1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/MachineScheduler.h"
40 #include "llvm/CodeGen/MultiHazardRecognizer.h"
41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSchedule.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <new>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "arm-instrinfo"
73 
74 #define GET_INSTRINFO_CTOR_DTOR
75 #include "ARMGenInstrInfo.inc"
76 
77 static cl::opt<bool>
78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
79                cl::desc("Enable ARM 2-addr to 3-addr conv"));
80 
81 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
82 struct ARM_MLxEntry {
83   uint16_t MLxOpc;     // MLA / MLS opcode
84   uint16_t MulOpc;     // Expanded multiplication opcode
85   uint16_t AddSubOpc;  // Expanded add / sub opcode
86   bool NegAcc;         // True if the acc is negated before the add / sub.
87   bool HasLane;        // True if instruction has an extra "lane" operand.
88 };
89 
90 static const ARM_MLxEntry ARM_MLxTable[] = {
91   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
92   // fp scalar ops
93   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
94   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
95   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
96   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
97   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
98   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
99   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
100   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
101 
102   // fp SIMD ops
103   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
104   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
105   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
106   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
107   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
108   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
109   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
110   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
111 };
112 
113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
114   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
115     Subtarget(STI) {
116   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
117     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
118       llvm_unreachable("Duplicated entries?");
119     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
120     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
121   }
122 }
123 
124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
125 // currently defaults to no prepass hazard recognizer.
126 ScheduleHazardRecognizer *
127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
128                                                const ScheduleDAG *DAG) const {
129   if (usePreRAHazardRecognizer()) {
130     const InstrItineraryData *II =
131         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
132     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
133   }
134   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
135 }
136 
137 // Called during:
138 // - pre-RA scheduling
139 // - post-RA scheduling when FeatureUseMISched is set
140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
141     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
142   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
143 
144   // We would like to restrict this hazard recognizer to only
145   // post-RA scheduling; we can tell that we're post-RA because we don't
146   // track VRegLiveness.
147   // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
148   //            banks banked on bit 2.  Assume that TCMs are in use.
149   if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
150     MHR->AddHazardRecognizer(
151         std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
152 
153   // Not inserting ARMHazardRecognizerFPMLx because that would change
154   // legacy behavior
155 
156   auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
157   MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
158   return MHR;
159 }
160 
161 // Called during post-RA scheduling when FeatureUseMISched is not set
162 ScheduleHazardRecognizer *ARMBaseInstrInfo::
163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
164                                    const ScheduleDAG *DAG) const {
165   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
166 
167   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
168     MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
169 
170   auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
171   if (BHR)
172     MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
173   return MHR;
174 }
175 
176 MachineInstr *
177 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
178                                         LiveIntervals *LIS) const {
179   // FIXME: Thumb2 support.
180 
181   if (!EnableARM3Addr)
182     return nullptr;
183 
184   MachineFunction &MF = *MI.getParent()->getParent();
185   uint64_t TSFlags = MI.getDesc().TSFlags;
186   bool isPre = false;
187   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
188   default: return nullptr;
189   case ARMII::IndexModePre:
190     isPre = true;
191     break;
192   case ARMII::IndexModePost:
193     break;
194   }
195 
196   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
197   // operation.
198   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
199   if (MemOpc == 0)
200     return nullptr;
201 
202   MachineInstr *UpdateMI = nullptr;
203   MachineInstr *MemMI = nullptr;
204   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
205   const MCInstrDesc &MCID = MI.getDesc();
206   unsigned NumOps = MCID.getNumOperands();
207   bool isLoad = !MI.mayStore();
208   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
209   const MachineOperand &Base = MI.getOperand(2);
210   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
211   Register WBReg = WB.getReg();
212   Register BaseReg = Base.getReg();
213   Register OffReg = Offset.getReg();
214   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
215   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
216   switch (AddrMode) {
217   default: llvm_unreachable("Unknown indexed op!");
218   case ARMII::AddrMode2: {
219     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
220     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
221     if (OffReg == 0) {
222       if (ARM_AM::getSOImmVal(Amt) == -1)
223         // Can't encode it in a so_imm operand. This transformation will
224         // add more than 1 instruction. Abandon!
225         return nullptr;
226       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
227                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
228                      .addReg(BaseReg)
229                      .addImm(Amt)
230                      .add(predOps(Pred))
231                      .add(condCodeOp());
232     } else if (Amt != 0) {
233       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
234       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
235       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
236                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
237                      .addReg(BaseReg)
238                      .addReg(OffReg)
239                      .addReg(0)
240                      .addImm(SOOpc)
241                      .add(predOps(Pred))
242                      .add(condCodeOp());
243     } else
244       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
245                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
246                      .addReg(BaseReg)
247                      .addReg(OffReg)
248                      .add(predOps(Pred))
249                      .add(condCodeOp());
250     break;
251   }
252   case ARMII::AddrMode3 : {
253     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
254     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
255     if (OffReg == 0)
256       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
257       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
258                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
259                      .addReg(BaseReg)
260                      .addImm(Amt)
261                      .add(predOps(Pred))
262                      .add(condCodeOp());
263     else
264       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
265                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
266                      .addReg(BaseReg)
267                      .addReg(OffReg)
268                      .add(predOps(Pred))
269                      .add(condCodeOp());
270     break;
271   }
272   }
273 
274   std::vector<MachineInstr*> NewMIs;
275   if (isPre) {
276     if (isLoad)
277       MemMI =
278           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
279               .addReg(WBReg)
280               .addImm(0)
281               .addImm(Pred);
282     else
283       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
284                   .addReg(MI.getOperand(1).getReg())
285                   .addReg(WBReg)
286                   .addReg(0)
287                   .addImm(0)
288                   .addImm(Pred);
289     NewMIs.push_back(MemMI);
290     NewMIs.push_back(UpdateMI);
291   } else {
292     if (isLoad)
293       MemMI =
294           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
295               .addReg(BaseReg)
296               .addImm(0)
297               .addImm(Pred);
298     else
299       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
300                   .addReg(MI.getOperand(1).getReg())
301                   .addReg(BaseReg)
302                   .addReg(0)
303                   .addImm(0)
304                   .addImm(Pred);
305     if (WB.isDead())
306       UpdateMI->getOperand(0).setIsDead();
307     NewMIs.push_back(UpdateMI);
308     NewMIs.push_back(MemMI);
309   }
310 
311   // Transfer LiveVariables states, kill / dead info.
312   if (LV) {
313     for (const MachineOperand &MO : MI.operands()) {
314       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
315         Register Reg = MO.getReg();
316 
317         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
318         if (MO.isDef()) {
319           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
320           if (MO.isDead())
321             LV->addVirtualRegisterDead(Reg, *NewMI);
322         }
323         if (MO.isUse() && MO.isKill()) {
324           for (unsigned j = 0; j < 2; ++j) {
325             // Look at the two new MI's in reverse order.
326             MachineInstr *NewMI = NewMIs[j];
327             if (!NewMI->readsRegister(Reg))
328               continue;
329             LV->addVirtualRegisterKilled(Reg, *NewMI);
330             if (VI.removeKill(MI))
331               VI.Kills.push_back(NewMI);
332             break;
333           }
334         }
335       }
336     }
337   }
338 
339   MachineBasicBlock &MBB = *MI.getParent();
340   MBB.insert(MI, NewMIs[1]);
341   MBB.insert(MI, NewMIs[0]);
342   return NewMIs[0];
343 }
344 
345 // Branch analysis.
346 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
347                                      MachineBasicBlock *&TBB,
348                                      MachineBasicBlock *&FBB,
349                                      SmallVectorImpl<MachineOperand> &Cond,
350                                      bool AllowModify) const {
351   TBB = nullptr;
352   FBB = nullptr;
353 
354   MachineBasicBlock::instr_iterator I = MBB.instr_end();
355   if (I == MBB.instr_begin())
356     return false; // Empty blocks are easy.
357   --I;
358 
359   // Walk backwards from the end of the basic block until the branch is
360   // analyzed or we give up.
361   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
362     // Flag to be raised on unanalyzeable instructions. This is useful in cases
363     // where we want to clean up on the end of the basic block before we bail
364     // out.
365     bool CantAnalyze = false;
366 
367     // Skip over DEBUG values, predicated nonterminators and speculation
368     // barrier terminators.
369     while (I->isDebugInstr() || !I->isTerminator() ||
370            isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
371            I->getOpcode() == ARM::t2DoLoopStartTP){
372       if (I == MBB.instr_begin())
373         return false;
374       --I;
375     }
376 
377     if (isIndirectBranchOpcode(I->getOpcode()) ||
378         isJumpTableBranchOpcode(I->getOpcode())) {
379       // Indirect branches and jump tables can't be analyzed, but we still want
380       // to clean up any instructions at the tail of the basic block.
381       CantAnalyze = true;
382     } else if (isUncondBranchOpcode(I->getOpcode())) {
383       TBB = I->getOperand(0).getMBB();
384     } else if (isCondBranchOpcode(I->getOpcode())) {
385       // Bail out if we encounter multiple conditional branches.
386       if (!Cond.empty())
387         return true;
388 
389       assert(!FBB && "FBB should have been null.");
390       FBB = TBB;
391       TBB = I->getOperand(0).getMBB();
392       Cond.push_back(I->getOperand(1));
393       Cond.push_back(I->getOperand(2));
394     } else if (I->isReturn()) {
395       // Returns can't be analyzed, but we should run cleanup.
396       CantAnalyze = true;
397     } else {
398       // We encountered other unrecognized terminator. Bail out immediately.
399       return true;
400     }
401 
402     // Cleanup code - to be run for unpredicated unconditional branches and
403     //                returns.
404     if (!isPredicated(*I) &&
405           (isUncondBranchOpcode(I->getOpcode()) ||
406            isIndirectBranchOpcode(I->getOpcode()) ||
407            isJumpTableBranchOpcode(I->getOpcode()) ||
408            I->isReturn())) {
409       // Forget any previous condition branch information - it no longer applies.
410       Cond.clear();
411       FBB = nullptr;
412 
413       // If we can modify the function, delete everything below this
414       // unconditional branch.
415       if (AllowModify) {
416         MachineBasicBlock::iterator DI = std::next(I);
417         while (DI != MBB.instr_end()) {
418           MachineInstr &InstToDelete = *DI;
419           ++DI;
420           // Speculation barriers must not be deleted.
421           if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
422             continue;
423           InstToDelete.eraseFromParent();
424         }
425       }
426     }
427 
428     if (CantAnalyze) {
429       // We may not be able to analyze the block, but we could still have
430       // an unconditional branch as the last instruction in the block, which
431       // just branches to layout successor. If this is the case, then just
432       // remove it if we're allowed to make modifications.
433       if (AllowModify && !isPredicated(MBB.back()) &&
434           isUncondBranchOpcode(MBB.back().getOpcode()) &&
435           TBB && MBB.isLayoutSuccessor(TBB))
436         removeBranch(MBB);
437       return true;
438     }
439 
440     if (I == MBB.instr_begin())
441       return false;
442 
443     --I;
444   }
445 
446   // We made it past the terminators without bailing out - we must have
447   // analyzed this branch successfully.
448   return false;
449 }
450 
451 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
452                                         int *BytesRemoved) const {
453   assert(!BytesRemoved && "code size not handled");
454 
455   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
456   if (I == MBB.end())
457     return 0;
458 
459   if (!isUncondBranchOpcode(I->getOpcode()) &&
460       !isCondBranchOpcode(I->getOpcode()))
461     return 0;
462 
463   // Remove the branch.
464   I->eraseFromParent();
465 
466   I = MBB.end();
467 
468   if (I == MBB.begin()) return 1;
469   --I;
470   if (!isCondBranchOpcode(I->getOpcode()))
471     return 1;
472 
473   // Remove the branch.
474   I->eraseFromParent();
475   return 2;
476 }
477 
478 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
479                                         MachineBasicBlock *TBB,
480                                         MachineBasicBlock *FBB,
481                                         ArrayRef<MachineOperand> Cond,
482                                         const DebugLoc &DL,
483                                         int *BytesAdded) const {
484   assert(!BytesAdded && "code size not handled");
485   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
486   int BOpc   = !AFI->isThumbFunction()
487     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
488   int BccOpc = !AFI->isThumbFunction()
489     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
490   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
491 
492   // Shouldn't be a fall through.
493   assert(TBB && "insertBranch must not be told to insert a fallthrough");
494   assert((Cond.size() == 2 || Cond.size() == 0) &&
495          "ARM branch conditions have two components!");
496 
497   // For conditional branches, we use addOperand to preserve CPSR flags.
498 
499   if (!FBB) {
500     if (Cond.empty()) { // Unconditional branch?
501       if (isThumb)
502         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
503       else
504         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
505     } else
506       BuildMI(&MBB, DL, get(BccOpc))
507           .addMBB(TBB)
508           .addImm(Cond[0].getImm())
509           .add(Cond[1]);
510     return 1;
511   }
512 
513   // Two-way conditional branch.
514   BuildMI(&MBB, DL, get(BccOpc))
515       .addMBB(TBB)
516       .addImm(Cond[0].getImm())
517       .add(Cond[1]);
518   if (isThumb)
519     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
520   else
521     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
522   return 2;
523 }
524 
525 bool ARMBaseInstrInfo::
526 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
527   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
528   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
529   return false;
530 }
531 
532 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
533   if (MI.isBundle()) {
534     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
535     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
536     while (++I != E && I->isInsideBundle()) {
537       int PIdx = I->findFirstPredOperandIdx();
538       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
539         return true;
540     }
541     return false;
542   }
543 
544   int PIdx = MI.findFirstPredOperandIdx();
545   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
546 }
547 
548 std::string ARMBaseInstrInfo::createMIROperandComment(
549     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
550     const TargetRegisterInfo *TRI) const {
551 
552   // First, let's see if there is a generic comment for this operand
553   std::string GenericComment =
554       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
555   if (!GenericComment.empty())
556     return GenericComment;
557 
558   // If not, check if we have an immediate operand.
559   if (Op.getType() != MachineOperand::MO_Immediate)
560     return std::string();
561 
562   // And print its corresponding condition code if the immediate is a
563   // predicate.
564   int FirstPredOp = MI.findFirstPredOperandIdx();
565   if (FirstPredOp != (int) OpIdx)
566     return std::string();
567 
568   std::string CC = "CC::";
569   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
570   return CC;
571 }
572 
573 bool ARMBaseInstrInfo::PredicateInstruction(
574     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
575   unsigned Opc = MI.getOpcode();
576   if (isUncondBranchOpcode(Opc)) {
577     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
578     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
579       .addImm(Pred[0].getImm())
580       .addReg(Pred[1].getReg());
581     return true;
582   }
583 
584   int PIdx = MI.findFirstPredOperandIdx();
585   if (PIdx != -1) {
586     MachineOperand &PMO = MI.getOperand(PIdx);
587     PMO.setImm(Pred[0].getImm());
588     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
589 
590     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
591     // IT block. This affects how they are printed.
592     const MCInstrDesc &MCID = MI.getDesc();
593     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
594       assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand");
595       assert((MI.getOperand(1).isDead() ||
596               MI.getOperand(1).getReg() != ARM::CPSR) &&
597              "if conversion tried to stop defining used CPSR");
598       MI.getOperand(1).setReg(ARM::NoRegister);
599     }
600 
601     return true;
602   }
603   return false;
604 }
605 
606 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
607                                          ArrayRef<MachineOperand> Pred2) const {
608   if (Pred1.size() > 2 || Pred2.size() > 2)
609     return false;
610 
611   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
612   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
613   if (CC1 == CC2)
614     return true;
615 
616   switch (CC1) {
617   default:
618     return false;
619   case ARMCC::AL:
620     return true;
621   case ARMCC::HS:
622     return CC2 == ARMCC::HI;
623   case ARMCC::LS:
624     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
625   case ARMCC::GE:
626     return CC2 == ARMCC::GT;
627   case ARMCC::LE:
628     return CC2 == ARMCC::LT;
629   }
630 }
631 
632 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
633                                          std::vector<MachineOperand> &Pred,
634                                          bool SkipDead) const {
635   bool Found = false;
636   for (const MachineOperand &MO : MI.operands()) {
637     bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
638     bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
639     if (ClobbersCPSR || IsCPSR) {
640 
641       // Filter out T1 instructions that have a dead CPSR,
642       // allowing IT blocks to be generated containing T1 instructions
643       const MCInstrDesc &MCID = MI.getDesc();
644       if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
645           SkipDead)
646         continue;
647 
648       Pred.push_back(MO);
649       Found = true;
650     }
651   }
652 
653   return Found;
654 }
655 
656 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
657   for (const auto &MO : MI.operands())
658     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
659       return true;
660   return false;
661 }
662 
663 static bool isEligibleForITBlock(const MachineInstr *MI) {
664   switch (MI->getOpcode()) {
665   default: return true;
666   case ARM::tADC:   // ADC (register) T1
667   case ARM::tADDi3: // ADD (immediate) T1
668   case ARM::tADDi8: // ADD (immediate) T2
669   case ARM::tADDrr: // ADD (register) T1
670   case ARM::tAND:   // AND (register) T1
671   case ARM::tASRri: // ASR (immediate) T1
672   case ARM::tASRrr: // ASR (register) T1
673   case ARM::tBIC:   // BIC (register) T1
674   case ARM::tEOR:   // EOR (register) T1
675   case ARM::tLSLri: // LSL (immediate) T1
676   case ARM::tLSLrr: // LSL (register) T1
677   case ARM::tLSRri: // LSR (immediate) T1
678   case ARM::tLSRrr: // LSR (register) T1
679   case ARM::tMUL:   // MUL T1
680   case ARM::tMVN:   // MVN (register) T1
681   case ARM::tORR:   // ORR (register) T1
682   case ARM::tROR:   // ROR (register) T1
683   case ARM::tRSB:   // RSB (immediate) T1
684   case ARM::tSBC:   // SBC (register) T1
685   case ARM::tSUBi3: // SUB (immediate) T1
686   case ARM::tSUBi8: // SUB (immediate) T2
687   case ARM::tSUBrr: // SUB (register) T1
688     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
689   }
690 }
691 
692 /// isPredicable - Return true if the specified instruction can be predicated.
693 /// By default, this returns true for every instruction with a
694 /// PredicateOperand.
695 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
696   if (!MI.isPredicable())
697     return false;
698 
699   if (MI.isBundle())
700     return false;
701 
702   if (!isEligibleForITBlock(&MI))
703     return false;
704 
705   const MachineFunction *MF = MI.getParent()->getParent();
706   const ARMFunctionInfo *AFI =
707       MF->getInfo<ARMFunctionInfo>();
708 
709   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
710   // In their ARM encoding, they can't be encoded in a conditional form.
711   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
712     return false;
713 
714   // Make indirect control flow changes unpredicable when SLS mitigation is
715   // enabled.
716   const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
717   if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
718     return false;
719   if (ST.hardenSlsBlr() && isIndirectCall(MI))
720     return false;
721 
722   if (AFI->isThumb2Function()) {
723     if (getSubtarget().restrictIT())
724       return isV8EligibleForIT(&MI);
725   }
726 
727   return true;
728 }
729 
730 namespace llvm {
731 
732 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
733   for (const MachineOperand &MO : MI->operands()) {
734     if (!MO.isReg() || MO.isUndef() || MO.isUse())
735       continue;
736     if (MO.getReg() != ARM::CPSR)
737       continue;
738     if (!MO.isDead())
739       return false;
740   }
741   // all definitions of CPSR are dead
742   return true;
743 }
744 
745 } // end namespace llvm
746 
747 /// GetInstSize - Return the size of the specified MachineInstr.
748 ///
749 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
750   const MachineBasicBlock &MBB = *MI.getParent();
751   const MachineFunction *MF = MBB.getParent();
752   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
753 
754   const MCInstrDesc &MCID = MI.getDesc();
755   if (MCID.getSize())
756     return MCID.getSize();
757 
758   switch (MI.getOpcode()) {
759   default:
760     // pseudo-instruction sizes are zero.
761     return 0;
762   case TargetOpcode::BUNDLE:
763     return getInstBundleLength(MI);
764   case ARM::MOVi16_ga_pcrel:
765   case ARM::MOVTi16_ga_pcrel:
766   case ARM::t2MOVi16_ga_pcrel:
767   case ARM::t2MOVTi16_ga_pcrel:
768     return 4;
769   case ARM::MOVi32imm:
770   case ARM::t2MOVi32imm:
771     return 8;
772   case ARM::CONSTPOOL_ENTRY:
773   case ARM::JUMPTABLE_INSTS:
774   case ARM::JUMPTABLE_ADDRS:
775   case ARM::JUMPTABLE_TBB:
776   case ARM::JUMPTABLE_TBH:
777     // If this machine instr is a constant pool entry, its size is recorded as
778     // operand #2.
779     return MI.getOperand(2).getImm();
780   case ARM::Int_eh_sjlj_longjmp:
781     return 16;
782   case ARM::tInt_eh_sjlj_longjmp:
783     return 10;
784   case ARM::tInt_WIN_eh_sjlj_longjmp:
785     return 12;
786   case ARM::Int_eh_sjlj_setjmp:
787   case ARM::Int_eh_sjlj_setjmp_nofp:
788     return 20;
789   case ARM::tInt_eh_sjlj_setjmp:
790   case ARM::t2Int_eh_sjlj_setjmp:
791   case ARM::t2Int_eh_sjlj_setjmp_nofp:
792     return 12;
793   case ARM::SPACE:
794     return MI.getOperand(1).getImm();
795   case ARM::INLINEASM:
796   case ARM::INLINEASM_BR: {
797     // If this machine instr is an inline asm, measure it.
798     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
799     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
800       Size = alignTo(Size, 4);
801     return Size;
802   }
803   case ARM::SpeculationBarrierISBDSBEndBB:
804   case ARM::t2SpeculationBarrierISBDSBEndBB:
805     // This gets lowered to 2 4-byte instructions.
806     return 8;
807   case ARM::SpeculationBarrierSBEndBB:
808   case ARM::t2SpeculationBarrierSBEndBB:
809     // This gets lowered to 1 4-byte instructions.
810     return 4;
811   }
812 }
813 
814 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
815   unsigned Size = 0;
816   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
817   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
818   while (++I != E && I->isInsideBundle()) {
819     assert(!I->isBundle() && "No nested bundle!");
820     Size += getInstSizeInBytes(*I);
821   }
822   return Size;
823 }
824 
825 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
826                                     MachineBasicBlock::iterator I,
827                                     unsigned DestReg, bool KillSrc,
828                                     const ARMSubtarget &Subtarget) const {
829   unsigned Opc = Subtarget.isThumb()
830                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
831                      : ARM::MRS;
832 
833   MachineInstrBuilder MIB =
834       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
835 
836   // There is only 1 A/R class MRS instruction, and it always refers to
837   // APSR. However, there are lots of other possibilities on M-class cores.
838   if (Subtarget.isMClass())
839     MIB.addImm(0x800);
840 
841   MIB.add(predOps(ARMCC::AL))
842      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
843 }
844 
845 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
846                                   MachineBasicBlock::iterator I,
847                                   unsigned SrcReg, bool KillSrc,
848                                   const ARMSubtarget &Subtarget) const {
849   unsigned Opc = Subtarget.isThumb()
850                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
851                      : ARM::MSR;
852 
853   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
854 
855   if (Subtarget.isMClass())
856     MIB.addImm(0x800);
857   else
858     MIB.addImm(8);
859 
860   MIB.addReg(SrcReg, getKillRegState(KillSrc))
861      .add(predOps(ARMCC::AL))
862      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
863 }
864 
865 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
866   MIB.addImm(ARMVCC::None);
867   MIB.addReg(0);
868   MIB.addReg(0); // tp_reg
869 }
870 
871 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
872                                       Register DestReg) {
873   addUnpredicatedMveVpredNOp(MIB);
874   MIB.addReg(DestReg, RegState::Undef);
875 }
876 
877 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
878   MIB.addImm(Cond);
879   MIB.addReg(ARM::VPR, RegState::Implicit);
880   MIB.addReg(0); // tp_reg
881 }
882 
883 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
884                                     unsigned Cond, unsigned Inactive) {
885   addPredicatedMveVpredNOp(MIB, Cond);
886   MIB.addReg(Inactive);
887 }
888 
889 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
890                                    MachineBasicBlock::iterator I,
891                                    const DebugLoc &DL, MCRegister DestReg,
892                                    MCRegister SrcReg, bool KillSrc) const {
893   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
894   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
895 
896   if (GPRDest && GPRSrc) {
897     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
898         .addReg(SrcReg, getKillRegState(KillSrc))
899         .add(predOps(ARMCC::AL))
900         .add(condCodeOp());
901     return;
902   }
903 
904   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
905   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
906 
907   unsigned Opc = 0;
908   if (SPRDest && SPRSrc)
909     Opc = ARM::VMOVS;
910   else if (GPRDest && SPRSrc)
911     Opc = ARM::VMOVRS;
912   else if (SPRDest && GPRSrc)
913     Opc = ARM::VMOVSR;
914   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
915     Opc = ARM::VMOVD;
916   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
917     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
918 
919   if (Opc) {
920     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
921     MIB.addReg(SrcReg, getKillRegState(KillSrc));
922     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
923       MIB.addReg(SrcReg, getKillRegState(KillSrc));
924     if (Opc == ARM::MVE_VORR)
925       addUnpredicatedMveVpredROp(MIB, DestReg);
926     else if (Opc != ARM::MQPRCopy)
927       MIB.add(predOps(ARMCC::AL));
928     return;
929   }
930 
931   // Handle register classes that require multiple instructions.
932   unsigned BeginIdx = 0;
933   unsigned SubRegs = 0;
934   int Spacing = 1;
935 
936   // Use VORRq when possible.
937   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
938     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
939     BeginIdx = ARM::qsub_0;
940     SubRegs = 2;
941   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
942     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
943     BeginIdx = ARM::qsub_0;
944     SubRegs = 4;
945   // Fall back to VMOVD.
946   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
947     Opc = ARM::VMOVD;
948     BeginIdx = ARM::dsub_0;
949     SubRegs = 2;
950   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
951     Opc = ARM::VMOVD;
952     BeginIdx = ARM::dsub_0;
953     SubRegs = 3;
954   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
955     Opc = ARM::VMOVD;
956     BeginIdx = ARM::dsub_0;
957     SubRegs = 4;
958   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
959     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
960     BeginIdx = ARM::gsub_0;
961     SubRegs = 2;
962   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
963     Opc = ARM::VMOVD;
964     BeginIdx = ARM::dsub_0;
965     SubRegs = 2;
966     Spacing = 2;
967   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
968     Opc = ARM::VMOVD;
969     BeginIdx = ARM::dsub_0;
970     SubRegs = 3;
971     Spacing = 2;
972   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
973     Opc = ARM::VMOVD;
974     BeginIdx = ARM::dsub_0;
975     SubRegs = 4;
976     Spacing = 2;
977   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
978              !Subtarget.hasFP64()) {
979     Opc = ARM::VMOVS;
980     BeginIdx = ARM::ssub_0;
981     SubRegs = 2;
982   } else if (SrcReg == ARM::CPSR) {
983     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
984     return;
985   } else if (DestReg == ARM::CPSR) {
986     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
987     return;
988   } else if (DestReg == ARM::VPR) {
989     assert(ARM::GPRRegClass.contains(SrcReg));
990     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
991         .addReg(SrcReg, getKillRegState(KillSrc))
992         .add(predOps(ARMCC::AL));
993     return;
994   } else if (SrcReg == ARM::VPR) {
995     assert(ARM::GPRRegClass.contains(DestReg));
996     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
997         .addReg(SrcReg, getKillRegState(KillSrc))
998         .add(predOps(ARMCC::AL));
999     return;
1000   } else if (DestReg == ARM::FPSCR_NZCV) {
1001     assert(ARM::GPRRegClass.contains(SrcReg));
1002     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1003         .addReg(SrcReg, getKillRegState(KillSrc))
1004         .add(predOps(ARMCC::AL));
1005     return;
1006   } else if (SrcReg == ARM::FPSCR_NZCV) {
1007     assert(ARM::GPRRegClass.contains(DestReg));
1008     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1009         .addReg(SrcReg, getKillRegState(KillSrc))
1010         .add(predOps(ARMCC::AL));
1011     return;
1012   }
1013 
1014   assert(Opc && "Impossible reg-to-reg copy");
1015 
1016   const TargetRegisterInfo *TRI = &getRegisterInfo();
1017   MachineInstrBuilder Mov;
1018 
1019   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1020   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1021     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1022     Spacing = -Spacing;
1023   }
1024 #ifndef NDEBUG
1025   SmallSet<unsigned, 4> DstRegs;
1026 #endif
1027   for (unsigned i = 0; i != SubRegs; ++i) {
1028     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1029     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1030     assert(Dst && Src && "Bad sub-register");
1031 #ifndef NDEBUG
1032     assert(!DstRegs.count(Src) && "destructive vector copy");
1033     DstRegs.insert(Dst);
1034 #endif
1035     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1036     // VORR (NEON or MVE) takes two source operands.
1037     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1038       Mov.addReg(Src);
1039     }
1040     // MVE VORR takes predicate operands in place of an ordinary condition.
1041     if (Opc == ARM::MVE_VORR)
1042       addUnpredicatedMveVpredROp(Mov, Dst);
1043     else
1044       Mov = Mov.add(predOps(ARMCC::AL));
1045     // MOVr can set CC.
1046     if (Opc == ARM::MOVr)
1047       Mov = Mov.add(condCodeOp());
1048   }
1049   // Add implicit super-register defs and kills to the last instruction.
1050   Mov->addRegisterDefined(DestReg, TRI);
1051   if (KillSrc)
1052     Mov->addRegisterKilled(SrcReg, TRI);
1053 }
1054 
1055 Optional<DestSourcePair>
1056 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1057   // VMOVRRD is also a copy instruction but it requires
1058   // special way of handling. It is more complex copy version
1059   // and since that we are not considering it. For recognition
1060   // of such instruction isExtractSubregLike MI interface fuction
1061   // could be used.
1062   // VORRq is considered as a move only if two inputs are
1063   // the same register.
1064   if (!MI.isMoveReg() ||
1065       (MI.getOpcode() == ARM::VORRq &&
1066        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1067     return None;
1068   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1069 }
1070 
1071 Optional<ParamLoadedValue>
1072 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1073                                       Register Reg) const {
1074   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1075     Register DstReg = DstSrcPair->Destination->getReg();
1076 
1077     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1078     // than the copy registers. Consider for example:
1079     //
1080     //   s16 = VMOVS s0
1081     //   s17 = VMOVS s1
1082     //   call @callee(d0)
1083     //
1084     // We'd like to describe the call site value of d0 as d8, but this requires
1085     // gathering and merging the descriptions for the two VMOVS instructions.
1086     //
1087     // We also don't handle the reverse situation, where the forwarding reg is
1088     // narrower than the copy destination:
1089     //
1090     //   d8 = VMOVD d0
1091     //   call @callee(s1)
1092     //
1093     // We need to produce a fragment description (the call site value of s1 is
1094     // /not/ just d8).
1095     if (DstReg != Reg)
1096       return None;
1097   }
1098   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1099 }
1100 
1101 const MachineInstrBuilder &
1102 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1103                           unsigned SubIdx, unsigned State,
1104                           const TargetRegisterInfo *TRI) const {
1105   if (!SubIdx)
1106     return MIB.addReg(Reg, State);
1107 
1108   if (Register::isPhysicalRegister(Reg))
1109     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1110   return MIB.addReg(Reg, State, SubIdx);
1111 }
1112 
1113 void ARMBaseInstrInfo::
1114 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1115                     Register SrcReg, bool isKill, int FI,
1116                     const TargetRegisterClass *RC,
1117                     const TargetRegisterInfo *TRI) const {
1118   MachineFunction &MF = *MBB.getParent();
1119   MachineFrameInfo &MFI = MF.getFrameInfo();
1120   Align Alignment = MFI.getObjectAlign(FI);
1121 
1122   MachineMemOperand *MMO = MF.getMachineMemOperand(
1123       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1124       MFI.getObjectSize(FI), Alignment);
1125 
1126   switch (TRI->getSpillSize(*RC)) {
1127     case 2:
1128       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1129         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1130             .addReg(SrcReg, getKillRegState(isKill))
1131             .addFrameIndex(FI)
1132             .addImm(0)
1133             .addMemOperand(MMO)
1134             .add(predOps(ARMCC::AL));
1135       } else
1136         llvm_unreachable("Unknown reg class!");
1137       break;
1138     case 4:
1139       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1140         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1141             .addReg(SrcReg, getKillRegState(isKill))
1142             .addFrameIndex(FI)
1143             .addImm(0)
1144             .addMemOperand(MMO)
1145             .add(predOps(ARMCC::AL));
1146       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1147         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1148             .addReg(SrcReg, getKillRegState(isKill))
1149             .addFrameIndex(FI)
1150             .addImm(0)
1151             .addMemOperand(MMO)
1152             .add(predOps(ARMCC::AL));
1153       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1154         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1155             .addReg(SrcReg, getKillRegState(isKill))
1156             .addFrameIndex(FI)
1157             .addImm(0)
1158             .addMemOperand(MMO)
1159             .add(predOps(ARMCC::AL));
1160       } else
1161         llvm_unreachable("Unknown reg class!");
1162       break;
1163     case 8:
1164       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1165         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1166             .addReg(SrcReg, getKillRegState(isKill))
1167             .addFrameIndex(FI)
1168             .addImm(0)
1169             .addMemOperand(MMO)
1170             .add(predOps(ARMCC::AL));
1171       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1172         if (Subtarget.hasV5TEOps()) {
1173           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1174           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1175           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1176           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1177              .add(predOps(ARMCC::AL));
1178         } else {
1179           // Fallback to STM instruction, which has existed since the dawn of
1180           // time.
1181           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1182                                         .addFrameIndex(FI)
1183                                         .addMemOperand(MMO)
1184                                         .add(predOps(ARMCC::AL));
1185           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1186           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1187         }
1188       } else
1189         llvm_unreachable("Unknown reg class!");
1190       break;
1191     case 16:
1192       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1193         // Use aligned spills if the stack can be realigned.
1194         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1195           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1196               .addFrameIndex(FI)
1197               .addImm(16)
1198               .addReg(SrcReg, getKillRegState(isKill))
1199               .addMemOperand(MMO)
1200               .add(predOps(ARMCC::AL));
1201         } else {
1202           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1203               .addReg(SrcReg, getKillRegState(isKill))
1204               .addFrameIndex(FI)
1205               .addMemOperand(MMO)
1206               .add(predOps(ARMCC::AL));
1207         }
1208       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1209                  Subtarget.hasMVEIntegerOps()) {
1210         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1211         MIB.addReg(SrcReg, getKillRegState(isKill))
1212           .addFrameIndex(FI)
1213           .addImm(0)
1214           .addMemOperand(MMO);
1215         addUnpredicatedMveVpredNOp(MIB);
1216       } else
1217         llvm_unreachable("Unknown reg class!");
1218       break;
1219     case 24:
1220       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1221         // Use aligned spills if the stack can be realigned.
1222         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1223             Subtarget.hasNEON()) {
1224           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1225               .addFrameIndex(FI)
1226               .addImm(16)
1227               .addReg(SrcReg, getKillRegState(isKill))
1228               .addMemOperand(MMO)
1229               .add(predOps(ARMCC::AL));
1230         } else {
1231           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1232                                             get(ARM::VSTMDIA))
1233                                         .addFrameIndex(FI)
1234                                         .add(predOps(ARMCC::AL))
1235                                         .addMemOperand(MMO);
1236           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1237           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1238           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1239         }
1240       } else
1241         llvm_unreachable("Unknown reg class!");
1242       break;
1243     case 32:
1244       if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1245           ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1246           ARM::DQuadRegClass.hasSubClassEq(RC)) {
1247         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1248             Subtarget.hasNEON()) {
1249           // FIXME: It's possible to only store part of the QQ register if the
1250           // spilled def has a sub-register index.
1251           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1252               .addFrameIndex(FI)
1253               .addImm(16)
1254               .addReg(SrcReg, getKillRegState(isKill))
1255               .addMemOperand(MMO)
1256               .add(predOps(ARMCC::AL));
1257         } else if (Subtarget.hasMVEIntegerOps()) {
1258           BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1259               .addReg(SrcReg, getKillRegState(isKill))
1260               .addFrameIndex(FI)
1261               .addMemOperand(MMO);
1262         } else {
1263           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1264                                             get(ARM::VSTMDIA))
1265                                         .addFrameIndex(FI)
1266                                         .add(predOps(ARMCC::AL))
1267                                         .addMemOperand(MMO);
1268           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1269           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1270           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1271                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1272         }
1273       } else
1274         llvm_unreachable("Unknown reg class!");
1275       break;
1276     case 64:
1277       if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1278           Subtarget.hasMVEIntegerOps()) {
1279         BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1280             .addReg(SrcReg, getKillRegState(isKill))
1281             .addFrameIndex(FI)
1282             .addMemOperand(MMO);
1283       } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1284         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1285                                       .addFrameIndex(FI)
1286                                       .add(predOps(ARMCC::AL))
1287                                       .addMemOperand(MMO);
1288         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1289         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1290         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1291         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1292         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1293         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1294         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1295               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1296       } else
1297         llvm_unreachable("Unknown reg class!");
1298       break;
1299     default:
1300       llvm_unreachable("Unknown reg class!");
1301   }
1302 }
1303 
1304 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1305                                               int &FrameIndex) const {
1306   switch (MI.getOpcode()) {
1307   default: break;
1308   case ARM::STRrs:
1309   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1310     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1311         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1312         MI.getOperand(3).getImm() == 0) {
1313       FrameIndex = MI.getOperand(1).getIndex();
1314       return MI.getOperand(0).getReg();
1315     }
1316     break;
1317   case ARM::STRi12:
1318   case ARM::t2STRi12:
1319   case ARM::tSTRspi:
1320   case ARM::VSTRD:
1321   case ARM::VSTRS:
1322   case ARM::VSTR_P0_off:
1323   case ARM::MVE_VSTRWU32:
1324     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1325         MI.getOperand(2).getImm() == 0) {
1326       FrameIndex = MI.getOperand(1).getIndex();
1327       return MI.getOperand(0).getReg();
1328     }
1329     break;
1330   case ARM::VST1q64:
1331   case ARM::VST1d64TPseudo:
1332   case ARM::VST1d64QPseudo:
1333     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1334       FrameIndex = MI.getOperand(0).getIndex();
1335       return MI.getOperand(2).getReg();
1336     }
1337     break;
1338   case ARM::VSTMQIA:
1339     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1340       FrameIndex = MI.getOperand(1).getIndex();
1341       return MI.getOperand(0).getReg();
1342     }
1343     break;
1344   case ARM::MQQPRStore:
1345   case ARM::MQQQQPRStore:
1346     if (MI.getOperand(1).isFI()) {
1347       FrameIndex = MI.getOperand(1).getIndex();
1348       return MI.getOperand(0).getReg();
1349     }
1350     break;
1351   }
1352 
1353   return 0;
1354 }
1355 
1356 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1357                                                     int &FrameIndex) const {
1358   SmallVector<const MachineMemOperand *, 1> Accesses;
1359   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1360       Accesses.size() == 1) {
1361     FrameIndex =
1362         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1363             ->getFrameIndex();
1364     return true;
1365   }
1366   return false;
1367 }
1368 
1369 void ARMBaseInstrInfo::
1370 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1371                      Register DestReg, int FI,
1372                      const TargetRegisterClass *RC,
1373                      const TargetRegisterInfo *TRI) const {
1374   DebugLoc DL;
1375   if (I != MBB.end()) DL = I->getDebugLoc();
1376   MachineFunction &MF = *MBB.getParent();
1377   MachineFrameInfo &MFI = MF.getFrameInfo();
1378   const Align Alignment = MFI.getObjectAlign(FI);
1379   MachineMemOperand *MMO = MF.getMachineMemOperand(
1380       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1381       MFI.getObjectSize(FI), Alignment);
1382 
1383   switch (TRI->getSpillSize(*RC)) {
1384   case 2:
1385     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1386       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1387           .addFrameIndex(FI)
1388           .addImm(0)
1389           .addMemOperand(MMO)
1390           .add(predOps(ARMCC::AL));
1391     } else
1392       llvm_unreachable("Unknown reg class!");
1393     break;
1394   case 4:
1395     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1396       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1397           .addFrameIndex(FI)
1398           .addImm(0)
1399           .addMemOperand(MMO)
1400           .add(predOps(ARMCC::AL));
1401     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1402       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1403           .addFrameIndex(FI)
1404           .addImm(0)
1405           .addMemOperand(MMO)
1406           .add(predOps(ARMCC::AL));
1407     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1408       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1409           .addFrameIndex(FI)
1410           .addImm(0)
1411           .addMemOperand(MMO)
1412           .add(predOps(ARMCC::AL));
1413     } else
1414       llvm_unreachable("Unknown reg class!");
1415     break;
1416   case 8:
1417     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1418       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1419           .addFrameIndex(FI)
1420           .addImm(0)
1421           .addMemOperand(MMO)
1422           .add(predOps(ARMCC::AL));
1423     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1424       MachineInstrBuilder MIB;
1425 
1426       if (Subtarget.hasV5TEOps()) {
1427         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1428         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1429         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1430         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1431            .add(predOps(ARMCC::AL));
1432       } else {
1433         // Fallback to LDM instruction, which has existed since the dawn of
1434         // time.
1435         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1436                   .addFrameIndex(FI)
1437                   .addMemOperand(MMO)
1438                   .add(predOps(ARMCC::AL));
1439         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1440         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1441       }
1442 
1443       if (Register::isPhysicalRegister(DestReg))
1444         MIB.addReg(DestReg, RegState::ImplicitDefine);
1445     } else
1446       llvm_unreachable("Unknown reg class!");
1447     break;
1448   case 16:
1449     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1450       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1451         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1452             .addFrameIndex(FI)
1453             .addImm(16)
1454             .addMemOperand(MMO)
1455             .add(predOps(ARMCC::AL));
1456       } else {
1457         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1458             .addFrameIndex(FI)
1459             .addMemOperand(MMO)
1460             .add(predOps(ARMCC::AL));
1461       }
1462     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1463                Subtarget.hasMVEIntegerOps()) {
1464       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1465       MIB.addFrameIndex(FI)
1466         .addImm(0)
1467         .addMemOperand(MMO);
1468       addUnpredicatedMveVpredNOp(MIB);
1469     } else
1470       llvm_unreachable("Unknown reg class!");
1471     break;
1472   case 24:
1473     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1474       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1475           Subtarget.hasNEON()) {
1476         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1477             .addFrameIndex(FI)
1478             .addImm(16)
1479             .addMemOperand(MMO)
1480             .add(predOps(ARMCC::AL));
1481       } else {
1482         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1483                                       .addFrameIndex(FI)
1484                                       .addMemOperand(MMO)
1485                                       .add(predOps(ARMCC::AL));
1486         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1487         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1488         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1489         if (Register::isPhysicalRegister(DestReg))
1490           MIB.addReg(DestReg, RegState::ImplicitDefine);
1491       }
1492     } else
1493       llvm_unreachable("Unknown reg class!");
1494     break;
1495    case 32:
1496      if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1497          ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1498          ARM::DQuadRegClass.hasSubClassEq(RC)) {
1499        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1500            Subtarget.hasNEON()) {
1501          BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1502              .addFrameIndex(FI)
1503              .addImm(16)
1504              .addMemOperand(MMO)
1505              .add(predOps(ARMCC::AL));
1506        } else if (Subtarget.hasMVEIntegerOps()) {
1507          BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1508              .addFrameIndex(FI)
1509              .addMemOperand(MMO);
1510        } else {
1511          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1512                                        .addFrameIndex(FI)
1513                                        .add(predOps(ARMCC::AL))
1514                                        .addMemOperand(MMO);
1515          MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1516          MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1517          MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1518          MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1519          if (Register::isPhysicalRegister(DestReg))
1520            MIB.addReg(DestReg, RegState::ImplicitDefine);
1521        }
1522      } else
1523        llvm_unreachable("Unknown reg class!");
1524      break;
1525   case 64:
1526     if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1527         Subtarget.hasMVEIntegerOps()) {
1528       BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1529           .addFrameIndex(FI)
1530           .addMemOperand(MMO);
1531     } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1532       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1533                                     .addFrameIndex(FI)
1534                                     .add(predOps(ARMCC::AL))
1535                                     .addMemOperand(MMO);
1536       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1537       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1538       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1539       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1540       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1541       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1542       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1543       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1544       if (Register::isPhysicalRegister(DestReg))
1545         MIB.addReg(DestReg, RegState::ImplicitDefine);
1546     } else
1547       llvm_unreachable("Unknown reg class!");
1548     break;
1549   default:
1550     llvm_unreachable("Unknown regclass!");
1551   }
1552 }
1553 
1554 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1555                                                int &FrameIndex) const {
1556   switch (MI.getOpcode()) {
1557   default: break;
1558   case ARM::LDRrs:
1559   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1560     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1561         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1562         MI.getOperand(3).getImm() == 0) {
1563       FrameIndex = MI.getOperand(1).getIndex();
1564       return MI.getOperand(0).getReg();
1565     }
1566     break;
1567   case ARM::LDRi12:
1568   case ARM::t2LDRi12:
1569   case ARM::tLDRspi:
1570   case ARM::VLDRD:
1571   case ARM::VLDRS:
1572   case ARM::VLDR_P0_off:
1573   case ARM::MVE_VLDRWU32:
1574     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1575         MI.getOperand(2).getImm() == 0) {
1576       FrameIndex = MI.getOperand(1).getIndex();
1577       return MI.getOperand(0).getReg();
1578     }
1579     break;
1580   case ARM::VLD1q64:
1581   case ARM::VLD1d8TPseudo:
1582   case ARM::VLD1d16TPseudo:
1583   case ARM::VLD1d32TPseudo:
1584   case ARM::VLD1d64TPseudo:
1585   case ARM::VLD1d8QPseudo:
1586   case ARM::VLD1d16QPseudo:
1587   case ARM::VLD1d32QPseudo:
1588   case ARM::VLD1d64QPseudo:
1589     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1590       FrameIndex = MI.getOperand(1).getIndex();
1591       return MI.getOperand(0).getReg();
1592     }
1593     break;
1594   case ARM::VLDMQIA:
1595     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1596       FrameIndex = MI.getOperand(1).getIndex();
1597       return MI.getOperand(0).getReg();
1598     }
1599     break;
1600   case ARM::MQQPRLoad:
1601   case ARM::MQQQQPRLoad:
1602     if (MI.getOperand(1).isFI()) {
1603       FrameIndex = MI.getOperand(1).getIndex();
1604       return MI.getOperand(0).getReg();
1605     }
1606     break;
1607   }
1608 
1609   return 0;
1610 }
1611 
1612 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1613                                                      int &FrameIndex) const {
1614   SmallVector<const MachineMemOperand *, 1> Accesses;
1615   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1616       Accesses.size() == 1) {
1617     FrameIndex =
1618         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1619             ->getFrameIndex();
1620     return true;
1621   }
1622   return false;
1623 }
1624 
1625 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1626 /// depending on whether the result is used.
1627 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1628   bool isThumb1 = Subtarget.isThumb1Only();
1629   bool isThumb2 = Subtarget.isThumb2();
1630   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1631 
1632   DebugLoc dl = MI->getDebugLoc();
1633   MachineBasicBlock *BB = MI->getParent();
1634 
1635   MachineInstrBuilder LDM, STM;
1636   if (isThumb1 || !MI->getOperand(1).isDead()) {
1637     MachineOperand LDWb(MI->getOperand(1));
1638     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1639                                                  : isThumb1 ? ARM::tLDMIA_UPD
1640                                                             : ARM::LDMIA_UPD))
1641               .add(LDWb);
1642   } else {
1643     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1644   }
1645 
1646   if (isThumb1 || !MI->getOperand(0).isDead()) {
1647     MachineOperand STWb(MI->getOperand(0));
1648     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1649                                                  : isThumb1 ? ARM::tSTMIA_UPD
1650                                                             : ARM::STMIA_UPD))
1651               .add(STWb);
1652   } else {
1653     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1654   }
1655 
1656   MachineOperand LDBase(MI->getOperand(3));
1657   LDM.add(LDBase).add(predOps(ARMCC::AL));
1658 
1659   MachineOperand STBase(MI->getOperand(2));
1660   STM.add(STBase).add(predOps(ARMCC::AL));
1661 
1662   // Sort the scratch registers into ascending order.
1663   const TargetRegisterInfo &TRI = getRegisterInfo();
1664   SmallVector<unsigned, 6> ScratchRegs;
1665   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1666     ScratchRegs.push_back(MI->getOperand(I).getReg());
1667   llvm::sort(ScratchRegs,
1668              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1669                return TRI.getEncodingValue(Reg1) <
1670                       TRI.getEncodingValue(Reg2);
1671              });
1672 
1673   for (const auto &Reg : ScratchRegs) {
1674     LDM.addReg(Reg, RegState::Define);
1675     STM.addReg(Reg, RegState::Kill);
1676   }
1677 
1678   BB->erase(MI);
1679 }
1680 
1681 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1682   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1683     expandLoadStackGuard(MI);
1684     MI.getParent()->erase(MI);
1685     return true;
1686   }
1687 
1688   if (MI.getOpcode() == ARM::MEMCPY) {
1689     expandMEMCPY(MI);
1690     return true;
1691   }
1692 
1693   // This hook gets to expand COPY instructions before they become
1694   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1695   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1696   // changed into a VORR that can go down the NEON pipeline.
1697   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1698     return false;
1699 
1700   // Look for a copy between even S-registers.  That is where we keep floats
1701   // when using NEON v2f32 instructions for f32 arithmetic.
1702   Register DstRegS = MI.getOperand(0).getReg();
1703   Register SrcRegS = MI.getOperand(1).getReg();
1704   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1705     return false;
1706 
1707   const TargetRegisterInfo *TRI = &getRegisterInfo();
1708   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1709                                               &ARM::DPRRegClass);
1710   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1711                                               &ARM::DPRRegClass);
1712   if (!DstRegD || !SrcRegD)
1713     return false;
1714 
1715   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1716   // legal if the COPY already defines the full DstRegD, and it isn't a
1717   // sub-register insertion.
1718   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1719     return false;
1720 
1721   // A dead copy shouldn't show up here, but reject it just in case.
1722   if (MI.getOperand(0).isDead())
1723     return false;
1724 
1725   // All clear, widen the COPY.
1726   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1727   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1728 
1729   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1730   // or some other super-register.
1731   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1732   if (ImpDefIdx != -1)
1733     MI.RemoveOperand(ImpDefIdx);
1734 
1735   // Change the opcode and operands.
1736   MI.setDesc(get(ARM::VMOVD));
1737   MI.getOperand(0).setReg(DstRegD);
1738   MI.getOperand(1).setReg(SrcRegD);
1739   MIB.add(predOps(ARMCC::AL));
1740 
1741   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1742   // register scavenger and machine verifier, so we need to indicate that we
1743   // are reading an undefined value from SrcRegD, but a proper value from
1744   // SrcRegS.
1745   MI.getOperand(1).setIsUndef();
1746   MIB.addReg(SrcRegS, RegState::Implicit);
1747 
1748   // SrcRegD may actually contain an unrelated value in the ssub_1
1749   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1750   if (MI.getOperand(1).isKill()) {
1751     MI.getOperand(1).setIsKill(false);
1752     MI.addRegisterKilled(SrcRegS, TRI, true);
1753   }
1754 
1755   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1756   return true;
1757 }
1758 
1759 /// Create a copy of a const pool value. Update CPI to the new index and return
1760 /// the label UID.
1761 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1762   MachineConstantPool *MCP = MF.getConstantPool();
1763   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1764 
1765   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1766   assert(MCPE.isMachineConstantPoolEntry() &&
1767          "Expecting a machine constantpool entry!");
1768   ARMConstantPoolValue *ACPV =
1769     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1770 
1771   unsigned PCLabelId = AFI->createPICLabelUId();
1772   ARMConstantPoolValue *NewCPV = nullptr;
1773 
1774   // FIXME: The below assumes PIC relocation model and that the function
1775   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1776   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1777   // instructions, so that's probably OK, but is PIC always correct when
1778   // we get here?
1779   if (ACPV->isGlobalValue())
1780     NewCPV = ARMConstantPoolConstant::Create(
1781         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1782         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1783   else if (ACPV->isExtSymbol())
1784     NewCPV = ARMConstantPoolSymbol::
1785       Create(MF.getFunction().getContext(),
1786              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1787   else if (ACPV->isBlockAddress())
1788     NewCPV = ARMConstantPoolConstant::
1789       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1790              ARMCP::CPBlockAddress, 4);
1791   else if (ACPV->isLSDA())
1792     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1793                                              ARMCP::CPLSDA, 4);
1794   else if (ACPV->isMachineBasicBlock())
1795     NewCPV = ARMConstantPoolMBB::
1796       Create(MF.getFunction().getContext(),
1797              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1798   else
1799     llvm_unreachable("Unexpected ARM constantpool value type!!");
1800   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1801   return PCLabelId;
1802 }
1803 
1804 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1805                                      MachineBasicBlock::iterator I,
1806                                      Register DestReg, unsigned SubIdx,
1807                                      const MachineInstr &Orig,
1808                                      const TargetRegisterInfo &TRI) const {
1809   unsigned Opcode = Orig.getOpcode();
1810   switch (Opcode) {
1811   default: {
1812     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1813     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1814     MBB.insert(I, MI);
1815     break;
1816   }
1817   case ARM::tLDRpci_pic:
1818   case ARM::t2LDRpci_pic: {
1819     MachineFunction &MF = *MBB.getParent();
1820     unsigned CPI = Orig.getOperand(1).getIndex();
1821     unsigned PCLabelId = duplicateCPV(MF, CPI);
1822     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1823         .addConstantPoolIndex(CPI)
1824         .addImm(PCLabelId)
1825         .cloneMemRefs(Orig);
1826     break;
1827   }
1828   }
1829 }
1830 
1831 MachineInstr &
1832 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1833     MachineBasicBlock::iterator InsertBefore,
1834     const MachineInstr &Orig) const {
1835   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1836   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1837   for (;;) {
1838     switch (I->getOpcode()) {
1839     case ARM::tLDRpci_pic:
1840     case ARM::t2LDRpci_pic: {
1841       MachineFunction &MF = *MBB.getParent();
1842       unsigned CPI = I->getOperand(1).getIndex();
1843       unsigned PCLabelId = duplicateCPV(MF, CPI);
1844       I->getOperand(1).setIndex(CPI);
1845       I->getOperand(2).setImm(PCLabelId);
1846       break;
1847     }
1848     }
1849     if (!I->isBundledWithSucc())
1850       break;
1851     ++I;
1852   }
1853   return Cloned;
1854 }
1855 
1856 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1857                                         const MachineInstr &MI1,
1858                                         const MachineRegisterInfo *MRI) const {
1859   unsigned Opcode = MI0.getOpcode();
1860   if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
1861       Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
1862       Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1863       Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1864       Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1865       Opcode == ARM::t2MOV_ga_pcrel) {
1866     if (MI1.getOpcode() != Opcode)
1867       return false;
1868     if (MI0.getNumOperands() != MI1.getNumOperands())
1869       return false;
1870 
1871     const MachineOperand &MO0 = MI0.getOperand(1);
1872     const MachineOperand &MO1 = MI1.getOperand(1);
1873     if (MO0.getOffset() != MO1.getOffset())
1874       return false;
1875 
1876     if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1877         Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1878         Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1879         Opcode == ARM::t2MOV_ga_pcrel)
1880       // Ignore the PC labels.
1881       return MO0.getGlobal() == MO1.getGlobal();
1882 
1883     const MachineFunction *MF = MI0.getParent()->getParent();
1884     const MachineConstantPool *MCP = MF->getConstantPool();
1885     int CPI0 = MO0.getIndex();
1886     int CPI1 = MO1.getIndex();
1887     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1888     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1889     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1890     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1891     if (isARMCP0 && isARMCP1) {
1892       ARMConstantPoolValue *ACPV0 =
1893         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1894       ARMConstantPoolValue *ACPV1 =
1895         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1896       return ACPV0->hasSameValue(ACPV1);
1897     } else if (!isARMCP0 && !isARMCP1) {
1898       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1899     }
1900     return false;
1901   } else if (Opcode == ARM::PICLDR) {
1902     if (MI1.getOpcode() != Opcode)
1903       return false;
1904     if (MI0.getNumOperands() != MI1.getNumOperands())
1905       return false;
1906 
1907     Register Addr0 = MI0.getOperand(1).getReg();
1908     Register Addr1 = MI1.getOperand(1).getReg();
1909     if (Addr0 != Addr1) {
1910       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1911           !Register::isVirtualRegister(Addr1))
1912         return false;
1913 
1914       // This assumes SSA form.
1915       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1916       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1917       // Check if the loaded value, e.g. a constantpool of a global address, are
1918       // the same.
1919       if (!produceSameValue(*Def0, *Def1, MRI))
1920         return false;
1921     }
1922 
1923     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1924       // %12 = PICLDR %11, 0, 14, %noreg
1925       const MachineOperand &MO0 = MI0.getOperand(i);
1926       const MachineOperand &MO1 = MI1.getOperand(i);
1927       if (!MO0.isIdenticalTo(MO1))
1928         return false;
1929     }
1930     return true;
1931   }
1932 
1933   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1934 }
1935 
1936 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1937 /// determine if two loads are loading from the same base address. It should
1938 /// only return true if the base pointers are the same and the only differences
1939 /// between the two addresses is the offset. It also returns the offsets by
1940 /// reference.
1941 ///
1942 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1943 /// is permanently disabled.
1944 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1945                                                int64_t &Offset1,
1946                                                int64_t &Offset2) const {
1947   // Don't worry about Thumb: just ARM and Thumb2.
1948   if (Subtarget.isThumb1Only()) return false;
1949 
1950   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1951     return false;
1952 
1953   switch (Load1->getMachineOpcode()) {
1954   default:
1955     return false;
1956   case ARM::LDRi12:
1957   case ARM::LDRBi12:
1958   case ARM::LDRD:
1959   case ARM::LDRH:
1960   case ARM::LDRSB:
1961   case ARM::LDRSH:
1962   case ARM::VLDRD:
1963   case ARM::VLDRS:
1964   case ARM::t2LDRi8:
1965   case ARM::t2LDRBi8:
1966   case ARM::t2LDRDi8:
1967   case ARM::t2LDRSHi8:
1968   case ARM::t2LDRi12:
1969   case ARM::t2LDRBi12:
1970   case ARM::t2LDRSHi12:
1971     break;
1972   }
1973 
1974   switch (Load2->getMachineOpcode()) {
1975   default:
1976     return false;
1977   case ARM::LDRi12:
1978   case ARM::LDRBi12:
1979   case ARM::LDRD:
1980   case ARM::LDRH:
1981   case ARM::LDRSB:
1982   case ARM::LDRSH:
1983   case ARM::VLDRD:
1984   case ARM::VLDRS:
1985   case ARM::t2LDRi8:
1986   case ARM::t2LDRBi8:
1987   case ARM::t2LDRSHi8:
1988   case ARM::t2LDRi12:
1989   case ARM::t2LDRBi12:
1990   case ARM::t2LDRSHi12:
1991     break;
1992   }
1993 
1994   // Check if base addresses and chain operands match.
1995   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1996       Load1->getOperand(4) != Load2->getOperand(4))
1997     return false;
1998 
1999   // Index should be Reg0.
2000   if (Load1->getOperand(3) != Load2->getOperand(3))
2001     return false;
2002 
2003   // Determine the offsets.
2004   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
2005       isa<ConstantSDNode>(Load2->getOperand(1))) {
2006     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
2007     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
2008     return true;
2009   }
2010 
2011   return false;
2012 }
2013 
2014 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2015 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2016 /// be scheduled togther. On some targets if two loads are loading from
2017 /// addresses in the same cache line, it's better if they are scheduled
2018 /// together. This function takes two integers that represent the load offsets
2019 /// from the common base address. It returns true if it decides it's desirable
2020 /// to schedule the two loads together. "NumLoads" is the number of loads that
2021 /// have already been scheduled after Load1.
2022 ///
2023 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2024 /// is permanently disabled.
2025 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2026                                                int64_t Offset1, int64_t Offset2,
2027                                                unsigned NumLoads) const {
2028   // Don't worry about Thumb: just ARM and Thumb2.
2029   if (Subtarget.isThumb1Only()) return false;
2030 
2031   assert(Offset2 > Offset1);
2032 
2033   if ((Offset2 - Offset1) / 8 > 64)
2034     return false;
2035 
2036   // Check if the machine opcodes are different. If they are different
2037   // then we consider them to not be of the same base address,
2038   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2039   // In this case, they are considered to be the same because they are different
2040   // encoding forms of the same basic instruction.
2041   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2042       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2043          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2044         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2045          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2046     return false;  // FIXME: overly conservative?
2047 
2048   // Four loads in a row should be sufficient.
2049   if (NumLoads >= 3)
2050     return false;
2051 
2052   return true;
2053 }
2054 
2055 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2056                                             const MachineBasicBlock *MBB,
2057                                             const MachineFunction &MF) const {
2058   // Debug info is never a scheduling boundary. It's necessary to be explicit
2059   // due to the special treatment of IT instructions below, otherwise a
2060   // dbg_value followed by an IT will result in the IT instruction being
2061   // considered a scheduling hazard, which is wrong. It should be the actual
2062   // instruction preceding the dbg_value instruction(s), just like it is
2063   // when debug info is not present.
2064   if (MI.isDebugInstr())
2065     return false;
2066 
2067   // Terminators and labels can't be scheduled around.
2068   if (MI.isTerminator() || MI.isPosition())
2069     return true;
2070 
2071   // INLINEASM_BR can jump to another block
2072   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2073     return true;
2074 
2075   // Treat the start of the IT block as a scheduling boundary, but schedule
2076   // t2IT along with all instructions following it.
2077   // FIXME: This is a big hammer. But the alternative is to add all potential
2078   // true and anti dependencies to IT block instructions as implicit operands
2079   // to the t2IT instruction. The added compile time and complexity does not
2080   // seem worth it.
2081   MachineBasicBlock::const_iterator I = MI;
2082   // Make sure to skip any debug instructions
2083   while (++I != MBB->end() && I->isDebugInstr())
2084     ;
2085   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2086     return true;
2087 
2088   // Don't attempt to schedule around any instruction that defines
2089   // a stack-oriented pointer, as it's unlikely to be profitable. This
2090   // saves compile time, because it doesn't require every single
2091   // stack slot reference to depend on the instruction that does the
2092   // modification.
2093   // Calls don't actually change the stack pointer, even if they have imp-defs.
2094   // No ARM calling conventions change the stack pointer. (X86 calling
2095   // conventions sometimes do).
2096   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2097     return true;
2098 
2099   return false;
2100 }
2101 
2102 bool ARMBaseInstrInfo::
2103 isProfitableToIfCvt(MachineBasicBlock &MBB,
2104                     unsigned NumCycles, unsigned ExtraPredCycles,
2105                     BranchProbability Probability) const {
2106   if (!NumCycles)
2107     return false;
2108 
2109   // If we are optimizing for size, see if the branch in the predecessor can be
2110   // lowered to cbn?z by the constant island lowering pass, and return false if
2111   // so. This results in a shorter instruction sequence.
2112   if (MBB.getParent()->getFunction().hasOptSize()) {
2113     MachineBasicBlock *Pred = *MBB.pred_begin();
2114     if (!Pred->empty()) {
2115       MachineInstr *LastMI = &*Pred->rbegin();
2116       if (LastMI->getOpcode() == ARM::t2Bcc) {
2117         const TargetRegisterInfo *TRI = &getRegisterInfo();
2118         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2119         if (CmpMI)
2120           return false;
2121       }
2122     }
2123   }
2124   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2125                              MBB, 0, 0, Probability);
2126 }
2127 
2128 bool ARMBaseInstrInfo::
2129 isProfitableToIfCvt(MachineBasicBlock &TBB,
2130                     unsigned TCycles, unsigned TExtra,
2131                     MachineBasicBlock &FBB,
2132                     unsigned FCycles, unsigned FExtra,
2133                     BranchProbability Probability) const {
2134   if (!TCycles)
2135     return false;
2136 
2137   // In thumb code we often end up trading one branch for a IT block, and
2138   // if we are cloning the instruction can increase code size. Prevent
2139   // blocks with multiple predecesors from being ifcvted to prevent this
2140   // cloning.
2141   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2142     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2143       return false;
2144   }
2145 
2146   // Attempt to estimate the relative costs of predication versus branching.
2147   // Here we scale up each component of UnpredCost to avoid precision issue when
2148   // scaling TCycles/FCycles by Probability.
2149   const unsigned ScalingUpFactor = 1024;
2150 
2151   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2152   unsigned UnpredCost;
2153   if (!Subtarget.hasBranchPredictor()) {
2154     // When we don't have a branch predictor it's always cheaper to not take a
2155     // branch than take it, so we have to take that into account.
2156     unsigned NotTakenBranchCost = 1;
2157     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2158     unsigned TUnpredCycles, FUnpredCycles;
2159     if (!FCycles) {
2160       // Triangle: TBB is the fallthrough
2161       TUnpredCycles = TCycles + NotTakenBranchCost;
2162       FUnpredCycles = TakenBranchCost;
2163     } else {
2164       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2165       TUnpredCycles = TCycles + TakenBranchCost;
2166       FUnpredCycles = FCycles + NotTakenBranchCost;
2167       // The branch at the end of FBB will disappear when it's predicated, so
2168       // discount it from PredCost.
2169       PredCost -= 1 * ScalingUpFactor;
2170     }
2171     // The total cost is the cost of each path scaled by their probabilites
2172     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2173     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2174     UnpredCost = TUnpredCost + FUnpredCost;
2175     // When predicating assume that the first IT can be folded away but later
2176     // ones cost one cycle each
2177     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2178       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2179     }
2180   } else {
2181     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2182     unsigned FUnpredCost =
2183       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2184     UnpredCost = TUnpredCost + FUnpredCost;
2185     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2186     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2187   }
2188 
2189   return PredCost <= UnpredCost;
2190 }
2191 
2192 unsigned
2193 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2194                                                    unsigned NumInsts) const {
2195   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2196   // ARM has a condition code field in every predicable instruction, using it
2197   // doesn't change code size.
2198   if (!Subtarget.isThumb2())
2199     return 0;
2200 
2201   // It's possible that the size of the IT is restricted to a single block.
2202   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2203   return divideCeil(NumInsts, MaxInsts) * 2;
2204 }
2205 
2206 unsigned
2207 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2208   // If this branch is likely to be folded into the comparison to form a
2209   // CB(N)Z, then removing it won't reduce code size at all, because that will
2210   // just replace the CB(N)Z with a CMP.
2211   if (MI.getOpcode() == ARM::t2Bcc &&
2212       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2213     return 0;
2214 
2215   unsigned Size = getInstSizeInBytes(MI);
2216 
2217   // For Thumb2, all branches are 32-bit instructions during the if conversion
2218   // pass, but may be replaced with 16-bit instructions during size reduction.
2219   // Since the branches considered by if conversion tend to be forward branches
2220   // over small basic blocks, they are very likely to be in range for the
2221   // narrow instructions, so we assume the final code size will be half what it
2222   // currently is.
2223   if (Subtarget.isThumb2())
2224     Size /= 2;
2225 
2226   return Size;
2227 }
2228 
2229 bool
2230 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2231                                             MachineBasicBlock &FMBB) const {
2232   // Reduce false anti-dependencies to let the target's out-of-order execution
2233   // engine do its thing.
2234   return Subtarget.isProfitableToUnpredicate();
2235 }
2236 
2237 /// getInstrPredicate - If instruction is predicated, returns its predicate
2238 /// condition, otherwise returns AL. It also returns the condition code
2239 /// register by reference.
2240 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2241                                          Register &PredReg) {
2242   int PIdx = MI.findFirstPredOperandIdx();
2243   if (PIdx == -1) {
2244     PredReg = 0;
2245     return ARMCC::AL;
2246   }
2247 
2248   PredReg = MI.getOperand(PIdx+1).getReg();
2249   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2250 }
2251 
2252 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2253   if (Opc == ARM::B)
2254     return ARM::Bcc;
2255   if (Opc == ARM::tB)
2256     return ARM::tBcc;
2257   if (Opc == ARM::t2B)
2258     return ARM::t2Bcc;
2259 
2260   llvm_unreachable("Unknown unconditional branch opcode!");
2261 }
2262 
2263 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2264                                                        bool NewMI,
2265                                                        unsigned OpIdx1,
2266                                                        unsigned OpIdx2) const {
2267   switch (MI.getOpcode()) {
2268   case ARM::MOVCCr:
2269   case ARM::t2MOVCCr: {
2270     // MOVCC can be commuted by inverting the condition.
2271     Register PredReg;
2272     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2273     // MOVCC AL can't be inverted. Shouldn't happen.
2274     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2275       return nullptr;
2276     MachineInstr *CommutedMI =
2277         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2278     if (!CommutedMI)
2279       return nullptr;
2280     // After swapping the MOVCC operands, also invert the condition.
2281     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2282         .setImm(ARMCC::getOppositeCondition(CC));
2283     return CommutedMI;
2284   }
2285   }
2286   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2287 }
2288 
2289 /// Identify instructions that can be folded into a MOVCC instruction, and
2290 /// return the defining instruction.
2291 MachineInstr *
2292 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2293                                    const TargetInstrInfo *TII) const {
2294   if (!Reg.isVirtual())
2295     return nullptr;
2296   if (!MRI.hasOneNonDBGUse(Reg))
2297     return nullptr;
2298   MachineInstr *MI = MRI.getVRegDef(Reg);
2299   if (!MI)
2300     return nullptr;
2301   // Check if MI can be predicated and folded into the MOVCC.
2302   if (!isPredicable(*MI))
2303     return nullptr;
2304   // Check if MI has any non-dead defs or physreg uses. This also detects
2305   // predicated instructions which will be reading CPSR.
2306   for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) {
2307     // Reject frame index operands, PEI can't handle the predicated pseudos.
2308     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2309       return nullptr;
2310     if (!MO.isReg())
2311       continue;
2312     // MI can't have any tied operands, that would conflict with predication.
2313     if (MO.isTied())
2314       return nullptr;
2315     if (Register::isPhysicalRegister(MO.getReg()))
2316       return nullptr;
2317     if (MO.isDef() && !MO.isDead())
2318       return nullptr;
2319   }
2320   bool DontMoveAcrossStores = true;
2321   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2322     return nullptr;
2323   return MI;
2324 }
2325 
2326 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2327                                      SmallVectorImpl<MachineOperand> &Cond,
2328                                      unsigned &TrueOp, unsigned &FalseOp,
2329                                      bool &Optimizable) const {
2330   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2331          "Unknown select instruction");
2332   // MOVCC operands:
2333   // 0: Def.
2334   // 1: True use.
2335   // 2: False use.
2336   // 3: Condition code.
2337   // 4: CPSR use.
2338   TrueOp = 1;
2339   FalseOp = 2;
2340   Cond.push_back(MI.getOperand(3));
2341   Cond.push_back(MI.getOperand(4));
2342   // We can always fold a def.
2343   Optimizable = true;
2344   return false;
2345 }
2346 
2347 MachineInstr *
2348 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2349                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2350                                  bool PreferFalse) const {
2351   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2352          "Unknown select instruction");
2353   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2354   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2355   bool Invert = !DefMI;
2356   if (!DefMI)
2357     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2358   if (!DefMI)
2359     return nullptr;
2360 
2361   // Find new register class to use.
2362   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2363   MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
2364   Register DestReg = MI.getOperand(0).getReg();
2365   const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
2366   const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
2367   if (!MRI.constrainRegClass(DestReg, FalseClass))
2368     return nullptr;
2369   if (!MRI.constrainRegClass(DestReg, TrueClass))
2370     return nullptr;
2371 
2372   // Create a new predicated version of DefMI.
2373   // Rfalse is the first use.
2374   MachineInstrBuilder NewMI =
2375       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2376 
2377   // Copy all the DefMI operands, excluding its (null) predicate.
2378   const MCInstrDesc &DefDesc = DefMI->getDesc();
2379   for (unsigned i = 1, e = DefDesc.getNumOperands();
2380        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2381     NewMI.add(DefMI->getOperand(i));
2382 
2383   unsigned CondCode = MI.getOperand(3).getImm();
2384   if (Invert)
2385     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2386   else
2387     NewMI.addImm(CondCode);
2388   NewMI.add(MI.getOperand(4));
2389 
2390   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2391   if (NewMI->hasOptionalDef())
2392     NewMI.add(condCodeOp());
2393 
2394   // The output register value when the predicate is false is an implicit
2395   // register operand tied to the first def.
2396   // The tie makes the register allocator ensure the FalseReg is allocated the
2397   // same register as operand 0.
2398   FalseReg.setImplicit();
2399   NewMI.add(FalseReg);
2400   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2401 
2402   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2403   SeenMIs.insert(NewMI);
2404   SeenMIs.erase(DefMI);
2405 
2406   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2407   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2408   // loop is expensive, but at least remove kill flags if they are in different
2409   // BBs.
2410   if (DefMI->getParent() != MI.getParent())
2411     NewMI->clearKillInfo();
2412 
2413   // The caller will erase MI, but not DefMI.
2414   DefMI->eraseFromParent();
2415   return NewMI;
2416 }
2417 
2418 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2419 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2420 /// def operand.
2421 ///
2422 /// This will go away once we can teach tblgen how to set the optional CPSR def
2423 /// operand itself.
2424 struct AddSubFlagsOpcodePair {
2425   uint16_t PseudoOpc;
2426   uint16_t MachineOpc;
2427 };
2428 
2429 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2430   {ARM::ADDSri, ARM::ADDri},
2431   {ARM::ADDSrr, ARM::ADDrr},
2432   {ARM::ADDSrsi, ARM::ADDrsi},
2433   {ARM::ADDSrsr, ARM::ADDrsr},
2434 
2435   {ARM::SUBSri, ARM::SUBri},
2436   {ARM::SUBSrr, ARM::SUBrr},
2437   {ARM::SUBSrsi, ARM::SUBrsi},
2438   {ARM::SUBSrsr, ARM::SUBrsr},
2439 
2440   {ARM::RSBSri, ARM::RSBri},
2441   {ARM::RSBSrsi, ARM::RSBrsi},
2442   {ARM::RSBSrsr, ARM::RSBrsr},
2443 
2444   {ARM::tADDSi3, ARM::tADDi3},
2445   {ARM::tADDSi8, ARM::tADDi8},
2446   {ARM::tADDSrr, ARM::tADDrr},
2447   {ARM::tADCS, ARM::tADC},
2448 
2449   {ARM::tSUBSi3, ARM::tSUBi3},
2450   {ARM::tSUBSi8, ARM::tSUBi8},
2451   {ARM::tSUBSrr, ARM::tSUBrr},
2452   {ARM::tSBCS, ARM::tSBC},
2453   {ARM::tRSBS, ARM::tRSB},
2454   {ARM::tLSLSri, ARM::tLSLri},
2455 
2456   {ARM::t2ADDSri, ARM::t2ADDri},
2457   {ARM::t2ADDSrr, ARM::t2ADDrr},
2458   {ARM::t2ADDSrs, ARM::t2ADDrs},
2459 
2460   {ARM::t2SUBSri, ARM::t2SUBri},
2461   {ARM::t2SUBSrr, ARM::t2SUBrr},
2462   {ARM::t2SUBSrs, ARM::t2SUBrs},
2463 
2464   {ARM::t2RSBSri, ARM::t2RSBri},
2465   {ARM::t2RSBSrs, ARM::t2RSBrs},
2466 };
2467 
2468 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2469   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2470     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2471       return AddSubFlagsOpcodeMap[i].MachineOpc;
2472   return 0;
2473 }
2474 
2475 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2476                                    MachineBasicBlock::iterator &MBBI,
2477                                    const DebugLoc &dl, Register DestReg,
2478                                    Register BaseReg, int NumBytes,
2479                                    ARMCC::CondCodes Pred, Register PredReg,
2480                                    const ARMBaseInstrInfo &TII,
2481                                    unsigned MIFlags) {
2482   if (NumBytes == 0 && DestReg != BaseReg) {
2483     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2484         .addReg(BaseReg, RegState::Kill)
2485         .add(predOps(Pred, PredReg))
2486         .add(condCodeOp())
2487         .setMIFlags(MIFlags);
2488     return;
2489   }
2490 
2491   bool isSub = NumBytes < 0;
2492   if (isSub) NumBytes = -NumBytes;
2493 
2494   while (NumBytes) {
2495     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2496     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2497     assert(ThisVal && "Didn't extract field correctly");
2498 
2499     // We will handle these bits from offset, clear them.
2500     NumBytes &= ~ThisVal;
2501 
2502     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2503 
2504     // Build the new ADD / SUB.
2505     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2506     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2507         .addReg(BaseReg, RegState::Kill)
2508         .addImm(ThisVal)
2509         .add(predOps(Pred, PredReg))
2510         .add(condCodeOp())
2511         .setMIFlags(MIFlags);
2512     BaseReg = DestReg;
2513   }
2514 }
2515 
2516 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2517                                       MachineFunction &MF, MachineInstr *MI,
2518                                       unsigned NumBytes) {
2519   // This optimisation potentially adds lots of load and store
2520   // micro-operations, it's only really a great benefit to code-size.
2521   if (!Subtarget.hasMinSize())
2522     return false;
2523 
2524   // If only one register is pushed/popped, LLVM can use an LDR/STR
2525   // instead. We can't modify those so make sure we're dealing with an
2526   // instruction we understand.
2527   bool IsPop = isPopOpcode(MI->getOpcode());
2528   bool IsPush = isPushOpcode(MI->getOpcode());
2529   if (!IsPush && !IsPop)
2530     return false;
2531 
2532   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2533                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2534   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2535                      MI->getOpcode() == ARM::tPOP ||
2536                      MI->getOpcode() == ARM::tPOP_RET;
2537 
2538   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2539                           MI->getOperand(1).getReg() == ARM::SP)) &&
2540          "trying to fold sp update into non-sp-updating push/pop");
2541 
2542   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2543   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2544   // if this is violated.
2545   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2546     return false;
2547 
2548   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2549   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2550   int RegListIdx = IsT1PushPop ? 2 : 4;
2551 
2552   // Calculate the space we'll need in terms of registers.
2553   unsigned RegsNeeded;
2554   const TargetRegisterClass *RegClass;
2555   if (IsVFPPushPop) {
2556     RegsNeeded = NumBytes / 8;
2557     RegClass = &ARM::DPRRegClass;
2558   } else {
2559     RegsNeeded = NumBytes / 4;
2560     RegClass = &ARM::GPRRegClass;
2561   }
2562 
2563   // We're going to have to strip all list operands off before
2564   // re-adding them since the order matters, so save the existing ones
2565   // for later.
2566   SmallVector<MachineOperand, 4> RegList;
2567 
2568   // We're also going to need the first register transferred by this
2569   // instruction, which won't necessarily be the first register in the list.
2570   unsigned FirstRegEnc = -1;
2571 
2572   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2573   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2574     MachineOperand &MO = MI->getOperand(i);
2575     RegList.push_back(MO);
2576 
2577     if (MO.isReg() && !MO.isImplicit() &&
2578         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2579       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2580   }
2581 
2582   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2583 
2584   // Now try to find enough space in the reglist to allocate NumBytes.
2585   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2586        --CurRegEnc) {
2587     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2588     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2589       continue;
2590     if (!IsPop) {
2591       // Pushing any register is completely harmless, mark the register involved
2592       // as undef since we don't care about its value and must not restore it
2593       // during stack unwinding.
2594       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2595                                                   false, false, true));
2596       --RegsNeeded;
2597       continue;
2598     }
2599 
2600     // However, we can only pop an extra register if it's not live. For
2601     // registers live within the function we might clobber a return value
2602     // register; the other way a register can be live here is if it's
2603     // callee-saved.
2604     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2605         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2606         MachineBasicBlock::LQR_Dead) {
2607       // VFP pops don't allow holes in the register list, so any skip is fatal
2608       // for our transformation. GPR pops do, so we should just keep looking.
2609       if (IsVFPPushPop)
2610         return false;
2611       else
2612         continue;
2613     }
2614 
2615     // Mark the unimportant registers as <def,dead> in the POP.
2616     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2617                                                 true));
2618     --RegsNeeded;
2619   }
2620 
2621   if (RegsNeeded > 0)
2622     return false;
2623 
2624   // Finally we know we can profitably perform the optimisation so go
2625   // ahead: strip all existing registers off and add them back again
2626   // in the right order.
2627   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2628     MI->RemoveOperand(i);
2629 
2630   // Add the complete list back in.
2631   MachineInstrBuilder MIB(MF, &*MI);
2632   for (int i = RegList.size() - 1; i >= 0; --i)
2633     MIB.add(RegList[i]);
2634 
2635   return true;
2636 }
2637 
2638 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2639                                 Register FrameReg, int &Offset,
2640                                 const ARMBaseInstrInfo &TII) {
2641   unsigned Opcode = MI.getOpcode();
2642   const MCInstrDesc &Desc = MI.getDesc();
2643   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2644   bool isSub = false;
2645 
2646   // Memory operands in inline assembly always use AddrMode2.
2647   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2648     AddrMode = ARMII::AddrMode2;
2649 
2650   if (Opcode == ARM::ADDri) {
2651     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2652     if (Offset == 0) {
2653       // Turn it into a move.
2654       MI.setDesc(TII.get(ARM::MOVr));
2655       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2656       MI.RemoveOperand(FrameRegIdx+1);
2657       Offset = 0;
2658       return true;
2659     } else if (Offset < 0) {
2660       Offset = -Offset;
2661       isSub = true;
2662       MI.setDesc(TII.get(ARM::SUBri));
2663     }
2664 
2665     // Common case: small offset, fits into instruction.
2666     if (ARM_AM::getSOImmVal(Offset) != -1) {
2667       // Replace the FrameIndex with sp / fp
2668       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2669       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2670       Offset = 0;
2671       return true;
2672     }
2673 
2674     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2675     // as possible.
2676     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2677     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2678 
2679     // We will handle these bits from offset, clear them.
2680     Offset &= ~ThisImmVal;
2681 
2682     // Get the properly encoded SOImmVal field.
2683     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2684            "Bit extraction didn't work?");
2685     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2686  } else {
2687     unsigned ImmIdx = 0;
2688     int InstrOffs = 0;
2689     unsigned NumBits = 0;
2690     unsigned Scale = 1;
2691     switch (AddrMode) {
2692     case ARMII::AddrMode_i12:
2693       ImmIdx = FrameRegIdx + 1;
2694       InstrOffs = MI.getOperand(ImmIdx).getImm();
2695       NumBits = 12;
2696       break;
2697     case ARMII::AddrMode2:
2698       ImmIdx = FrameRegIdx+2;
2699       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2700       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2701         InstrOffs *= -1;
2702       NumBits = 12;
2703       break;
2704     case ARMII::AddrMode3:
2705       ImmIdx = FrameRegIdx+2;
2706       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2707       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2708         InstrOffs *= -1;
2709       NumBits = 8;
2710       break;
2711     case ARMII::AddrMode4:
2712     case ARMII::AddrMode6:
2713       // Can't fold any offset even if it's zero.
2714       return false;
2715     case ARMII::AddrMode5:
2716       ImmIdx = FrameRegIdx+1;
2717       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2718       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2719         InstrOffs *= -1;
2720       NumBits = 8;
2721       Scale = 4;
2722       break;
2723     case ARMII::AddrMode5FP16:
2724       ImmIdx = FrameRegIdx+1;
2725       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2726       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2727         InstrOffs *= -1;
2728       NumBits = 8;
2729       Scale = 2;
2730       break;
2731     case ARMII::AddrModeT2_i7:
2732     case ARMII::AddrModeT2_i7s2:
2733     case ARMII::AddrModeT2_i7s4:
2734       ImmIdx = FrameRegIdx+1;
2735       InstrOffs = MI.getOperand(ImmIdx).getImm();
2736       NumBits = 7;
2737       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2738                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2739       break;
2740     default:
2741       llvm_unreachable("Unsupported addressing mode!");
2742     }
2743 
2744     Offset += InstrOffs * Scale;
2745     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2746     if (Offset < 0) {
2747       Offset = -Offset;
2748       isSub = true;
2749     }
2750 
2751     // Attempt to fold address comp. if opcode has offset bits
2752     if (NumBits > 0) {
2753       // Common case: small offset, fits into instruction.
2754       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2755       int ImmedOffset = Offset / Scale;
2756       unsigned Mask = (1 << NumBits) - 1;
2757       if ((unsigned)Offset <= Mask * Scale) {
2758         // Replace the FrameIndex with sp
2759         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2760         // FIXME: When addrmode2 goes away, this will simplify (like the
2761         // T2 version), as the LDR.i12 versions don't need the encoding
2762         // tricks for the offset value.
2763         if (isSub) {
2764           if (AddrMode == ARMII::AddrMode_i12)
2765             ImmedOffset = -ImmedOffset;
2766           else
2767             ImmedOffset |= 1 << NumBits;
2768         }
2769         ImmOp.ChangeToImmediate(ImmedOffset);
2770         Offset = 0;
2771         return true;
2772       }
2773 
2774       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2775       ImmedOffset = ImmedOffset & Mask;
2776       if (isSub) {
2777         if (AddrMode == ARMII::AddrMode_i12)
2778           ImmedOffset = -ImmedOffset;
2779         else
2780           ImmedOffset |= 1 << NumBits;
2781       }
2782       ImmOp.ChangeToImmediate(ImmedOffset);
2783       Offset &= ~(Mask*Scale);
2784     }
2785   }
2786 
2787   Offset = (isSub) ? -Offset : Offset;
2788   return Offset == 0;
2789 }
2790 
2791 /// analyzeCompare - For a comparison instruction, return the source registers
2792 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2793 /// compares against in CmpValue. Return true if the comparison instruction
2794 /// can be analyzed.
2795 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2796                                       Register &SrcReg2, int64_t &CmpMask,
2797                                       int64_t &CmpValue) const {
2798   switch (MI.getOpcode()) {
2799   default: break;
2800   case ARM::CMPri:
2801   case ARM::t2CMPri:
2802   case ARM::tCMPi8:
2803     SrcReg = MI.getOperand(0).getReg();
2804     SrcReg2 = 0;
2805     CmpMask = ~0;
2806     CmpValue = MI.getOperand(1).getImm();
2807     return true;
2808   case ARM::CMPrr:
2809   case ARM::t2CMPrr:
2810   case ARM::tCMPr:
2811     SrcReg = MI.getOperand(0).getReg();
2812     SrcReg2 = MI.getOperand(1).getReg();
2813     CmpMask = ~0;
2814     CmpValue = 0;
2815     return true;
2816   case ARM::TSTri:
2817   case ARM::t2TSTri:
2818     SrcReg = MI.getOperand(0).getReg();
2819     SrcReg2 = 0;
2820     CmpMask = MI.getOperand(1).getImm();
2821     CmpValue = 0;
2822     return true;
2823   }
2824 
2825   return false;
2826 }
2827 
2828 /// isSuitableForMask - Identify a suitable 'and' instruction that
2829 /// operates on the given source register and applies the same mask
2830 /// as a 'tst' instruction. Provide a limited look-through for copies.
2831 /// When successful, MI will hold the found instruction.
2832 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2833                               int CmpMask, bool CommonUse) {
2834   switch (MI->getOpcode()) {
2835     case ARM::ANDri:
2836     case ARM::t2ANDri:
2837       if (CmpMask != MI->getOperand(2).getImm())
2838         return false;
2839       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2840         return true;
2841       break;
2842   }
2843 
2844   return false;
2845 }
2846 
2847 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2848 /// the condition code if we modify the instructions such that flags are
2849 /// set by ADD(a,b,X).
2850 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2851   switch (CC) {
2852   default: return ARMCC::AL;
2853   case ARMCC::HS: return ARMCC::LO;
2854   case ARMCC::LO: return ARMCC::HS;
2855   case ARMCC::VS: return ARMCC::VS;
2856   case ARMCC::VC: return ARMCC::VC;
2857   }
2858 }
2859 
2860 /// isRedundantFlagInstr - check whether the first instruction, whose only
2861 /// purpose is to update flags, can be made redundant.
2862 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2863 /// CMPri can be made redundant by SUBri if the operands are the same.
2864 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2865 /// This function can be extended later on.
2866 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2867                                         Register SrcReg, Register SrcReg2,
2868                                         int64_t ImmValue,
2869                                         const MachineInstr *OI,
2870                                         bool &IsThumb1) {
2871   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2872       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2873       ((OI->getOperand(1).getReg() == SrcReg &&
2874         OI->getOperand(2).getReg() == SrcReg2) ||
2875        (OI->getOperand(1).getReg() == SrcReg2 &&
2876         OI->getOperand(2).getReg() == SrcReg))) {
2877     IsThumb1 = false;
2878     return true;
2879   }
2880 
2881   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2882       ((OI->getOperand(2).getReg() == SrcReg &&
2883         OI->getOperand(3).getReg() == SrcReg2) ||
2884        (OI->getOperand(2).getReg() == SrcReg2 &&
2885         OI->getOperand(3).getReg() == SrcReg))) {
2886     IsThumb1 = true;
2887     return true;
2888   }
2889 
2890   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2891       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2892       OI->getOperand(1).getReg() == SrcReg &&
2893       OI->getOperand(2).getImm() == ImmValue) {
2894     IsThumb1 = false;
2895     return true;
2896   }
2897 
2898   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2899       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2900       OI->getOperand(2).getReg() == SrcReg &&
2901       OI->getOperand(3).getImm() == ImmValue) {
2902     IsThumb1 = true;
2903     return true;
2904   }
2905 
2906   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2907       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2908        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2909       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2910       OI->getOperand(0).getReg() == SrcReg &&
2911       OI->getOperand(1).getReg() == SrcReg2) {
2912     IsThumb1 = false;
2913     return true;
2914   }
2915 
2916   if (CmpI->getOpcode() == ARM::tCMPr &&
2917       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2918        OI->getOpcode() == ARM::tADDrr) &&
2919       OI->getOperand(0).getReg() == SrcReg &&
2920       OI->getOperand(2).getReg() == SrcReg2) {
2921     IsThumb1 = true;
2922     return true;
2923   }
2924 
2925   return false;
2926 }
2927 
2928 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2929   switch (MI->getOpcode()) {
2930   default: return false;
2931   case ARM::tLSLri:
2932   case ARM::tLSRri:
2933   case ARM::tLSLrr:
2934   case ARM::tLSRrr:
2935   case ARM::tSUBrr:
2936   case ARM::tADDrr:
2937   case ARM::tADDi3:
2938   case ARM::tADDi8:
2939   case ARM::tSUBi3:
2940   case ARM::tSUBi8:
2941   case ARM::tMUL:
2942   case ARM::tADC:
2943   case ARM::tSBC:
2944   case ARM::tRSB:
2945   case ARM::tAND:
2946   case ARM::tORR:
2947   case ARM::tEOR:
2948   case ARM::tBIC:
2949   case ARM::tMVN:
2950   case ARM::tASRri:
2951   case ARM::tASRrr:
2952   case ARM::tROR:
2953     IsThumb1 = true;
2954     LLVM_FALLTHROUGH;
2955   case ARM::RSBrr:
2956   case ARM::RSBri:
2957   case ARM::RSCrr:
2958   case ARM::RSCri:
2959   case ARM::ADDrr:
2960   case ARM::ADDri:
2961   case ARM::ADCrr:
2962   case ARM::ADCri:
2963   case ARM::SUBrr:
2964   case ARM::SUBri:
2965   case ARM::SBCrr:
2966   case ARM::SBCri:
2967   case ARM::t2RSBri:
2968   case ARM::t2ADDrr:
2969   case ARM::t2ADDri:
2970   case ARM::t2ADCrr:
2971   case ARM::t2ADCri:
2972   case ARM::t2SUBrr:
2973   case ARM::t2SUBri:
2974   case ARM::t2SBCrr:
2975   case ARM::t2SBCri:
2976   case ARM::ANDrr:
2977   case ARM::ANDri:
2978   case ARM::t2ANDrr:
2979   case ARM::t2ANDri:
2980   case ARM::ORRrr:
2981   case ARM::ORRri:
2982   case ARM::t2ORRrr:
2983   case ARM::t2ORRri:
2984   case ARM::EORrr:
2985   case ARM::EORri:
2986   case ARM::t2EORrr:
2987   case ARM::t2EORri:
2988   case ARM::t2LSRri:
2989   case ARM::t2LSRrr:
2990   case ARM::t2LSLri:
2991   case ARM::t2LSLrr:
2992     return true;
2993   }
2994 }
2995 
2996 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2997 /// comparison into one that sets the zero bit in the flags register;
2998 /// Remove a redundant Compare instruction if an earlier instruction can set the
2999 /// flags in the same way as Compare.
3000 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3001 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3002 /// condition code of instructions which use the flags.
3003 bool ARMBaseInstrInfo::optimizeCompareInstr(
3004     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3005     int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3006   // Get the unique definition of SrcReg.
3007   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3008   if (!MI) return false;
3009 
3010   // Masked compares sometimes use the same register as the corresponding 'and'.
3011   if (CmpMask != ~0) {
3012     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3013       MI = nullptr;
3014       for (MachineRegisterInfo::use_instr_iterator
3015            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3016            UI != UE; ++UI) {
3017         if (UI->getParent() != CmpInstr.getParent())
3018           continue;
3019         MachineInstr *PotentialAND = &*UI;
3020         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3021             isPredicated(*PotentialAND))
3022           continue;
3023         MI = PotentialAND;
3024         break;
3025       }
3026       if (!MI) return false;
3027     }
3028   }
3029 
3030   // Get ready to iterate backward from CmpInstr.
3031   MachineBasicBlock::iterator I = CmpInstr, E = MI,
3032                               B = CmpInstr.getParent()->begin();
3033 
3034   // Early exit if CmpInstr is at the beginning of the BB.
3035   if (I == B) return false;
3036 
3037   // There are two possible candidates which can be changed to set CPSR:
3038   // One is MI, the other is a SUB or ADD instruction.
3039   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3040   // ADDr[ri](r1, r2, X).
3041   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3042   MachineInstr *SubAdd = nullptr;
3043   if (SrcReg2 != 0)
3044     // MI is not a candidate for CMPrr.
3045     MI = nullptr;
3046   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3047     // Conservatively refuse to convert an instruction which isn't in the same
3048     // BB as the comparison.
3049     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3050     // Thus we cannot return here.
3051     if (CmpInstr.getOpcode() == ARM::CMPri ||
3052         CmpInstr.getOpcode() == ARM::t2CMPri ||
3053         CmpInstr.getOpcode() == ARM::tCMPi8)
3054       MI = nullptr;
3055     else
3056       return false;
3057   }
3058 
3059   bool IsThumb1 = false;
3060   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3061     return false;
3062 
3063   // We also want to do this peephole for cases like this: if (a*b == 0),
3064   // and optimise away the CMP instruction from the generated code sequence:
3065   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3066   // resulting from the select instruction, but these MOVS instructions for
3067   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3068   // However, if we only have MOVS instructions in between the CMP and the
3069   // other instruction (the MULS in this example), then the CPSR is dead so we
3070   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3071   // reordering and then continue the analysis hoping we can eliminate the
3072   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3073   // consequence, the movs won't redefine/kill the MUL operands which would
3074   // make this reordering illegal.
3075   const TargetRegisterInfo *TRI = &getRegisterInfo();
3076   if (MI && IsThumb1) {
3077     --I;
3078     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3079       bool CanReorder = true;
3080       for (; I != E; --I) {
3081         if (I->getOpcode() != ARM::tMOVi8) {
3082           CanReorder = false;
3083           break;
3084         }
3085       }
3086       if (CanReorder) {
3087         MI = MI->removeFromParent();
3088         E = CmpInstr;
3089         CmpInstr.getParent()->insert(E, MI);
3090       }
3091     }
3092     I = CmpInstr;
3093     E = MI;
3094   }
3095 
3096   // Check that CPSR isn't set between the comparison instruction and the one we
3097   // want to change. At the same time, search for SubAdd.
3098   bool SubAddIsThumb1 = false;
3099   do {
3100     const MachineInstr &Instr = *--I;
3101 
3102     // Check whether CmpInstr can be made redundant by the current instruction.
3103     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3104                              SubAddIsThumb1)) {
3105       SubAdd = &*I;
3106       break;
3107     }
3108 
3109     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3110     if (I == E)
3111       break;
3112 
3113     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3114         Instr.readsRegister(ARM::CPSR, TRI))
3115       // This instruction modifies or uses CPSR after the one we want to
3116       // change. We can't do this transformation.
3117       return false;
3118 
3119     if (I == B) {
3120       // In some cases, we scan the use-list of an instruction for an AND;
3121       // that AND is in the same BB, but may not be scheduled before the
3122       // corresponding TST.  In that case, bail out.
3123       //
3124       // FIXME: We could try to reschedule the AND.
3125       return false;
3126     }
3127   } while (true);
3128 
3129   // Return false if no candidates exist.
3130   if (!MI && !SubAdd)
3131     return false;
3132 
3133   // If we found a SubAdd, use it as it will be closer to the CMP
3134   if (SubAdd) {
3135     MI = SubAdd;
3136     IsThumb1 = SubAddIsThumb1;
3137   }
3138 
3139   // We can't use a predicated instruction - it doesn't always write the flags.
3140   if (isPredicated(*MI))
3141     return false;
3142 
3143   // Scan forward for the use of CPSR
3144   // When checking against MI: if it's a conditional code that requires
3145   // checking of the V bit or C bit, then this is not safe to do.
3146   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3147   // If we are done with the basic block, we need to check whether CPSR is
3148   // live-out.
3149   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3150       OperandsToUpdate;
3151   bool isSafe = false;
3152   I = CmpInstr;
3153   E = CmpInstr.getParent()->end();
3154   while (!isSafe && ++I != E) {
3155     const MachineInstr &Instr = *I;
3156     for (unsigned IO = 0, EO = Instr.getNumOperands();
3157          !isSafe && IO != EO; ++IO) {
3158       const MachineOperand &MO = Instr.getOperand(IO);
3159       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3160         isSafe = true;
3161         break;
3162       }
3163       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3164         continue;
3165       if (MO.isDef()) {
3166         isSafe = true;
3167         break;
3168       }
3169       // Condition code is after the operand before CPSR except for VSELs.
3170       ARMCC::CondCodes CC;
3171       bool IsInstrVSel = true;
3172       switch (Instr.getOpcode()) {
3173       default:
3174         IsInstrVSel = false;
3175         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3176         break;
3177       case ARM::VSELEQD:
3178       case ARM::VSELEQS:
3179       case ARM::VSELEQH:
3180         CC = ARMCC::EQ;
3181         break;
3182       case ARM::VSELGTD:
3183       case ARM::VSELGTS:
3184       case ARM::VSELGTH:
3185         CC = ARMCC::GT;
3186         break;
3187       case ARM::VSELGED:
3188       case ARM::VSELGES:
3189       case ARM::VSELGEH:
3190         CC = ARMCC::GE;
3191         break;
3192       case ARM::VSELVSD:
3193       case ARM::VSELVSS:
3194       case ARM::VSELVSH:
3195         CC = ARMCC::VS;
3196         break;
3197       }
3198 
3199       if (SubAdd) {
3200         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3201         // on CMP needs to be updated to be based on SUB.
3202         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3203         // needs to be modified.
3204         // Push the condition code operands to OperandsToUpdate.
3205         // If it is safe to remove CmpInstr, the condition code of these
3206         // operands will be modified.
3207         unsigned Opc = SubAdd->getOpcode();
3208         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3209                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3210                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3211                      Opc == ARM::tSUBi8;
3212         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3213         if (!IsSub ||
3214             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3215              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3216           // VSel doesn't support condition code update.
3217           if (IsInstrVSel)
3218             return false;
3219           // Ensure we can swap the condition.
3220           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3221           if (NewCC == ARMCC::AL)
3222             return false;
3223           OperandsToUpdate.push_back(
3224               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3225         }
3226       } else {
3227         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3228         switch (CC) {
3229         case ARMCC::EQ: // Z
3230         case ARMCC::NE: // Z
3231         case ARMCC::MI: // N
3232         case ARMCC::PL: // N
3233         case ARMCC::AL: // none
3234           // CPSR can be used multiple times, we should continue.
3235           break;
3236         case ARMCC::HS: // C
3237         case ARMCC::LO: // C
3238         case ARMCC::VS: // V
3239         case ARMCC::VC: // V
3240         case ARMCC::HI: // C Z
3241         case ARMCC::LS: // C Z
3242         case ARMCC::GE: // N V
3243         case ARMCC::LT: // N V
3244         case ARMCC::GT: // Z N V
3245         case ARMCC::LE: // Z N V
3246           // The instruction uses the V bit or C bit which is not safe.
3247           return false;
3248         }
3249       }
3250     }
3251   }
3252 
3253   // If CPSR is not killed nor re-defined, we should check whether it is
3254   // live-out. If it is live-out, do not optimize.
3255   if (!isSafe) {
3256     MachineBasicBlock *MBB = CmpInstr.getParent();
3257     for (MachineBasicBlock *Succ : MBB->successors())
3258       if (Succ->isLiveIn(ARM::CPSR))
3259         return false;
3260   }
3261 
3262   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3263   // set CPSR so this is represented as an explicit output)
3264   if (!IsThumb1) {
3265     MI->getOperand(5).setReg(ARM::CPSR);
3266     MI->getOperand(5).setIsDef(true);
3267   }
3268   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3269   CmpInstr.eraseFromParent();
3270 
3271   // Modify the condition code of operands in OperandsToUpdate.
3272   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3273   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3274   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3275     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3276 
3277   MI->clearRegisterDeads(ARM::CPSR);
3278 
3279   return true;
3280 }
3281 
3282 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3283   // Do not sink MI if it might be used to optimize a redundant compare.
3284   // We heuristically only look at the instruction immediately following MI to
3285   // avoid potentially searching the entire basic block.
3286   if (isPredicated(MI))
3287     return true;
3288   MachineBasicBlock::const_iterator Next = &MI;
3289   ++Next;
3290   Register SrcReg, SrcReg2;
3291   int64_t CmpMask, CmpValue;
3292   bool IsThumb1;
3293   if (Next != MI.getParent()->end() &&
3294       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3295       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3296     return false;
3297   return true;
3298 }
3299 
3300 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3301                                      Register Reg,
3302                                      MachineRegisterInfo *MRI) const {
3303   // Fold large immediates into add, sub, or, xor.
3304   unsigned DefOpc = DefMI.getOpcode();
3305   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3306     return false;
3307   if (!DefMI.getOperand(1).isImm())
3308     // Could be t2MOVi32imm @xx
3309     return false;
3310 
3311   if (!MRI->hasOneNonDBGUse(Reg))
3312     return false;
3313 
3314   const MCInstrDesc &DefMCID = DefMI.getDesc();
3315   if (DefMCID.hasOptionalDef()) {
3316     unsigned NumOps = DefMCID.getNumOperands();
3317     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3318     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3319       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3320       // to delete DefMI.
3321       return false;
3322   }
3323 
3324   const MCInstrDesc &UseMCID = UseMI.getDesc();
3325   if (UseMCID.hasOptionalDef()) {
3326     unsigned NumOps = UseMCID.getNumOperands();
3327     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3328       // If the instruction sets the flag, do not attempt this optimization
3329       // since it may change the semantics of the code.
3330       return false;
3331   }
3332 
3333   unsigned UseOpc = UseMI.getOpcode();
3334   unsigned NewUseOpc = 0;
3335   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3336   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3337   bool Commute = false;
3338   switch (UseOpc) {
3339   default: return false;
3340   case ARM::SUBrr:
3341   case ARM::ADDrr:
3342   case ARM::ORRrr:
3343   case ARM::EORrr:
3344   case ARM::t2SUBrr:
3345   case ARM::t2ADDrr:
3346   case ARM::t2ORRrr:
3347   case ARM::t2EORrr: {
3348     Commute = UseMI.getOperand(2).getReg() != Reg;
3349     switch (UseOpc) {
3350     default: break;
3351     case ARM::ADDrr:
3352     case ARM::SUBrr:
3353       if (UseOpc == ARM::SUBrr && Commute)
3354         return false;
3355 
3356       // ADD/SUB are special because they're essentially the same operation, so
3357       // we can handle a larger range of immediates.
3358       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3359         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3360       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3361         ImmVal = -ImmVal;
3362         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3363       } else
3364         return false;
3365       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3366       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3367       break;
3368     case ARM::ORRrr:
3369     case ARM::EORrr:
3370       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3371         return false;
3372       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3373       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3374       switch (UseOpc) {
3375       default: break;
3376       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3377       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3378       }
3379       break;
3380     case ARM::t2ADDrr:
3381     case ARM::t2SUBrr: {
3382       if (UseOpc == ARM::t2SUBrr && Commute)
3383         return false;
3384 
3385       // ADD/SUB are special because they're essentially the same operation, so
3386       // we can handle a larger range of immediates.
3387       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3388       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3389       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3390       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3391         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3392       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3393         ImmVal = -ImmVal;
3394         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3395       } else
3396         return false;
3397       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3398       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3399       break;
3400     }
3401     case ARM::t2ORRrr:
3402     case ARM::t2EORrr:
3403       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3404         return false;
3405       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3406       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3407       switch (UseOpc) {
3408       default: break;
3409       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3410       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3411       }
3412       break;
3413     }
3414   }
3415   }
3416 
3417   unsigned OpIdx = Commute ? 2 : 1;
3418   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3419   bool isKill = UseMI.getOperand(OpIdx).isKill();
3420   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3421   Register NewReg = MRI->createVirtualRegister(TRC);
3422   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3423           NewReg)
3424       .addReg(Reg1, getKillRegState(isKill))
3425       .addImm(SOImmValV1)
3426       .add(predOps(ARMCC::AL))
3427       .add(condCodeOp());
3428   UseMI.setDesc(get(NewUseOpc));
3429   UseMI.getOperand(1).setReg(NewReg);
3430   UseMI.getOperand(1).setIsKill();
3431   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3432   DefMI.eraseFromParent();
3433   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3434   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3435   // Then the below code will not be needed, as the input/output register
3436   // classes will be rgpr or gprSP.
3437   // For now, we fix the UseMI operand explicitly here:
3438   switch(NewUseOpc){
3439     case ARM::t2ADDspImm:
3440     case ARM::t2SUBspImm:
3441     case ARM::t2ADDri:
3442     case ARM::t2SUBri:
3443       MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3444   }
3445   return true;
3446 }
3447 
3448 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3449                                         const MachineInstr &MI) {
3450   switch (MI.getOpcode()) {
3451   default: {
3452     const MCInstrDesc &Desc = MI.getDesc();
3453     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3454     assert(UOps >= 0 && "bad # UOps");
3455     return UOps;
3456   }
3457 
3458   case ARM::LDRrs:
3459   case ARM::LDRBrs:
3460   case ARM::STRrs:
3461   case ARM::STRBrs: {
3462     unsigned ShOpVal = MI.getOperand(3).getImm();
3463     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3464     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3465     if (!isSub &&
3466         (ShImm == 0 ||
3467          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3468           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3469       return 1;
3470     return 2;
3471   }
3472 
3473   case ARM::LDRH:
3474   case ARM::STRH: {
3475     if (!MI.getOperand(2).getReg())
3476       return 1;
3477 
3478     unsigned ShOpVal = MI.getOperand(3).getImm();
3479     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3480     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3481     if (!isSub &&
3482         (ShImm == 0 ||
3483          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3484           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3485       return 1;
3486     return 2;
3487   }
3488 
3489   case ARM::LDRSB:
3490   case ARM::LDRSH:
3491     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3492 
3493   case ARM::LDRSB_POST:
3494   case ARM::LDRSH_POST: {
3495     Register Rt = MI.getOperand(0).getReg();
3496     Register Rm = MI.getOperand(3).getReg();
3497     return (Rt == Rm) ? 4 : 3;
3498   }
3499 
3500   case ARM::LDR_PRE_REG:
3501   case ARM::LDRB_PRE_REG: {
3502     Register Rt = MI.getOperand(0).getReg();
3503     Register Rm = MI.getOperand(3).getReg();
3504     if (Rt == Rm)
3505       return 3;
3506     unsigned ShOpVal = MI.getOperand(4).getImm();
3507     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3508     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3509     if (!isSub &&
3510         (ShImm == 0 ||
3511          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3512           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3513       return 2;
3514     return 3;
3515   }
3516 
3517   case ARM::STR_PRE_REG:
3518   case ARM::STRB_PRE_REG: {
3519     unsigned ShOpVal = MI.getOperand(4).getImm();
3520     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3521     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3522     if (!isSub &&
3523         (ShImm == 0 ||
3524          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3525           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3526       return 2;
3527     return 3;
3528   }
3529 
3530   case ARM::LDRH_PRE:
3531   case ARM::STRH_PRE: {
3532     Register Rt = MI.getOperand(0).getReg();
3533     Register Rm = MI.getOperand(3).getReg();
3534     if (!Rm)
3535       return 2;
3536     if (Rt == Rm)
3537       return 3;
3538     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3539   }
3540 
3541   case ARM::LDR_POST_REG:
3542   case ARM::LDRB_POST_REG:
3543   case ARM::LDRH_POST: {
3544     Register Rt = MI.getOperand(0).getReg();
3545     Register Rm = MI.getOperand(3).getReg();
3546     return (Rt == Rm) ? 3 : 2;
3547   }
3548 
3549   case ARM::LDR_PRE_IMM:
3550   case ARM::LDRB_PRE_IMM:
3551   case ARM::LDR_POST_IMM:
3552   case ARM::LDRB_POST_IMM:
3553   case ARM::STRB_POST_IMM:
3554   case ARM::STRB_POST_REG:
3555   case ARM::STRB_PRE_IMM:
3556   case ARM::STRH_POST:
3557   case ARM::STR_POST_IMM:
3558   case ARM::STR_POST_REG:
3559   case ARM::STR_PRE_IMM:
3560     return 2;
3561 
3562   case ARM::LDRSB_PRE:
3563   case ARM::LDRSH_PRE: {
3564     Register Rm = MI.getOperand(3).getReg();
3565     if (Rm == 0)
3566       return 3;
3567     Register Rt = MI.getOperand(0).getReg();
3568     if (Rt == Rm)
3569       return 4;
3570     unsigned ShOpVal = MI.getOperand(4).getImm();
3571     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3572     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3573     if (!isSub &&
3574         (ShImm == 0 ||
3575          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3576           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3577       return 3;
3578     return 4;
3579   }
3580 
3581   case ARM::LDRD: {
3582     Register Rt = MI.getOperand(0).getReg();
3583     Register Rn = MI.getOperand(2).getReg();
3584     Register Rm = MI.getOperand(3).getReg();
3585     if (Rm)
3586       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3587                                                                           : 3;
3588     return (Rt == Rn) ? 3 : 2;
3589   }
3590 
3591   case ARM::STRD: {
3592     Register Rm = MI.getOperand(3).getReg();
3593     if (Rm)
3594       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3595                                                                           : 3;
3596     return 2;
3597   }
3598 
3599   case ARM::LDRD_POST:
3600   case ARM::t2LDRD_POST:
3601     return 3;
3602 
3603   case ARM::STRD_POST:
3604   case ARM::t2STRD_POST:
3605     return 4;
3606 
3607   case ARM::LDRD_PRE: {
3608     Register Rt = MI.getOperand(0).getReg();
3609     Register Rn = MI.getOperand(3).getReg();
3610     Register Rm = MI.getOperand(4).getReg();
3611     if (Rm)
3612       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3613                                                                           : 4;
3614     return (Rt == Rn) ? 4 : 3;
3615   }
3616 
3617   case ARM::t2LDRD_PRE: {
3618     Register Rt = MI.getOperand(0).getReg();
3619     Register Rn = MI.getOperand(3).getReg();
3620     return (Rt == Rn) ? 4 : 3;
3621   }
3622 
3623   case ARM::STRD_PRE: {
3624     Register Rm = MI.getOperand(4).getReg();
3625     if (Rm)
3626       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3627                                                                           : 4;
3628     return 3;
3629   }
3630 
3631   case ARM::t2STRD_PRE:
3632     return 3;
3633 
3634   case ARM::t2LDR_POST:
3635   case ARM::t2LDRB_POST:
3636   case ARM::t2LDRB_PRE:
3637   case ARM::t2LDRSBi12:
3638   case ARM::t2LDRSBi8:
3639   case ARM::t2LDRSBpci:
3640   case ARM::t2LDRSBs:
3641   case ARM::t2LDRH_POST:
3642   case ARM::t2LDRH_PRE:
3643   case ARM::t2LDRSBT:
3644   case ARM::t2LDRSB_POST:
3645   case ARM::t2LDRSB_PRE:
3646   case ARM::t2LDRSH_POST:
3647   case ARM::t2LDRSH_PRE:
3648   case ARM::t2LDRSHi12:
3649   case ARM::t2LDRSHi8:
3650   case ARM::t2LDRSHpci:
3651   case ARM::t2LDRSHs:
3652     return 2;
3653 
3654   case ARM::t2LDRDi8: {
3655     Register Rt = MI.getOperand(0).getReg();
3656     Register Rn = MI.getOperand(2).getReg();
3657     return (Rt == Rn) ? 3 : 2;
3658   }
3659 
3660   case ARM::t2STRB_POST:
3661   case ARM::t2STRB_PRE:
3662   case ARM::t2STRBs:
3663   case ARM::t2STRDi8:
3664   case ARM::t2STRH_POST:
3665   case ARM::t2STRH_PRE:
3666   case ARM::t2STRHs:
3667   case ARM::t2STR_POST:
3668   case ARM::t2STR_PRE:
3669   case ARM::t2STRs:
3670     return 2;
3671   }
3672 }
3673 
3674 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3675 // can't be easily determined return 0 (missing MachineMemOperand).
3676 //
3677 // FIXME: The current MachineInstr design does not support relying on machine
3678 // mem operands to determine the width of a memory access. Instead, we expect
3679 // the target to provide this information based on the instruction opcode and
3680 // operands. However, using MachineMemOperand is the best solution now for
3681 // two reasons:
3682 //
3683 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3684 // operands. This is much more dangerous than using the MachineMemOperand
3685 // sizes because CodeGen passes can insert/remove optional machine operands. In
3686 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3687 // postRA passes as well.
3688 //
3689 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3690 // machine model that calls this should handle the unknown (zero size) case.
3691 //
3692 // Long term, we should require a target hook that verifies MachineMemOperand
3693 // sizes during MC lowering. That target hook should be local to MC lowering
3694 // because we can't ensure that it is aware of other MI forms. Doing this will
3695 // ensure that MachineMemOperands are correctly propagated through all passes.
3696 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3697   unsigned Size = 0;
3698   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3699                                   E = MI.memoperands_end();
3700        I != E; ++I) {
3701     Size += (*I)->getSize();
3702   }
3703   // FIXME: The scheduler currently can't handle values larger than 16. But
3704   // the values can actually go up to 32 for floating-point load/store
3705   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3706   // operations isn't right; we could end up with "extra" memory operands for
3707   // various reasons, like tail merge merging two memory operations.
3708   return std::min(Size / 4, 16U);
3709 }
3710 
3711 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3712                                                     unsigned NumRegs) {
3713   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3714   switch (Opc) {
3715   default:
3716     break;
3717   case ARM::VLDMDIA_UPD:
3718   case ARM::VLDMDDB_UPD:
3719   case ARM::VLDMSIA_UPD:
3720   case ARM::VLDMSDB_UPD:
3721   case ARM::VSTMDIA_UPD:
3722   case ARM::VSTMDDB_UPD:
3723   case ARM::VSTMSIA_UPD:
3724   case ARM::VSTMSDB_UPD:
3725   case ARM::LDMIA_UPD:
3726   case ARM::LDMDA_UPD:
3727   case ARM::LDMDB_UPD:
3728   case ARM::LDMIB_UPD:
3729   case ARM::STMIA_UPD:
3730   case ARM::STMDA_UPD:
3731   case ARM::STMDB_UPD:
3732   case ARM::STMIB_UPD:
3733   case ARM::tLDMIA_UPD:
3734   case ARM::tSTMIA_UPD:
3735   case ARM::t2LDMIA_UPD:
3736   case ARM::t2LDMDB_UPD:
3737   case ARM::t2STMIA_UPD:
3738   case ARM::t2STMDB_UPD:
3739     ++UOps; // One for base register writeback.
3740     break;
3741   case ARM::LDMIA_RET:
3742   case ARM::tPOP_RET:
3743   case ARM::t2LDMIA_RET:
3744     UOps += 2; // One for base reg wb, one for write to pc.
3745     break;
3746   }
3747   return UOps;
3748 }
3749 
3750 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3751                                           const MachineInstr &MI) const {
3752   if (!ItinData || ItinData->isEmpty())
3753     return 1;
3754 
3755   const MCInstrDesc &Desc = MI.getDesc();
3756   unsigned Class = Desc.getSchedClass();
3757   int ItinUOps = ItinData->getNumMicroOps(Class);
3758   if (ItinUOps >= 0) {
3759     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3760       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3761 
3762     return ItinUOps;
3763   }
3764 
3765   unsigned Opc = MI.getOpcode();
3766   switch (Opc) {
3767   default:
3768     llvm_unreachable("Unexpected multi-uops instruction!");
3769   case ARM::VLDMQIA:
3770   case ARM::VSTMQIA:
3771     return 2;
3772 
3773   // The number of uOps for load / store multiple are determined by the number
3774   // registers.
3775   //
3776   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3777   // same cycle. The scheduling for the first load / store must be done
3778   // separately by assuming the address is not 64-bit aligned.
3779   //
3780   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3781   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3782   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3783   case ARM::VLDMDIA:
3784   case ARM::VLDMDIA_UPD:
3785   case ARM::VLDMDDB_UPD:
3786   case ARM::VLDMSIA:
3787   case ARM::VLDMSIA_UPD:
3788   case ARM::VLDMSDB_UPD:
3789   case ARM::VSTMDIA:
3790   case ARM::VSTMDIA_UPD:
3791   case ARM::VSTMDDB_UPD:
3792   case ARM::VSTMSIA:
3793   case ARM::VSTMSIA_UPD:
3794   case ARM::VSTMSDB_UPD: {
3795     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3796     return (NumRegs / 2) + (NumRegs % 2) + 1;
3797   }
3798 
3799   case ARM::LDMIA_RET:
3800   case ARM::LDMIA:
3801   case ARM::LDMDA:
3802   case ARM::LDMDB:
3803   case ARM::LDMIB:
3804   case ARM::LDMIA_UPD:
3805   case ARM::LDMDA_UPD:
3806   case ARM::LDMDB_UPD:
3807   case ARM::LDMIB_UPD:
3808   case ARM::STMIA:
3809   case ARM::STMDA:
3810   case ARM::STMDB:
3811   case ARM::STMIB:
3812   case ARM::STMIA_UPD:
3813   case ARM::STMDA_UPD:
3814   case ARM::STMDB_UPD:
3815   case ARM::STMIB_UPD:
3816   case ARM::tLDMIA:
3817   case ARM::tLDMIA_UPD:
3818   case ARM::tSTMIA_UPD:
3819   case ARM::tPOP_RET:
3820   case ARM::tPOP:
3821   case ARM::tPUSH:
3822   case ARM::t2LDMIA_RET:
3823   case ARM::t2LDMIA:
3824   case ARM::t2LDMDB:
3825   case ARM::t2LDMIA_UPD:
3826   case ARM::t2LDMDB_UPD:
3827   case ARM::t2STMIA:
3828   case ARM::t2STMDB:
3829   case ARM::t2STMIA_UPD:
3830   case ARM::t2STMDB_UPD: {
3831     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3832     switch (Subtarget.getLdStMultipleTiming()) {
3833     case ARMSubtarget::SingleIssuePlusExtras:
3834       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3835     case ARMSubtarget::SingleIssue:
3836       // Assume the worst.
3837       return NumRegs;
3838     case ARMSubtarget::DoubleIssue: {
3839       if (NumRegs < 4)
3840         return 2;
3841       // 4 registers would be issued: 2, 2.
3842       // 5 registers would be issued: 2, 2, 1.
3843       unsigned UOps = (NumRegs / 2);
3844       if (NumRegs % 2)
3845         ++UOps;
3846       return UOps;
3847     }
3848     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3849       unsigned UOps = (NumRegs / 2);
3850       // If there are odd number of registers or if it's not 64-bit aligned,
3851       // then it takes an extra AGU (Address Generation Unit) cycle.
3852       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3853           (*MI.memoperands_begin())->getAlign() < Align(8))
3854         ++UOps;
3855       return UOps;
3856       }
3857     }
3858   }
3859   }
3860   llvm_unreachable("Didn't find the number of microops");
3861 }
3862 
3863 int
3864 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3865                                   const MCInstrDesc &DefMCID,
3866                                   unsigned DefClass,
3867                                   unsigned DefIdx, unsigned DefAlign) const {
3868   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3869   if (RegNo <= 0)
3870     // Def is the address writeback.
3871     return ItinData->getOperandCycle(DefClass, DefIdx);
3872 
3873   int DefCycle;
3874   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3875     // (regno / 2) + (regno % 2) + 1
3876     DefCycle = RegNo / 2 + 1;
3877     if (RegNo % 2)
3878       ++DefCycle;
3879   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3880     DefCycle = RegNo;
3881     bool isSLoad = false;
3882 
3883     switch (DefMCID.getOpcode()) {
3884     default: break;
3885     case ARM::VLDMSIA:
3886     case ARM::VLDMSIA_UPD:
3887     case ARM::VLDMSDB_UPD:
3888       isSLoad = true;
3889       break;
3890     }
3891 
3892     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3893     // then it takes an extra cycle.
3894     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3895       ++DefCycle;
3896   } else {
3897     // Assume the worst.
3898     DefCycle = RegNo + 2;
3899   }
3900 
3901   return DefCycle;
3902 }
3903 
3904 int
3905 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3906                                  const MCInstrDesc &DefMCID,
3907                                  unsigned DefClass,
3908                                  unsigned DefIdx, unsigned DefAlign) const {
3909   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3910   if (RegNo <= 0)
3911     // Def is the address writeback.
3912     return ItinData->getOperandCycle(DefClass, DefIdx);
3913 
3914   int DefCycle;
3915   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3916     // 4 registers would be issued: 1, 2, 1.
3917     // 5 registers would be issued: 1, 2, 2.
3918     DefCycle = RegNo / 2;
3919     if (DefCycle < 1)
3920       DefCycle = 1;
3921     // Result latency is issue cycle + 2: E2.
3922     DefCycle += 2;
3923   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3924     DefCycle = (RegNo / 2);
3925     // If there are odd number of registers or if it's not 64-bit aligned,
3926     // then it takes an extra AGU (Address Generation Unit) cycle.
3927     if ((RegNo % 2) || DefAlign < 8)
3928       ++DefCycle;
3929     // Result latency is AGU cycles + 2.
3930     DefCycle += 2;
3931   } else {
3932     // Assume the worst.
3933     DefCycle = RegNo + 2;
3934   }
3935 
3936   return DefCycle;
3937 }
3938 
3939 int
3940 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3941                                   const MCInstrDesc &UseMCID,
3942                                   unsigned UseClass,
3943                                   unsigned UseIdx, unsigned UseAlign) const {
3944   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3945   if (RegNo <= 0)
3946     return ItinData->getOperandCycle(UseClass, UseIdx);
3947 
3948   int UseCycle;
3949   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3950     // (regno / 2) + (regno % 2) + 1
3951     UseCycle = RegNo / 2 + 1;
3952     if (RegNo % 2)
3953       ++UseCycle;
3954   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3955     UseCycle = RegNo;
3956     bool isSStore = false;
3957 
3958     switch (UseMCID.getOpcode()) {
3959     default: break;
3960     case ARM::VSTMSIA:
3961     case ARM::VSTMSIA_UPD:
3962     case ARM::VSTMSDB_UPD:
3963       isSStore = true;
3964       break;
3965     }
3966 
3967     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3968     // then it takes an extra cycle.
3969     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3970       ++UseCycle;
3971   } else {
3972     // Assume the worst.
3973     UseCycle = RegNo + 2;
3974   }
3975 
3976   return UseCycle;
3977 }
3978 
3979 int
3980 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3981                                  const MCInstrDesc &UseMCID,
3982                                  unsigned UseClass,
3983                                  unsigned UseIdx, unsigned UseAlign) const {
3984   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3985   if (RegNo <= 0)
3986     return ItinData->getOperandCycle(UseClass, UseIdx);
3987 
3988   int UseCycle;
3989   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3990     UseCycle = RegNo / 2;
3991     if (UseCycle < 2)
3992       UseCycle = 2;
3993     // Read in E3.
3994     UseCycle += 2;
3995   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3996     UseCycle = (RegNo / 2);
3997     // If there are odd number of registers or if it's not 64-bit aligned,
3998     // then it takes an extra AGU (Address Generation Unit) cycle.
3999     if ((RegNo % 2) || UseAlign < 8)
4000       ++UseCycle;
4001   } else {
4002     // Assume the worst.
4003     UseCycle = 1;
4004   }
4005   return UseCycle;
4006 }
4007 
4008 int
4009 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4010                                     const MCInstrDesc &DefMCID,
4011                                     unsigned DefIdx, unsigned DefAlign,
4012                                     const MCInstrDesc &UseMCID,
4013                                     unsigned UseIdx, unsigned UseAlign) const {
4014   unsigned DefClass = DefMCID.getSchedClass();
4015   unsigned UseClass = UseMCID.getSchedClass();
4016 
4017   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4018     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4019 
4020   // This may be a def / use of a variable_ops instruction, the operand
4021   // latency might be determinable dynamically. Let the target try to
4022   // figure it out.
4023   int DefCycle = -1;
4024   bool LdmBypass = false;
4025   switch (DefMCID.getOpcode()) {
4026   default:
4027     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4028     break;
4029 
4030   case ARM::VLDMDIA:
4031   case ARM::VLDMDIA_UPD:
4032   case ARM::VLDMDDB_UPD:
4033   case ARM::VLDMSIA:
4034   case ARM::VLDMSIA_UPD:
4035   case ARM::VLDMSDB_UPD:
4036     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4037     break;
4038 
4039   case ARM::LDMIA_RET:
4040   case ARM::LDMIA:
4041   case ARM::LDMDA:
4042   case ARM::LDMDB:
4043   case ARM::LDMIB:
4044   case ARM::LDMIA_UPD:
4045   case ARM::LDMDA_UPD:
4046   case ARM::LDMDB_UPD:
4047   case ARM::LDMIB_UPD:
4048   case ARM::tLDMIA:
4049   case ARM::tLDMIA_UPD:
4050   case ARM::tPUSH:
4051   case ARM::t2LDMIA_RET:
4052   case ARM::t2LDMIA:
4053   case ARM::t2LDMDB:
4054   case ARM::t2LDMIA_UPD:
4055   case ARM::t2LDMDB_UPD:
4056     LdmBypass = true;
4057     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4058     break;
4059   }
4060 
4061   if (DefCycle == -1)
4062     // We can't seem to determine the result latency of the def, assume it's 2.
4063     DefCycle = 2;
4064 
4065   int UseCycle = -1;
4066   switch (UseMCID.getOpcode()) {
4067   default:
4068     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4069     break;
4070 
4071   case ARM::VSTMDIA:
4072   case ARM::VSTMDIA_UPD:
4073   case ARM::VSTMDDB_UPD:
4074   case ARM::VSTMSIA:
4075   case ARM::VSTMSIA_UPD:
4076   case ARM::VSTMSDB_UPD:
4077     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4078     break;
4079 
4080   case ARM::STMIA:
4081   case ARM::STMDA:
4082   case ARM::STMDB:
4083   case ARM::STMIB:
4084   case ARM::STMIA_UPD:
4085   case ARM::STMDA_UPD:
4086   case ARM::STMDB_UPD:
4087   case ARM::STMIB_UPD:
4088   case ARM::tSTMIA_UPD:
4089   case ARM::tPOP_RET:
4090   case ARM::tPOP:
4091   case ARM::t2STMIA:
4092   case ARM::t2STMDB:
4093   case ARM::t2STMIA_UPD:
4094   case ARM::t2STMDB_UPD:
4095     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4096     break;
4097   }
4098 
4099   if (UseCycle == -1)
4100     // Assume it's read in the first stage.
4101     UseCycle = 1;
4102 
4103   UseCycle = DefCycle - UseCycle + 1;
4104   if (UseCycle > 0) {
4105     if (LdmBypass) {
4106       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4107       // first def operand.
4108       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4109                                           UseClass, UseIdx))
4110         --UseCycle;
4111     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4112                                                UseClass, UseIdx)) {
4113       --UseCycle;
4114     }
4115   }
4116 
4117   return UseCycle;
4118 }
4119 
4120 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4121                                            const MachineInstr *MI, unsigned Reg,
4122                                            unsigned &DefIdx, unsigned &Dist) {
4123   Dist = 0;
4124 
4125   MachineBasicBlock::const_iterator I = MI; ++I;
4126   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4127   assert(II->isInsideBundle() && "Empty bundle?");
4128 
4129   int Idx = -1;
4130   while (II->isInsideBundle()) {
4131     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4132     if (Idx != -1)
4133       break;
4134     --II;
4135     ++Dist;
4136   }
4137 
4138   assert(Idx != -1 && "Cannot find bundled definition!");
4139   DefIdx = Idx;
4140   return &*II;
4141 }
4142 
4143 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4144                                            const MachineInstr &MI, unsigned Reg,
4145                                            unsigned &UseIdx, unsigned &Dist) {
4146   Dist = 0;
4147 
4148   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4149   assert(II->isInsideBundle() && "Empty bundle?");
4150   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4151 
4152   // FIXME: This doesn't properly handle multiple uses.
4153   int Idx = -1;
4154   while (II != E && II->isInsideBundle()) {
4155     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4156     if (Idx != -1)
4157       break;
4158     if (II->getOpcode() != ARM::t2IT)
4159       ++Dist;
4160     ++II;
4161   }
4162 
4163   if (Idx == -1) {
4164     Dist = 0;
4165     return nullptr;
4166   }
4167 
4168   UseIdx = Idx;
4169   return &*II;
4170 }
4171 
4172 /// Return the number of cycles to add to (or subtract from) the static
4173 /// itinerary based on the def opcode and alignment. The caller will ensure that
4174 /// adjusted latency is at least one cycle.
4175 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4176                             const MachineInstr &DefMI,
4177                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4178   int Adjust = 0;
4179   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4180     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4181     // variants are one cycle cheaper.
4182     switch (DefMCID.getOpcode()) {
4183     default: break;
4184     case ARM::LDRrs:
4185     case ARM::LDRBrs: {
4186       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4187       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4188       if (ShImm == 0 ||
4189           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4190         --Adjust;
4191       break;
4192     }
4193     case ARM::t2LDRs:
4194     case ARM::t2LDRBs:
4195     case ARM::t2LDRHs:
4196     case ARM::t2LDRSHs: {
4197       // Thumb2 mode: lsl only.
4198       unsigned ShAmt = DefMI.getOperand(3).getImm();
4199       if (ShAmt == 0 || ShAmt == 2)
4200         --Adjust;
4201       break;
4202     }
4203     }
4204   } else if (Subtarget.isSwift()) {
4205     // FIXME: Properly handle all of the latency adjustments for address
4206     // writeback.
4207     switch (DefMCID.getOpcode()) {
4208     default: break;
4209     case ARM::LDRrs:
4210     case ARM::LDRBrs: {
4211       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4212       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4213       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4214       if (!isSub &&
4215           (ShImm == 0 ||
4216            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4217             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4218         Adjust -= 2;
4219       else if (!isSub &&
4220                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4221         --Adjust;
4222       break;
4223     }
4224     case ARM::t2LDRs:
4225     case ARM::t2LDRBs:
4226     case ARM::t2LDRHs:
4227     case ARM::t2LDRSHs: {
4228       // Thumb2 mode: lsl only.
4229       unsigned ShAmt = DefMI.getOperand(3).getImm();
4230       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4231         Adjust -= 2;
4232       break;
4233     }
4234     }
4235   }
4236 
4237   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4238     switch (DefMCID.getOpcode()) {
4239     default: break;
4240     case ARM::VLD1q8:
4241     case ARM::VLD1q16:
4242     case ARM::VLD1q32:
4243     case ARM::VLD1q64:
4244     case ARM::VLD1q8wb_fixed:
4245     case ARM::VLD1q16wb_fixed:
4246     case ARM::VLD1q32wb_fixed:
4247     case ARM::VLD1q64wb_fixed:
4248     case ARM::VLD1q8wb_register:
4249     case ARM::VLD1q16wb_register:
4250     case ARM::VLD1q32wb_register:
4251     case ARM::VLD1q64wb_register:
4252     case ARM::VLD2d8:
4253     case ARM::VLD2d16:
4254     case ARM::VLD2d32:
4255     case ARM::VLD2q8:
4256     case ARM::VLD2q16:
4257     case ARM::VLD2q32:
4258     case ARM::VLD2d8wb_fixed:
4259     case ARM::VLD2d16wb_fixed:
4260     case ARM::VLD2d32wb_fixed:
4261     case ARM::VLD2q8wb_fixed:
4262     case ARM::VLD2q16wb_fixed:
4263     case ARM::VLD2q32wb_fixed:
4264     case ARM::VLD2d8wb_register:
4265     case ARM::VLD2d16wb_register:
4266     case ARM::VLD2d32wb_register:
4267     case ARM::VLD2q8wb_register:
4268     case ARM::VLD2q16wb_register:
4269     case ARM::VLD2q32wb_register:
4270     case ARM::VLD3d8:
4271     case ARM::VLD3d16:
4272     case ARM::VLD3d32:
4273     case ARM::VLD1d64T:
4274     case ARM::VLD3d8_UPD:
4275     case ARM::VLD3d16_UPD:
4276     case ARM::VLD3d32_UPD:
4277     case ARM::VLD1d64Twb_fixed:
4278     case ARM::VLD1d64Twb_register:
4279     case ARM::VLD3q8_UPD:
4280     case ARM::VLD3q16_UPD:
4281     case ARM::VLD3q32_UPD:
4282     case ARM::VLD4d8:
4283     case ARM::VLD4d16:
4284     case ARM::VLD4d32:
4285     case ARM::VLD1d64Q:
4286     case ARM::VLD4d8_UPD:
4287     case ARM::VLD4d16_UPD:
4288     case ARM::VLD4d32_UPD:
4289     case ARM::VLD1d64Qwb_fixed:
4290     case ARM::VLD1d64Qwb_register:
4291     case ARM::VLD4q8_UPD:
4292     case ARM::VLD4q16_UPD:
4293     case ARM::VLD4q32_UPD:
4294     case ARM::VLD1DUPq8:
4295     case ARM::VLD1DUPq16:
4296     case ARM::VLD1DUPq32:
4297     case ARM::VLD1DUPq8wb_fixed:
4298     case ARM::VLD1DUPq16wb_fixed:
4299     case ARM::VLD1DUPq32wb_fixed:
4300     case ARM::VLD1DUPq8wb_register:
4301     case ARM::VLD1DUPq16wb_register:
4302     case ARM::VLD1DUPq32wb_register:
4303     case ARM::VLD2DUPd8:
4304     case ARM::VLD2DUPd16:
4305     case ARM::VLD2DUPd32:
4306     case ARM::VLD2DUPd8wb_fixed:
4307     case ARM::VLD2DUPd16wb_fixed:
4308     case ARM::VLD2DUPd32wb_fixed:
4309     case ARM::VLD2DUPd8wb_register:
4310     case ARM::VLD2DUPd16wb_register:
4311     case ARM::VLD2DUPd32wb_register:
4312     case ARM::VLD4DUPd8:
4313     case ARM::VLD4DUPd16:
4314     case ARM::VLD4DUPd32:
4315     case ARM::VLD4DUPd8_UPD:
4316     case ARM::VLD4DUPd16_UPD:
4317     case ARM::VLD4DUPd32_UPD:
4318     case ARM::VLD1LNd8:
4319     case ARM::VLD1LNd16:
4320     case ARM::VLD1LNd32:
4321     case ARM::VLD1LNd8_UPD:
4322     case ARM::VLD1LNd16_UPD:
4323     case ARM::VLD1LNd32_UPD:
4324     case ARM::VLD2LNd8:
4325     case ARM::VLD2LNd16:
4326     case ARM::VLD2LNd32:
4327     case ARM::VLD2LNq16:
4328     case ARM::VLD2LNq32:
4329     case ARM::VLD2LNd8_UPD:
4330     case ARM::VLD2LNd16_UPD:
4331     case ARM::VLD2LNd32_UPD:
4332     case ARM::VLD2LNq16_UPD:
4333     case ARM::VLD2LNq32_UPD:
4334     case ARM::VLD4LNd8:
4335     case ARM::VLD4LNd16:
4336     case ARM::VLD4LNd32:
4337     case ARM::VLD4LNq16:
4338     case ARM::VLD4LNq32:
4339     case ARM::VLD4LNd8_UPD:
4340     case ARM::VLD4LNd16_UPD:
4341     case ARM::VLD4LNd32_UPD:
4342     case ARM::VLD4LNq16_UPD:
4343     case ARM::VLD4LNq32_UPD:
4344       // If the address is not 64-bit aligned, the latencies of these
4345       // instructions increases by one.
4346       ++Adjust;
4347       break;
4348     }
4349   }
4350   return Adjust;
4351 }
4352 
4353 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4354                                         const MachineInstr &DefMI,
4355                                         unsigned DefIdx,
4356                                         const MachineInstr &UseMI,
4357                                         unsigned UseIdx) const {
4358   // No operand latency. The caller may fall back to getInstrLatency.
4359   if (!ItinData || ItinData->isEmpty())
4360     return -1;
4361 
4362   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4363   Register Reg = DefMO.getReg();
4364 
4365   const MachineInstr *ResolvedDefMI = &DefMI;
4366   unsigned DefAdj = 0;
4367   if (DefMI.isBundle())
4368     ResolvedDefMI =
4369         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4370   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4371       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4372     return 1;
4373   }
4374 
4375   const MachineInstr *ResolvedUseMI = &UseMI;
4376   unsigned UseAdj = 0;
4377   if (UseMI.isBundle()) {
4378     ResolvedUseMI =
4379         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4380     if (!ResolvedUseMI)
4381       return -1;
4382   }
4383 
4384   return getOperandLatencyImpl(
4385       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4386       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4387 }
4388 
4389 int ARMBaseInstrInfo::getOperandLatencyImpl(
4390     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4391     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4392     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4393     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4394   if (Reg == ARM::CPSR) {
4395     if (DefMI.getOpcode() == ARM::FMSTAT) {
4396       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4397       return Subtarget.isLikeA9() ? 1 : 20;
4398     }
4399 
4400     // CPSR set and branch can be paired in the same cycle.
4401     if (UseMI.isBranch())
4402       return 0;
4403 
4404     // Otherwise it takes the instruction latency (generally one).
4405     unsigned Latency = getInstrLatency(ItinData, DefMI);
4406 
4407     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4408     // its uses. Instructions which are otherwise scheduled between them may
4409     // incur a code size penalty (not able to use the CPSR setting 16-bit
4410     // instructions).
4411     if (Latency > 0 && Subtarget.isThumb2()) {
4412       const MachineFunction *MF = DefMI.getParent()->getParent();
4413       // FIXME: Use Function::hasOptSize().
4414       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4415         --Latency;
4416     }
4417     return Latency;
4418   }
4419 
4420   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4421     return -1;
4422 
4423   unsigned DefAlign = DefMI.hasOneMemOperand()
4424                           ? (*DefMI.memoperands_begin())->getAlign().value()
4425                           : 0;
4426   unsigned UseAlign = UseMI.hasOneMemOperand()
4427                           ? (*UseMI.memoperands_begin())->getAlign().value()
4428                           : 0;
4429 
4430   // Get the itinerary's latency if possible, and handle variable_ops.
4431   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4432                                   UseIdx, UseAlign);
4433   // Unable to find operand latency. The caller may resort to getInstrLatency.
4434   if (Latency < 0)
4435     return Latency;
4436 
4437   // Adjust for IT block position.
4438   int Adj = DefAdj + UseAdj;
4439 
4440   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4441   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4442   if (Adj >= 0 || (int)Latency > -Adj) {
4443     return Latency + Adj;
4444   }
4445   // Return the itinerary latency, which may be zero but not less than zero.
4446   return Latency;
4447 }
4448 
4449 int
4450 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4451                                     SDNode *DefNode, unsigned DefIdx,
4452                                     SDNode *UseNode, unsigned UseIdx) const {
4453   if (!DefNode->isMachineOpcode())
4454     return 1;
4455 
4456   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4457 
4458   if (isZeroCost(DefMCID.Opcode))
4459     return 0;
4460 
4461   if (!ItinData || ItinData->isEmpty())
4462     return DefMCID.mayLoad() ? 3 : 1;
4463 
4464   if (!UseNode->isMachineOpcode()) {
4465     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4466     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4467     int Threshold = 1 + Adj;
4468     return Latency <= Threshold ? 1 : Latency - Adj;
4469   }
4470 
4471   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4472   auto *DefMN = cast<MachineSDNode>(DefNode);
4473   unsigned DefAlign = !DefMN->memoperands_empty()
4474                           ? (*DefMN->memoperands_begin())->getAlign().value()
4475                           : 0;
4476   auto *UseMN = cast<MachineSDNode>(UseNode);
4477   unsigned UseAlign = !UseMN->memoperands_empty()
4478                           ? (*UseMN->memoperands_begin())->getAlign().value()
4479                           : 0;
4480   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4481                                   UseMCID, UseIdx, UseAlign);
4482 
4483   if (Latency > 1 &&
4484       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4485        Subtarget.isCortexA7())) {
4486     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4487     // variants are one cycle cheaper.
4488     switch (DefMCID.getOpcode()) {
4489     default: break;
4490     case ARM::LDRrs:
4491     case ARM::LDRBrs: {
4492       unsigned ShOpVal =
4493         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4494       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4495       if (ShImm == 0 ||
4496           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4497         --Latency;
4498       break;
4499     }
4500     case ARM::t2LDRs:
4501     case ARM::t2LDRBs:
4502     case ARM::t2LDRHs:
4503     case ARM::t2LDRSHs: {
4504       // Thumb2 mode: lsl only.
4505       unsigned ShAmt =
4506         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4507       if (ShAmt == 0 || ShAmt == 2)
4508         --Latency;
4509       break;
4510     }
4511     }
4512   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4513     // FIXME: Properly handle all of the latency adjustments for address
4514     // writeback.
4515     switch (DefMCID.getOpcode()) {
4516     default: break;
4517     case ARM::LDRrs:
4518     case ARM::LDRBrs: {
4519       unsigned ShOpVal =
4520         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4521       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4522       if (ShImm == 0 ||
4523           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4524            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4525         Latency -= 2;
4526       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4527         --Latency;
4528       break;
4529     }
4530     case ARM::t2LDRs:
4531     case ARM::t2LDRBs:
4532     case ARM::t2LDRHs:
4533     case ARM::t2LDRSHs:
4534       // Thumb2 mode: lsl 0-3 only.
4535       Latency -= 2;
4536       break;
4537     }
4538   }
4539 
4540   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4541     switch (DefMCID.getOpcode()) {
4542     default: break;
4543     case ARM::VLD1q8:
4544     case ARM::VLD1q16:
4545     case ARM::VLD1q32:
4546     case ARM::VLD1q64:
4547     case ARM::VLD1q8wb_register:
4548     case ARM::VLD1q16wb_register:
4549     case ARM::VLD1q32wb_register:
4550     case ARM::VLD1q64wb_register:
4551     case ARM::VLD1q8wb_fixed:
4552     case ARM::VLD1q16wb_fixed:
4553     case ARM::VLD1q32wb_fixed:
4554     case ARM::VLD1q64wb_fixed:
4555     case ARM::VLD2d8:
4556     case ARM::VLD2d16:
4557     case ARM::VLD2d32:
4558     case ARM::VLD2q8Pseudo:
4559     case ARM::VLD2q16Pseudo:
4560     case ARM::VLD2q32Pseudo:
4561     case ARM::VLD2d8wb_fixed:
4562     case ARM::VLD2d16wb_fixed:
4563     case ARM::VLD2d32wb_fixed:
4564     case ARM::VLD2q8PseudoWB_fixed:
4565     case ARM::VLD2q16PseudoWB_fixed:
4566     case ARM::VLD2q32PseudoWB_fixed:
4567     case ARM::VLD2d8wb_register:
4568     case ARM::VLD2d16wb_register:
4569     case ARM::VLD2d32wb_register:
4570     case ARM::VLD2q8PseudoWB_register:
4571     case ARM::VLD2q16PseudoWB_register:
4572     case ARM::VLD2q32PseudoWB_register:
4573     case ARM::VLD3d8Pseudo:
4574     case ARM::VLD3d16Pseudo:
4575     case ARM::VLD3d32Pseudo:
4576     case ARM::VLD1d8TPseudo:
4577     case ARM::VLD1d16TPseudo:
4578     case ARM::VLD1d32TPseudo:
4579     case ARM::VLD1d64TPseudo:
4580     case ARM::VLD1d64TPseudoWB_fixed:
4581     case ARM::VLD1d64TPseudoWB_register:
4582     case ARM::VLD3d8Pseudo_UPD:
4583     case ARM::VLD3d16Pseudo_UPD:
4584     case ARM::VLD3d32Pseudo_UPD:
4585     case ARM::VLD3q8Pseudo_UPD:
4586     case ARM::VLD3q16Pseudo_UPD:
4587     case ARM::VLD3q32Pseudo_UPD:
4588     case ARM::VLD3q8oddPseudo:
4589     case ARM::VLD3q16oddPseudo:
4590     case ARM::VLD3q32oddPseudo:
4591     case ARM::VLD3q8oddPseudo_UPD:
4592     case ARM::VLD3q16oddPseudo_UPD:
4593     case ARM::VLD3q32oddPseudo_UPD:
4594     case ARM::VLD4d8Pseudo:
4595     case ARM::VLD4d16Pseudo:
4596     case ARM::VLD4d32Pseudo:
4597     case ARM::VLD1d8QPseudo:
4598     case ARM::VLD1d16QPseudo:
4599     case ARM::VLD1d32QPseudo:
4600     case ARM::VLD1d64QPseudo:
4601     case ARM::VLD1d64QPseudoWB_fixed:
4602     case ARM::VLD1d64QPseudoWB_register:
4603     case ARM::VLD1q8HighQPseudo:
4604     case ARM::VLD1q8LowQPseudo_UPD:
4605     case ARM::VLD1q8HighTPseudo:
4606     case ARM::VLD1q8LowTPseudo_UPD:
4607     case ARM::VLD1q16HighQPseudo:
4608     case ARM::VLD1q16LowQPseudo_UPD:
4609     case ARM::VLD1q16HighTPseudo:
4610     case ARM::VLD1q16LowTPseudo_UPD:
4611     case ARM::VLD1q32HighQPseudo:
4612     case ARM::VLD1q32LowQPseudo_UPD:
4613     case ARM::VLD1q32HighTPseudo:
4614     case ARM::VLD1q32LowTPseudo_UPD:
4615     case ARM::VLD1q64HighQPseudo:
4616     case ARM::VLD1q64LowQPseudo_UPD:
4617     case ARM::VLD1q64HighTPseudo:
4618     case ARM::VLD1q64LowTPseudo_UPD:
4619     case ARM::VLD4d8Pseudo_UPD:
4620     case ARM::VLD4d16Pseudo_UPD:
4621     case ARM::VLD4d32Pseudo_UPD:
4622     case ARM::VLD4q8Pseudo_UPD:
4623     case ARM::VLD4q16Pseudo_UPD:
4624     case ARM::VLD4q32Pseudo_UPD:
4625     case ARM::VLD4q8oddPseudo:
4626     case ARM::VLD4q16oddPseudo:
4627     case ARM::VLD4q32oddPseudo:
4628     case ARM::VLD4q8oddPseudo_UPD:
4629     case ARM::VLD4q16oddPseudo_UPD:
4630     case ARM::VLD4q32oddPseudo_UPD:
4631     case ARM::VLD1DUPq8:
4632     case ARM::VLD1DUPq16:
4633     case ARM::VLD1DUPq32:
4634     case ARM::VLD1DUPq8wb_fixed:
4635     case ARM::VLD1DUPq16wb_fixed:
4636     case ARM::VLD1DUPq32wb_fixed:
4637     case ARM::VLD1DUPq8wb_register:
4638     case ARM::VLD1DUPq16wb_register:
4639     case ARM::VLD1DUPq32wb_register:
4640     case ARM::VLD2DUPd8:
4641     case ARM::VLD2DUPd16:
4642     case ARM::VLD2DUPd32:
4643     case ARM::VLD2DUPd8wb_fixed:
4644     case ARM::VLD2DUPd16wb_fixed:
4645     case ARM::VLD2DUPd32wb_fixed:
4646     case ARM::VLD2DUPd8wb_register:
4647     case ARM::VLD2DUPd16wb_register:
4648     case ARM::VLD2DUPd32wb_register:
4649     case ARM::VLD2DUPq8EvenPseudo:
4650     case ARM::VLD2DUPq8OddPseudo:
4651     case ARM::VLD2DUPq16EvenPseudo:
4652     case ARM::VLD2DUPq16OddPseudo:
4653     case ARM::VLD2DUPq32EvenPseudo:
4654     case ARM::VLD2DUPq32OddPseudo:
4655     case ARM::VLD3DUPq8EvenPseudo:
4656     case ARM::VLD3DUPq8OddPseudo:
4657     case ARM::VLD3DUPq16EvenPseudo:
4658     case ARM::VLD3DUPq16OddPseudo:
4659     case ARM::VLD3DUPq32EvenPseudo:
4660     case ARM::VLD3DUPq32OddPseudo:
4661     case ARM::VLD4DUPd8Pseudo:
4662     case ARM::VLD4DUPd16Pseudo:
4663     case ARM::VLD4DUPd32Pseudo:
4664     case ARM::VLD4DUPd8Pseudo_UPD:
4665     case ARM::VLD4DUPd16Pseudo_UPD:
4666     case ARM::VLD4DUPd32Pseudo_UPD:
4667     case ARM::VLD4DUPq8EvenPseudo:
4668     case ARM::VLD4DUPq8OddPseudo:
4669     case ARM::VLD4DUPq16EvenPseudo:
4670     case ARM::VLD4DUPq16OddPseudo:
4671     case ARM::VLD4DUPq32EvenPseudo:
4672     case ARM::VLD4DUPq32OddPseudo:
4673     case ARM::VLD1LNq8Pseudo:
4674     case ARM::VLD1LNq16Pseudo:
4675     case ARM::VLD1LNq32Pseudo:
4676     case ARM::VLD1LNq8Pseudo_UPD:
4677     case ARM::VLD1LNq16Pseudo_UPD:
4678     case ARM::VLD1LNq32Pseudo_UPD:
4679     case ARM::VLD2LNd8Pseudo:
4680     case ARM::VLD2LNd16Pseudo:
4681     case ARM::VLD2LNd32Pseudo:
4682     case ARM::VLD2LNq16Pseudo:
4683     case ARM::VLD2LNq32Pseudo:
4684     case ARM::VLD2LNd8Pseudo_UPD:
4685     case ARM::VLD2LNd16Pseudo_UPD:
4686     case ARM::VLD2LNd32Pseudo_UPD:
4687     case ARM::VLD2LNq16Pseudo_UPD:
4688     case ARM::VLD2LNq32Pseudo_UPD:
4689     case ARM::VLD4LNd8Pseudo:
4690     case ARM::VLD4LNd16Pseudo:
4691     case ARM::VLD4LNd32Pseudo:
4692     case ARM::VLD4LNq16Pseudo:
4693     case ARM::VLD4LNq32Pseudo:
4694     case ARM::VLD4LNd8Pseudo_UPD:
4695     case ARM::VLD4LNd16Pseudo_UPD:
4696     case ARM::VLD4LNd32Pseudo_UPD:
4697     case ARM::VLD4LNq16Pseudo_UPD:
4698     case ARM::VLD4LNq32Pseudo_UPD:
4699       // If the address is not 64-bit aligned, the latencies of these
4700       // instructions increases by one.
4701       ++Latency;
4702       break;
4703     }
4704 
4705   return Latency;
4706 }
4707 
4708 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4709   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4710       MI.isImplicitDef())
4711     return 0;
4712 
4713   if (MI.isBundle())
4714     return 0;
4715 
4716   const MCInstrDesc &MCID = MI.getDesc();
4717 
4718   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4719                         !Subtarget.cheapPredicableCPSRDef())) {
4720     // When predicated, CPSR is an additional source operand for CPSR updating
4721     // instructions, this apparently increases their latencies.
4722     return 1;
4723   }
4724   return 0;
4725 }
4726 
4727 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4728                                            const MachineInstr &MI,
4729                                            unsigned *PredCost) const {
4730   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4731       MI.isImplicitDef())
4732     return 1;
4733 
4734   // An instruction scheduler typically runs on unbundled instructions, however
4735   // other passes may query the latency of a bundled instruction.
4736   if (MI.isBundle()) {
4737     unsigned Latency = 0;
4738     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4739     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4740     while (++I != E && I->isInsideBundle()) {
4741       if (I->getOpcode() != ARM::t2IT)
4742         Latency += getInstrLatency(ItinData, *I, PredCost);
4743     }
4744     return Latency;
4745   }
4746 
4747   const MCInstrDesc &MCID = MI.getDesc();
4748   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4749                                      !Subtarget.cheapPredicableCPSRDef()))) {
4750     // When predicated, CPSR is an additional source operand for CPSR updating
4751     // instructions, this apparently increases their latencies.
4752     *PredCost = 1;
4753   }
4754   // Be sure to call getStageLatency for an empty itinerary in case it has a
4755   // valid MinLatency property.
4756   if (!ItinData)
4757     return MI.mayLoad() ? 3 : 1;
4758 
4759   unsigned Class = MCID.getSchedClass();
4760 
4761   // For instructions with variable uops, use uops as latency.
4762   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4763     return getNumMicroOps(ItinData, MI);
4764 
4765   // For the common case, fall back on the itinerary's latency.
4766   unsigned Latency = ItinData->getStageLatency(Class);
4767 
4768   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4769   unsigned DefAlign =
4770       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4771   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4772   if (Adj >= 0 || (int)Latency > -Adj) {
4773     return Latency + Adj;
4774   }
4775   return Latency;
4776 }
4777 
4778 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4779                                       SDNode *Node) const {
4780   if (!Node->isMachineOpcode())
4781     return 1;
4782 
4783   if (!ItinData || ItinData->isEmpty())
4784     return 1;
4785 
4786   unsigned Opcode = Node->getMachineOpcode();
4787   switch (Opcode) {
4788   default:
4789     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4790   case ARM::VLDMQIA:
4791   case ARM::VSTMQIA:
4792     return 2;
4793   }
4794 }
4795 
4796 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4797                                              const MachineRegisterInfo *MRI,
4798                                              const MachineInstr &DefMI,
4799                                              unsigned DefIdx,
4800                                              const MachineInstr &UseMI,
4801                                              unsigned UseIdx) const {
4802   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4803   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4804   if (Subtarget.nonpipelinedVFP() &&
4805       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4806     return true;
4807 
4808   // Hoist VFP / NEON instructions with 4 or higher latency.
4809   unsigned Latency =
4810       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4811   if (Latency <= 3)
4812     return false;
4813   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4814          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4815 }
4816 
4817 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4818                                         const MachineInstr &DefMI,
4819                                         unsigned DefIdx) const {
4820   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4821   if (!ItinData || ItinData->isEmpty())
4822     return false;
4823 
4824   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4825   if (DDomain == ARMII::DomainGeneral) {
4826     unsigned DefClass = DefMI.getDesc().getSchedClass();
4827     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4828     return (DefCycle != -1 && DefCycle <= 2);
4829   }
4830   return false;
4831 }
4832 
4833 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4834                                          StringRef &ErrInfo) const {
4835   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4836     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4837     return false;
4838   }
4839   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4840     // Make sure we don't generate a lo-lo mov that isn't supported.
4841     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4842         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4843       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4844       return false;
4845     }
4846   }
4847   if (MI.getOpcode() == ARM::tPUSH ||
4848       MI.getOpcode() == ARM::tPOP ||
4849       MI.getOpcode() == ARM::tPOP_RET) {
4850     for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) {
4851       if (MO.isImplicit() || !MO.isReg())
4852         continue;
4853       Register Reg = MO.getReg();
4854       if (Reg < ARM::R0 || Reg > ARM::R7) {
4855         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4856             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4857           ErrInfo = "Unsupported register in Thumb1 push/pop";
4858           return false;
4859         }
4860       }
4861     }
4862   }
4863   if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4864     assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4865     if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4866         MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4867       ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4868       return false;
4869     }
4870   }
4871   return true;
4872 }
4873 
4874 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4875                                                 unsigned LoadImmOpc,
4876                                                 unsigned LoadOpc) const {
4877   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4878          "ROPI/RWPI not currently supported with stack guard");
4879 
4880   MachineBasicBlock &MBB = *MI->getParent();
4881   DebugLoc DL = MI->getDebugLoc();
4882   Register Reg = MI->getOperand(0).getReg();
4883   MachineInstrBuilder MIB;
4884   unsigned int Offset = 0;
4885 
4886   if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4887     assert(Subtarget.isReadTPHard() &&
4888            "TLS stack protector requires hardware TLS register");
4889 
4890     BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4891         .addImm(15)
4892         .addImm(0)
4893         .addImm(13)
4894         .addImm(0)
4895         .addImm(3)
4896         .add(predOps(ARMCC::AL));
4897 
4898     Module &M = *MBB.getParent()->getFunction().getParent();
4899     Offset = M.getStackProtectorGuardOffset();
4900     if (Offset & ~0xfffU) {
4901       // The offset won't fit in the LDR's 12-bit immediate field, so emit an
4902       // extra ADD to cover the delta. This gives us a guaranteed 8 additional
4903       // bits, resulting in a range of 0 to +1 MiB for the guard offset.
4904       unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4905       BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4906           .addReg(Reg, RegState::Kill)
4907           .addImm(Offset & ~0xfffU)
4908           .add(predOps(ARMCC::AL))
4909           .addReg(0);
4910       Offset &= 0xfffU;
4911     }
4912   } else {
4913     const GlobalValue *GV =
4914         cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4915     bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4916 
4917     unsigned TargetFlags = ARMII::MO_NO_FLAG;
4918     if (Subtarget.isTargetMachO()) {
4919       TargetFlags |= ARMII::MO_NONLAZY;
4920     } else if (Subtarget.isTargetCOFF()) {
4921       if (GV->hasDLLImportStorageClass())
4922         TargetFlags |= ARMII::MO_DLLIMPORT;
4923       else if (IsIndirect)
4924         TargetFlags |= ARMII::MO_COFFSTUB;
4925     } else if (Subtarget.isGVInGOT(GV)) {
4926       TargetFlags |= ARMII::MO_GOT;
4927     }
4928 
4929     BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4930         .addGlobalAddress(GV, 0, TargetFlags);
4931 
4932     if (IsIndirect) {
4933       MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4934       MIB.addReg(Reg, RegState::Kill).addImm(0);
4935       auto Flags = MachineMemOperand::MOLoad |
4936                    MachineMemOperand::MODereferenceable |
4937                    MachineMemOperand::MOInvariant;
4938       MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4939           MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4940       MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4941     }
4942   }
4943 
4944   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4945   MIB.addReg(Reg, RegState::Kill)
4946       .addImm(Offset)
4947       .cloneMemRefs(*MI)
4948       .add(predOps(ARMCC::AL));
4949 }
4950 
4951 bool
4952 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4953                                      unsigned &AddSubOpc,
4954                                      bool &NegAcc, bool &HasLane) const {
4955   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4956   if (I == MLxEntryMap.end())
4957     return false;
4958 
4959   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4960   MulOpc = Entry.MulOpc;
4961   AddSubOpc = Entry.AddSubOpc;
4962   NegAcc = Entry.NegAcc;
4963   HasLane = Entry.HasLane;
4964   return true;
4965 }
4966 
4967 //===----------------------------------------------------------------------===//
4968 // Execution domains.
4969 //===----------------------------------------------------------------------===//
4970 //
4971 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4972 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4973 // but they can be changed to vorr equivalents that are executed by the NEON
4974 // pipeline.
4975 //
4976 // We use the following execution domain numbering:
4977 //
4978 enum ARMExeDomain {
4979   ExeGeneric = 0,
4980   ExeVFP = 1,
4981   ExeNEON = 2
4982 };
4983 
4984 //
4985 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4986 //
4987 std::pair<uint16_t, uint16_t>
4988 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4989   // If we don't have access to NEON instructions then we won't be able
4990   // to swizzle anything to the NEON domain. Check to make sure.
4991   if (Subtarget.hasNEON()) {
4992     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4993     // if they are not predicated.
4994     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4995       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4996 
4997     // CortexA9 is particularly picky about mixing the two and wants these
4998     // converted.
4999     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5000         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5001          MI.getOpcode() == ARM::VMOVS))
5002       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5003   }
5004   // No other instructions can be swizzled, so just determine their domain.
5005   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5006 
5007   if (Domain & ARMII::DomainNEON)
5008     return std::make_pair(ExeNEON, 0);
5009 
5010   // Certain instructions can go either way on Cortex-A8.
5011   // Treat them as NEON instructions.
5012   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5013     return std::make_pair(ExeNEON, 0);
5014 
5015   if (Domain & ARMII::DomainVFP)
5016     return std::make_pair(ExeVFP, 0);
5017 
5018   return std::make_pair(ExeGeneric, 0);
5019 }
5020 
5021 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5022                                             unsigned SReg, unsigned &Lane) {
5023   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5024   Lane = 0;
5025 
5026   if (DReg != ARM::NoRegister)
5027    return DReg;
5028 
5029   Lane = 1;
5030   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5031 
5032   assert(DReg && "S-register with no D super-register?");
5033   return DReg;
5034 }
5035 
5036 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5037 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5038 /// zero if no register needs to be defined as implicit-use.
5039 ///
5040 /// If the function cannot determine if an SPR should be marked implicit use or
5041 /// not, it returns false.
5042 ///
5043 /// This function handles cases where an instruction is being modified from taking
5044 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5045 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5046 /// lane of the DPR).
5047 ///
5048 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5049 /// (including the case where the DPR itself is defined), it should not.
5050 ///
5051 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5052                                        MachineInstr &MI, unsigned DReg,
5053                                        unsigned Lane, unsigned &ImplicitSReg) {
5054   // If the DPR is defined or used already, the other SPR lane will be chained
5055   // correctly, so there is nothing to be done.
5056   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5057     ImplicitSReg = 0;
5058     return true;
5059   }
5060 
5061   // Otherwise we need to go searching to see if the SPR is set explicitly.
5062   ImplicitSReg = TRI->getSubReg(DReg,
5063                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5064   MachineBasicBlock::LivenessQueryResult LQR =
5065       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5066 
5067   if (LQR == MachineBasicBlock::LQR_Live)
5068     return true;
5069   else if (LQR == MachineBasicBlock::LQR_Unknown)
5070     return false;
5071 
5072   // If the register is known not to be live, there is no need to add an
5073   // implicit-use.
5074   ImplicitSReg = 0;
5075   return true;
5076 }
5077 
5078 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5079                                           unsigned Domain) const {
5080   unsigned DstReg, SrcReg, DReg;
5081   unsigned Lane;
5082   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5083   const TargetRegisterInfo *TRI = &getRegisterInfo();
5084   switch (MI.getOpcode()) {
5085   default:
5086     llvm_unreachable("cannot handle opcode!");
5087     break;
5088   case ARM::VMOVD:
5089     if (Domain != ExeNEON)
5090       break;
5091 
5092     // Zap the predicate operands.
5093     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5094 
5095     // Make sure we've got NEON instructions.
5096     assert(Subtarget.hasNEON() && "VORRd requires NEON");
5097 
5098     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5099     DstReg = MI.getOperand(0).getReg();
5100     SrcReg = MI.getOperand(1).getReg();
5101 
5102     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5103       MI.RemoveOperand(i - 1);
5104 
5105     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5106     MI.setDesc(get(ARM::VORRd));
5107     MIB.addReg(DstReg, RegState::Define)
5108         .addReg(SrcReg)
5109         .addReg(SrcReg)
5110         .add(predOps(ARMCC::AL));
5111     break;
5112   case ARM::VMOVRS:
5113     if (Domain != ExeNEON)
5114       break;
5115     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5116 
5117     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5118     DstReg = MI.getOperand(0).getReg();
5119     SrcReg = MI.getOperand(1).getReg();
5120 
5121     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5122       MI.RemoveOperand(i - 1);
5123 
5124     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5125 
5126     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5127     // Note that DSrc has been widened and the other lane may be undef, which
5128     // contaminates the entire register.
5129     MI.setDesc(get(ARM::VGETLNi32));
5130     MIB.addReg(DstReg, RegState::Define)
5131         .addReg(DReg, RegState::Undef)
5132         .addImm(Lane)
5133         .add(predOps(ARMCC::AL));
5134 
5135     // The old source should be an implicit use, otherwise we might think it
5136     // was dead before here.
5137     MIB.addReg(SrcReg, RegState::Implicit);
5138     break;
5139   case ARM::VMOVSR: {
5140     if (Domain != ExeNEON)
5141       break;
5142     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5143 
5144     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5145     DstReg = MI.getOperand(0).getReg();
5146     SrcReg = MI.getOperand(1).getReg();
5147 
5148     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5149 
5150     unsigned ImplicitSReg;
5151     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5152       break;
5153 
5154     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5155       MI.RemoveOperand(i - 1);
5156 
5157     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5158     // Again DDst may be undefined at the beginning of this instruction.
5159     MI.setDesc(get(ARM::VSETLNi32));
5160     MIB.addReg(DReg, RegState::Define)
5161         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5162         .addReg(SrcReg)
5163         .addImm(Lane)
5164         .add(predOps(ARMCC::AL));
5165 
5166     // The narrower destination must be marked as set to keep previous chains
5167     // in place.
5168     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5169     if (ImplicitSReg != 0)
5170       MIB.addReg(ImplicitSReg, RegState::Implicit);
5171     break;
5172     }
5173     case ARM::VMOVS: {
5174       if (Domain != ExeNEON)
5175         break;
5176 
5177       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5178       DstReg = MI.getOperand(0).getReg();
5179       SrcReg = MI.getOperand(1).getReg();
5180 
5181       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5182       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5183       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5184 
5185       unsigned ImplicitSReg;
5186       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5187         break;
5188 
5189       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5190         MI.RemoveOperand(i - 1);
5191 
5192       if (DSrc == DDst) {
5193         // Destination can be:
5194         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5195         MI.setDesc(get(ARM::VDUPLN32d));
5196         MIB.addReg(DDst, RegState::Define)
5197             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5198             .addImm(SrcLane)
5199             .add(predOps(ARMCC::AL));
5200 
5201         // Neither the source or the destination are naturally represented any
5202         // more, so add them in manually.
5203         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5204         MIB.addReg(SrcReg, RegState::Implicit);
5205         if (ImplicitSReg != 0)
5206           MIB.addReg(ImplicitSReg, RegState::Implicit);
5207         break;
5208       }
5209 
5210       // In general there's no single instruction that can perform an S <-> S
5211       // move in NEON space, but a pair of VEXT instructions *can* do the
5212       // job. It turns out that the VEXTs needed will only use DSrc once, with
5213       // the position based purely on the combination of lane-0 and lane-1
5214       // involved. For example
5215       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5216       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5217       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5218       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5219       //
5220       // Pattern of the MachineInstrs is:
5221       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5222       MachineInstrBuilder NewMIB;
5223       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5224                        DDst);
5225 
5226       // On the first instruction, both DSrc and DDst may be undef if present.
5227       // Specifically when the original instruction didn't have them as an
5228       // <imp-use>.
5229       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5230       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5231       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5232 
5233       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5234       CurUndef = !MI.readsRegister(CurReg, TRI);
5235       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5236             .addImm(1)
5237             .add(predOps(ARMCC::AL));
5238 
5239       if (SrcLane == DstLane)
5240         NewMIB.addReg(SrcReg, RegState::Implicit);
5241 
5242       MI.setDesc(get(ARM::VEXTd32));
5243       MIB.addReg(DDst, RegState::Define);
5244 
5245       // On the second instruction, DDst has definitely been defined above, so
5246       // it is not undef. DSrc, if present, can be undef as above.
5247       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5248       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5249       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5250 
5251       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5252       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5253       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5254          .addImm(1)
5255          .add(predOps(ARMCC::AL));
5256 
5257       if (SrcLane != DstLane)
5258         MIB.addReg(SrcReg, RegState::Implicit);
5259 
5260       // As before, the original destination is no longer represented, add it
5261       // implicitly.
5262       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5263       if (ImplicitSReg != 0)
5264         MIB.addReg(ImplicitSReg, RegState::Implicit);
5265       break;
5266     }
5267   }
5268 }
5269 
5270 //===----------------------------------------------------------------------===//
5271 // Partial register updates
5272 //===----------------------------------------------------------------------===//
5273 //
5274 // Swift renames NEON registers with 64-bit granularity.  That means any
5275 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5276 // problem is mostly avoided by translating f32 operations to v2f32 operations
5277 // on D-registers, but f32 loads are still a problem.
5278 //
5279 // These instructions can load an f32 into a NEON register:
5280 //
5281 // VLDRS - Only writes S, partial D update.
5282 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5283 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5284 //
5285 // FCONSTD can be used as a dependency-breaking instruction.
5286 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5287     const MachineInstr &MI, unsigned OpNum,
5288     const TargetRegisterInfo *TRI) const {
5289   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5290   if (!PartialUpdateClearance)
5291     return 0;
5292 
5293   assert(TRI && "Need TRI instance");
5294 
5295   const MachineOperand &MO = MI.getOperand(OpNum);
5296   if (MO.readsReg())
5297     return 0;
5298   Register Reg = MO.getReg();
5299   int UseOp = -1;
5300 
5301   switch (MI.getOpcode()) {
5302   // Normal instructions writing only an S-register.
5303   case ARM::VLDRS:
5304   case ARM::FCONSTS:
5305   case ARM::VMOVSR:
5306   case ARM::VMOVv8i8:
5307   case ARM::VMOVv4i16:
5308   case ARM::VMOVv2i32:
5309   case ARM::VMOVv2f32:
5310   case ARM::VMOVv1i64:
5311     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5312     break;
5313 
5314     // Explicitly reads the dependency.
5315   case ARM::VLD1LNd32:
5316     UseOp = 3;
5317     break;
5318   default:
5319     return 0;
5320   }
5321 
5322   // If this instruction actually reads a value from Reg, there is no unwanted
5323   // dependency.
5324   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5325     return 0;
5326 
5327   // We must be able to clobber the whole D-reg.
5328   if (Register::isVirtualRegister(Reg)) {
5329     // Virtual register must be a def undef foo:ssub_0 operand.
5330     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5331       return 0;
5332   } else if (ARM::SPRRegClass.contains(Reg)) {
5333     // Physical register: MI must define the full D-reg.
5334     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5335                                              &ARM::DPRRegClass);
5336     if (!DReg || !MI.definesRegister(DReg, TRI))
5337       return 0;
5338   }
5339 
5340   // MI has an unwanted D-register dependency.
5341   // Avoid defs in the previous N instructrions.
5342   return PartialUpdateClearance;
5343 }
5344 
5345 // Break a partial register dependency after getPartialRegUpdateClearance
5346 // returned non-zero.
5347 void ARMBaseInstrInfo::breakPartialRegDependency(
5348     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5349   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5350   assert(TRI && "Need TRI instance");
5351 
5352   const MachineOperand &MO = MI.getOperand(OpNum);
5353   Register Reg = MO.getReg();
5354   assert(Register::isPhysicalRegister(Reg) &&
5355          "Can't break virtual register dependencies.");
5356   unsigned DReg = Reg;
5357 
5358   // If MI defines an S-reg, find the corresponding D super-register.
5359   if (ARM::SPRRegClass.contains(Reg)) {
5360     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5361     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5362   }
5363 
5364   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5365   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5366 
5367   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5368   // the full D-register by loading the same value to both lanes.  The
5369   // instruction is micro-coded with 2 uops, so don't do this until we can
5370   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5371   // too big regressions.
5372 
5373   // Insert the dependency-breaking FCONSTD before MI.
5374   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5375   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5376       .addImm(96)
5377       .add(predOps(ARMCC::AL));
5378   MI.addRegisterKilled(DReg, TRI, true);
5379 }
5380 
5381 bool ARMBaseInstrInfo::hasNOP() const {
5382   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5383 }
5384 
5385 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5386   if (MI->getNumOperands() < 4)
5387     return true;
5388   unsigned ShOpVal = MI->getOperand(3).getImm();
5389   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5390   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5391   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5392       ((ShImm == 1 || ShImm == 2) &&
5393        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5394     return true;
5395 
5396   return false;
5397 }
5398 
5399 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5400     const MachineInstr &MI, unsigned DefIdx,
5401     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5402   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5403   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5404 
5405   switch (MI.getOpcode()) {
5406   case ARM::VMOVDRR:
5407     // dX = VMOVDRR rY, rZ
5408     // is the same as:
5409     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5410     // Populate the InputRegs accordingly.
5411     // rY
5412     const MachineOperand *MOReg = &MI.getOperand(1);
5413     if (!MOReg->isUndef())
5414       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5415                                               MOReg->getSubReg(), ARM::ssub_0));
5416     // rZ
5417     MOReg = &MI.getOperand(2);
5418     if (!MOReg->isUndef())
5419       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5420                                               MOReg->getSubReg(), ARM::ssub_1));
5421     return true;
5422   }
5423   llvm_unreachable("Target dependent opcode missing");
5424 }
5425 
5426 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5427     const MachineInstr &MI, unsigned DefIdx,
5428     RegSubRegPairAndIdx &InputReg) const {
5429   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5430   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5431 
5432   switch (MI.getOpcode()) {
5433   case ARM::VMOVRRD:
5434     // rX, rY = VMOVRRD dZ
5435     // is the same as:
5436     // rX = EXTRACT_SUBREG dZ, ssub_0
5437     // rY = EXTRACT_SUBREG dZ, ssub_1
5438     const MachineOperand &MOReg = MI.getOperand(2);
5439     if (MOReg.isUndef())
5440       return false;
5441     InputReg.Reg = MOReg.getReg();
5442     InputReg.SubReg = MOReg.getSubReg();
5443     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5444     return true;
5445   }
5446   llvm_unreachable("Target dependent opcode missing");
5447 }
5448 
5449 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5450     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5451     RegSubRegPairAndIdx &InsertedReg) const {
5452   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5453   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5454 
5455   switch (MI.getOpcode()) {
5456   case ARM::VSETLNi32:
5457   case ARM::MVE_VMOV_to_lane_32:
5458     // dX = VSETLNi32 dY, rZ, imm
5459     // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5460     const MachineOperand &MOBaseReg = MI.getOperand(1);
5461     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5462     if (MOInsertedReg.isUndef())
5463       return false;
5464     const MachineOperand &MOIndex = MI.getOperand(3);
5465     BaseReg.Reg = MOBaseReg.getReg();
5466     BaseReg.SubReg = MOBaseReg.getSubReg();
5467 
5468     InsertedReg.Reg = MOInsertedReg.getReg();
5469     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5470     InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5471     return true;
5472   }
5473   llvm_unreachable("Target dependent opcode missing");
5474 }
5475 
5476 std::pair<unsigned, unsigned>
5477 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5478   const unsigned Mask = ARMII::MO_OPTION_MASK;
5479   return std::make_pair(TF & Mask, TF & ~Mask);
5480 }
5481 
5482 ArrayRef<std::pair<unsigned, const char *>>
5483 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5484   using namespace ARMII;
5485 
5486   static const std::pair<unsigned, const char *> TargetFlags[] = {
5487       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5488   return makeArrayRef(TargetFlags);
5489 }
5490 
5491 ArrayRef<std::pair<unsigned, const char *>>
5492 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5493   using namespace ARMII;
5494 
5495   static const std::pair<unsigned, const char *> TargetFlags[] = {
5496       {MO_COFFSTUB, "arm-coffstub"},
5497       {MO_GOT, "arm-got"},
5498       {MO_SBREL, "arm-sbrel"},
5499       {MO_DLLIMPORT, "arm-dllimport"},
5500       {MO_SECREL, "arm-secrel"},
5501       {MO_NONLAZY, "arm-nonlazy"}};
5502   return makeArrayRef(TargetFlags);
5503 }
5504 
5505 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5506                                                       Register Reg) const {
5507   int Sign = 1;
5508   unsigned Opcode = MI.getOpcode();
5509   int64_t Offset = 0;
5510 
5511   // TODO: Handle cases where Reg is a super- or sub-register of the
5512   // destination register.
5513   const MachineOperand &Op0 = MI.getOperand(0);
5514   if (!Op0.isReg() || Reg != Op0.getReg())
5515     return None;
5516 
5517   // We describe SUBri or ADDri instructions.
5518   if (Opcode == ARM::SUBri)
5519     Sign = -1;
5520   else if (Opcode != ARM::ADDri)
5521     return None;
5522 
5523   // TODO: Third operand can be global address (usually some string). Since
5524   //       strings can be relocated we cannot calculate their offsets for
5525   //       now.
5526   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5527     return None;
5528 
5529   Offset = MI.getOperand(2).getImm() * Sign;
5530   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5531 }
5532 
5533 bool llvm::registerDefinedBetween(unsigned Reg,
5534                                   MachineBasicBlock::iterator From,
5535                                   MachineBasicBlock::iterator To,
5536                                   const TargetRegisterInfo *TRI) {
5537   for (auto I = From; I != To; ++I)
5538     if (I->modifiesRegister(Reg, TRI))
5539       return true;
5540   return false;
5541 }
5542 
5543 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5544                                          const TargetRegisterInfo *TRI) {
5545   // Search backwards to the instruction that defines CSPR. This may or not
5546   // be a CMP, we check that after this loop. If we find another instruction
5547   // that reads cpsr, we return nullptr.
5548   MachineBasicBlock::iterator CmpMI = Br;
5549   while (CmpMI != Br->getParent()->begin()) {
5550     --CmpMI;
5551     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5552       break;
5553     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5554       break;
5555   }
5556 
5557   // Check that this inst is a CMP r[0-7], #0 and that the register
5558   // is not redefined between the cmp and the br.
5559   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5560     return nullptr;
5561   Register Reg = CmpMI->getOperand(0).getReg();
5562   Register PredReg;
5563   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5564   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5565     return nullptr;
5566   if (!isARMLowRegister(Reg))
5567     return nullptr;
5568   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5569     return nullptr;
5570 
5571   return &*CmpMI;
5572 }
5573 
5574 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5575                                            const ARMSubtarget *Subtarget,
5576                                            bool ForCodesize) {
5577   if (Subtarget->isThumb()) {
5578     if (Val <= 255) // MOV
5579       return ForCodesize ? 2 : 1;
5580     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5581                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5582                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5583       return ForCodesize ? 4 : 1;
5584     if (Val <= 510) // MOV + ADDi8
5585       return ForCodesize ? 4 : 2;
5586     if (~Val <= 255) // MOV + MVN
5587       return ForCodesize ? 4 : 2;
5588     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5589       return ForCodesize ? 4 : 2;
5590   } else {
5591     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5592       return ForCodesize ? 4 : 1;
5593     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5594       return ForCodesize ? 4 : 1;
5595     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5596       return ForCodesize ? 4 : 1;
5597     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5598       return ForCodesize ? 8 : 2;
5599     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5600       return ForCodesize ? 8 : 2;
5601   }
5602   if (Subtarget->useMovt()) // MOVW + MOVT
5603     return ForCodesize ? 8 : 2;
5604   return ForCodesize ? 8 : 3; // Literal pool load
5605 }
5606 
5607 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5608                                                const ARMSubtarget *Subtarget,
5609                                                bool ForCodesize) {
5610   // Check with ForCodesize
5611   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5612   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5613   if (Cost1 < Cost2)
5614     return true;
5615   if (Cost1 > Cost2)
5616     return false;
5617 
5618   // If they are equal, try with !ForCodesize
5619   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5620          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5621 }
5622 
5623 /// Constants defining how certain sequences should be outlined.
5624 /// This encompasses how an outlined function should be called, and what kind of
5625 /// frame should be emitted for that outlined function.
5626 ///
5627 /// \p MachineOutlinerTailCall implies that the function is being created from
5628 /// a sequence of instructions ending in a return.
5629 ///
5630 /// That is,
5631 ///
5632 /// I1                                OUTLINED_FUNCTION:
5633 /// I2    --> B OUTLINED_FUNCTION     I1
5634 /// BX LR                             I2
5635 ///                                   BX LR
5636 ///
5637 /// +-------------------------+--------+-----+
5638 /// |                         | Thumb2 | ARM |
5639 /// +-------------------------+--------+-----+
5640 /// | Call overhead in Bytes  |      4 |   4 |
5641 /// | Frame overhead in Bytes |      0 |   0 |
5642 /// | Stack fixup required    |     No |  No |
5643 /// +-------------------------+--------+-----+
5644 ///
5645 /// \p MachineOutlinerThunk implies that the function is being created from
5646 /// a sequence of instructions ending in a call. The outlined function is
5647 /// called with a BL instruction, and the outlined function tail-calls the
5648 /// original call destination.
5649 ///
5650 /// That is,
5651 ///
5652 /// I1                                OUTLINED_FUNCTION:
5653 /// I2   --> BL OUTLINED_FUNCTION     I1
5654 /// BL f                              I2
5655 ///                                   B f
5656 ///
5657 /// +-------------------------+--------+-----+
5658 /// |                         | Thumb2 | ARM |
5659 /// +-------------------------+--------+-----+
5660 /// | Call overhead in Bytes  |      4 |   4 |
5661 /// | Frame overhead in Bytes |      0 |   0 |
5662 /// | Stack fixup required    |     No |  No |
5663 /// +-------------------------+--------+-----+
5664 ///
5665 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5666 /// a BL instruction, but doesn't require LR to be saved and restored. This
5667 /// happens when LR is known to be dead.
5668 ///
5669 /// That is,
5670 ///
5671 /// I1                                OUTLINED_FUNCTION:
5672 /// I2 --> BL OUTLINED_FUNCTION       I1
5673 /// I3                                I2
5674 ///                                   I3
5675 ///                                   BX LR
5676 ///
5677 /// +-------------------------+--------+-----+
5678 /// |                         | Thumb2 | ARM |
5679 /// +-------------------------+--------+-----+
5680 /// | Call overhead in Bytes  |      4 |   4 |
5681 /// | Frame overhead in Bytes |      4 |   4 |
5682 /// | Stack fixup required    |     No |  No |
5683 /// +-------------------------+--------+-----+
5684 ///
5685 /// \p MachineOutlinerRegSave implies that the function should be called with a
5686 /// save and restore of LR to an available register. This allows us to avoid
5687 /// stack fixups. Note that this outlining variant is compatible with the
5688 /// NoLRSave case.
5689 ///
5690 /// That is,
5691 ///
5692 /// I1     Save LR                    OUTLINED_FUNCTION:
5693 /// I2 --> BL OUTLINED_FUNCTION       I1
5694 /// I3     Restore LR                 I2
5695 ///                                   I3
5696 ///                                   BX LR
5697 ///
5698 /// +-------------------------+--------+-----+
5699 /// |                         | Thumb2 | ARM |
5700 /// +-------------------------+--------+-----+
5701 /// | Call overhead in Bytes  |      8 |  12 |
5702 /// | Frame overhead in Bytes |      2 |   4 |
5703 /// | Stack fixup required    |     No |  No |
5704 /// +-------------------------+--------+-----+
5705 ///
5706 /// \p MachineOutlinerDefault implies that the function should be called with
5707 /// a save and restore of LR to the stack.
5708 ///
5709 /// That is,
5710 ///
5711 /// I1     Save LR                    OUTLINED_FUNCTION:
5712 /// I2 --> BL OUTLINED_FUNCTION       I1
5713 /// I3     Restore LR                 I2
5714 ///                                   I3
5715 ///                                   BX LR
5716 ///
5717 /// +-------------------------+--------+-----+
5718 /// |                         | Thumb2 | ARM |
5719 /// +-------------------------+--------+-----+
5720 /// | Call overhead in Bytes  |      8 |  12 |
5721 /// | Frame overhead in Bytes |      2 |   4 |
5722 /// | Stack fixup required    |    Yes | Yes |
5723 /// +-------------------------+--------+-----+
5724 
5725 enum MachineOutlinerClass {
5726   MachineOutlinerTailCall,
5727   MachineOutlinerThunk,
5728   MachineOutlinerNoLRSave,
5729   MachineOutlinerRegSave,
5730   MachineOutlinerDefault
5731 };
5732 
5733 enum MachineOutlinerMBBFlags {
5734   LRUnavailableSomewhere = 0x2,
5735   HasCalls = 0x4,
5736   UnsafeRegsDead = 0x8
5737 };
5738 
5739 struct OutlinerCosts {
5740   int CallTailCall;
5741   int FrameTailCall;
5742   int CallThunk;
5743   int FrameThunk;
5744   int CallNoLRSave;
5745   int FrameNoLRSave;
5746   int CallRegSave;
5747   int FrameRegSave;
5748   int CallDefault;
5749   int FrameDefault;
5750   int SaveRestoreLROnStack;
5751 
5752   OutlinerCosts(const ARMSubtarget &target)
5753       : CallTailCall(target.isThumb() ? 4 : 4),
5754         FrameTailCall(target.isThumb() ? 0 : 0),
5755         CallThunk(target.isThumb() ? 4 : 4),
5756         FrameThunk(target.isThumb() ? 0 : 0),
5757         CallNoLRSave(target.isThumb() ? 4 : 4),
5758         FrameNoLRSave(target.isThumb() ? 4 : 4),
5759         CallRegSave(target.isThumb() ? 8 : 12),
5760         FrameRegSave(target.isThumb() ? 2 : 4),
5761         CallDefault(target.isThumb() ? 8 : 12),
5762         FrameDefault(target.isThumb() ? 2 : 4),
5763         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5764 };
5765 
5766 unsigned
5767 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
5768   assert(C.LRUWasSet && "LRU wasn't set?");
5769   MachineFunction *MF = C.getMF();
5770   const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>(
5771       MF->getSubtarget().getRegisterInfo());
5772 
5773   BitVector regsReserved = ARI->getReservedRegs(*MF);
5774   // Check if there is an available register across the sequence that we can
5775   // use.
5776   for (unsigned Reg : ARM::rGPRRegClass) {
5777     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5778         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5779         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5780         C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
5781       return Reg;
5782   }
5783 
5784   // No suitable register. Return 0.
5785   return 0u;
5786 }
5787 
5788 // Compute liveness of LR at the point after the interval [I, E), which
5789 // denotes a *backward* iteration through instructions. Used only for return
5790 // basic blocks, which do not end with a tail call.
5791 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5792                           MachineBasicBlock::reverse_iterator I,
5793                           MachineBasicBlock::reverse_iterator E) {
5794   // At the end of the function LR dead.
5795   bool Live = false;
5796   for (; I != E; ++I) {
5797     const MachineInstr &MI = *I;
5798 
5799     // Check defs of LR.
5800     if (MI.modifiesRegister(ARM::LR, &TRI))
5801       Live = false;
5802 
5803     // Check uses of LR.
5804     unsigned Opcode = MI.getOpcode();
5805     if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5806         Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5807         Opcode == ARM::tBXNS_RET) {
5808       // These instructions use LR, but it's not an (explicit or implicit)
5809       // operand.
5810       Live = true;
5811       continue;
5812     }
5813     if (MI.readsRegister(ARM::LR, &TRI))
5814       Live = true;
5815   }
5816   return !Live;
5817 }
5818 
5819 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5820     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5821   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5822   unsigned SequenceSize =
5823       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5824                       [this](unsigned Sum, const MachineInstr &MI) {
5825                         return Sum + getInstSizeInBytes(MI);
5826                       });
5827 
5828   // Properties about candidate MBBs that hold for all of them.
5829   unsigned FlagsSetInAll = 0xF;
5830 
5831   // Compute liveness information for each candidate, and set FlagsSetInAll.
5832   const TargetRegisterInfo &TRI = getRegisterInfo();
5833   std::for_each(
5834       RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5835       [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; });
5836 
5837   // According to the ARM Procedure Call Standard, the following are
5838   // undefined on entry/exit from a function call:
5839   //
5840   // * Register R12(IP),
5841   // * Condition codes (and thus the CPSR register)
5842   //
5843   // Since we control the instructions which are part of the outlined regions
5844   // we don't need to be fully compliant with the AAPCS, but we have to
5845   // guarantee that if a veneer is inserted at link time the code is still
5846   // correct.  Because of this, we can't outline any sequence of instructions
5847   // where one of these registers is live into/across it. Thus, we need to
5848   // delete those candidates.
5849   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5850     // If the unsafe registers in this block are all dead, then we don't need
5851     // to compute liveness here.
5852     if (C.Flags & UnsafeRegsDead)
5853       return false;
5854     C.initLRU(TRI);
5855     LiveRegUnits LRU = C.LRU;
5856     return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR));
5857   };
5858 
5859   // Are there any candidates where those registers are live?
5860   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5861     // Erase every candidate that violates the restrictions above. (It could be
5862     // true that we have viable candidates, so it's not worth bailing out in
5863     // the case that, say, 1 out of 20 candidates violate the restructions.)
5864     llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5865 
5866     // If the sequence doesn't have enough candidates left, then we're done.
5867     if (RepeatedSequenceLocs.size() < 2)
5868       return outliner::OutlinedFunction();
5869   }
5870 
5871   // Partition the candidates in two sets: one with BTI enabled and one with BTI
5872   // disabled. Remove the candidates from the smaller set. We expect the
5873   // majority of the candidates to be in consensus with regard to branch target
5874   // enforcement with just a few oddballs, but if they are the same number
5875   // prefer the non-BTI ones for outlining, since they have less overhead.
5876   auto NoBTI =
5877       llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5878         const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5879         return AFI.branchTargetEnforcement();
5880       });
5881   if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) >
5882       std::distance(NoBTI, RepeatedSequenceLocs.end()))
5883     RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end());
5884   else
5885     RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI);
5886   if (RepeatedSequenceLocs.size() < 2)
5887     return outliner::OutlinedFunction();
5888 
5889   // At this point, we have only "safe" candidates to outline. Figure out
5890   // frame + call instruction information.
5891 
5892   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5893 
5894   // Helper lambda which sets call information for every candidate.
5895   auto SetCandidateCallInfo =
5896       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5897         for (outliner::Candidate &C : RepeatedSequenceLocs)
5898           C.setCallInfo(CallID, NumBytesForCall);
5899       };
5900 
5901   OutlinerCosts Costs(Subtarget);
5902   const auto &SomeMFI =
5903       *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
5904   // Adjust costs to account for the BTI instructions.
5905   if (SomeMFI.branchTargetEnforcement()) {
5906     Costs.FrameDefault += 4;
5907     Costs.FrameNoLRSave += 4;
5908     Costs.FrameRegSave += 4;
5909     Costs.FrameTailCall += 4;
5910     Costs.FrameThunk += 4;
5911   }
5912   unsigned FrameID = MachineOutlinerDefault;
5913   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5914 
5915   // If the last instruction in any candidate is a terminator, then we should
5916   // tail call all of the candidates.
5917   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5918     FrameID = MachineOutlinerTailCall;
5919     NumBytesToCreateFrame = Costs.FrameTailCall;
5920     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
5921   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
5922              LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
5923              LastInstrOpcode == ARM::tBLXr ||
5924              LastInstrOpcode == ARM::tBLXr_noip ||
5925              LastInstrOpcode == ARM::tBLXi) {
5926     FrameID = MachineOutlinerThunk;
5927     NumBytesToCreateFrame = Costs.FrameThunk;
5928     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
5929   } else {
5930     // We need to decide how to emit calls + frames. We can always emit the same
5931     // frame if we don't need to save to the stack. If we have to save to the
5932     // stack, then we need a different frame.
5933     unsigned NumBytesNoStackCalls = 0;
5934     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5935 
5936     for (outliner::Candidate &C : RepeatedSequenceLocs) {
5937       C.initLRU(TRI);
5938       // LR liveness is overestimated in return blocks, unless they end with a
5939       // tail call.
5940       const auto Last = C.getMBB()->rbegin();
5941       const bool LRIsAvailable =
5942           C.getMBB()->isReturnBlock() && !Last->isCall()
5943               ? isLRAvailable(TRI, Last,
5944                               (MachineBasicBlock::reverse_iterator)C.front())
5945               : C.LRU.available(ARM::LR);
5946       if (LRIsAvailable) {
5947         FrameID = MachineOutlinerNoLRSave;
5948         NumBytesNoStackCalls += Costs.CallNoLRSave;
5949         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
5950         CandidatesWithoutStackFixups.push_back(C);
5951       }
5952 
5953       // Is an unused register available? If so, we won't modify the stack, so
5954       // we can outline with the same frame type as those that don't save LR.
5955       else if (findRegisterToSaveLRTo(C)) {
5956         FrameID = MachineOutlinerRegSave;
5957         NumBytesNoStackCalls += Costs.CallRegSave;
5958         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
5959         CandidatesWithoutStackFixups.push_back(C);
5960       }
5961 
5962       // Is SP used in the sequence at all? If not, we don't have to modify
5963       // the stack, so we are guaranteed to get the same frame.
5964       else if (C.UsedInSequence.available(ARM::SP)) {
5965         NumBytesNoStackCalls += Costs.CallDefault;
5966         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5967         CandidatesWithoutStackFixups.push_back(C);
5968       }
5969 
5970       // If we outline this, we need to modify the stack. Pretend we don't
5971       // outline this by saving all of its bytes.
5972       else
5973         NumBytesNoStackCalls += SequenceSize;
5974     }
5975 
5976     // If there are no places where we have to save LR, then note that we don't
5977     // have to update the stack. Otherwise, give every candidate the default
5978     // call type
5979     if (NumBytesNoStackCalls <=
5980         RepeatedSequenceLocs.size() * Costs.CallDefault) {
5981       RepeatedSequenceLocs = CandidatesWithoutStackFixups;
5982       FrameID = MachineOutlinerNoLRSave;
5983     } else
5984       SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5985   }
5986 
5987   // Does every candidate's MBB contain a call?  If so, then we might have a
5988   // call in the range.
5989   if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
5990     // check if the range contains a call.  These require a save + restore of
5991     // the link register.
5992     if (std::any_of(FirstCand.front(), FirstCand.back(),
5993                     [](const MachineInstr &MI) { return MI.isCall(); }))
5994       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5995 
5996     // Handle the last instruction separately.  If it is tail call, then the
5997     // last instruction is a call, we don't want to save + restore in this
5998     // case.  However, it could be possible that the last instruction is a
5999     // call without it being valid to tail call this sequence.  We should
6000     // consider this as well.
6001     else if (FrameID != MachineOutlinerThunk &&
6002              FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
6003       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6004   }
6005 
6006   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
6007                                     NumBytesToCreateFrame, FrameID);
6008 }
6009 
6010 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
6011                                                  int64_t Fixup,
6012                                                  bool Updt) const {
6013   int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP);
6014   unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
6015   if (SPIdx < 0)
6016     // No SP operand
6017     return true;
6018   else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6019     // If SP is not the base register we can't do much
6020     return false;
6021 
6022   // Stack might be involved but addressing mode doesn't handle any offset.
6023   // Rq: AddrModeT1_[1|2|4] don't operate on SP
6024   if (AddrMode == ARMII::AddrMode1 ||       // Arithmetic instructions
6025       AddrMode == ARMII::AddrMode4 ||       // Load/Store Multiple
6026       AddrMode == ARMII::AddrMode6 ||       // Neon Load/Store Multiple
6027       AddrMode == ARMII::AddrModeT2_so ||   // SP can't be used as based register
6028       AddrMode == ARMII::AddrModeT2_pc ||   // PCrel access
6029       AddrMode == ARMII::AddrMode2 ||       // Used by PRE and POST indexed LD/ST
6030       AddrMode == ARMII::AddrModeT2_i7 ||   // v8.1-M MVE
6031       AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
6032       AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
6033       AddrMode == ARMII::AddrModeNone ||
6034       AddrMode == ARMII::AddrModeT2_i8 ||   // Pre/Post inc instructions
6035       AddrMode == ARMII::AddrModeT2_i8neg)  // Always negative imm
6036     return false;
6037 
6038   unsigned NumOps = MI->getDesc().getNumOperands();
6039   unsigned ImmIdx = NumOps - 3;
6040 
6041   const MachineOperand &Offset = MI->getOperand(ImmIdx);
6042   assert(Offset.isImm() && "Is not an immediate");
6043   int64_t OffVal = Offset.getImm();
6044 
6045   if (OffVal < 0)
6046     // Don't override data if the are below SP.
6047     return false;
6048 
6049   unsigned NumBits = 0;
6050   unsigned Scale = 1;
6051 
6052   switch (AddrMode) {
6053   case ARMII::AddrMode3:
6054     if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
6055       return false;
6056     OffVal = ARM_AM::getAM3Offset(OffVal);
6057     NumBits = 8;
6058     break;
6059   case ARMII::AddrMode5:
6060     if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
6061       return false;
6062     OffVal = ARM_AM::getAM5Offset(OffVal);
6063     NumBits = 8;
6064     Scale = 4;
6065     break;
6066   case ARMII::AddrMode5FP16:
6067     if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6068       return false;
6069     OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6070     NumBits = 8;
6071     Scale = 2;
6072     break;
6073   case ARMII::AddrModeT2_i8pos:
6074     NumBits = 8;
6075     break;
6076   case ARMII::AddrModeT2_i8s4:
6077     // FIXME: Values are already scaled in this addressing mode.
6078     assert((Fixup & 3) == 0 && "Can't encode this offset!");
6079     NumBits = 10;
6080     break;
6081   case ARMII::AddrModeT2_ldrex:
6082     NumBits = 8;
6083     Scale = 4;
6084     break;
6085   case ARMII::AddrModeT2_i12:
6086   case ARMII::AddrMode_i12:
6087     NumBits = 12;
6088     break;
6089   case ARMII::AddrModeT1_s: // SP-relative LD/ST
6090     NumBits = 8;
6091     Scale = 4;
6092     break;
6093   default:
6094     llvm_unreachable("Unsupported addressing mode!");
6095   }
6096   // Make sure the offset is encodable for instructions that scale the
6097   // immediate.
6098   assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6099          "Can't encode this offset!");
6100   OffVal += Fixup / Scale;
6101 
6102   unsigned Mask = (1 << NumBits) - 1;
6103 
6104   if (OffVal <= Mask) {
6105     if (Updt)
6106       MI->getOperand(ImmIdx).setImm(OffVal);
6107     return true;
6108   }
6109 
6110   return false;
6111 }
6112 
6113 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
6114     Function &F, std::vector<outliner::Candidate> &Candidates) const {
6115   outliner::Candidate &C = Candidates.front();
6116   // branch-target-enforcement is guaranteed to be consistent between all
6117   // candidates, so we only need to look at one.
6118   const Function &CFn = C.getMF()->getFunction();
6119   if (CFn.hasFnAttribute("branch-target-enforcement"))
6120     F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement"));
6121 
6122   ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
6123 }
6124 
6125 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6126     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6127   const Function &F = MF.getFunction();
6128 
6129   // Can F be deduplicated by the linker? If it can, don't outline from it.
6130   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6131     return false;
6132 
6133   // Don't outline from functions with section markings; the program could
6134   // expect that all the code is in the named section.
6135   // FIXME: Allow outlining from multiple functions with the same section
6136   // marking.
6137   if (F.hasSection())
6138     return false;
6139 
6140   // FIXME: Thumb1 outlining is not handled
6141   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6142     return false;
6143 
6144   // It's safe to outline from MF.
6145   return true;
6146 }
6147 
6148 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6149                                               unsigned &Flags) const {
6150   // Check if LR is available through all of the MBB. If it's not, then set
6151   // a flag.
6152   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6153          "Suitable Machine Function for outlining must track liveness");
6154 
6155   LiveRegUnits LRU(getRegisterInfo());
6156 
6157   std::for_each(MBB.rbegin(), MBB.rend(),
6158                 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
6159 
6160   // Check if each of the unsafe registers are available...
6161   bool R12AvailableInBlock = LRU.available(ARM::R12);
6162   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6163 
6164   // If all of these are dead (and not live out), we know we don't have to check
6165   // them later.
6166   if (R12AvailableInBlock && CPSRAvailableInBlock)
6167     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6168 
6169   // Now, add the live outs to the set.
6170   LRU.addLiveOuts(MBB);
6171 
6172   // If any of these registers is available in the MBB, but also a live out of
6173   // the block, then we know outlining is unsafe.
6174   if (R12AvailableInBlock && !LRU.available(ARM::R12))
6175     return false;
6176   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6177     return false;
6178 
6179   // Check if there's a call inside this MachineBasicBlock.  If there is, then
6180   // set a flag.
6181   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6182     Flags |= MachineOutlinerMBBFlags::HasCalls;
6183 
6184   // LR liveness is overestimated in return blocks.
6185 
6186   bool LRIsAvailable =
6187       MBB.isReturnBlock() && !MBB.back().isCall()
6188           ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6189           : LRU.available(ARM::LR);
6190   if (!LRIsAvailable)
6191     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6192 
6193   return true;
6194 }
6195 
6196 outliner::InstrType
6197 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
6198                                    unsigned Flags) const {
6199   MachineInstr &MI = *MIT;
6200   const TargetRegisterInfo *TRI = &getRegisterInfo();
6201 
6202   // Be conservative with inline ASM
6203   if (MI.isInlineAsm())
6204     return outliner::InstrType::Illegal;
6205 
6206   // Don't allow debug values to impact outlining type.
6207   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
6208     return outliner::InstrType::Invisible;
6209 
6210   // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
6211   // so we can go ahead and skip over them.
6212   if (MI.isKill() || MI.isImplicitDef())
6213     return outliner::InstrType::Invisible;
6214 
6215   // PIC instructions contain labels, outlining them would break offset
6216   // computing.  unsigned Opc = MI.getOpcode();
6217   unsigned Opc = MI.getOpcode();
6218   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6219       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6220       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6221       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6222       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6223       Opc == ARM::t2MOV_ga_pcrel)
6224     return outliner::InstrType::Illegal;
6225 
6226   // Be conservative with ARMv8.1 MVE instructions.
6227   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6228       Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6229       Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6230       Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6231       Opc == ARM::t2LoopEndDec)
6232     return outliner::InstrType::Illegal;
6233 
6234   const MCInstrDesc &MCID = MI.getDesc();
6235   uint64_t MIFlags = MCID.TSFlags;
6236   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6237     return outliner::InstrType::Illegal;
6238 
6239   // Is this a terminator for a basic block?
6240   if (MI.isTerminator()) {
6241     // Don't outline if the branch is not unconditional.
6242     if (isPredicated(MI))
6243       return outliner::InstrType::Illegal;
6244 
6245     // Is this the end of a function?
6246     if (MI.getParent()->succ_empty())
6247       return outliner::InstrType::Legal;
6248 
6249     // It's not, so don't outline it.
6250     return outliner::InstrType::Illegal;
6251   }
6252 
6253   // Make sure none of the operands are un-outlinable.
6254   for (const MachineOperand &MOP : MI.operands()) {
6255     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
6256         MOP.isTargetIndex())
6257       return outliner::InstrType::Illegal;
6258   }
6259 
6260   // Don't outline if link register or program counter value are used.
6261   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6262     return outliner::InstrType::Illegal;
6263 
6264   if (MI.isCall()) {
6265     // Get the function associated with the call.  Look at each operand and find
6266     // the one that represents the calle and get its name.
6267     const Function *Callee = nullptr;
6268     for (const MachineOperand &MOP : MI.operands()) {
6269       if (MOP.isGlobal()) {
6270         Callee = dyn_cast<Function>(MOP.getGlobal());
6271         break;
6272       }
6273     }
6274 
6275     // Dont't outline calls to "mcount" like functions, in particular Linux
6276     // kernel function tracing relies on it.
6277     if (Callee &&
6278         (Callee->getName() == "\01__gnu_mcount_nc" ||
6279          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6280       return outliner::InstrType::Illegal;
6281 
6282     // If we don't know anything about the callee, assume it depends on the
6283     // stack layout of the caller. In that case, it's only legal to outline
6284     // as a tail-call. Explicitly list the call instructions we know about so
6285     // we don't get unexpected results with call pseudo-instructions.
6286     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6287     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6288         Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6289         Opc == ARM::tBLXi)
6290       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6291 
6292     if (!Callee)
6293       return UnknownCallOutlineType;
6294 
6295     // We have a function we have information about.  Check if it's something we
6296     // can safely outline.
6297     MachineFunction *MF = MI.getParent()->getParent();
6298     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6299 
6300     // We don't know what's going on with the callee at all.  Don't touch it.
6301     if (!CalleeMF)
6302       return UnknownCallOutlineType;
6303 
6304     // Check if we know anything about the callee saves on the function. If we
6305     // don't, then don't touch it, since that implies that we haven't computed
6306     // anything about its stack frame yet.
6307     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6308     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6309         MFI.getNumObjects() > 0)
6310       return UnknownCallOutlineType;
6311 
6312     // At this point, we can say that CalleeMF ought to not pass anything on the
6313     // stack. Therefore, we can outline it.
6314     return outliner::InstrType::Legal;
6315   }
6316 
6317   // Since calls are handled, don't touch LR or PC
6318   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6319     return outliner::InstrType::Illegal;
6320 
6321   // Does this use the stack?
6322   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6323     // True if there is no chance that any outlined candidate from this range
6324     // could require stack fixups. That is, both
6325     // * LR is available in the range (No save/restore around call)
6326     // * The range doesn't include calls (No save/restore in outlined frame)
6327     // are true.
6328     // FIXME: This is very restrictive; the flags check the whole block,
6329     // not just the bit we will try to outline.
6330     bool MightNeedStackFixUp =
6331         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6332                   MachineOutlinerMBBFlags::HasCalls));
6333 
6334     if (!MightNeedStackFixUp)
6335       return outliner::InstrType::Legal;
6336 
6337     // Any modification of SP will break our code to save/restore LR.
6338     // FIXME: We could handle some instructions which add a constant offset to
6339     // SP, with a bit more work.
6340     if (MI.modifiesRegister(ARM::SP, TRI))
6341       return outliner::InstrType::Illegal;
6342 
6343     // At this point, we have a stack instruction that we might need to fix up.
6344     // up. We'll handle it if it's a load or store.
6345     if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6346                                   false))
6347       return outliner::InstrType::Legal;
6348 
6349     // We can't fix it up, so don't outline it.
6350     return outliner::InstrType::Illegal;
6351   }
6352 
6353   // Be conservative with IT blocks.
6354   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6355       MI.modifiesRegister(ARM::ITSTATE, TRI))
6356     return outliner::InstrType::Illegal;
6357 
6358   // Don't outline positions.
6359   if (MI.isPosition())
6360     return outliner::InstrType::Illegal;
6361 
6362   return outliner::InstrType::Legal;
6363 }
6364 
6365 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6366   for (MachineInstr &MI : MBB) {
6367     checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6368   }
6369 }
6370 
6371 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6372                                      MachineBasicBlock::iterator It) const {
6373   unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6374   int Align = -Subtarget.getStackAlignment().value();
6375   BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6376     .addReg(ARM::LR, RegState::Kill)
6377     .addReg(ARM::SP)
6378     .addImm(Align)
6379     .add(predOps(ARMCC::AL));
6380 }
6381 
6382 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack(
6383     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6384   MachineFunction &MF = *MBB.getParent();
6385   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6386   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6387   int Align = Subtarget.getStackAlignment().value();
6388   // Add a CFI saying the stack was moved down.
6389   int64_t StackPosEntry =
6390       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6391   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6392       .addCFIIndex(StackPosEntry)
6393       .setMIFlags(MachineInstr::FrameSetup);
6394 
6395   // Add a CFI saying that the LR that we want to find is now higher than
6396   // before.
6397   int64_t LRPosEntry =
6398       MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align));
6399   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6400       .addCFIIndex(LRPosEntry)
6401       .setMIFlags(MachineInstr::FrameSetup);
6402 }
6403 
6404 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6405                                              MachineBasicBlock::iterator It,
6406                                              Register Reg) const {
6407   MachineFunction &MF = *MBB.getParent();
6408   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6409   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6410   unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6411 
6412   int64_t LRPosEntry = MF.addFrameInst(
6413       MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6414   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6415       .addCFIIndex(LRPosEntry)
6416       .setMIFlags(MachineInstr::FrameSetup);
6417 }
6418 
6419 void ARMBaseInstrInfo::restoreLRFromStack(
6420     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6421   unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6422   MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6423     .addReg(ARM::SP, RegState::Define)
6424     .addReg(ARM::SP);
6425   if (!Subtarget.isThumb())
6426     MIB.addReg(0);
6427   MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL));
6428 }
6429 
6430 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack(
6431     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6432   // Now stack has moved back up...
6433   MachineFunction &MF = *MBB.getParent();
6434   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6435   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6436   int64_t StackPosEntry =
6437       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6438   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6439       .addCFIIndex(StackPosEntry)
6440       .setMIFlags(MachineInstr::FrameDestroy);
6441 
6442   // ... and we have restored LR.
6443   int64_t LRPosEntry =
6444       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6445   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6446       .addCFIIndex(LRPosEntry)
6447       .setMIFlags(MachineInstr::FrameDestroy);
6448 }
6449 
6450 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6451     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6452   MachineFunction &MF = *MBB.getParent();
6453   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6454   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6455 
6456   int64_t LRPosEntry =
6457       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6458   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6459       .addCFIIndex(LRPosEntry)
6460       .setMIFlags(MachineInstr::FrameDestroy);
6461 }
6462 
6463 void ARMBaseInstrInfo::buildOutlinedFrame(
6464     MachineBasicBlock &MBB, MachineFunction &MF,
6465     const outliner::OutlinedFunction &OF) const {
6466   // For thunk outlining, rewrite the last instruction from a call to a
6467   // tail-call.
6468   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6469     MachineInstr *Call = &*--MBB.instr_end();
6470     bool isThumb = Subtarget.isThumb();
6471     unsigned FuncOp = isThumb ? 2 : 0;
6472     unsigned Opc = Call->getOperand(FuncOp).isReg()
6473                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6474                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6475                                                              : ARM::tTAILJMPdND
6476                                  : ARM::TAILJMPd;
6477     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6478                                   .add(Call->getOperand(FuncOp));
6479     if (isThumb && !Call->getOperand(FuncOp).isReg())
6480       MIB.add(predOps(ARMCC::AL));
6481     Call->eraseFromParent();
6482   }
6483 
6484   // Is there a call in the outlined range?
6485   auto IsNonTailCall = [](MachineInstr &MI) {
6486     return MI.isCall() && !MI.isReturn();
6487   };
6488   if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6489     MachineBasicBlock::iterator It = MBB.begin();
6490     MachineBasicBlock::iterator Et = MBB.end();
6491 
6492     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6493         OF.FrameConstructionID == MachineOutlinerThunk)
6494       Et = std::prev(MBB.end());
6495 
6496     // We have to save and restore LR, we need to add it to the liveins if it
6497     // is not already part of the set.  This is suffient since outlined
6498     // functions only have one block.
6499     if (!MBB.isLiveIn(ARM::LR))
6500       MBB.addLiveIn(ARM::LR);
6501 
6502     // Insert a save before the outlined region
6503     saveLROnStack(MBB, It);
6504     emitCFIForLRSaveOnStack(MBB, It);
6505 
6506     // Fix up the instructions in the range, since we're going to modify the
6507     // stack.
6508     assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6509            "Can only fix up stack references once");
6510     fixupPostOutline(MBB);
6511 
6512     // Insert a restore before the terminator for the function.  Restore LR.
6513     restoreLRFromStack(MBB, Et);
6514     emitCFIForLRRestoreFromStack(MBB, Et);
6515   }
6516 
6517   // If this is a tail call outlined function, then there's already a return.
6518   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6519       OF.FrameConstructionID == MachineOutlinerThunk)
6520     return;
6521 
6522   // Here we have to insert the return ourselves.  Get the correct opcode from
6523   // current feature set.
6524   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6525       .add(predOps(ARMCC::AL));
6526 
6527   // Did we have to modify the stack by saving the link register?
6528   if (OF.FrameConstructionID != MachineOutlinerDefault &&
6529       OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6530     return;
6531 
6532   // We modified the stack.
6533   // Walk over the basic block and fix up all the stack accesses.
6534   fixupPostOutline(MBB);
6535 }
6536 
6537 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6538     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6539     MachineFunction &MF, const outliner::Candidate &C) const {
6540   MachineInstrBuilder MIB;
6541   MachineBasicBlock::iterator CallPt;
6542   unsigned Opc;
6543   bool isThumb = Subtarget.isThumb();
6544 
6545   // Are we tail calling?
6546   if (C.CallConstructionID == MachineOutlinerTailCall) {
6547     // If yes, then we can just branch to the label.
6548     Opc = isThumb
6549               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6550               : ARM::TAILJMPd;
6551     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6552               .addGlobalAddress(M.getNamedValue(MF.getName()));
6553     if (isThumb)
6554       MIB.add(predOps(ARMCC::AL));
6555     It = MBB.insert(It, MIB);
6556     return It;
6557   }
6558 
6559   // Create the call instruction.
6560   Opc = isThumb ? ARM::tBL : ARM::BL;
6561   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6562   if (isThumb)
6563     CallMIB.add(predOps(ARMCC::AL));
6564   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6565 
6566   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6567       C.CallConstructionID == MachineOutlinerThunk) {
6568     // No, so just insert the call.
6569     It = MBB.insert(It, CallMIB);
6570     return It;
6571   }
6572 
6573   const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6574   // Can we save to a register?
6575   if (C.CallConstructionID == MachineOutlinerRegSave) {
6576     unsigned Reg = findRegisterToSaveLRTo(C);
6577     assert(Reg != 0 && "No callee-saved register available?");
6578 
6579     // Save and restore LR from that register.
6580     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6581     if (!AFI.isLRSpilled())
6582       emitCFIForLRSaveToReg(MBB, It, Reg);
6583     CallPt = MBB.insert(It, CallMIB);
6584     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6585     if (!AFI.isLRSpilled())
6586       emitCFIForLRRestoreFromReg(MBB, It);
6587     It--;
6588     return CallPt;
6589   }
6590   // We have the default case. Save and restore from SP.
6591   if (!MBB.isLiveIn(ARM::LR))
6592     MBB.addLiveIn(ARM::LR);
6593   saveLROnStack(MBB, It);
6594   if (!AFI.isLRSpilled())
6595     emitCFIForLRSaveOnStack(MBB, It);
6596   CallPt = MBB.insert(It, CallMIB);
6597   restoreLRFromStack(MBB, It);
6598   if (!AFI.isLRSpilled())
6599     emitCFIForLRRestoreFromStack(MBB, It);
6600   It--;
6601   return CallPt;
6602 }
6603 
6604 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6605     MachineFunction &MF) const {
6606   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6607 }
6608 
6609 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
6610                                                          AAResults *AA) const {
6611   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6612   // the tail predication conversion. This means that the element count
6613   // register has to be live for longer, but that has to be better than
6614   // spill/restore and VPT predication.
6615   return isVCTP(&MI) && !isPredicated(MI);
6616 }
6617 
6618 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6619   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6620                                                           : ARM::BLX;
6621 }
6622 
6623 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6624   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6625                                                           : ARM::tBLXr;
6626 }
6627 
6628 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6629   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6630                                                           : ARM::BLX_pred;
6631 }
6632 
6633