC::GE: 498 return CC2 == ARMCC::GT; 499 case ARMCC::LE: 500 return CC2 == ARMCC::LT; 501 } 502 } 503 504 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI, 505 std::vector<MachineOperand> &Pred) const { 506 bool Found = false; 507 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 508 const MachineOperand &MO = MI->getOperand(i); 509 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 510 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 511 Pred.push_back(MO); 512 Found = true; 513 } 514 } 515 516 return Found; 517 } 518 519 static bool isCPSRDefined(const MachineInstr *MI) { 520 for (const auto &MO : MI->operands()) 521 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 522 return true; 523 return false; 524 } 525 526 static bool isEligibleForITBlock(const MachineInstr *MI) { 527 switch (MI->getOpcode()) { 528 default: return true; 529 case ARM::tADC: // ADC (register) T1 530 case ARM::tADDi3: // ADD (immediate) T1 531 case ARM::tADDi8: // ADD (immediate) T2 532 case ARM::tADDrr: // ADD (register) T1 533 case ARM::tAND: // AND (register) T1 534 case ARM::tASRri: // ASR (immediate) T1 535 case ARM::tASRrr: // ASR (register) T1 536 case ARM::tBIC: // BIC (register) T1 537 case ARM::tEOR: // EOR (register) T1 538 case ARM::tLSLri: // LSL (immediate) T1 539 case ARM::tLSLrr: // LSL (register) T1 540 case ARM::tLSRri: // LSR (immediate) T1 541 case ARM::tLSRrr: // LSR (register) T1 542 case ARM::tMUL: // MUL T1 543 case ARM::tMVN: // MVN (register) T1 544 case ARM::tORR: // ORR (register) T1 545 case ARM::tROR: // ROR (register) T1 546 case ARM::tRSB: // RSB (immediate) T1 547 case ARM::tSBC: // SBC (register) T1 548 case ARM::tSUBi3: // SUB (immediate) T1 549 case ARM::tSUBi8: // SUB (immediate) T2 550 case ARM::tSUBrr: // SUB (register) T1 551 return !isCPSRDefined(MI); 552 } 553 } 554 555 /// isPredicable - Return true if the specified instruction can be predicated. 556 /// By default, this returns true for every instruction with a 557 /// PredicateOperand. 558 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const { 559 if (!MI->isPredicable()) 560 return false; 561 562 if (!isEligibleForITBlock(MI)) 563 return false; 564 565 ARMFunctionInfo *AFI = 566 MI->getParent()->getParent()->getInfo<ARMFunctionInfo>(); 567 568 if (AFI->isThumb2Function()) { 569 if (getSubtarget().restrictIT()) 570 return isV8EligibleForIT(MI); 571 } else { // non-Thumb 572 if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 573 return false; 574 } 575 576 return true; 577 } 578 579 namespace llvm { 580 template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) { 581 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 582 const MachineOperand &MO = MI->getOperand(i); 583 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 584 continue; 585 if (MO.getReg() != ARM::CPSR) 586 continue; 587 if (!MO.isDead()) 588 return false; 589 } 590 // all definitions of CPSR are dead 591 return true; 592 } 593 } 594 595 /// GetInstSize - Return the size of the specified MachineInstr. 596 /// 597 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 598 const MachineBasicBlock &MBB = *MI->getParent(); 599 const MachineFunction *MF = MBB.getParent(); 600 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 601 602 const MCInstrDesc &MCID = MI->getDesc(); 603 if (MCID.getSize()) 604 return MCID.getSize(); 605 606 // If this machine instr is an inline asm, measure it. 607 if (MI->getOpcode() == ARM::INLINEASM) 608 return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI); 609 unsigned Opc = MI->getOpcode(); 610 switch (Opc) { 611 default: 612 // pseudo-instruction sizes are zero. 613 return 0; 614 case TargetOpcode::BUNDLE: 615 return getInstBundleLength(MI); 616 case ARM::MOVi16_ga_pcrel: 617 case ARM::MOVTi16_ga_pcrel: 618 case ARM::t2MOVi16_ga_pcrel: 619 case ARM::t2MOVTi16_ga_pcrel: 620 return 4; 621 case ARM::MOVi32imm: 622 case ARM::t2MOVi32imm: 623 return 8; 624 case ARM::CONSTPOOL_ENTRY: 625 case ARM::JUMPTABLE_INSTS: 626 case ARM::JUMPTABLE_ADDRS: 627 case ARM::JUMPTABLE_TBB: 628 case ARM::JUMPTABLE_TBH: 629 // If this machine instr is a constant pool entry, its size is recorded as 630 // operand #2. 631 return MI->getOperand(2).getImm(); 632 case ARM::Int_eh_sjlj_longjmp: 633 return 16; 634 case ARM::tInt_eh_sjlj_longjmp: 635 return 10; 636 case ARM::Int_eh_sjlj_setjmp: 637 case ARM::Int_eh_sjlj_setjmp_nofp: 638 return 20; 639 case ARM::tInt_eh_sjlj_setjmp: 640 case ARM::t2Int_eh_sjlj_setjmp: 641 case ARM::t2Int_eh_sjlj_setjmp_nofp: 642 return 12; 643 case ARM::SPACE: 644 return MI->getOperand(1).getImm(); 645 } 646 } 647 648 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const { 649 unsigned Size = 0; 650 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 651 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 652 while (++I != E && I->isInsideBundle()) { 653 assert(!I->isBundle() && "No nested bundle!"); 654 Size += GetInstSizeInBytes(&*I); 655 } 656 return Size; 657 } 658 659 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 660 MachineBasicBlock::iterator I, 661 unsigned DestReg, bool KillSrc, 662 const ARMSubtarget &Subtarget) const { 663 unsigned Opc = Subtarget.isThumb() 664 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 665 : ARM::MRS; 666 667 MachineInstrBuilder MIB = 668 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 669 670 // There is only 1 A/R class MRS instruction, and it always refers to 671 // APSR. However, there are lots of other possibilities on M-class cores. 672 if (Subtarget.isMClass()) 673 MIB.addImm(0x800); 674 675 AddDefaultPred(MIB); 676 677 MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 678 } 679 680 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 681 MachineBasicBlock::iterator I, 682 unsigned SrcReg, bool KillSrc, 683 const ARMSubtarget &Subtarget) const { 684 unsigned Opc = Subtarget.isThumb() 685 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 686 : ARM::MSR; 687 688 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 689 690 if (Subtarget.isMClass()) 691 MIB.addImm(0x800); 692 else 693 MIB.addImm(8); 694 695 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 696 697 AddDefaultPred(MIB); 698 699 MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 700 } 701 702 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 703 MachineBasicBlock::iterator I, DebugLoc DL, 704 unsigned DestReg, unsigned SrcReg, 705 bool KillSrc) const { 706 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 707 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 708 709 if (GPRDest && GPRSrc) { 710 AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 711 .addReg(SrcReg, getKillRegState(KillSrc)))); 712 return; 713 } 714 715 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 716 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 717 718 unsigned Opc = 0; 719 if (SPRDest && SPRSrc) 720 Opc = ARM::VMOVS; 721 else if (GPRDest && SPRSrc) 722 Opc = ARM::VMOVRS; 723 else if (SPRDest && GPRSrc) 724 Opc = ARM::VMOVSR; 725 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP()) 726 Opc = ARM::VMOVD; 727 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 728 Opc = ARM::VORRq; 729 730 if (Opc) { 731 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 732 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 733 if (Opc == ARM::VORRq) 734 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 735 AddDefaultPred(MIB); 736 return; 737 } 738 739 // Handle register classes that require multiple instructions. 740 unsigned BeginIdx = 0; 741 unsigned SubRegs = 0; 742 int Spacing = 1; 743 744 // Use VORRq when possible. 745 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 746 Opc = ARM::VORRq; 747 BeginIdx = ARM::qsub_0; 748 SubRegs = 2; 749 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 750 Opc = ARM::VORRq; 751 BeginIdx = ARM::qsub_0; 752 SubRegs = 4; 753 // Fall back to VMOVD. 754 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 755 Opc = ARM::VMOVD; 756 BeginIdx = ARM::dsub_0; 757 SubRegs = 2; 758 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 759 Opc = ARM::VMOVD; 760 BeginIdx = ARM::dsub_0; 761 SubRegs = 3; 762 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 763 Opc = ARM::VMOVD; 764 BeginIdx = ARM::dsub_0; 765 SubRegs = 4; 766 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 767 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 768 BeginIdx = ARM::gsub_0; 769 SubRegs = 2; 770 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 771 Opc = ARM::VMOVD; 772 BeginIdx = ARM::dsub_0; 773 SubRegs = 2; 774 Spacing = 2; 775 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 776 Opc = ARM::VMOVD; 777 BeginIdx = ARM::dsub_0; 778 SubRegs = 3; 779 Spacing = 2; 780 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 781 Opc = ARM::VMOVD; 782 BeginIdx = ARM::dsub_0; 783 SubRegs = 4; 784 Spacing = 2; 785 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) { 786 Opc = ARM::VMOVS; 787 BeginIdx = ARM::ssub_0; 788 SubRegs = 2; 789 } else if (SrcReg == ARM::CPSR) { 790 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 791 return; 792 } else if (DestReg == ARM::CPSR) { 793 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 794 return; 795 } 796 797 assert(Opc && "Impossible reg-to-reg copy"); 798 799 const TargetRegisterInfo *TRI = &getRegisterInfo(); 800 MachineInstrBuilder Mov; 801 802 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 803 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 804 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 805 Spacing = -Spacing; 806 } 807 #ifndef NDEBUG 808 SmallSet<unsigned, 4> DstRegs; 809 #endif 810 for (unsigned i = 0; i != SubRegs; ++i) { 811 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 812 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 813 assert(Dst && Src && "Bad sub-register"); 814 #ifndef NDEBUG 815 assert(!DstRegs.count(Src) && "destructive vector copy"); 816 DstRegs.insert(Dst); 817 #endif 818 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 819 // VORR takes two source operands. 820 if (Opc == ARM::VORRq) 821 Mov.addReg(Src); 822 Mov = AddDefaultPred(Mov); 823 // MOVr can set CC. 824 if (Opc == ARM::MOVr) 825 Mov = AddDefaultCC(Mov); 826 } 827 // Add implicit super-register defs and kills to the last instruction. 828 Mov->addRegisterDefined(DestReg, TRI); 829 if (KillSrc) 830 Mov->addRegisterKilled(SrcReg, TRI); 831 } 832 833 const MachineInstrBuilder & 834 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 835 unsigned SubIdx, unsigned State, 836 const TargetRegisterInfo *TRI) const { 837 if (!SubIdx) 838 return MIB.addReg(Reg, State); 839 840 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 841 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 842 return MIB.addReg(Reg, State, SubIdx); 843 } 844 845 void ARMBaseInstrInfo:: 846 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 847 unsigned SrcReg, bool isKill, int FI, 848 const TargetRegisterClass *RC, 849 const TargetRegisterInfo *TRI) const { 850 DebugLoc DL; 851 if (I != MBB.end()) DL = I->getDebugLoc(); 852 MachineFunction &MF = *MBB.getParent(); 853 MachineFrameInfo &MFI = *MF.getFrameInfo(); 854 unsigned Align = MFI.getObjectAlignment(FI); 855 856 MachineMemOperand *MMO = MF.getMachineMemOperand( 857 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 858 MFI.getObjectSize(FI), Align); 859 860 switch (RC->getSize()) { 861 case 4: 862 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 863 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12)) 864 .addReg(SrcReg, getKillRegState(isKill)) 865 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 866 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 867 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS)) 868 .addReg(SrcReg, getKillRegState(isKill)) 869 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 870 } else 871 llvm_unreachable("Unknown reg class!"); 872 break; 873 case 8: 874 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 875 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD)) 876 .addReg(SrcReg, getKillRegState(isKill)) 877 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 878 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 879 if (Subtarget.hasV5TEOps()) { 880 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD)); 881 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 882 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 883 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO); 884 885 AddDefaultPred(MIB); 886 } else { 887 // Fallback to STM instruction, which has existed since the dawn of 888 // time. 889 MachineInstrBuilder MIB = 890 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA)) 891 .addFrameIndex(FI).addMemOperand(MMO)); 892 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 893 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 894 } 895 } else 896 llvm_unreachable("Unknown reg class!"); 897 break; 898 case 16: 899 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 900 // Use aligned spills if the stack can be realigned. 901 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 902 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64)) 903 .addFrameIndex(FI).addImm(16) 904 .addReg(SrcReg, getKillRegState(isKill)) 905 .addMemOperand(MMO)); 906 } else { 907 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA)) 908 .addReg(SrcReg, getKillRegState(isKill)) 909 .addFrameIndex(FI) 910 .addMemOperand(MMO)); 911 } 912 } else 913 llvm_unreachable("Unknown reg class!"); 914 break; 915 case 24: 916 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 917 // Use aligned spills if the stack can be realigned. 918 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 919 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo)) 920 .addFrameIndex(FI).addImm(16) 921 .addReg(SrcReg, getKillRegState(isKill)) 922 .addMemOperand(MMO)); 923 } else { 924 MachineInstrBuilder MIB = 925 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 926 .addFrameIndex(FI)) 927 .addMemOperand(MMO); 928 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 929 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 930 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 931 } 932 } else 933 llvm_unreachable("Unknown reg class!"); 934 break; 935 case 32: 936 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 937 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 938 // FIXME: It's possible to only store part of the QQ register if the 939 // spilled def has a sub-register index. 940 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo)) 941 .addFrameIndex(FI).addImm(16) 942 .addReg(SrcReg, getKillRegState(isKill)) 943 .addMemOperand(MMO)); 944 } else { 945 MachineInstrBuilder MIB = 946 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 947 .addFrameIndex(FI)) 948 .addMemOperand(MMO); 949 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 950 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 951 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 952 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 953 } 954 } else 955 llvm_unreachable("Unknown reg class!"); 956 break; 957 case 64: 958 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 959 MachineInstrBuilder MIB = 960 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA)) 961 .addFrameIndex(FI)) 962 .addMemOperand(MMO); 963 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 964 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 965 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 966 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 967 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 968 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 969 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 970 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 971 } else 972 llvm_unreachable("Unknown reg class!"); 973 break; 974 default: 975 llvm_unreachable("Unknown reg class!"); 976 } 977 } 978 979 unsigned 980 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 981 int &FrameIndex) const { 982 switch (MI->getOpcode()) { 983 default: break; 984 case ARM::STRrs: 985 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 986 if (MI->getOperand(1).isFI() && 987 MI->getOperand(2).isReg() && 988 MI->getOperand(3).isImm() && 989 MI->getOperand(2).getReg() == 0 && 990 MI->getOperand(3).getImm() == 0) { 991 FrameIndex = MI->getOperand(1).getIndex(); 992 return MI->getOperand(0).getReg(); 993 } 994 break; 995 case ARM::STRi12: 996 case ARM::t2STRi12: 997 case ARM::tSTRspi: 998 case ARM::VSTRD: 999 case ARM::VSTRS: 1000 if (MI->getOperand(1).isFI() && 1001 MI->getOperand(2).isImm() && 1002 MI->getOperand(2).getImm() == 0) { 1003 FrameIndex = MI->getOperand(1).getIndex(); 1004 return MI->getOperand(0).getReg(); 1005 } 1006 break; 1007 case ARM::VST1q64: 1008 case ARM::VST1d64TPseudo: 1009 case ARM::VST1d64QPseudo: 1010 if (MI->getOperand(0).isFI() && 1011 MI->getOperand(2).getSubReg() == 0) { 1012 FrameIndex = MI->getOperand(0).getIndex(); 1013 return MI->getOperand(2).getReg(); 1014 } 1015 break; 1016 case ARM::VSTMQIA: 1017 if (MI->getOperand(1).isFI() && 1018 MI->getOperand(0).getSubReg() == 0) { 1019 FrameIndex = MI->getOperand(1).getIndex(); 1020 return MI->getOperand(0).getReg(); 1021 } 1022 break; 1023 } 1024 1025 return 0; 1026 } 1027 1028 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, 1029 int &FrameIndex) const { 1030 const MachineMemOperand *Dummy; 1031 return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex); 1032 } 1033 1034 void ARMBaseInstrInfo:: 1035 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1036 unsigned DestReg, int FI, 1037 const TargetRegisterClass *RC, 1038 const TargetRegisterInfo *TRI) const { 1039 DebugLoc DL; 1040 if (I != MBB.end()) DL = I->getDebugLoc(); 1041 MachineFunction &MF = *MBB.getParent(); 1042 MachineFrameInfo &MFI = *MF.getFrameInfo(); 1043 unsigned Align = MFI.getObjectAlignment(FI); 1044 MachineMemOperand *MMO = MF.getMachineMemOperand( 1045 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1046 MFI.getObjectSize(FI), Align); 1047 1048 switch (RC->getSize()) { 1049 case 4: 1050 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1051 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1052 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1053 1054 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1055 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1056 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1057 } else 1058 llvm_unreachable("Unknown reg class!"); 1059 break; 1060 case 8: 1061 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1062 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1063 .addFrameIndex(FI).addImm(0).addMemOperand(MMO)); 1064 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1065 MachineInstrBuilder MIB; 1066 1067 if (Subtarget.hasV5TEOps()) { 1068 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1069 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1070 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1071 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO); 1072 1073 AddDefaultPred(MIB); 1074 } else { 1075 // Fallback to LDM instruction, which has existed since the dawn of 1076 // time. 1077 MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1078 .addFrameIndex(FI).addMemOperand(MMO)); 1079 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1080 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1081 } 1082 1083 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1084 MIB.addReg(DestReg, RegState::ImplicitDefine); 1085 } else 1086 llvm_unreachable("Unknown reg class!"); 1087 break; 1088 case 16: 1089 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1090 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1091 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1092 .addFrameIndex(FI).addImm(16) 1093 .addMemOperand(MMO)); 1094 } else { 1095 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1096 .addFrameIndex(FI) 1097 .addMemOperand(MMO)); 1098 } 1099 } else 1100 llvm_unreachable("Unknown reg class!"); 1101 break; 1102 case 24: 1103 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1104 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1105 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1106 .addFrameIndex(FI).addImm(16) 1107 .addMemOperand(MMO)); 1108 } else { 1109 MachineInstrBuilder MIB = 1110 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1111 .addFrameIndex(FI) 1112 .addMemOperand(MMO)); 1113 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1114 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1115 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1116 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1117 MIB.addReg(DestReg, RegState::ImplicitDefine); 1118 } 1119 } else 1120 llvm_unreachable("Unknown reg class!"); 1121 break; 1122 case 32: 1123 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1124 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1125 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1126 .addFrameIndex(FI).addImm(16) 1127 .addMemOperand(MMO)); 1128 } else { 1129 MachineInstrBuilder MIB = 1130 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1131 .addFrameIndex(FI)) 1132 .addMemOperand(MMO); 1133 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1134 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1135 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1136 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1137 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1138 MIB.addReg(DestReg, RegState::ImplicitDefine); 1139 } 1140 } else 1141 llvm_unreachable("Unknown reg class!"); 1142 break; 1143 case 64: 1144 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1145 MachineInstrBuilder MIB = 1146 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1147 .addFrameIndex(FI)) 1148 .addMemOperand(MMO); 1149 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1150 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1151 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1152 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1153 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1154 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1155 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1156 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1157 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1158 MIB.addReg(DestReg, RegState::ImplicitDefine); 1159 } else 1160 llvm_unreachable("Unknown reg class!"); 1161 break; 1162 default: 1163 llvm_unreachable("Unknown regclass!"); 1164 } 1165 } 1166 1167 unsigned 1168 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 1169 int &FrameIndex) const { 1170 switch (MI->getOpcode()) { 1171 default: break; 1172 case ARM::LDRrs: 1173 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1174 if (MI->getOperand(1).isFI() && 1175 MI->getOperand(2).isReg() && 1176 MI->getOperand(3).isImm() && 1177 MI->getOperand(2).getReg() == 0 && 1178 MI->getOperand(3).getImm() == 0) { 1179 FrameIndex = MI->getOperand(1).getIndex(); 1180 return MI->getOperand(0).getReg(); 1181 } 1182 break; 1183 case ARM::LDRi12: 1184 case ARM::t2LDRi12: 1185 case ARM::tLDRspi: 1186 case ARM::VLDRD: 1187 case ARM::VLDRS: 1188 if (MI->getOperand(1).isFI() && 1189 MI->getOperand(2).isImm() && 1190 MI->getOperand(2).getImm() == 0) { 1191 FrameIndex = MI->getOperand(1).getIndex(); 1192 return MI->getOperand(0).getReg(); 1193 } 1194 break; 1195 case ARM::VLD1q64: 1196 case ARM::VLD1d64TPseudo: 1197 case ARM::VLD1d64QPseudo: 1198 if (MI->getOperand(1).isFI() && 1199 MI->getOperand(0).getSubReg() == 0) { 1200 FrameIndex = MI->getOperand(1).getIndex(); 1201 return MI->getOperand(0).getReg(); 1202 } 1203 break; 1204 case ARM::VLDMQIA: 1205 if (MI->getOperand(1).isFI() && 1206 MI->getOperand(0).getSubReg() == 0) { 1207 FrameIndex = MI->getOperand(1).getIndex(); 1208 return MI->getOperand(0).getReg(); 1209 } 1210 break; 1211 } 1212 1213 return 0; 1214 } 1215 1216 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, 1217 int &FrameIndex) const { 1218 const MachineMemOperand *Dummy; 1219 return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex); 1220 } 1221 1222 /// \brief Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1223 /// depending on whether the result is used. 1224 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MBBI) const { 1225 bool isThumb1 = Subtarget.isThumb1Only(); 1226 bool isThumb2 = Subtarget.isThumb2(); 1227 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1228 1229 MachineInstr *MI = MBBI; 1230 DebugLoc dl = MI->getDebugLoc(); 1231 MachineBasicBlock *BB = MI->getParent(); 1232 1233 MachineInstrBuilder LDM, STM; 1234 if (isThumb1 || !MI->getOperand(1).isDead()) { 1235 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1236 : isThumb1 ? ARM::tLDMIA_UPD 1237 : ARM::LDMIA_UPD)) 1238 .addOperand(MI->getOperand(1)); 1239 } else { 1240 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1241 } 1242 1243 if (isThumb1 || !MI->getOperand(0).isDead()) { 1244 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1245 : isThumb1 ? ARM::tSTMIA_UPD 1246 : ARM::STMIA_UPD)) 1247 .addOperand(MI->getOperand(0)); 1248 } else { 1249 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1250 } 1251 1252 AddDefaultPred(LDM.addOperand(MI->getOperand(3))); 1253 AddDefaultPred(STM.addOperand(MI->getOperand(2))); 1254 1255 // Sort the scratch registers into ascending order. 1256 const TargetRegisterInfo &TRI = getRegisterInfo(); 1257 llvm::SmallVector<unsigned, 6> ScratchRegs; 1258 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1259 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1260 std::sort(ScratchRegs.begin(), ScratchRegs.end(), 1261 [&TRI](const unsigned &Reg1, 1262 const unsigned &Reg2) -> bool { 1263 return TRI.getEncodingValue(Reg1) < 1264 TRI.getEncodingValue(Reg2); 1265 }); 1266 1267 for (const auto &Reg : ScratchRegs) { 1268 LDM.addReg(Reg, RegState::Define); 1269 STM.addReg(Reg, RegState::Kill); 1270 } 1271 1272 BB->erase(MBBI); 1273 } 1274 1275 1276 bool 1277 ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 1278 MachineFunction &MF = *MI->getParent()->getParent(); 1279 Reloc::Model RM = MF.getTarget().getRelocationModel(); 1280 1281 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1282 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1283 "LOAD_STACK_GUARD currently supported only for MachO."); 1284 expandLoadStackGuard(MI, RM); 1285 MI->getParent()->erase(MI); 1286 return true; 1287 } 1288 1289 if (MI->getOpcode() == ARM::MEMCPY) { 1290 expandMEMCPY(MI); 1291 return true; 1292 } 1293 1294 // This hook gets to expand COPY instructions before they become 1295 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1296 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1297 // changed into a VORR that can go down the NEON pipeline. 1298 if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15() || 1299 Subtarget.isFPOnlySP()) 1300 return false; 1301 1302 // Look for a copy between even S-registers. That is where we keep floats 1303 // when using NEON v2f32 instructions for f32 arithmetic. 1304 unsigned DstRegS = MI->getOperand(0).getReg(); 1305 unsigned SrcRegS = MI->getOperand(1).getReg(); 1306 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1307 return false; 1308 1309 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1310 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1311 &ARM::DPRRegClass); 1312 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1313 &ARM::DPRRegClass); 1314 if (!DstRegD || !SrcRegD) 1315 return false; 1316 1317 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1318 // legal if the COPY already defines the full DstRegD, and it isn't a 1319 // sub-register insertion. 1320 if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI)) 1321 return false; 1322 1323 // A dead copy shouldn't show up here, but reject it just in case. 1324 if (MI->getOperand(0).isDead()) 1325 return false; 1326 1327 // All clear, widen the COPY. 1328 DEBUG(dbgs() << "widening: " << *MI); 1329 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); 1330 1331 // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg 1332 // or some other super-register. 1333 int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD); 1334 if (ImpDefIdx != -1) 1335 MI->RemoveOperand(ImpDefIdx); 1336 1337 // Change the opcode and operands. 1338 MI->setDesc(get(ARM::VMOVD)); 1339 MI->getOperand(0).setReg(DstRegD); 1340 MI->getOperand(1).setReg(SrcRegD); 1341 AddDefaultPred(MIB); 1342 1343 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1344 // register scavenger and machine verifier, so we need to indicate that we 1345 // are reading an undefined value from SrcRegD, but a proper value from 1346 // SrcRegS. 1347 MI->getOperand(1).setIsUndef(); 1348 MIB.addReg(SrcRegS, RegState::Implicit); 1349 1350 // SrcRegD may actually contain an unrelated value in the ssub_1 1351 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1352 if (MI->getOperand(1).isKill()) { 1353 MI->getOperand(1).setIsKill(false); 1354 MI->addRegisterKilled(SrcRegS, TRI, true); 1355 } 1356 1357 DEBUG(dbgs() << "replaced by: " << *MI); 1358 return true; 1359 } 1360 1361 /// Create a copy of a const pool value. Update CPI to the new index and return 1362 /// the label UID. 1363 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1364 MachineConstantPool *MCP = MF.getConstantPool(); 1365 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1366 1367 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1368 assert(MCPE.isMachineConstantPoolEntry() && 1369 "Expecting a machine constantpool entry!"); 1370 ARMConstantPoolValue *ACPV = 1371 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1372 1373 unsigned PCLabelId = AFI->createPICLabelUId(); 1374 ARMConstantPoolValue *NewCPV = nullptr; 1375 1376 // FIXME: The below assumes PIC relocation model and that the function 1377 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1378 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1379 // instructions, so that's probably OK, but is PIC always correct when 1380 // we get here? 1381 if (ACPV->isGlobalValue()) 1382 NewCPV = ARMConstantPoolConstant:: 1383 Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, 1384 ARMCP::CPValue, 4); 1385 else if (ACPV->isExtSymbol()) 1386 NewCPV = ARMConstantPoolSymbol:: 1387 Create(MF.getFunction()->getContext(), 1388 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1389 else if (ACPV->isBlockAddress()) 1390 NewCPV = ARMConstantPoolConstant:: 1391 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1392 ARMCP::CPBlockAddress, 4); 1393 else if (ACPV->isLSDA()) 1394 NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId, 1395 ARMCP::CPLSDA, 4); 1396 else if (ACPV->isMachineBasicBlock()) 1397 NewCPV = ARMConstantPoolMBB:: 1398 Create(MF.getFunction()->getContext(), 1399 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1400 else 1401 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1402 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1403 return PCLabelId; 1404 } 1405 1406 void ARMBaseInstrInfo:: 1407 reMaterialize(MachineBasicBlock &MBB, 1408 MachineBasicBlock::iterator I, 1409 unsigned DestReg, unsigned SubIdx, 1410 const MachineInstr *Orig, 1411 const TargetRegisterInfo &TRI) const { 1412 unsigned Opcode = Orig->getOpcode(); 1413 switch (Opcode) { 1414 default: { 1415 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 1416 MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); 1417 MBB.insert(I, MI); 1418 break; 1419 } 1420 case ARM::tLDRpci_pic: 1421 case ARM::t2LDRpci_pic: { 1422 MachineFunction &MF = *MBB.getParent(); 1423 unsigned CPI = Orig->getOperand(1).getIndex(); 1424 unsigned PCLabelId = duplicateCPV(MF, CPI); 1425 MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode), 1426 DestReg) 1427 .addConstantPoolIndex(CPI).addImm(PCLabelId); 1428 MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end()); 1429 break; 1430 } 1431 } 1432 } 1433 1434 MachineInstr * 1435 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const { 1436 MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF); 1437 switch(Orig->getOpcode()) { 1438 case ARM::tLDRpci_pic: 1439 case ARM::t2LDRpci_pic: { 1440 unsigned CPI = Orig->getOperand(1).getIndex(); 1441 unsigned PCLabelId = duplicateCPV(MF, CPI); 1442 Orig->getOperand(1).setIndex(CPI); 1443 Orig->getOperand(2).setImm(PCLabelId); 1444 break; 1445 } 1446 } 1447 return MI; 1448 } 1449 1450 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0, 1451 const MachineInstr *MI1, 1452 const MachineRegisterInfo *MRI) const { 1453 unsigned Opcode = MI0->getOpcode(); 1454 if (Opcode == ARM::t2LDRpci || 1455 Opcode == ARM::t2LDRpci_pic || 1456 Opcode == ARM::tLDRpci || 1457 Opcode == ARM::tLDRpci_pic || 1458 Opcode == ARM::LDRLIT_ga_pcrel || 1459 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1460 Opcode == ARM::tLDRLIT_ga_pcrel || 1461 Opcode == ARM::MOV_ga_pcrel || 1462 Opcode == ARM::MOV_ga_pcrel_ldr || 1463 Opcode == ARM::t2MOV_ga_pcrel) { 1464 if (MI1->getOpcode() != Opcode) 1465 return false; 1466 if (MI0->getNumOperands() != MI1->getNumOperands()) 1467 return false; 1468 1469 const MachineOperand &MO0 = MI0->getOperand(1); 1470 const MachineOperand &MO1 = MI1->getOperand(1); 1471 if (MO0.getOffset() != MO1.getOffset()) 1472 return false; 1473 1474 if (Opcode == ARM::LDRLIT_ga_pcrel || 1475 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1476 Opcode == ARM::tLDRLIT_ga_pcrel || 1477 Opcode == ARM::MOV_ga_pcrel || 1478 Opcode == ARM::MOV_ga_pcrel_ldr || 1479 Opcode == ARM::t2MOV_ga_pcrel) 1480 // Ignore the PC labels. 1481 return MO0.getGlobal() == MO1.getGlobal(); 1482 1483 const MachineFunction *MF = MI0->getParent()->getParent(); 1484 const MachineConstantPool *MCP = MF->getConstantPool(); 1485 int CPI0 = MO0.getIndex(); 1486 int CPI1 = MO1.getIndex(); 1487 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1488 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1489 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1490 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1491 if (isARMCP0 && isARMCP1) { 1492 ARMConstantPoolValue *ACPV0 = 1493 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1494 ARMConstantPoolValue *ACPV1 = 1495 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1496 return ACPV0->hasSameValue(ACPV1); 1497 } else if (!isARMCP0 && !isARMCP1) { 1498 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1499 } 1500 return false; 1501 } else if (Opcode == ARM::PICLDR) { 1502 if (MI1->getOpcode() != Opcode) 1503 return false; 1504 if (MI0->getNumOperands() != MI1->getNumOperands()) 1505 return false; 1506 1507 unsigned Addr0 = MI0->getOperand(1).getReg(); 1508 unsigned Addr1 = MI1->getOperand(1).getReg(); 1509 if (Addr0 != Addr1) { 1510 if (!MRI || 1511 !TargetRegisterInfo::isVirtualRegister(Addr0) || 1512 !TargetRegisterInfo::isVirtualRegister(Addr1)) 1513 return false; 1514 1515 // This assumes SSA form. 1516 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1517 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1518 // Check if the loaded value, e.g. a constantpool of a global address, are 1519 // the same. 1520 if (!produceSameValue(Def0, Def1, MRI)) 1521 return false; 1522 } 1523 1524 for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) { 1525 // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg 1526 const MachineOperand &MO0 = MI0->getOperand(i); 1527 const MachineOperand &MO1 = MI1->getOperand(i); 1528 if (!MO0.isIdenticalTo(MO1)) 1529 return false; 1530 } 1531 return true; 1532 } 1533 1534 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1535 } 1536 1537 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1538 /// determine if two loads are loading from the same base address. It should 1539 /// only return true if the base pointers are the same and the only differences 1540 /// between the two addresses is the offset. It also returns the offsets by 1541 /// reference. 1542 /// 1543 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1544 /// is permanently disabled. 1545 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1546 int64_t &Offset1, 1547 int64_t &Offset2) const { 1548 // Don't worry about Thumb: just ARM and Thumb2. 1549 if (Subtarget.isThumb1Only()) return false; 1550 1551 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1552 return false; 1553 1554 switch (Load1->getMachineOpcode()) { 1555 default: 1556 return false; 1557 case ARM::LDRi12: 1558 case ARM::LDRBi12: 1559 case ARM::LDRD: 1560 case ARM::LDRH: 1561 case ARM::LDRSB: 1562 case ARM::LDRSH: 1563 case ARM::VLDRD: 1564 case ARM::VLDRS: 1565 case ARM::t2LDRi8: 1566 case ARM::t2LDRBi8: 1567 case ARM::t2LDRDi8: 1568 case ARM::t2LDRSHi8: 1569 case ARM::t2LDRi12: 1570 case ARM::t2LDRBi12: 1571 case ARM::t2LDRSHi12: 1572 break; 1573 } 1574 1575 switch (Load2->getMachineOpcode()) { 1576 default: 1577 return false; 1578 case ARM::LDRi12: 1579 case ARM::LDRBi12: 1580 case ARM::LDRD: 1581 case ARM::LDRH: 1582 case ARM::LDRSB: 1583 case ARM::LDRSH: 1584 case ARM::VLDRD: 1585 case ARM::VLDRS: 1586 case ARM::t2LDRi8: 1587 case ARM::t2LDRBi8: 1588 case ARM::t2LDRSHi8: 1589 case ARM::t2LDRi12: 1590 case ARM::t2LDRBi12: 1591 case ARM::t2LDRSHi12: 1592 break; 1593 } 1594 1595 // Check if base addresses and chain operands match. 1596 if (Load1->getOperand(0) != Load2->getOperand(0) || 1597 Load1->getOperand(4) != Load2->getOperand(4)) 1598 return false; 1599 1600 // Index should be Reg0. 1601 if (Load1->getOperand(3) != Load2->getOperand(3)) 1602 return false; 1603 1604 // Determine the offsets. 1605 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1606 isa<ConstantSDNode>(Load2->getOperand(1))) { 1607 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1608 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1609 return true; 1610 } 1611 1612 return false; 1613 } 1614 1615 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1616 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1617 /// be scheduled togther. On some targets if two loads are loading from 1618 /// addresses in the same cache line, it's better if they are scheduled 1619 /// together. This function takes two integers that represent the load offsets 1620 /// from the common base address. It returns true if it decides it's desirable 1621 /// to schedule the two loads together. "NumLoads" is the number of loads that 1622 /// have already been scheduled after Load1. 1623 /// 1624 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1625 /// is permanently disabled. 1626 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1627 int64_t Offset1, int64_t Offset2, 1628 unsigned NumLoads) const { 1629 // Don't worry about Thumb: just ARM and Thumb2. 1630 if (Subtarget.isThumb1Only()) return false; 1631 1632 assert(Offset2 > Offset1); 1633 1634 if ((Offset2 - Offset1) / 8 > 64) 1635 return false; 1636 1637 // Check if the machine opcodes are different. If they are different 1638 // then we consider them to not be of the same base address, 1639 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1640 // In this case, they are considered to be the same because they are different 1641 // encoding forms of the same basic instruction. 1642 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1643 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1644 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1645 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1646 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1647 return false; // FIXME: overly conservative? 1648 1649 // Four loads in a row should be sufficient. 1650 if (NumLoads >= 3) 1651 return false; 1652 1653 return true; 1654 } 1655 1656 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 1657 const MachineBasicBlock *MBB, 1658 const MachineFunction &MF) const { 1659 // Debug info is never a scheduling boundary. It's necessary to be explicit 1660 // due to the special treatment of IT instructions below, otherwise a 1661 // dbg_value followed by an IT will result in the IT instruction being 1662 // considered a scheduling hazard, which is wrong. It should be the actual 1663 // instruction preceding the dbg_value instruction(s), just like it is 1664 // when debug info is not present. 1665 if (MI->isDebugValue()) 1666 return false; 1667 1668 // Terminators and labels can't be scheduled around. 1669 if (MI->isTerminator() || MI->isPosition()) 1670 return true; 1671 1672 // Treat the start of the IT block as a scheduling boundary, but schedule 1673 // t2IT along with all instructions following it. 1674 // FIXME: This is a big hammer. But the alternative is to add all potential 1675 // true and anti dependencies to IT block instructions as implicit operands 1676 // to the t2IT instruction. The added compile time and complexity does not 1677 // seem worth it. 1678 MachineBasicBlock::const_iterator I = MI; 1679 // Make sure to skip any dbg_value instructions 1680 while (++I != MBB->end() && I->isDebugValue()) 1681 ; 1682 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1683 return true; 1684 1685 // Don't attempt to schedule around any instruction that defines 1686 // a stack-oriented pointer, as it's unlikely to be profitable. This 1687 // saves compile time, because it doesn't require every single 1688 // stack slot reference to depend on the instruction that does the 1689 // modification. 1690 // Calls don't actually change the stack pointer, even if they have imp-defs. 1691 // No ARM calling conventions change the stack pointer. (X86 calling 1692 // conventions sometimes do). 1693 if (!MI->isCall() && MI->definesRegister(ARM::SP)) 1694 return true; 1695 1696 return false; 1697 } 1698 1699 bool ARMBaseInstrInfo:: 1700 isProfitableToIfCvt(MachineBasicBlock &MBB, 1701 unsigned NumCycles, unsigned ExtraPredCycles, 1702 BranchProbability Probability) const { 1703 if (!NumCycles) 1704 return false; 1705 1706 // If we are optimizing for size, see if the branch in the predecessor can be 1707 // lowered to cbn?z by the constant island lowering pass, and return false if 1708 // so. This results in a shorter instruction sequence. 1709 if (MBB.getParent()->getFunction()->optForSize()) { 1710 MachineBasicBlock *Pred = *MBB.pred_begin(); 1711 if (!Pred->empty()) { 1712 MachineInstr *LastMI = &*Pred->rbegin(); 1713 if (LastMI->getOpcode() == ARM::t2Bcc) { 1714 MachineBasicBlock::iterator CmpMI = LastMI; 1715 if (CmpMI != Pred->begin()) { 1716 --CmpMI; 1717 if (CmpMI->getOpcode() == ARM::tCMPi8 || 1718 CmpMI->getOpcode() == ARM::t2CMPri) { 1719 unsigned Reg = CmpMI->getOperand(0).getReg(); 1720 unsigned PredReg = 0; 1721 ARMCC::CondCodes P = getInstrPredicate(CmpMI, PredReg); 1722 if (P == ARMCC::AL && CmpMI->getOperand(1).getImm() == 0 && 1723 isARMLowRegister(Reg)) 1724 return false; 1725 } 1726 } 1727 } 1728 } 1729 } 1730 1731 // Attempt to estimate the relative costs of predication versus branching. 1732 // Here we scale up each component of UnpredCost to avoid precision issue when 1733 // scaling NumCycles by Probability. 1734 const unsigned ScalingUpFactor = 1024; 1735 unsigned UnpredCost = Probability.scale(NumCycles * ScalingUpFactor); 1736 UnpredCost += ScalingUpFactor; // The branch itself 1737 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1738 1739 return (NumCycles + ExtraPredCycles) * ScalingUpFactor <= UnpredCost; 1740 } 1741 1742 bool ARMBaseInstrInfo:: 1743 isProfitableToIfCvt(MachineBasicBlock &TMBB, 1744 unsigned TCycles, unsigned TExtra, 1745 MachineBasicBlock &FMBB, 1746 unsigned FCycles, unsigned FExtra, 1747 BranchProbability Probability) const { 1748 if (!TCycles || !FCycles) 1749 return false; 1750 1751 // Attempt to estimate the relative costs of predication versus branching. 1752 // Here we scale up each component of UnpredCost to avoid precision issue when 1753 // scaling TCycles/FCycles by Probability. 1754 const unsigned ScalingUpFactor = 1024; 1755 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 1756 unsigned FUnpredCost = 1757 Probability.getCompl().scale(FCycles * ScalingUpFactor); 1758 unsigned UnpredCost = TUnpredCost + FUnpredCost; 1759 UnpredCost += 1 * ScalingUpFactor; // The branch itself 1760 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1761 1762 return (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor <= UnpredCost; 1763 } 1764 1765 bool 1766 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 1767 MachineBasicBlock &FMBB) const { 1768 // Reduce false anti-dependencies to let Swift's out-of-order execution 1769 // engine do its thing. 1770 return Subtarget.isSwift(); 1771 } 1772 1773 /// getInstrPredicate - If instruction is predicated, returns its predicate 1774 /// condition, otherwise returns AL. It also returns the condition code 1775 /// register by reference. 1776 ARMCC::CondCodes 1777 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) { 1778 int PIdx = MI->findFirstPredOperandIdx(); 1779 if (PIdx == -1) { 1780 PredReg = 0; 1781 return ARMCC::AL; 1782 } 1783 1784 PredReg = MI->getOperand(PIdx+1).getReg(); 1785 return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm(); 1786 } 1787 1788 1789 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 1790 if (Opc == ARM::B) 1791 return ARM::Bcc; 1792 if (Opc == ARM::tB) 1793 return ARM::tBcc; 1794 if (Opc == ARM::t2B) 1795 return ARM::t2Bcc; 1796 1797 llvm_unreachable("Unknown unconditional branch opcode!"); 1798 } 1799 1800 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr *MI, 1801 bool NewMI, 1802 unsigned OpIdx1, 1803 unsigned OpIdx2) const { 1804 switch (MI->getOpcode()) { 1805 case ARM::MOVCCr: 1806 case ARM::t2MOVCCr: { 1807 // MOVCC can be commuted by inverting the condition. 1808 unsigned PredReg = 0; 1809 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 1810 // MOVCC AL can't be inverted. Shouldn't happen. 1811 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 1812 return nullptr; 1813 MI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1814 if (!MI) 1815 return nullptr; 1816 // After swapping the MOVCC operands, also invert the condition. 1817 MI->getOperand(MI->findFirstPredOperandIdx()) 1818 .setImm(ARMCC::getOppositeCondition(CC)); 1819 return MI; 1820 } 1821 } 1822 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 1823 } 1824 1825 /// Identify instructions that can be folded into a MOVCC instruction, and 1826 /// return the defining instruction. 1827 static MachineInstr *canFoldIntoMOVCC(unsigned Reg, 1828 const MachineRegisterInfo &MRI, 1829 const TargetInstrInfo *TII) { 1830 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1831 return nullptr; 1832 if (!MRI.hasOneNonDBGUse(Reg)) 1833 return nullptr; 1834 MachineInstr *MI = MRI.getVRegDef(Reg); 1835 if (!MI) 1836 return nullptr; 1837 // MI is folded into the MOVCC by predicating it. 1838 if (!MI->isPredicable()) 1839 return nullptr; 1840 // Check if MI has any non-dead defs or physreg uses. This also detects 1841 // predicated instructions which will be reading CPSR. 1842 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 1843 const MachineOperand &MO = MI->getOperand(i); 1844 // Reject frame index operands, PEI can't handle the predicated pseudos. 1845 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 1846 return nullptr; 1847 if (!MO.isReg()) 1848 continue; 1849 // MI can't have any tied operands, that would conflict with predication. 1850 if (MO.isTied()) 1851 return nullptr; 1852 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1853 return nullptr; 1854 if (MO.isDef() && !MO.isDead()) 1855 return nullptr; 1856 } 1857 bool DontMoveAcrossStores = true; 1858 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 1859 return nullptr; 1860 return MI; 1861 } 1862 1863 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI, 1864 SmallVectorImpl<MachineOperand> &Cond, 1865 unsigned &TrueOp, unsigned &FalseOp, 1866 bool &Optimizable) const { 1867 assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) && 1868 "Unknown select instruction"); 1869 // MOVCC operands: 1870 // 0: Def. 1871 // 1: True use. 1872 // 2: False use. 1873 // 3: Condition code. 1874 // 4: CPSR use. 1875 TrueOp = 1; 1876 FalseOp = 2; 1877 Cond.push_back(MI->getOperand(3)); 1878 Cond.push_back(MI->getOperand(4)); 1879 // We can always fold a def. 1880 Optimizable = true; 1881 return false; 1882 } 1883 1884 MachineInstr * 1885 ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI, 1886 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 1887 bool PreferFalse) const { 1888 assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) && 1889 "Unknown select instruction"); 1890 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 1891 MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this); 1892 bool Invert = !DefMI; 1893 if (!DefMI) 1894 DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this); 1895 if (!DefMI) 1896 return nullptr; 1897 1898 // Find new register class to use. 1899 MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1); 1900 unsigned DestReg = MI->getOperand(0).getReg(); 1901 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 1902 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 1903 return nullptr; 1904 1905 // Create a new predicated version of DefMI. 1906 // Rfalse is the first use. 1907 MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1908 DefMI->getDesc(), DestReg); 1909 1910 // Copy all the DefMI operands, excluding its (null) predicate. 1911 const MCInstrDesc &DefDesc = DefMI->getDesc(); 1912 for (unsigned i = 1, e = DefDesc.getNumOperands(); 1913 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 1914 NewMI.addOperand(DefMI->getOperand(i)); 1915 1916 unsigned CondCode = MI->getOperand(3).getImm(); 1917 if (Invert) 1918 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 1919 else 1920 NewMI.addImm(CondCode); 1921 NewMI.addOperand(MI->getOperand(4)); 1922 1923 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 1924 if (NewMI->hasOptionalDef()) 1925 AddDefaultCC(NewMI); 1926 1927 // The output register value when the predicate is false is an implicit 1928 // register operand tied to the first def. 1929 // The tie makes the register allocator ensure the FalseReg is allocated the 1930 // same register as operand 0. 1931 FalseReg.setImplicit(); 1932 NewMI.addOperand(FalseReg); 1933 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 1934 1935 // Update SeenMIs set: register newly created MI and erase removed DefMI. 1936 SeenMIs.insert(NewMI); 1937 SeenMIs.erase(DefMI); 1938 1939 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 1940 // DefMI would be invalid when tranferred inside the loop. Checking for a 1941 // loop is expensive, but at least remove kill flags if they are in different 1942 // BBs. 1943 if (DefMI->getParent() != MI->getParent()) 1944 NewMI->clearKillInfo(); 1945 1946 // The caller will erase MI, but not DefMI. 1947 DefMI->eraseFromParent(); 1948 return NewMI; 1949 } 1950 1951 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 1952 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 1953 /// def operand. 1954 /// 1955 /// This will go away once we can teach tblgen how to set the optional CPSR def 1956 /// operand itself. 1957 struct AddSubFlagsOpcodePair { 1958 uint16_t PseudoOpc; 1959 uint16_t MachineOpc; 1960 }; 1961 1962 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 1963 {ARM::ADDSri, ARM::ADDri}, 1964 {ARM::ADDSrr, ARM::ADDrr}, 1965 {ARM::ADDSrsi, ARM::ADDrsi}, 1966 {ARM::ADDSrsr, ARM::ADDrsr}, 1967 1968 {ARM::SUBSri, ARM::SUBri}, 1969 {ARM::SUBSrr, ARM::SUBrr}, 1970 {ARM::SUBSrsi, ARM::SUBrsi}, 1971 {ARM::SUBSrsr, ARM::SUBrsr}, 1972 1973 {ARM::RSBSri, ARM::RSBri}, 1974 {ARM::RSBSrsi, ARM::RSBrsi}, 1975 {ARM::RSBSrsr, ARM::RSBrsr}, 1976 1977 {ARM::t2ADDSri, ARM::t2ADDri}, 1978 {ARM::t2ADDSrr, ARM::t2ADDrr}, 1979 {ARM::t2ADDSrs, ARM::t2ADDrs}, 1980 1981 {ARM::t2SUBSri, ARM::t2SUBri}, 1982 {ARM::t2SUBSrr, ARM::t2SUBrr}, 1983 {ARM::t2SUBSrs, ARM::t2SUBrs}, 1984 1985 {ARM::t2RSBSri, ARM::t2RSBri}, 1986 {ARM::t2RSBSrs, ARM::t2RSBrs}, 1987 }; 1988 1989 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 1990 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 1991 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 1992 return AddSubFlagsOpcodeMap[i].MachineOpc; 1993 return 0; 1994 } 1995 1996 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 1997 MachineBasicBlock::iterator &MBBI, DebugLoc dl, 1998 unsigned DestReg, unsigned BaseReg, int NumBytes, 1999 ARMCC::CondCodes Pred, unsigned PredReg, 2000 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 2001 if (NumBytes == 0 && DestReg != BaseReg) { 2002 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2003 .addReg(BaseReg, RegState::Kill) 2004 .addImm((unsigned)Pred).addReg(PredReg).addReg(0) 2005 .setMIFlags(MIFlags); 2006 return; 2007 } 2008 2009 bool isSub = NumBytes < 0; 2010 if (isSub) NumBytes = -NumBytes; 2011 2012 while (NumBytes) { 2013 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2014 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2015 assert(ThisVal && "Didn't extract field correctly"); 2016 2017 // We will handle these bits from offset, clear them. 2018 NumBytes &= ~ThisVal; 2019 2020 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2021 2022 // Build the new ADD / SUB. 2023 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2024 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2025 .addReg(BaseReg, RegState::Kill).addImm(ThisVal) 2026 .addImm((unsigned)Pred).addReg(PredReg).addReg(0) 2027 .setMIFlags(MIFlags); 2028 BaseReg = DestReg; 2029 } 2030 } 2031 2032 static bool isAnySubRegLive(unsigned Reg, const TargetRegisterInfo *TRI, 2033 MachineInstr *MI) { 2034 for (MCSubRegIterator Subreg(Reg, TRI, /* IncludeSelf */ true); 2035 Subreg.isValid(); ++Subreg) 2036 if (MI->getParent()->computeRegisterLiveness(TRI, *Subreg, MI) != 2037 MachineBasicBlock::LQR_Dead) 2038 return true; 2039 return false; 2040 } 2041 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2042 MachineFunction &MF, MachineInstr *MI, 2043 unsigned NumBytes) { 2044 // This optimisation potentially adds lots of load and store 2045 // micro-operations, it's only really a great benefit to code-size. 2046 if (!MF.getFunction()->optForMinSize()) 2047 return false; 2048 2049 // If only one register is pushed/popped, LLVM can use an LDR/STR 2050 // instead. We can't modify those so make sure we're dealing with an 2051 // instruction we understand. 2052 bool IsPop = isPopOpcode(MI->getOpcode()); 2053 bool IsPush = isPushOpcode(MI->getOpcode()); 2054 if (!IsPush && !IsPop) 2055 return false; 2056 2057 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2058 MI->getOpcode() == ARM::VLDMDIA_UPD; 2059 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2060 MI->getOpcode() == ARM::tPOP || 2061 MI->getOpcode() == ARM::tPOP_RET; 2062 2063 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2064 MI->getOperand(1).getReg() == ARM::SP)) && 2065 "trying to fold sp update into non-sp-updating push/pop"); 2066 2067 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2068 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2069 // if this is violated. 2070 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2071 return false; 2072 2073 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2074 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2075 int RegListIdx = IsT1PushPop ? 2 : 4; 2076 2077 // Calculate the space we'll need in terms of registers. 2078 unsigned FirstReg = MI->getOperand(RegListIdx).getReg(); 2079 unsigned RD0Reg, RegsNeeded; 2080 if (IsVFPPushPop) { 2081 RD0Reg = ARM::D0; 2082 RegsNeeded = NumBytes / 8; 2083 } else { 2084 RD0Reg = ARM::R0; 2085 RegsNeeded = NumBytes / 4; 2086 } 2087 2088 // We're going to have to strip all list operands off before 2089 // re-adding them since the order matters, so save the existing ones 2090 // for later. 2091 SmallVector<MachineOperand, 4> RegList; 2092 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2093 RegList.push_back(MI->getOperand(i)); 2094 2095 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2096 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2097 2098 // Now try to find enough space in the reglist to allocate NumBytes. 2099 for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded; 2100 --CurReg) { 2101 if (!IsPop) { 2102 // Pushing any register is completely harmless, mark the 2103 // register involved as undef since we don't care about it in 2104 // the slightest. 2105 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2106 false, false, true)); 2107 --RegsNeeded; 2108 continue; 2109 } 2110 2111 // However, we can only pop an extra register if it's not live. For 2112 // registers live within the function we might clobber a return value 2113 // register; the other way a register can be live here is if it's 2114 // callee-saved. 2115 // TODO: Currently, computeRegisterLiveness() does not report "live" if a 2116 // sub reg is live. When computeRegisterLiveness() works for sub reg, it 2117 // can replace isAnySubRegLive(). 2118 if (isCalleeSavedRegister(CurReg, CSRegs) || 2119 isAnySubRegLive(CurReg, TRI, MI)) { 2120 // VFP pops don't allow holes in the register list, so any skip is fatal 2121 // for our transformation. GPR pops do, so we should just keep looking. 2122 if (IsVFPPushPop) 2123 return false; 2124 else 2125 continue; 2126 } 2127 2128 // Mark the unimportant registers as <def,dead> in the POP. 2129 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2130 true)); 2131 --RegsNeeded; 2132 } 2133 2134 if (RegsNeeded > 0) 2135 return false; 2136 2137 // Finally we know we can profitably perform the optimisation so go 2138 // ahead: strip all existing registers off and add them back again 2139 // in the right order. 2140 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2141 MI->RemoveOperand(i); 2142 2143 // Add the complete list back in. 2144 MachineInstrBuilder MIB(MF, &*MI); 2145 for (int i = RegList.size() - 1; i >= 0; --i) 2146 MIB.addOperand(RegList[i]); 2147 2148 return true; 2149 } 2150 2151 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2152 unsigned FrameReg, int &Offset, 2153 const ARMBaseInstrInfo &TII) { 2154 unsigned Opcode = MI.getOpcode(); 2155 const MCInstrDesc &Desc = MI.getDesc(); 2156 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2157 bool isSub = false; 2158 2159 // Memory operands in inline assembly always use AddrMode2. 2160 if (Opcode == ARM::INLINEASM) 2161 AddrMode = ARMII::AddrMode2; 2162 2163 if (Opcode == ARM::ADDri) { 2164 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2165 if (Offset == 0) { 2166 // Turn it into a move. 2167 MI.setDesc(TII.get(ARM::MOVr)); 2168 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2169 MI.RemoveOperand(FrameRegIdx+1); 2170 Offset = 0; 2171 return true; 2172 } else if (Offset < 0) { 2173 Offset = -Offset; 2174 isSub = true; 2175 MI.setDesc(TII.get(ARM::SUBri)); 2176 } 2177 2178 // Common case: small offset, fits into instruction. 2179 if (ARM_AM::getSOImmVal(Offset) != -1) { 2180 // Replace the FrameIndex with sp / fp 2181 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2182 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2183 Offset = 0; 2184 return true; 2185 } 2186 2187 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2188 // as possible. 2189 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2190 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2191 2192 // We will handle these bits from offset, clear them. 2193 Offset &= ~ThisImmVal; 2194 2195 // Get the properly encoded SOImmVal field. 2196 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2197 "Bit extraction didn't work?"); 2198 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2199 } else { 2200 unsigned ImmIdx = 0; 2201 int InstrOffs = 0; 2202 unsigned NumBits = 0; 2203 unsigned Scale = 1; 2204 switch (AddrMode) { 2205 case ARMII::AddrMode_i12: { 2206 ImmIdx = FrameRegIdx + 1; 2207 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2208 NumBits = 12; 2209 break; 2210 } 2211 case ARMII::AddrMode2: { 2212 ImmIdx = FrameRegIdx+2; 2213 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2214 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2215 InstrOffs *= -1; 2216 NumBits = 12; 2217 break; 2218 } 2219 case ARMII::AddrMode3: { 2220 ImmIdx = FrameRegIdx+2; 2221 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2222 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2223 InstrOffs *= -1; 2224 NumBits = 8; 2225 break; 2226 } 2227 case ARMII::AddrMode4: 2228 case ARMII::AddrMode6: 2229 // Can't fold any offset even if it's zero. 2230 return false; 2231 case ARMII::AddrMode5: { 2232 ImmIdx = FrameRegIdx+1; 2233 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2234 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2235 InstrOffs *= -1; 2236 NumBits = 8; 2237 Scale = 4; 2238 break; 2239 } 2240 default: 2241 llvm_unreachable("Unsupported addressing mode!"); 2242 } 2243 2244 Offset += InstrOffs * Scale; 2245 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2246 if (Offset < 0) { 2247 Offset = -Offset; 2248 isSub = true; 2249 } 2250 2251 // Attempt to fold address comp. if opcode has offset bits 2252 if (NumBits > 0) { 2253 // Common case: small offset, fits into instruction. 2254 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2255 int ImmedOffset = Offset / Scale; 2256 unsigned Mask = (1 << NumBits) - 1; 2257 if ((unsigned)Offset <= Mask * Scale) { 2258 // Replace the FrameIndex with sp 2259 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2260 // FIXME: When addrmode2 goes away, this will simplify (like the 2261 // T2 version), as the LDR.i12 versions don't need the encoding 2262 // tricks for the offset value. 2263 if (isSub) { 2264 if (AddrMode == ARMII::AddrMode_i12) 2265 ImmedOffset = -ImmedOffset; 2266 else 2267 ImmedOffset |= 1 << NumBits; 2268 } 2269 ImmOp.ChangeToImmediate(ImmedOffset); 2270 Offset = 0; 2271 return true; 2272 } 2273 2274 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2275 ImmedOffset = ImmedOffset & Mask; 2276 if (isSub) { 2277 if (AddrMode == ARMII::AddrMode_i12) 2278 ImmedOffset = -ImmedOffset; 2279 else 2280 ImmedOffset |= 1 << NumBits; 2281 } 2282 ImmOp.ChangeToImmediate(ImmedOffset); 2283 Offset &= ~(Mask*Scale); 2284 } 2285 } 2286 2287 Offset = (isSub) ? -Offset : Offset; 2288 return Offset == 0; 2289 } 2290 2291 /// analyzeCompare - For a comparison instruction, return the source registers 2292 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2293 /// compares against in CmpValue. Return true if the comparison instruction 2294 /// can be analyzed. 2295 bool ARMBaseInstrInfo:: 2296 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, 2297 int &CmpMask, int &CmpValue) const { 2298 switch (MI->getOpcode()) { 2299 default: break; 2300 case ARM::CMPri: 2301 case ARM::t2CMPri: 2302 SrcReg = MI->getOperand(0).getReg(); 2303 SrcReg2 = 0; 2304 CmpMask = ~0; 2305 CmpValue = MI->getOperand(1).getImm(); 2306 return true; 2307 case ARM::CMPrr: 2308 case ARM::t2CMPrr: 2309 SrcReg = MI->getOperand(0).getReg(); 2310 SrcReg2 = MI->getOperand(1).getReg(); 2311 CmpMask = ~0; 2312 CmpValue = 0; 2313 return true; 2314 case ARM::TSTri: 2315 case ARM::t2TSTri: 2316 SrcReg = MI->getOperand(0).getReg(); 2317 SrcReg2 = 0; 2318 CmpMask = MI->getOperand(1).getImm(); 2319 CmpValue = 0; 2320 return true; 2321 } 2322 2323 return false; 2324 } 2325 2326 /// isSuitableForMask - Identify a suitable 'and' instruction that 2327 /// operates on the given source register and applies the same mask 2328 /// as a 'tst' instruction. Provide a limited look-through for copies. 2329 /// When successful, MI will hold the found instruction. 2330 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 2331 int CmpMask, bool CommonUse) { 2332 switch (MI->getOpcode()) { 2333 case ARM::ANDri: 2334 case ARM::t2ANDri: 2335 if (CmpMask != MI->getOperand(2).getImm()) 2336 return false; 2337 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2338 return true; 2339 break; 2340 } 2341 2342 return false; 2343 } 2344 2345 /// getSwappedCondition - assume the flags are set by MI(a,b), return 2346 /// the condition code if we modify the instructions such that flags are 2347 /// set by MI(b,a). 2348 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { 2349 switch (CC) { 2350 default: return ARMCC::AL; 2351 case ARMCC::EQ: return ARMCC::EQ; 2352 case ARMCC::NE: return ARMCC::NE; 2353 case ARMCC::HS: return ARMCC::LS; 2354 case ARMCC::LO: return ARMCC::HI; 2355 case ARMCC::HI: return ARMCC::LO; 2356 case ARMCC::LS: return ARMCC::HS; 2357 case ARMCC::GE: return ARMCC::LE; 2358 case ARMCC::LT: return ARMCC::GT; 2359 case ARMCC::GT: return ARMCC::LT; 2360 case ARMCC::LE: return ARMCC::GE; 2361 } 2362 } 2363 2364 /// isRedundantFlagInstr - check whether the first instruction, whose only 2365 /// purpose is to update flags, can be made redundant. 2366 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2367 /// CMPri can be made redundant by SUBri if the operands are the same. 2368 /// This function can be extended later on. 2369 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg, 2370 unsigned SrcReg2, int ImmValue, 2371 MachineInstr *OI) { 2372 if ((CmpI->getOpcode() == ARM::CMPrr || 2373 CmpI->getOpcode() == ARM::t2CMPrr) && 2374 (OI->getOpcode() == ARM::SUBrr || 2375 OI->getOpcode() == ARM::t2SUBrr) && 2376 ((OI->getOperand(1).getReg() == SrcReg && 2377 OI->getOperand(2).getReg() == SrcReg2) || 2378 (OI->getOperand(1).getReg() == SrcReg2 && 2379 OI->getOperand(2).getReg() == SrcReg))) 2380 return true; 2381 2382 if ((CmpI->getOpcode() == ARM::CMPri || 2383 CmpI->getOpcode() == ARM::t2CMPri) && 2384 (OI->getOpcode() == ARM::SUBri || 2385 OI->getOpcode() == ARM::t2SUBri) && 2386 OI->getOperand(1).getReg() == SrcReg && 2387 OI->getOperand(2).getImm() == ImmValue) 2388 return true; 2389 return false; 2390 } 2391 2392 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2393 /// comparison into one that sets the zero bit in the flags register; 2394 /// Remove a redundant Compare instruction if an earlier instruction can set the 2395 /// flags in the same way as Compare. 2396 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2397 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2398 /// condition code of instructions which use the flags. 2399 bool ARMBaseInstrInfo:: 2400 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, 2401 int CmpMask, int CmpValue, 2402 const MachineRegisterInfo *MRI) const { 2403 // Get the unique definition of SrcReg. 2404 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2405 if (!MI) return false; 2406 2407 // Masked compares sometimes use the same register as the corresponding 'and'. 2408 if (CmpMask != ~0) { 2409 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) { 2410 MI = nullptr; 2411 for (MachineRegisterInfo::use_instr_iterator 2412 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2413 UI != UE; ++UI) { 2414 if (UI->getParent() != CmpInstr->getParent()) continue; 2415 MachineInstr *PotentialAND = &*UI; 2416 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2417 isPredicated(PotentialAND)) 2418 continue; 2419 MI = PotentialAND; 2420 break; 2421 } 2422 if (!MI) return false; 2423 } 2424 } 2425 2426 // Get ready to iterate backward from CmpInstr. 2427 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2428 B = CmpInstr->getParent()->begin(); 2429 2430 // Early exit if CmpInstr is at the beginning of the BB. 2431 if (I == B) return false; 2432 2433 // There are two possible candidates which can be changed to set CPSR: 2434 // One is MI, the other is a SUB instruction. 2435 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 2436 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2437 MachineInstr *Sub = nullptr; 2438 if (SrcReg2 != 0) 2439 // MI is not a candidate for CMPrr. 2440 MI = nullptr; 2441 else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) { 2442 // Conservatively refuse to convert an instruction which isn't in the same 2443 // BB as the comparison. 2444 // For CMPri w/ CmpValue != 0, a Sub may still be a candidate. 2445 // Thus we cannot return here. 2446 if (CmpInstr->getOpcode() == ARM::CMPri || 2447 CmpInstr->getOpcode() == ARM::t2CMPri) 2448 MI = nullptr; 2449 else 2450 return false; 2451 } 2452 2453 // Check that CPSR isn't set between the comparison instruction and the one we 2454 // want to change. At the same time, search for Sub. 2455 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2456 --I; 2457 for (; I != E; --I) { 2458 const MachineInstr &Instr = *I; 2459 2460 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 2461 Instr.readsRegister(ARM::CPSR, TRI)) 2462 // This instruction modifies or uses CPSR after the one we want to 2463 // change. We can't do this transformation. 2464 return false; 2465 2466 // Check whether CmpInstr can be made redundant by the current instruction. 2467 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) { 2468 Sub = &*I; 2469 break; 2470 } 2471 2472 if (I == B) 2473 // The 'and' is below the comparison instruction. 2474 return false; 2475 } 2476 2477 // Return false if no candidates exist. 2478 if (!MI && !Sub) 2479 return false; 2480 2481 // The single candidate is called MI. 2482 if (!MI) MI = Sub; 2483 2484 // We can't use a predicated instruction - it doesn't always write the flags. 2485 if (isPredicated(MI)) 2486 return false; 2487 2488 switch (MI->getOpcode()) { 2489 default: break; 2490 case ARM::RSBrr: 2491 case ARM::RSBri: 2492 case ARM::RSCrr: 2493 case ARM::RSCri: 2494 case ARM::ADDrr: 2495 case ARM::ADDri: 2496 case ARM::ADCrr: 2497 case ARM::ADCri: 2498 case ARM::SUBrr: 2499 case ARM::SUBri: 2500 case ARM::SBCrr: 2501 case ARM::SBCri: 2502 case ARM::t2RSBri: 2503 case ARM::t2ADDrr: 2504 case ARM::t2ADDri: 2505 case ARM::t2ADCrr: 2506 case ARM::t2ADCri: 2507 case ARM::t2SUBrr: 2508 case ARM::t2SUBri: 2509 case ARM::t2SBCrr: 2510 case ARM::t2SBCri: 2511 case ARM::ANDrr: 2512 case ARM::ANDri: 2513 case ARM::t2ANDrr: 2514 case ARM::t2ANDri: 2515 case ARM::ORRrr: 2516 case ARM::ORRri: 2517 case ARM::t2ORRrr: 2518 case ARM::t2ORRri: 2519 case ARM::EORrr: 2520 case ARM::EORri: 2521 case ARM::t2EORrr: 2522 case ARM::t2EORri: { 2523 // Scan forward for the use of CPSR 2524 // When checking against MI: if it's a conditional code that requires 2525 // checking of the V bit or C bit, then this is not safe to do. 2526 // It is safe to remove CmpInstr if CPSR is redefined or killed. 2527 // If we are done with the basic block, we need to check whether CPSR is 2528 // live-out. 2529 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 2530 OperandsToUpdate; 2531 bool isSafe = false; 2532 I = CmpInstr; 2533 E = CmpInstr->getParent()->end(); 2534 while (!isSafe && ++I != E) { 2535 const MachineInstr &Instr = *I; 2536 for (unsigned IO = 0, EO = Instr.getNumOperands(); 2537 !isSafe && IO != EO; ++IO) { 2538 const MachineOperand &MO = Instr.getOperand(IO); 2539 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 2540 isSafe = true; 2541 break; 2542 } 2543 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 2544 continue; 2545 if (MO.isDef()) { 2546 isSafe = true; 2547 break; 2548 } 2549 // Condition code is after the operand before CPSR except for VSELs. 2550 ARMCC::CondCodes CC; 2551 bool IsInstrVSel = true; 2552 switch (Instr.getOpcode()) { 2553 default: 2554 IsInstrVSel = false; 2555 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 2556 break; 2557 case ARM::VSELEQD: 2558 case ARM::VSELEQS: 2559 CC = ARMCC::EQ; 2560 break; 2561 case ARM::VSELGTD: 2562 case ARM::VSELGTS: 2563 CC = ARMCC::GT; 2564 break; 2565 case ARM::VSELGED: 2566 case ARM::VSELGES: 2567 CC = ARMCC::GE; 2568 break; 2569 case ARM::VSELVSS: 2570 case ARM::VSELVSD: 2571 CC = ARMCC::VS; 2572 break; 2573 } 2574 2575 if (Sub) { 2576 ARMCC::CondCodes NewCC = getSwappedCondition(CC); 2577 if (NewCC == ARMCC::AL) 2578 return false; 2579 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 2580 // on CMP needs to be updated to be based on SUB. 2581 // Push the condition code operands to OperandsToUpdate. 2582 // If it is safe to remove CmpInstr, the condition code of these 2583 // operands will be modified. 2584 if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 2585 Sub->getOperand(2).getReg() == SrcReg) { 2586 // VSel doesn't support condition code update. 2587 if (IsInstrVSel) 2588 return false; 2589 OperandsToUpdate.push_back( 2590 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 2591 } 2592 } else { 2593 // No Sub, so this is x = <op> y, z; cmp x, 0. 2594 switch (CC) { 2595 case ARMCC::EQ: // Z 2596 case ARMCC::NE: // Z 2597 case ARMCC::MI: // N 2598 case ARMCC::PL: // N 2599 case ARMCC::AL: // none 2600 // CPSR can be used multiple times, we should continue. 2601 break; 2602 case ARMCC::HS: // C 2603 case ARMCC::LO: // C 2604 case ARMCC::VS: // V 2605 case ARMCC::VC: // V 2606 case ARMCC::HI: // C Z 2607 case ARMCC::LS: // C Z 2608 case ARMCC::GE: // N V 2609 case ARMCC::LT: // N V 2610 case ARMCC::GT: // Z N V 2611 case ARMCC::LE: // Z N V 2612 // The instruction uses the V bit or C bit which is not safe. 2613 return false; 2614 } 2615 } 2616 } 2617 } 2618 2619 // If CPSR is not killed nor re-defined, we should check whether it is 2620 // live-out. If it is live-out, do not optimize. 2621 if (!isSafe) { 2622 MachineBasicBlock *MBB = CmpInstr->getParent(); 2623 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 2624 SE = MBB->succ_end(); SI != SE; ++SI) 2625 if ((*SI)->isLiveIn(ARM::CPSR)) 2626 return false; 2627 } 2628 2629 // Toggle the optional operand to CPSR. 2630 MI->getOperand(5).setReg(ARM::CPSR); 2631 MI->getOperand(5).setIsDef(true); 2632 assert(!isPredicated(MI) && "Can't use flags from predicated instruction"); 2633 CmpInstr->eraseFromParent(); 2634 2635 // Modify the condition code of operands in OperandsToUpdate. 2636 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 2637 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 2638 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 2639 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 2640 return true; 2641 } 2642 } 2643 2644 return false; 2645 } 2646 2647 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI, 2648 MachineInstr *DefMI, unsigned Reg, 2649 MachineRegisterInfo *MRI) const { 2650 // Fold large immediates into add, sub, or, xor. 2651 unsigned DefOpc = DefMI->getOpcode(); 2652 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 2653 return false; 2654 if (!DefMI->getOperand(1).isImm()) 2655 // Could be t2MOVi32imm <ga:xx> 2656 return false; 2657 2658 if (!MRI->hasOneNonDBGUse(Reg)) 2659 return false; 2660 2661 const MCInstrDesc &DefMCID = DefMI->getDesc(); 2662 if (DefMCID.hasOptionalDef()) { 2663 unsigned NumOps = DefMCID.getNumOperands(); 2664 const MachineOperand &MO = DefMI->getOperand(NumOps-1); 2665 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 2666 // If DefMI defines CPSR and it is not dead, it's obviously not safe 2667 // to delete DefMI. 2668 return false; 2669 } 2670 2671 const MCInstrDesc &UseMCID = UseMI->getDesc(); 2672 if (UseMCID.hasOptionalDef()) { 2673 unsigned NumOps = UseMCID.getNumOperands(); 2674 if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR) 2675 // If the instruction sets the flag, do not attempt this optimization 2676 // since it may change the semantics of the code. 2677 return false; 2678 } 2679 2680 unsigned UseOpc = UseMI->getOpcode(); 2681 unsigned NewUseOpc = 0; 2682 uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm(); 2683 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 2684 bool Commute = false; 2685 switch (UseOpc) { 2686 default: return false; 2687 case ARM::SUBrr: 2688 case ARM::ADDrr: 2689 case ARM::ORRrr: 2690 case ARM::EORrr: 2691 case ARM::t2SUBrr: 2692 case ARM::t2ADDrr: 2693 case ARM::t2ORRrr: 2694 case ARM::t2EORrr: { 2695 Commute = UseMI->getOperand(2).getReg() != Reg; 2696 switch (UseOpc) { 2697 default: break; 2698 case ARM::SUBrr: { 2699 if (Commute) 2700 return false; 2701 ImmVal = -ImmVal; 2702 NewUseOpc = ARM::SUBri; 2703 // Fallthrough 2704 } 2705 case ARM::ADDrr: 2706 case ARM::ORRrr: 2707 case ARM::EORrr: { 2708 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 2709 return false; 2710 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 2711 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 2712 switch (UseOpc) { 2713 default: break; 2714 case ARM::ADDrr: NewUseOpc = ARM::ADDri; break; 2715 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 2716 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 2717 } 2718 break; 2719 } 2720 case ARM::t2SUBrr: { 2721 if (Commute) 2722 return false; 2723 ImmVal = -ImmVal; 2724 NewUseOpc = ARM::t2SUBri; 2725 // Fallthrough 2726 } 2727 case ARM::t2ADDrr: 2728 case ARM::t2ORRrr: 2729 case ARM::t2EORrr: { 2730 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 2731 return false; 2732 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 2733 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 2734 switch (UseOpc) { 2735 default: break; 2736 case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break; 2737 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 2738 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 2739 } 2740 break; 2741 } 2742 } 2743 } 2744 } 2745 2746 unsigned OpIdx = Commute ? 2 : 1; 2747 unsigned Reg1 = UseMI->getOperand(OpIdx).getReg(); 2748 bool isKill = UseMI->getOperand(OpIdx).isKill(); 2749 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); 2750 AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(), 2751 UseMI, UseMI->getDebugLoc(), 2752 get(NewUseOpc), NewReg) 2753 .addReg(Reg1, getKillRegState(isKill)) 2754 .addImm(SOImmValV1))); 2755 UseMI->setDesc(get(NewUseOpc)); 2756 UseMI->getOperand(1).setReg(NewReg); 2757 UseMI->getOperand(1).setIsKill(); 2758 UseMI->getOperand(2).ChangeToImmediate(SOImmValV2); 2759 DefMI->eraseFromParent(); 2760 return true; 2761 } 2762 2763 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 2764 const MachineInstr *MI) { 2765 switch (MI->getOpcode()) { 2766 default: { 2767 const MCInstrDesc &Desc = MI->getDesc(); 2768 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 2769 assert(UOps >= 0 && "bad # UOps"); 2770 return UOps; 2771 } 2772 2773 case ARM::LDRrs: 2774 case ARM::LDRBrs: 2775 case ARM::STRrs: 2776 case ARM::STRBrs: { 2777 unsigned ShOpVal = MI->getOperand(3).getImm(); 2778 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2779 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2780 if (!isSub && 2781 (ShImm == 0 || 2782 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2783 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2784 return 1; 2785 return 2; 2786 } 2787 2788 case ARM::LDRH: 2789 case ARM::STRH: { 2790 if (!MI->getOperand(2).getReg()) 2791 return 1; 2792 2793 unsigned ShOpVal = MI->getOperand(3).getImm(); 2794 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2795 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2796 if (!isSub && 2797 (ShImm == 0 || 2798 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2799 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2800 return 1; 2801 return 2; 2802 } 2803 2804 case ARM::LDRSB: 2805 case ARM::LDRSH: 2806 return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2; 2807 2808 case ARM::LDRSB_POST: 2809 case ARM::LDRSH_POST: { 2810 unsigned Rt = MI->getOperand(0).getReg(); 2811 unsigned Rm = MI->getOperand(3).getReg(); 2812 return (Rt == Rm) ? 4 : 3; 2813 } 2814 2815 case ARM::LDR_PRE_REG: 2816 case ARM::LDRB_PRE_REG: { 2817 unsigned Rt = MI->getOperand(0).getReg(); 2818 unsigned Rm = MI->getOperand(3).getReg(); 2819 if (Rt == Rm) 2820 return 3; 2821 unsigned ShOpVal = MI->getOperand(4).getImm(); 2822 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2823 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2824 if (!isSub && 2825 (ShImm == 0 || 2826 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2827 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2828 return 2; 2829 return 3; 2830 } 2831 2832 case ARM::STR_PRE_REG: 2833 case ARM::STRB_PRE_REG: { 2834 unsigned ShOpVal = MI->getOperand(4).getImm(); 2835 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2836 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2837 if (!isSub && 2838 (ShImm == 0 || 2839 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2840 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2841 return 2; 2842 return 3; 2843 } 2844 2845 case ARM::LDRH_PRE: 2846 case ARM::STRH_PRE: { 2847 unsigned Rt = MI->getOperand(0).getReg(); 2848 unsigned Rm = MI->getOperand(3).getReg(); 2849 if (!Rm) 2850 return 2; 2851 if (Rt == Rm) 2852 return 3; 2853 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) 2854 ? 3 : 2; 2855 } 2856 2857 case ARM::LDR_POST_REG: 2858 case ARM::LDRB_POST_REG: 2859 case ARM::LDRH_POST: { 2860 unsigned Rt = MI->getOperand(0).getReg(); 2861 unsigned Rm = MI->getOperand(3).getReg(); 2862 return (Rt == Rm) ? 3 : 2; 2863 } 2864 2865 case ARM::LDR_PRE_IMM: 2866 case ARM::LDRB_PRE_IMM: 2867 case ARM::LDR_POST_IMM: 2868 case ARM::LDRB_POST_IMM: 2869 case ARM::STRB_POST_IMM: 2870 case ARM::STRB_POST_REG: 2871 case ARM::STRB_PRE_IMM: 2872 case ARM::STRH_POST: 2873 case ARM::STR_POST_IMM: 2874 case ARM::STR_POST_REG: 2875 case ARM::STR_PRE_IMM: 2876 return 2; 2877 2878 case ARM::LDRSB_PRE: 2879 case ARM::LDRSH_PRE: { 2880 unsigned Rm = MI->getOperand(3).getReg(); 2881 if (Rm == 0) 2882 return 3; 2883 unsigned Rt = MI->getOperand(0).getReg(); 2884 if (Rt == Rm) 2885 return 4; 2886 unsigned ShOpVal = MI->getOperand(4).getImm(); 2887 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 2888 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 2889 if (!isSub && 2890 (ShImm == 0 || 2891 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 2892 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 2893 return 3; 2894 return 4; 2895 } 2896 2897 case ARM::LDRD: { 2898 unsigned Rt = MI->getOperand(0).getReg(); 2899 unsigned Rn = MI->getOperand(2).getReg(); 2900 unsigned Rm = MI->getOperand(3).getReg(); 2901 if (Rm) 2902 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3; 2903 return (Rt == Rn) ? 3 : 2; 2904 } 2905 2906 case ARM::STRD: { 2907 unsigned Rm = MI->getOperand(3).getReg(); 2908 if (Rm) 2909 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3; 2910 return 2; 2911 } 2912 2913 case ARM::LDRD_POST: 2914 case ARM::t2LDRD_POST: 2915 return 3; 2916 2917 case ARM::STRD_POST: 2918 case ARM::t2STRD_POST: 2919 return 4; 2920 2921 case ARM::LDRD_PRE: { 2922 unsigned Rt = MI->getOperand(0).getReg(); 2923 unsigned Rn = MI->getOperand(3).getReg(); 2924 unsigned Rm = MI->getOperand(4).getReg(); 2925 if (Rm) 2926 return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4; 2927 return (Rt == Rn) ? 4 : 3; 2928 } 2929 2930 case ARM::t2LDRD_PRE: { 2931 unsigned Rt = MI->getOperand(0).getReg(); 2932 unsigned Rn = MI->getOperand(3).getReg(); 2933 return (Rt == Rn) ? 4 : 3; 2934 } 2935 2936 case ARM::STRD_PRE: { 2937 unsigned Rm = MI->getOperand(4).getReg(); 2938 if (Rm) 2939 return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4; 2940 return 3; 2941 } 2942 2943 case ARM::t2STRD_PRE: 2944 return 3; 2945 2946 case ARM::t2LDR_POST: 2947 case ARM::t2LDRB_POST: 2948 case ARM::t2LDRB_PRE: 2949 case ARM::t2LDRSBi12: 2950 case ARM::t2LDRSBi8: 2951 case ARM::t2LDRSBpci: 2952 case ARM::t2LDRSBs: 2953 case ARM::t2LDRH_POST: 2954 case ARM::t2LDRH_PRE: 2955 case ARM::t2LDRSBT: 2956 case ARM::t2LDRSB_POST: 2957 case ARM::t2LDRSB_PRE: 2958 case ARM::t2LDRSH_POST: 2959 case ARM::t2LDRSH_PRE: 2960 case ARM::t2LDRSHi12: 2961 case ARM::t2LDRSHi8: 2962 case ARM::t2LDRSHpci: 2963 case ARM::t2LDRSHs: 2964 return 2; 2965 2966 case ARM::t2LDRDi8: { 2967 unsigned Rt = MI->getOperand(0).getReg(); 2968 unsigned Rn = MI->getOperand(2).getReg(); 2969 return (Rt == Rn) ? 3 : 2; 2970 } 2971 2972 case ARM::t2STRB_POST: 2973 case ARM::t2STRB_PRE: 2974 case ARM::t2STRBs: 2975 case ARM::t2STRDi8: 2976 case ARM::t2STRH_POST: 2977 case ARM::t2STRH_PRE: 2978 case ARM::t2STRHs: 2979 case ARM::t2STR_POST: 2980 case ARM::t2STR_PRE: 2981 case ARM::t2STRs: 2982 return 2; 2983 } 2984 } 2985 2986 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 2987 // can't be easily determined return 0 (missing MachineMemOperand). 2988 // 2989 // FIXME: The current MachineInstr design does not support relying on machine 2990 // mem operands to determine the width of a memory access. Instead, we expect 2991 // the target to provide this information based on the instruction opcode and 2992 // operands. However, using MachineMemOperand is the best solution now for 2993 // two reasons: 2994 // 2995 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 2996 // operands. This is much more dangerous than using the MachineMemOperand 2997 // sizes because CodeGen passes can insert/remove optional machine operands. In 2998 // fact, it's totally incorrect for preRA passes and appears to be wrong for 2999 // postRA passes as well. 3000 // 3001 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3002 // machine model that calls this should handle the unknown (zero size) case. 3003 // 3004 // Long term, we should require a target hook that verifies MachineMemOperand 3005 // sizes during MC lowering. That target hook should be local to MC lowering 3006 // because we can't ensure that it is aware of other MI forms. Doing this will 3007 // ensure that MachineMemOperands are correctly propagated through all passes. 3008 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const { 3009 unsigned Size = 0; 3010 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 3011 E = MI->memoperands_end(); I != E; ++I) { 3012 Size += (*I)->getSize(); 3013 } 3014 return Size / 4; 3015 } 3016 3017 unsigned 3018 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3019 const MachineInstr *MI) const { 3020 if (!ItinData || ItinData->isEmpty()) 3021 return 1; 3022 3023 const MCInstrDesc &Desc = MI->getDesc(); 3024 unsigned Class = Desc.getSchedClass(); 3025 int ItinUOps = ItinData->getNumMicroOps(Class); 3026 if (ItinUOps >= 0) { 3027 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3028 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3029 3030 return ItinUOps; 3031 } 3032 3033 unsigned Opc = MI->getOpcode(); 3034 switch (Opc) { 3035 default: 3036 llvm_unreachable("Unexpected multi-uops instruction!"); 3037 case ARM::VLDMQIA: 3038 case ARM::VSTMQIA: 3039 return 2; 3040 3041 // The number of uOps for load / store multiple are determined by the number 3042 // registers. 3043 // 3044 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3045 // same cycle. The scheduling for the first load / store must be done 3046 // separately by assuming the address is not 64-bit aligned. 3047 // 3048 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3049 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3050 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3051 case ARM::VLDMDIA: 3052 case ARM::VLDMDIA_UPD: 3053 case ARM::VLDMDDB_UPD: 3054 case ARM::VLDMSIA: 3055 case ARM::VLDMSIA_UPD: 3056 case ARM::VLDMSDB_UPD: 3057 case ARM::VSTMDIA: 3058 case ARM::VSTMDIA_UPD: 3059 case ARM::VSTMDDB_UPD: 3060 case ARM::VSTMSIA: 3061 case ARM::VSTMSIA_UPD: 3062 case ARM::VSTMSDB_UPD: { 3063 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands(); 3064 return (NumRegs / 2) + (NumRegs % 2) + 1; 3065 } 3066 3067 case ARM::LDMIA_RET: 3068 case ARM::LDMIA: 3069 case ARM::LDMDA: 3070 case ARM::LDMDB: 3071 case ARM::LDMIB: 3072 case ARM::LDMIA_UPD: 3073 case ARM::LDMDA_UPD: 3074 case ARM::LDMDB_UPD: 3075 case ARM::LDMIB_UPD: 3076 case ARM::STMIA: 3077 case ARM::STMDA: 3078 case ARM::STMDB: 3079 case ARM::STMIB: 3080 case ARM::STMIA_UPD: 3081 case ARM::STMDA_UPD: 3082 case ARM::STMDB_UPD: 3083 case ARM::STMIB_UPD: 3084 case ARM::tLDMIA: 3085 case ARM::tLDMIA_UPD: 3086 case ARM::tSTMIA_UPD: 3087 case ARM::tPOP_RET: 3088 case ARM::tPOP: 3089 case ARM::tPUSH: 3090 case ARM::t2LDMIA_RET: 3091 case ARM::t2LDMIA: 3092 case ARM::t2LDMDB: 3093 case ARM::t2LDMIA_UPD: 3094 case ARM::t2LDMDB_UPD: 3095 case ARM::t2STMIA: 3096 case ARM::t2STMDB: 3097 case ARM::t2STMIA_UPD: 3098 case ARM::t2STMDB_UPD: { 3099 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1; 3100 if (Subtarget.isSwift()) { 3101 int UOps = 1 + NumRegs; // One for address computation, one for each ld / st. 3102 switch (Opc) { 3103 default: break; 3104 case ARM::VLDMDIA_UPD: 3105 case ARM::VLDMDDB_UPD: 3106 case ARM::VLDMSIA_UPD: 3107 case ARM::VLDMSDB_UPD: 3108 case ARM::VSTMDIA_UPD: 3109 case ARM::VSTMDDB_UPD: 3110 case ARM::VSTMSIA_UPD: 3111 case ARM::VSTMSDB_UPD: 3112 case ARM::LDMIA_UPD: 3113 case ARM::LDMDA_UPD: 3114 case ARM::LDMDB_UPD: 3115 case ARM::LDMIB_UPD: 3116 case ARM::STMIA_UPD: 3117 case ARM::STMDA_UPD: 3118 case ARM::STMDB_UPD: 3119 case ARM::STMIB_UPD: 3120 case ARM::tLDMIA_UPD: 3121 case ARM::tSTMIA_UPD: 3122 case ARM::t2LDMIA_UPD: 3123 case ARM::t2LDMDB_UPD: 3124 case ARM::t2STMIA_UPD: 3125 case ARM::t2STMDB_UPD: 3126 ++UOps; // One for base register writeback. 3127 break; 3128 case ARM::LDMIA_RET: 3129 case ARM::tPOP_RET: 3130 case ARM::t2LDMIA_RET: 3131 UOps += 2; // One for base reg wb, one for write to pc. 3132 break; 3133 } 3134 return UOps; 3135 } else if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3136 if (NumRegs < 4) 3137 return 2; 3138 // 4 registers would be issued: 2, 2. 3139 // 5 registers would be issued: 2, 2, 1. 3140 int A8UOps = (NumRegs / 2); 3141 if (NumRegs % 2) 3142 ++A8UOps; 3143 return A8UOps; 3144 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3145 int A9UOps = (NumRegs / 2); 3146 // If there are odd number of registers or if it's not 64-bit aligned, 3147 // then it takes an extra AGU (Address Generation Unit) cycle. 3148 if ((NumRegs % 2) || 3149 !MI->hasOneMemOperand() || 3150 (*MI->memoperands_begin())->getAlignment() < 8) 3151 ++A9UOps; 3152 return A9UOps; 3153 } else { 3154 // Assume the worst. 3155 return NumRegs; 3156 } 3157 } 3158 } 3159 } 3160 3161 int 3162 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3163 const MCInstrDesc &DefMCID, 3164 unsigned DefClass, 3165 unsigned DefIdx, unsigned DefAlign) const { 3166 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3167 if (RegNo <= 0) 3168 // Def is the address writeback. 3169 return ItinData->getOperandCycle(DefClass, DefIdx); 3170 3171 int DefCycle; 3172 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3173 // (regno / 2) + (regno % 2) + 1 3174 DefCycle = RegNo / 2 + 1; 3175 if (RegNo % 2) 3176 ++DefCycle; 3177 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3178 DefCycle = RegNo; 3179 bool isSLoad = false; 3180 3181 switch (DefMCID.getOpcode()) { 3182 default: break; 3183 case ARM::VLDMSIA: 3184 case ARM::VLDMSIA_UPD: 3185 case ARM::VLDMSDB_UPD: 3186 isSLoad = true; 3187 break; 3188 } 3189 3190 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3191 // then it takes an extra cycle. 3192 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3193 ++DefCycle; 3194 } else { 3195 // Assume the worst. 3196 DefCycle = RegNo + 2; 3197 } 3198 3199 return DefCycle; 3200 } 3201 3202 int 3203 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3204 const MCInstrDesc &DefMCID, 3205 unsigned DefClass, 3206 unsigned DefIdx, unsigned DefAlign) const { 3207 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3208 if (RegNo <= 0) 3209 // Def is the address writeback. 3210 return ItinData->getOperandCycle(DefClass, DefIdx); 3211 3212 int DefCycle; 3213 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3214 // 4 registers would be issued: 1, 2, 1. 3215 // 5 registers would be issued: 1, 2, 2. 3216 DefCycle = RegNo / 2; 3217 if (DefCycle < 1) 3218 DefCycle = 1; 3219 // Result latency is issue cycle + 2: E2. 3220 DefCycle += 2; 3221 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3222 DefCycle = (RegNo / 2); 3223 // If there are odd number of registers or if it's not 64-bit aligned, 3224 // then it takes an extra AGU (Address Generation Unit) cycle. 3225 if ((RegNo % 2) || DefAlign < 8) 3226 ++DefCycle; 3227 // Result latency is AGU cycles + 2. 3228 DefCycle += 2; 3229 } else { 3230 // Assume the worst. 3231 DefCycle = RegNo + 2; 3232 } 3233 3234 return DefCycle; 3235 } 3236 3237 int 3238 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3239 const MCInstrDesc &UseMCID, 3240 unsigned UseClass, 3241 unsigned UseIdx, unsigned UseAlign) const { 3242 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3243 if (RegNo <= 0) 3244 return ItinData->getOperandCycle(UseClass, UseIdx); 3245 3246 int UseCycle; 3247 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3248 // (regno / 2) + (regno % 2) + 1 3249 UseCycle = RegNo / 2 + 1; 3250 if (RegNo % 2) 3251 ++UseCycle; 3252 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3253 UseCycle = RegNo; 3254 bool isSStore = false; 3255 3256 switch (UseMCID.getOpcode()) { 3257 default: break; 3258 case ARM::VSTMSIA: 3259 case ARM::VSTMSIA_UPD: 3260 case ARM::VSTMSDB_UPD: 3261 isSStore = true; 3262 break; 3263 } 3264 3265 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3266 // then it takes an extra cycle. 3267 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3268 ++UseCycle; 3269 } else { 3270 // Assume the worst. 3271 UseCycle = RegNo + 2; 3272 } 3273 3274 return UseCycle; 3275 } 3276 3277 int 3278 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3279 const MCInstrDesc &UseMCID, 3280 unsigned UseClass, 3281 unsigned UseIdx, unsigned UseAlign) const { 3282 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3283 if (RegNo <= 0) 3284 return ItinData->getOperandCycle(UseClass, UseIdx); 3285 3286 int UseCycle; 3287 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3288 UseCycle = RegNo / 2; 3289 if (UseCycle < 2) 3290 UseCycle = 2; 3291 // Read in E3. 3292 UseCycle += 2; 3293 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3294 UseCycle = (RegNo / 2); 3295 // If there are odd number of registers or if it's not 64-bit aligned, 3296 // then it takes an extra AGU (Address Generation Unit) cycle. 3297 if ((RegNo % 2) || UseAlign < 8) 3298 ++UseCycle; 3299 } else { 3300 // Assume the worst. 3301 UseCycle = 1; 3302 } 3303 return UseCycle; 3304 } 3305 3306 int 3307 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3308 const MCInstrDesc &DefMCID, 3309 unsigned DefIdx, unsigned DefAlign, 3310 const MCInstrDesc &UseMCID, 3311 unsigned UseIdx, unsigned UseAlign) const { 3312 unsigned DefClass = DefMCID.getSchedClass(); 3313 unsigned UseClass = UseMCID.getSchedClass(); 3314 3315 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3316 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3317 3318 // This may be a def / use of a variable_ops instruction, the operand 3319 // latency might be determinable dynamically. Let the target try to 3320 // figure it out. 3321 int DefCycle = -1; 3322 bool LdmBypass = false; 3323 switch (DefMCID.getOpcode()) { 3324 default: 3325 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3326 break; 3327 3328 case ARM::VLDMDIA: 3329 case ARM::VLDMDIA_UPD: 3330 case ARM::VLDMDDB_UPD: 3331 case ARM::VLDMSIA: 3332 case ARM::VLDMSIA_UPD: 3333 case ARM::VLDMSDB_UPD: 3334 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3335 break; 3336 3337 case ARM::LDMIA_RET: 3338 case ARM::LDMIA: 3339 case ARM::LDMDA: 3340 case ARM::LDMDB: 3341 case ARM::LDMIB: 3342 case ARM::LDMIA_UPD: 3343 case ARM::LDMDA_UPD: 3344 case ARM::LDMDB_UPD: 3345 case ARM::LDMIB_UPD: 3346 case ARM::tLDMIA: 3347 case ARM::tLDMIA_UPD: 3348 case ARM::tPUSH: 3349 case ARM::t2LDMIA_RET: 3350 case ARM::t2LDMIA: 3351 case ARM::t2LDMDB: 3352 case ARM::t2LDMIA_UPD: 3353 case ARM::t2LDMDB_UPD: 3354 LdmBypass = 1; 3355 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3356 break; 3357 } 3358 3359 if (DefCycle == -1) 3360 // We can't seem to determine the result latency of the def, assume it's 2. 3361 DefCycle = 2; 3362 3363 int UseCycle = -1; 3364 switch (UseMCID.getOpcode()) { 3365 default: 3366 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 3367 break; 3368 3369 case ARM::VSTMDIA: 3370 case ARM::VSTMDIA_UPD: 3371 case ARM::VSTMDDB_UPD: 3372 case ARM::VSTMSIA: 3373 case ARM::VSTMSIA_UPD: 3374 case ARM::VSTMSDB_UPD: 3375 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3376 break; 3377 3378 case ARM::STMIA: 3379 case ARM::STMDA: 3380 case ARM::STMDB: 3381 case ARM::STMIB: 3382 case ARM::STMIA_UPD: 3383 case ARM::STMDA_UPD: 3384 case ARM::STMDB_UPD: 3385 case ARM::STMIB_UPD: 3386 case ARM::tSTMIA_UPD: 3387 case ARM::tPOP_RET: 3388 case ARM::tPOP: 3389 case ARM::t2STMIA: 3390 case ARM::t2STMDB: 3391 case ARM::t2STMIA_UPD: 3392 case ARM::t2STMDB_UPD: 3393 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3394 break; 3395 } 3396 3397 if (UseCycle == -1) 3398 // Assume it's read in the first stage. 3399 UseCycle = 1; 3400 3401 UseCycle = DefCycle - UseCycle + 1; 3402 if (UseCycle > 0) { 3403 if (LdmBypass) { 3404 // It's a variable_ops instruction so we can't use DefIdx here. Just use 3405 // first def operand. 3406 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 3407 UseClass, UseIdx)) 3408 --UseCycle; 3409 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 3410 UseClass, UseIdx)) { 3411 --UseCycle; 3412 } 3413 } 3414 3415 return UseCycle; 3416 } 3417 3418 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 3419 const MachineInstr *MI, unsigned Reg, 3420 unsigned &DefIdx, unsigned &Dist) { 3421 Dist = 0; 3422 3423 MachineBasicBlock::const_iterator I = MI; ++I; 3424 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 3425 assert(II->isInsideBundle() && "Empty bundle?"); 3426 3427 int Idx = -1; 3428 while (II->isInsideBundle()) { 3429 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 3430 if (Idx != -1) 3431 break; 3432 --II; 3433 ++Dist; 3434 } 3435 3436 assert(Idx != -1 && "Cannot find bundled definition!"); 3437 DefIdx = Idx; 3438 return &*II; 3439 } 3440 3441 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 3442 const MachineInstr *MI, unsigned Reg, 3443 unsigned &UseIdx, unsigned &Dist) { 3444 Dist = 0; 3445 3446 MachineBasicBlock::const_instr_iterator II = ++MI->getIterator(); 3447 assert(II->isInsideBundle() && "Empty bundle?"); 3448 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 3449 3450 // FIXME: This doesn't properly handle multiple uses. 3451 int Idx = -1; 3452 while (II != E && II->isInsideBundle()) { 3453 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 3454 if (Idx != -1) 3455 break; 3456 if (II->getOpcode() != ARM::t2IT) 3457 ++Dist; 3458 ++II; 3459 } 3460 3461 if (Idx == -1) { 3462 Dist = 0; 3463 return nullptr; 3464 } 3465 3466 UseIdx = Idx; 3467 return &*II; 3468 } 3469 3470 /// Return the number of cycles to add to (or subtract from) the static 3471 /// itinerary based on the def opcode and alignment. The caller will ensure that 3472 /// adjusted latency is at least one cycle. 3473 static int adjustDefLatency(const ARMSubtarget &Subtarget, 3474 const MachineInstr *DefMI, 3475 const MCInstrDesc *DefMCID, unsigned DefAlign) { 3476 int Adjust = 0; 3477 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 3478 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3479 // variants are one cycle cheaper. 3480 switch (DefMCID->getOpcode()) { 3481 default: break; 3482 case ARM::LDRrs: 3483 case ARM::LDRBrs: { 3484 unsigned ShOpVal = DefMI->getOperand(3).getImm(); 3485 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3486 if (ShImm == 0 || 3487 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3488 --Adjust; 3489 break; 3490 } 3491 case ARM::t2LDRs: 3492 case ARM::t2LDRBs: 3493 case ARM::t2LDRHs: 3494 case ARM::t2LDRSHs: { 3495 // Thumb2 mode: lsl only. 3496 unsigned ShAmt = DefMI->getOperand(3).getImm(); 3497 if (ShAmt == 0 || ShAmt == 2) 3498 --Adjust; 3499 break; 3500 } 3501 } 3502 } else if (Subtarget.isSwift()) { 3503 // FIXME: Properly handle all of the latency adjustments for address 3504 // writeback. 3505 switch (DefMCID->getOpcode()) { 3506 default: break; 3507 case ARM::LDRrs: 3508 case ARM::LDRBrs: { 3509 unsigned ShOpVal = DefMI->getOperand(3).getImm(); 3510 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3511 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3512 if (!isSub && 3513 (ShImm == 0 || 3514 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3515 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3516 Adjust -= 2; 3517 else if (!isSub && 3518 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3519 --Adjust; 3520 break; 3521 } 3522 case ARM::t2LDRs: 3523 case ARM::t2LDRBs: 3524 case ARM::t2LDRHs: 3525 case ARM::t2LDRSHs: { 3526 // Thumb2 mode: lsl only. 3527 unsigned ShAmt = DefMI->getOperand(3).getImm(); 3528 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 3529 Adjust -= 2; 3530 break; 3531 } 3532 } 3533 } 3534 3535 if (DefAlign < 8 && Subtarget.isLikeA9()) { 3536 switch (DefMCID->getOpcode()) { 3537 default: break; 3538 case ARM::VLD1q8: 3539 case ARM::VLD1q16: 3540 case ARM::VLD1q32: 3541 case ARM::VLD1q64: 3542 case ARM::VLD1q8wb_fixed: 3543 case ARM::VLD1q16wb_fixed: 3544 case ARM::VLD1q32wb_fixed: 3545 case ARM::VLD1q64wb_fixed: 3546 case ARM::VLD1q8wb_register: 3547 case ARM::VLD1q16wb_register: 3548 case ARM::VLD1q32wb_register: 3549 case ARM::VLD1q64wb_register: 3550 case ARM::VLD2d8: 3551 case ARM::VLD2d16: 3552 case ARM::VLD2d32: 3553 case ARM::VLD2q8: 3554 case ARM::VLD2q16: 3555 case ARM::VLD2q32: 3556 case ARM::VLD2d8wb_fixed: 3557 case ARM::VLD2d16wb_fixed: 3558 case ARM::VLD2d32wb_fixed: 3559 case ARM::VLD2q8wb_fixed: 3560 case ARM::VLD2q16wb_fixed: 3561 case ARM::VLD2q32wb_fixed: 3562 case ARM::VLD2d8wb_register: 3563 case ARM::VLD2d16wb_register: 3564 case ARM::VLD2d32wb_register: 3565 case ARM::VLD2q8wb_register: 3566 case ARM::VLD2q16wb_register: 3567 case ARM::VLD2q32wb_register: 3568 case ARM::VLD3d8: 3569 case ARM::VLD3d16: 3570 case ARM::VLD3d32: 3571 case ARM::VLD1d64T: 3572 case ARM::VLD3d8_UPD: 3573 case ARM::VLD3d16_UPD: 3574 case ARM::VLD3d32_UPD: 3575 case ARM::VLD1d64Twb_fixed: 3576 case ARM::VLD1d64Twb_register: 3577 case ARM::VLD3q8_UPD: 3578 case ARM::VLD3q16_UPD: 3579 case ARM::VLD3q32_UPD: 3580 case ARM::VLD4d8: 3581 case ARM::VLD4d16: 3582 case ARM::VLD4d32: 3583 case ARM::VLD1d64Q: 3584 case ARM::VLD4d8_UPD: 3585 case ARM::VLD4d16_UPD: 3586 case ARM::VLD4d32_UPD: 3587 case ARM::VLD1d64Qwb_fixed: 3588 case ARM::VLD1d64Qwb_register: 3589 case ARM::VLD4q8_UPD: 3590 case ARM::VLD4q16_UPD: 3591 case ARM::VLD4q32_UPD: 3592 case ARM::VLD1DUPq8: 3593 case ARM::VLD1DUPq16: 3594 case ARM::VLD1DUPq32: 3595 case ARM::VLD1DUPq8wb_fixed: 3596 case ARM::VLD1DUPq16wb_fixed: 3597 case ARM::VLD1DUPq32wb_fixed: 3598 case ARM::VLD1DUPq8wb_register: 3599 case ARM::VLD1DUPq16wb_register: 3600 case ARM::VLD1DUPq32wb_register: 3601 case ARM::VLD2DUPd8: 3602 case ARM::VLD2DUPd16: 3603 case ARM::VLD2DUPd32: 3604 case ARM::VLD2DUPd8wb_fixed: 3605 case ARM::VLD2DUPd16wb_fixed: 3606 case ARM::VLD2DUPd32wb_fixed: 3607 case ARM::VLD2DUPd8wb_register: 3608 case ARM::VLD2DUPd16wb_register: 3609 case ARM::VLD2DUPd32wb_register: 3610 case ARM::VLD4DUPd8: 3611 case ARM::VLD4DUPd16: 3612 case ARM::VLD4DUPd32: 3613 case ARM::VLD4DUPd8_UPD: 3614 case ARM::VLD4DUPd16_UPD: 3615 case ARM::VLD4DUPd32_UPD: 3616 case ARM::VLD1LNd8: 3617 case ARM::VLD1LNd16: 3618 case ARM::VLD1LNd32: 3619 case ARM::VLD1LNd8_UPD: 3620 case ARM::VLD1LNd16_UPD: 3621 case ARM::VLD1LNd32_UPD: 3622 case ARM::VLD2LNd8: 3623 case ARM::VLD2LNd16: 3624 case ARM::VLD2LNd32: 3625 case ARM::VLD2LNq16: 3626 case ARM::VLD2LNq32: 3627 case ARM::VLD2LNd8_UPD: 3628 case ARM::VLD2LNd16_UPD: 3629 case ARM::VLD2LNd32_UPD: 3630 case ARM::VLD2LNq16_UPD: 3631 case ARM::VLD2LNq32_UPD: 3632 case ARM::VLD4LNd8: 3633 case ARM::VLD4LNd16: 3634 case ARM::VLD4LNd32: 3635 case ARM::VLD4LNq16: 3636 case ARM::VLD4LNq32: 3637 case ARM::VLD4LNd8_UPD: 3638 case ARM::VLD4LNd16_UPD: 3639 case ARM::VLD4LNd32_UPD: 3640 case ARM::VLD4LNq16_UPD: 3641 case ARM::VLD4LNq32_UPD: 3642 // If the address is not 64-bit aligned, the latencies of these 3643 // instructions increases by one. 3644 ++Adjust; 3645 break; 3646 } 3647 } 3648 return Adjust; 3649 } 3650 3651 3652 3653 int 3654 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3655 const MachineInstr *DefMI, unsigned DefIdx, 3656 const MachineInstr *UseMI, 3657 unsigned UseIdx) const { 3658 // No operand latency. The caller may fall back to getInstrLatency. 3659 if (!ItinData || ItinData->isEmpty()) 3660 return -1; 3661 3662 const MachineOperand &DefMO = DefMI->getOperand(DefIdx); 3663 unsigned Reg = DefMO.getReg(); 3664 const MCInstrDesc *DefMCID = &DefMI->getDesc(); 3665 const MCInstrDesc *UseMCID = &UseMI->getDesc(); 3666 3667 unsigned DefAdj = 0; 3668 if (DefMI->isBundle()) { 3669 DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj); 3670 DefMCID = &DefMI->getDesc(); 3671 } 3672 if (DefMI->isCopyLike() || DefMI->isInsertSubreg() || 3673 DefMI->isRegSequence() || DefMI->isImplicitDef()) { 3674 return 1; 3675 } 3676 3677 unsigned UseAdj = 0; 3678 if (UseMI->isBundle()) { 3679 unsigned NewUseIdx; 3680 const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI, 3681 Reg, NewUseIdx, UseAdj); 3682 if (!NewUseMI) 3683 return -1; 3684 3685 UseMI = NewUseMI; 3686 UseIdx = NewUseIdx; 3687 UseMCID = &UseMI->getDesc(); 3688 } 3689 3690 if (Reg == ARM::CPSR) { 3691 if (DefMI->getOpcode() == ARM::FMSTAT) { 3692 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 3693 return Subtarget.isLikeA9() ? 1 : 20; 3694 } 3695 3696 // CPSR set and branch can be paired in the same cycle. 3697 if (UseMI->isBranch()) 3698 return 0; 3699 3700 // Otherwise it takes the instruction latency (generally one). 3701 unsigned Latency = getInstrLatency(ItinData, DefMI); 3702 3703 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 3704 // its uses. Instructions which are otherwise scheduled between them may 3705 // incur a code size penalty (not able to use the CPSR setting 16-bit 3706 // instructions). 3707 if (Latency > 0 && Subtarget.isThumb2()) { 3708 const MachineFunction *MF = DefMI->getParent()->getParent(); 3709 // FIXME: Use Function::optForSize(). 3710 if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize)) 3711 --Latency; 3712 } 3713 return Latency; 3714 } 3715 3716 if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit()) 3717 return -1; 3718 3719 unsigned DefAlign = DefMI->hasOneMemOperand() 3720 ? (*DefMI->memoperands_begin())->getAlignment() : 0; 3721 unsigned UseAlign = UseMI->hasOneMemOperand() 3722 ? (*UseMI->memoperands_begin())->getAlignment() : 0; 3723 3724 // Get the itinerary's latency if possible, and handle variable_ops. 3725 int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign, 3726 *UseMCID, UseIdx, UseAlign); 3727 // Unable to find operand latency. The caller may resort to getInstrLatency. 3728 if (Latency < 0) 3729 return Latency; 3730 3731 // Adjust for IT block position. 3732 int Adj = DefAdj + UseAdj; 3733 3734 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 3735 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 3736 if (Adj >= 0 || (int)Latency > -Adj) { 3737 return Latency + Adj; 3738 } 3739 // Return the itinerary latency, which may be zero but not less than zero. 3740 return Latency; 3741 } 3742 3743 int 3744 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3745 SDNode *DefNode, unsigned DefIdx, 3746 SDNode *UseNode, unsigned UseIdx) const { 3747 if (!DefNode->isMachineOpcode()) 3748 return 1; 3749 3750 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 3751 3752 if (isZeroCost(DefMCID.Opcode)) 3753 return 0; 3754 3755 if (!ItinData || ItinData->isEmpty()) 3756 return DefMCID.mayLoad() ? 3 : 1; 3757 3758 if (!UseNode->isMachineOpcode()) { 3759 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 3760 if (Subtarget.isLikeA9() || Subtarget.isSwift()) 3761 return Latency <= 2 ? 1 : Latency - 1; 3762 else 3763 return Latency <= 3 ? 1 : Latency - 2; 3764 } 3765 3766 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 3767 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); 3768 unsigned DefAlign = !DefMN->memoperands_empty() 3769 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 3770 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); 3771 unsigned UseAlign = !UseMN->memoperands_empty() 3772 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 3773 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 3774 UseMCID, UseIdx, UseAlign); 3775 3776 if (Latency > 1 && 3777 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 3778 Subtarget.isCortexA7())) { 3779 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3780 // variants are one cycle cheaper. 3781 switch (DefMCID.getOpcode()) { 3782 default: break; 3783 case ARM::LDRrs: 3784 case ARM::LDRBrs: { 3785 unsigned ShOpVal = 3786 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3787 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3788 if (ShImm == 0 || 3789 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3790 --Latency; 3791 break; 3792 } 3793 case ARM::t2LDRs: 3794 case ARM::t2LDRBs: 3795 case ARM::t2LDRHs: 3796 case ARM::t2LDRSHs: { 3797 // Thumb2 mode: lsl only. 3798 unsigned ShAmt = 3799 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3800 if (ShAmt == 0 || ShAmt == 2) 3801 --Latency; 3802 break; 3803 } 3804 } 3805 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 3806 // FIXME: Properly handle all of the latency adjustments for address 3807 // writeback. 3808 switch (DefMCID.getOpcode()) { 3809 default: break; 3810 case ARM::LDRrs: 3811 case ARM::LDRBrs: { 3812 unsigned ShOpVal = 3813 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 3814 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3815 if (ShImm == 0 || 3816 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3817 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3818 Latency -= 2; 3819 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3820 --Latency; 3821 break; 3822 } 3823 case ARM::t2LDRs: 3824 case ARM::t2LDRBs: 3825 case ARM::t2LDRHs: 3826 case ARM::t2LDRSHs: { 3827 // Thumb2 mode: lsl 0-3 only. 3828 Latency -= 2; 3829 break; 3830 } 3831 } 3832 } 3833 3834 if (DefAlign < 8 && Subtarget.isLikeA9()) 3835 switch (DefMCID.getOpcode()) { 3836 default: break; 3837 case ARM::VLD1q8: 3838 case ARM::VLD1q16: 3839 case ARM::VLD1q32: 3840 case ARM::VLD1q64: 3841 case ARM::VLD1q8wb_register: 3842 case ARM::VLD1q16wb_register: 3843 case ARM::VLD1q32wb_register: 3844 case ARM::VLD1q64wb_register: 3845 case ARM::VLD1q8wb_fixed: 3846 case ARM::VLD1q16wb_fixed: 3847 case ARM::VLD1q32wb_fixed: 3848 case ARM::VLD1q64wb_fixed: 3849 case ARM::VLD2d8: 3850 case ARM::VLD2d16: 3851 case ARM::VLD2d32: 3852 case ARM::VLD2q8Pseudo: 3853 case ARM::VLD2q16Pseudo: 3854 case ARM::VLD2q32Pseudo: 3855 case ARM::VLD2d8wb_fixed: 3856 case ARM::VLD2d16wb_fixed: 3857 case ARM::VLD2d32wb_fixed: 3858 case ARM::VLD2q8PseudoWB_fixed: 3859 case ARM::VLD2q16PseudoWB_fixed: 3860 case ARM::VLD2q32PseudoWB_fixed: 3861 case ARM::VLD2d8wb_register: 3862 case ARM::VLD2d16wb_register: 3863 case ARM::VLD2d32wb_register: 3864 case ARM::VLD2q8PseudoWB_register: 3865 case ARM::VLD2q16PseudoWB_register: 3866 case ARM::VLD2q32PseudoWB_register: 3867 case ARM::VLD3d8Pseudo: 3868 case ARM::VLD3d16Pseudo: 3869 case ARM::VLD3d32Pseudo: 3870 case ARM::VLD1d64TPseudo: 3871 case ARM::VLD1d64TPseudoWB_fixed: 3872 case ARM::VLD3d8Pseudo_UPD: 3873 case ARM::VLD3d16Pseudo_UPD: 3874 case ARM::VLD3d32Pseudo_UPD: 3875 case ARM::VLD3q8Pseudo_UPD: 3876 case ARM::VLD3q16Pseudo_UPD: 3877 case ARM::VLD3q32Pseudo_UPD: 3878 case ARM::VLD3q8oddPseudo: 3879 case ARM::VLD3q16oddPseudo: 3880 case ARM::VLD3q32oddPseudo: 3881 case ARM::VLD3q8oddPseudo_UPD: 3882 case ARM::VLD3q16oddPseudo_UPD: 3883 case ARM::VLD3q32oddPseudo_UPD: 3884 case ARM::VLD4d8Pseudo: 3885 case ARM::VLD4d16Pseudo: 3886 case ARM::VLD4d32Pseudo: 3887 case ARM::VLD1d64QPseudo: 3888 case ARM::VLD1d64QPseudoWB_fixed: 3889 case ARM::VLD4d8Pseudo_UPD: 3890 case ARM::VLD4d16Pseudo_UPD: 3891 case ARM::VLD4d32Pseudo_UPD: 3892 case ARM::VLD4q8Pseudo_UPD: 3893 case ARM::VLD4q16Pseudo_UPD: 3894 case ARM::VLD4q32Pseudo_UPD: 3895 case ARM::VLD4q8oddPseudo: 3896 case ARM::VLD4q16oddPseudo: 3897 case ARM::VLD4q32oddPseudo: 3898 case ARM::VLD4q8oddPseudo_UPD: 3899 case ARM::VLD4q16oddPseudo_UPD: 3900 case ARM::VLD4q32oddPseudo_UPD: 3901 case ARM::VLD1DUPq8: 3902 case ARM::VLD1DUPq16: 3903 case ARM::VLD1DUPq32: 3904 case ARM::VLD1DUPq8wb_fixed: 3905 case ARM::VLD1DUPq16wb_fixed: 3906 case ARM::VLD1DUPq32wb_fixed: 3907 case ARM::VLD1DUPq8wb_register: 3908 case ARM::VLD1DUPq16wb_register: 3909 case ARM::VLD1DUPq32wb_register: 3910 case ARM::VLD2DUPd8: 3911 case ARM::VLD2DUPd16: 3912 case ARM::VLD2DUPd32: 3913 case ARM::VLD2DUPd8wb_fixed: 3914 case ARM::VLD2DUPd16wb_fixed: 3915 case ARM::VLD2DUPd32wb_fixed: 3916 case ARM::VLD2DUPd8wb_register: 3917 case ARM::VLD2DUPd16wb_register: 3918 case ARM::VLD2DUPd32wb_register: 3919 case ARM::VLD4DUPd8Pseudo: 3920 case ARM::VLD4DUPd16Pseudo: 3921 case ARM::VLD4DUPd32Pseudo: 3922 case ARM::VLD4DUPd8Pseudo_UPD: 3923 case ARM::VLD4DUPd16Pseudo_UPD: 3924 case ARM::VLD4DUPd32Pseudo_UPD: 3925 case ARM::VLD1LNq8Pseudo: 3926 case ARM::VLD1LNq16Pseudo: 3927 case ARM::VLD1LNq32Pseudo: 3928 case ARM::VLD1LNq8Pseudo_UPD: 3929 case ARM::VLD1LNq16Pseudo_UPD: 3930 case ARM::VLD1LNq32Pseudo_UPD: 3931 case ARM::VLD2LNd8Pseudo: 3932 case ARM::VLD2LNd16Pseudo: 3933 case ARM::VLD2LNd32Pseudo: 3934 case ARM::VLD2LNq16Pseudo: 3935 case ARM::VLD2LNq32Pseudo: 3936 case ARM::VLD2LNd8Pseudo_UPD: 3937 case ARM::VLD2LNd16Pseudo_UPD: 3938 case ARM::VLD2LNd32Pseudo_UPD: 3939 case ARM::VLD2LNq16Pseudo_UPD: 3940 case ARM::VLD2LNq32Pseudo_UPD: 3941 case ARM::VLD4LNd8Pseudo: 3942 case ARM::VLD4LNd16Pseudo: 3943 case ARM::VLD4LNd32Pseudo: 3944 case ARM::VLD4LNq16Pseudo: 3945 case ARM::VLD4LNq32Pseudo: 3946 case ARM::VLD4LNd8Pseudo_UPD: 3947 case ARM::VLD4LNd16Pseudo_UPD: 3948 case ARM::VLD4LNd32Pseudo_UPD: 3949 case ARM::VLD4LNq16Pseudo_UPD: 3950 case ARM::VLD4LNq32Pseudo_UPD: 3951 // If the address is not 64-bit aligned, the latencies of these 3952 // instructions increases by one. 3953 ++Latency; 3954 break; 3955 } 3956 3957 return Latency; 3958 } 3959 3960 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const { 3961 if (MI->isCopyLike() || MI->isInsertSubreg() || 3962 MI->isRegSequence() || MI->isImplicitDef()) 3963 return 0; 3964 3965 if (MI->isBundle()) 3966 return 0; 3967 3968 const MCInstrDesc &MCID = MI->getDesc(); 3969 3970 if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) { 3971 // When predicated, CPSR is an additional source operand for CPSR updating 3972 // instructions, this apparently increases their latencies. 3973 return 1; 3974 } 3975 return 0; 3976 } 3977 3978 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 3979 const MachineInstr *MI, 3980 unsigned *PredCost) const { 3981 if (MI->isCopyLike() || MI->isInsertSubreg() || 3982 MI->isRegSequence() || MI->isImplicitDef()) 3983 return 1; 3984 3985 // An instruction scheduler typically runs on unbundled instructions, however 3986 // other passes may query the latency of a bundled instruction. 3987 if (MI->isBundle()) { 3988 unsigned Latency = 0; 3989 MachineBasicBlock::const_instr_iterator I = MI->getIterator(); 3990 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); 3991 while (++I != E && I->isInsideBundle()) { 3992 if (I->getOpcode() != ARM::t2IT) 3993 Latency += getInstrLatency(ItinData, &*I, PredCost); 3994 } 3995 return Latency; 3996 } 3997 3998 const MCInstrDesc &MCID = MI->getDesc(); 3999 if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) { 4000 // When predicated, CPSR is an additional source operand for CPSR updating 4001 // instructions, this apparently increases their latencies. 4002 *PredCost = 1; 4003 } 4004 // Be sure to call getStageLatency for an empty itinerary in case it has a 4005 // valid MinLatency property. 4006 if (!ItinData) 4007 return MI->mayLoad() ? 3 : 1; 4008 4009 unsigned Class = MCID.getSchedClass(); 4010 4011 // For instructions with variable uops, use uops as latency. 4012 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4013 return getNumMicroOps(ItinData, MI); 4014 4015 // For the common case, fall back on the itinerary's latency. 4016 unsigned Latency = ItinData->getStageLatency(Class); 4017 4018 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4019 unsigned DefAlign = MI->hasOneMemOperand() 4020 ? (*MI->memoperands_begin())->getAlignment() : 0; 4021 int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign); 4022 if (Adj >= 0 || (int)Latency > -Adj) { 4023 return Latency + Adj; 4024 } 4025 return Latency; 4026 } 4027 4028 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4029 SDNode *Node) const { 4030 if (!Node->isMachineOpcode()) 4031 return 1; 4032 4033 if (!ItinData || ItinData->isEmpty()) 4034 return 1; 4035 4036 unsigned Opcode = Node->getMachineOpcode(); 4037 switch (Opcode) { 4038 default: 4039 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4040 case ARM::VLDMQIA: 4041 case ARM::VSTMQIA: 4042 return 2; 4043 } 4044 } 4045 4046 bool ARMBaseInstrInfo:: 4047 hasHighOperandLatency(const TargetSchedModel &SchedModel, 4048 const MachineRegisterInfo *MRI, 4049 const MachineInstr *DefMI, unsigned DefIdx, 4050 const MachineInstr *UseMI, unsigned UseIdx) const { 4051 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; 4052 unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask; 4053 if (Subtarget.isCortexA8() && 4054 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4055 // CortexA8 VFP instructions are not pipelined. 4056 return true; 4057 4058 // Hoist VFP / NEON instructions with 4 or higher latency. 4059 unsigned Latency 4060 = SchedModel.computeOperandLatency(DefMI, DefIdx, UseMI, UseIdx); 4061 if (Latency <= 3) 4062 return false; 4063 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4064 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4065 } 4066 4067 bool ARMBaseInstrInfo:: 4068 hasLowDefLatency(const TargetSchedModel &SchedModel, 4069 const MachineInstr *DefMI, unsigned DefIdx) const { 4070 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4071 if (!ItinData || ItinData->isEmpty()) 4072 return false; 4073 4074 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask; 4075 if (DDomain == ARMII::DomainGeneral) { 4076 unsigned DefClass = DefMI->getDesc().getSchedClass(); 4077 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4078 return (DefCycle != -1 && DefCycle <= 2); 4079 } 4080 return false; 4081 } 4082 4083 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI, 4084 StringRef &ErrInfo) const { 4085 if (convertAddSubFlagsOpcode(MI->getOpcode())) { 4086 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4087 return false; 4088 } 4089 return true; 4090 } 4091 4092 // LoadStackGuard has so far only been implemented for MachO. Different code 4093 // sequence is needed for other targets. 4094 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4095 unsigned LoadImmOpc, 4096 unsigned LoadOpc, 4097 Reloc::Model RM) const { 4098 MachineBasicBlock &MBB = *MI->getParent(); 4099 DebugLoc DL = MI->getDebugLoc(); 4100 unsigned Reg = MI->getOperand(0).getReg(); 4101 const GlobalValue *GV = 4102 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4103 MachineInstrBuilder MIB; 4104 4105 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4106 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4107 4108 if (Subtarget.GVIsIndirectSymbol(GV, RM)) { 4109 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4110 MIB.addReg(Reg, RegState::Kill).addImm(0); 4111 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant; 4112 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4113 MachinePointerInfo::getGOT(*MBB.getParent()), Flag, 4, 4); 4114 MIB.addMemOperand(MMO); 4115 AddDefaultPred(MIB); 4116 } 4117 4118 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4119 MIB.addReg(Reg, RegState::Kill).addImm(0); 4120 MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 4121 AddDefaultPred(MIB); 4122 } 4123 4124 bool 4125 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4126 unsigned &AddSubOpc, 4127 bool &NegAcc, bool &HasLane) const { 4128 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4129 if (I == MLxEntryMap.end()) 4130 return false; 4131 4132 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4133 MulOpc = Entry.MulOpc; 4134 AddSubOpc = Entry.AddSubOpc; 4135 NegAcc = Entry.NegAcc; 4136 HasLane = Entry.HasLane; 4137 return true; 4138 } 4139 4140 //===----------------------------------------------------------------------===// 4141 // Execution domains. 4142 //===----------------------------------------------------------------------===// 4143 // 4144 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4145 // and some can go down both. The vmov instructions go down the VFP pipeline, 4146 // but they can be changed to vorr equivalents that are executed by the NEON 4147 // pipeline. 4148 // 4149 // We use the following execution domain numbering: 4150 // 4151 enum ARMExeDomain { 4152 ExeGeneric = 0, 4153 ExeVFP = 1, 4154 ExeNEON = 2 4155 }; 4156 // 4157 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4158 // 4159 std::pair<uint16_t, uint16_t> 4160 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const { 4161 // If we don't have access to NEON instructions then we won't be able 4162 // to swizzle anything to the NEON domain. Check to make sure. 4163 if (Subtarget.hasNEON()) { 4164 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4165 // if they are not predicated. 4166 if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4167 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4168 4169 // CortexA9 is particularly picky about mixing the two and wants these 4170 // converted. 4171 if (Subtarget.isCortexA9() && !isPredicated(MI) && 4172 (MI->getOpcode() == ARM::VMOVRS || MI->getOpcode() == ARM::VMOVSR || 4173 MI->getOpcode() == ARM::VMOVS)) 4174 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4175 } 4176 // No other instructions can be swizzled, so just determine their domain. 4177 unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 4178 4179 if (Domain & ARMII::DomainNEON) 4180 return std::make_pair(ExeNEON, 0); 4181 4182 // Certain instructions can go either way on Cortex-A8. 4183 // Treat them as NEON instructions. 4184 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4185 return std::make_pair(ExeNEON, 0); 4186 4187 if (Domain & ARMII::DomainVFP) 4188 return std::make_pair(ExeVFP, 0); 4189 4190 return std::make_pair(ExeGeneric, 0); 4191 } 4192 4193 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4194 unsigned SReg, unsigned &Lane) { 4195 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4196 Lane = 0; 4197 4198 if (DReg != ARM::NoRegister) 4199 return DReg; 4200 4201 Lane = 1; 4202 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4203 4204 assert(DReg && "S-register with no D super-register?"); 4205 return DReg; 4206 } 4207 4208 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4209 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4210 /// zero if no register needs to be defined as implicit-use. 4211 /// 4212 /// If the function cannot determine if an SPR should be marked implicit use or 4213 /// not, it returns false. 4214 /// 4215 /// This function handles cases where an instruction is being modified from taking 4216 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4217 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4218 /// lane of the DPR). 4219 /// 4220 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4221 /// (including the case where the DPR itself is defined), it should not. 4222 /// 4223 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4224 MachineInstr *MI, 4225 unsigned DReg, unsigned Lane, 4226 unsigned &ImplicitSReg) { 4227 // If the DPR is defined or used already, the other SPR lane will be chained 4228 // correctly, so there is nothing to be done. 4229 if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) { 4230 ImplicitSReg = 0; 4231 return true; 4232 } 4233 4234 // Otherwise we need to go searching to see if the SPR is set explicitly. 4235 ImplicitSReg = TRI->getSubReg(DReg, 4236 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4237 MachineBasicBlock::LivenessQueryResult LQR = 4238 MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4239 4240 if (LQR == MachineBasicBlock::LQR_Live) 4241 return true; 4242 else if (LQR == MachineBasicBlock::LQR_Unknown) 4243 return false; 4244 4245 // If the register is known not to be live, there is no need to add an 4246 // implicit-use. 4247 ImplicitSReg = 0; 4248 return true; 4249 } 4250 4251 void 4252 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { 4253 unsigned DstReg, SrcReg, DReg; 4254 unsigned Lane; 4255 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI); 4256 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4257 switch (MI->getOpcode()) { 4258 default: 4259 llvm_unreachable("cannot handle opcode!"); 4260 break; 4261 case ARM::VMOVD: 4262 if (Domain != ExeNEON) 4263 break; 4264 4265 // Zap the predicate operands. 4266 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 4267 4268 // Make sure we've got NEON instructions. 4269 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 4270 4271 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 4272 DstReg = MI->getOperand(0).getReg(); 4273 SrcReg = MI->getOperand(1).getReg(); 4274 4275 for (unsigned i = MI->getDesc().getNumOperands(); i; --i) 4276 MI->RemoveOperand(i-1); 4277 4278 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 4279 MI->setDesc(get(ARM::VORRd)); 4280 AddDefaultPred(MIB.addReg(DstReg, RegState::Define) 4281 .addReg(SrcReg) 4282 .addReg(SrcReg)); 4283 break; 4284 case ARM::VMOVRS: 4285 if (Domain != ExeNEON) 4286 break; 4287 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 4288 4289 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 4290 DstReg = MI->getOperand(0).getReg(); 4291 SrcReg = MI->getOperand(1).getReg(); 4292 4293 for (unsigned i = MI->getDesc().getNumOperands(); i; --i) 4294 MI->RemoveOperand(i-1); 4295 4296 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 4297 4298 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 4299 // Note that DSrc has been widened and the other lane may be undef, which 4300 // contaminates the entire register. 4301 MI->setDesc(get(ARM::VGETLNi32)); 4302 AddDefaultPred(MIB.addReg(DstReg, RegState::Define) 4303 .addReg(DReg, RegState::Undef) 4304 .addImm(Lane)); 4305 4306 // The old source should be an implicit use, otherwise we might think it 4307 // was dead before here. 4308 MIB.addReg(SrcReg, RegState::Implicit); 4309 break; 4310 case ARM::VMOVSR: { 4311 if (Domain != ExeNEON) 4312 break; 4313 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 4314 4315 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 4316 DstReg = MI->getOperand(0).getReg(); 4317 SrcReg = MI->getOperand(1).getReg(); 4318 4319 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 4320 4321 unsigned ImplicitSReg; 4322 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 4323 break; 4324 4325 for (unsigned i = MI->getDesc().getNumOperands(); i; --i) 4326 MI->RemoveOperand(i-1); 4327 4328 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 4329 // Again DDst may be undefined at the beginning of this instruction. 4330 MI->setDesc(get(ARM::VSETLNi32)); 4331 MIB.addReg(DReg, RegState::Define) 4332 .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI))) 4333 .addReg(SrcReg) 4334 .addImm(Lane); 4335 AddDefaultPred(MIB); 4336 4337 // The narrower destination must be marked as set to keep previous chains 4338 // in place. 4339 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4340 if (ImplicitSReg != 0) 4341 MIB.addReg(ImplicitSReg, RegState::Implicit); 4342 break; 4343 } 4344 case ARM::VMOVS: { 4345 if (Domain != ExeNEON) 4346 break; 4347 4348 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 4349 DstReg = MI->getOperand(0).getReg(); 4350 SrcReg = MI->getOperand(1).getReg(); 4351 4352 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 4353 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 4354 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 4355 4356 unsigned ImplicitSReg; 4357 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 4358 break; 4359 4360 for (unsigned i = MI->getDesc().getNumOperands(); i; --i) 4361 MI->RemoveOperand(i-1); 4362 4363 if (DSrc == DDst) { 4364 // Destination can be: 4365 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 4366 MI->setDesc(get(ARM::VDUPLN32d)); 4367 MIB.addReg(DDst, RegState::Define) 4368 .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI))) 4369 .addImm(SrcLane); 4370 AddDefaultPred(MIB); 4371 4372 // Neither the source or the destination are naturally represented any 4373 // more, so add them in manually. 4374 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 4375 MIB.addReg(SrcReg, RegState::Implicit); 4376 if (ImplicitSReg != 0) 4377 MIB.addReg(ImplicitSReg, RegState::Implicit); 4378 break; 4379 } 4380 4381 // In general there's no single instruction that can perform an S <-> S 4382 // move in NEON space, but a pair of VEXT instructions *can* do the 4383 // job. It turns out that the VEXTs needed will only use DSrc once, with 4384 // the position based purely on the combination of lane-0 and lane-1 4385 // involved. For example 4386 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 4387 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 4388 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 4389 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 4390 // 4391 // Pattern of the MachineInstrs is: 4392 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 4393 MachineInstrBuilder NewMIB; 4394 NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 4395 get(ARM::VEXTd32), DDst); 4396 4397 // On the first instruction, both DSrc and DDst may be <undef> if present. 4398 // Specifically when the original instruction didn't have them as an 4399 // <imp-use>. 4400 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 4401 bool CurUndef = !MI->readsRegister(CurReg, TRI); 4402 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4403 4404 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 4405 CurUndef = !MI->readsRegister(CurReg, TRI); 4406 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4407 4408 NewMIB.addImm(1); 4409 AddDefaultPred(NewMIB); 4410 4411 if (SrcLane == DstLane) 4412 NewMIB.addReg(SrcReg, RegState::Implicit); 4413 4414 MI->setDesc(get(ARM::VEXTd32)); 4415 MIB.addReg(DDst, RegState::Define); 4416 4417 // On the second instruction, DDst has definitely been defined above, so 4418 // it is not <undef>. DSrc, if present, can be <undef> as above. 4419 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 4420 CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI); 4421 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4422 4423 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 4424 CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI); 4425 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4426 4427 MIB.addImm(1); 4428 AddDefaultPred(MIB); 4429 4430 if (SrcLane != DstLane) 4431 MIB.addReg(SrcReg, RegState::Implicit); 4432 4433 // As before, the original destination is no longer represented, add it 4434 // implicitly. 4435 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4436 if (ImplicitSReg != 0) 4437 MIB.addReg(ImplicitSReg, RegState::Implicit); 4438 break; 4439 } 4440 } 4441 4442 } 4443 4444 //===----------------------------------------------------------------------===// 4445 // Partial register updates 4446 //===----------------------------------------------------------------------===// 4447 // 4448 // Swift renames NEON registers with 64-bit granularity. That means any 4449 // instruction writing an S-reg implicitly reads the containing D-reg. The 4450 // problem is mostly avoided by translating f32 operations to v2f32 operations 4451 // on D-registers, but f32 loads are still a problem. 4452 // 4453 // These instructions can load an f32 into a NEON register: 4454 // 4455 // VLDRS - Only writes S, partial D update. 4456 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 4457 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 4458 // 4459 // FCONSTD can be used as a dependency-breaking instruction. 4460 unsigned ARMBaseInstrInfo:: 4461 getPartialRegUpdateClearance(const MachineInstr *MI, 4462 unsigned OpNum, 4463 const TargetRegisterInfo *TRI) const { 4464 if (!SwiftPartialUpdateClearance || 4465 !(Subtarget.isSwift() || Subtarget.isCortexA15())) 4466 return 0; 4467 4468 assert(TRI && "Need TRI instance"); 4469 4470 const MachineOperand &MO = MI->getOperand(OpNum); 4471 if (MO.readsReg()) 4472 return 0; 4473 unsigned Reg = MO.getReg(); 4474 int UseOp = -1; 4475 4476 switch(MI->getOpcode()) { 4477 // Normal instructions writing only an S-register. 4478 case ARM::VLDRS: 4479 case ARM::FCONSTS: 4480 case ARM::VMOVSR: 4481 case ARM::VMOVv8i8: 4482 case ARM::VMOVv4i16: 4483 case ARM::VMOVv2i32: 4484 case ARM::VMOVv2f32: 4485 case ARM::VMOVv1i64: 4486 UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI); 4487 break; 4488 4489 // Explicitly reads the dependency. 4490 case ARM::VLD1LNd32: 4491 UseOp = 3; 4492 break; 4493 default: 4494 return 0; 4495 } 4496 4497 // If this instruction actually reads a value from Reg, there is no unwanted 4498 // dependency. 4499 if (UseOp != -1 && MI->getOperand(UseOp).readsReg()) 4500 return 0; 4501 4502 // We must be able to clobber the whole D-reg. 4503 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 4504 // Virtual register must be a foo:ssub_0<def,undef> operand. 4505 if (!MO.getSubReg() || MI->readsVirtualRegister(Reg)) 4506 return 0; 4507 } else if (ARM::SPRRegClass.contains(Reg)) { 4508 // Physical register: MI must define the full D-reg. 4509 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 4510 &ARM::DPRRegClass); 4511 if (!DReg || !MI->definesRegister(DReg, TRI)) 4512 return 0; 4513 } 4514 4515 // MI has an unwanted D-register dependency. 4516 // Avoid defs in the previous N instructrions. 4517 return SwiftPartialUpdateClearance; 4518 } 4519 4520 // Break a partial register dependency after getPartialRegUpdateClearance 4521 // returned non-zero. 4522 void ARMBaseInstrInfo:: 4523 breakPartialRegDependency(MachineBasicBlock::iterator MI, 4524 unsigned OpNum, 4525 const TargetRegisterInfo *TRI) const { 4526 assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def"); 4527 assert(TRI && "Need TRI instance"); 4528 4529 const MachineOperand &MO = MI->getOperand(OpNum); 4530 unsigned Reg = MO.getReg(); 4531 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 4532 "Can't break virtual register dependencies."); 4533 unsigned DReg = Reg; 4534 4535 // If MI defines an S-reg, find the corresponding D super-register. 4536 if (ARM::SPRRegClass.contains(Reg)) { 4537 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 4538 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 4539 } 4540 4541 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 4542 assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 4543 4544 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 4545 // the full D-register by loading the same value to both lanes. The 4546 // instruction is micro-coded with 2 uops, so don't do this until we can 4547 // properly schedule micro-coded instructions. The dispatcher stalls cause 4548 // too big regressions. 4549 4550 // Insert the dependency-breaking FCONSTD before MI. 4551 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 4552 AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 4553 get(ARM::FCONSTD), DReg).addImm(96)); 4554 MI->addRegisterKilled(DReg, TRI, true); 4555 } 4556 4557 bool ARMBaseInstrInfo::hasNOP() const { 4558 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 4559 } 4560 4561 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 4562 if (MI->getNumOperands() < 4) 4563 return true; 4564 unsigned ShOpVal = MI->getOperand(3).getImm(); 4565 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 4566 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 4567 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 4568 ((ShImm == 1 || ShImm == 2) && 4569 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 4570 return true; 4571 4572 return false; 4573 } 4574 4575 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 4576 const MachineInstr &MI, unsigned DefIdx, 4577 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 4578 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4579 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 4580 4581 switch (MI.getOpcode()) { 4582 case ARM::VMOVDRR: 4583 // dX = VMOVDRR rY, rZ 4584 // is the same as: 4585 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 4586 // Populate the InputRegs accordingly. 4587 // rY 4588 const MachineOperand *MOReg = &MI.getOperand(1); 4589 InputRegs.push_back( 4590 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0)); 4591 // rZ 4592 MOReg = &MI.getOperand(2); 4593 InputRegs.push_back( 4594 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1)); 4595 return true; 4596 } 4597 llvm_unreachable("Target dependent opcode missing"); 4598 } 4599 4600 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 4601 const MachineInstr &MI, unsigned DefIdx, 4602 RegSubRegPairAndIdx &InputReg) const { 4603 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4604 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 4605 4606 switch (MI.getOpcode()) { 4607 case ARM::VMOVRRD: 4608 // rX, rY = VMOVRRD dZ 4609 // is the same as: 4610 // rX = EXTRACT_SUBREG dZ, ssub_0 4611 // rY = EXTRACT_SUBREG dZ, ssub_1 4612 const MachineOperand &MOReg = MI.getOperand(2); 4613 InputReg.Reg = MOReg.getReg(); 4614 InputReg.SubReg = MOReg.getSubReg(); 4615 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 4616 return true; 4617 } 4618 llvm_unreachable("Target dependent opcode missing"); 4619 } 4620 4621 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 4622 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 4623 RegSubRegPairAndIdx &InsertedReg) const { 4624 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 4625 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 4626 4627 switch (MI.getOpcode()) { 4628 case ARM::VSETLNi32: 4629 // dX = VSETLNi32 dY, rZ, imm 4630 const MachineOperand &MOBaseReg = MI.getOperand(1); 4631 const MachineOperand &MOInsertedReg = MI.getOperand(2); 4632 const MachineOperand &MOIndex = MI.getOperand(3); 4633 BaseReg.Reg = MOBaseReg.getReg(); 4634 BaseReg.SubReg = MOBaseReg.getSubReg(); 4635 4636 InsertedReg.Reg = MOInsertedReg.getReg(); 4637 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 4638 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 4639 return true; 4640 } 4641 llvm_unreachable("Target dependent opcode missing"); 4642 } 4643