1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/CodeGen/LiveVariables.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineConstantPool.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSchedule.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/MC/MCAsmInfo.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/MC/MCInstrItineraries.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <new> 63 #include <utility> 64 #include <vector> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "arm-instrinfo" 69 70 #define GET_INSTRINFO_CTOR_DTOR 71 #include "ARMGenInstrInfo.inc" 72 73 static cl::opt<bool> 74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 75 cl::desc("Enable ARM 2-addr to 3-addr conv")); 76 77 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 78 struct ARM_MLxEntry { 79 uint16_t MLxOpc; // MLA / MLS opcode 80 uint16_t MulOpc; // Expanded multiplication opcode 81 uint16_t AddSubOpc; // Expanded add / sub opcode 82 bool NegAcc; // True if the acc is negated before the add / sub. 83 bool HasLane; // True if instruction has an extra "lane" operand. 84 }; 85 86 static const ARM_MLxEntry ARM_MLxTable[] = { 87 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 88 // fp scalar ops 89 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 90 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 91 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 92 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 93 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 94 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 95 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 96 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 97 98 // fp SIMD ops 99 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 100 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 101 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 102 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 103 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 104 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 105 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 106 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 107 }; 108 109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 110 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 111 Subtarget(STI) { 112 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 113 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 114 llvm_unreachable("Duplicated entries?"); 115 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 116 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 117 } 118 } 119 120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 121 // currently defaults to no prepass hazard recognizer. 122 ScheduleHazardRecognizer * 123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 124 const ScheduleDAG *DAG) const { 125 if (usePreRAHazardRecognizer()) { 126 const InstrItineraryData *II = 127 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 128 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 129 } 130 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 131 } 132 133 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 135 const ScheduleDAG *DAG) const { 136 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 137 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG); 138 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 139 } 140 141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 142 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 143 // FIXME: Thumb2 support. 144 145 if (!EnableARM3Addr) 146 return nullptr; 147 148 MachineFunction &MF = *MI.getParent()->getParent(); 149 uint64_t TSFlags = MI.getDesc().TSFlags; 150 bool isPre = false; 151 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 152 default: return nullptr; 153 case ARMII::IndexModePre: 154 isPre = true; 155 break; 156 case ARMII::IndexModePost: 157 break; 158 } 159 160 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 161 // operation. 162 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 163 if (MemOpc == 0) 164 return nullptr; 165 166 MachineInstr *UpdateMI = nullptr; 167 MachineInstr *MemMI = nullptr; 168 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 169 const MCInstrDesc &MCID = MI.getDesc(); 170 unsigned NumOps = MCID.getNumOperands(); 171 bool isLoad = !MI.mayStore(); 172 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 173 const MachineOperand &Base = MI.getOperand(2); 174 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 175 unsigned WBReg = WB.getReg(); 176 unsigned BaseReg = Base.getReg(); 177 unsigned OffReg = Offset.getReg(); 178 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 179 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 180 switch (AddrMode) { 181 default: llvm_unreachable("Unknown indexed op!"); 182 case ARMII::AddrMode2: { 183 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 184 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 185 if (OffReg == 0) { 186 if (ARM_AM::getSOImmVal(Amt) == -1) 187 // Can't encode it in a so_imm operand. This transformation will 188 // add more than 1 instruction. Abandon! 189 return nullptr; 190 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 191 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 192 .addReg(BaseReg) 193 .addImm(Amt) 194 .add(predOps(Pred)) 195 .add(condCodeOp()); 196 } else if (Amt != 0) { 197 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 198 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 199 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 200 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 201 .addReg(BaseReg) 202 .addReg(OffReg) 203 .addReg(0) 204 .addImm(SOOpc) 205 .add(predOps(Pred)) 206 .add(condCodeOp()); 207 } else 208 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 209 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 210 .addReg(BaseReg) 211 .addReg(OffReg) 212 .add(predOps(Pred)) 213 .add(condCodeOp()); 214 break; 215 } 216 case ARMII::AddrMode3 : { 217 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 218 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 219 if (OffReg == 0) 220 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 221 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 222 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 223 .addReg(BaseReg) 224 .addImm(Amt) 225 .add(predOps(Pred)) 226 .add(condCodeOp()); 227 else 228 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 229 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 230 .addReg(BaseReg) 231 .addReg(OffReg) 232 .add(predOps(Pred)) 233 .add(condCodeOp()); 234 break; 235 } 236 } 237 238 std::vector<MachineInstr*> NewMIs; 239 if (isPre) { 240 if (isLoad) 241 MemMI = 242 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 243 .addReg(WBReg) 244 .addImm(0) 245 .addImm(Pred); 246 else 247 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 248 .addReg(MI.getOperand(1).getReg()) 249 .addReg(WBReg) 250 .addReg(0) 251 .addImm(0) 252 .addImm(Pred); 253 NewMIs.push_back(MemMI); 254 NewMIs.push_back(UpdateMI); 255 } else { 256 if (isLoad) 257 MemMI = 258 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 259 .addReg(BaseReg) 260 .addImm(0) 261 .addImm(Pred); 262 else 263 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 264 .addReg(MI.getOperand(1).getReg()) 265 .addReg(BaseReg) 266 .addReg(0) 267 .addImm(0) 268 .addImm(Pred); 269 if (WB.isDead()) 270 UpdateMI->getOperand(0).setIsDead(); 271 NewMIs.push_back(UpdateMI); 272 NewMIs.push_back(MemMI); 273 } 274 275 // Transfer LiveVariables states, kill / dead info. 276 if (LV) { 277 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 278 MachineOperand &MO = MI.getOperand(i); 279 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 280 unsigned Reg = MO.getReg(); 281 282 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 283 if (MO.isDef()) { 284 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 285 if (MO.isDead()) 286 LV->addVirtualRegisterDead(Reg, *NewMI); 287 } 288 if (MO.isUse() && MO.isKill()) { 289 for (unsigned j = 0; j < 2; ++j) { 290 // Look at the two new MI's in reverse order. 291 MachineInstr *NewMI = NewMIs[j]; 292 if (!NewMI->readsRegister(Reg)) 293 continue; 294 LV->addVirtualRegisterKilled(Reg, *NewMI); 295 if (VI.removeKill(MI)) 296 VI.Kills.push_back(NewMI); 297 break; 298 } 299 } 300 } 301 } 302 } 303 304 MachineBasicBlock::iterator MBBI = MI.getIterator(); 305 MFI->insert(MBBI, NewMIs[1]); 306 MFI->insert(MBBI, NewMIs[0]); 307 return NewMIs[0]; 308 } 309 310 // Branch analysis. 311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 312 MachineBasicBlock *&TBB, 313 MachineBasicBlock *&FBB, 314 SmallVectorImpl<MachineOperand> &Cond, 315 bool AllowModify) const { 316 TBB = nullptr; 317 FBB = nullptr; 318 319 MachineBasicBlock::iterator I = MBB.end(); 320 if (I == MBB.begin()) 321 return false; // Empty blocks are easy. 322 --I; 323 324 // Walk backwards from the end of the basic block until the branch is 325 // analyzed or we give up. 326 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 327 // Flag to be raised on unanalyzeable instructions. This is useful in cases 328 // where we want to clean up on the end of the basic block before we bail 329 // out. 330 bool CantAnalyze = false; 331 332 // Skip over DEBUG values and predicated nonterminators. 333 while (I->isDebugInstr() || !I->isTerminator()) { 334 if (I == MBB.begin()) 335 return false; 336 --I; 337 } 338 339 if (isIndirectBranchOpcode(I->getOpcode()) || 340 isJumpTableBranchOpcode(I->getOpcode())) { 341 // Indirect branches and jump tables can't be analyzed, but we still want 342 // to clean up any instructions at the tail of the basic block. 343 CantAnalyze = true; 344 } else if (isUncondBranchOpcode(I->getOpcode())) { 345 TBB = I->getOperand(0).getMBB(); 346 } else if (isCondBranchOpcode(I->getOpcode())) { 347 // Bail out if we encounter multiple conditional branches. 348 if (!Cond.empty()) 349 return true; 350 351 assert(!FBB && "FBB should have been null."); 352 FBB = TBB; 353 TBB = I->getOperand(0).getMBB(); 354 Cond.push_back(I->getOperand(1)); 355 Cond.push_back(I->getOperand(2)); 356 } else if (I->isReturn()) { 357 // Returns can't be analyzed, but we should run cleanup. 358 CantAnalyze = !isPredicated(*I); 359 } else { 360 // We encountered other unrecognized terminator. Bail out immediately. 361 return true; 362 } 363 364 // Cleanup code - to be run for unpredicated unconditional branches and 365 // returns. 366 if (!isPredicated(*I) && 367 (isUncondBranchOpcode(I->getOpcode()) || 368 isIndirectBranchOpcode(I->getOpcode()) || 369 isJumpTableBranchOpcode(I->getOpcode()) || 370 I->isReturn())) { 371 // Forget any previous condition branch information - it no longer applies. 372 Cond.clear(); 373 FBB = nullptr; 374 375 // If we can modify the function, delete everything below this 376 // unconditional branch. 377 if (AllowModify) { 378 MachineBasicBlock::iterator DI = std::next(I); 379 while (DI != MBB.end()) { 380 MachineInstr &InstToDelete = *DI; 381 ++DI; 382 InstToDelete.eraseFromParent(); 383 } 384 } 385 } 386 387 if (CantAnalyze) 388 return true; 389 390 if (I == MBB.begin()) 391 return false; 392 393 --I; 394 } 395 396 // We made it past the terminators without bailing out - we must have 397 // analyzed this branch successfully. 398 return false; 399 } 400 401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 402 int *BytesRemoved) const { 403 assert(!BytesRemoved && "code size not handled"); 404 405 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 406 if (I == MBB.end()) 407 return 0; 408 409 if (!isUncondBranchOpcode(I->getOpcode()) && 410 !isCondBranchOpcode(I->getOpcode())) 411 return 0; 412 413 // Remove the branch. 414 I->eraseFromParent(); 415 416 I = MBB.end(); 417 418 if (I == MBB.begin()) return 1; 419 --I; 420 if (!isCondBranchOpcode(I->getOpcode())) 421 return 1; 422 423 // Remove the branch. 424 I->eraseFromParent(); 425 return 2; 426 } 427 428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 429 MachineBasicBlock *TBB, 430 MachineBasicBlock *FBB, 431 ArrayRef<MachineOperand> Cond, 432 const DebugLoc &DL, 433 int *BytesAdded) const { 434 assert(!BytesAdded && "code size not handled"); 435 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 436 int BOpc = !AFI->isThumbFunction() 437 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 438 int BccOpc = !AFI->isThumbFunction() 439 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 440 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 441 442 // Shouldn't be a fall through. 443 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 444 assert((Cond.size() == 2 || Cond.size() == 0) && 445 "ARM branch conditions have two components!"); 446 447 // For conditional branches, we use addOperand to preserve CPSR flags. 448 449 if (!FBB) { 450 if (Cond.empty()) { // Unconditional branch? 451 if (isThumb) 452 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 453 else 454 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 455 } else 456 BuildMI(&MBB, DL, get(BccOpc)) 457 .addMBB(TBB) 458 .addImm(Cond[0].getImm()) 459 .add(Cond[1]); 460 return 1; 461 } 462 463 // Two-way conditional branch. 464 BuildMI(&MBB, DL, get(BccOpc)) 465 .addMBB(TBB) 466 .addImm(Cond[0].getImm()) 467 .add(Cond[1]); 468 if (isThumb) 469 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 470 else 471 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 472 return 2; 473 } 474 475 bool ARMBaseInstrInfo:: 476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 477 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 478 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 479 return false; 480 } 481 482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 483 if (MI.isBundle()) { 484 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 485 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 486 while (++I != E && I->isInsideBundle()) { 487 int PIdx = I->findFirstPredOperandIdx(); 488 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 489 return true; 490 } 491 return false; 492 } 493 494 int PIdx = MI.findFirstPredOperandIdx(); 495 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 496 } 497 498 bool ARMBaseInstrInfo::PredicateInstruction( 499 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 500 unsigned Opc = MI.getOpcode(); 501 if (isUncondBranchOpcode(Opc)) { 502 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 503 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 504 .addImm(Pred[0].getImm()) 505 .addReg(Pred[1].getReg()); 506 return true; 507 } 508 509 int PIdx = MI.findFirstPredOperandIdx(); 510 if (PIdx != -1) { 511 MachineOperand &PMO = MI.getOperand(PIdx); 512 PMO.setImm(Pred[0].getImm()); 513 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 514 return true; 515 } 516 return false; 517 } 518 519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 520 ArrayRef<MachineOperand> Pred2) const { 521 if (Pred1.size() > 2 || Pred2.size() > 2) 522 return false; 523 524 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 525 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 526 if (CC1 == CC2) 527 return true; 528 529 switch (CC1) { 530 default: 531 return false; 532 case ARMCC::AL: 533 return true; 534 case ARMCC::HS: 535 return CC2 == ARMCC::HI; 536 case ARMCC::LS: 537 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 538 case ARMCC::GE: 539 return CC2 == ARMCC::GT; 540 case ARMCC::LE: 541 return CC2 == ARMCC::LT; 542 } 543 } 544 545 bool ARMBaseInstrInfo::DefinesPredicate( 546 MachineInstr &MI, std::vector<MachineOperand> &Pred) const { 547 bool Found = false; 548 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 549 const MachineOperand &MO = MI.getOperand(i); 550 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 551 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 552 Pred.push_back(MO); 553 Found = true; 554 } 555 } 556 557 return Found; 558 } 559 560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 561 for (const auto &MO : MI.operands()) 562 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 563 return true; 564 return false; 565 } 566 567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI, 568 unsigned Op) const { 569 const MachineOperand &Offset = MI.getOperand(Op + 1); 570 return Offset.getReg() != 0; 571 } 572 573 // Load with negative register offset requires additional 1cyc and +I unit 574 // for Cortex A57 575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI, 576 unsigned Op) const { 577 const MachineOperand &Offset = MI.getOperand(Op + 1); 578 const MachineOperand &Opc = MI.getOperand(Op + 2); 579 assert(Opc.isImm()); 580 assert(Offset.isReg()); 581 int64_t OpcImm = Opc.getImm(); 582 583 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub; 584 return (isSub && Offset.getReg() != 0); 585 } 586 587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI, 588 unsigned Op) const { 589 const MachineOperand &Opc = MI.getOperand(Op + 2); 590 unsigned OffImm = Opc.getImm(); 591 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 592 } 593 594 // Load, scaled register offset, not plus LSL2 595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI, 596 unsigned Op) const { 597 const MachineOperand &Opc = MI.getOperand(Op + 2); 598 unsigned OffImm = Opc.getImm(); 599 600 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add; 601 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 602 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm); 603 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled 604 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2); 605 return !SimpleScaled; 606 } 607 608 // Minus reg for ldstso addr mode 609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI, 610 unsigned Op) const { 611 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 612 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 613 } 614 615 // Load, scaled register offset 616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI, 617 unsigned Op) const { 618 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 619 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 620 } 621 622 static bool isEligibleForITBlock(const MachineInstr *MI) { 623 switch (MI->getOpcode()) { 624 default: return true; 625 case ARM::tADC: // ADC (register) T1 626 case ARM::tADDi3: // ADD (immediate) T1 627 case ARM::tADDi8: // ADD (immediate) T2 628 case ARM::tADDrr: // ADD (register) T1 629 case ARM::tAND: // AND (register) T1 630 case ARM::tASRri: // ASR (immediate) T1 631 case ARM::tASRrr: // ASR (register) T1 632 case ARM::tBIC: // BIC (register) T1 633 case ARM::tEOR: // EOR (register) T1 634 case ARM::tLSLri: // LSL (immediate) T1 635 case ARM::tLSLrr: // LSL (register) T1 636 case ARM::tLSRri: // LSR (immediate) T1 637 case ARM::tLSRrr: // LSR (register) T1 638 case ARM::tMUL: // MUL T1 639 case ARM::tMVN: // MVN (register) T1 640 case ARM::tORR: // ORR (register) T1 641 case ARM::tROR: // ROR (register) T1 642 case ARM::tRSB: // RSB (immediate) T1 643 case ARM::tSBC: // SBC (register) T1 644 case ARM::tSUBi3: // SUB (immediate) T1 645 case ARM::tSUBi8: // SUB (immediate) T2 646 case ARM::tSUBrr: // SUB (register) T1 647 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 648 } 649 } 650 651 /// isPredicable - Return true if the specified instruction can be predicated. 652 /// By default, this returns true for every instruction with a 653 /// PredicateOperand. 654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 655 if (!MI.isPredicable()) 656 return false; 657 658 if (MI.isBundle()) 659 return false; 660 661 if (!isEligibleForITBlock(&MI)) 662 return false; 663 664 const ARMFunctionInfo *AFI = 665 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>(); 666 667 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 668 // In their ARM encoding, they can't be encoded in a conditional form. 669 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 670 return false; 671 672 if (AFI->isThumb2Function()) { 673 if (getSubtarget().restrictIT()) 674 return isV8EligibleForIT(&MI); 675 } 676 677 return true; 678 } 679 680 namespace llvm { 681 682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 683 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 684 const MachineOperand &MO = MI->getOperand(i); 685 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 686 continue; 687 if (MO.getReg() != ARM::CPSR) 688 continue; 689 if (!MO.isDead()) 690 return false; 691 } 692 // all definitions of CPSR are dead 693 return true; 694 } 695 696 } // end namespace llvm 697 698 /// GetInstSize - Return the size of the specified MachineInstr. 699 /// 700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 701 const MachineBasicBlock &MBB = *MI.getParent(); 702 const MachineFunction *MF = MBB.getParent(); 703 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 704 705 const MCInstrDesc &MCID = MI.getDesc(); 706 if (MCID.getSize()) 707 return MCID.getSize(); 708 709 switch (MI.getOpcode()) { 710 default: 711 // pseudo-instruction sizes are zero. 712 return 0; 713 case TargetOpcode::BUNDLE: 714 return getInstBundleLength(MI); 715 case ARM::MOVi16_ga_pcrel: 716 case ARM::MOVTi16_ga_pcrel: 717 case ARM::t2MOVi16_ga_pcrel: 718 case ARM::t2MOVTi16_ga_pcrel: 719 return 4; 720 case ARM::MOVi32imm: 721 case ARM::t2MOVi32imm: 722 return 8; 723 case ARM::CONSTPOOL_ENTRY: 724 case ARM::JUMPTABLE_INSTS: 725 case ARM::JUMPTABLE_ADDRS: 726 case ARM::JUMPTABLE_TBB: 727 case ARM::JUMPTABLE_TBH: 728 // If this machine instr is a constant pool entry, its size is recorded as 729 // operand #2. 730 return MI.getOperand(2).getImm(); 731 case ARM::Int_eh_sjlj_longjmp: 732 return 16; 733 case ARM::tInt_eh_sjlj_longjmp: 734 return 10; 735 case ARM::tInt_WIN_eh_sjlj_longjmp: 736 return 12; 737 case ARM::Int_eh_sjlj_setjmp: 738 case ARM::Int_eh_sjlj_setjmp_nofp: 739 return 20; 740 case ARM::tInt_eh_sjlj_setjmp: 741 case ARM::t2Int_eh_sjlj_setjmp: 742 case ARM::t2Int_eh_sjlj_setjmp_nofp: 743 return 12; 744 case ARM::SPACE: 745 return MI.getOperand(1).getImm(); 746 case ARM::INLINEASM: 747 case ARM::INLINEASM_BR: { 748 // If this machine instr is an inline asm, measure it. 749 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 750 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 751 Size = alignTo(Size, 4); 752 return Size; 753 } 754 } 755 } 756 757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 758 unsigned Size = 0; 759 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 760 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 761 while (++I != E && I->isInsideBundle()) { 762 assert(!I->isBundle() && "No nested bundle!"); 763 Size += getInstSizeInBytes(*I); 764 } 765 return Size; 766 } 767 768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 769 MachineBasicBlock::iterator I, 770 unsigned DestReg, bool KillSrc, 771 const ARMSubtarget &Subtarget) const { 772 unsigned Opc = Subtarget.isThumb() 773 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 774 : ARM::MRS; 775 776 MachineInstrBuilder MIB = 777 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 778 779 // There is only 1 A/R class MRS instruction, and it always refers to 780 // APSR. However, there are lots of other possibilities on M-class cores. 781 if (Subtarget.isMClass()) 782 MIB.addImm(0x800); 783 784 MIB.add(predOps(ARMCC::AL)) 785 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 786 } 787 788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 789 MachineBasicBlock::iterator I, 790 unsigned SrcReg, bool KillSrc, 791 const ARMSubtarget &Subtarget) const { 792 unsigned Opc = Subtarget.isThumb() 793 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 794 : ARM::MSR; 795 796 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 797 798 if (Subtarget.isMClass()) 799 MIB.addImm(0x800); 800 else 801 MIB.addImm(8); 802 803 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 804 .add(predOps(ARMCC::AL)) 805 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 806 } 807 808 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 809 MachineBasicBlock::iterator I, 810 const DebugLoc &DL, unsigned DestReg, 811 unsigned SrcReg, bool KillSrc) const { 812 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 813 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 814 815 if (GPRDest && GPRSrc) { 816 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 817 .addReg(SrcReg, getKillRegState(KillSrc)) 818 .add(predOps(ARMCC::AL)) 819 .add(condCodeOp()); 820 return; 821 } 822 823 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 824 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 825 826 unsigned Opc = 0; 827 if (SPRDest && SPRSrc) 828 Opc = ARM::VMOVS; 829 else if (GPRDest && SPRSrc) 830 Opc = ARM::VMOVRS; 831 else if (SPRDest && GPRSrc) 832 Opc = ARM::VMOVSR; 833 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 834 Opc = ARM::VMOVD; 835 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 836 Opc = ARM::VORRq; 837 838 if (Opc) { 839 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 840 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 841 if (Opc == ARM::VORRq) 842 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 843 MIB.add(predOps(ARMCC::AL)); 844 return; 845 } 846 847 // Handle register classes that require multiple instructions. 848 unsigned BeginIdx = 0; 849 unsigned SubRegs = 0; 850 int Spacing = 1; 851 852 // Use VORRq when possible. 853 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 854 Opc = ARM::VORRq; 855 BeginIdx = ARM::qsub_0; 856 SubRegs = 2; 857 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 858 Opc = ARM::VORRq; 859 BeginIdx = ARM::qsub_0; 860 SubRegs = 4; 861 // Fall back to VMOVD. 862 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 863 Opc = ARM::VMOVD; 864 BeginIdx = ARM::dsub_0; 865 SubRegs = 2; 866 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 867 Opc = ARM::VMOVD; 868 BeginIdx = ARM::dsub_0; 869 SubRegs = 3; 870 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 871 Opc = ARM::VMOVD; 872 BeginIdx = ARM::dsub_0; 873 SubRegs = 4; 874 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 875 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 876 BeginIdx = ARM::gsub_0; 877 SubRegs = 2; 878 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 879 Opc = ARM::VMOVD; 880 BeginIdx = ARM::dsub_0; 881 SubRegs = 2; 882 Spacing = 2; 883 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 884 Opc = ARM::VMOVD; 885 BeginIdx = ARM::dsub_0; 886 SubRegs = 3; 887 Spacing = 2; 888 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 889 Opc = ARM::VMOVD; 890 BeginIdx = ARM::dsub_0; 891 SubRegs = 4; 892 Spacing = 2; 893 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 894 !Subtarget.hasFP64()) { 895 Opc = ARM::VMOVS; 896 BeginIdx = ARM::ssub_0; 897 SubRegs = 2; 898 } else if (SrcReg == ARM::CPSR) { 899 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 900 return; 901 } else if (DestReg == ARM::CPSR) { 902 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 903 return; 904 } 905 906 assert(Opc && "Impossible reg-to-reg copy"); 907 908 const TargetRegisterInfo *TRI = &getRegisterInfo(); 909 MachineInstrBuilder Mov; 910 911 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 912 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 913 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 914 Spacing = -Spacing; 915 } 916 #ifndef NDEBUG 917 SmallSet<unsigned, 4> DstRegs; 918 #endif 919 for (unsigned i = 0; i != SubRegs; ++i) { 920 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 921 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 922 assert(Dst && Src && "Bad sub-register"); 923 #ifndef NDEBUG 924 assert(!DstRegs.count(Src) && "destructive vector copy"); 925 DstRegs.insert(Dst); 926 #endif 927 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 928 // VORR takes two source operands. 929 if (Opc == ARM::VORRq) 930 Mov.addReg(Src); 931 Mov = Mov.add(predOps(ARMCC::AL)); 932 // MOVr can set CC. 933 if (Opc == ARM::MOVr) 934 Mov = Mov.add(condCodeOp()); 935 } 936 // Add implicit super-register defs and kills to the last instruction. 937 Mov->addRegisterDefined(DestReg, TRI); 938 if (KillSrc) 939 Mov->addRegisterKilled(SrcReg, TRI); 940 } 941 942 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI, 943 const MachineOperand *&Src, 944 const MachineOperand *&Dest) const { 945 // VMOVRRD is also a copy instruction but it requires 946 // special way of handling. It is more complex copy version 947 // and since that we are not considering it. For recognition 948 // of such instruction isExtractSubregLike MI interface fuction 949 // could be used. 950 // VORRq is considered as a move only if two inputs are 951 // the same register. 952 if (!MI.isMoveReg() || 953 (MI.getOpcode() == ARM::VORRq && 954 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 955 return false; 956 Dest = &MI.getOperand(0); 957 Src = &MI.getOperand(1); 958 return true; 959 } 960 961 const MachineInstrBuilder & 962 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 963 unsigned SubIdx, unsigned State, 964 const TargetRegisterInfo *TRI) const { 965 if (!SubIdx) 966 return MIB.addReg(Reg, State); 967 968 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 969 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 970 return MIB.addReg(Reg, State, SubIdx); 971 } 972 973 void ARMBaseInstrInfo:: 974 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 975 unsigned SrcReg, bool isKill, int FI, 976 const TargetRegisterClass *RC, 977 const TargetRegisterInfo *TRI) const { 978 MachineFunction &MF = *MBB.getParent(); 979 MachineFrameInfo &MFI = MF.getFrameInfo(); 980 unsigned Align = MFI.getObjectAlignment(FI); 981 982 MachineMemOperand *MMO = MF.getMachineMemOperand( 983 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 984 MFI.getObjectSize(FI), Align); 985 986 switch (TRI->getSpillSize(*RC)) { 987 case 2: 988 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 989 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 990 .addReg(SrcReg, getKillRegState(isKill)) 991 .addFrameIndex(FI) 992 .addImm(0) 993 .addMemOperand(MMO) 994 .add(predOps(ARMCC::AL)); 995 } else 996 llvm_unreachable("Unknown reg class!"); 997 break; 998 case 4: 999 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1000 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1001 .addReg(SrcReg, getKillRegState(isKill)) 1002 .addFrameIndex(FI) 1003 .addImm(0) 1004 .addMemOperand(MMO) 1005 .add(predOps(ARMCC::AL)); 1006 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1007 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1008 .addReg(SrcReg, getKillRegState(isKill)) 1009 .addFrameIndex(FI) 1010 .addImm(0) 1011 .addMemOperand(MMO) 1012 .add(predOps(ARMCC::AL)); 1013 } else 1014 llvm_unreachable("Unknown reg class!"); 1015 break; 1016 case 8: 1017 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1018 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1019 .addReg(SrcReg, getKillRegState(isKill)) 1020 .addFrameIndex(FI) 1021 .addImm(0) 1022 .addMemOperand(MMO) 1023 .add(predOps(ARMCC::AL)); 1024 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1025 if (Subtarget.hasV5TEOps()) { 1026 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1027 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1028 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1029 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1030 .add(predOps(ARMCC::AL)); 1031 } else { 1032 // Fallback to STM instruction, which has existed since the dawn of 1033 // time. 1034 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1035 .addFrameIndex(FI) 1036 .addMemOperand(MMO) 1037 .add(predOps(ARMCC::AL)); 1038 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1039 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1040 } 1041 } else 1042 llvm_unreachable("Unknown reg class!"); 1043 break; 1044 case 16: 1045 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1046 // Use aligned spills if the stack can be realigned. 1047 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1048 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1049 .addFrameIndex(FI) 1050 .addImm(16) 1051 .addReg(SrcReg, getKillRegState(isKill)) 1052 .addMemOperand(MMO) 1053 .add(predOps(ARMCC::AL)); 1054 } else { 1055 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1056 .addReg(SrcReg, getKillRegState(isKill)) 1057 .addFrameIndex(FI) 1058 .addMemOperand(MMO) 1059 .add(predOps(ARMCC::AL)); 1060 } 1061 } else 1062 llvm_unreachable("Unknown reg class!"); 1063 break; 1064 case 24: 1065 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1066 // Use aligned spills if the stack can be realigned. 1067 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1068 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1069 .addFrameIndex(FI) 1070 .addImm(16) 1071 .addReg(SrcReg, getKillRegState(isKill)) 1072 .addMemOperand(MMO) 1073 .add(predOps(ARMCC::AL)); 1074 } else { 1075 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1076 get(ARM::VSTMDIA)) 1077 .addFrameIndex(FI) 1078 .add(predOps(ARMCC::AL)) 1079 .addMemOperand(MMO); 1080 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1081 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1082 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1083 } 1084 } else 1085 llvm_unreachable("Unknown reg class!"); 1086 break; 1087 case 32: 1088 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1089 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1090 // FIXME: It's possible to only store part of the QQ register if the 1091 // spilled def has a sub-register index. 1092 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1093 .addFrameIndex(FI) 1094 .addImm(16) 1095 .addReg(SrcReg, getKillRegState(isKill)) 1096 .addMemOperand(MMO) 1097 .add(predOps(ARMCC::AL)); 1098 } else { 1099 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1100 get(ARM::VSTMDIA)) 1101 .addFrameIndex(FI) 1102 .add(predOps(ARMCC::AL)) 1103 .addMemOperand(MMO); 1104 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1105 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1106 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1107 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1108 } 1109 } else 1110 llvm_unreachable("Unknown reg class!"); 1111 break; 1112 case 64: 1113 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1114 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1115 .addFrameIndex(FI) 1116 .add(predOps(ARMCC::AL)) 1117 .addMemOperand(MMO); 1118 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1119 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1120 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1121 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1122 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1123 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1124 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1125 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1126 } else 1127 llvm_unreachable("Unknown reg class!"); 1128 break; 1129 default: 1130 llvm_unreachable("Unknown reg class!"); 1131 } 1132 } 1133 1134 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1135 int &FrameIndex) const { 1136 switch (MI.getOpcode()) { 1137 default: break; 1138 case ARM::STRrs: 1139 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1140 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1141 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1142 MI.getOperand(3).getImm() == 0) { 1143 FrameIndex = MI.getOperand(1).getIndex(); 1144 return MI.getOperand(0).getReg(); 1145 } 1146 break; 1147 case ARM::STRi12: 1148 case ARM::t2STRi12: 1149 case ARM::tSTRspi: 1150 case ARM::VSTRD: 1151 case ARM::VSTRS: 1152 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1153 MI.getOperand(2).getImm() == 0) { 1154 FrameIndex = MI.getOperand(1).getIndex(); 1155 return MI.getOperand(0).getReg(); 1156 } 1157 break; 1158 case ARM::VST1q64: 1159 case ARM::VST1d64TPseudo: 1160 case ARM::VST1d64QPseudo: 1161 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1162 FrameIndex = MI.getOperand(0).getIndex(); 1163 return MI.getOperand(2).getReg(); 1164 } 1165 break; 1166 case ARM::VSTMQIA: 1167 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1168 FrameIndex = MI.getOperand(1).getIndex(); 1169 return MI.getOperand(0).getReg(); 1170 } 1171 break; 1172 } 1173 1174 return 0; 1175 } 1176 1177 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1178 int &FrameIndex) const { 1179 SmallVector<const MachineMemOperand *, 1> Accesses; 1180 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1181 Accesses.size() == 1) { 1182 FrameIndex = 1183 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1184 ->getFrameIndex(); 1185 return true; 1186 } 1187 return false; 1188 } 1189 1190 void ARMBaseInstrInfo:: 1191 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1192 unsigned DestReg, int FI, 1193 const TargetRegisterClass *RC, 1194 const TargetRegisterInfo *TRI) const { 1195 DebugLoc DL; 1196 if (I != MBB.end()) DL = I->getDebugLoc(); 1197 MachineFunction &MF = *MBB.getParent(); 1198 MachineFrameInfo &MFI = MF.getFrameInfo(); 1199 unsigned Align = MFI.getObjectAlignment(FI); 1200 MachineMemOperand *MMO = MF.getMachineMemOperand( 1201 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1202 MFI.getObjectSize(FI), Align); 1203 1204 switch (TRI->getSpillSize(*RC)) { 1205 case 2: 1206 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1207 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1208 .addFrameIndex(FI) 1209 .addImm(0) 1210 .addMemOperand(MMO) 1211 .add(predOps(ARMCC::AL)); 1212 } else 1213 llvm_unreachable("Unknown reg class!"); 1214 break; 1215 case 4: 1216 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1217 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1218 .addFrameIndex(FI) 1219 .addImm(0) 1220 .addMemOperand(MMO) 1221 .add(predOps(ARMCC::AL)); 1222 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1223 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1224 .addFrameIndex(FI) 1225 .addImm(0) 1226 .addMemOperand(MMO) 1227 .add(predOps(ARMCC::AL)); 1228 } else 1229 llvm_unreachable("Unknown reg class!"); 1230 break; 1231 case 8: 1232 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1233 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1234 .addFrameIndex(FI) 1235 .addImm(0) 1236 .addMemOperand(MMO) 1237 .add(predOps(ARMCC::AL)); 1238 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1239 MachineInstrBuilder MIB; 1240 1241 if (Subtarget.hasV5TEOps()) { 1242 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1243 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1244 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1245 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1246 .add(predOps(ARMCC::AL)); 1247 } else { 1248 // Fallback to LDM instruction, which has existed since the dawn of 1249 // time. 1250 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1251 .addFrameIndex(FI) 1252 .addMemOperand(MMO) 1253 .add(predOps(ARMCC::AL)); 1254 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1255 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1256 } 1257 1258 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1259 MIB.addReg(DestReg, RegState::ImplicitDefine); 1260 } else 1261 llvm_unreachable("Unknown reg class!"); 1262 break; 1263 case 16: 1264 if (ARM::DPairRegClass.hasSubClassEq(RC)) { 1265 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1266 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1267 .addFrameIndex(FI) 1268 .addImm(16) 1269 .addMemOperand(MMO) 1270 .add(predOps(ARMCC::AL)); 1271 } else { 1272 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1273 .addFrameIndex(FI) 1274 .addMemOperand(MMO) 1275 .add(predOps(ARMCC::AL)); 1276 } 1277 } else 1278 llvm_unreachable("Unknown reg class!"); 1279 break; 1280 case 24: 1281 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1282 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1283 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1284 .addFrameIndex(FI) 1285 .addImm(16) 1286 .addMemOperand(MMO) 1287 .add(predOps(ARMCC::AL)); 1288 } else { 1289 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1290 .addFrameIndex(FI) 1291 .addMemOperand(MMO) 1292 .add(predOps(ARMCC::AL)); 1293 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1294 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1295 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1296 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1297 MIB.addReg(DestReg, RegState::ImplicitDefine); 1298 } 1299 } else 1300 llvm_unreachable("Unknown reg class!"); 1301 break; 1302 case 32: 1303 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1304 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1305 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1306 .addFrameIndex(FI) 1307 .addImm(16) 1308 .addMemOperand(MMO) 1309 .add(predOps(ARMCC::AL)); 1310 } else { 1311 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1312 .addFrameIndex(FI) 1313 .add(predOps(ARMCC::AL)) 1314 .addMemOperand(MMO); 1315 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1316 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1317 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1318 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1319 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1320 MIB.addReg(DestReg, RegState::ImplicitDefine); 1321 } 1322 } else 1323 llvm_unreachable("Unknown reg class!"); 1324 break; 1325 case 64: 1326 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1327 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1328 .addFrameIndex(FI) 1329 .add(predOps(ARMCC::AL)) 1330 .addMemOperand(MMO); 1331 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1332 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1333 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1334 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1335 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1336 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1337 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1338 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1339 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1340 MIB.addReg(DestReg, RegState::ImplicitDefine); 1341 } else 1342 llvm_unreachable("Unknown reg class!"); 1343 break; 1344 default: 1345 llvm_unreachable("Unknown regclass!"); 1346 } 1347 } 1348 1349 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1350 int &FrameIndex) const { 1351 switch (MI.getOpcode()) { 1352 default: break; 1353 case ARM::LDRrs: 1354 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1355 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1356 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1357 MI.getOperand(3).getImm() == 0) { 1358 FrameIndex = MI.getOperand(1).getIndex(); 1359 return MI.getOperand(0).getReg(); 1360 } 1361 break; 1362 case ARM::LDRi12: 1363 case ARM::t2LDRi12: 1364 case ARM::tLDRspi: 1365 case ARM::VLDRD: 1366 case ARM::VLDRS: 1367 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1368 MI.getOperand(2).getImm() == 0) { 1369 FrameIndex = MI.getOperand(1).getIndex(); 1370 return MI.getOperand(0).getReg(); 1371 } 1372 break; 1373 case ARM::VLD1q64: 1374 case ARM::VLD1d8TPseudo: 1375 case ARM::VLD1d16TPseudo: 1376 case ARM::VLD1d32TPseudo: 1377 case ARM::VLD1d64TPseudo: 1378 case ARM::VLD1d8QPseudo: 1379 case ARM::VLD1d16QPseudo: 1380 case ARM::VLD1d32QPseudo: 1381 case ARM::VLD1d64QPseudo: 1382 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1383 FrameIndex = MI.getOperand(1).getIndex(); 1384 return MI.getOperand(0).getReg(); 1385 } 1386 break; 1387 case ARM::VLDMQIA: 1388 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1389 FrameIndex = MI.getOperand(1).getIndex(); 1390 return MI.getOperand(0).getReg(); 1391 } 1392 break; 1393 } 1394 1395 return 0; 1396 } 1397 1398 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1399 int &FrameIndex) const { 1400 SmallVector<const MachineMemOperand *, 1> Accesses; 1401 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1402 Accesses.size() == 1) { 1403 FrameIndex = 1404 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1405 ->getFrameIndex(); 1406 return true; 1407 } 1408 return false; 1409 } 1410 1411 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1412 /// depending on whether the result is used. 1413 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1414 bool isThumb1 = Subtarget.isThumb1Only(); 1415 bool isThumb2 = Subtarget.isThumb2(); 1416 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1417 1418 DebugLoc dl = MI->getDebugLoc(); 1419 MachineBasicBlock *BB = MI->getParent(); 1420 1421 MachineInstrBuilder LDM, STM; 1422 if (isThumb1 || !MI->getOperand(1).isDead()) { 1423 MachineOperand LDWb(MI->getOperand(1)); 1424 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1425 : isThumb1 ? ARM::tLDMIA_UPD 1426 : ARM::LDMIA_UPD)) 1427 .add(LDWb); 1428 } else { 1429 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1430 } 1431 1432 if (isThumb1 || !MI->getOperand(0).isDead()) { 1433 MachineOperand STWb(MI->getOperand(0)); 1434 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1435 : isThumb1 ? ARM::tSTMIA_UPD 1436 : ARM::STMIA_UPD)) 1437 .add(STWb); 1438 } else { 1439 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1440 } 1441 1442 MachineOperand LDBase(MI->getOperand(3)); 1443 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1444 1445 MachineOperand STBase(MI->getOperand(2)); 1446 STM.add(STBase).add(predOps(ARMCC::AL)); 1447 1448 // Sort the scratch registers into ascending order. 1449 const TargetRegisterInfo &TRI = getRegisterInfo(); 1450 SmallVector<unsigned, 6> ScratchRegs; 1451 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1452 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1453 llvm::sort(ScratchRegs, 1454 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1455 return TRI.getEncodingValue(Reg1) < 1456 TRI.getEncodingValue(Reg2); 1457 }); 1458 1459 for (const auto &Reg : ScratchRegs) { 1460 LDM.addReg(Reg, RegState::Define); 1461 STM.addReg(Reg, RegState::Kill); 1462 } 1463 1464 BB->erase(MI); 1465 } 1466 1467 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1468 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1469 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1470 "LOAD_STACK_GUARD currently supported only for MachO."); 1471 expandLoadStackGuard(MI); 1472 MI.getParent()->erase(MI); 1473 return true; 1474 } 1475 1476 if (MI.getOpcode() == ARM::MEMCPY) { 1477 expandMEMCPY(MI); 1478 return true; 1479 } 1480 1481 // This hook gets to expand COPY instructions before they become 1482 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1483 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1484 // changed into a VORR that can go down the NEON pipeline. 1485 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1486 return false; 1487 1488 // Look for a copy between even S-registers. That is where we keep floats 1489 // when using NEON v2f32 instructions for f32 arithmetic. 1490 unsigned DstRegS = MI.getOperand(0).getReg(); 1491 unsigned SrcRegS = MI.getOperand(1).getReg(); 1492 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1493 return false; 1494 1495 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1496 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1497 &ARM::DPRRegClass); 1498 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1499 &ARM::DPRRegClass); 1500 if (!DstRegD || !SrcRegD) 1501 return false; 1502 1503 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1504 // legal if the COPY already defines the full DstRegD, and it isn't a 1505 // sub-register insertion. 1506 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1507 return false; 1508 1509 // A dead copy shouldn't show up here, but reject it just in case. 1510 if (MI.getOperand(0).isDead()) 1511 return false; 1512 1513 // All clear, widen the COPY. 1514 LLVM_DEBUG(dbgs() << "widening: " << MI); 1515 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1516 1517 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1518 // or some other super-register. 1519 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1520 if (ImpDefIdx != -1) 1521 MI.RemoveOperand(ImpDefIdx); 1522 1523 // Change the opcode and operands. 1524 MI.setDesc(get(ARM::VMOVD)); 1525 MI.getOperand(0).setReg(DstRegD); 1526 MI.getOperand(1).setReg(SrcRegD); 1527 MIB.add(predOps(ARMCC::AL)); 1528 1529 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1530 // register scavenger and machine verifier, so we need to indicate that we 1531 // are reading an undefined value from SrcRegD, but a proper value from 1532 // SrcRegS. 1533 MI.getOperand(1).setIsUndef(); 1534 MIB.addReg(SrcRegS, RegState::Implicit); 1535 1536 // SrcRegD may actually contain an unrelated value in the ssub_1 1537 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1538 if (MI.getOperand(1).isKill()) { 1539 MI.getOperand(1).setIsKill(false); 1540 MI.addRegisterKilled(SrcRegS, TRI, true); 1541 } 1542 1543 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1544 return true; 1545 } 1546 1547 /// Create a copy of a const pool value. Update CPI to the new index and return 1548 /// the label UID. 1549 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1550 MachineConstantPool *MCP = MF.getConstantPool(); 1551 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1552 1553 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1554 assert(MCPE.isMachineConstantPoolEntry() && 1555 "Expecting a machine constantpool entry!"); 1556 ARMConstantPoolValue *ACPV = 1557 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1558 1559 unsigned PCLabelId = AFI->createPICLabelUId(); 1560 ARMConstantPoolValue *NewCPV = nullptr; 1561 1562 // FIXME: The below assumes PIC relocation model and that the function 1563 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1564 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1565 // instructions, so that's probably OK, but is PIC always correct when 1566 // we get here? 1567 if (ACPV->isGlobalValue()) 1568 NewCPV = ARMConstantPoolConstant::Create( 1569 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1570 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1571 else if (ACPV->isExtSymbol()) 1572 NewCPV = ARMConstantPoolSymbol:: 1573 Create(MF.getFunction().getContext(), 1574 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1575 else if (ACPV->isBlockAddress()) 1576 NewCPV = ARMConstantPoolConstant:: 1577 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1578 ARMCP::CPBlockAddress, 4); 1579 else if (ACPV->isLSDA()) 1580 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1581 ARMCP::CPLSDA, 4); 1582 else if (ACPV->isMachineBasicBlock()) 1583 NewCPV = ARMConstantPoolMBB:: 1584 Create(MF.getFunction().getContext(), 1585 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1586 else 1587 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1588 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1589 return PCLabelId; 1590 } 1591 1592 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1593 MachineBasicBlock::iterator I, 1594 unsigned DestReg, unsigned SubIdx, 1595 const MachineInstr &Orig, 1596 const TargetRegisterInfo &TRI) const { 1597 unsigned Opcode = Orig.getOpcode(); 1598 switch (Opcode) { 1599 default: { 1600 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1601 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1602 MBB.insert(I, MI); 1603 break; 1604 } 1605 case ARM::tLDRpci_pic: 1606 case ARM::t2LDRpci_pic: { 1607 MachineFunction &MF = *MBB.getParent(); 1608 unsigned CPI = Orig.getOperand(1).getIndex(); 1609 unsigned PCLabelId = duplicateCPV(MF, CPI); 1610 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1611 .addConstantPoolIndex(CPI) 1612 .addImm(PCLabelId) 1613 .cloneMemRefs(Orig); 1614 break; 1615 } 1616 } 1617 } 1618 1619 MachineInstr & 1620 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1621 MachineBasicBlock::iterator InsertBefore, 1622 const MachineInstr &Orig) const { 1623 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1624 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1625 for (;;) { 1626 switch (I->getOpcode()) { 1627 case ARM::tLDRpci_pic: 1628 case ARM::t2LDRpci_pic: { 1629 MachineFunction &MF = *MBB.getParent(); 1630 unsigned CPI = I->getOperand(1).getIndex(); 1631 unsigned PCLabelId = duplicateCPV(MF, CPI); 1632 I->getOperand(1).setIndex(CPI); 1633 I->getOperand(2).setImm(PCLabelId); 1634 break; 1635 } 1636 } 1637 if (!I->isBundledWithSucc()) 1638 break; 1639 ++I; 1640 } 1641 return Cloned; 1642 } 1643 1644 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1645 const MachineInstr &MI1, 1646 const MachineRegisterInfo *MRI) const { 1647 unsigned Opcode = MI0.getOpcode(); 1648 if (Opcode == ARM::t2LDRpci || 1649 Opcode == ARM::t2LDRpci_pic || 1650 Opcode == ARM::tLDRpci || 1651 Opcode == ARM::tLDRpci_pic || 1652 Opcode == ARM::LDRLIT_ga_pcrel || 1653 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1654 Opcode == ARM::tLDRLIT_ga_pcrel || 1655 Opcode == ARM::MOV_ga_pcrel || 1656 Opcode == ARM::MOV_ga_pcrel_ldr || 1657 Opcode == ARM::t2MOV_ga_pcrel) { 1658 if (MI1.getOpcode() != Opcode) 1659 return false; 1660 if (MI0.getNumOperands() != MI1.getNumOperands()) 1661 return false; 1662 1663 const MachineOperand &MO0 = MI0.getOperand(1); 1664 const MachineOperand &MO1 = MI1.getOperand(1); 1665 if (MO0.getOffset() != MO1.getOffset()) 1666 return false; 1667 1668 if (Opcode == ARM::LDRLIT_ga_pcrel || 1669 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1670 Opcode == ARM::tLDRLIT_ga_pcrel || 1671 Opcode == ARM::MOV_ga_pcrel || 1672 Opcode == ARM::MOV_ga_pcrel_ldr || 1673 Opcode == ARM::t2MOV_ga_pcrel) 1674 // Ignore the PC labels. 1675 return MO0.getGlobal() == MO1.getGlobal(); 1676 1677 const MachineFunction *MF = MI0.getParent()->getParent(); 1678 const MachineConstantPool *MCP = MF->getConstantPool(); 1679 int CPI0 = MO0.getIndex(); 1680 int CPI1 = MO1.getIndex(); 1681 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1682 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1683 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1684 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1685 if (isARMCP0 && isARMCP1) { 1686 ARMConstantPoolValue *ACPV0 = 1687 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1688 ARMConstantPoolValue *ACPV1 = 1689 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1690 return ACPV0->hasSameValue(ACPV1); 1691 } else if (!isARMCP0 && !isARMCP1) { 1692 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1693 } 1694 return false; 1695 } else if (Opcode == ARM::PICLDR) { 1696 if (MI1.getOpcode() != Opcode) 1697 return false; 1698 if (MI0.getNumOperands() != MI1.getNumOperands()) 1699 return false; 1700 1701 unsigned Addr0 = MI0.getOperand(1).getReg(); 1702 unsigned Addr1 = MI1.getOperand(1).getReg(); 1703 if (Addr0 != Addr1) { 1704 if (!MRI || 1705 !TargetRegisterInfo::isVirtualRegister(Addr0) || 1706 !TargetRegisterInfo::isVirtualRegister(Addr1)) 1707 return false; 1708 1709 // This assumes SSA form. 1710 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1711 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1712 // Check if the loaded value, e.g. a constantpool of a global address, are 1713 // the same. 1714 if (!produceSameValue(*Def0, *Def1, MRI)) 1715 return false; 1716 } 1717 1718 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1719 // %12 = PICLDR %11, 0, 14, %noreg 1720 const MachineOperand &MO0 = MI0.getOperand(i); 1721 const MachineOperand &MO1 = MI1.getOperand(i); 1722 if (!MO0.isIdenticalTo(MO1)) 1723 return false; 1724 } 1725 return true; 1726 } 1727 1728 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1729 } 1730 1731 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1732 /// determine if two loads are loading from the same base address. It should 1733 /// only return true if the base pointers are the same and the only differences 1734 /// between the two addresses is the offset. It also returns the offsets by 1735 /// reference. 1736 /// 1737 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1738 /// is permanently disabled. 1739 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1740 int64_t &Offset1, 1741 int64_t &Offset2) const { 1742 // Don't worry about Thumb: just ARM and Thumb2. 1743 if (Subtarget.isThumb1Only()) return false; 1744 1745 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1746 return false; 1747 1748 switch (Load1->getMachineOpcode()) { 1749 default: 1750 return false; 1751 case ARM::LDRi12: 1752 case ARM::LDRBi12: 1753 case ARM::LDRD: 1754 case ARM::LDRH: 1755 case ARM::LDRSB: 1756 case ARM::LDRSH: 1757 case ARM::VLDRD: 1758 case ARM::VLDRS: 1759 case ARM::t2LDRi8: 1760 case ARM::t2LDRBi8: 1761 case ARM::t2LDRDi8: 1762 case ARM::t2LDRSHi8: 1763 case ARM::t2LDRi12: 1764 case ARM::t2LDRBi12: 1765 case ARM::t2LDRSHi12: 1766 break; 1767 } 1768 1769 switch (Load2->getMachineOpcode()) { 1770 default: 1771 return false; 1772 case ARM::LDRi12: 1773 case ARM::LDRBi12: 1774 case ARM::LDRD: 1775 case ARM::LDRH: 1776 case ARM::LDRSB: 1777 case ARM::LDRSH: 1778 case ARM::VLDRD: 1779 case ARM::VLDRS: 1780 case ARM::t2LDRi8: 1781 case ARM::t2LDRBi8: 1782 case ARM::t2LDRSHi8: 1783 case ARM::t2LDRi12: 1784 case ARM::t2LDRBi12: 1785 case ARM::t2LDRSHi12: 1786 break; 1787 } 1788 1789 // Check if base addresses and chain operands match. 1790 if (Load1->getOperand(0) != Load2->getOperand(0) || 1791 Load1->getOperand(4) != Load2->getOperand(4)) 1792 return false; 1793 1794 // Index should be Reg0. 1795 if (Load1->getOperand(3) != Load2->getOperand(3)) 1796 return false; 1797 1798 // Determine the offsets. 1799 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1800 isa<ConstantSDNode>(Load2->getOperand(1))) { 1801 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1802 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1803 return true; 1804 } 1805 1806 return false; 1807 } 1808 1809 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1810 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1811 /// be scheduled togther. On some targets if two loads are loading from 1812 /// addresses in the same cache line, it's better if they are scheduled 1813 /// together. This function takes two integers that represent the load offsets 1814 /// from the common base address. It returns true if it decides it's desirable 1815 /// to schedule the two loads together. "NumLoads" is the number of loads that 1816 /// have already been scheduled after Load1. 1817 /// 1818 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1819 /// is permanently disabled. 1820 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1821 int64_t Offset1, int64_t Offset2, 1822 unsigned NumLoads) const { 1823 // Don't worry about Thumb: just ARM and Thumb2. 1824 if (Subtarget.isThumb1Only()) return false; 1825 1826 assert(Offset2 > Offset1); 1827 1828 if ((Offset2 - Offset1) / 8 > 64) 1829 return false; 1830 1831 // Check if the machine opcodes are different. If they are different 1832 // then we consider them to not be of the same base address, 1833 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1834 // In this case, they are considered to be the same because they are different 1835 // encoding forms of the same basic instruction. 1836 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1837 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1838 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1839 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1840 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1841 return false; // FIXME: overly conservative? 1842 1843 // Four loads in a row should be sufficient. 1844 if (NumLoads >= 3) 1845 return false; 1846 1847 return true; 1848 } 1849 1850 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1851 const MachineBasicBlock *MBB, 1852 const MachineFunction &MF) const { 1853 // Debug info is never a scheduling boundary. It's necessary to be explicit 1854 // due to the special treatment of IT instructions below, otherwise a 1855 // dbg_value followed by an IT will result in the IT instruction being 1856 // considered a scheduling hazard, which is wrong. It should be the actual 1857 // instruction preceding the dbg_value instruction(s), just like it is 1858 // when debug info is not present. 1859 if (MI.isDebugInstr()) 1860 return false; 1861 1862 // Terminators and labels can't be scheduled around. 1863 if (MI.isTerminator() || MI.isPosition()) 1864 return true; 1865 1866 // Treat the start of the IT block as a scheduling boundary, but schedule 1867 // t2IT along with all instructions following it. 1868 // FIXME: This is a big hammer. But the alternative is to add all potential 1869 // true and anti dependencies to IT block instructions as implicit operands 1870 // to the t2IT instruction. The added compile time and complexity does not 1871 // seem worth it. 1872 MachineBasicBlock::const_iterator I = MI; 1873 // Make sure to skip any debug instructions 1874 while (++I != MBB->end() && I->isDebugInstr()) 1875 ; 1876 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1877 return true; 1878 1879 // Don't attempt to schedule around any instruction that defines 1880 // a stack-oriented pointer, as it's unlikely to be profitable. This 1881 // saves compile time, because it doesn't require every single 1882 // stack slot reference to depend on the instruction that does the 1883 // modification. 1884 // Calls don't actually change the stack pointer, even if they have imp-defs. 1885 // No ARM calling conventions change the stack pointer. (X86 calling 1886 // conventions sometimes do). 1887 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 1888 return true; 1889 1890 return false; 1891 } 1892 1893 bool ARMBaseInstrInfo:: 1894 isProfitableToIfCvt(MachineBasicBlock &MBB, 1895 unsigned NumCycles, unsigned ExtraPredCycles, 1896 BranchProbability Probability) const { 1897 if (!NumCycles) 1898 return false; 1899 1900 // If we are optimizing for size, see if the branch in the predecessor can be 1901 // lowered to cbn?z by the constant island lowering pass, and return false if 1902 // so. This results in a shorter instruction sequence. 1903 if (MBB.getParent()->getFunction().hasOptSize()) { 1904 MachineBasicBlock *Pred = *MBB.pred_begin(); 1905 if (!Pred->empty()) { 1906 MachineInstr *LastMI = &*Pred->rbegin(); 1907 if (LastMI->getOpcode() == ARM::t2Bcc) { 1908 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1909 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 1910 if (CmpMI) 1911 return false; 1912 } 1913 } 1914 } 1915 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 1916 MBB, 0, 0, Probability); 1917 } 1918 1919 bool ARMBaseInstrInfo:: 1920 isProfitableToIfCvt(MachineBasicBlock &TBB, 1921 unsigned TCycles, unsigned TExtra, 1922 MachineBasicBlock &FBB, 1923 unsigned FCycles, unsigned FExtra, 1924 BranchProbability Probability) const { 1925 if (!TCycles) 1926 return false; 1927 1928 // In thumb code we often end up trading one branch for a IT block, and 1929 // if we are cloning the instruction can increase code size. Prevent 1930 // blocks with multiple predecesors from being ifcvted to prevent this 1931 // cloning. 1932 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 1933 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 1934 return false; 1935 } 1936 1937 // Attempt to estimate the relative costs of predication versus branching. 1938 // Here we scale up each component of UnpredCost to avoid precision issue when 1939 // scaling TCycles/FCycles by Probability. 1940 const unsigned ScalingUpFactor = 1024; 1941 1942 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 1943 unsigned UnpredCost; 1944 if (!Subtarget.hasBranchPredictor()) { 1945 // When we don't have a branch predictor it's always cheaper to not take a 1946 // branch than take it, so we have to take that into account. 1947 unsigned NotTakenBranchCost = 1; 1948 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 1949 unsigned TUnpredCycles, FUnpredCycles; 1950 if (!FCycles) { 1951 // Triangle: TBB is the fallthrough 1952 TUnpredCycles = TCycles + NotTakenBranchCost; 1953 FUnpredCycles = TakenBranchCost; 1954 } else { 1955 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 1956 TUnpredCycles = TCycles + TakenBranchCost; 1957 FUnpredCycles = FCycles + NotTakenBranchCost; 1958 // The branch at the end of FBB will disappear when it's predicated, so 1959 // discount it from PredCost. 1960 PredCost -= 1 * ScalingUpFactor; 1961 } 1962 // The total cost is the cost of each path scaled by their probabilites 1963 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 1964 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 1965 UnpredCost = TUnpredCost + FUnpredCost; 1966 // When predicating assume that the first IT can be folded away but later 1967 // ones cost one cycle each 1968 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 1969 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 1970 } 1971 } else { 1972 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 1973 unsigned FUnpredCost = 1974 Probability.getCompl().scale(FCycles * ScalingUpFactor); 1975 UnpredCost = TUnpredCost + FUnpredCost; 1976 UnpredCost += 1 * ScalingUpFactor; // The branch itself 1977 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 1978 } 1979 1980 return PredCost <= UnpredCost; 1981 } 1982 1983 bool 1984 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 1985 MachineBasicBlock &FMBB) const { 1986 // Reduce false anti-dependencies to let the target's out-of-order execution 1987 // engine do its thing. 1988 return Subtarget.isProfitableToUnpredicate(); 1989 } 1990 1991 /// getInstrPredicate - If instruction is predicated, returns its predicate 1992 /// condition, otherwise returns AL. It also returns the condition code 1993 /// register by reference. 1994 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 1995 unsigned &PredReg) { 1996 int PIdx = MI.findFirstPredOperandIdx(); 1997 if (PIdx == -1) { 1998 PredReg = 0; 1999 return ARMCC::AL; 2000 } 2001 2002 PredReg = MI.getOperand(PIdx+1).getReg(); 2003 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2004 } 2005 2006 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2007 if (Opc == ARM::B) 2008 return ARM::Bcc; 2009 if (Opc == ARM::tB) 2010 return ARM::tBcc; 2011 if (Opc == ARM::t2B) 2012 return ARM::t2Bcc; 2013 2014 llvm_unreachable("Unknown unconditional branch opcode!"); 2015 } 2016 2017 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2018 bool NewMI, 2019 unsigned OpIdx1, 2020 unsigned OpIdx2) const { 2021 switch (MI.getOpcode()) { 2022 case ARM::MOVCCr: 2023 case ARM::t2MOVCCr: { 2024 // MOVCC can be commuted by inverting the condition. 2025 unsigned PredReg = 0; 2026 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2027 // MOVCC AL can't be inverted. Shouldn't happen. 2028 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2029 return nullptr; 2030 MachineInstr *CommutedMI = 2031 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2032 if (!CommutedMI) 2033 return nullptr; 2034 // After swapping the MOVCC operands, also invert the condition. 2035 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2036 .setImm(ARMCC::getOppositeCondition(CC)); 2037 return CommutedMI; 2038 } 2039 } 2040 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2041 } 2042 2043 /// Identify instructions that can be folded into a MOVCC instruction, and 2044 /// return the defining instruction. 2045 static MachineInstr *canFoldIntoMOVCC(unsigned Reg, 2046 const MachineRegisterInfo &MRI, 2047 const TargetInstrInfo *TII) { 2048 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2049 return nullptr; 2050 if (!MRI.hasOneNonDBGUse(Reg)) 2051 return nullptr; 2052 MachineInstr *MI = MRI.getVRegDef(Reg); 2053 if (!MI) 2054 return nullptr; 2055 // MI is folded into the MOVCC by predicating it. 2056 if (!MI->isPredicable()) 2057 return nullptr; 2058 // Check if MI has any non-dead defs or physreg uses. This also detects 2059 // predicated instructions which will be reading CPSR. 2060 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2061 const MachineOperand &MO = MI->getOperand(i); 2062 // Reject frame index operands, PEI can't handle the predicated pseudos. 2063 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2064 return nullptr; 2065 if (!MO.isReg()) 2066 continue; 2067 // MI can't have any tied operands, that would conflict with predication. 2068 if (MO.isTied()) 2069 return nullptr; 2070 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 2071 return nullptr; 2072 if (MO.isDef() && !MO.isDead()) 2073 return nullptr; 2074 } 2075 bool DontMoveAcrossStores = true; 2076 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2077 return nullptr; 2078 return MI; 2079 } 2080 2081 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2082 SmallVectorImpl<MachineOperand> &Cond, 2083 unsigned &TrueOp, unsigned &FalseOp, 2084 bool &Optimizable) const { 2085 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2086 "Unknown select instruction"); 2087 // MOVCC operands: 2088 // 0: Def. 2089 // 1: True use. 2090 // 2: False use. 2091 // 3: Condition code. 2092 // 4: CPSR use. 2093 TrueOp = 1; 2094 FalseOp = 2; 2095 Cond.push_back(MI.getOperand(3)); 2096 Cond.push_back(MI.getOperand(4)); 2097 // We can always fold a def. 2098 Optimizable = true; 2099 return false; 2100 } 2101 2102 MachineInstr * 2103 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2104 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2105 bool PreferFalse) const { 2106 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2107 "Unknown select instruction"); 2108 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2109 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2110 bool Invert = !DefMI; 2111 if (!DefMI) 2112 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2113 if (!DefMI) 2114 return nullptr; 2115 2116 // Find new register class to use. 2117 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2118 unsigned DestReg = MI.getOperand(0).getReg(); 2119 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2120 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2121 return nullptr; 2122 2123 // Create a new predicated version of DefMI. 2124 // Rfalse is the first use. 2125 MachineInstrBuilder NewMI = 2126 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2127 2128 // Copy all the DefMI operands, excluding its (null) predicate. 2129 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2130 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2131 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2132 NewMI.add(DefMI->getOperand(i)); 2133 2134 unsigned CondCode = MI.getOperand(3).getImm(); 2135 if (Invert) 2136 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2137 else 2138 NewMI.addImm(CondCode); 2139 NewMI.add(MI.getOperand(4)); 2140 2141 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2142 if (NewMI->hasOptionalDef()) 2143 NewMI.add(condCodeOp()); 2144 2145 // The output register value when the predicate is false is an implicit 2146 // register operand tied to the first def. 2147 // The tie makes the register allocator ensure the FalseReg is allocated the 2148 // same register as operand 0. 2149 FalseReg.setImplicit(); 2150 NewMI.add(FalseReg); 2151 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2152 2153 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2154 SeenMIs.insert(NewMI); 2155 SeenMIs.erase(DefMI); 2156 2157 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2158 // DefMI would be invalid when tranferred inside the loop. Checking for a 2159 // loop is expensive, but at least remove kill flags if they are in different 2160 // BBs. 2161 if (DefMI->getParent() != MI.getParent()) 2162 NewMI->clearKillInfo(); 2163 2164 // The caller will erase MI, but not DefMI. 2165 DefMI->eraseFromParent(); 2166 return NewMI; 2167 } 2168 2169 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2170 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2171 /// def operand. 2172 /// 2173 /// This will go away once we can teach tblgen how to set the optional CPSR def 2174 /// operand itself. 2175 struct AddSubFlagsOpcodePair { 2176 uint16_t PseudoOpc; 2177 uint16_t MachineOpc; 2178 }; 2179 2180 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2181 {ARM::ADDSri, ARM::ADDri}, 2182 {ARM::ADDSrr, ARM::ADDrr}, 2183 {ARM::ADDSrsi, ARM::ADDrsi}, 2184 {ARM::ADDSrsr, ARM::ADDrsr}, 2185 2186 {ARM::SUBSri, ARM::SUBri}, 2187 {ARM::SUBSrr, ARM::SUBrr}, 2188 {ARM::SUBSrsi, ARM::SUBrsi}, 2189 {ARM::SUBSrsr, ARM::SUBrsr}, 2190 2191 {ARM::RSBSri, ARM::RSBri}, 2192 {ARM::RSBSrsi, ARM::RSBrsi}, 2193 {ARM::RSBSrsr, ARM::RSBrsr}, 2194 2195 {ARM::tADDSi3, ARM::tADDi3}, 2196 {ARM::tADDSi8, ARM::tADDi8}, 2197 {ARM::tADDSrr, ARM::tADDrr}, 2198 {ARM::tADCS, ARM::tADC}, 2199 2200 {ARM::tSUBSi3, ARM::tSUBi3}, 2201 {ARM::tSUBSi8, ARM::tSUBi8}, 2202 {ARM::tSUBSrr, ARM::tSUBrr}, 2203 {ARM::tSBCS, ARM::tSBC}, 2204 {ARM::tRSBS, ARM::tRSB}, 2205 2206 {ARM::t2ADDSri, ARM::t2ADDri}, 2207 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2208 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2209 2210 {ARM::t2SUBSri, ARM::t2SUBri}, 2211 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2212 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2213 2214 {ARM::t2RSBSri, ARM::t2RSBri}, 2215 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2216 }; 2217 2218 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2219 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2220 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2221 return AddSubFlagsOpcodeMap[i].MachineOpc; 2222 return 0; 2223 } 2224 2225 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2226 MachineBasicBlock::iterator &MBBI, 2227 const DebugLoc &dl, unsigned DestReg, 2228 unsigned BaseReg, int NumBytes, 2229 ARMCC::CondCodes Pred, unsigned PredReg, 2230 const ARMBaseInstrInfo &TII, 2231 unsigned MIFlags) { 2232 if (NumBytes == 0 && DestReg != BaseReg) { 2233 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2234 .addReg(BaseReg, RegState::Kill) 2235 .add(predOps(Pred, PredReg)) 2236 .add(condCodeOp()) 2237 .setMIFlags(MIFlags); 2238 return; 2239 } 2240 2241 bool isSub = NumBytes < 0; 2242 if (isSub) NumBytes = -NumBytes; 2243 2244 while (NumBytes) { 2245 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2246 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2247 assert(ThisVal && "Didn't extract field correctly"); 2248 2249 // We will handle these bits from offset, clear them. 2250 NumBytes &= ~ThisVal; 2251 2252 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2253 2254 // Build the new ADD / SUB. 2255 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2256 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2257 .addReg(BaseReg, RegState::Kill) 2258 .addImm(ThisVal) 2259 .add(predOps(Pred, PredReg)) 2260 .add(condCodeOp()) 2261 .setMIFlags(MIFlags); 2262 BaseReg = DestReg; 2263 } 2264 } 2265 2266 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2267 MachineFunction &MF, MachineInstr *MI, 2268 unsigned NumBytes) { 2269 // This optimisation potentially adds lots of load and store 2270 // micro-operations, it's only really a great benefit to code-size. 2271 if (!Subtarget.hasMinSize()) 2272 return false; 2273 2274 // If only one register is pushed/popped, LLVM can use an LDR/STR 2275 // instead. We can't modify those so make sure we're dealing with an 2276 // instruction we understand. 2277 bool IsPop = isPopOpcode(MI->getOpcode()); 2278 bool IsPush = isPushOpcode(MI->getOpcode()); 2279 if (!IsPush && !IsPop) 2280 return false; 2281 2282 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2283 MI->getOpcode() == ARM::VLDMDIA_UPD; 2284 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2285 MI->getOpcode() == ARM::tPOP || 2286 MI->getOpcode() == ARM::tPOP_RET; 2287 2288 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2289 MI->getOperand(1).getReg() == ARM::SP)) && 2290 "trying to fold sp update into non-sp-updating push/pop"); 2291 2292 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2293 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2294 // if this is violated. 2295 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2296 return false; 2297 2298 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2299 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2300 int RegListIdx = IsT1PushPop ? 2 : 4; 2301 2302 // Calculate the space we'll need in terms of registers. 2303 unsigned RegsNeeded; 2304 const TargetRegisterClass *RegClass; 2305 if (IsVFPPushPop) { 2306 RegsNeeded = NumBytes / 8; 2307 RegClass = &ARM::DPRRegClass; 2308 } else { 2309 RegsNeeded = NumBytes / 4; 2310 RegClass = &ARM::GPRRegClass; 2311 } 2312 2313 // We're going to have to strip all list operands off before 2314 // re-adding them since the order matters, so save the existing ones 2315 // for later. 2316 SmallVector<MachineOperand, 4> RegList; 2317 2318 // We're also going to need the first register transferred by this 2319 // instruction, which won't necessarily be the first register in the list. 2320 unsigned FirstRegEnc = -1; 2321 2322 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2323 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2324 MachineOperand &MO = MI->getOperand(i); 2325 RegList.push_back(MO); 2326 2327 if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2328 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2329 } 2330 2331 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2332 2333 // Now try to find enough space in the reglist to allocate NumBytes. 2334 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2335 --CurRegEnc) { 2336 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2337 if (IsT1PushPop && CurReg > ARM::R7) 2338 continue; 2339 if (!IsPop) { 2340 // Pushing any register is completely harmless, mark the register involved 2341 // as undef since we don't care about its value and must not restore it 2342 // during stack unwinding. 2343 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2344 false, false, true)); 2345 --RegsNeeded; 2346 continue; 2347 } 2348 2349 // However, we can only pop an extra register if it's not live. For 2350 // registers live within the function we might clobber a return value 2351 // register; the other way a register can be live here is if it's 2352 // callee-saved. 2353 if (isCalleeSavedRegister(CurReg, CSRegs) || 2354 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2355 MachineBasicBlock::LQR_Dead) { 2356 // VFP pops don't allow holes in the register list, so any skip is fatal 2357 // for our transformation. GPR pops do, so we should just keep looking. 2358 if (IsVFPPushPop) 2359 return false; 2360 else 2361 continue; 2362 } 2363 2364 // Mark the unimportant registers as <def,dead> in the POP. 2365 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2366 true)); 2367 --RegsNeeded; 2368 } 2369 2370 if (RegsNeeded > 0) 2371 return false; 2372 2373 // Finally we know we can profitably perform the optimisation so go 2374 // ahead: strip all existing registers off and add them back again 2375 // in the right order. 2376 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2377 MI->RemoveOperand(i); 2378 2379 // Add the complete list back in. 2380 MachineInstrBuilder MIB(MF, &*MI); 2381 for (int i = RegList.size() - 1; i >= 0; --i) 2382 MIB.add(RegList[i]); 2383 2384 return true; 2385 } 2386 2387 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2388 unsigned FrameReg, int &Offset, 2389 const ARMBaseInstrInfo &TII) { 2390 unsigned Opcode = MI.getOpcode(); 2391 const MCInstrDesc &Desc = MI.getDesc(); 2392 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2393 bool isSub = false; 2394 2395 // Memory operands in inline assembly always use AddrMode2. 2396 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2397 AddrMode = ARMII::AddrMode2; 2398 2399 if (Opcode == ARM::ADDri) { 2400 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2401 if (Offset == 0) { 2402 // Turn it into a move. 2403 MI.setDesc(TII.get(ARM::MOVr)); 2404 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2405 MI.RemoveOperand(FrameRegIdx+1); 2406 Offset = 0; 2407 return true; 2408 } else if (Offset < 0) { 2409 Offset = -Offset; 2410 isSub = true; 2411 MI.setDesc(TII.get(ARM::SUBri)); 2412 } 2413 2414 // Common case: small offset, fits into instruction. 2415 if (ARM_AM::getSOImmVal(Offset) != -1) { 2416 // Replace the FrameIndex with sp / fp 2417 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2418 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2419 Offset = 0; 2420 return true; 2421 } 2422 2423 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2424 // as possible. 2425 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2426 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2427 2428 // We will handle these bits from offset, clear them. 2429 Offset &= ~ThisImmVal; 2430 2431 // Get the properly encoded SOImmVal field. 2432 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2433 "Bit extraction didn't work?"); 2434 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2435 } else { 2436 unsigned ImmIdx = 0; 2437 int InstrOffs = 0; 2438 unsigned NumBits = 0; 2439 unsigned Scale = 1; 2440 switch (AddrMode) { 2441 case ARMII::AddrMode_i12: 2442 ImmIdx = FrameRegIdx + 1; 2443 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2444 NumBits = 12; 2445 break; 2446 case ARMII::AddrMode2: 2447 ImmIdx = FrameRegIdx+2; 2448 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2449 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2450 InstrOffs *= -1; 2451 NumBits = 12; 2452 break; 2453 case ARMII::AddrMode3: 2454 ImmIdx = FrameRegIdx+2; 2455 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2456 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2457 InstrOffs *= -1; 2458 NumBits = 8; 2459 break; 2460 case ARMII::AddrMode4: 2461 case ARMII::AddrMode6: 2462 // Can't fold any offset even if it's zero. 2463 return false; 2464 case ARMII::AddrMode5: 2465 ImmIdx = FrameRegIdx+1; 2466 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2467 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2468 InstrOffs *= -1; 2469 NumBits = 8; 2470 Scale = 4; 2471 break; 2472 case ARMII::AddrMode5FP16: 2473 ImmIdx = FrameRegIdx+1; 2474 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2475 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2476 InstrOffs *= -1; 2477 NumBits = 8; 2478 Scale = 2; 2479 break; 2480 case ARMII::AddrModeT2_i7s4: 2481 ImmIdx = FrameRegIdx+1; 2482 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2483 NumBits = 7; 2484 Scale = 4; 2485 break; 2486 default: 2487 llvm_unreachable("Unsupported addressing mode!"); 2488 } 2489 2490 Offset += InstrOffs * Scale; 2491 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2492 if (Offset < 0) { 2493 Offset = -Offset; 2494 isSub = true; 2495 } 2496 2497 // Attempt to fold address comp. if opcode has offset bits 2498 if (NumBits > 0) { 2499 // Common case: small offset, fits into instruction. 2500 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2501 int ImmedOffset = Offset / Scale; 2502 unsigned Mask = (1 << NumBits) - 1; 2503 if ((unsigned)Offset <= Mask * Scale) { 2504 // Replace the FrameIndex with sp 2505 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2506 // FIXME: When addrmode2 goes away, this will simplify (like the 2507 // T2 version), as the LDR.i12 versions don't need the encoding 2508 // tricks for the offset value. 2509 if (isSub) { 2510 if (AddrMode == ARMII::AddrMode_i12) 2511 ImmedOffset = -ImmedOffset; 2512 else 2513 ImmedOffset |= 1 << NumBits; 2514 } 2515 ImmOp.ChangeToImmediate(ImmedOffset); 2516 Offset = 0; 2517 return true; 2518 } 2519 2520 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2521 ImmedOffset = ImmedOffset & Mask; 2522 if (isSub) { 2523 if (AddrMode == ARMII::AddrMode_i12) 2524 ImmedOffset = -ImmedOffset; 2525 else 2526 ImmedOffset |= 1 << NumBits; 2527 } 2528 ImmOp.ChangeToImmediate(ImmedOffset); 2529 Offset &= ~(Mask*Scale); 2530 } 2531 } 2532 2533 Offset = (isSub) ? -Offset : Offset; 2534 return Offset == 0; 2535 } 2536 2537 /// analyzeCompare - For a comparison instruction, return the source registers 2538 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2539 /// compares against in CmpValue. Return true if the comparison instruction 2540 /// can be analyzed. 2541 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 2542 unsigned &SrcReg2, int &CmpMask, 2543 int &CmpValue) const { 2544 switch (MI.getOpcode()) { 2545 default: break; 2546 case ARM::CMPri: 2547 case ARM::t2CMPri: 2548 case ARM::tCMPi8: 2549 SrcReg = MI.getOperand(0).getReg(); 2550 SrcReg2 = 0; 2551 CmpMask = ~0; 2552 CmpValue = MI.getOperand(1).getImm(); 2553 return true; 2554 case ARM::CMPrr: 2555 case ARM::t2CMPrr: 2556 case ARM::tCMPr: 2557 SrcReg = MI.getOperand(0).getReg(); 2558 SrcReg2 = MI.getOperand(1).getReg(); 2559 CmpMask = ~0; 2560 CmpValue = 0; 2561 return true; 2562 case ARM::TSTri: 2563 case ARM::t2TSTri: 2564 SrcReg = MI.getOperand(0).getReg(); 2565 SrcReg2 = 0; 2566 CmpMask = MI.getOperand(1).getImm(); 2567 CmpValue = 0; 2568 return true; 2569 } 2570 2571 return false; 2572 } 2573 2574 /// isSuitableForMask - Identify a suitable 'and' instruction that 2575 /// operates on the given source register and applies the same mask 2576 /// as a 'tst' instruction. Provide a limited look-through for copies. 2577 /// When successful, MI will hold the found instruction. 2578 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 2579 int CmpMask, bool CommonUse) { 2580 switch (MI->getOpcode()) { 2581 case ARM::ANDri: 2582 case ARM::t2ANDri: 2583 if (CmpMask != MI->getOperand(2).getImm()) 2584 return false; 2585 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2586 return true; 2587 break; 2588 } 2589 2590 return false; 2591 } 2592 2593 /// getSwappedCondition - assume the flags are set by MI(a,b), return 2594 /// the condition code if we modify the instructions such that flags are 2595 /// set by MI(b,a). 2596 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { 2597 switch (CC) { 2598 default: return ARMCC::AL; 2599 case ARMCC::EQ: return ARMCC::EQ; 2600 case ARMCC::NE: return ARMCC::NE; 2601 case ARMCC::HS: return ARMCC::LS; 2602 case ARMCC::LO: return ARMCC::HI; 2603 case ARMCC::HI: return ARMCC::LO; 2604 case ARMCC::LS: return ARMCC::HS; 2605 case ARMCC::GE: return ARMCC::LE; 2606 case ARMCC::LT: return ARMCC::GT; 2607 case ARMCC::GT: return ARMCC::LT; 2608 case ARMCC::LE: return ARMCC::GE; 2609 } 2610 } 2611 2612 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2613 /// the condition code if we modify the instructions such that flags are 2614 /// set by ADD(a,b,X). 2615 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2616 switch (CC) { 2617 default: return ARMCC::AL; 2618 case ARMCC::HS: return ARMCC::LO; 2619 case ARMCC::LO: return ARMCC::HS; 2620 case ARMCC::VS: return ARMCC::VS; 2621 case ARMCC::VC: return ARMCC::VC; 2622 } 2623 } 2624 2625 /// isRedundantFlagInstr - check whether the first instruction, whose only 2626 /// purpose is to update flags, can be made redundant. 2627 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2628 /// CMPri can be made redundant by SUBri if the operands are the same. 2629 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2630 /// This function can be extended later on. 2631 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2632 unsigned SrcReg, unsigned SrcReg2, 2633 int ImmValue, const MachineInstr *OI, 2634 bool &IsThumb1) { 2635 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2636 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2637 ((OI->getOperand(1).getReg() == SrcReg && 2638 OI->getOperand(2).getReg() == SrcReg2) || 2639 (OI->getOperand(1).getReg() == SrcReg2 && 2640 OI->getOperand(2).getReg() == SrcReg))) { 2641 IsThumb1 = false; 2642 return true; 2643 } 2644 2645 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2646 ((OI->getOperand(2).getReg() == SrcReg && 2647 OI->getOperand(3).getReg() == SrcReg2) || 2648 (OI->getOperand(2).getReg() == SrcReg2 && 2649 OI->getOperand(3).getReg() == SrcReg))) { 2650 IsThumb1 = true; 2651 return true; 2652 } 2653 2654 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2655 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2656 OI->getOperand(1).getReg() == SrcReg && 2657 OI->getOperand(2).getImm() == ImmValue) { 2658 IsThumb1 = false; 2659 return true; 2660 } 2661 2662 if (CmpI->getOpcode() == ARM::tCMPi8 && 2663 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2664 OI->getOperand(2).getReg() == SrcReg && 2665 OI->getOperand(3).getImm() == ImmValue) { 2666 IsThumb1 = true; 2667 return true; 2668 } 2669 2670 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2671 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2672 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2673 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2674 OI->getOperand(0).getReg() == SrcReg && 2675 OI->getOperand(1).getReg() == SrcReg2) { 2676 IsThumb1 = false; 2677 return true; 2678 } 2679 2680 if (CmpI->getOpcode() == ARM::tCMPr && 2681 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2682 OI->getOpcode() == ARM::tADDrr) && 2683 OI->getOperand(0).getReg() == SrcReg && 2684 OI->getOperand(2).getReg() == SrcReg2) { 2685 IsThumb1 = true; 2686 return true; 2687 } 2688 2689 return false; 2690 } 2691 2692 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2693 switch (MI->getOpcode()) { 2694 default: return false; 2695 case ARM::tLSLri: 2696 case ARM::tLSRri: 2697 case ARM::tLSLrr: 2698 case ARM::tLSRrr: 2699 case ARM::tSUBrr: 2700 case ARM::tADDrr: 2701 case ARM::tADDi3: 2702 case ARM::tADDi8: 2703 case ARM::tSUBi3: 2704 case ARM::tSUBi8: 2705 case ARM::tMUL: 2706 case ARM::tADC: 2707 case ARM::tSBC: 2708 case ARM::tRSB: 2709 case ARM::tAND: 2710 case ARM::tORR: 2711 case ARM::tEOR: 2712 case ARM::tBIC: 2713 case ARM::tMVN: 2714 case ARM::tASRri: 2715 case ARM::tASRrr: 2716 case ARM::tROR: 2717 IsThumb1 = true; 2718 LLVM_FALLTHROUGH; 2719 case ARM::RSBrr: 2720 case ARM::RSBri: 2721 case ARM::RSCrr: 2722 case ARM::RSCri: 2723 case ARM::ADDrr: 2724 case ARM::ADDri: 2725 case ARM::ADCrr: 2726 case ARM::ADCri: 2727 case ARM::SUBrr: 2728 case ARM::SUBri: 2729 case ARM::SBCrr: 2730 case ARM::SBCri: 2731 case ARM::t2RSBri: 2732 case ARM::t2ADDrr: 2733 case ARM::t2ADDri: 2734 case ARM::t2ADCrr: 2735 case ARM::t2ADCri: 2736 case ARM::t2SUBrr: 2737 case ARM::t2SUBri: 2738 case ARM::t2SBCrr: 2739 case ARM::t2SBCri: 2740 case ARM::ANDrr: 2741 case ARM::ANDri: 2742 case ARM::t2ANDrr: 2743 case ARM::t2ANDri: 2744 case ARM::ORRrr: 2745 case ARM::ORRri: 2746 case ARM::t2ORRrr: 2747 case ARM::t2ORRri: 2748 case ARM::EORrr: 2749 case ARM::EORri: 2750 case ARM::t2EORrr: 2751 case ARM::t2EORri: 2752 case ARM::t2LSRri: 2753 case ARM::t2LSRrr: 2754 case ARM::t2LSLri: 2755 case ARM::t2LSLrr: 2756 return true; 2757 } 2758 } 2759 2760 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2761 /// comparison into one that sets the zero bit in the flags register; 2762 /// Remove a redundant Compare instruction if an earlier instruction can set the 2763 /// flags in the same way as Compare. 2764 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2765 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2766 /// condition code of instructions which use the flags. 2767 bool ARMBaseInstrInfo::optimizeCompareInstr( 2768 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, 2769 int CmpValue, const MachineRegisterInfo *MRI) const { 2770 // Get the unique definition of SrcReg. 2771 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2772 if (!MI) return false; 2773 2774 // Masked compares sometimes use the same register as the corresponding 'and'. 2775 if (CmpMask != ~0) { 2776 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2777 MI = nullptr; 2778 for (MachineRegisterInfo::use_instr_iterator 2779 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2780 UI != UE; ++UI) { 2781 if (UI->getParent() != CmpInstr.getParent()) 2782 continue; 2783 MachineInstr *PotentialAND = &*UI; 2784 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2785 isPredicated(*PotentialAND)) 2786 continue; 2787 MI = PotentialAND; 2788 break; 2789 } 2790 if (!MI) return false; 2791 } 2792 } 2793 2794 // Get ready to iterate backward from CmpInstr. 2795 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2796 B = CmpInstr.getParent()->begin(); 2797 2798 // Early exit if CmpInstr is at the beginning of the BB. 2799 if (I == B) return false; 2800 2801 // There are two possible candidates which can be changed to set CPSR: 2802 // One is MI, the other is a SUB or ADD instruction. 2803 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 2804 // ADDr[ri](r1, r2, X). 2805 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2806 MachineInstr *SubAdd = nullptr; 2807 if (SrcReg2 != 0) 2808 // MI is not a candidate for CMPrr. 2809 MI = nullptr; 2810 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 2811 // Conservatively refuse to convert an instruction which isn't in the same 2812 // BB as the comparison. 2813 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 2814 // Thus we cannot return here. 2815 if (CmpInstr.getOpcode() == ARM::CMPri || 2816 CmpInstr.getOpcode() == ARM::t2CMPri || 2817 CmpInstr.getOpcode() == ARM::tCMPi8) 2818 MI = nullptr; 2819 else 2820 return false; 2821 } 2822 2823 bool IsThumb1 = false; 2824 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 2825 return false; 2826 2827 // We also want to do this peephole for cases like this: if (a*b == 0), 2828 // and optimise away the CMP instruction from the generated code sequence: 2829 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 2830 // resulting from the select instruction, but these MOVS instructions for 2831 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 2832 // However, if we only have MOVS instructions in between the CMP and the 2833 // other instruction (the MULS in this example), then the CPSR is dead so we 2834 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 2835 // reordering and then continue the analysis hoping we can eliminate the 2836 // CMP. This peephole works on the vregs, so is still in SSA form. As a 2837 // consequence, the movs won't redefine/kill the MUL operands which would 2838 // make this reordering illegal. 2839 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2840 if (MI && IsThumb1) { 2841 --I; 2842 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 2843 bool CanReorder = true; 2844 for (; I != E; --I) { 2845 if (I->getOpcode() != ARM::tMOVi8) { 2846 CanReorder = false; 2847 break; 2848 } 2849 } 2850 if (CanReorder) { 2851 MI = MI->removeFromParent(); 2852 E = CmpInstr; 2853 CmpInstr.getParent()->insert(E, MI); 2854 } 2855 } 2856 I = CmpInstr; 2857 E = MI; 2858 } 2859 2860 // Check that CPSR isn't set between the comparison instruction and the one we 2861 // want to change. At the same time, search for SubAdd. 2862 bool SubAddIsThumb1 = false; 2863 do { 2864 const MachineInstr &Instr = *--I; 2865 2866 // Check whether CmpInstr can be made redundant by the current instruction. 2867 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 2868 SubAddIsThumb1)) { 2869 SubAdd = &*I; 2870 break; 2871 } 2872 2873 // Allow E (which was initially MI) to be SubAdd but do not search before E. 2874 if (I == E) 2875 break; 2876 2877 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 2878 Instr.readsRegister(ARM::CPSR, TRI)) 2879 // This instruction modifies or uses CPSR after the one we want to 2880 // change. We can't do this transformation. 2881 return false; 2882 2883 if (I == B) { 2884 // In some cases, we scan the use-list of an instruction for an AND; 2885 // that AND is in the same BB, but may not be scheduled before the 2886 // corresponding TST. In that case, bail out. 2887 // 2888 // FIXME: We could try to reschedule the AND. 2889 return false; 2890 } 2891 } while (true); 2892 2893 // Return false if no candidates exist. 2894 if (!MI && !SubAdd) 2895 return false; 2896 2897 // If we found a SubAdd, use it as it will be closer to the CMP 2898 if (SubAdd) { 2899 MI = SubAdd; 2900 IsThumb1 = SubAddIsThumb1; 2901 } 2902 2903 // We can't use a predicated instruction - it doesn't always write the flags. 2904 if (isPredicated(*MI)) 2905 return false; 2906 2907 // Scan forward for the use of CPSR 2908 // When checking against MI: if it's a conditional code that requires 2909 // checking of the V bit or C bit, then this is not safe to do. 2910 // It is safe to remove CmpInstr if CPSR is redefined or killed. 2911 // If we are done with the basic block, we need to check whether CPSR is 2912 // live-out. 2913 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 2914 OperandsToUpdate; 2915 bool isSafe = false; 2916 I = CmpInstr; 2917 E = CmpInstr.getParent()->end(); 2918 while (!isSafe && ++I != E) { 2919 const MachineInstr &Instr = *I; 2920 for (unsigned IO = 0, EO = Instr.getNumOperands(); 2921 !isSafe && IO != EO; ++IO) { 2922 const MachineOperand &MO = Instr.getOperand(IO); 2923 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 2924 isSafe = true; 2925 break; 2926 } 2927 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 2928 continue; 2929 if (MO.isDef()) { 2930 isSafe = true; 2931 break; 2932 } 2933 // Condition code is after the operand before CPSR except for VSELs. 2934 ARMCC::CondCodes CC; 2935 bool IsInstrVSel = true; 2936 switch (Instr.getOpcode()) { 2937 default: 2938 IsInstrVSel = false; 2939 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 2940 break; 2941 case ARM::VSELEQD: 2942 case ARM::VSELEQS: 2943 CC = ARMCC::EQ; 2944 break; 2945 case ARM::VSELGTD: 2946 case ARM::VSELGTS: 2947 CC = ARMCC::GT; 2948 break; 2949 case ARM::VSELGED: 2950 case ARM::VSELGES: 2951 CC = ARMCC::GE; 2952 break; 2953 case ARM::VSELVSS: 2954 case ARM::VSELVSD: 2955 CC = ARMCC::VS; 2956 break; 2957 } 2958 2959 if (SubAdd) { 2960 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 2961 // on CMP needs to be updated to be based on SUB. 2962 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 2963 // needs to be modified. 2964 // Push the condition code operands to OperandsToUpdate. 2965 // If it is safe to remove CmpInstr, the condition code of these 2966 // operands will be modified. 2967 unsigned Opc = SubAdd->getOpcode(); 2968 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 2969 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 2970 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 2971 Opc == ARM::tSUBi8; 2972 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 2973 if (!IsSub || 2974 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 2975 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 2976 // VSel doesn't support condition code update. 2977 if (IsInstrVSel) 2978 return false; 2979 // Ensure we can swap the condition. 2980 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 2981 if (NewCC == ARMCC::AL) 2982 return false; 2983 OperandsToUpdate.push_back( 2984 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 2985 } 2986 } else { 2987 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 2988 switch (CC) { 2989 case ARMCC::EQ: // Z 2990 case ARMCC::NE: // Z 2991 case ARMCC::MI: // N 2992 case ARMCC::PL: // N 2993 case ARMCC::AL: // none 2994 // CPSR can be used multiple times, we should continue. 2995 break; 2996 case ARMCC::HS: // C 2997 case ARMCC::LO: // C 2998 case ARMCC::VS: // V 2999 case ARMCC::VC: // V 3000 case ARMCC::HI: // C Z 3001 case ARMCC::LS: // C Z 3002 case ARMCC::GE: // N V 3003 case ARMCC::LT: // N V 3004 case ARMCC::GT: // Z N V 3005 case ARMCC::LE: // Z N V 3006 // The instruction uses the V bit or C bit which is not safe. 3007 return false; 3008 } 3009 } 3010 } 3011 } 3012 3013 // If CPSR is not killed nor re-defined, we should check whether it is 3014 // live-out. If it is live-out, do not optimize. 3015 if (!isSafe) { 3016 MachineBasicBlock *MBB = CmpInstr.getParent(); 3017 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 3018 SE = MBB->succ_end(); SI != SE; ++SI) 3019 if ((*SI)->isLiveIn(ARM::CPSR)) 3020 return false; 3021 } 3022 3023 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3024 // set CPSR so this is represented as an explicit output) 3025 if (!IsThumb1) { 3026 MI->getOperand(5).setReg(ARM::CPSR); 3027 MI->getOperand(5).setIsDef(true); 3028 } 3029 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3030 CmpInstr.eraseFromParent(); 3031 3032 // Modify the condition code of operands in OperandsToUpdate. 3033 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3034 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3035 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3036 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3037 3038 MI->clearRegisterDeads(ARM::CPSR); 3039 3040 return true; 3041 } 3042 3043 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3044 // Do not sink MI if it might be used to optimize a redundant compare. 3045 // We heuristically only look at the instruction immediately following MI to 3046 // avoid potentially searching the entire basic block. 3047 if (isPredicated(MI)) 3048 return true; 3049 MachineBasicBlock::const_iterator Next = &MI; 3050 ++Next; 3051 unsigned SrcReg, SrcReg2; 3052 int CmpMask, CmpValue; 3053 bool IsThumb1; 3054 if (Next != MI.getParent()->end() && 3055 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3056 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3057 return false; 3058 return true; 3059 } 3060 3061 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3062 unsigned Reg, 3063 MachineRegisterInfo *MRI) const { 3064 // Fold large immediates into add, sub, or, xor. 3065 unsigned DefOpc = DefMI.getOpcode(); 3066 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3067 return false; 3068 if (!DefMI.getOperand(1).isImm()) 3069 // Could be t2MOVi32imm @xx 3070 return false; 3071 3072 if (!MRI->hasOneNonDBGUse(Reg)) 3073 return false; 3074 3075 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3076 if (DefMCID.hasOptionalDef()) { 3077 unsigned NumOps = DefMCID.getNumOperands(); 3078 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3079 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3080 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3081 // to delete DefMI. 3082 return false; 3083 } 3084 3085 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3086 if (UseMCID.hasOptionalDef()) { 3087 unsigned NumOps = UseMCID.getNumOperands(); 3088 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3089 // If the instruction sets the flag, do not attempt this optimization 3090 // since it may change the semantics of the code. 3091 return false; 3092 } 3093 3094 unsigned UseOpc = UseMI.getOpcode(); 3095 unsigned NewUseOpc = 0; 3096 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3097 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3098 bool Commute = false; 3099 switch (UseOpc) { 3100 default: return false; 3101 case ARM::SUBrr: 3102 case ARM::ADDrr: 3103 case ARM::ORRrr: 3104 case ARM::EORrr: 3105 case ARM::t2SUBrr: 3106 case ARM::t2ADDrr: 3107 case ARM::t2ORRrr: 3108 case ARM::t2EORrr: { 3109 Commute = UseMI.getOperand(2).getReg() != Reg; 3110 switch (UseOpc) { 3111 default: break; 3112 case ARM::ADDrr: 3113 case ARM::SUBrr: 3114 if (UseOpc == ARM::SUBrr && Commute) 3115 return false; 3116 3117 // ADD/SUB are special because they're essentially the same operation, so 3118 // we can handle a larger range of immediates. 3119 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3120 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3121 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3122 ImmVal = -ImmVal; 3123 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3124 } else 3125 return false; 3126 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3127 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3128 break; 3129 case ARM::ORRrr: 3130 case ARM::EORrr: 3131 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3132 return false; 3133 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3134 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3135 switch (UseOpc) { 3136 default: break; 3137 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3138 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3139 } 3140 break; 3141 case ARM::t2ADDrr: 3142 case ARM::t2SUBrr: 3143 if (UseOpc == ARM::t2SUBrr && Commute) 3144 return false; 3145 3146 // ADD/SUB are special because they're essentially the same operation, so 3147 // we can handle a larger range of immediates. 3148 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3149 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri; 3150 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3151 ImmVal = -ImmVal; 3152 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri; 3153 } else 3154 return false; 3155 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3156 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3157 break; 3158 case ARM::t2ORRrr: 3159 case ARM::t2EORrr: 3160 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3161 return false; 3162 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3163 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3164 switch (UseOpc) { 3165 default: break; 3166 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3167 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3168 } 3169 break; 3170 } 3171 } 3172 } 3173 3174 unsigned OpIdx = Commute ? 2 : 1; 3175 unsigned Reg1 = UseMI.getOperand(OpIdx).getReg(); 3176 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3177 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); 3178 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3179 NewReg) 3180 .addReg(Reg1, getKillRegState(isKill)) 3181 .addImm(SOImmValV1) 3182 .add(predOps(ARMCC::AL)) 3183 .add(condCodeOp()); 3184 UseMI.setDesc(get(NewUseOpc)); 3185 UseMI.getOperand(1).setReg(NewReg); 3186 UseMI.getOperand(1).setIsKill(); 3187 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3188 DefMI.eraseFromParent(); 3189 return true; 3190 } 3191 3192 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3193 const MachineInstr &MI) { 3194 switch (MI.getOpcode()) { 3195 default: { 3196 const MCInstrDesc &Desc = MI.getDesc(); 3197 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3198 assert(UOps >= 0 && "bad # UOps"); 3199 return UOps; 3200 } 3201 3202 case ARM::LDRrs: 3203 case ARM::LDRBrs: 3204 case ARM::STRrs: 3205 case ARM::STRBrs: { 3206 unsigned ShOpVal = MI.getOperand(3).getImm(); 3207 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3208 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3209 if (!isSub && 3210 (ShImm == 0 || 3211 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3212 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3213 return 1; 3214 return 2; 3215 } 3216 3217 case ARM::LDRH: 3218 case ARM::STRH: { 3219 if (!MI.getOperand(2).getReg()) 3220 return 1; 3221 3222 unsigned ShOpVal = MI.getOperand(3).getImm(); 3223 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3224 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3225 if (!isSub && 3226 (ShImm == 0 || 3227 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3228 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3229 return 1; 3230 return 2; 3231 } 3232 3233 case ARM::LDRSB: 3234 case ARM::LDRSH: 3235 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3236 3237 case ARM::LDRSB_POST: 3238 case ARM::LDRSH_POST: { 3239 unsigned Rt = MI.getOperand(0).getReg(); 3240 unsigned Rm = MI.getOperand(3).getReg(); 3241 return (Rt == Rm) ? 4 : 3; 3242 } 3243 3244 case ARM::LDR_PRE_REG: 3245 case ARM::LDRB_PRE_REG: { 3246 unsigned Rt = MI.getOperand(0).getReg(); 3247 unsigned Rm = MI.getOperand(3).getReg(); 3248 if (Rt == Rm) 3249 return 3; 3250 unsigned ShOpVal = MI.getOperand(4).getImm(); 3251 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3252 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3253 if (!isSub && 3254 (ShImm == 0 || 3255 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3256 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3257 return 2; 3258 return 3; 3259 } 3260 3261 case ARM::STR_PRE_REG: 3262 case ARM::STRB_PRE_REG: { 3263 unsigned ShOpVal = MI.getOperand(4).getImm(); 3264 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3265 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3266 if (!isSub && 3267 (ShImm == 0 || 3268 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3269 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3270 return 2; 3271 return 3; 3272 } 3273 3274 case ARM::LDRH_PRE: 3275 case ARM::STRH_PRE: { 3276 unsigned Rt = MI.getOperand(0).getReg(); 3277 unsigned Rm = MI.getOperand(3).getReg(); 3278 if (!Rm) 3279 return 2; 3280 if (Rt == Rm) 3281 return 3; 3282 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3283 } 3284 3285 case ARM::LDR_POST_REG: 3286 case ARM::LDRB_POST_REG: 3287 case ARM::LDRH_POST: { 3288 unsigned Rt = MI.getOperand(0).getReg(); 3289 unsigned Rm = MI.getOperand(3).getReg(); 3290 return (Rt == Rm) ? 3 : 2; 3291 } 3292 3293 case ARM::LDR_PRE_IMM: 3294 case ARM::LDRB_PRE_IMM: 3295 case ARM::LDR_POST_IMM: 3296 case ARM::LDRB_POST_IMM: 3297 case ARM::STRB_POST_IMM: 3298 case ARM::STRB_POST_REG: 3299 case ARM::STRB_PRE_IMM: 3300 case ARM::STRH_POST: 3301 case ARM::STR_POST_IMM: 3302 case ARM::STR_POST_REG: 3303 case ARM::STR_PRE_IMM: 3304 return 2; 3305 3306 case ARM::LDRSB_PRE: 3307 case ARM::LDRSH_PRE: { 3308 unsigned Rm = MI.getOperand(3).getReg(); 3309 if (Rm == 0) 3310 return 3; 3311 unsigned Rt = MI.getOperand(0).getReg(); 3312 if (Rt == Rm) 3313 return 4; 3314 unsigned ShOpVal = MI.getOperand(4).getImm(); 3315 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3316 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3317 if (!isSub && 3318 (ShImm == 0 || 3319 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3320 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3321 return 3; 3322 return 4; 3323 } 3324 3325 case ARM::LDRD: { 3326 unsigned Rt = MI.getOperand(0).getReg(); 3327 unsigned Rn = MI.getOperand(2).getReg(); 3328 unsigned Rm = MI.getOperand(3).getReg(); 3329 if (Rm) 3330 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3331 : 3; 3332 return (Rt == Rn) ? 3 : 2; 3333 } 3334 3335 case ARM::STRD: { 3336 unsigned Rm = MI.getOperand(3).getReg(); 3337 if (Rm) 3338 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3339 : 3; 3340 return 2; 3341 } 3342 3343 case ARM::LDRD_POST: 3344 case ARM::t2LDRD_POST: 3345 return 3; 3346 3347 case ARM::STRD_POST: 3348 case ARM::t2STRD_POST: 3349 return 4; 3350 3351 case ARM::LDRD_PRE: { 3352 unsigned Rt = MI.getOperand(0).getReg(); 3353 unsigned Rn = MI.getOperand(3).getReg(); 3354 unsigned Rm = MI.getOperand(4).getReg(); 3355 if (Rm) 3356 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3357 : 4; 3358 return (Rt == Rn) ? 4 : 3; 3359 } 3360 3361 case ARM::t2LDRD_PRE: { 3362 unsigned Rt = MI.getOperand(0).getReg(); 3363 unsigned Rn = MI.getOperand(3).getReg(); 3364 return (Rt == Rn) ? 4 : 3; 3365 } 3366 3367 case ARM::STRD_PRE: { 3368 unsigned Rm = MI.getOperand(4).getReg(); 3369 if (Rm) 3370 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3371 : 4; 3372 return 3; 3373 } 3374 3375 case ARM::t2STRD_PRE: 3376 return 3; 3377 3378 case ARM::t2LDR_POST: 3379 case ARM::t2LDRB_POST: 3380 case ARM::t2LDRB_PRE: 3381 case ARM::t2LDRSBi12: 3382 case ARM::t2LDRSBi8: 3383 case ARM::t2LDRSBpci: 3384 case ARM::t2LDRSBs: 3385 case ARM::t2LDRH_POST: 3386 case ARM::t2LDRH_PRE: 3387 case ARM::t2LDRSBT: 3388 case ARM::t2LDRSB_POST: 3389 case ARM::t2LDRSB_PRE: 3390 case ARM::t2LDRSH_POST: 3391 case ARM::t2LDRSH_PRE: 3392 case ARM::t2LDRSHi12: 3393 case ARM::t2LDRSHi8: 3394 case ARM::t2LDRSHpci: 3395 case ARM::t2LDRSHs: 3396 return 2; 3397 3398 case ARM::t2LDRDi8: { 3399 unsigned Rt = MI.getOperand(0).getReg(); 3400 unsigned Rn = MI.getOperand(2).getReg(); 3401 return (Rt == Rn) ? 3 : 2; 3402 } 3403 3404 case ARM::t2STRB_POST: 3405 case ARM::t2STRB_PRE: 3406 case ARM::t2STRBs: 3407 case ARM::t2STRDi8: 3408 case ARM::t2STRH_POST: 3409 case ARM::t2STRH_PRE: 3410 case ARM::t2STRHs: 3411 case ARM::t2STR_POST: 3412 case ARM::t2STR_PRE: 3413 case ARM::t2STRs: 3414 return 2; 3415 } 3416 } 3417 3418 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3419 // can't be easily determined return 0 (missing MachineMemOperand). 3420 // 3421 // FIXME: The current MachineInstr design does not support relying on machine 3422 // mem operands to determine the width of a memory access. Instead, we expect 3423 // the target to provide this information based on the instruction opcode and 3424 // operands. However, using MachineMemOperand is the best solution now for 3425 // two reasons: 3426 // 3427 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3428 // operands. This is much more dangerous than using the MachineMemOperand 3429 // sizes because CodeGen passes can insert/remove optional machine operands. In 3430 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3431 // postRA passes as well. 3432 // 3433 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3434 // machine model that calls this should handle the unknown (zero size) case. 3435 // 3436 // Long term, we should require a target hook that verifies MachineMemOperand 3437 // sizes during MC lowering. That target hook should be local to MC lowering 3438 // because we can't ensure that it is aware of other MI forms. Doing this will 3439 // ensure that MachineMemOperands are correctly propagated through all passes. 3440 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3441 unsigned Size = 0; 3442 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3443 E = MI.memoperands_end(); 3444 I != E; ++I) { 3445 Size += (*I)->getSize(); 3446 } 3447 // FIXME: The scheduler currently can't handle values larger than 16. But 3448 // the values can actually go up to 32 for floating-point load/store 3449 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3450 // operations isn't right; we could end up with "extra" memory operands for 3451 // various reasons, like tail merge merging two memory operations. 3452 return std::min(Size / 4, 16U); 3453 } 3454 3455 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3456 unsigned NumRegs) { 3457 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3458 switch (Opc) { 3459 default: 3460 break; 3461 case ARM::VLDMDIA_UPD: 3462 case ARM::VLDMDDB_UPD: 3463 case ARM::VLDMSIA_UPD: 3464 case ARM::VLDMSDB_UPD: 3465 case ARM::VSTMDIA_UPD: 3466 case ARM::VSTMDDB_UPD: 3467 case ARM::VSTMSIA_UPD: 3468 case ARM::VSTMSDB_UPD: 3469 case ARM::LDMIA_UPD: 3470 case ARM::LDMDA_UPD: 3471 case ARM::LDMDB_UPD: 3472 case ARM::LDMIB_UPD: 3473 case ARM::STMIA_UPD: 3474 case ARM::STMDA_UPD: 3475 case ARM::STMDB_UPD: 3476 case ARM::STMIB_UPD: 3477 case ARM::tLDMIA_UPD: 3478 case ARM::tSTMIA_UPD: 3479 case ARM::t2LDMIA_UPD: 3480 case ARM::t2LDMDB_UPD: 3481 case ARM::t2STMIA_UPD: 3482 case ARM::t2STMDB_UPD: 3483 ++UOps; // One for base register writeback. 3484 break; 3485 case ARM::LDMIA_RET: 3486 case ARM::tPOP_RET: 3487 case ARM::t2LDMIA_RET: 3488 UOps += 2; // One for base reg wb, one for write to pc. 3489 break; 3490 } 3491 return UOps; 3492 } 3493 3494 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3495 const MachineInstr &MI) const { 3496 if (!ItinData || ItinData->isEmpty()) 3497 return 1; 3498 3499 const MCInstrDesc &Desc = MI.getDesc(); 3500 unsigned Class = Desc.getSchedClass(); 3501 int ItinUOps = ItinData->getNumMicroOps(Class); 3502 if (ItinUOps >= 0) { 3503 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3504 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3505 3506 return ItinUOps; 3507 } 3508 3509 unsigned Opc = MI.getOpcode(); 3510 switch (Opc) { 3511 default: 3512 llvm_unreachable("Unexpected multi-uops instruction!"); 3513 case ARM::VLDMQIA: 3514 case ARM::VSTMQIA: 3515 return 2; 3516 3517 // The number of uOps for load / store multiple are determined by the number 3518 // registers. 3519 // 3520 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3521 // same cycle. The scheduling for the first load / store must be done 3522 // separately by assuming the address is not 64-bit aligned. 3523 // 3524 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3525 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3526 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3527 case ARM::VLDMDIA: 3528 case ARM::VLDMDIA_UPD: 3529 case ARM::VLDMDDB_UPD: 3530 case ARM::VLDMSIA: 3531 case ARM::VLDMSIA_UPD: 3532 case ARM::VLDMSDB_UPD: 3533 case ARM::VSTMDIA: 3534 case ARM::VSTMDIA_UPD: 3535 case ARM::VSTMDDB_UPD: 3536 case ARM::VSTMSIA: 3537 case ARM::VSTMSIA_UPD: 3538 case ARM::VSTMSDB_UPD: { 3539 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3540 return (NumRegs / 2) + (NumRegs % 2) + 1; 3541 } 3542 3543 case ARM::LDMIA_RET: 3544 case ARM::LDMIA: 3545 case ARM::LDMDA: 3546 case ARM::LDMDB: 3547 case ARM::LDMIB: 3548 case ARM::LDMIA_UPD: 3549 case ARM::LDMDA_UPD: 3550 case ARM::LDMDB_UPD: 3551 case ARM::LDMIB_UPD: 3552 case ARM::STMIA: 3553 case ARM::STMDA: 3554 case ARM::STMDB: 3555 case ARM::STMIB: 3556 case ARM::STMIA_UPD: 3557 case ARM::STMDA_UPD: 3558 case ARM::STMDB_UPD: 3559 case ARM::STMIB_UPD: 3560 case ARM::tLDMIA: 3561 case ARM::tLDMIA_UPD: 3562 case ARM::tSTMIA_UPD: 3563 case ARM::tPOP_RET: 3564 case ARM::tPOP: 3565 case ARM::tPUSH: 3566 case ARM::t2LDMIA_RET: 3567 case ARM::t2LDMIA: 3568 case ARM::t2LDMDB: 3569 case ARM::t2LDMIA_UPD: 3570 case ARM::t2LDMDB_UPD: 3571 case ARM::t2STMIA: 3572 case ARM::t2STMDB: 3573 case ARM::t2STMIA_UPD: 3574 case ARM::t2STMDB_UPD: { 3575 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3576 switch (Subtarget.getLdStMultipleTiming()) { 3577 case ARMSubtarget::SingleIssuePlusExtras: 3578 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3579 case ARMSubtarget::SingleIssue: 3580 // Assume the worst. 3581 return NumRegs; 3582 case ARMSubtarget::DoubleIssue: { 3583 if (NumRegs < 4) 3584 return 2; 3585 // 4 registers would be issued: 2, 2. 3586 // 5 registers would be issued: 2, 2, 1. 3587 unsigned UOps = (NumRegs / 2); 3588 if (NumRegs % 2) 3589 ++UOps; 3590 return UOps; 3591 } 3592 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3593 unsigned UOps = (NumRegs / 2); 3594 // If there are odd number of registers or if it's not 64-bit aligned, 3595 // then it takes an extra AGU (Address Generation Unit) cycle. 3596 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3597 (*MI.memoperands_begin())->getAlignment() < 8) 3598 ++UOps; 3599 return UOps; 3600 } 3601 } 3602 } 3603 } 3604 llvm_unreachable("Didn't find the number of microops"); 3605 } 3606 3607 int 3608 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3609 const MCInstrDesc &DefMCID, 3610 unsigned DefClass, 3611 unsigned DefIdx, unsigned DefAlign) const { 3612 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3613 if (RegNo <= 0) 3614 // Def is the address writeback. 3615 return ItinData->getOperandCycle(DefClass, DefIdx); 3616 3617 int DefCycle; 3618 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3619 // (regno / 2) + (regno % 2) + 1 3620 DefCycle = RegNo / 2 + 1; 3621 if (RegNo % 2) 3622 ++DefCycle; 3623 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3624 DefCycle = RegNo; 3625 bool isSLoad = false; 3626 3627 switch (DefMCID.getOpcode()) { 3628 default: break; 3629 case ARM::VLDMSIA: 3630 case ARM::VLDMSIA_UPD: 3631 case ARM::VLDMSDB_UPD: 3632 isSLoad = true; 3633 break; 3634 } 3635 3636 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3637 // then it takes an extra cycle. 3638 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3639 ++DefCycle; 3640 } else { 3641 // Assume the worst. 3642 DefCycle = RegNo + 2; 3643 } 3644 3645 return DefCycle; 3646 } 3647 3648 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const { 3649 unsigned BaseReg = MI.getOperand(0).getReg(); 3650 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) { 3651 const auto &Op = MI.getOperand(i); 3652 if (Op.isReg() && Op.getReg() == BaseReg) 3653 return true; 3654 } 3655 return false; 3656 } 3657 unsigned 3658 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const { 3659 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops 3660 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops) 3661 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands(); 3662 } 3663 3664 int 3665 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3666 const MCInstrDesc &DefMCID, 3667 unsigned DefClass, 3668 unsigned DefIdx, unsigned DefAlign) const { 3669 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3670 if (RegNo <= 0) 3671 // Def is the address writeback. 3672 return ItinData->getOperandCycle(DefClass, DefIdx); 3673 3674 int DefCycle; 3675 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3676 // 4 registers would be issued: 1, 2, 1. 3677 // 5 registers would be issued: 1, 2, 2. 3678 DefCycle = RegNo / 2; 3679 if (DefCycle < 1) 3680 DefCycle = 1; 3681 // Result latency is issue cycle + 2: E2. 3682 DefCycle += 2; 3683 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3684 DefCycle = (RegNo / 2); 3685 // If there are odd number of registers or if it's not 64-bit aligned, 3686 // then it takes an extra AGU (Address Generation Unit) cycle. 3687 if ((RegNo % 2) || DefAlign < 8) 3688 ++DefCycle; 3689 // Result latency is AGU cycles + 2. 3690 DefCycle += 2; 3691 } else { 3692 // Assume the worst. 3693 DefCycle = RegNo + 2; 3694 } 3695 3696 return DefCycle; 3697 } 3698 3699 int 3700 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3701 const MCInstrDesc &UseMCID, 3702 unsigned UseClass, 3703 unsigned UseIdx, unsigned UseAlign) const { 3704 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3705 if (RegNo <= 0) 3706 return ItinData->getOperandCycle(UseClass, UseIdx); 3707 3708 int UseCycle; 3709 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3710 // (regno / 2) + (regno % 2) + 1 3711 UseCycle = RegNo / 2 + 1; 3712 if (RegNo % 2) 3713 ++UseCycle; 3714 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3715 UseCycle = RegNo; 3716 bool isSStore = false; 3717 3718 switch (UseMCID.getOpcode()) { 3719 default: break; 3720 case ARM::VSTMSIA: 3721 case ARM::VSTMSIA_UPD: 3722 case ARM::VSTMSDB_UPD: 3723 isSStore = true; 3724 break; 3725 } 3726 3727 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3728 // then it takes an extra cycle. 3729 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3730 ++UseCycle; 3731 } else { 3732 // Assume the worst. 3733 UseCycle = RegNo + 2; 3734 } 3735 3736 return UseCycle; 3737 } 3738 3739 int 3740 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3741 const MCInstrDesc &UseMCID, 3742 unsigned UseClass, 3743 unsigned UseIdx, unsigned UseAlign) const { 3744 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3745 if (RegNo <= 0) 3746 return ItinData->getOperandCycle(UseClass, UseIdx); 3747 3748 int UseCycle; 3749 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3750 UseCycle = RegNo / 2; 3751 if (UseCycle < 2) 3752 UseCycle = 2; 3753 // Read in E3. 3754 UseCycle += 2; 3755 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3756 UseCycle = (RegNo / 2); 3757 // If there are odd number of registers or if it's not 64-bit aligned, 3758 // then it takes an extra AGU (Address Generation Unit) cycle. 3759 if ((RegNo % 2) || UseAlign < 8) 3760 ++UseCycle; 3761 } else { 3762 // Assume the worst. 3763 UseCycle = 1; 3764 } 3765 return UseCycle; 3766 } 3767 3768 int 3769 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3770 const MCInstrDesc &DefMCID, 3771 unsigned DefIdx, unsigned DefAlign, 3772 const MCInstrDesc &UseMCID, 3773 unsigned UseIdx, unsigned UseAlign) const { 3774 unsigned DefClass = DefMCID.getSchedClass(); 3775 unsigned UseClass = UseMCID.getSchedClass(); 3776 3777 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3778 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3779 3780 // This may be a def / use of a variable_ops instruction, the operand 3781 // latency might be determinable dynamically. Let the target try to 3782 // figure it out. 3783 int DefCycle = -1; 3784 bool LdmBypass = false; 3785 switch (DefMCID.getOpcode()) { 3786 default: 3787 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3788 break; 3789 3790 case ARM::VLDMDIA: 3791 case ARM::VLDMDIA_UPD: 3792 case ARM::VLDMDDB_UPD: 3793 case ARM::VLDMSIA: 3794 case ARM::VLDMSIA_UPD: 3795 case ARM::VLDMSDB_UPD: 3796 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3797 break; 3798 3799 case ARM::LDMIA_RET: 3800 case ARM::LDMIA: 3801 case ARM::LDMDA: 3802 case ARM::LDMDB: 3803 case ARM::LDMIB: 3804 case ARM::LDMIA_UPD: 3805 case ARM::LDMDA_UPD: 3806 case ARM::LDMDB_UPD: 3807 case ARM::LDMIB_UPD: 3808 case ARM::tLDMIA: 3809 case ARM::tLDMIA_UPD: 3810 case ARM::tPUSH: 3811 case ARM::t2LDMIA_RET: 3812 case ARM::t2LDMIA: 3813 case ARM::t2LDMDB: 3814 case ARM::t2LDMIA_UPD: 3815 case ARM::t2LDMDB_UPD: 3816 LdmBypass = true; 3817 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3818 break; 3819 } 3820 3821 if (DefCycle == -1) 3822 // We can't seem to determine the result latency of the def, assume it's 2. 3823 DefCycle = 2; 3824 3825 int UseCycle = -1; 3826 switch (UseMCID.getOpcode()) { 3827 default: 3828 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 3829 break; 3830 3831 case ARM::VSTMDIA: 3832 case ARM::VSTMDIA_UPD: 3833 case ARM::VSTMDDB_UPD: 3834 case ARM::VSTMSIA: 3835 case ARM::VSTMSIA_UPD: 3836 case ARM::VSTMSDB_UPD: 3837 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3838 break; 3839 3840 case ARM::STMIA: 3841 case ARM::STMDA: 3842 case ARM::STMDB: 3843 case ARM::STMIB: 3844 case ARM::STMIA_UPD: 3845 case ARM::STMDA_UPD: 3846 case ARM::STMDB_UPD: 3847 case ARM::STMIB_UPD: 3848 case ARM::tSTMIA_UPD: 3849 case ARM::tPOP_RET: 3850 case ARM::tPOP: 3851 case ARM::t2STMIA: 3852 case ARM::t2STMDB: 3853 case ARM::t2STMIA_UPD: 3854 case ARM::t2STMDB_UPD: 3855 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3856 break; 3857 } 3858 3859 if (UseCycle == -1) 3860 // Assume it's read in the first stage. 3861 UseCycle = 1; 3862 3863 UseCycle = DefCycle - UseCycle + 1; 3864 if (UseCycle > 0) { 3865 if (LdmBypass) { 3866 // It's a variable_ops instruction so we can't use DefIdx here. Just use 3867 // first def operand. 3868 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 3869 UseClass, UseIdx)) 3870 --UseCycle; 3871 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 3872 UseClass, UseIdx)) { 3873 --UseCycle; 3874 } 3875 } 3876 3877 return UseCycle; 3878 } 3879 3880 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 3881 const MachineInstr *MI, unsigned Reg, 3882 unsigned &DefIdx, unsigned &Dist) { 3883 Dist = 0; 3884 3885 MachineBasicBlock::const_iterator I = MI; ++I; 3886 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 3887 assert(II->isInsideBundle() && "Empty bundle?"); 3888 3889 int Idx = -1; 3890 while (II->isInsideBundle()) { 3891 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 3892 if (Idx != -1) 3893 break; 3894 --II; 3895 ++Dist; 3896 } 3897 3898 assert(Idx != -1 && "Cannot find bundled definition!"); 3899 DefIdx = Idx; 3900 return &*II; 3901 } 3902 3903 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 3904 const MachineInstr &MI, unsigned Reg, 3905 unsigned &UseIdx, unsigned &Dist) { 3906 Dist = 0; 3907 3908 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 3909 assert(II->isInsideBundle() && "Empty bundle?"); 3910 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 3911 3912 // FIXME: This doesn't properly handle multiple uses. 3913 int Idx = -1; 3914 while (II != E && II->isInsideBundle()) { 3915 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 3916 if (Idx != -1) 3917 break; 3918 if (II->getOpcode() != ARM::t2IT) 3919 ++Dist; 3920 ++II; 3921 } 3922 3923 if (Idx == -1) { 3924 Dist = 0; 3925 return nullptr; 3926 } 3927 3928 UseIdx = Idx; 3929 return &*II; 3930 } 3931 3932 /// Return the number of cycles to add to (or subtract from) the static 3933 /// itinerary based on the def opcode and alignment. The caller will ensure that 3934 /// adjusted latency is at least one cycle. 3935 static int adjustDefLatency(const ARMSubtarget &Subtarget, 3936 const MachineInstr &DefMI, 3937 const MCInstrDesc &DefMCID, unsigned DefAlign) { 3938 int Adjust = 0; 3939 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 3940 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 3941 // variants are one cycle cheaper. 3942 switch (DefMCID.getOpcode()) { 3943 default: break; 3944 case ARM::LDRrs: 3945 case ARM::LDRBrs: { 3946 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 3947 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3948 if (ShImm == 0 || 3949 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 3950 --Adjust; 3951 break; 3952 } 3953 case ARM::t2LDRs: 3954 case ARM::t2LDRBs: 3955 case ARM::t2LDRHs: 3956 case ARM::t2LDRSHs: { 3957 // Thumb2 mode: lsl only. 3958 unsigned ShAmt = DefMI.getOperand(3).getImm(); 3959 if (ShAmt == 0 || ShAmt == 2) 3960 --Adjust; 3961 break; 3962 } 3963 } 3964 } else if (Subtarget.isSwift()) { 3965 // FIXME: Properly handle all of the latency adjustments for address 3966 // writeback. 3967 switch (DefMCID.getOpcode()) { 3968 default: break; 3969 case ARM::LDRrs: 3970 case ARM::LDRBrs: { 3971 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 3972 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3973 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3974 if (!isSub && 3975 (ShImm == 0 || 3976 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3977 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3978 Adjust -= 2; 3979 else if (!isSub && 3980 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 3981 --Adjust; 3982 break; 3983 } 3984 case ARM::t2LDRs: 3985 case ARM::t2LDRBs: 3986 case ARM::t2LDRHs: 3987 case ARM::t2LDRSHs: { 3988 // Thumb2 mode: lsl only. 3989 unsigned ShAmt = DefMI.getOperand(3).getImm(); 3990 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 3991 Adjust -= 2; 3992 break; 3993 } 3994 } 3995 } 3996 3997 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 3998 switch (DefMCID.getOpcode()) { 3999 default: break; 4000 case ARM::VLD1q8: 4001 case ARM::VLD1q16: 4002 case ARM::VLD1q32: 4003 case ARM::VLD1q64: 4004 case ARM::VLD1q8wb_fixed: 4005 case ARM::VLD1q16wb_fixed: 4006 case ARM::VLD1q32wb_fixed: 4007 case ARM::VLD1q64wb_fixed: 4008 case ARM::VLD1q8wb_register: 4009 case ARM::VLD1q16wb_register: 4010 case ARM::VLD1q32wb_register: 4011 case ARM::VLD1q64wb_register: 4012 case ARM::VLD2d8: 4013 case ARM::VLD2d16: 4014 case ARM::VLD2d32: 4015 case ARM::VLD2q8: 4016 case ARM::VLD2q16: 4017 case ARM::VLD2q32: 4018 case ARM::VLD2d8wb_fixed: 4019 case ARM::VLD2d16wb_fixed: 4020 case ARM::VLD2d32wb_fixed: 4021 case ARM::VLD2q8wb_fixed: 4022 case ARM::VLD2q16wb_fixed: 4023 case ARM::VLD2q32wb_fixed: 4024 case ARM::VLD2d8wb_register: 4025 case ARM::VLD2d16wb_register: 4026 case ARM::VLD2d32wb_register: 4027 case ARM::VLD2q8wb_register: 4028 case ARM::VLD2q16wb_register: 4029 case ARM::VLD2q32wb_register: 4030 case ARM::VLD3d8: 4031 case ARM::VLD3d16: 4032 case ARM::VLD3d32: 4033 case ARM::VLD1d64T: 4034 case ARM::VLD3d8_UPD: 4035 case ARM::VLD3d16_UPD: 4036 case ARM::VLD3d32_UPD: 4037 case ARM::VLD1d64Twb_fixed: 4038 case ARM::VLD1d64Twb_register: 4039 case ARM::VLD3q8_UPD: 4040 case ARM::VLD3q16_UPD: 4041 case ARM::VLD3q32_UPD: 4042 case ARM::VLD4d8: 4043 case ARM::VLD4d16: 4044 case ARM::VLD4d32: 4045 case ARM::VLD1d64Q: 4046 case ARM::VLD4d8_UPD: 4047 case ARM::VLD4d16_UPD: 4048 case ARM::VLD4d32_UPD: 4049 case ARM::VLD1d64Qwb_fixed: 4050 case ARM::VLD1d64Qwb_register: 4051 case ARM::VLD4q8_UPD: 4052 case ARM::VLD4q16_UPD: 4053 case ARM::VLD4q32_UPD: 4054 case ARM::VLD1DUPq8: 4055 case ARM::VLD1DUPq16: 4056 case ARM::VLD1DUPq32: 4057 case ARM::VLD1DUPq8wb_fixed: 4058 case ARM::VLD1DUPq16wb_fixed: 4059 case ARM::VLD1DUPq32wb_fixed: 4060 case ARM::VLD1DUPq8wb_register: 4061 case ARM::VLD1DUPq16wb_register: 4062 case ARM::VLD1DUPq32wb_register: 4063 case ARM::VLD2DUPd8: 4064 case ARM::VLD2DUPd16: 4065 case ARM::VLD2DUPd32: 4066 case ARM::VLD2DUPd8wb_fixed: 4067 case ARM::VLD2DUPd16wb_fixed: 4068 case ARM::VLD2DUPd32wb_fixed: 4069 case ARM::VLD2DUPd8wb_register: 4070 case ARM::VLD2DUPd16wb_register: 4071 case ARM::VLD2DUPd32wb_register: 4072 case ARM::VLD4DUPd8: 4073 case ARM::VLD4DUPd16: 4074 case ARM::VLD4DUPd32: 4075 case ARM::VLD4DUPd8_UPD: 4076 case ARM::VLD4DUPd16_UPD: 4077 case ARM::VLD4DUPd32_UPD: 4078 case ARM::VLD1LNd8: 4079 case ARM::VLD1LNd16: 4080 case ARM::VLD1LNd32: 4081 case ARM::VLD1LNd8_UPD: 4082 case ARM::VLD1LNd16_UPD: 4083 case ARM::VLD1LNd32_UPD: 4084 case ARM::VLD2LNd8: 4085 case ARM::VLD2LNd16: 4086 case ARM::VLD2LNd32: 4087 case ARM::VLD2LNq16: 4088 case ARM::VLD2LNq32: 4089 case ARM::VLD2LNd8_UPD: 4090 case ARM::VLD2LNd16_UPD: 4091 case ARM::VLD2LNd32_UPD: 4092 case ARM::VLD2LNq16_UPD: 4093 case ARM::VLD2LNq32_UPD: 4094 case ARM::VLD4LNd8: 4095 case ARM::VLD4LNd16: 4096 case ARM::VLD4LNd32: 4097 case ARM::VLD4LNq16: 4098 case ARM::VLD4LNq32: 4099 case ARM::VLD4LNd8_UPD: 4100 case ARM::VLD4LNd16_UPD: 4101 case ARM::VLD4LNd32_UPD: 4102 case ARM::VLD4LNq16_UPD: 4103 case ARM::VLD4LNq32_UPD: 4104 // If the address is not 64-bit aligned, the latencies of these 4105 // instructions increases by one. 4106 ++Adjust; 4107 break; 4108 } 4109 } 4110 return Adjust; 4111 } 4112 4113 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4114 const MachineInstr &DefMI, 4115 unsigned DefIdx, 4116 const MachineInstr &UseMI, 4117 unsigned UseIdx) const { 4118 // No operand latency. The caller may fall back to getInstrLatency. 4119 if (!ItinData || ItinData->isEmpty()) 4120 return -1; 4121 4122 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4123 unsigned Reg = DefMO.getReg(); 4124 4125 const MachineInstr *ResolvedDefMI = &DefMI; 4126 unsigned DefAdj = 0; 4127 if (DefMI.isBundle()) 4128 ResolvedDefMI = 4129 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4130 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4131 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4132 return 1; 4133 } 4134 4135 const MachineInstr *ResolvedUseMI = &UseMI; 4136 unsigned UseAdj = 0; 4137 if (UseMI.isBundle()) { 4138 ResolvedUseMI = 4139 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4140 if (!ResolvedUseMI) 4141 return -1; 4142 } 4143 4144 return getOperandLatencyImpl( 4145 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4146 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4147 } 4148 4149 int ARMBaseInstrInfo::getOperandLatencyImpl( 4150 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4151 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4152 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4153 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4154 if (Reg == ARM::CPSR) { 4155 if (DefMI.getOpcode() == ARM::FMSTAT) { 4156 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4157 return Subtarget.isLikeA9() ? 1 : 20; 4158 } 4159 4160 // CPSR set and branch can be paired in the same cycle. 4161 if (UseMI.isBranch()) 4162 return 0; 4163 4164 // Otherwise it takes the instruction latency (generally one). 4165 unsigned Latency = getInstrLatency(ItinData, DefMI); 4166 4167 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4168 // its uses. Instructions which are otherwise scheduled between them may 4169 // incur a code size penalty (not able to use the CPSR setting 16-bit 4170 // instructions). 4171 if (Latency > 0 && Subtarget.isThumb2()) { 4172 const MachineFunction *MF = DefMI.getParent()->getParent(); 4173 // FIXME: Use Function::hasOptSize(). 4174 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4175 --Latency; 4176 } 4177 return Latency; 4178 } 4179 4180 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4181 return -1; 4182 4183 unsigned DefAlign = DefMI.hasOneMemOperand() 4184 ? (*DefMI.memoperands_begin())->getAlignment() 4185 : 0; 4186 unsigned UseAlign = UseMI.hasOneMemOperand() 4187 ? (*UseMI.memoperands_begin())->getAlignment() 4188 : 0; 4189 4190 // Get the itinerary's latency if possible, and handle variable_ops. 4191 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4192 UseIdx, UseAlign); 4193 // Unable to find operand latency. The caller may resort to getInstrLatency. 4194 if (Latency < 0) 4195 return Latency; 4196 4197 // Adjust for IT block position. 4198 int Adj = DefAdj + UseAdj; 4199 4200 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4201 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4202 if (Adj >= 0 || (int)Latency > -Adj) { 4203 return Latency + Adj; 4204 } 4205 // Return the itinerary latency, which may be zero but not less than zero. 4206 return Latency; 4207 } 4208 4209 int 4210 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4211 SDNode *DefNode, unsigned DefIdx, 4212 SDNode *UseNode, unsigned UseIdx) const { 4213 if (!DefNode->isMachineOpcode()) 4214 return 1; 4215 4216 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4217 4218 if (isZeroCost(DefMCID.Opcode)) 4219 return 0; 4220 4221 if (!ItinData || ItinData->isEmpty()) 4222 return DefMCID.mayLoad() ? 3 : 1; 4223 4224 if (!UseNode->isMachineOpcode()) { 4225 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4226 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4227 int Threshold = 1 + Adj; 4228 return Latency <= Threshold ? 1 : Latency - Adj; 4229 } 4230 4231 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4232 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); 4233 unsigned DefAlign = !DefMN->memoperands_empty() 4234 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 4235 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); 4236 unsigned UseAlign = !UseMN->memoperands_empty() 4237 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 4238 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4239 UseMCID, UseIdx, UseAlign); 4240 4241 if (Latency > 1 && 4242 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4243 Subtarget.isCortexA7())) { 4244 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4245 // variants are one cycle cheaper. 4246 switch (DefMCID.getOpcode()) { 4247 default: break; 4248 case ARM::LDRrs: 4249 case ARM::LDRBrs: { 4250 unsigned ShOpVal = 4251 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4252 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4253 if (ShImm == 0 || 4254 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4255 --Latency; 4256 break; 4257 } 4258 case ARM::t2LDRs: 4259 case ARM::t2LDRBs: 4260 case ARM::t2LDRHs: 4261 case ARM::t2LDRSHs: { 4262 // Thumb2 mode: lsl only. 4263 unsigned ShAmt = 4264 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4265 if (ShAmt == 0 || ShAmt == 2) 4266 --Latency; 4267 break; 4268 } 4269 } 4270 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4271 // FIXME: Properly handle all of the latency adjustments for address 4272 // writeback. 4273 switch (DefMCID.getOpcode()) { 4274 default: break; 4275 case ARM::LDRrs: 4276 case ARM::LDRBrs: { 4277 unsigned ShOpVal = 4278 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4279 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4280 if (ShImm == 0 || 4281 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4282 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4283 Latency -= 2; 4284 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4285 --Latency; 4286 break; 4287 } 4288 case ARM::t2LDRs: 4289 case ARM::t2LDRBs: 4290 case ARM::t2LDRHs: 4291 case ARM::t2LDRSHs: 4292 // Thumb2 mode: lsl 0-3 only. 4293 Latency -= 2; 4294 break; 4295 } 4296 } 4297 4298 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4299 switch (DefMCID.getOpcode()) { 4300 default: break; 4301 case ARM::VLD1q8: 4302 case ARM::VLD1q16: 4303 case ARM::VLD1q32: 4304 case ARM::VLD1q64: 4305 case ARM::VLD1q8wb_register: 4306 case ARM::VLD1q16wb_register: 4307 case ARM::VLD1q32wb_register: 4308 case ARM::VLD1q64wb_register: 4309 case ARM::VLD1q8wb_fixed: 4310 case ARM::VLD1q16wb_fixed: 4311 case ARM::VLD1q32wb_fixed: 4312 case ARM::VLD1q64wb_fixed: 4313 case ARM::VLD2d8: 4314 case ARM::VLD2d16: 4315 case ARM::VLD2d32: 4316 case ARM::VLD2q8Pseudo: 4317 case ARM::VLD2q16Pseudo: 4318 case ARM::VLD2q32Pseudo: 4319 case ARM::VLD2d8wb_fixed: 4320 case ARM::VLD2d16wb_fixed: 4321 case ARM::VLD2d32wb_fixed: 4322 case ARM::VLD2q8PseudoWB_fixed: 4323 case ARM::VLD2q16PseudoWB_fixed: 4324 case ARM::VLD2q32PseudoWB_fixed: 4325 case ARM::VLD2d8wb_register: 4326 case ARM::VLD2d16wb_register: 4327 case ARM::VLD2d32wb_register: 4328 case ARM::VLD2q8PseudoWB_register: 4329 case ARM::VLD2q16PseudoWB_register: 4330 case ARM::VLD2q32PseudoWB_register: 4331 case ARM::VLD3d8Pseudo: 4332 case ARM::VLD3d16Pseudo: 4333 case ARM::VLD3d32Pseudo: 4334 case ARM::VLD1d8TPseudo: 4335 case ARM::VLD1d16TPseudo: 4336 case ARM::VLD1d32TPseudo: 4337 case ARM::VLD1d64TPseudo: 4338 case ARM::VLD1d64TPseudoWB_fixed: 4339 case ARM::VLD1d64TPseudoWB_register: 4340 case ARM::VLD3d8Pseudo_UPD: 4341 case ARM::VLD3d16Pseudo_UPD: 4342 case ARM::VLD3d32Pseudo_UPD: 4343 case ARM::VLD3q8Pseudo_UPD: 4344 case ARM::VLD3q16Pseudo_UPD: 4345 case ARM::VLD3q32Pseudo_UPD: 4346 case ARM::VLD3q8oddPseudo: 4347 case ARM::VLD3q16oddPseudo: 4348 case ARM::VLD3q32oddPseudo: 4349 case ARM::VLD3q8oddPseudo_UPD: 4350 case ARM::VLD3q16oddPseudo_UPD: 4351 case ARM::VLD3q32oddPseudo_UPD: 4352 case ARM::VLD4d8Pseudo: 4353 case ARM::VLD4d16Pseudo: 4354 case ARM::VLD4d32Pseudo: 4355 case ARM::VLD1d8QPseudo: 4356 case ARM::VLD1d16QPseudo: 4357 case ARM::VLD1d32QPseudo: 4358 case ARM::VLD1d64QPseudo: 4359 case ARM::VLD1d64QPseudoWB_fixed: 4360 case ARM::VLD1d64QPseudoWB_register: 4361 case ARM::VLD1q8HighQPseudo: 4362 case ARM::VLD1q8LowQPseudo_UPD: 4363 case ARM::VLD1q8HighTPseudo: 4364 case ARM::VLD1q8LowTPseudo_UPD: 4365 case ARM::VLD1q16HighQPseudo: 4366 case ARM::VLD1q16LowQPseudo_UPD: 4367 case ARM::VLD1q16HighTPseudo: 4368 case ARM::VLD1q16LowTPseudo_UPD: 4369 case ARM::VLD1q32HighQPseudo: 4370 case ARM::VLD1q32LowQPseudo_UPD: 4371 case ARM::VLD1q32HighTPseudo: 4372 case ARM::VLD1q32LowTPseudo_UPD: 4373 case ARM::VLD1q64HighQPseudo: 4374 case ARM::VLD1q64LowQPseudo_UPD: 4375 case ARM::VLD1q64HighTPseudo: 4376 case ARM::VLD1q64LowTPseudo_UPD: 4377 case ARM::VLD4d8Pseudo_UPD: 4378 case ARM::VLD4d16Pseudo_UPD: 4379 case ARM::VLD4d32Pseudo_UPD: 4380 case ARM::VLD4q8Pseudo_UPD: 4381 case ARM::VLD4q16Pseudo_UPD: 4382 case ARM::VLD4q32Pseudo_UPD: 4383 case ARM::VLD4q8oddPseudo: 4384 case ARM::VLD4q16oddPseudo: 4385 case ARM::VLD4q32oddPseudo: 4386 case ARM::VLD4q8oddPseudo_UPD: 4387 case ARM::VLD4q16oddPseudo_UPD: 4388 case ARM::VLD4q32oddPseudo_UPD: 4389 case ARM::VLD1DUPq8: 4390 case ARM::VLD1DUPq16: 4391 case ARM::VLD1DUPq32: 4392 case ARM::VLD1DUPq8wb_fixed: 4393 case ARM::VLD1DUPq16wb_fixed: 4394 case ARM::VLD1DUPq32wb_fixed: 4395 case ARM::VLD1DUPq8wb_register: 4396 case ARM::VLD1DUPq16wb_register: 4397 case ARM::VLD1DUPq32wb_register: 4398 case ARM::VLD2DUPd8: 4399 case ARM::VLD2DUPd16: 4400 case ARM::VLD2DUPd32: 4401 case ARM::VLD2DUPd8wb_fixed: 4402 case ARM::VLD2DUPd16wb_fixed: 4403 case ARM::VLD2DUPd32wb_fixed: 4404 case ARM::VLD2DUPd8wb_register: 4405 case ARM::VLD2DUPd16wb_register: 4406 case ARM::VLD2DUPd32wb_register: 4407 case ARM::VLD2DUPq8EvenPseudo: 4408 case ARM::VLD2DUPq8OddPseudo: 4409 case ARM::VLD2DUPq16EvenPseudo: 4410 case ARM::VLD2DUPq16OddPseudo: 4411 case ARM::VLD2DUPq32EvenPseudo: 4412 case ARM::VLD2DUPq32OddPseudo: 4413 case ARM::VLD3DUPq8EvenPseudo: 4414 case ARM::VLD3DUPq8OddPseudo: 4415 case ARM::VLD3DUPq16EvenPseudo: 4416 case ARM::VLD3DUPq16OddPseudo: 4417 case ARM::VLD3DUPq32EvenPseudo: 4418 case ARM::VLD3DUPq32OddPseudo: 4419 case ARM::VLD4DUPd8Pseudo: 4420 case ARM::VLD4DUPd16Pseudo: 4421 case ARM::VLD4DUPd32Pseudo: 4422 case ARM::VLD4DUPd8Pseudo_UPD: 4423 case ARM::VLD4DUPd16Pseudo_UPD: 4424 case ARM::VLD4DUPd32Pseudo_UPD: 4425 case ARM::VLD4DUPq8EvenPseudo: 4426 case ARM::VLD4DUPq8OddPseudo: 4427 case ARM::VLD4DUPq16EvenPseudo: 4428 case ARM::VLD4DUPq16OddPseudo: 4429 case ARM::VLD4DUPq32EvenPseudo: 4430 case ARM::VLD4DUPq32OddPseudo: 4431 case ARM::VLD1LNq8Pseudo: 4432 case ARM::VLD1LNq16Pseudo: 4433 case ARM::VLD1LNq32Pseudo: 4434 case ARM::VLD1LNq8Pseudo_UPD: 4435 case ARM::VLD1LNq16Pseudo_UPD: 4436 case ARM::VLD1LNq32Pseudo_UPD: 4437 case ARM::VLD2LNd8Pseudo: 4438 case ARM::VLD2LNd16Pseudo: 4439 case ARM::VLD2LNd32Pseudo: 4440 case ARM::VLD2LNq16Pseudo: 4441 case ARM::VLD2LNq32Pseudo: 4442 case ARM::VLD2LNd8Pseudo_UPD: 4443 case ARM::VLD2LNd16Pseudo_UPD: 4444 case ARM::VLD2LNd32Pseudo_UPD: 4445 case ARM::VLD2LNq16Pseudo_UPD: 4446 case ARM::VLD2LNq32Pseudo_UPD: 4447 case ARM::VLD4LNd8Pseudo: 4448 case ARM::VLD4LNd16Pseudo: 4449 case ARM::VLD4LNd32Pseudo: 4450 case ARM::VLD4LNq16Pseudo: 4451 case ARM::VLD4LNq32Pseudo: 4452 case ARM::VLD4LNd8Pseudo_UPD: 4453 case ARM::VLD4LNd16Pseudo_UPD: 4454 case ARM::VLD4LNd32Pseudo_UPD: 4455 case ARM::VLD4LNq16Pseudo_UPD: 4456 case ARM::VLD4LNq32Pseudo_UPD: 4457 // If the address is not 64-bit aligned, the latencies of these 4458 // instructions increases by one. 4459 ++Latency; 4460 break; 4461 } 4462 4463 return Latency; 4464 } 4465 4466 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4467 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4468 MI.isImplicitDef()) 4469 return 0; 4470 4471 if (MI.isBundle()) 4472 return 0; 4473 4474 const MCInstrDesc &MCID = MI.getDesc(); 4475 4476 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4477 !Subtarget.cheapPredicableCPSRDef())) { 4478 // When predicated, CPSR is an additional source operand for CPSR updating 4479 // instructions, this apparently increases their latencies. 4480 return 1; 4481 } 4482 return 0; 4483 } 4484 4485 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4486 const MachineInstr &MI, 4487 unsigned *PredCost) const { 4488 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4489 MI.isImplicitDef()) 4490 return 1; 4491 4492 // An instruction scheduler typically runs on unbundled instructions, however 4493 // other passes may query the latency of a bundled instruction. 4494 if (MI.isBundle()) { 4495 unsigned Latency = 0; 4496 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4497 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4498 while (++I != E && I->isInsideBundle()) { 4499 if (I->getOpcode() != ARM::t2IT) 4500 Latency += getInstrLatency(ItinData, *I, PredCost); 4501 } 4502 return Latency; 4503 } 4504 4505 const MCInstrDesc &MCID = MI.getDesc(); 4506 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4507 !Subtarget.cheapPredicableCPSRDef()))) { 4508 // When predicated, CPSR is an additional source operand for CPSR updating 4509 // instructions, this apparently increases their latencies. 4510 *PredCost = 1; 4511 } 4512 // Be sure to call getStageLatency for an empty itinerary in case it has a 4513 // valid MinLatency property. 4514 if (!ItinData) 4515 return MI.mayLoad() ? 3 : 1; 4516 4517 unsigned Class = MCID.getSchedClass(); 4518 4519 // For instructions with variable uops, use uops as latency. 4520 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4521 return getNumMicroOps(ItinData, MI); 4522 4523 // For the common case, fall back on the itinerary's latency. 4524 unsigned Latency = ItinData->getStageLatency(Class); 4525 4526 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4527 unsigned DefAlign = 4528 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0; 4529 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4530 if (Adj >= 0 || (int)Latency > -Adj) { 4531 return Latency + Adj; 4532 } 4533 return Latency; 4534 } 4535 4536 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4537 SDNode *Node) const { 4538 if (!Node->isMachineOpcode()) 4539 return 1; 4540 4541 if (!ItinData || ItinData->isEmpty()) 4542 return 1; 4543 4544 unsigned Opcode = Node->getMachineOpcode(); 4545 switch (Opcode) { 4546 default: 4547 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4548 case ARM::VLDMQIA: 4549 case ARM::VSTMQIA: 4550 return 2; 4551 } 4552 } 4553 4554 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4555 const MachineRegisterInfo *MRI, 4556 const MachineInstr &DefMI, 4557 unsigned DefIdx, 4558 const MachineInstr &UseMI, 4559 unsigned UseIdx) const { 4560 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4561 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4562 if (Subtarget.nonpipelinedVFP() && 4563 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4564 return true; 4565 4566 // Hoist VFP / NEON instructions with 4 or higher latency. 4567 unsigned Latency = 4568 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4569 if (Latency <= 3) 4570 return false; 4571 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4572 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4573 } 4574 4575 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4576 const MachineInstr &DefMI, 4577 unsigned DefIdx) const { 4578 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4579 if (!ItinData || ItinData->isEmpty()) 4580 return false; 4581 4582 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4583 if (DDomain == ARMII::DomainGeneral) { 4584 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4585 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4586 return (DefCycle != -1 && DefCycle <= 2); 4587 } 4588 return false; 4589 } 4590 4591 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4592 StringRef &ErrInfo) const { 4593 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4594 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4595 return false; 4596 } 4597 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4598 // Make sure we don't generate a lo-lo mov that isn't supported. 4599 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4600 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4601 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4602 return false; 4603 } 4604 } 4605 if (MI.getOpcode() == ARM::tPUSH || 4606 MI.getOpcode() == ARM::tPOP || 4607 MI.getOpcode() == ARM::tPOP_RET) { 4608 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) { 4609 if (MI.getOperand(i).isImplicit() || 4610 !MI.getOperand(i).isReg()) 4611 continue; 4612 unsigned Reg = MI.getOperand(i).getReg(); 4613 if (Reg < ARM::R0 || Reg > ARM::R7) { 4614 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4615 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4616 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4617 return false; 4618 } 4619 } 4620 } 4621 } 4622 return true; 4623 } 4624 4625 // LoadStackGuard has so far only been implemented for MachO. Different code 4626 // sequence is needed for other targets. 4627 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4628 unsigned LoadImmOpc, 4629 unsigned LoadOpc) const { 4630 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4631 "ROPI/RWPI not currently supported with stack guard"); 4632 4633 MachineBasicBlock &MBB = *MI->getParent(); 4634 DebugLoc DL = MI->getDebugLoc(); 4635 unsigned Reg = MI->getOperand(0).getReg(); 4636 const GlobalValue *GV = 4637 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4638 MachineInstrBuilder MIB; 4639 4640 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4641 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4642 4643 if (Subtarget.isGVIndirectSymbol(GV)) { 4644 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4645 MIB.addReg(Reg, RegState::Kill).addImm(0); 4646 auto Flags = MachineMemOperand::MOLoad | 4647 MachineMemOperand::MODereferenceable | 4648 MachineMemOperand::MOInvariant; 4649 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4650 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4); 4651 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4652 } 4653 4654 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4655 MIB.addReg(Reg, RegState::Kill) 4656 .addImm(0) 4657 .cloneMemRefs(*MI) 4658 .add(predOps(ARMCC::AL)); 4659 } 4660 4661 bool 4662 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4663 unsigned &AddSubOpc, 4664 bool &NegAcc, bool &HasLane) const { 4665 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4666 if (I == MLxEntryMap.end()) 4667 return false; 4668 4669 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4670 MulOpc = Entry.MulOpc; 4671 AddSubOpc = Entry.AddSubOpc; 4672 NegAcc = Entry.NegAcc; 4673 HasLane = Entry.HasLane; 4674 return true; 4675 } 4676 4677 //===----------------------------------------------------------------------===// 4678 // Execution domains. 4679 //===----------------------------------------------------------------------===// 4680 // 4681 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4682 // and some can go down both. The vmov instructions go down the VFP pipeline, 4683 // but they can be changed to vorr equivalents that are executed by the NEON 4684 // pipeline. 4685 // 4686 // We use the following execution domain numbering: 4687 // 4688 enum ARMExeDomain { 4689 ExeGeneric = 0, 4690 ExeVFP = 1, 4691 ExeNEON = 2 4692 }; 4693 4694 // 4695 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4696 // 4697 std::pair<uint16_t, uint16_t> 4698 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4699 // If we don't have access to NEON instructions then we won't be able 4700 // to swizzle anything to the NEON domain. Check to make sure. 4701 if (Subtarget.hasNEON()) { 4702 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4703 // if they are not predicated. 4704 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4705 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4706 4707 // CortexA9 is particularly picky about mixing the two and wants these 4708 // converted. 4709 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4710 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4711 MI.getOpcode() == ARM::VMOVS)) 4712 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4713 } 4714 // No other instructions can be swizzled, so just determine their domain. 4715 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4716 4717 if (Domain & ARMII::DomainNEON) 4718 return std::make_pair(ExeNEON, 0); 4719 4720 // Certain instructions can go either way on Cortex-A8. 4721 // Treat them as NEON instructions. 4722 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4723 return std::make_pair(ExeNEON, 0); 4724 4725 if (Domain & ARMII::DomainVFP) 4726 return std::make_pair(ExeVFP, 0); 4727 4728 return std::make_pair(ExeGeneric, 0); 4729 } 4730 4731 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4732 unsigned SReg, unsigned &Lane) { 4733 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4734 Lane = 0; 4735 4736 if (DReg != ARM::NoRegister) 4737 return DReg; 4738 4739 Lane = 1; 4740 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4741 4742 assert(DReg && "S-register with no D super-register?"); 4743 return DReg; 4744 } 4745 4746 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4747 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4748 /// zero if no register needs to be defined as implicit-use. 4749 /// 4750 /// If the function cannot determine if an SPR should be marked implicit use or 4751 /// not, it returns false. 4752 /// 4753 /// This function handles cases where an instruction is being modified from taking 4754 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4755 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4756 /// lane of the DPR). 4757 /// 4758 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4759 /// (including the case where the DPR itself is defined), it should not. 4760 /// 4761 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4762 MachineInstr &MI, unsigned DReg, 4763 unsigned Lane, unsigned &ImplicitSReg) { 4764 // If the DPR is defined or used already, the other SPR lane will be chained 4765 // correctly, so there is nothing to be done. 4766 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4767 ImplicitSReg = 0; 4768 return true; 4769 } 4770 4771 // Otherwise we need to go searching to see if the SPR is set explicitly. 4772 ImplicitSReg = TRI->getSubReg(DReg, 4773 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4774 MachineBasicBlock::LivenessQueryResult LQR = 4775 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4776 4777 if (LQR == MachineBasicBlock::LQR_Live) 4778 return true; 4779 else if (LQR == MachineBasicBlock::LQR_Unknown) 4780 return false; 4781 4782 // If the register is known not to be live, there is no need to add an 4783 // implicit-use. 4784 ImplicitSReg = 0; 4785 return true; 4786 } 4787 4788 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 4789 unsigned Domain) const { 4790 unsigned DstReg, SrcReg, DReg; 4791 unsigned Lane; 4792 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4793 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4794 switch (MI.getOpcode()) { 4795 default: 4796 llvm_unreachable("cannot handle opcode!"); 4797 break; 4798 case ARM::VMOVD: 4799 if (Domain != ExeNEON) 4800 break; 4801 4802 // Zap the predicate operands. 4803 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 4804 4805 // Make sure we've got NEON instructions. 4806 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 4807 4808 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 4809 DstReg = MI.getOperand(0).getReg(); 4810 SrcReg = MI.getOperand(1).getReg(); 4811 4812 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4813 MI.RemoveOperand(i - 1); 4814 4815 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 4816 MI.setDesc(get(ARM::VORRd)); 4817 MIB.addReg(DstReg, RegState::Define) 4818 .addReg(SrcReg) 4819 .addReg(SrcReg) 4820 .add(predOps(ARMCC::AL)); 4821 break; 4822 case ARM::VMOVRS: 4823 if (Domain != ExeNEON) 4824 break; 4825 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 4826 4827 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 4828 DstReg = MI.getOperand(0).getReg(); 4829 SrcReg = MI.getOperand(1).getReg(); 4830 4831 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4832 MI.RemoveOperand(i - 1); 4833 4834 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 4835 4836 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 4837 // Note that DSrc has been widened and the other lane may be undef, which 4838 // contaminates the entire register. 4839 MI.setDesc(get(ARM::VGETLNi32)); 4840 MIB.addReg(DstReg, RegState::Define) 4841 .addReg(DReg, RegState::Undef) 4842 .addImm(Lane) 4843 .add(predOps(ARMCC::AL)); 4844 4845 // The old source should be an implicit use, otherwise we might think it 4846 // was dead before here. 4847 MIB.addReg(SrcReg, RegState::Implicit); 4848 break; 4849 case ARM::VMOVSR: { 4850 if (Domain != ExeNEON) 4851 break; 4852 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 4853 4854 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 4855 DstReg = MI.getOperand(0).getReg(); 4856 SrcReg = MI.getOperand(1).getReg(); 4857 4858 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 4859 4860 unsigned ImplicitSReg; 4861 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 4862 break; 4863 4864 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4865 MI.RemoveOperand(i - 1); 4866 4867 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 4868 // Again DDst may be undefined at the beginning of this instruction. 4869 MI.setDesc(get(ARM::VSETLNi32)); 4870 MIB.addReg(DReg, RegState::Define) 4871 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 4872 .addReg(SrcReg) 4873 .addImm(Lane) 4874 .add(predOps(ARMCC::AL)); 4875 4876 // The narrower destination must be marked as set to keep previous chains 4877 // in place. 4878 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4879 if (ImplicitSReg != 0) 4880 MIB.addReg(ImplicitSReg, RegState::Implicit); 4881 break; 4882 } 4883 case ARM::VMOVS: { 4884 if (Domain != ExeNEON) 4885 break; 4886 4887 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 4888 DstReg = MI.getOperand(0).getReg(); 4889 SrcReg = MI.getOperand(1).getReg(); 4890 4891 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 4892 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 4893 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 4894 4895 unsigned ImplicitSReg; 4896 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 4897 break; 4898 4899 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4900 MI.RemoveOperand(i - 1); 4901 4902 if (DSrc == DDst) { 4903 // Destination can be: 4904 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 4905 MI.setDesc(get(ARM::VDUPLN32d)); 4906 MIB.addReg(DDst, RegState::Define) 4907 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 4908 .addImm(SrcLane) 4909 .add(predOps(ARMCC::AL)); 4910 4911 // Neither the source or the destination are naturally represented any 4912 // more, so add them in manually. 4913 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 4914 MIB.addReg(SrcReg, RegState::Implicit); 4915 if (ImplicitSReg != 0) 4916 MIB.addReg(ImplicitSReg, RegState::Implicit); 4917 break; 4918 } 4919 4920 // In general there's no single instruction that can perform an S <-> S 4921 // move in NEON space, but a pair of VEXT instructions *can* do the 4922 // job. It turns out that the VEXTs needed will only use DSrc once, with 4923 // the position based purely on the combination of lane-0 and lane-1 4924 // involved. For example 4925 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 4926 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 4927 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 4928 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 4929 // 4930 // Pattern of the MachineInstrs is: 4931 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 4932 MachineInstrBuilder NewMIB; 4933 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 4934 DDst); 4935 4936 // On the first instruction, both DSrc and DDst may be undef if present. 4937 // Specifically when the original instruction didn't have them as an 4938 // <imp-use>. 4939 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 4940 bool CurUndef = !MI.readsRegister(CurReg, TRI); 4941 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 4942 4943 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 4944 CurUndef = !MI.readsRegister(CurReg, TRI); 4945 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 4946 .addImm(1) 4947 .add(predOps(ARMCC::AL)); 4948 4949 if (SrcLane == DstLane) 4950 NewMIB.addReg(SrcReg, RegState::Implicit); 4951 4952 MI.setDesc(get(ARM::VEXTd32)); 4953 MIB.addReg(DDst, RegState::Define); 4954 4955 // On the second instruction, DDst has definitely been defined above, so 4956 // it is not undef. DSrc, if present, can be undef as above. 4957 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 4958 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 4959 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 4960 4961 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 4962 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 4963 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 4964 .addImm(1) 4965 .add(predOps(ARMCC::AL)); 4966 4967 if (SrcLane != DstLane) 4968 MIB.addReg(SrcReg, RegState::Implicit); 4969 4970 // As before, the original destination is no longer represented, add it 4971 // implicitly. 4972 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4973 if (ImplicitSReg != 0) 4974 MIB.addReg(ImplicitSReg, RegState::Implicit); 4975 break; 4976 } 4977 } 4978 } 4979 4980 //===----------------------------------------------------------------------===// 4981 // Partial register updates 4982 //===----------------------------------------------------------------------===// 4983 // 4984 // Swift renames NEON registers with 64-bit granularity. That means any 4985 // instruction writing an S-reg implicitly reads the containing D-reg. The 4986 // problem is mostly avoided by translating f32 operations to v2f32 operations 4987 // on D-registers, but f32 loads are still a problem. 4988 // 4989 // These instructions can load an f32 into a NEON register: 4990 // 4991 // VLDRS - Only writes S, partial D update. 4992 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 4993 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 4994 // 4995 // FCONSTD can be used as a dependency-breaking instruction. 4996 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 4997 const MachineInstr &MI, unsigned OpNum, 4998 const TargetRegisterInfo *TRI) const { 4999 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5000 if (!PartialUpdateClearance) 5001 return 0; 5002 5003 assert(TRI && "Need TRI instance"); 5004 5005 const MachineOperand &MO = MI.getOperand(OpNum); 5006 if (MO.readsReg()) 5007 return 0; 5008 unsigned Reg = MO.getReg(); 5009 int UseOp = -1; 5010 5011 switch (MI.getOpcode()) { 5012 // Normal instructions writing only an S-register. 5013 case ARM::VLDRS: 5014 case ARM::FCONSTS: 5015 case ARM::VMOVSR: 5016 case ARM::VMOVv8i8: 5017 case ARM::VMOVv4i16: 5018 case ARM::VMOVv2i32: 5019 case ARM::VMOVv2f32: 5020 case ARM::VMOVv1i64: 5021 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5022 break; 5023 5024 // Explicitly reads the dependency. 5025 case ARM::VLD1LNd32: 5026 UseOp = 3; 5027 break; 5028 default: 5029 return 0; 5030 } 5031 5032 // If this instruction actually reads a value from Reg, there is no unwanted 5033 // dependency. 5034 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5035 return 0; 5036 5037 // We must be able to clobber the whole D-reg. 5038 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 5039 // Virtual register must be a def undef foo:ssub_0 operand. 5040 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5041 return 0; 5042 } else if (ARM::SPRRegClass.contains(Reg)) { 5043 // Physical register: MI must define the full D-reg. 5044 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5045 &ARM::DPRRegClass); 5046 if (!DReg || !MI.definesRegister(DReg, TRI)) 5047 return 0; 5048 } 5049 5050 // MI has an unwanted D-register dependency. 5051 // Avoid defs in the previous N instructrions. 5052 return PartialUpdateClearance; 5053 } 5054 5055 // Break a partial register dependency after getPartialRegUpdateClearance 5056 // returned non-zero. 5057 void ARMBaseInstrInfo::breakPartialRegDependency( 5058 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5059 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5060 assert(TRI && "Need TRI instance"); 5061 5062 const MachineOperand &MO = MI.getOperand(OpNum); 5063 unsigned Reg = MO.getReg(); 5064 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 5065 "Can't break virtual register dependencies."); 5066 unsigned DReg = Reg; 5067 5068 // If MI defines an S-reg, find the corresponding D super-register. 5069 if (ARM::SPRRegClass.contains(Reg)) { 5070 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5071 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5072 } 5073 5074 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5075 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5076 5077 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5078 // the full D-register by loading the same value to both lanes. The 5079 // instruction is micro-coded with 2 uops, so don't do this until we can 5080 // properly schedule micro-coded instructions. The dispatcher stalls cause 5081 // too big regressions. 5082 5083 // Insert the dependency-breaking FCONSTD before MI. 5084 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5085 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5086 .addImm(96) 5087 .add(predOps(ARMCC::AL)); 5088 MI.addRegisterKilled(DReg, TRI, true); 5089 } 5090 5091 bool ARMBaseInstrInfo::hasNOP() const { 5092 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5093 } 5094 5095 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5096 if (MI->getNumOperands() < 4) 5097 return true; 5098 unsigned ShOpVal = MI->getOperand(3).getImm(); 5099 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5100 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5101 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5102 ((ShImm == 1 || ShImm == 2) && 5103 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5104 return true; 5105 5106 return false; 5107 } 5108 5109 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5110 const MachineInstr &MI, unsigned DefIdx, 5111 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5112 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5113 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5114 5115 switch (MI.getOpcode()) { 5116 case ARM::VMOVDRR: 5117 // dX = VMOVDRR rY, rZ 5118 // is the same as: 5119 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5120 // Populate the InputRegs accordingly. 5121 // rY 5122 const MachineOperand *MOReg = &MI.getOperand(1); 5123 if (!MOReg->isUndef()) 5124 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5125 MOReg->getSubReg(), ARM::ssub_0)); 5126 // rZ 5127 MOReg = &MI.getOperand(2); 5128 if (!MOReg->isUndef()) 5129 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5130 MOReg->getSubReg(), ARM::ssub_1)); 5131 return true; 5132 } 5133 llvm_unreachable("Target dependent opcode missing"); 5134 } 5135 5136 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5137 const MachineInstr &MI, unsigned DefIdx, 5138 RegSubRegPairAndIdx &InputReg) const { 5139 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5140 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5141 5142 switch (MI.getOpcode()) { 5143 case ARM::VMOVRRD: 5144 // rX, rY = VMOVRRD dZ 5145 // is the same as: 5146 // rX = EXTRACT_SUBREG dZ, ssub_0 5147 // rY = EXTRACT_SUBREG dZ, ssub_1 5148 const MachineOperand &MOReg = MI.getOperand(2); 5149 if (MOReg.isUndef()) 5150 return false; 5151 InputReg.Reg = MOReg.getReg(); 5152 InputReg.SubReg = MOReg.getSubReg(); 5153 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5154 return true; 5155 } 5156 llvm_unreachable("Target dependent opcode missing"); 5157 } 5158 5159 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5160 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5161 RegSubRegPairAndIdx &InsertedReg) const { 5162 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5163 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5164 5165 switch (MI.getOpcode()) { 5166 case ARM::VSETLNi32: 5167 // dX = VSETLNi32 dY, rZ, imm 5168 const MachineOperand &MOBaseReg = MI.getOperand(1); 5169 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5170 if (MOInsertedReg.isUndef()) 5171 return false; 5172 const MachineOperand &MOIndex = MI.getOperand(3); 5173 BaseReg.Reg = MOBaseReg.getReg(); 5174 BaseReg.SubReg = MOBaseReg.getSubReg(); 5175 5176 InsertedReg.Reg = MOInsertedReg.getReg(); 5177 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5178 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 5179 return true; 5180 } 5181 llvm_unreachable("Target dependent opcode missing"); 5182 } 5183 5184 std::pair<unsigned, unsigned> 5185 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5186 const unsigned Mask = ARMII::MO_OPTION_MASK; 5187 return std::make_pair(TF & Mask, TF & ~Mask); 5188 } 5189 5190 ArrayRef<std::pair<unsigned, const char *>> 5191 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5192 using namespace ARMII; 5193 5194 static const std::pair<unsigned, const char *> TargetFlags[] = { 5195 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5196 return makeArrayRef(TargetFlags); 5197 } 5198 5199 ArrayRef<std::pair<unsigned, const char *>> 5200 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5201 using namespace ARMII; 5202 5203 static const std::pair<unsigned, const char *> TargetFlags[] = { 5204 {MO_COFFSTUB, "arm-coffstub"}, 5205 {MO_GOT, "arm-got"}, 5206 {MO_SBREL, "arm-sbrel"}, 5207 {MO_DLLIMPORT, "arm-dllimport"}, 5208 {MO_SECREL, "arm-secrel"}, 5209 {MO_NONLAZY, "arm-nonlazy"}}; 5210 return makeArrayRef(TargetFlags); 5211 } 5212 5213 bool llvm::registerDefinedBetween(unsigned Reg, 5214 MachineBasicBlock::iterator From, 5215 MachineBasicBlock::iterator To, 5216 const TargetRegisterInfo *TRI) { 5217 for (auto I = From; I != To; ++I) 5218 if (I->modifiesRegister(Reg, TRI)) 5219 return true; 5220 return false; 5221 } 5222 5223 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5224 const TargetRegisterInfo *TRI) { 5225 // Search backwards to the instruction that defines CSPR. This may or not 5226 // be a CMP, we check that after this loop. If we find another instruction 5227 // that reads cpsr, we return nullptr. 5228 MachineBasicBlock::iterator CmpMI = Br; 5229 while (CmpMI != Br->getParent()->begin()) { 5230 --CmpMI; 5231 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5232 break; 5233 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5234 break; 5235 } 5236 5237 // Check that this inst is a CMP r[0-7], #0 and that the register 5238 // is not redefined between the cmp and the br. 5239 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5240 return nullptr; 5241 unsigned Reg = CmpMI->getOperand(0).getReg(); 5242 unsigned PredReg = 0; 5243 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5244 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5245 return nullptr; 5246 if (!isARMLowRegister(Reg)) 5247 return nullptr; 5248 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5249 return nullptr; 5250 5251 return &*CmpMI; 5252 } 5253