1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/MachineScheduler.h" 40 #include "llvm/CodeGen/MultiHazardRecognizer.h" 41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 42 #include "llvm/CodeGen/SelectionDAGNodes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSchedule.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/MC/MCAsmInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <new> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "arm-instrinfo" 73 74 #define GET_INSTRINFO_CTOR_DTOR 75 #include "ARMGenInstrInfo.inc" 76 77 static cl::opt<bool> 78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 79 cl::desc("Enable ARM 2-addr to 3-addr conv")); 80 81 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 82 struct ARM_MLxEntry { 83 uint16_t MLxOpc; // MLA / MLS opcode 84 uint16_t MulOpc; // Expanded multiplication opcode 85 uint16_t AddSubOpc; // Expanded add / sub opcode 86 bool NegAcc; // True if the acc is negated before the add / sub. 87 bool HasLane; // True if instruction has an extra "lane" operand. 88 }; 89 90 static const ARM_MLxEntry ARM_MLxTable[] = { 91 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 92 // fp scalar ops 93 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 94 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 95 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 96 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 97 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 98 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 99 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 100 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 101 102 // fp SIMD ops 103 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 104 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 105 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 106 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 107 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 108 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 109 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 110 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 111 }; 112 113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 114 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 115 Subtarget(STI) { 116 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 117 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 118 llvm_unreachable("Duplicated entries?"); 119 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 120 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 121 } 122 } 123 124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 125 // currently defaults to no prepass hazard recognizer. 126 ScheduleHazardRecognizer * 127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 128 const ScheduleDAG *DAG) const { 129 if (usePreRAHazardRecognizer()) { 130 const InstrItineraryData *II = 131 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 132 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 133 } 134 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 135 } 136 137 // Called during: 138 // - pre-RA scheduling 139 // - post-RA scheduling when FeatureUseMISched is set 140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 141 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 142 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 143 144 // We would like to restrict this hazard recognizer to only 145 // post-RA scheduling; we can tell that we're post-RA because we don't 146 // track VRegLiveness. 147 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 148 // banks banked on bit 2. Assume that TCMs are in use. 149 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 150 MHR->AddHazardRecognizer( 151 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 152 153 // Not inserting ARMHazardRecognizerFPMLx because that would change 154 // legacy behavior 155 156 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 157 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 158 return MHR; 159 } 160 161 // Called during post-RA scheduling when FeatureUseMISched is not set 162 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 164 const ScheduleDAG *DAG) const { 165 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 166 167 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 168 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 169 170 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 171 if (BHR) 172 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 173 return MHR; 174 } 175 176 MachineInstr * 177 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, 178 LiveIntervals *LIS) const { 179 // FIXME: Thumb2 support. 180 181 if (!EnableARM3Addr) 182 return nullptr; 183 184 MachineFunction &MF = *MI.getParent()->getParent(); 185 uint64_t TSFlags = MI.getDesc().TSFlags; 186 bool isPre = false; 187 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 188 default: return nullptr; 189 case ARMII::IndexModePre: 190 isPre = true; 191 break; 192 case ARMII::IndexModePost: 193 break; 194 } 195 196 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 197 // operation. 198 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 199 if (MemOpc == 0) 200 return nullptr; 201 202 MachineInstr *UpdateMI = nullptr; 203 MachineInstr *MemMI = nullptr; 204 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 205 const MCInstrDesc &MCID = MI.getDesc(); 206 unsigned NumOps = MCID.getNumOperands(); 207 bool isLoad = !MI.mayStore(); 208 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 209 const MachineOperand &Base = MI.getOperand(2); 210 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 211 Register WBReg = WB.getReg(); 212 Register BaseReg = Base.getReg(); 213 Register OffReg = Offset.getReg(); 214 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 215 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 216 switch (AddrMode) { 217 default: llvm_unreachable("Unknown indexed op!"); 218 case ARMII::AddrMode2: { 219 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 220 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 221 if (OffReg == 0) { 222 if (ARM_AM::getSOImmVal(Amt) == -1) 223 // Can't encode it in a so_imm operand. This transformation will 224 // add more than 1 instruction. Abandon! 225 return nullptr; 226 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 227 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 228 .addReg(BaseReg) 229 .addImm(Amt) 230 .add(predOps(Pred)) 231 .add(condCodeOp()); 232 } else if (Amt != 0) { 233 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 234 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 235 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 236 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 237 .addReg(BaseReg) 238 .addReg(OffReg) 239 .addReg(0) 240 .addImm(SOOpc) 241 .add(predOps(Pred)) 242 .add(condCodeOp()); 243 } else 244 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 245 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 246 .addReg(BaseReg) 247 .addReg(OffReg) 248 .add(predOps(Pred)) 249 .add(condCodeOp()); 250 break; 251 } 252 case ARMII::AddrMode3 : { 253 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 254 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 255 if (OffReg == 0) 256 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 257 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 258 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 259 .addReg(BaseReg) 260 .addImm(Amt) 261 .add(predOps(Pred)) 262 .add(condCodeOp()); 263 else 264 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 265 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 266 .addReg(BaseReg) 267 .addReg(OffReg) 268 .add(predOps(Pred)) 269 .add(condCodeOp()); 270 break; 271 } 272 } 273 274 std::vector<MachineInstr*> NewMIs; 275 if (isPre) { 276 if (isLoad) 277 MemMI = 278 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 279 .addReg(WBReg) 280 .addImm(0) 281 .addImm(Pred); 282 else 283 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 284 .addReg(MI.getOperand(1).getReg()) 285 .addReg(WBReg) 286 .addReg(0) 287 .addImm(0) 288 .addImm(Pred); 289 NewMIs.push_back(MemMI); 290 NewMIs.push_back(UpdateMI); 291 } else { 292 if (isLoad) 293 MemMI = 294 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 295 .addReg(BaseReg) 296 .addImm(0) 297 .addImm(Pred); 298 else 299 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 300 .addReg(MI.getOperand(1).getReg()) 301 .addReg(BaseReg) 302 .addReg(0) 303 .addImm(0) 304 .addImm(Pred); 305 if (WB.isDead()) 306 UpdateMI->getOperand(0).setIsDead(); 307 NewMIs.push_back(UpdateMI); 308 NewMIs.push_back(MemMI); 309 } 310 311 // Transfer LiveVariables states, kill / dead info. 312 if (LV) { 313 for (const MachineOperand &MO : MI.operands()) { 314 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 315 Register Reg = MO.getReg(); 316 317 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 318 if (MO.isDef()) { 319 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 320 if (MO.isDead()) 321 LV->addVirtualRegisterDead(Reg, *NewMI); 322 } 323 if (MO.isUse() && MO.isKill()) { 324 for (unsigned j = 0; j < 2; ++j) { 325 // Look at the two new MI's in reverse order. 326 MachineInstr *NewMI = NewMIs[j]; 327 if (!NewMI->readsRegister(Reg)) 328 continue; 329 LV->addVirtualRegisterKilled(Reg, *NewMI); 330 if (VI.removeKill(MI)) 331 VI.Kills.push_back(NewMI); 332 break; 333 } 334 } 335 } 336 } 337 } 338 339 MachineBasicBlock &MBB = *MI.getParent(); 340 MBB.insert(MI, NewMIs[1]); 341 MBB.insert(MI, NewMIs[0]); 342 return NewMIs[0]; 343 } 344 345 // Branch analysis. 346 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 347 MachineBasicBlock *&TBB, 348 MachineBasicBlock *&FBB, 349 SmallVectorImpl<MachineOperand> &Cond, 350 bool AllowModify) const { 351 TBB = nullptr; 352 FBB = nullptr; 353 354 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 355 if (I == MBB.instr_begin()) 356 return false; // Empty blocks are easy. 357 --I; 358 359 // Walk backwards from the end of the basic block until the branch is 360 // analyzed or we give up. 361 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 362 // Flag to be raised on unanalyzeable instructions. This is useful in cases 363 // where we want to clean up on the end of the basic block before we bail 364 // out. 365 bool CantAnalyze = false; 366 367 // Skip over DEBUG values, predicated nonterminators and speculation 368 // barrier terminators. 369 while (I->isDebugInstr() || !I->isTerminator() || 370 isSpeculationBarrierEndBBOpcode(I->getOpcode()) || 371 I->getOpcode() == ARM::t2DoLoopStartTP){ 372 if (I == MBB.instr_begin()) 373 return false; 374 --I; 375 } 376 377 if (isIndirectBranchOpcode(I->getOpcode()) || 378 isJumpTableBranchOpcode(I->getOpcode())) { 379 // Indirect branches and jump tables can't be analyzed, but we still want 380 // to clean up any instructions at the tail of the basic block. 381 CantAnalyze = true; 382 } else if (isUncondBranchOpcode(I->getOpcode())) { 383 TBB = I->getOperand(0).getMBB(); 384 } else if (isCondBranchOpcode(I->getOpcode())) { 385 // Bail out if we encounter multiple conditional branches. 386 if (!Cond.empty()) 387 return true; 388 389 assert(!FBB && "FBB should have been null."); 390 FBB = TBB; 391 TBB = I->getOperand(0).getMBB(); 392 Cond.push_back(I->getOperand(1)); 393 Cond.push_back(I->getOperand(2)); 394 } else if (I->isReturn()) { 395 // Returns can't be analyzed, but we should run cleanup. 396 CantAnalyze = true; 397 } else { 398 // We encountered other unrecognized terminator. Bail out immediately. 399 return true; 400 } 401 402 // Cleanup code - to be run for unpredicated unconditional branches and 403 // returns. 404 if (!isPredicated(*I) && 405 (isUncondBranchOpcode(I->getOpcode()) || 406 isIndirectBranchOpcode(I->getOpcode()) || 407 isJumpTableBranchOpcode(I->getOpcode()) || 408 I->isReturn())) { 409 // Forget any previous condition branch information - it no longer applies. 410 Cond.clear(); 411 FBB = nullptr; 412 413 // If we can modify the function, delete everything below this 414 // unconditional branch. 415 if (AllowModify) { 416 MachineBasicBlock::iterator DI = std::next(I); 417 while (DI != MBB.instr_end()) { 418 MachineInstr &InstToDelete = *DI; 419 ++DI; 420 // Speculation barriers must not be deleted. 421 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 422 continue; 423 InstToDelete.eraseFromParent(); 424 } 425 } 426 } 427 428 if (CantAnalyze) { 429 // We may not be able to analyze the block, but we could still have 430 // an unconditional branch as the last instruction in the block, which 431 // just branches to layout successor. If this is the case, then just 432 // remove it if we're allowed to make modifications. 433 if (AllowModify && !isPredicated(MBB.back()) && 434 isUncondBranchOpcode(MBB.back().getOpcode()) && 435 TBB && MBB.isLayoutSuccessor(TBB)) 436 removeBranch(MBB); 437 return true; 438 } 439 440 if (I == MBB.instr_begin()) 441 return false; 442 443 --I; 444 } 445 446 // We made it past the terminators without bailing out - we must have 447 // analyzed this branch successfully. 448 return false; 449 } 450 451 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 452 int *BytesRemoved) const { 453 assert(!BytesRemoved && "code size not handled"); 454 455 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 456 if (I == MBB.end()) 457 return 0; 458 459 if (!isUncondBranchOpcode(I->getOpcode()) && 460 !isCondBranchOpcode(I->getOpcode())) 461 return 0; 462 463 // Remove the branch. 464 I->eraseFromParent(); 465 466 I = MBB.end(); 467 468 if (I == MBB.begin()) return 1; 469 --I; 470 if (!isCondBranchOpcode(I->getOpcode())) 471 return 1; 472 473 // Remove the branch. 474 I->eraseFromParent(); 475 return 2; 476 } 477 478 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 479 MachineBasicBlock *TBB, 480 MachineBasicBlock *FBB, 481 ArrayRef<MachineOperand> Cond, 482 const DebugLoc &DL, 483 int *BytesAdded) const { 484 assert(!BytesAdded && "code size not handled"); 485 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 486 int BOpc = !AFI->isThumbFunction() 487 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 488 int BccOpc = !AFI->isThumbFunction() 489 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 490 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 491 492 // Shouldn't be a fall through. 493 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 494 assert((Cond.size() == 2 || Cond.size() == 0) && 495 "ARM branch conditions have two components!"); 496 497 // For conditional branches, we use addOperand to preserve CPSR flags. 498 499 if (!FBB) { 500 if (Cond.empty()) { // Unconditional branch? 501 if (isThumb) 502 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 503 else 504 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 505 } else 506 BuildMI(&MBB, DL, get(BccOpc)) 507 .addMBB(TBB) 508 .addImm(Cond[0].getImm()) 509 .add(Cond[1]); 510 return 1; 511 } 512 513 // Two-way conditional branch. 514 BuildMI(&MBB, DL, get(BccOpc)) 515 .addMBB(TBB) 516 .addImm(Cond[0].getImm()) 517 .add(Cond[1]); 518 if (isThumb) 519 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 520 else 521 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 522 return 2; 523 } 524 525 bool ARMBaseInstrInfo:: 526 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 527 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 528 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 529 return false; 530 } 531 532 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 533 if (MI.isBundle()) { 534 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 535 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 536 while (++I != E && I->isInsideBundle()) { 537 int PIdx = I->findFirstPredOperandIdx(); 538 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 539 return true; 540 } 541 return false; 542 } 543 544 int PIdx = MI.findFirstPredOperandIdx(); 545 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 546 } 547 548 std::string ARMBaseInstrInfo::createMIROperandComment( 549 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 550 const TargetRegisterInfo *TRI) const { 551 552 // First, let's see if there is a generic comment for this operand 553 std::string GenericComment = 554 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 555 if (!GenericComment.empty()) 556 return GenericComment; 557 558 // If not, check if we have an immediate operand. 559 if (Op.getType() != MachineOperand::MO_Immediate) 560 return std::string(); 561 562 // And print its corresponding condition code if the immediate is a 563 // predicate. 564 int FirstPredOp = MI.findFirstPredOperandIdx(); 565 if (FirstPredOp != (int) OpIdx) 566 return std::string(); 567 568 std::string CC = "CC::"; 569 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 570 return CC; 571 } 572 573 bool ARMBaseInstrInfo::PredicateInstruction( 574 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 575 unsigned Opc = MI.getOpcode(); 576 if (isUncondBranchOpcode(Opc)) { 577 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 578 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 579 .addImm(Pred[0].getImm()) 580 .addReg(Pred[1].getReg()); 581 return true; 582 } 583 584 int PIdx = MI.findFirstPredOperandIdx(); 585 if (PIdx != -1) { 586 MachineOperand &PMO = MI.getOperand(PIdx); 587 PMO.setImm(Pred[0].getImm()); 588 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 589 590 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 591 // IT block. This affects how they are printed. 592 const MCInstrDesc &MCID = MI.getDesc(); 593 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 594 assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand"); 595 assert((MI.getOperand(1).isDead() || 596 MI.getOperand(1).getReg() != ARM::CPSR) && 597 "if conversion tried to stop defining used CPSR"); 598 MI.getOperand(1).setReg(ARM::NoRegister); 599 } 600 601 return true; 602 } 603 return false; 604 } 605 606 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 607 ArrayRef<MachineOperand> Pred2) const { 608 if (Pred1.size() > 2 || Pred2.size() > 2) 609 return false; 610 611 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 612 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 613 if (CC1 == CC2) 614 return true; 615 616 switch (CC1) { 617 default: 618 return false; 619 case ARMCC::AL: 620 return true; 621 case ARMCC::HS: 622 return CC2 == ARMCC::HI; 623 case ARMCC::LS: 624 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 625 case ARMCC::GE: 626 return CC2 == ARMCC::GT; 627 case ARMCC::LE: 628 return CC2 == ARMCC::LT; 629 } 630 } 631 632 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 633 std::vector<MachineOperand> &Pred, 634 bool SkipDead) const { 635 bool Found = false; 636 for (const MachineOperand &MO : MI.operands()) { 637 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 638 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 639 if (ClobbersCPSR || IsCPSR) { 640 641 // Filter out T1 instructions that have a dead CPSR, 642 // allowing IT blocks to be generated containing T1 instructions 643 const MCInstrDesc &MCID = MI.getDesc(); 644 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 645 SkipDead) 646 continue; 647 648 Pred.push_back(MO); 649 Found = true; 650 } 651 } 652 653 return Found; 654 } 655 656 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 657 for (const auto &MO : MI.operands()) 658 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 659 return true; 660 return false; 661 } 662 663 static bool isEligibleForITBlock(const MachineInstr *MI) { 664 switch (MI->getOpcode()) { 665 default: return true; 666 case ARM::tADC: // ADC (register) T1 667 case ARM::tADDi3: // ADD (immediate) T1 668 case ARM::tADDi8: // ADD (immediate) T2 669 case ARM::tADDrr: // ADD (register) T1 670 case ARM::tAND: // AND (register) T1 671 case ARM::tASRri: // ASR (immediate) T1 672 case ARM::tASRrr: // ASR (register) T1 673 case ARM::tBIC: // BIC (register) T1 674 case ARM::tEOR: // EOR (register) T1 675 case ARM::tLSLri: // LSL (immediate) T1 676 case ARM::tLSLrr: // LSL (register) T1 677 case ARM::tLSRri: // LSR (immediate) T1 678 case ARM::tLSRrr: // LSR (register) T1 679 case ARM::tMUL: // MUL T1 680 case ARM::tMVN: // MVN (register) T1 681 case ARM::tORR: // ORR (register) T1 682 case ARM::tROR: // ROR (register) T1 683 case ARM::tRSB: // RSB (immediate) T1 684 case ARM::tSBC: // SBC (register) T1 685 case ARM::tSUBi3: // SUB (immediate) T1 686 case ARM::tSUBi8: // SUB (immediate) T2 687 case ARM::tSUBrr: // SUB (register) T1 688 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 689 } 690 } 691 692 /// isPredicable - Return true if the specified instruction can be predicated. 693 /// By default, this returns true for every instruction with a 694 /// PredicateOperand. 695 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 696 if (!MI.isPredicable()) 697 return false; 698 699 if (MI.isBundle()) 700 return false; 701 702 if (!isEligibleForITBlock(&MI)) 703 return false; 704 705 const MachineFunction *MF = MI.getParent()->getParent(); 706 const ARMFunctionInfo *AFI = 707 MF->getInfo<ARMFunctionInfo>(); 708 709 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 710 // In their ARM encoding, they can't be encoded in a conditional form. 711 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 712 return false; 713 714 // Make indirect control flow changes unpredicable when SLS mitigation is 715 // enabled. 716 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 717 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 718 return false; 719 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 720 return false; 721 722 if (AFI->isThumb2Function()) { 723 if (getSubtarget().restrictIT()) 724 return isV8EligibleForIT(&MI); 725 } 726 727 return true; 728 } 729 730 namespace llvm { 731 732 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 733 for (const MachineOperand &MO : MI->operands()) { 734 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 735 continue; 736 if (MO.getReg() != ARM::CPSR) 737 continue; 738 if (!MO.isDead()) 739 return false; 740 } 741 // all definitions of CPSR are dead 742 return true; 743 } 744 745 } // end namespace llvm 746 747 /// GetInstSize - Return the size of the specified MachineInstr. 748 /// 749 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 750 const MachineBasicBlock &MBB = *MI.getParent(); 751 const MachineFunction *MF = MBB.getParent(); 752 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 753 754 const MCInstrDesc &MCID = MI.getDesc(); 755 if (MCID.getSize()) 756 return MCID.getSize(); 757 758 switch (MI.getOpcode()) { 759 default: 760 // pseudo-instruction sizes are zero. 761 return 0; 762 case TargetOpcode::BUNDLE: 763 return getInstBundleLength(MI); 764 case ARM::MOVi16_ga_pcrel: 765 case ARM::MOVTi16_ga_pcrel: 766 case ARM::t2MOVi16_ga_pcrel: 767 case ARM::t2MOVTi16_ga_pcrel: 768 return 4; 769 case ARM::MOVi32imm: 770 case ARM::t2MOVi32imm: 771 return 8; 772 case ARM::CONSTPOOL_ENTRY: 773 case ARM::JUMPTABLE_INSTS: 774 case ARM::JUMPTABLE_ADDRS: 775 case ARM::JUMPTABLE_TBB: 776 case ARM::JUMPTABLE_TBH: 777 // If this machine instr is a constant pool entry, its size is recorded as 778 // operand #2. 779 return MI.getOperand(2).getImm(); 780 case ARM::Int_eh_sjlj_longjmp: 781 return 16; 782 case ARM::tInt_eh_sjlj_longjmp: 783 return 10; 784 case ARM::tInt_WIN_eh_sjlj_longjmp: 785 return 12; 786 case ARM::Int_eh_sjlj_setjmp: 787 case ARM::Int_eh_sjlj_setjmp_nofp: 788 return 20; 789 case ARM::tInt_eh_sjlj_setjmp: 790 case ARM::t2Int_eh_sjlj_setjmp: 791 case ARM::t2Int_eh_sjlj_setjmp_nofp: 792 return 12; 793 case ARM::SPACE: 794 return MI.getOperand(1).getImm(); 795 case ARM::INLINEASM: 796 case ARM::INLINEASM_BR: { 797 // If this machine instr is an inline asm, measure it. 798 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 799 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 800 Size = alignTo(Size, 4); 801 return Size; 802 } 803 case ARM::SpeculationBarrierISBDSBEndBB: 804 case ARM::t2SpeculationBarrierISBDSBEndBB: 805 // This gets lowered to 2 4-byte instructions. 806 return 8; 807 case ARM::SpeculationBarrierSBEndBB: 808 case ARM::t2SpeculationBarrierSBEndBB: 809 // This gets lowered to 1 4-byte instructions. 810 return 4; 811 } 812 } 813 814 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 815 unsigned Size = 0; 816 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 817 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 818 while (++I != E && I->isInsideBundle()) { 819 assert(!I->isBundle() && "No nested bundle!"); 820 Size += getInstSizeInBytes(*I); 821 } 822 return Size; 823 } 824 825 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 826 MachineBasicBlock::iterator I, 827 unsigned DestReg, bool KillSrc, 828 const ARMSubtarget &Subtarget) const { 829 unsigned Opc = Subtarget.isThumb() 830 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 831 : ARM::MRS; 832 833 MachineInstrBuilder MIB = 834 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 835 836 // There is only 1 A/R class MRS instruction, and it always refers to 837 // APSR. However, there are lots of other possibilities on M-class cores. 838 if (Subtarget.isMClass()) 839 MIB.addImm(0x800); 840 841 MIB.add(predOps(ARMCC::AL)) 842 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 843 } 844 845 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 846 MachineBasicBlock::iterator I, 847 unsigned SrcReg, bool KillSrc, 848 const ARMSubtarget &Subtarget) const { 849 unsigned Opc = Subtarget.isThumb() 850 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 851 : ARM::MSR; 852 853 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 854 855 if (Subtarget.isMClass()) 856 MIB.addImm(0x800); 857 else 858 MIB.addImm(8); 859 860 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 861 .add(predOps(ARMCC::AL)) 862 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 863 } 864 865 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 866 MIB.addImm(ARMVCC::None); 867 MIB.addReg(0); 868 MIB.addReg(0); // tp_reg 869 } 870 871 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 872 Register DestReg) { 873 addUnpredicatedMveVpredNOp(MIB); 874 MIB.addReg(DestReg, RegState::Undef); 875 } 876 877 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 878 MIB.addImm(Cond); 879 MIB.addReg(ARM::VPR, RegState::Implicit); 880 MIB.addReg(0); // tp_reg 881 } 882 883 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 884 unsigned Cond, unsigned Inactive) { 885 addPredicatedMveVpredNOp(MIB, Cond); 886 MIB.addReg(Inactive); 887 } 888 889 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 890 MachineBasicBlock::iterator I, 891 const DebugLoc &DL, MCRegister DestReg, 892 MCRegister SrcReg, bool KillSrc) const { 893 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 894 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 895 896 if (GPRDest && GPRSrc) { 897 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 898 .addReg(SrcReg, getKillRegState(KillSrc)) 899 .add(predOps(ARMCC::AL)) 900 .add(condCodeOp()); 901 return; 902 } 903 904 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 905 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 906 907 unsigned Opc = 0; 908 if (SPRDest && SPRSrc) 909 Opc = ARM::VMOVS; 910 else if (GPRDest && SPRSrc) 911 Opc = ARM::VMOVRS; 912 else if (SPRDest && GPRSrc) 913 Opc = ARM::VMOVSR; 914 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 915 Opc = ARM::VMOVD; 916 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 917 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; 918 919 if (Opc) { 920 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 921 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 922 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 923 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 924 if (Opc == ARM::MVE_VORR) 925 addUnpredicatedMveVpredROp(MIB, DestReg); 926 else if (Opc != ARM::MQPRCopy) 927 MIB.add(predOps(ARMCC::AL)); 928 return; 929 } 930 931 // Handle register classes that require multiple instructions. 932 unsigned BeginIdx = 0; 933 unsigned SubRegs = 0; 934 int Spacing = 1; 935 936 // Use VORRq when possible. 937 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 938 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 939 BeginIdx = ARM::qsub_0; 940 SubRegs = 2; 941 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 942 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 943 BeginIdx = ARM::qsub_0; 944 SubRegs = 4; 945 // Fall back to VMOVD. 946 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 947 Opc = ARM::VMOVD; 948 BeginIdx = ARM::dsub_0; 949 SubRegs = 2; 950 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 951 Opc = ARM::VMOVD; 952 BeginIdx = ARM::dsub_0; 953 SubRegs = 3; 954 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 955 Opc = ARM::VMOVD; 956 BeginIdx = ARM::dsub_0; 957 SubRegs = 4; 958 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 959 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 960 BeginIdx = ARM::gsub_0; 961 SubRegs = 2; 962 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 963 Opc = ARM::VMOVD; 964 BeginIdx = ARM::dsub_0; 965 SubRegs = 2; 966 Spacing = 2; 967 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 968 Opc = ARM::VMOVD; 969 BeginIdx = ARM::dsub_0; 970 SubRegs = 3; 971 Spacing = 2; 972 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 973 Opc = ARM::VMOVD; 974 BeginIdx = ARM::dsub_0; 975 SubRegs = 4; 976 Spacing = 2; 977 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 978 !Subtarget.hasFP64()) { 979 Opc = ARM::VMOVS; 980 BeginIdx = ARM::ssub_0; 981 SubRegs = 2; 982 } else if (SrcReg == ARM::CPSR) { 983 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 984 return; 985 } else if (DestReg == ARM::CPSR) { 986 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 987 return; 988 } else if (DestReg == ARM::VPR) { 989 assert(ARM::GPRRegClass.contains(SrcReg)); 990 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 991 .addReg(SrcReg, getKillRegState(KillSrc)) 992 .add(predOps(ARMCC::AL)); 993 return; 994 } else if (SrcReg == ARM::VPR) { 995 assert(ARM::GPRRegClass.contains(DestReg)); 996 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 997 .addReg(SrcReg, getKillRegState(KillSrc)) 998 .add(predOps(ARMCC::AL)); 999 return; 1000 } else if (DestReg == ARM::FPSCR_NZCV) { 1001 assert(ARM::GPRRegClass.contains(SrcReg)); 1002 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1003 .addReg(SrcReg, getKillRegState(KillSrc)) 1004 .add(predOps(ARMCC::AL)); 1005 return; 1006 } else if (SrcReg == ARM::FPSCR_NZCV) { 1007 assert(ARM::GPRRegClass.contains(DestReg)); 1008 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1009 .addReg(SrcReg, getKillRegState(KillSrc)) 1010 .add(predOps(ARMCC::AL)); 1011 return; 1012 } 1013 1014 assert(Opc && "Impossible reg-to-reg copy"); 1015 1016 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1017 MachineInstrBuilder Mov; 1018 1019 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1020 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1021 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1022 Spacing = -Spacing; 1023 } 1024 #ifndef NDEBUG 1025 SmallSet<unsigned, 4> DstRegs; 1026 #endif 1027 for (unsigned i = 0; i != SubRegs; ++i) { 1028 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1029 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1030 assert(Dst && Src && "Bad sub-register"); 1031 #ifndef NDEBUG 1032 assert(!DstRegs.count(Src) && "destructive vector copy"); 1033 DstRegs.insert(Dst); 1034 #endif 1035 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1036 // VORR (NEON or MVE) takes two source operands. 1037 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1038 Mov.addReg(Src); 1039 } 1040 // MVE VORR takes predicate operands in place of an ordinary condition. 1041 if (Opc == ARM::MVE_VORR) 1042 addUnpredicatedMveVpredROp(Mov, Dst); 1043 else 1044 Mov = Mov.add(predOps(ARMCC::AL)); 1045 // MOVr can set CC. 1046 if (Opc == ARM::MOVr) 1047 Mov = Mov.add(condCodeOp()); 1048 } 1049 // Add implicit super-register defs and kills to the last instruction. 1050 Mov->addRegisterDefined(DestReg, TRI); 1051 if (KillSrc) 1052 Mov->addRegisterKilled(SrcReg, TRI); 1053 } 1054 1055 Optional<DestSourcePair> 1056 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1057 // VMOVRRD is also a copy instruction but it requires 1058 // special way of handling. It is more complex copy version 1059 // and since that we are not considering it. For recognition 1060 // of such instruction isExtractSubregLike MI interface fuction 1061 // could be used. 1062 // VORRq is considered as a move only if two inputs are 1063 // the same register. 1064 if (!MI.isMoveReg() || 1065 (MI.getOpcode() == ARM::VORRq && 1066 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1067 return None; 1068 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1069 } 1070 1071 Optional<ParamLoadedValue> 1072 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1073 Register Reg) const { 1074 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1075 Register DstReg = DstSrcPair->Destination->getReg(); 1076 1077 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1078 // than the copy registers. Consider for example: 1079 // 1080 // s16 = VMOVS s0 1081 // s17 = VMOVS s1 1082 // call @callee(d0) 1083 // 1084 // We'd like to describe the call site value of d0 as d8, but this requires 1085 // gathering and merging the descriptions for the two VMOVS instructions. 1086 // 1087 // We also don't handle the reverse situation, where the forwarding reg is 1088 // narrower than the copy destination: 1089 // 1090 // d8 = VMOVD d0 1091 // call @callee(s1) 1092 // 1093 // We need to produce a fragment description (the call site value of s1 is 1094 // /not/ just d8). 1095 if (DstReg != Reg) 1096 return None; 1097 } 1098 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1099 } 1100 1101 const MachineInstrBuilder & 1102 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1103 unsigned SubIdx, unsigned State, 1104 const TargetRegisterInfo *TRI) const { 1105 if (!SubIdx) 1106 return MIB.addReg(Reg, State); 1107 1108 if (Register::isPhysicalRegister(Reg)) 1109 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1110 return MIB.addReg(Reg, State, SubIdx); 1111 } 1112 1113 void ARMBaseInstrInfo:: 1114 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1115 Register SrcReg, bool isKill, int FI, 1116 const TargetRegisterClass *RC, 1117 const TargetRegisterInfo *TRI) const { 1118 MachineFunction &MF = *MBB.getParent(); 1119 MachineFrameInfo &MFI = MF.getFrameInfo(); 1120 Align Alignment = MFI.getObjectAlign(FI); 1121 1122 MachineMemOperand *MMO = MF.getMachineMemOperand( 1123 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1124 MFI.getObjectSize(FI), Alignment); 1125 1126 switch (TRI->getSpillSize(*RC)) { 1127 case 2: 1128 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1129 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1130 .addReg(SrcReg, getKillRegState(isKill)) 1131 .addFrameIndex(FI) 1132 .addImm(0) 1133 .addMemOperand(MMO) 1134 .add(predOps(ARMCC::AL)); 1135 } else 1136 llvm_unreachable("Unknown reg class!"); 1137 break; 1138 case 4: 1139 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1140 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1141 .addReg(SrcReg, getKillRegState(isKill)) 1142 .addFrameIndex(FI) 1143 .addImm(0) 1144 .addMemOperand(MMO) 1145 .add(predOps(ARMCC::AL)); 1146 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1147 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1148 .addReg(SrcReg, getKillRegState(isKill)) 1149 .addFrameIndex(FI) 1150 .addImm(0) 1151 .addMemOperand(MMO) 1152 .add(predOps(ARMCC::AL)); 1153 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1154 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1155 .addReg(SrcReg, getKillRegState(isKill)) 1156 .addFrameIndex(FI) 1157 .addImm(0) 1158 .addMemOperand(MMO) 1159 .add(predOps(ARMCC::AL)); 1160 } else 1161 llvm_unreachable("Unknown reg class!"); 1162 break; 1163 case 8: 1164 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1165 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1166 .addReg(SrcReg, getKillRegState(isKill)) 1167 .addFrameIndex(FI) 1168 .addImm(0) 1169 .addMemOperand(MMO) 1170 .add(predOps(ARMCC::AL)); 1171 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1172 if (Subtarget.hasV5TEOps()) { 1173 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1174 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1175 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1176 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1177 .add(predOps(ARMCC::AL)); 1178 } else { 1179 // Fallback to STM instruction, which has existed since the dawn of 1180 // time. 1181 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1182 .addFrameIndex(FI) 1183 .addMemOperand(MMO) 1184 .add(predOps(ARMCC::AL)); 1185 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1186 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1187 } 1188 } else 1189 llvm_unreachable("Unknown reg class!"); 1190 break; 1191 case 16: 1192 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1193 // Use aligned spills if the stack can be realigned. 1194 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1195 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1196 .addFrameIndex(FI) 1197 .addImm(16) 1198 .addReg(SrcReg, getKillRegState(isKill)) 1199 .addMemOperand(MMO) 1200 .add(predOps(ARMCC::AL)); 1201 } else { 1202 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1203 .addReg(SrcReg, getKillRegState(isKill)) 1204 .addFrameIndex(FI) 1205 .addMemOperand(MMO) 1206 .add(predOps(ARMCC::AL)); 1207 } 1208 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1209 Subtarget.hasMVEIntegerOps()) { 1210 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1211 MIB.addReg(SrcReg, getKillRegState(isKill)) 1212 .addFrameIndex(FI) 1213 .addImm(0) 1214 .addMemOperand(MMO); 1215 addUnpredicatedMveVpredNOp(MIB); 1216 } else 1217 llvm_unreachable("Unknown reg class!"); 1218 break; 1219 case 24: 1220 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1221 // Use aligned spills if the stack can be realigned. 1222 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1223 Subtarget.hasNEON()) { 1224 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1225 .addFrameIndex(FI) 1226 .addImm(16) 1227 .addReg(SrcReg, getKillRegState(isKill)) 1228 .addMemOperand(MMO) 1229 .add(predOps(ARMCC::AL)); 1230 } else { 1231 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1232 get(ARM::VSTMDIA)) 1233 .addFrameIndex(FI) 1234 .add(predOps(ARMCC::AL)) 1235 .addMemOperand(MMO); 1236 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1237 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1238 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1239 } 1240 } else 1241 llvm_unreachable("Unknown reg class!"); 1242 break; 1243 case 32: 1244 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1245 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1246 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1247 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1248 Subtarget.hasNEON()) { 1249 // FIXME: It's possible to only store part of the QQ register if the 1250 // spilled def has a sub-register index. 1251 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1252 .addFrameIndex(FI) 1253 .addImm(16) 1254 .addReg(SrcReg, getKillRegState(isKill)) 1255 .addMemOperand(MMO) 1256 .add(predOps(ARMCC::AL)); 1257 } else if (Subtarget.hasMVEIntegerOps()) { 1258 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) 1259 .addReg(SrcReg, getKillRegState(isKill)) 1260 .addFrameIndex(FI) 1261 .addMemOperand(MMO); 1262 } else { 1263 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1264 get(ARM::VSTMDIA)) 1265 .addFrameIndex(FI) 1266 .add(predOps(ARMCC::AL)) 1267 .addMemOperand(MMO); 1268 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1269 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1270 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1271 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1272 } 1273 } else 1274 llvm_unreachable("Unknown reg class!"); 1275 break; 1276 case 64: 1277 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1278 Subtarget.hasMVEIntegerOps()) { 1279 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) 1280 .addReg(SrcReg, getKillRegState(isKill)) 1281 .addFrameIndex(FI) 1282 .addMemOperand(MMO); 1283 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1284 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1285 .addFrameIndex(FI) 1286 .add(predOps(ARMCC::AL)) 1287 .addMemOperand(MMO); 1288 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1289 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1290 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1291 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1294 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1295 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1296 } else 1297 llvm_unreachable("Unknown reg class!"); 1298 break; 1299 default: 1300 llvm_unreachable("Unknown reg class!"); 1301 } 1302 } 1303 1304 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1305 int &FrameIndex) const { 1306 switch (MI.getOpcode()) { 1307 default: break; 1308 case ARM::STRrs: 1309 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1310 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1311 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1312 MI.getOperand(3).getImm() == 0) { 1313 FrameIndex = MI.getOperand(1).getIndex(); 1314 return MI.getOperand(0).getReg(); 1315 } 1316 break; 1317 case ARM::STRi12: 1318 case ARM::t2STRi12: 1319 case ARM::tSTRspi: 1320 case ARM::VSTRD: 1321 case ARM::VSTRS: 1322 case ARM::VSTR_P0_off: 1323 case ARM::MVE_VSTRWU32: 1324 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1325 MI.getOperand(2).getImm() == 0) { 1326 FrameIndex = MI.getOperand(1).getIndex(); 1327 return MI.getOperand(0).getReg(); 1328 } 1329 break; 1330 case ARM::VST1q64: 1331 case ARM::VST1d64TPseudo: 1332 case ARM::VST1d64QPseudo: 1333 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1334 FrameIndex = MI.getOperand(0).getIndex(); 1335 return MI.getOperand(2).getReg(); 1336 } 1337 break; 1338 case ARM::VSTMQIA: 1339 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1340 FrameIndex = MI.getOperand(1).getIndex(); 1341 return MI.getOperand(0).getReg(); 1342 } 1343 break; 1344 case ARM::MQQPRStore: 1345 case ARM::MQQQQPRStore: 1346 if (MI.getOperand(1).isFI()) { 1347 FrameIndex = MI.getOperand(1).getIndex(); 1348 return MI.getOperand(0).getReg(); 1349 } 1350 break; 1351 } 1352 1353 return 0; 1354 } 1355 1356 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1357 int &FrameIndex) const { 1358 SmallVector<const MachineMemOperand *, 1> Accesses; 1359 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1360 Accesses.size() == 1) { 1361 FrameIndex = 1362 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1363 ->getFrameIndex(); 1364 return true; 1365 } 1366 return false; 1367 } 1368 1369 void ARMBaseInstrInfo:: 1370 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1371 Register DestReg, int FI, 1372 const TargetRegisterClass *RC, 1373 const TargetRegisterInfo *TRI) const { 1374 DebugLoc DL; 1375 if (I != MBB.end()) DL = I->getDebugLoc(); 1376 MachineFunction &MF = *MBB.getParent(); 1377 MachineFrameInfo &MFI = MF.getFrameInfo(); 1378 const Align Alignment = MFI.getObjectAlign(FI); 1379 MachineMemOperand *MMO = MF.getMachineMemOperand( 1380 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1381 MFI.getObjectSize(FI), Alignment); 1382 1383 switch (TRI->getSpillSize(*RC)) { 1384 case 2: 1385 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1386 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1387 .addFrameIndex(FI) 1388 .addImm(0) 1389 .addMemOperand(MMO) 1390 .add(predOps(ARMCC::AL)); 1391 } else 1392 llvm_unreachable("Unknown reg class!"); 1393 break; 1394 case 4: 1395 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1396 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1397 .addFrameIndex(FI) 1398 .addImm(0) 1399 .addMemOperand(MMO) 1400 .add(predOps(ARMCC::AL)); 1401 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1402 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1403 .addFrameIndex(FI) 1404 .addImm(0) 1405 .addMemOperand(MMO) 1406 .add(predOps(ARMCC::AL)); 1407 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1408 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1409 .addFrameIndex(FI) 1410 .addImm(0) 1411 .addMemOperand(MMO) 1412 .add(predOps(ARMCC::AL)); 1413 } else 1414 llvm_unreachable("Unknown reg class!"); 1415 break; 1416 case 8: 1417 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1418 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1419 .addFrameIndex(FI) 1420 .addImm(0) 1421 .addMemOperand(MMO) 1422 .add(predOps(ARMCC::AL)); 1423 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1424 MachineInstrBuilder MIB; 1425 1426 if (Subtarget.hasV5TEOps()) { 1427 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1428 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1429 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1430 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1431 .add(predOps(ARMCC::AL)); 1432 } else { 1433 // Fallback to LDM instruction, which has existed since the dawn of 1434 // time. 1435 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1436 .addFrameIndex(FI) 1437 .addMemOperand(MMO) 1438 .add(predOps(ARMCC::AL)); 1439 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1440 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1441 } 1442 1443 if (Register::isPhysicalRegister(DestReg)) 1444 MIB.addReg(DestReg, RegState::ImplicitDefine); 1445 } else 1446 llvm_unreachable("Unknown reg class!"); 1447 break; 1448 case 16: 1449 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1450 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1451 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1452 .addFrameIndex(FI) 1453 .addImm(16) 1454 .addMemOperand(MMO) 1455 .add(predOps(ARMCC::AL)); 1456 } else { 1457 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1458 .addFrameIndex(FI) 1459 .addMemOperand(MMO) 1460 .add(predOps(ARMCC::AL)); 1461 } 1462 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1463 Subtarget.hasMVEIntegerOps()) { 1464 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1465 MIB.addFrameIndex(FI) 1466 .addImm(0) 1467 .addMemOperand(MMO); 1468 addUnpredicatedMveVpredNOp(MIB); 1469 } else 1470 llvm_unreachable("Unknown reg class!"); 1471 break; 1472 case 24: 1473 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1474 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1475 Subtarget.hasNEON()) { 1476 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1477 .addFrameIndex(FI) 1478 .addImm(16) 1479 .addMemOperand(MMO) 1480 .add(predOps(ARMCC::AL)); 1481 } else { 1482 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1483 .addFrameIndex(FI) 1484 .addMemOperand(MMO) 1485 .add(predOps(ARMCC::AL)); 1486 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1487 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1488 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1489 if (Register::isPhysicalRegister(DestReg)) 1490 MIB.addReg(DestReg, RegState::ImplicitDefine); 1491 } 1492 } else 1493 llvm_unreachable("Unknown reg class!"); 1494 break; 1495 case 32: 1496 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1497 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1498 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1499 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1500 Subtarget.hasNEON()) { 1501 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1502 .addFrameIndex(FI) 1503 .addImm(16) 1504 .addMemOperand(MMO) 1505 .add(predOps(ARMCC::AL)); 1506 } else if (Subtarget.hasMVEIntegerOps()) { 1507 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) 1508 .addFrameIndex(FI) 1509 .addMemOperand(MMO); 1510 } else { 1511 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1512 .addFrameIndex(FI) 1513 .add(predOps(ARMCC::AL)) 1514 .addMemOperand(MMO); 1515 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1516 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1517 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1518 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1519 if (Register::isPhysicalRegister(DestReg)) 1520 MIB.addReg(DestReg, RegState::ImplicitDefine); 1521 } 1522 } else 1523 llvm_unreachable("Unknown reg class!"); 1524 break; 1525 case 64: 1526 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1527 Subtarget.hasMVEIntegerOps()) { 1528 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) 1529 .addFrameIndex(FI) 1530 .addMemOperand(MMO); 1531 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1532 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1533 .addFrameIndex(FI) 1534 .add(predOps(ARMCC::AL)) 1535 .addMemOperand(MMO); 1536 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1537 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1538 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1539 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1540 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1543 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1544 if (Register::isPhysicalRegister(DestReg)) 1545 MIB.addReg(DestReg, RegState::ImplicitDefine); 1546 } else 1547 llvm_unreachable("Unknown reg class!"); 1548 break; 1549 default: 1550 llvm_unreachable("Unknown regclass!"); 1551 } 1552 } 1553 1554 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1555 int &FrameIndex) const { 1556 switch (MI.getOpcode()) { 1557 default: break; 1558 case ARM::LDRrs: 1559 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1560 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1561 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1562 MI.getOperand(3).getImm() == 0) { 1563 FrameIndex = MI.getOperand(1).getIndex(); 1564 return MI.getOperand(0).getReg(); 1565 } 1566 break; 1567 case ARM::LDRi12: 1568 case ARM::t2LDRi12: 1569 case ARM::tLDRspi: 1570 case ARM::VLDRD: 1571 case ARM::VLDRS: 1572 case ARM::VLDR_P0_off: 1573 case ARM::MVE_VLDRWU32: 1574 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1575 MI.getOperand(2).getImm() == 0) { 1576 FrameIndex = MI.getOperand(1).getIndex(); 1577 return MI.getOperand(0).getReg(); 1578 } 1579 break; 1580 case ARM::VLD1q64: 1581 case ARM::VLD1d8TPseudo: 1582 case ARM::VLD1d16TPseudo: 1583 case ARM::VLD1d32TPseudo: 1584 case ARM::VLD1d64TPseudo: 1585 case ARM::VLD1d8QPseudo: 1586 case ARM::VLD1d16QPseudo: 1587 case ARM::VLD1d32QPseudo: 1588 case ARM::VLD1d64QPseudo: 1589 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1590 FrameIndex = MI.getOperand(1).getIndex(); 1591 return MI.getOperand(0).getReg(); 1592 } 1593 break; 1594 case ARM::VLDMQIA: 1595 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1596 FrameIndex = MI.getOperand(1).getIndex(); 1597 return MI.getOperand(0).getReg(); 1598 } 1599 break; 1600 case ARM::MQQPRLoad: 1601 case ARM::MQQQQPRLoad: 1602 if (MI.getOperand(1).isFI()) { 1603 FrameIndex = MI.getOperand(1).getIndex(); 1604 return MI.getOperand(0).getReg(); 1605 } 1606 break; 1607 } 1608 1609 return 0; 1610 } 1611 1612 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1613 int &FrameIndex) const { 1614 SmallVector<const MachineMemOperand *, 1> Accesses; 1615 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1616 Accesses.size() == 1) { 1617 FrameIndex = 1618 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1619 ->getFrameIndex(); 1620 return true; 1621 } 1622 return false; 1623 } 1624 1625 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1626 /// depending on whether the result is used. 1627 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1628 bool isThumb1 = Subtarget.isThumb1Only(); 1629 bool isThumb2 = Subtarget.isThumb2(); 1630 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1631 1632 DebugLoc dl = MI->getDebugLoc(); 1633 MachineBasicBlock *BB = MI->getParent(); 1634 1635 MachineInstrBuilder LDM, STM; 1636 if (isThumb1 || !MI->getOperand(1).isDead()) { 1637 MachineOperand LDWb(MI->getOperand(1)); 1638 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1639 : isThumb1 ? ARM::tLDMIA_UPD 1640 : ARM::LDMIA_UPD)) 1641 .add(LDWb); 1642 } else { 1643 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1644 } 1645 1646 if (isThumb1 || !MI->getOperand(0).isDead()) { 1647 MachineOperand STWb(MI->getOperand(0)); 1648 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1649 : isThumb1 ? ARM::tSTMIA_UPD 1650 : ARM::STMIA_UPD)) 1651 .add(STWb); 1652 } else { 1653 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1654 } 1655 1656 MachineOperand LDBase(MI->getOperand(3)); 1657 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1658 1659 MachineOperand STBase(MI->getOperand(2)); 1660 STM.add(STBase).add(predOps(ARMCC::AL)); 1661 1662 // Sort the scratch registers into ascending order. 1663 const TargetRegisterInfo &TRI = getRegisterInfo(); 1664 SmallVector<unsigned, 6> ScratchRegs; 1665 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1666 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1667 llvm::sort(ScratchRegs, 1668 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1669 return TRI.getEncodingValue(Reg1) < 1670 TRI.getEncodingValue(Reg2); 1671 }); 1672 1673 for (const auto &Reg : ScratchRegs) { 1674 LDM.addReg(Reg, RegState::Define); 1675 STM.addReg(Reg, RegState::Kill); 1676 } 1677 1678 BB->erase(MI); 1679 } 1680 1681 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1682 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1683 expandLoadStackGuard(MI); 1684 MI.getParent()->erase(MI); 1685 return true; 1686 } 1687 1688 if (MI.getOpcode() == ARM::MEMCPY) { 1689 expandMEMCPY(MI); 1690 return true; 1691 } 1692 1693 // This hook gets to expand COPY instructions before they become 1694 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1695 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1696 // changed into a VORR that can go down the NEON pipeline. 1697 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1698 return false; 1699 1700 // Look for a copy between even S-registers. That is where we keep floats 1701 // when using NEON v2f32 instructions for f32 arithmetic. 1702 Register DstRegS = MI.getOperand(0).getReg(); 1703 Register SrcRegS = MI.getOperand(1).getReg(); 1704 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1705 return false; 1706 1707 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1708 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1709 &ARM::DPRRegClass); 1710 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1711 &ARM::DPRRegClass); 1712 if (!DstRegD || !SrcRegD) 1713 return false; 1714 1715 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1716 // legal if the COPY already defines the full DstRegD, and it isn't a 1717 // sub-register insertion. 1718 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1719 return false; 1720 1721 // A dead copy shouldn't show up here, but reject it just in case. 1722 if (MI.getOperand(0).isDead()) 1723 return false; 1724 1725 // All clear, widen the COPY. 1726 LLVM_DEBUG(dbgs() << "widening: " << MI); 1727 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1728 1729 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1730 // or some other super-register. 1731 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1732 if (ImpDefIdx != -1) 1733 MI.RemoveOperand(ImpDefIdx); 1734 1735 // Change the opcode and operands. 1736 MI.setDesc(get(ARM::VMOVD)); 1737 MI.getOperand(0).setReg(DstRegD); 1738 MI.getOperand(1).setReg(SrcRegD); 1739 MIB.add(predOps(ARMCC::AL)); 1740 1741 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1742 // register scavenger and machine verifier, so we need to indicate that we 1743 // are reading an undefined value from SrcRegD, but a proper value from 1744 // SrcRegS. 1745 MI.getOperand(1).setIsUndef(); 1746 MIB.addReg(SrcRegS, RegState::Implicit); 1747 1748 // SrcRegD may actually contain an unrelated value in the ssub_1 1749 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1750 if (MI.getOperand(1).isKill()) { 1751 MI.getOperand(1).setIsKill(false); 1752 MI.addRegisterKilled(SrcRegS, TRI, true); 1753 } 1754 1755 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1756 return true; 1757 } 1758 1759 /// Create a copy of a const pool value. Update CPI to the new index and return 1760 /// the label UID. 1761 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1762 MachineConstantPool *MCP = MF.getConstantPool(); 1763 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1764 1765 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1766 assert(MCPE.isMachineConstantPoolEntry() && 1767 "Expecting a machine constantpool entry!"); 1768 ARMConstantPoolValue *ACPV = 1769 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1770 1771 unsigned PCLabelId = AFI->createPICLabelUId(); 1772 ARMConstantPoolValue *NewCPV = nullptr; 1773 1774 // FIXME: The below assumes PIC relocation model and that the function 1775 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1776 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1777 // instructions, so that's probably OK, but is PIC always correct when 1778 // we get here? 1779 if (ACPV->isGlobalValue()) 1780 NewCPV = ARMConstantPoolConstant::Create( 1781 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1782 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1783 else if (ACPV->isExtSymbol()) 1784 NewCPV = ARMConstantPoolSymbol:: 1785 Create(MF.getFunction().getContext(), 1786 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1787 else if (ACPV->isBlockAddress()) 1788 NewCPV = ARMConstantPoolConstant:: 1789 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1790 ARMCP::CPBlockAddress, 4); 1791 else if (ACPV->isLSDA()) 1792 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1793 ARMCP::CPLSDA, 4); 1794 else if (ACPV->isMachineBasicBlock()) 1795 NewCPV = ARMConstantPoolMBB:: 1796 Create(MF.getFunction().getContext(), 1797 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1798 else 1799 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1800 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1801 return PCLabelId; 1802 } 1803 1804 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1805 MachineBasicBlock::iterator I, 1806 Register DestReg, unsigned SubIdx, 1807 const MachineInstr &Orig, 1808 const TargetRegisterInfo &TRI) const { 1809 unsigned Opcode = Orig.getOpcode(); 1810 switch (Opcode) { 1811 default: { 1812 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1813 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1814 MBB.insert(I, MI); 1815 break; 1816 } 1817 case ARM::tLDRpci_pic: 1818 case ARM::t2LDRpci_pic: { 1819 MachineFunction &MF = *MBB.getParent(); 1820 unsigned CPI = Orig.getOperand(1).getIndex(); 1821 unsigned PCLabelId = duplicateCPV(MF, CPI); 1822 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1823 .addConstantPoolIndex(CPI) 1824 .addImm(PCLabelId) 1825 .cloneMemRefs(Orig); 1826 break; 1827 } 1828 } 1829 } 1830 1831 MachineInstr & 1832 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1833 MachineBasicBlock::iterator InsertBefore, 1834 const MachineInstr &Orig) const { 1835 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1836 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1837 for (;;) { 1838 switch (I->getOpcode()) { 1839 case ARM::tLDRpci_pic: 1840 case ARM::t2LDRpci_pic: { 1841 MachineFunction &MF = *MBB.getParent(); 1842 unsigned CPI = I->getOperand(1).getIndex(); 1843 unsigned PCLabelId = duplicateCPV(MF, CPI); 1844 I->getOperand(1).setIndex(CPI); 1845 I->getOperand(2).setImm(PCLabelId); 1846 break; 1847 } 1848 } 1849 if (!I->isBundledWithSucc()) 1850 break; 1851 ++I; 1852 } 1853 return Cloned; 1854 } 1855 1856 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1857 const MachineInstr &MI1, 1858 const MachineRegisterInfo *MRI) const { 1859 unsigned Opcode = MI0.getOpcode(); 1860 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || 1861 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || 1862 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1863 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1864 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1865 Opcode == ARM::t2MOV_ga_pcrel) { 1866 if (MI1.getOpcode() != Opcode) 1867 return false; 1868 if (MI0.getNumOperands() != MI1.getNumOperands()) 1869 return false; 1870 1871 const MachineOperand &MO0 = MI0.getOperand(1); 1872 const MachineOperand &MO1 = MI1.getOperand(1); 1873 if (MO0.getOffset() != MO1.getOffset()) 1874 return false; 1875 1876 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1877 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1878 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1879 Opcode == ARM::t2MOV_ga_pcrel) 1880 // Ignore the PC labels. 1881 return MO0.getGlobal() == MO1.getGlobal(); 1882 1883 const MachineFunction *MF = MI0.getParent()->getParent(); 1884 const MachineConstantPool *MCP = MF->getConstantPool(); 1885 int CPI0 = MO0.getIndex(); 1886 int CPI1 = MO1.getIndex(); 1887 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1888 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1889 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1890 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1891 if (isARMCP0 && isARMCP1) { 1892 ARMConstantPoolValue *ACPV0 = 1893 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1894 ARMConstantPoolValue *ACPV1 = 1895 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1896 return ACPV0->hasSameValue(ACPV1); 1897 } else if (!isARMCP0 && !isARMCP1) { 1898 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1899 } 1900 return false; 1901 } else if (Opcode == ARM::PICLDR) { 1902 if (MI1.getOpcode() != Opcode) 1903 return false; 1904 if (MI0.getNumOperands() != MI1.getNumOperands()) 1905 return false; 1906 1907 Register Addr0 = MI0.getOperand(1).getReg(); 1908 Register Addr1 = MI1.getOperand(1).getReg(); 1909 if (Addr0 != Addr1) { 1910 if (!MRI || !Register::isVirtualRegister(Addr0) || 1911 !Register::isVirtualRegister(Addr1)) 1912 return false; 1913 1914 // This assumes SSA form. 1915 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1916 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1917 // Check if the loaded value, e.g. a constantpool of a global address, are 1918 // the same. 1919 if (!produceSameValue(*Def0, *Def1, MRI)) 1920 return false; 1921 } 1922 1923 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1924 // %12 = PICLDR %11, 0, 14, %noreg 1925 const MachineOperand &MO0 = MI0.getOperand(i); 1926 const MachineOperand &MO1 = MI1.getOperand(i); 1927 if (!MO0.isIdenticalTo(MO1)) 1928 return false; 1929 } 1930 return true; 1931 } 1932 1933 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1934 } 1935 1936 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1937 /// determine if two loads are loading from the same base address. It should 1938 /// only return true if the base pointers are the same and the only differences 1939 /// between the two addresses is the offset. It also returns the offsets by 1940 /// reference. 1941 /// 1942 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1943 /// is permanently disabled. 1944 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1945 int64_t &Offset1, 1946 int64_t &Offset2) const { 1947 // Don't worry about Thumb: just ARM and Thumb2. 1948 if (Subtarget.isThumb1Only()) return false; 1949 1950 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1951 return false; 1952 1953 switch (Load1->getMachineOpcode()) { 1954 default: 1955 return false; 1956 case ARM::LDRi12: 1957 case ARM::LDRBi12: 1958 case ARM::LDRD: 1959 case ARM::LDRH: 1960 case ARM::LDRSB: 1961 case ARM::LDRSH: 1962 case ARM::VLDRD: 1963 case ARM::VLDRS: 1964 case ARM::t2LDRi8: 1965 case ARM::t2LDRBi8: 1966 case ARM::t2LDRDi8: 1967 case ARM::t2LDRSHi8: 1968 case ARM::t2LDRi12: 1969 case ARM::t2LDRBi12: 1970 case ARM::t2LDRSHi12: 1971 break; 1972 } 1973 1974 switch (Load2->getMachineOpcode()) { 1975 default: 1976 return false; 1977 case ARM::LDRi12: 1978 case ARM::LDRBi12: 1979 case ARM::LDRD: 1980 case ARM::LDRH: 1981 case ARM::LDRSB: 1982 case ARM::LDRSH: 1983 case ARM::VLDRD: 1984 case ARM::VLDRS: 1985 case ARM::t2LDRi8: 1986 case ARM::t2LDRBi8: 1987 case ARM::t2LDRSHi8: 1988 case ARM::t2LDRi12: 1989 case ARM::t2LDRBi12: 1990 case ARM::t2LDRSHi12: 1991 break; 1992 } 1993 1994 // Check if base addresses and chain operands match. 1995 if (Load1->getOperand(0) != Load2->getOperand(0) || 1996 Load1->getOperand(4) != Load2->getOperand(4)) 1997 return false; 1998 1999 // Index should be Reg0. 2000 if (Load1->getOperand(3) != Load2->getOperand(3)) 2001 return false; 2002 2003 // Determine the offsets. 2004 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 2005 isa<ConstantSDNode>(Load2->getOperand(1))) { 2006 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 2007 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 2008 return true; 2009 } 2010 2011 return false; 2012 } 2013 2014 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 2015 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 2016 /// be scheduled togther. On some targets if two loads are loading from 2017 /// addresses in the same cache line, it's better if they are scheduled 2018 /// together. This function takes two integers that represent the load offsets 2019 /// from the common base address. It returns true if it decides it's desirable 2020 /// to schedule the two loads together. "NumLoads" is the number of loads that 2021 /// have already been scheduled after Load1. 2022 /// 2023 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2024 /// is permanently disabled. 2025 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2026 int64_t Offset1, int64_t Offset2, 2027 unsigned NumLoads) const { 2028 // Don't worry about Thumb: just ARM and Thumb2. 2029 if (Subtarget.isThumb1Only()) return false; 2030 2031 assert(Offset2 > Offset1); 2032 2033 if ((Offset2 - Offset1) / 8 > 64) 2034 return false; 2035 2036 // Check if the machine opcodes are different. If they are different 2037 // then we consider them to not be of the same base address, 2038 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2039 // In this case, they are considered to be the same because they are different 2040 // encoding forms of the same basic instruction. 2041 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2042 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2043 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2044 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2045 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2046 return false; // FIXME: overly conservative? 2047 2048 // Four loads in a row should be sufficient. 2049 if (NumLoads >= 3) 2050 return false; 2051 2052 return true; 2053 } 2054 2055 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2056 const MachineBasicBlock *MBB, 2057 const MachineFunction &MF) const { 2058 // Debug info is never a scheduling boundary. It's necessary to be explicit 2059 // due to the special treatment of IT instructions below, otherwise a 2060 // dbg_value followed by an IT will result in the IT instruction being 2061 // considered a scheduling hazard, which is wrong. It should be the actual 2062 // instruction preceding the dbg_value instruction(s), just like it is 2063 // when debug info is not present. 2064 if (MI.isDebugInstr()) 2065 return false; 2066 2067 // Terminators and labels can't be scheduled around. 2068 if (MI.isTerminator() || MI.isPosition()) 2069 return true; 2070 2071 // INLINEASM_BR can jump to another block 2072 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2073 return true; 2074 2075 // Treat the start of the IT block as a scheduling boundary, but schedule 2076 // t2IT along with all instructions following it. 2077 // FIXME: This is a big hammer. But the alternative is to add all potential 2078 // true and anti dependencies to IT block instructions as implicit operands 2079 // to the t2IT instruction. The added compile time and complexity does not 2080 // seem worth it. 2081 MachineBasicBlock::const_iterator I = MI; 2082 // Make sure to skip any debug instructions 2083 while (++I != MBB->end() && I->isDebugInstr()) 2084 ; 2085 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2086 return true; 2087 2088 // Don't attempt to schedule around any instruction that defines 2089 // a stack-oriented pointer, as it's unlikely to be profitable. This 2090 // saves compile time, because it doesn't require every single 2091 // stack slot reference to depend on the instruction that does the 2092 // modification. 2093 // Calls don't actually change the stack pointer, even if they have imp-defs. 2094 // No ARM calling conventions change the stack pointer. (X86 calling 2095 // conventions sometimes do). 2096 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 2097 return true; 2098 2099 return false; 2100 } 2101 2102 bool ARMBaseInstrInfo:: 2103 isProfitableToIfCvt(MachineBasicBlock &MBB, 2104 unsigned NumCycles, unsigned ExtraPredCycles, 2105 BranchProbability Probability) const { 2106 if (!NumCycles) 2107 return false; 2108 2109 // If we are optimizing for size, see if the branch in the predecessor can be 2110 // lowered to cbn?z by the constant island lowering pass, and return false if 2111 // so. This results in a shorter instruction sequence. 2112 if (MBB.getParent()->getFunction().hasOptSize()) { 2113 MachineBasicBlock *Pred = *MBB.pred_begin(); 2114 if (!Pred->empty()) { 2115 MachineInstr *LastMI = &*Pred->rbegin(); 2116 if (LastMI->getOpcode() == ARM::t2Bcc) { 2117 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2118 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2119 if (CmpMI) 2120 return false; 2121 } 2122 } 2123 } 2124 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2125 MBB, 0, 0, Probability); 2126 } 2127 2128 bool ARMBaseInstrInfo:: 2129 isProfitableToIfCvt(MachineBasicBlock &TBB, 2130 unsigned TCycles, unsigned TExtra, 2131 MachineBasicBlock &FBB, 2132 unsigned FCycles, unsigned FExtra, 2133 BranchProbability Probability) const { 2134 if (!TCycles) 2135 return false; 2136 2137 // In thumb code we often end up trading one branch for a IT block, and 2138 // if we are cloning the instruction can increase code size. Prevent 2139 // blocks with multiple predecesors from being ifcvted to prevent this 2140 // cloning. 2141 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2142 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2143 return false; 2144 } 2145 2146 // Attempt to estimate the relative costs of predication versus branching. 2147 // Here we scale up each component of UnpredCost to avoid precision issue when 2148 // scaling TCycles/FCycles by Probability. 2149 const unsigned ScalingUpFactor = 1024; 2150 2151 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2152 unsigned UnpredCost; 2153 if (!Subtarget.hasBranchPredictor()) { 2154 // When we don't have a branch predictor it's always cheaper to not take a 2155 // branch than take it, so we have to take that into account. 2156 unsigned NotTakenBranchCost = 1; 2157 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2158 unsigned TUnpredCycles, FUnpredCycles; 2159 if (!FCycles) { 2160 // Triangle: TBB is the fallthrough 2161 TUnpredCycles = TCycles + NotTakenBranchCost; 2162 FUnpredCycles = TakenBranchCost; 2163 } else { 2164 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2165 TUnpredCycles = TCycles + TakenBranchCost; 2166 FUnpredCycles = FCycles + NotTakenBranchCost; 2167 // The branch at the end of FBB will disappear when it's predicated, so 2168 // discount it from PredCost. 2169 PredCost -= 1 * ScalingUpFactor; 2170 } 2171 // The total cost is the cost of each path scaled by their probabilites 2172 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2173 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2174 UnpredCost = TUnpredCost + FUnpredCost; 2175 // When predicating assume that the first IT can be folded away but later 2176 // ones cost one cycle each 2177 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2178 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2179 } 2180 } else { 2181 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2182 unsigned FUnpredCost = 2183 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2184 UnpredCost = TUnpredCost + FUnpredCost; 2185 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2186 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2187 } 2188 2189 return PredCost <= UnpredCost; 2190 } 2191 2192 unsigned 2193 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2194 unsigned NumInsts) const { 2195 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2196 // ARM has a condition code field in every predicable instruction, using it 2197 // doesn't change code size. 2198 if (!Subtarget.isThumb2()) 2199 return 0; 2200 2201 // It's possible that the size of the IT is restricted to a single block. 2202 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2203 return divideCeil(NumInsts, MaxInsts) * 2; 2204 } 2205 2206 unsigned 2207 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2208 // If this branch is likely to be folded into the comparison to form a 2209 // CB(N)Z, then removing it won't reduce code size at all, because that will 2210 // just replace the CB(N)Z with a CMP. 2211 if (MI.getOpcode() == ARM::t2Bcc && 2212 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2213 return 0; 2214 2215 unsigned Size = getInstSizeInBytes(MI); 2216 2217 // For Thumb2, all branches are 32-bit instructions during the if conversion 2218 // pass, but may be replaced with 16-bit instructions during size reduction. 2219 // Since the branches considered by if conversion tend to be forward branches 2220 // over small basic blocks, they are very likely to be in range for the 2221 // narrow instructions, so we assume the final code size will be half what it 2222 // currently is. 2223 if (Subtarget.isThumb2()) 2224 Size /= 2; 2225 2226 return Size; 2227 } 2228 2229 bool 2230 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2231 MachineBasicBlock &FMBB) const { 2232 // Reduce false anti-dependencies to let the target's out-of-order execution 2233 // engine do its thing. 2234 return Subtarget.isProfitableToUnpredicate(); 2235 } 2236 2237 /// getInstrPredicate - If instruction is predicated, returns its predicate 2238 /// condition, otherwise returns AL. It also returns the condition code 2239 /// register by reference. 2240 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2241 Register &PredReg) { 2242 int PIdx = MI.findFirstPredOperandIdx(); 2243 if (PIdx == -1) { 2244 PredReg = 0; 2245 return ARMCC::AL; 2246 } 2247 2248 PredReg = MI.getOperand(PIdx+1).getReg(); 2249 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2250 } 2251 2252 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2253 if (Opc == ARM::B) 2254 return ARM::Bcc; 2255 if (Opc == ARM::tB) 2256 return ARM::tBcc; 2257 if (Opc == ARM::t2B) 2258 return ARM::t2Bcc; 2259 2260 llvm_unreachable("Unknown unconditional branch opcode!"); 2261 } 2262 2263 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2264 bool NewMI, 2265 unsigned OpIdx1, 2266 unsigned OpIdx2) const { 2267 switch (MI.getOpcode()) { 2268 case ARM::MOVCCr: 2269 case ARM::t2MOVCCr: { 2270 // MOVCC can be commuted by inverting the condition. 2271 Register PredReg; 2272 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2273 // MOVCC AL can't be inverted. Shouldn't happen. 2274 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2275 return nullptr; 2276 MachineInstr *CommutedMI = 2277 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2278 if (!CommutedMI) 2279 return nullptr; 2280 // After swapping the MOVCC operands, also invert the condition. 2281 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2282 .setImm(ARMCC::getOppositeCondition(CC)); 2283 return CommutedMI; 2284 } 2285 } 2286 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2287 } 2288 2289 /// Identify instructions that can be folded into a MOVCC instruction, and 2290 /// return the defining instruction. 2291 MachineInstr * 2292 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2293 const TargetInstrInfo *TII) const { 2294 if (!Reg.isVirtual()) 2295 return nullptr; 2296 if (!MRI.hasOneNonDBGUse(Reg)) 2297 return nullptr; 2298 MachineInstr *MI = MRI.getVRegDef(Reg); 2299 if (!MI) 2300 return nullptr; 2301 // Check if MI can be predicated and folded into the MOVCC. 2302 if (!isPredicable(*MI)) 2303 return nullptr; 2304 // Check if MI has any non-dead defs or physreg uses. This also detects 2305 // predicated instructions which will be reading CPSR. 2306 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { 2307 // Reject frame index operands, PEI can't handle the predicated pseudos. 2308 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2309 return nullptr; 2310 if (!MO.isReg()) 2311 continue; 2312 // MI can't have any tied operands, that would conflict with predication. 2313 if (MO.isTied()) 2314 return nullptr; 2315 if (Register::isPhysicalRegister(MO.getReg())) 2316 return nullptr; 2317 if (MO.isDef() && !MO.isDead()) 2318 return nullptr; 2319 } 2320 bool DontMoveAcrossStores = true; 2321 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2322 return nullptr; 2323 return MI; 2324 } 2325 2326 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2327 SmallVectorImpl<MachineOperand> &Cond, 2328 unsigned &TrueOp, unsigned &FalseOp, 2329 bool &Optimizable) const { 2330 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2331 "Unknown select instruction"); 2332 // MOVCC operands: 2333 // 0: Def. 2334 // 1: True use. 2335 // 2: False use. 2336 // 3: Condition code. 2337 // 4: CPSR use. 2338 TrueOp = 1; 2339 FalseOp = 2; 2340 Cond.push_back(MI.getOperand(3)); 2341 Cond.push_back(MI.getOperand(4)); 2342 // We can always fold a def. 2343 Optimizable = true; 2344 return false; 2345 } 2346 2347 MachineInstr * 2348 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2349 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2350 bool PreferFalse) const { 2351 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2352 "Unknown select instruction"); 2353 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2354 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2355 bool Invert = !DefMI; 2356 if (!DefMI) 2357 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2358 if (!DefMI) 2359 return nullptr; 2360 2361 // Find new register class to use. 2362 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2363 MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); 2364 Register DestReg = MI.getOperand(0).getReg(); 2365 const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); 2366 const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); 2367 if (!MRI.constrainRegClass(DestReg, FalseClass)) 2368 return nullptr; 2369 if (!MRI.constrainRegClass(DestReg, TrueClass)) 2370 return nullptr; 2371 2372 // Create a new predicated version of DefMI. 2373 // Rfalse is the first use. 2374 MachineInstrBuilder NewMI = 2375 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2376 2377 // Copy all the DefMI operands, excluding its (null) predicate. 2378 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2379 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2380 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2381 NewMI.add(DefMI->getOperand(i)); 2382 2383 unsigned CondCode = MI.getOperand(3).getImm(); 2384 if (Invert) 2385 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2386 else 2387 NewMI.addImm(CondCode); 2388 NewMI.add(MI.getOperand(4)); 2389 2390 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2391 if (NewMI->hasOptionalDef()) 2392 NewMI.add(condCodeOp()); 2393 2394 // The output register value when the predicate is false is an implicit 2395 // register operand tied to the first def. 2396 // The tie makes the register allocator ensure the FalseReg is allocated the 2397 // same register as operand 0. 2398 FalseReg.setImplicit(); 2399 NewMI.add(FalseReg); 2400 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2401 2402 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2403 SeenMIs.insert(NewMI); 2404 SeenMIs.erase(DefMI); 2405 2406 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2407 // DefMI would be invalid when tranferred inside the loop. Checking for a 2408 // loop is expensive, but at least remove kill flags if they are in different 2409 // BBs. 2410 if (DefMI->getParent() != MI.getParent()) 2411 NewMI->clearKillInfo(); 2412 2413 // The caller will erase MI, but not DefMI. 2414 DefMI->eraseFromParent(); 2415 return NewMI; 2416 } 2417 2418 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2419 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2420 /// def operand. 2421 /// 2422 /// This will go away once we can teach tblgen how to set the optional CPSR def 2423 /// operand itself. 2424 struct AddSubFlagsOpcodePair { 2425 uint16_t PseudoOpc; 2426 uint16_t MachineOpc; 2427 }; 2428 2429 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2430 {ARM::ADDSri, ARM::ADDri}, 2431 {ARM::ADDSrr, ARM::ADDrr}, 2432 {ARM::ADDSrsi, ARM::ADDrsi}, 2433 {ARM::ADDSrsr, ARM::ADDrsr}, 2434 2435 {ARM::SUBSri, ARM::SUBri}, 2436 {ARM::SUBSrr, ARM::SUBrr}, 2437 {ARM::SUBSrsi, ARM::SUBrsi}, 2438 {ARM::SUBSrsr, ARM::SUBrsr}, 2439 2440 {ARM::RSBSri, ARM::RSBri}, 2441 {ARM::RSBSrsi, ARM::RSBrsi}, 2442 {ARM::RSBSrsr, ARM::RSBrsr}, 2443 2444 {ARM::tADDSi3, ARM::tADDi3}, 2445 {ARM::tADDSi8, ARM::tADDi8}, 2446 {ARM::tADDSrr, ARM::tADDrr}, 2447 {ARM::tADCS, ARM::tADC}, 2448 2449 {ARM::tSUBSi3, ARM::tSUBi3}, 2450 {ARM::tSUBSi8, ARM::tSUBi8}, 2451 {ARM::tSUBSrr, ARM::tSUBrr}, 2452 {ARM::tSBCS, ARM::tSBC}, 2453 {ARM::tRSBS, ARM::tRSB}, 2454 {ARM::tLSLSri, ARM::tLSLri}, 2455 2456 {ARM::t2ADDSri, ARM::t2ADDri}, 2457 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2458 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2459 2460 {ARM::t2SUBSri, ARM::t2SUBri}, 2461 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2462 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2463 2464 {ARM::t2RSBSri, ARM::t2RSBri}, 2465 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2466 }; 2467 2468 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2469 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2470 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2471 return AddSubFlagsOpcodeMap[i].MachineOpc; 2472 return 0; 2473 } 2474 2475 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2476 MachineBasicBlock::iterator &MBBI, 2477 const DebugLoc &dl, Register DestReg, 2478 Register BaseReg, int NumBytes, 2479 ARMCC::CondCodes Pred, Register PredReg, 2480 const ARMBaseInstrInfo &TII, 2481 unsigned MIFlags) { 2482 if (NumBytes == 0 && DestReg != BaseReg) { 2483 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2484 .addReg(BaseReg, RegState::Kill) 2485 .add(predOps(Pred, PredReg)) 2486 .add(condCodeOp()) 2487 .setMIFlags(MIFlags); 2488 return; 2489 } 2490 2491 bool isSub = NumBytes < 0; 2492 if (isSub) NumBytes = -NumBytes; 2493 2494 while (NumBytes) { 2495 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2496 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2497 assert(ThisVal && "Didn't extract field correctly"); 2498 2499 // We will handle these bits from offset, clear them. 2500 NumBytes &= ~ThisVal; 2501 2502 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2503 2504 // Build the new ADD / SUB. 2505 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2506 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2507 .addReg(BaseReg, RegState::Kill) 2508 .addImm(ThisVal) 2509 .add(predOps(Pred, PredReg)) 2510 .add(condCodeOp()) 2511 .setMIFlags(MIFlags); 2512 BaseReg = DestReg; 2513 } 2514 } 2515 2516 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2517 MachineFunction &MF, MachineInstr *MI, 2518 unsigned NumBytes) { 2519 // This optimisation potentially adds lots of load and store 2520 // micro-operations, it's only really a great benefit to code-size. 2521 if (!Subtarget.hasMinSize()) 2522 return false; 2523 2524 // If only one register is pushed/popped, LLVM can use an LDR/STR 2525 // instead. We can't modify those so make sure we're dealing with an 2526 // instruction we understand. 2527 bool IsPop = isPopOpcode(MI->getOpcode()); 2528 bool IsPush = isPushOpcode(MI->getOpcode()); 2529 if (!IsPush && !IsPop) 2530 return false; 2531 2532 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2533 MI->getOpcode() == ARM::VLDMDIA_UPD; 2534 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2535 MI->getOpcode() == ARM::tPOP || 2536 MI->getOpcode() == ARM::tPOP_RET; 2537 2538 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2539 MI->getOperand(1).getReg() == ARM::SP)) && 2540 "trying to fold sp update into non-sp-updating push/pop"); 2541 2542 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2543 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2544 // if this is violated. 2545 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2546 return false; 2547 2548 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2549 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2550 int RegListIdx = IsT1PushPop ? 2 : 4; 2551 2552 // Calculate the space we'll need in terms of registers. 2553 unsigned RegsNeeded; 2554 const TargetRegisterClass *RegClass; 2555 if (IsVFPPushPop) { 2556 RegsNeeded = NumBytes / 8; 2557 RegClass = &ARM::DPRRegClass; 2558 } else { 2559 RegsNeeded = NumBytes / 4; 2560 RegClass = &ARM::GPRRegClass; 2561 } 2562 2563 // We're going to have to strip all list operands off before 2564 // re-adding them since the order matters, so save the existing ones 2565 // for later. 2566 SmallVector<MachineOperand, 4> RegList; 2567 2568 // We're also going to need the first register transferred by this 2569 // instruction, which won't necessarily be the first register in the list. 2570 unsigned FirstRegEnc = -1; 2571 2572 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2573 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2574 MachineOperand &MO = MI->getOperand(i); 2575 RegList.push_back(MO); 2576 2577 if (MO.isReg() && !MO.isImplicit() && 2578 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2579 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2580 } 2581 2582 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2583 2584 // Now try to find enough space in the reglist to allocate NumBytes. 2585 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2586 --CurRegEnc) { 2587 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2588 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2589 continue; 2590 if (!IsPop) { 2591 // Pushing any register is completely harmless, mark the register involved 2592 // as undef since we don't care about its value and must not restore it 2593 // during stack unwinding. 2594 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2595 false, false, true)); 2596 --RegsNeeded; 2597 continue; 2598 } 2599 2600 // However, we can only pop an extra register if it's not live. For 2601 // registers live within the function we might clobber a return value 2602 // register; the other way a register can be live here is if it's 2603 // callee-saved. 2604 if (isCalleeSavedRegister(CurReg, CSRegs) || 2605 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2606 MachineBasicBlock::LQR_Dead) { 2607 // VFP pops don't allow holes in the register list, so any skip is fatal 2608 // for our transformation. GPR pops do, so we should just keep looking. 2609 if (IsVFPPushPop) 2610 return false; 2611 else 2612 continue; 2613 } 2614 2615 // Mark the unimportant registers as <def,dead> in the POP. 2616 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2617 true)); 2618 --RegsNeeded; 2619 } 2620 2621 if (RegsNeeded > 0) 2622 return false; 2623 2624 // Finally we know we can profitably perform the optimisation so go 2625 // ahead: strip all existing registers off and add them back again 2626 // in the right order. 2627 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2628 MI->RemoveOperand(i); 2629 2630 // Add the complete list back in. 2631 MachineInstrBuilder MIB(MF, &*MI); 2632 for (int i = RegList.size() - 1; i >= 0; --i) 2633 MIB.add(RegList[i]); 2634 2635 return true; 2636 } 2637 2638 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2639 Register FrameReg, int &Offset, 2640 const ARMBaseInstrInfo &TII) { 2641 unsigned Opcode = MI.getOpcode(); 2642 const MCInstrDesc &Desc = MI.getDesc(); 2643 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2644 bool isSub = false; 2645 2646 // Memory operands in inline assembly always use AddrMode2. 2647 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2648 AddrMode = ARMII::AddrMode2; 2649 2650 if (Opcode == ARM::ADDri) { 2651 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2652 if (Offset == 0) { 2653 // Turn it into a move. 2654 MI.setDesc(TII.get(ARM::MOVr)); 2655 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2656 MI.RemoveOperand(FrameRegIdx+1); 2657 Offset = 0; 2658 return true; 2659 } else if (Offset < 0) { 2660 Offset = -Offset; 2661 isSub = true; 2662 MI.setDesc(TII.get(ARM::SUBri)); 2663 } 2664 2665 // Common case: small offset, fits into instruction. 2666 if (ARM_AM::getSOImmVal(Offset) != -1) { 2667 // Replace the FrameIndex with sp / fp 2668 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2669 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2670 Offset = 0; 2671 return true; 2672 } 2673 2674 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2675 // as possible. 2676 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2677 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2678 2679 // We will handle these bits from offset, clear them. 2680 Offset &= ~ThisImmVal; 2681 2682 // Get the properly encoded SOImmVal field. 2683 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2684 "Bit extraction didn't work?"); 2685 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2686 } else { 2687 unsigned ImmIdx = 0; 2688 int InstrOffs = 0; 2689 unsigned NumBits = 0; 2690 unsigned Scale = 1; 2691 switch (AddrMode) { 2692 case ARMII::AddrMode_i12: 2693 ImmIdx = FrameRegIdx + 1; 2694 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2695 NumBits = 12; 2696 break; 2697 case ARMII::AddrMode2: 2698 ImmIdx = FrameRegIdx+2; 2699 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2700 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2701 InstrOffs *= -1; 2702 NumBits = 12; 2703 break; 2704 case ARMII::AddrMode3: 2705 ImmIdx = FrameRegIdx+2; 2706 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2707 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2708 InstrOffs *= -1; 2709 NumBits = 8; 2710 break; 2711 case ARMII::AddrMode4: 2712 case ARMII::AddrMode6: 2713 // Can't fold any offset even if it's zero. 2714 return false; 2715 case ARMII::AddrMode5: 2716 ImmIdx = FrameRegIdx+1; 2717 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2718 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2719 InstrOffs *= -1; 2720 NumBits = 8; 2721 Scale = 4; 2722 break; 2723 case ARMII::AddrMode5FP16: 2724 ImmIdx = FrameRegIdx+1; 2725 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2726 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2727 InstrOffs *= -1; 2728 NumBits = 8; 2729 Scale = 2; 2730 break; 2731 case ARMII::AddrModeT2_i7: 2732 case ARMII::AddrModeT2_i7s2: 2733 case ARMII::AddrModeT2_i7s4: 2734 ImmIdx = FrameRegIdx+1; 2735 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2736 NumBits = 7; 2737 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2738 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2739 break; 2740 default: 2741 llvm_unreachable("Unsupported addressing mode!"); 2742 } 2743 2744 Offset += InstrOffs * Scale; 2745 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2746 if (Offset < 0) { 2747 Offset = -Offset; 2748 isSub = true; 2749 } 2750 2751 // Attempt to fold address comp. if opcode has offset bits 2752 if (NumBits > 0) { 2753 // Common case: small offset, fits into instruction. 2754 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2755 int ImmedOffset = Offset / Scale; 2756 unsigned Mask = (1 << NumBits) - 1; 2757 if ((unsigned)Offset <= Mask * Scale) { 2758 // Replace the FrameIndex with sp 2759 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2760 // FIXME: When addrmode2 goes away, this will simplify (like the 2761 // T2 version), as the LDR.i12 versions don't need the encoding 2762 // tricks for the offset value. 2763 if (isSub) { 2764 if (AddrMode == ARMII::AddrMode_i12) 2765 ImmedOffset = -ImmedOffset; 2766 else 2767 ImmedOffset |= 1 << NumBits; 2768 } 2769 ImmOp.ChangeToImmediate(ImmedOffset); 2770 Offset = 0; 2771 return true; 2772 } 2773 2774 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2775 ImmedOffset = ImmedOffset & Mask; 2776 if (isSub) { 2777 if (AddrMode == ARMII::AddrMode_i12) 2778 ImmedOffset = -ImmedOffset; 2779 else 2780 ImmedOffset |= 1 << NumBits; 2781 } 2782 ImmOp.ChangeToImmediate(ImmedOffset); 2783 Offset &= ~(Mask*Scale); 2784 } 2785 } 2786 2787 Offset = (isSub) ? -Offset : Offset; 2788 return Offset == 0; 2789 } 2790 2791 /// analyzeCompare - For a comparison instruction, return the source registers 2792 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2793 /// compares against in CmpValue. Return true if the comparison instruction 2794 /// can be analyzed. 2795 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2796 Register &SrcReg2, int64_t &CmpMask, 2797 int64_t &CmpValue) const { 2798 switch (MI.getOpcode()) { 2799 default: break; 2800 case ARM::CMPri: 2801 case ARM::t2CMPri: 2802 case ARM::tCMPi8: 2803 SrcReg = MI.getOperand(0).getReg(); 2804 SrcReg2 = 0; 2805 CmpMask = ~0; 2806 CmpValue = MI.getOperand(1).getImm(); 2807 return true; 2808 case ARM::CMPrr: 2809 case ARM::t2CMPrr: 2810 case ARM::tCMPr: 2811 SrcReg = MI.getOperand(0).getReg(); 2812 SrcReg2 = MI.getOperand(1).getReg(); 2813 CmpMask = ~0; 2814 CmpValue = 0; 2815 return true; 2816 case ARM::TSTri: 2817 case ARM::t2TSTri: 2818 SrcReg = MI.getOperand(0).getReg(); 2819 SrcReg2 = 0; 2820 CmpMask = MI.getOperand(1).getImm(); 2821 CmpValue = 0; 2822 return true; 2823 } 2824 2825 return false; 2826 } 2827 2828 /// isSuitableForMask - Identify a suitable 'and' instruction that 2829 /// operates on the given source register and applies the same mask 2830 /// as a 'tst' instruction. Provide a limited look-through for copies. 2831 /// When successful, MI will hold the found instruction. 2832 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2833 int CmpMask, bool CommonUse) { 2834 switch (MI->getOpcode()) { 2835 case ARM::ANDri: 2836 case ARM::t2ANDri: 2837 if (CmpMask != MI->getOperand(2).getImm()) 2838 return false; 2839 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2840 return true; 2841 break; 2842 } 2843 2844 return false; 2845 } 2846 2847 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2848 /// the condition code if we modify the instructions such that flags are 2849 /// set by ADD(a,b,X). 2850 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2851 switch (CC) { 2852 default: return ARMCC::AL; 2853 case ARMCC::HS: return ARMCC::LO; 2854 case ARMCC::LO: return ARMCC::HS; 2855 case ARMCC::VS: return ARMCC::VS; 2856 case ARMCC::VC: return ARMCC::VC; 2857 } 2858 } 2859 2860 /// isRedundantFlagInstr - check whether the first instruction, whose only 2861 /// purpose is to update flags, can be made redundant. 2862 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2863 /// CMPri can be made redundant by SUBri if the operands are the same. 2864 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2865 /// This function can be extended later on. 2866 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2867 Register SrcReg, Register SrcReg2, 2868 int64_t ImmValue, 2869 const MachineInstr *OI, 2870 bool &IsThumb1) { 2871 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2872 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2873 ((OI->getOperand(1).getReg() == SrcReg && 2874 OI->getOperand(2).getReg() == SrcReg2) || 2875 (OI->getOperand(1).getReg() == SrcReg2 && 2876 OI->getOperand(2).getReg() == SrcReg))) { 2877 IsThumb1 = false; 2878 return true; 2879 } 2880 2881 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2882 ((OI->getOperand(2).getReg() == SrcReg && 2883 OI->getOperand(3).getReg() == SrcReg2) || 2884 (OI->getOperand(2).getReg() == SrcReg2 && 2885 OI->getOperand(3).getReg() == SrcReg))) { 2886 IsThumb1 = true; 2887 return true; 2888 } 2889 2890 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2891 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2892 OI->getOperand(1).getReg() == SrcReg && 2893 OI->getOperand(2).getImm() == ImmValue) { 2894 IsThumb1 = false; 2895 return true; 2896 } 2897 2898 if (CmpI->getOpcode() == ARM::tCMPi8 && 2899 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2900 OI->getOperand(2).getReg() == SrcReg && 2901 OI->getOperand(3).getImm() == ImmValue) { 2902 IsThumb1 = true; 2903 return true; 2904 } 2905 2906 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2907 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2908 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2909 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2910 OI->getOperand(0).getReg() == SrcReg && 2911 OI->getOperand(1).getReg() == SrcReg2) { 2912 IsThumb1 = false; 2913 return true; 2914 } 2915 2916 if (CmpI->getOpcode() == ARM::tCMPr && 2917 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2918 OI->getOpcode() == ARM::tADDrr) && 2919 OI->getOperand(0).getReg() == SrcReg && 2920 OI->getOperand(2).getReg() == SrcReg2) { 2921 IsThumb1 = true; 2922 return true; 2923 } 2924 2925 return false; 2926 } 2927 2928 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2929 switch (MI->getOpcode()) { 2930 default: return false; 2931 case ARM::tLSLri: 2932 case ARM::tLSRri: 2933 case ARM::tLSLrr: 2934 case ARM::tLSRrr: 2935 case ARM::tSUBrr: 2936 case ARM::tADDrr: 2937 case ARM::tADDi3: 2938 case ARM::tADDi8: 2939 case ARM::tSUBi3: 2940 case ARM::tSUBi8: 2941 case ARM::tMUL: 2942 case ARM::tADC: 2943 case ARM::tSBC: 2944 case ARM::tRSB: 2945 case ARM::tAND: 2946 case ARM::tORR: 2947 case ARM::tEOR: 2948 case ARM::tBIC: 2949 case ARM::tMVN: 2950 case ARM::tASRri: 2951 case ARM::tASRrr: 2952 case ARM::tROR: 2953 IsThumb1 = true; 2954 LLVM_FALLTHROUGH; 2955 case ARM::RSBrr: 2956 case ARM::RSBri: 2957 case ARM::RSCrr: 2958 case ARM::RSCri: 2959 case ARM::ADDrr: 2960 case ARM::ADDri: 2961 case ARM::ADCrr: 2962 case ARM::ADCri: 2963 case ARM::SUBrr: 2964 case ARM::SUBri: 2965 case ARM::SBCrr: 2966 case ARM::SBCri: 2967 case ARM::t2RSBri: 2968 case ARM::t2ADDrr: 2969 case ARM::t2ADDri: 2970 case ARM::t2ADCrr: 2971 case ARM::t2ADCri: 2972 case ARM::t2SUBrr: 2973 case ARM::t2SUBri: 2974 case ARM::t2SBCrr: 2975 case ARM::t2SBCri: 2976 case ARM::ANDrr: 2977 case ARM::ANDri: 2978 case ARM::t2ANDrr: 2979 case ARM::t2ANDri: 2980 case ARM::ORRrr: 2981 case ARM::ORRri: 2982 case ARM::t2ORRrr: 2983 case ARM::t2ORRri: 2984 case ARM::EORrr: 2985 case ARM::EORri: 2986 case ARM::t2EORrr: 2987 case ARM::t2EORri: 2988 case ARM::t2LSRri: 2989 case ARM::t2LSRrr: 2990 case ARM::t2LSLri: 2991 case ARM::t2LSLrr: 2992 return true; 2993 } 2994 } 2995 2996 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2997 /// comparison into one that sets the zero bit in the flags register; 2998 /// Remove a redundant Compare instruction if an earlier instruction can set the 2999 /// flags in the same way as Compare. 3000 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 3001 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 3002 /// condition code of instructions which use the flags. 3003 bool ARMBaseInstrInfo::optimizeCompareInstr( 3004 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, 3005 int64_t CmpValue, const MachineRegisterInfo *MRI) const { 3006 // Get the unique definition of SrcReg. 3007 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 3008 if (!MI) return false; 3009 3010 // Masked compares sometimes use the same register as the corresponding 'and'. 3011 if (CmpMask != ~0) { 3012 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 3013 MI = nullptr; 3014 for (MachineRegisterInfo::use_instr_iterator 3015 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 3016 UI != UE; ++UI) { 3017 if (UI->getParent() != CmpInstr.getParent()) 3018 continue; 3019 MachineInstr *PotentialAND = &*UI; 3020 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 3021 isPredicated(*PotentialAND)) 3022 continue; 3023 MI = PotentialAND; 3024 break; 3025 } 3026 if (!MI) return false; 3027 } 3028 } 3029 3030 // Get ready to iterate backward from CmpInstr. 3031 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3032 B = CmpInstr.getParent()->begin(); 3033 3034 // Early exit if CmpInstr is at the beginning of the BB. 3035 if (I == B) return false; 3036 3037 // There are two possible candidates which can be changed to set CPSR: 3038 // One is MI, the other is a SUB or ADD instruction. 3039 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3040 // ADDr[ri](r1, r2, X). 3041 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3042 MachineInstr *SubAdd = nullptr; 3043 if (SrcReg2 != 0) 3044 // MI is not a candidate for CMPrr. 3045 MI = nullptr; 3046 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3047 // Conservatively refuse to convert an instruction which isn't in the same 3048 // BB as the comparison. 3049 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3050 // Thus we cannot return here. 3051 if (CmpInstr.getOpcode() == ARM::CMPri || 3052 CmpInstr.getOpcode() == ARM::t2CMPri || 3053 CmpInstr.getOpcode() == ARM::tCMPi8) 3054 MI = nullptr; 3055 else 3056 return false; 3057 } 3058 3059 bool IsThumb1 = false; 3060 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3061 return false; 3062 3063 // We also want to do this peephole for cases like this: if (a*b == 0), 3064 // and optimise away the CMP instruction from the generated code sequence: 3065 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3066 // resulting from the select instruction, but these MOVS instructions for 3067 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3068 // However, if we only have MOVS instructions in between the CMP and the 3069 // other instruction (the MULS in this example), then the CPSR is dead so we 3070 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3071 // reordering and then continue the analysis hoping we can eliminate the 3072 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3073 // consequence, the movs won't redefine/kill the MUL operands which would 3074 // make this reordering illegal. 3075 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3076 if (MI && IsThumb1) { 3077 --I; 3078 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3079 bool CanReorder = true; 3080 for (; I != E; --I) { 3081 if (I->getOpcode() != ARM::tMOVi8) { 3082 CanReorder = false; 3083 break; 3084 } 3085 } 3086 if (CanReorder) { 3087 MI = MI->removeFromParent(); 3088 E = CmpInstr; 3089 CmpInstr.getParent()->insert(E, MI); 3090 } 3091 } 3092 I = CmpInstr; 3093 E = MI; 3094 } 3095 3096 // Check that CPSR isn't set between the comparison instruction and the one we 3097 // want to change. At the same time, search for SubAdd. 3098 bool SubAddIsThumb1 = false; 3099 do { 3100 const MachineInstr &Instr = *--I; 3101 3102 // Check whether CmpInstr can be made redundant by the current instruction. 3103 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3104 SubAddIsThumb1)) { 3105 SubAdd = &*I; 3106 break; 3107 } 3108 3109 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3110 if (I == E) 3111 break; 3112 3113 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3114 Instr.readsRegister(ARM::CPSR, TRI)) 3115 // This instruction modifies or uses CPSR after the one we want to 3116 // change. We can't do this transformation. 3117 return false; 3118 3119 if (I == B) { 3120 // In some cases, we scan the use-list of an instruction for an AND; 3121 // that AND is in the same BB, but may not be scheduled before the 3122 // corresponding TST. In that case, bail out. 3123 // 3124 // FIXME: We could try to reschedule the AND. 3125 return false; 3126 } 3127 } while (true); 3128 3129 // Return false if no candidates exist. 3130 if (!MI && !SubAdd) 3131 return false; 3132 3133 // If we found a SubAdd, use it as it will be closer to the CMP 3134 if (SubAdd) { 3135 MI = SubAdd; 3136 IsThumb1 = SubAddIsThumb1; 3137 } 3138 3139 // We can't use a predicated instruction - it doesn't always write the flags. 3140 if (isPredicated(*MI)) 3141 return false; 3142 3143 // Scan forward for the use of CPSR 3144 // When checking against MI: if it's a conditional code that requires 3145 // checking of the V bit or C bit, then this is not safe to do. 3146 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3147 // If we are done with the basic block, we need to check whether CPSR is 3148 // live-out. 3149 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3150 OperandsToUpdate; 3151 bool isSafe = false; 3152 I = CmpInstr; 3153 E = CmpInstr.getParent()->end(); 3154 while (!isSafe && ++I != E) { 3155 const MachineInstr &Instr = *I; 3156 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3157 !isSafe && IO != EO; ++IO) { 3158 const MachineOperand &MO = Instr.getOperand(IO); 3159 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3160 isSafe = true; 3161 break; 3162 } 3163 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3164 continue; 3165 if (MO.isDef()) { 3166 isSafe = true; 3167 break; 3168 } 3169 // Condition code is after the operand before CPSR except for VSELs. 3170 ARMCC::CondCodes CC; 3171 bool IsInstrVSel = true; 3172 switch (Instr.getOpcode()) { 3173 default: 3174 IsInstrVSel = false; 3175 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3176 break; 3177 case ARM::VSELEQD: 3178 case ARM::VSELEQS: 3179 case ARM::VSELEQH: 3180 CC = ARMCC::EQ; 3181 break; 3182 case ARM::VSELGTD: 3183 case ARM::VSELGTS: 3184 case ARM::VSELGTH: 3185 CC = ARMCC::GT; 3186 break; 3187 case ARM::VSELGED: 3188 case ARM::VSELGES: 3189 case ARM::VSELGEH: 3190 CC = ARMCC::GE; 3191 break; 3192 case ARM::VSELVSD: 3193 case ARM::VSELVSS: 3194 case ARM::VSELVSH: 3195 CC = ARMCC::VS; 3196 break; 3197 } 3198 3199 if (SubAdd) { 3200 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3201 // on CMP needs to be updated to be based on SUB. 3202 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3203 // needs to be modified. 3204 // Push the condition code operands to OperandsToUpdate. 3205 // If it is safe to remove CmpInstr, the condition code of these 3206 // operands will be modified. 3207 unsigned Opc = SubAdd->getOpcode(); 3208 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3209 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3210 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3211 Opc == ARM::tSUBi8; 3212 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3213 if (!IsSub || 3214 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3215 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3216 // VSel doesn't support condition code update. 3217 if (IsInstrVSel) 3218 return false; 3219 // Ensure we can swap the condition. 3220 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3221 if (NewCC == ARMCC::AL) 3222 return false; 3223 OperandsToUpdate.push_back( 3224 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3225 } 3226 } else { 3227 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3228 switch (CC) { 3229 case ARMCC::EQ: // Z 3230 case ARMCC::NE: // Z 3231 case ARMCC::MI: // N 3232 case ARMCC::PL: // N 3233 case ARMCC::AL: // none 3234 // CPSR can be used multiple times, we should continue. 3235 break; 3236 case ARMCC::HS: // C 3237 case ARMCC::LO: // C 3238 case ARMCC::VS: // V 3239 case ARMCC::VC: // V 3240 case ARMCC::HI: // C Z 3241 case ARMCC::LS: // C Z 3242 case ARMCC::GE: // N V 3243 case ARMCC::LT: // N V 3244 case ARMCC::GT: // Z N V 3245 case ARMCC::LE: // Z N V 3246 // The instruction uses the V bit or C bit which is not safe. 3247 return false; 3248 } 3249 } 3250 } 3251 } 3252 3253 // If CPSR is not killed nor re-defined, we should check whether it is 3254 // live-out. If it is live-out, do not optimize. 3255 if (!isSafe) { 3256 MachineBasicBlock *MBB = CmpInstr.getParent(); 3257 for (MachineBasicBlock *Succ : MBB->successors()) 3258 if (Succ->isLiveIn(ARM::CPSR)) 3259 return false; 3260 } 3261 3262 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3263 // set CPSR so this is represented as an explicit output) 3264 if (!IsThumb1) { 3265 MI->getOperand(5).setReg(ARM::CPSR); 3266 MI->getOperand(5).setIsDef(true); 3267 } 3268 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3269 CmpInstr.eraseFromParent(); 3270 3271 // Modify the condition code of operands in OperandsToUpdate. 3272 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3273 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3274 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3275 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3276 3277 MI->clearRegisterDeads(ARM::CPSR); 3278 3279 return true; 3280 } 3281 3282 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3283 // Do not sink MI if it might be used to optimize a redundant compare. 3284 // We heuristically only look at the instruction immediately following MI to 3285 // avoid potentially searching the entire basic block. 3286 if (isPredicated(MI)) 3287 return true; 3288 MachineBasicBlock::const_iterator Next = &MI; 3289 ++Next; 3290 Register SrcReg, SrcReg2; 3291 int64_t CmpMask, CmpValue; 3292 bool IsThumb1; 3293 if (Next != MI.getParent()->end() && 3294 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3295 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3296 return false; 3297 return true; 3298 } 3299 3300 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3301 Register Reg, 3302 MachineRegisterInfo *MRI) const { 3303 // Fold large immediates into add, sub, or, xor. 3304 unsigned DefOpc = DefMI.getOpcode(); 3305 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3306 return false; 3307 if (!DefMI.getOperand(1).isImm()) 3308 // Could be t2MOVi32imm @xx 3309 return false; 3310 3311 if (!MRI->hasOneNonDBGUse(Reg)) 3312 return false; 3313 3314 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3315 if (DefMCID.hasOptionalDef()) { 3316 unsigned NumOps = DefMCID.getNumOperands(); 3317 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3318 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3319 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3320 // to delete DefMI. 3321 return false; 3322 } 3323 3324 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3325 if (UseMCID.hasOptionalDef()) { 3326 unsigned NumOps = UseMCID.getNumOperands(); 3327 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3328 // If the instruction sets the flag, do not attempt this optimization 3329 // since it may change the semantics of the code. 3330 return false; 3331 } 3332 3333 unsigned UseOpc = UseMI.getOpcode(); 3334 unsigned NewUseOpc = 0; 3335 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3336 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3337 bool Commute = false; 3338 switch (UseOpc) { 3339 default: return false; 3340 case ARM::SUBrr: 3341 case ARM::ADDrr: 3342 case ARM::ORRrr: 3343 case ARM::EORrr: 3344 case ARM::t2SUBrr: 3345 case ARM::t2ADDrr: 3346 case ARM::t2ORRrr: 3347 case ARM::t2EORrr: { 3348 Commute = UseMI.getOperand(2).getReg() != Reg; 3349 switch (UseOpc) { 3350 default: break; 3351 case ARM::ADDrr: 3352 case ARM::SUBrr: 3353 if (UseOpc == ARM::SUBrr && Commute) 3354 return false; 3355 3356 // ADD/SUB are special because they're essentially the same operation, so 3357 // we can handle a larger range of immediates. 3358 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3359 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3360 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3361 ImmVal = -ImmVal; 3362 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3363 } else 3364 return false; 3365 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3366 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3367 break; 3368 case ARM::ORRrr: 3369 case ARM::EORrr: 3370 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3371 return false; 3372 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3373 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3374 switch (UseOpc) { 3375 default: break; 3376 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3377 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3378 } 3379 break; 3380 case ARM::t2ADDrr: 3381 case ARM::t2SUBrr: { 3382 if (UseOpc == ARM::t2SUBrr && Commute) 3383 return false; 3384 3385 // ADD/SUB are special because they're essentially the same operation, so 3386 // we can handle a larger range of immediates. 3387 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3388 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3389 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3390 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3391 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3392 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3393 ImmVal = -ImmVal; 3394 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3395 } else 3396 return false; 3397 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3398 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3399 break; 3400 } 3401 case ARM::t2ORRrr: 3402 case ARM::t2EORrr: 3403 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3404 return false; 3405 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3406 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3407 switch (UseOpc) { 3408 default: break; 3409 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3410 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3411 } 3412 break; 3413 } 3414 } 3415 } 3416 3417 unsigned OpIdx = Commute ? 2 : 1; 3418 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3419 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3420 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3421 Register NewReg = MRI->createVirtualRegister(TRC); 3422 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3423 NewReg) 3424 .addReg(Reg1, getKillRegState(isKill)) 3425 .addImm(SOImmValV1) 3426 .add(predOps(ARMCC::AL)) 3427 .add(condCodeOp()); 3428 UseMI.setDesc(get(NewUseOpc)); 3429 UseMI.getOperand(1).setReg(NewReg); 3430 UseMI.getOperand(1).setIsKill(); 3431 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3432 DefMI.eraseFromParent(); 3433 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3434 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3435 // Then the below code will not be needed, as the input/output register 3436 // classes will be rgpr or gprSP. 3437 // For now, we fix the UseMI operand explicitly here: 3438 switch(NewUseOpc){ 3439 case ARM::t2ADDspImm: 3440 case ARM::t2SUBspImm: 3441 case ARM::t2ADDri: 3442 case ARM::t2SUBri: 3443 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3444 } 3445 return true; 3446 } 3447 3448 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3449 const MachineInstr &MI) { 3450 switch (MI.getOpcode()) { 3451 default: { 3452 const MCInstrDesc &Desc = MI.getDesc(); 3453 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3454 assert(UOps >= 0 && "bad # UOps"); 3455 return UOps; 3456 } 3457 3458 case ARM::LDRrs: 3459 case ARM::LDRBrs: 3460 case ARM::STRrs: 3461 case ARM::STRBrs: { 3462 unsigned ShOpVal = MI.getOperand(3).getImm(); 3463 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3464 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3465 if (!isSub && 3466 (ShImm == 0 || 3467 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3468 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3469 return 1; 3470 return 2; 3471 } 3472 3473 case ARM::LDRH: 3474 case ARM::STRH: { 3475 if (!MI.getOperand(2).getReg()) 3476 return 1; 3477 3478 unsigned ShOpVal = MI.getOperand(3).getImm(); 3479 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3480 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3481 if (!isSub && 3482 (ShImm == 0 || 3483 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3484 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3485 return 1; 3486 return 2; 3487 } 3488 3489 case ARM::LDRSB: 3490 case ARM::LDRSH: 3491 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3492 3493 case ARM::LDRSB_POST: 3494 case ARM::LDRSH_POST: { 3495 Register Rt = MI.getOperand(0).getReg(); 3496 Register Rm = MI.getOperand(3).getReg(); 3497 return (Rt == Rm) ? 4 : 3; 3498 } 3499 3500 case ARM::LDR_PRE_REG: 3501 case ARM::LDRB_PRE_REG: { 3502 Register Rt = MI.getOperand(0).getReg(); 3503 Register Rm = MI.getOperand(3).getReg(); 3504 if (Rt == Rm) 3505 return 3; 3506 unsigned ShOpVal = MI.getOperand(4).getImm(); 3507 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3508 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3509 if (!isSub && 3510 (ShImm == 0 || 3511 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3512 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3513 return 2; 3514 return 3; 3515 } 3516 3517 case ARM::STR_PRE_REG: 3518 case ARM::STRB_PRE_REG: { 3519 unsigned ShOpVal = MI.getOperand(4).getImm(); 3520 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3521 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3522 if (!isSub && 3523 (ShImm == 0 || 3524 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3525 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3526 return 2; 3527 return 3; 3528 } 3529 3530 case ARM::LDRH_PRE: 3531 case ARM::STRH_PRE: { 3532 Register Rt = MI.getOperand(0).getReg(); 3533 Register Rm = MI.getOperand(3).getReg(); 3534 if (!Rm) 3535 return 2; 3536 if (Rt == Rm) 3537 return 3; 3538 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3539 } 3540 3541 case ARM::LDR_POST_REG: 3542 case ARM::LDRB_POST_REG: 3543 case ARM::LDRH_POST: { 3544 Register Rt = MI.getOperand(0).getReg(); 3545 Register Rm = MI.getOperand(3).getReg(); 3546 return (Rt == Rm) ? 3 : 2; 3547 } 3548 3549 case ARM::LDR_PRE_IMM: 3550 case ARM::LDRB_PRE_IMM: 3551 case ARM::LDR_POST_IMM: 3552 case ARM::LDRB_POST_IMM: 3553 case ARM::STRB_POST_IMM: 3554 case ARM::STRB_POST_REG: 3555 case ARM::STRB_PRE_IMM: 3556 case ARM::STRH_POST: 3557 case ARM::STR_POST_IMM: 3558 case ARM::STR_POST_REG: 3559 case ARM::STR_PRE_IMM: 3560 return 2; 3561 3562 case ARM::LDRSB_PRE: 3563 case ARM::LDRSH_PRE: { 3564 Register Rm = MI.getOperand(3).getReg(); 3565 if (Rm == 0) 3566 return 3; 3567 Register Rt = MI.getOperand(0).getReg(); 3568 if (Rt == Rm) 3569 return 4; 3570 unsigned ShOpVal = MI.getOperand(4).getImm(); 3571 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3572 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3573 if (!isSub && 3574 (ShImm == 0 || 3575 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3576 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3577 return 3; 3578 return 4; 3579 } 3580 3581 case ARM::LDRD: { 3582 Register Rt = MI.getOperand(0).getReg(); 3583 Register Rn = MI.getOperand(2).getReg(); 3584 Register Rm = MI.getOperand(3).getReg(); 3585 if (Rm) 3586 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3587 : 3; 3588 return (Rt == Rn) ? 3 : 2; 3589 } 3590 3591 case ARM::STRD: { 3592 Register Rm = MI.getOperand(3).getReg(); 3593 if (Rm) 3594 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3595 : 3; 3596 return 2; 3597 } 3598 3599 case ARM::LDRD_POST: 3600 case ARM::t2LDRD_POST: 3601 return 3; 3602 3603 case ARM::STRD_POST: 3604 case ARM::t2STRD_POST: 3605 return 4; 3606 3607 case ARM::LDRD_PRE: { 3608 Register Rt = MI.getOperand(0).getReg(); 3609 Register Rn = MI.getOperand(3).getReg(); 3610 Register Rm = MI.getOperand(4).getReg(); 3611 if (Rm) 3612 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3613 : 4; 3614 return (Rt == Rn) ? 4 : 3; 3615 } 3616 3617 case ARM::t2LDRD_PRE: { 3618 Register Rt = MI.getOperand(0).getReg(); 3619 Register Rn = MI.getOperand(3).getReg(); 3620 return (Rt == Rn) ? 4 : 3; 3621 } 3622 3623 case ARM::STRD_PRE: { 3624 Register Rm = MI.getOperand(4).getReg(); 3625 if (Rm) 3626 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3627 : 4; 3628 return 3; 3629 } 3630 3631 case ARM::t2STRD_PRE: 3632 return 3; 3633 3634 case ARM::t2LDR_POST: 3635 case ARM::t2LDRB_POST: 3636 case ARM::t2LDRB_PRE: 3637 case ARM::t2LDRSBi12: 3638 case ARM::t2LDRSBi8: 3639 case ARM::t2LDRSBpci: 3640 case ARM::t2LDRSBs: 3641 case ARM::t2LDRH_POST: 3642 case ARM::t2LDRH_PRE: 3643 case ARM::t2LDRSBT: 3644 case ARM::t2LDRSB_POST: 3645 case ARM::t2LDRSB_PRE: 3646 case ARM::t2LDRSH_POST: 3647 case ARM::t2LDRSH_PRE: 3648 case ARM::t2LDRSHi12: 3649 case ARM::t2LDRSHi8: 3650 case ARM::t2LDRSHpci: 3651 case ARM::t2LDRSHs: 3652 return 2; 3653 3654 case ARM::t2LDRDi8: { 3655 Register Rt = MI.getOperand(0).getReg(); 3656 Register Rn = MI.getOperand(2).getReg(); 3657 return (Rt == Rn) ? 3 : 2; 3658 } 3659 3660 case ARM::t2STRB_POST: 3661 case ARM::t2STRB_PRE: 3662 case ARM::t2STRBs: 3663 case ARM::t2STRDi8: 3664 case ARM::t2STRH_POST: 3665 case ARM::t2STRH_PRE: 3666 case ARM::t2STRHs: 3667 case ARM::t2STR_POST: 3668 case ARM::t2STR_PRE: 3669 case ARM::t2STRs: 3670 return 2; 3671 } 3672 } 3673 3674 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3675 // can't be easily determined return 0 (missing MachineMemOperand). 3676 // 3677 // FIXME: The current MachineInstr design does not support relying on machine 3678 // mem operands to determine the width of a memory access. Instead, we expect 3679 // the target to provide this information based on the instruction opcode and 3680 // operands. However, using MachineMemOperand is the best solution now for 3681 // two reasons: 3682 // 3683 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3684 // operands. This is much more dangerous than using the MachineMemOperand 3685 // sizes because CodeGen passes can insert/remove optional machine operands. In 3686 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3687 // postRA passes as well. 3688 // 3689 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3690 // machine model that calls this should handle the unknown (zero size) case. 3691 // 3692 // Long term, we should require a target hook that verifies MachineMemOperand 3693 // sizes during MC lowering. That target hook should be local to MC lowering 3694 // because we can't ensure that it is aware of other MI forms. Doing this will 3695 // ensure that MachineMemOperands are correctly propagated through all passes. 3696 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3697 unsigned Size = 0; 3698 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3699 E = MI.memoperands_end(); 3700 I != E; ++I) { 3701 Size += (*I)->getSize(); 3702 } 3703 // FIXME: The scheduler currently can't handle values larger than 16. But 3704 // the values can actually go up to 32 for floating-point load/store 3705 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3706 // operations isn't right; we could end up with "extra" memory operands for 3707 // various reasons, like tail merge merging two memory operations. 3708 return std::min(Size / 4, 16U); 3709 } 3710 3711 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3712 unsigned NumRegs) { 3713 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3714 switch (Opc) { 3715 default: 3716 break; 3717 case ARM::VLDMDIA_UPD: 3718 case ARM::VLDMDDB_UPD: 3719 case ARM::VLDMSIA_UPD: 3720 case ARM::VLDMSDB_UPD: 3721 case ARM::VSTMDIA_UPD: 3722 case ARM::VSTMDDB_UPD: 3723 case ARM::VSTMSIA_UPD: 3724 case ARM::VSTMSDB_UPD: 3725 case ARM::LDMIA_UPD: 3726 case ARM::LDMDA_UPD: 3727 case ARM::LDMDB_UPD: 3728 case ARM::LDMIB_UPD: 3729 case ARM::STMIA_UPD: 3730 case ARM::STMDA_UPD: 3731 case ARM::STMDB_UPD: 3732 case ARM::STMIB_UPD: 3733 case ARM::tLDMIA_UPD: 3734 case ARM::tSTMIA_UPD: 3735 case ARM::t2LDMIA_UPD: 3736 case ARM::t2LDMDB_UPD: 3737 case ARM::t2STMIA_UPD: 3738 case ARM::t2STMDB_UPD: 3739 ++UOps; // One for base register writeback. 3740 break; 3741 case ARM::LDMIA_RET: 3742 case ARM::tPOP_RET: 3743 case ARM::t2LDMIA_RET: 3744 UOps += 2; // One for base reg wb, one for write to pc. 3745 break; 3746 } 3747 return UOps; 3748 } 3749 3750 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3751 const MachineInstr &MI) const { 3752 if (!ItinData || ItinData->isEmpty()) 3753 return 1; 3754 3755 const MCInstrDesc &Desc = MI.getDesc(); 3756 unsigned Class = Desc.getSchedClass(); 3757 int ItinUOps = ItinData->getNumMicroOps(Class); 3758 if (ItinUOps >= 0) { 3759 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3760 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3761 3762 return ItinUOps; 3763 } 3764 3765 unsigned Opc = MI.getOpcode(); 3766 switch (Opc) { 3767 default: 3768 llvm_unreachable("Unexpected multi-uops instruction!"); 3769 case ARM::VLDMQIA: 3770 case ARM::VSTMQIA: 3771 return 2; 3772 3773 // The number of uOps for load / store multiple are determined by the number 3774 // registers. 3775 // 3776 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3777 // same cycle. The scheduling for the first load / store must be done 3778 // separately by assuming the address is not 64-bit aligned. 3779 // 3780 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3781 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3782 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3783 case ARM::VLDMDIA: 3784 case ARM::VLDMDIA_UPD: 3785 case ARM::VLDMDDB_UPD: 3786 case ARM::VLDMSIA: 3787 case ARM::VLDMSIA_UPD: 3788 case ARM::VLDMSDB_UPD: 3789 case ARM::VSTMDIA: 3790 case ARM::VSTMDIA_UPD: 3791 case ARM::VSTMDDB_UPD: 3792 case ARM::VSTMSIA: 3793 case ARM::VSTMSIA_UPD: 3794 case ARM::VSTMSDB_UPD: { 3795 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3796 return (NumRegs / 2) + (NumRegs % 2) + 1; 3797 } 3798 3799 case ARM::LDMIA_RET: 3800 case ARM::LDMIA: 3801 case ARM::LDMDA: 3802 case ARM::LDMDB: 3803 case ARM::LDMIB: 3804 case ARM::LDMIA_UPD: 3805 case ARM::LDMDA_UPD: 3806 case ARM::LDMDB_UPD: 3807 case ARM::LDMIB_UPD: 3808 case ARM::STMIA: 3809 case ARM::STMDA: 3810 case ARM::STMDB: 3811 case ARM::STMIB: 3812 case ARM::STMIA_UPD: 3813 case ARM::STMDA_UPD: 3814 case ARM::STMDB_UPD: 3815 case ARM::STMIB_UPD: 3816 case ARM::tLDMIA: 3817 case ARM::tLDMIA_UPD: 3818 case ARM::tSTMIA_UPD: 3819 case ARM::tPOP_RET: 3820 case ARM::tPOP: 3821 case ARM::tPUSH: 3822 case ARM::t2LDMIA_RET: 3823 case ARM::t2LDMIA: 3824 case ARM::t2LDMDB: 3825 case ARM::t2LDMIA_UPD: 3826 case ARM::t2LDMDB_UPD: 3827 case ARM::t2STMIA: 3828 case ARM::t2STMDB: 3829 case ARM::t2STMIA_UPD: 3830 case ARM::t2STMDB_UPD: { 3831 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3832 switch (Subtarget.getLdStMultipleTiming()) { 3833 case ARMSubtarget::SingleIssuePlusExtras: 3834 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3835 case ARMSubtarget::SingleIssue: 3836 // Assume the worst. 3837 return NumRegs; 3838 case ARMSubtarget::DoubleIssue: { 3839 if (NumRegs < 4) 3840 return 2; 3841 // 4 registers would be issued: 2, 2. 3842 // 5 registers would be issued: 2, 2, 1. 3843 unsigned UOps = (NumRegs / 2); 3844 if (NumRegs % 2) 3845 ++UOps; 3846 return UOps; 3847 } 3848 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3849 unsigned UOps = (NumRegs / 2); 3850 // If there are odd number of registers or if it's not 64-bit aligned, 3851 // then it takes an extra AGU (Address Generation Unit) cycle. 3852 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3853 (*MI.memoperands_begin())->getAlign() < Align(8)) 3854 ++UOps; 3855 return UOps; 3856 } 3857 } 3858 } 3859 } 3860 llvm_unreachable("Didn't find the number of microops"); 3861 } 3862 3863 int 3864 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3865 const MCInstrDesc &DefMCID, 3866 unsigned DefClass, 3867 unsigned DefIdx, unsigned DefAlign) const { 3868 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3869 if (RegNo <= 0) 3870 // Def is the address writeback. 3871 return ItinData->getOperandCycle(DefClass, DefIdx); 3872 3873 int DefCycle; 3874 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3875 // (regno / 2) + (regno % 2) + 1 3876 DefCycle = RegNo / 2 + 1; 3877 if (RegNo % 2) 3878 ++DefCycle; 3879 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3880 DefCycle = RegNo; 3881 bool isSLoad = false; 3882 3883 switch (DefMCID.getOpcode()) { 3884 default: break; 3885 case ARM::VLDMSIA: 3886 case ARM::VLDMSIA_UPD: 3887 case ARM::VLDMSDB_UPD: 3888 isSLoad = true; 3889 break; 3890 } 3891 3892 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3893 // then it takes an extra cycle. 3894 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3895 ++DefCycle; 3896 } else { 3897 // Assume the worst. 3898 DefCycle = RegNo + 2; 3899 } 3900 3901 return DefCycle; 3902 } 3903 3904 int 3905 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3906 const MCInstrDesc &DefMCID, 3907 unsigned DefClass, 3908 unsigned DefIdx, unsigned DefAlign) const { 3909 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3910 if (RegNo <= 0) 3911 // Def is the address writeback. 3912 return ItinData->getOperandCycle(DefClass, DefIdx); 3913 3914 int DefCycle; 3915 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3916 // 4 registers would be issued: 1, 2, 1. 3917 // 5 registers would be issued: 1, 2, 2. 3918 DefCycle = RegNo / 2; 3919 if (DefCycle < 1) 3920 DefCycle = 1; 3921 // Result latency is issue cycle + 2: E2. 3922 DefCycle += 2; 3923 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3924 DefCycle = (RegNo / 2); 3925 // If there are odd number of registers or if it's not 64-bit aligned, 3926 // then it takes an extra AGU (Address Generation Unit) cycle. 3927 if ((RegNo % 2) || DefAlign < 8) 3928 ++DefCycle; 3929 // Result latency is AGU cycles + 2. 3930 DefCycle += 2; 3931 } else { 3932 // Assume the worst. 3933 DefCycle = RegNo + 2; 3934 } 3935 3936 return DefCycle; 3937 } 3938 3939 int 3940 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3941 const MCInstrDesc &UseMCID, 3942 unsigned UseClass, 3943 unsigned UseIdx, unsigned UseAlign) const { 3944 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3945 if (RegNo <= 0) 3946 return ItinData->getOperandCycle(UseClass, UseIdx); 3947 3948 int UseCycle; 3949 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3950 // (regno / 2) + (regno % 2) + 1 3951 UseCycle = RegNo / 2 + 1; 3952 if (RegNo % 2) 3953 ++UseCycle; 3954 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3955 UseCycle = RegNo; 3956 bool isSStore = false; 3957 3958 switch (UseMCID.getOpcode()) { 3959 default: break; 3960 case ARM::VSTMSIA: 3961 case ARM::VSTMSIA_UPD: 3962 case ARM::VSTMSDB_UPD: 3963 isSStore = true; 3964 break; 3965 } 3966 3967 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3968 // then it takes an extra cycle. 3969 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3970 ++UseCycle; 3971 } else { 3972 // Assume the worst. 3973 UseCycle = RegNo + 2; 3974 } 3975 3976 return UseCycle; 3977 } 3978 3979 int 3980 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3981 const MCInstrDesc &UseMCID, 3982 unsigned UseClass, 3983 unsigned UseIdx, unsigned UseAlign) const { 3984 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3985 if (RegNo <= 0) 3986 return ItinData->getOperandCycle(UseClass, UseIdx); 3987 3988 int UseCycle; 3989 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3990 UseCycle = RegNo / 2; 3991 if (UseCycle < 2) 3992 UseCycle = 2; 3993 // Read in E3. 3994 UseCycle += 2; 3995 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3996 UseCycle = (RegNo / 2); 3997 // If there are odd number of registers or if it's not 64-bit aligned, 3998 // then it takes an extra AGU (Address Generation Unit) cycle. 3999 if ((RegNo % 2) || UseAlign < 8) 4000 ++UseCycle; 4001 } else { 4002 // Assume the worst. 4003 UseCycle = 1; 4004 } 4005 return UseCycle; 4006 } 4007 4008 int 4009 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4010 const MCInstrDesc &DefMCID, 4011 unsigned DefIdx, unsigned DefAlign, 4012 const MCInstrDesc &UseMCID, 4013 unsigned UseIdx, unsigned UseAlign) const { 4014 unsigned DefClass = DefMCID.getSchedClass(); 4015 unsigned UseClass = UseMCID.getSchedClass(); 4016 4017 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 4018 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 4019 4020 // This may be a def / use of a variable_ops instruction, the operand 4021 // latency might be determinable dynamically. Let the target try to 4022 // figure it out. 4023 int DefCycle = -1; 4024 bool LdmBypass = false; 4025 switch (DefMCID.getOpcode()) { 4026 default: 4027 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4028 break; 4029 4030 case ARM::VLDMDIA: 4031 case ARM::VLDMDIA_UPD: 4032 case ARM::VLDMDDB_UPD: 4033 case ARM::VLDMSIA: 4034 case ARM::VLDMSIA_UPD: 4035 case ARM::VLDMSDB_UPD: 4036 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4037 break; 4038 4039 case ARM::LDMIA_RET: 4040 case ARM::LDMIA: 4041 case ARM::LDMDA: 4042 case ARM::LDMDB: 4043 case ARM::LDMIB: 4044 case ARM::LDMIA_UPD: 4045 case ARM::LDMDA_UPD: 4046 case ARM::LDMDB_UPD: 4047 case ARM::LDMIB_UPD: 4048 case ARM::tLDMIA: 4049 case ARM::tLDMIA_UPD: 4050 case ARM::tPUSH: 4051 case ARM::t2LDMIA_RET: 4052 case ARM::t2LDMIA: 4053 case ARM::t2LDMDB: 4054 case ARM::t2LDMIA_UPD: 4055 case ARM::t2LDMDB_UPD: 4056 LdmBypass = true; 4057 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4058 break; 4059 } 4060 4061 if (DefCycle == -1) 4062 // We can't seem to determine the result latency of the def, assume it's 2. 4063 DefCycle = 2; 4064 4065 int UseCycle = -1; 4066 switch (UseMCID.getOpcode()) { 4067 default: 4068 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4069 break; 4070 4071 case ARM::VSTMDIA: 4072 case ARM::VSTMDIA_UPD: 4073 case ARM::VSTMDDB_UPD: 4074 case ARM::VSTMSIA: 4075 case ARM::VSTMSIA_UPD: 4076 case ARM::VSTMSDB_UPD: 4077 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4078 break; 4079 4080 case ARM::STMIA: 4081 case ARM::STMDA: 4082 case ARM::STMDB: 4083 case ARM::STMIB: 4084 case ARM::STMIA_UPD: 4085 case ARM::STMDA_UPD: 4086 case ARM::STMDB_UPD: 4087 case ARM::STMIB_UPD: 4088 case ARM::tSTMIA_UPD: 4089 case ARM::tPOP_RET: 4090 case ARM::tPOP: 4091 case ARM::t2STMIA: 4092 case ARM::t2STMDB: 4093 case ARM::t2STMIA_UPD: 4094 case ARM::t2STMDB_UPD: 4095 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4096 break; 4097 } 4098 4099 if (UseCycle == -1) 4100 // Assume it's read in the first stage. 4101 UseCycle = 1; 4102 4103 UseCycle = DefCycle - UseCycle + 1; 4104 if (UseCycle > 0) { 4105 if (LdmBypass) { 4106 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4107 // first def operand. 4108 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4109 UseClass, UseIdx)) 4110 --UseCycle; 4111 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4112 UseClass, UseIdx)) { 4113 --UseCycle; 4114 } 4115 } 4116 4117 return UseCycle; 4118 } 4119 4120 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4121 const MachineInstr *MI, unsigned Reg, 4122 unsigned &DefIdx, unsigned &Dist) { 4123 Dist = 0; 4124 4125 MachineBasicBlock::const_iterator I = MI; ++I; 4126 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4127 assert(II->isInsideBundle() && "Empty bundle?"); 4128 4129 int Idx = -1; 4130 while (II->isInsideBundle()) { 4131 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4132 if (Idx != -1) 4133 break; 4134 --II; 4135 ++Dist; 4136 } 4137 4138 assert(Idx != -1 && "Cannot find bundled definition!"); 4139 DefIdx = Idx; 4140 return &*II; 4141 } 4142 4143 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4144 const MachineInstr &MI, unsigned Reg, 4145 unsigned &UseIdx, unsigned &Dist) { 4146 Dist = 0; 4147 4148 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4149 assert(II->isInsideBundle() && "Empty bundle?"); 4150 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4151 4152 // FIXME: This doesn't properly handle multiple uses. 4153 int Idx = -1; 4154 while (II != E && II->isInsideBundle()) { 4155 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4156 if (Idx != -1) 4157 break; 4158 if (II->getOpcode() != ARM::t2IT) 4159 ++Dist; 4160 ++II; 4161 } 4162 4163 if (Idx == -1) { 4164 Dist = 0; 4165 return nullptr; 4166 } 4167 4168 UseIdx = Idx; 4169 return &*II; 4170 } 4171 4172 /// Return the number of cycles to add to (or subtract from) the static 4173 /// itinerary based on the def opcode and alignment. The caller will ensure that 4174 /// adjusted latency is at least one cycle. 4175 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4176 const MachineInstr &DefMI, 4177 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4178 int Adjust = 0; 4179 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4180 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4181 // variants are one cycle cheaper. 4182 switch (DefMCID.getOpcode()) { 4183 default: break; 4184 case ARM::LDRrs: 4185 case ARM::LDRBrs: { 4186 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4187 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4188 if (ShImm == 0 || 4189 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4190 --Adjust; 4191 break; 4192 } 4193 case ARM::t2LDRs: 4194 case ARM::t2LDRBs: 4195 case ARM::t2LDRHs: 4196 case ARM::t2LDRSHs: { 4197 // Thumb2 mode: lsl only. 4198 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4199 if (ShAmt == 0 || ShAmt == 2) 4200 --Adjust; 4201 break; 4202 } 4203 } 4204 } else if (Subtarget.isSwift()) { 4205 // FIXME: Properly handle all of the latency adjustments for address 4206 // writeback. 4207 switch (DefMCID.getOpcode()) { 4208 default: break; 4209 case ARM::LDRrs: 4210 case ARM::LDRBrs: { 4211 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4212 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4213 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4214 if (!isSub && 4215 (ShImm == 0 || 4216 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4217 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4218 Adjust -= 2; 4219 else if (!isSub && 4220 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4221 --Adjust; 4222 break; 4223 } 4224 case ARM::t2LDRs: 4225 case ARM::t2LDRBs: 4226 case ARM::t2LDRHs: 4227 case ARM::t2LDRSHs: { 4228 // Thumb2 mode: lsl only. 4229 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4230 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4231 Adjust -= 2; 4232 break; 4233 } 4234 } 4235 } 4236 4237 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4238 switch (DefMCID.getOpcode()) { 4239 default: break; 4240 case ARM::VLD1q8: 4241 case ARM::VLD1q16: 4242 case ARM::VLD1q32: 4243 case ARM::VLD1q64: 4244 case ARM::VLD1q8wb_fixed: 4245 case ARM::VLD1q16wb_fixed: 4246 case ARM::VLD1q32wb_fixed: 4247 case ARM::VLD1q64wb_fixed: 4248 case ARM::VLD1q8wb_register: 4249 case ARM::VLD1q16wb_register: 4250 case ARM::VLD1q32wb_register: 4251 case ARM::VLD1q64wb_register: 4252 case ARM::VLD2d8: 4253 case ARM::VLD2d16: 4254 case ARM::VLD2d32: 4255 case ARM::VLD2q8: 4256 case ARM::VLD2q16: 4257 case ARM::VLD2q32: 4258 case ARM::VLD2d8wb_fixed: 4259 case ARM::VLD2d16wb_fixed: 4260 case ARM::VLD2d32wb_fixed: 4261 case ARM::VLD2q8wb_fixed: 4262 case ARM::VLD2q16wb_fixed: 4263 case ARM::VLD2q32wb_fixed: 4264 case ARM::VLD2d8wb_register: 4265 case ARM::VLD2d16wb_register: 4266 case ARM::VLD2d32wb_register: 4267 case ARM::VLD2q8wb_register: 4268 case ARM::VLD2q16wb_register: 4269 case ARM::VLD2q32wb_register: 4270 case ARM::VLD3d8: 4271 case ARM::VLD3d16: 4272 case ARM::VLD3d32: 4273 case ARM::VLD1d64T: 4274 case ARM::VLD3d8_UPD: 4275 case ARM::VLD3d16_UPD: 4276 case ARM::VLD3d32_UPD: 4277 case ARM::VLD1d64Twb_fixed: 4278 case ARM::VLD1d64Twb_register: 4279 case ARM::VLD3q8_UPD: 4280 case ARM::VLD3q16_UPD: 4281 case ARM::VLD3q32_UPD: 4282 case ARM::VLD4d8: 4283 case ARM::VLD4d16: 4284 case ARM::VLD4d32: 4285 case ARM::VLD1d64Q: 4286 case ARM::VLD4d8_UPD: 4287 case ARM::VLD4d16_UPD: 4288 case ARM::VLD4d32_UPD: 4289 case ARM::VLD1d64Qwb_fixed: 4290 case ARM::VLD1d64Qwb_register: 4291 case ARM::VLD4q8_UPD: 4292 case ARM::VLD4q16_UPD: 4293 case ARM::VLD4q32_UPD: 4294 case ARM::VLD1DUPq8: 4295 case ARM::VLD1DUPq16: 4296 case ARM::VLD1DUPq32: 4297 case ARM::VLD1DUPq8wb_fixed: 4298 case ARM::VLD1DUPq16wb_fixed: 4299 case ARM::VLD1DUPq32wb_fixed: 4300 case ARM::VLD1DUPq8wb_register: 4301 case ARM::VLD1DUPq16wb_register: 4302 case ARM::VLD1DUPq32wb_register: 4303 case ARM::VLD2DUPd8: 4304 case ARM::VLD2DUPd16: 4305 case ARM::VLD2DUPd32: 4306 case ARM::VLD2DUPd8wb_fixed: 4307 case ARM::VLD2DUPd16wb_fixed: 4308 case ARM::VLD2DUPd32wb_fixed: 4309 case ARM::VLD2DUPd8wb_register: 4310 case ARM::VLD2DUPd16wb_register: 4311 case ARM::VLD2DUPd32wb_register: 4312 case ARM::VLD4DUPd8: 4313 case ARM::VLD4DUPd16: 4314 case ARM::VLD4DUPd32: 4315 case ARM::VLD4DUPd8_UPD: 4316 case ARM::VLD4DUPd16_UPD: 4317 case ARM::VLD4DUPd32_UPD: 4318 case ARM::VLD1LNd8: 4319 case ARM::VLD1LNd16: 4320 case ARM::VLD1LNd32: 4321 case ARM::VLD1LNd8_UPD: 4322 case ARM::VLD1LNd16_UPD: 4323 case ARM::VLD1LNd32_UPD: 4324 case ARM::VLD2LNd8: 4325 case ARM::VLD2LNd16: 4326 case ARM::VLD2LNd32: 4327 case ARM::VLD2LNq16: 4328 case ARM::VLD2LNq32: 4329 case ARM::VLD2LNd8_UPD: 4330 case ARM::VLD2LNd16_UPD: 4331 case ARM::VLD2LNd32_UPD: 4332 case ARM::VLD2LNq16_UPD: 4333 case ARM::VLD2LNq32_UPD: 4334 case ARM::VLD4LNd8: 4335 case ARM::VLD4LNd16: 4336 case ARM::VLD4LNd32: 4337 case ARM::VLD4LNq16: 4338 case ARM::VLD4LNq32: 4339 case ARM::VLD4LNd8_UPD: 4340 case ARM::VLD4LNd16_UPD: 4341 case ARM::VLD4LNd32_UPD: 4342 case ARM::VLD4LNq16_UPD: 4343 case ARM::VLD4LNq32_UPD: 4344 // If the address is not 64-bit aligned, the latencies of these 4345 // instructions increases by one. 4346 ++Adjust; 4347 break; 4348 } 4349 } 4350 return Adjust; 4351 } 4352 4353 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4354 const MachineInstr &DefMI, 4355 unsigned DefIdx, 4356 const MachineInstr &UseMI, 4357 unsigned UseIdx) const { 4358 // No operand latency. The caller may fall back to getInstrLatency. 4359 if (!ItinData || ItinData->isEmpty()) 4360 return -1; 4361 4362 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4363 Register Reg = DefMO.getReg(); 4364 4365 const MachineInstr *ResolvedDefMI = &DefMI; 4366 unsigned DefAdj = 0; 4367 if (DefMI.isBundle()) 4368 ResolvedDefMI = 4369 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4370 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4371 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4372 return 1; 4373 } 4374 4375 const MachineInstr *ResolvedUseMI = &UseMI; 4376 unsigned UseAdj = 0; 4377 if (UseMI.isBundle()) { 4378 ResolvedUseMI = 4379 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4380 if (!ResolvedUseMI) 4381 return -1; 4382 } 4383 4384 return getOperandLatencyImpl( 4385 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4386 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4387 } 4388 4389 int ARMBaseInstrInfo::getOperandLatencyImpl( 4390 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4391 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4392 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4393 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4394 if (Reg == ARM::CPSR) { 4395 if (DefMI.getOpcode() == ARM::FMSTAT) { 4396 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4397 return Subtarget.isLikeA9() ? 1 : 20; 4398 } 4399 4400 // CPSR set and branch can be paired in the same cycle. 4401 if (UseMI.isBranch()) 4402 return 0; 4403 4404 // Otherwise it takes the instruction latency (generally one). 4405 unsigned Latency = getInstrLatency(ItinData, DefMI); 4406 4407 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4408 // its uses. Instructions which are otherwise scheduled between them may 4409 // incur a code size penalty (not able to use the CPSR setting 16-bit 4410 // instructions). 4411 if (Latency > 0 && Subtarget.isThumb2()) { 4412 const MachineFunction *MF = DefMI.getParent()->getParent(); 4413 // FIXME: Use Function::hasOptSize(). 4414 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4415 --Latency; 4416 } 4417 return Latency; 4418 } 4419 4420 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4421 return -1; 4422 4423 unsigned DefAlign = DefMI.hasOneMemOperand() 4424 ? (*DefMI.memoperands_begin())->getAlign().value() 4425 : 0; 4426 unsigned UseAlign = UseMI.hasOneMemOperand() 4427 ? (*UseMI.memoperands_begin())->getAlign().value() 4428 : 0; 4429 4430 // Get the itinerary's latency if possible, and handle variable_ops. 4431 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4432 UseIdx, UseAlign); 4433 // Unable to find operand latency. The caller may resort to getInstrLatency. 4434 if (Latency < 0) 4435 return Latency; 4436 4437 // Adjust for IT block position. 4438 int Adj = DefAdj + UseAdj; 4439 4440 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4441 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4442 if (Adj >= 0 || (int)Latency > -Adj) { 4443 return Latency + Adj; 4444 } 4445 // Return the itinerary latency, which may be zero but not less than zero. 4446 return Latency; 4447 } 4448 4449 int 4450 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4451 SDNode *DefNode, unsigned DefIdx, 4452 SDNode *UseNode, unsigned UseIdx) const { 4453 if (!DefNode->isMachineOpcode()) 4454 return 1; 4455 4456 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4457 4458 if (isZeroCost(DefMCID.Opcode)) 4459 return 0; 4460 4461 if (!ItinData || ItinData->isEmpty()) 4462 return DefMCID.mayLoad() ? 3 : 1; 4463 4464 if (!UseNode->isMachineOpcode()) { 4465 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4466 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4467 int Threshold = 1 + Adj; 4468 return Latency <= Threshold ? 1 : Latency - Adj; 4469 } 4470 4471 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4472 auto *DefMN = cast<MachineSDNode>(DefNode); 4473 unsigned DefAlign = !DefMN->memoperands_empty() 4474 ? (*DefMN->memoperands_begin())->getAlign().value() 4475 : 0; 4476 auto *UseMN = cast<MachineSDNode>(UseNode); 4477 unsigned UseAlign = !UseMN->memoperands_empty() 4478 ? (*UseMN->memoperands_begin())->getAlign().value() 4479 : 0; 4480 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4481 UseMCID, UseIdx, UseAlign); 4482 4483 if (Latency > 1 && 4484 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4485 Subtarget.isCortexA7())) { 4486 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4487 // variants are one cycle cheaper. 4488 switch (DefMCID.getOpcode()) { 4489 default: break; 4490 case ARM::LDRrs: 4491 case ARM::LDRBrs: { 4492 unsigned ShOpVal = 4493 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4494 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4495 if (ShImm == 0 || 4496 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4497 --Latency; 4498 break; 4499 } 4500 case ARM::t2LDRs: 4501 case ARM::t2LDRBs: 4502 case ARM::t2LDRHs: 4503 case ARM::t2LDRSHs: { 4504 // Thumb2 mode: lsl only. 4505 unsigned ShAmt = 4506 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4507 if (ShAmt == 0 || ShAmt == 2) 4508 --Latency; 4509 break; 4510 } 4511 } 4512 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4513 // FIXME: Properly handle all of the latency adjustments for address 4514 // writeback. 4515 switch (DefMCID.getOpcode()) { 4516 default: break; 4517 case ARM::LDRrs: 4518 case ARM::LDRBrs: { 4519 unsigned ShOpVal = 4520 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4521 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4522 if (ShImm == 0 || 4523 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4524 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4525 Latency -= 2; 4526 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4527 --Latency; 4528 break; 4529 } 4530 case ARM::t2LDRs: 4531 case ARM::t2LDRBs: 4532 case ARM::t2LDRHs: 4533 case ARM::t2LDRSHs: 4534 // Thumb2 mode: lsl 0-3 only. 4535 Latency -= 2; 4536 break; 4537 } 4538 } 4539 4540 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4541 switch (DefMCID.getOpcode()) { 4542 default: break; 4543 case ARM::VLD1q8: 4544 case ARM::VLD1q16: 4545 case ARM::VLD1q32: 4546 case ARM::VLD1q64: 4547 case ARM::VLD1q8wb_register: 4548 case ARM::VLD1q16wb_register: 4549 case ARM::VLD1q32wb_register: 4550 case ARM::VLD1q64wb_register: 4551 case ARM::VLD1q8wb_fixed: 4552 case ARM::VLD1q16wb_fixed: 4553 case ARM::VLD1q32wb_fixed: 4554 case ARM::VLD1q64wb_fixed: 4555 case ARM::VLD2d8: 4556 case ARM::VLD2d16: 4557 case ARM::VLD2d32: 4558 case ARM::VLD2q8Pseudo: 4559 case ARM::VLD2q16Pseudo: 4560 case ARM::VLD2q32Pseudo: 4561 case ARM::VLD2d8wb_fixed: 4562 case ARM::VLD2d16wb_fixed: 4563 case ARM::VLD2d32wb_fixed: 4564 case ARM::VLD2q8PseudoWB_fixed: 4565 case ARM::VLD2q16PseudoWB_fixed: 4566 case ARM::VLD2q32PseudoWB_fixed: 4567 case ARM::VLD2d8wb_register: 4568 case ARM::VLD2d16wb_register: 4569 case ARM::VLD2d32wb_register: 4570 case ARM::VLD2q8PseudoWB_register: 4571 case ARM::VLD2q16PseudoWB_register: 4572 case ARM::VLD2q32PseudoWB_register: 4573 case ARM::VLD3d8Pseudo: 4574 case ARM::VLD3d16Pseudo: 4575 case ARM::VLD3d32Pseudo: 4576 case ARM::VLD1d8TPseudo: 4577 case ARM::VLD1d16TPseudo: 4578 case ARM::VLD1d32TPseudo: 4579 case ARM::VLD1d64TPseudo: 4580 case ARM::VLD1d64TPseudoWB_fixed: 4581 case ARM::VLD1d64TPseudoWB_register: 4582 case ARM::VLD3d8Pseudo_UPD: 4583 case ARM::VLD3d16Pseudo_UPD: 4584 case ARM::VLD3d32Pseudo_UPD: 4585 case ARM::VLD3q8Pseudo_UPD: 4586 case ARM::VLD3q16Pseudo_UPD: 4587 case ARM::VLD3q32Pseudo_UPD: 4588 case ARM::VLD3q8oddPseudo: 4589 case ARM::VLD3q16oddPseudo: 4590 case ARM::VLD3q32oddPseudo: 4591 case ARM::VLD3q8oddPseudo_UPD: 4592 case ARM::VLD3q16oddPseudo_UPD: 4593 case ARM::VLD3q32oddPseudo_UPD: 4594 case ARM::VLD4d8Pseudo: 4595 case ARM::VLD4d16Pseudo: 4596 case ARM::VLD4d32Pseudo: 4597 case ARM::VLD1d8QPseudo: 4598 case ARM::VLD1d16QPseudo: 4599 case ARM::VLD1d32QPseudo: 4600 case ARM::VLD1d64QPseudo: 4601 case ARM::VLD1d64QPseudoWB_fixed: 4602 case ARM::VLD1d64QPseudoWB_register: 4603 case ARM::VLD1q8HighQPseudo: 4604 case ARM::VLD1q8LowQPseudo_UPD: 4605 case ARM::VLD1q8HighTPseudo: 4606 case ARM::VLD1q8LowTPseudo_UPD: 4607 case ARM::VLD1q16HighQPseudo: 4608 case ARM::VLD1q16LowQPseudo_UPD: 4609 case ARM::VLD1q16HighTPseudo: 4610 case ARM::VLD1q16LowTPseudo_UPD: 4611 case ARM::VLD1q32HighQPseudo: 4612 case ARM::VLD1q32LowQPseudo_UPD: 4613 case ARM::VLD1q32HighTPseudo: 4614 case ARM::VLD1q32LowTPseudo_UPD: 4615 case ARM::VLD1q64HighQPseudo: 4616 case ARM::VLD1q64LowQPseudo_UPD: 4617 case ARM::VLD1q64HighTPseudo: 4618 case ARM::VLD1q64LowTPseudo_UPD: 4619 case ARM::VLD4d8Pseudo_UPD: 4620 case ARM::VLD4d16Pseudo_UPD: 4621 case ARM::VLD4d32Pseudo_UPD: 4622 case ARM::VLD4q8Pseudo_UPD: 4623 case ARM::VLD4q16Pseudo_UPD: 4624 case ARM::VLD4q32Pseudo_UPD: 4625 case ARM::VLD4q8oddPseudo: 4626 case ARM::VLD4q16oddPseudo: 4627 case ARM::VLD4q32oddPseudo: 4628 case ARM::VLD4q8oddPseudo_UPD: 4629 case ARM::VLD4q16oddPseudo_UPD: 4630 case ARM::VLD4q32oddPseudo_UPD: 4631 case ARM::VLD1DUPq8: 4632 case ARM::VLD1DUPq16: 4633 case ARM::VLD1DUPq32: 4634 case ARM::VLD1DUPq8wb_fixed: 4635 case ARM::VLD1DUPq16wb_fixed: 4636 case ARM::VLD1DUPq32wb_fixed: 4637 case ARM::VLD1DUPq8wb_register: 4638 case ARM::VLD1DUPq16wb_register: 4639 case ARM::VLD1DUPq32wb_register: 4640 case ARM::VLD2DUPd8: 4641 case ARM::VLD2DUPd16: 4642 case ARM::VLD2DUPd32: 4643 case ARM::VLD2DUPd8wb_fixed: 4644 case ARM::VLD2DUPd16wb_fixed: 4645 case ARM::VLD2DUPd32wb_fixed: 4646 case ARM::VLD2DUPd8wb_register: 4647 case ARM::VLD2DUPd16wb_register: 4648 case ARM::VLD2DUPd32wb_register: 4649 case ARM::VLD2DUPq8EvenPseudo: 4650 case ARM::VLD2DUPq8OddPseudo: 4651 case ARM::VLD2DUPq16EvenPseudo: 4652 case ARM::VLD2DUPq16OddPseudo: 4653 case ARM::VLD2DUPq32EvenPseudo: 4654 case ARM::VLD2DUPq32OddPseudo: 4655 case ARM::VLD3DUPq8EvenPseudo: 4656 case ARM::VLD3DUPq8OddPseudo: 4657 case ARM::VLD3DUPq16EvenPseudo: 4658 case ARM::VLD3DUPq16OddPseudo: 4659 case ARM::VLD3DUPq32EvenPseudo: 4660 case ARM::VLD3DUPq32OddPseudo: 4661 case ARM::VLD4DUPd8Pseudo: 4662 case ARM::VLD4DUPd16Pseudo: 4663 case ARM::VLD4DUPd32Pseudo: 4664 case ARM::VLD4DUPd8Pseudo_UPD: 4665 case ARM::VLD4DUPd16Pseudo_UPD: 4666 case ARM::VLD4DUPd32Pseudo_UPD: 4667 case ARM::VLD4DUPq8EvenPseudo: 4668 case ARM::VLD4DUPq8OddPseudo: 4669 case ARM::VLD4DUPq16EvenPseudo: 4670 case ARM::VLD4DUPq16OddPseudo: 4671 case ARM::VLD4DUPq32EvenPseudo: 4672 case ARM::VLD4DUPq32OddPseudo: 4673 case ARM::VLD1LNq8Pseudo: 4674 case ARM::VLD1LNq16Pseudo: 4675 case ARM::VLD1LNq32Pseudo: 4676 case ARM::VLD1LNq8Pseudo_UPD: 4677 case ARM::VLD1LNq16Pseudo_UPD: 4678 case ARM::VLD1LNq32Pseudo_UPD: 4679 case ARM::VLD2LNd8Pseudo: 4680 case ARM::VLD2LNd16Pseudo: 4681 case ARM::VLD2LNd32Pseudo: 4682 case ARM::VLD2LNq16Pseudo: 4683 case ARM::VLD2LNq32Pseudo: 4684 case ARM::VLD2LNd8Pseudo_UPD: 4685 case ARM::VLD2LNd16Pseudo_UPD: 4686 case ARM::VLD2LNd32Pseudo_UPD: 4687 case ARM::VLD2LNq16Pseudo_UPD: 4688 case ARM::VLD2LNq32Pseudo_UPD: 4689 case ARM::VLD4LNd8Pseudo: 4690 case ARM::VLD4LNd16Pseudo: 4691 case ARM::VLD4LNd32Pseudo: 4692 case ARM::VLD4LNq16Pseudo: 4693 case ARM::VLD4LNq32Pseudo: 4694 case ARM::VLD4LNd8Pseudo_UPD: 4695 case ARM::VLD4LNd16Pseudo_UPD: 4696 case ARM::VLD4LNd32Pseudo_UPD: 4697 case ARM::VLD4LNq16Pseudo_UPD: 4698 case ARM::VLD4LNq32Pseudo_UPD: 4699 // If the address is not 64-bit aligned, the latencies of these 4700 // instructions increases by one. 4701 ++Latency; 4702 break; 4703 } 4704 4705 return Latency; 4706 } 4707 4708 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4709 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4710 MI.isImplicitDef()) 4711 return 0; 4712 4713 if (MI.isBundle()) 4714 return 0; 4715 4716 const MCInstrDesc &MCID = MI.getDesc(); 4717 4718 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4719 !Subtarget.cheapPredicableCPSRDef())) { 4720 // When predicated, CPSR is an additional source operand for CPSR updating 4721 // instructions, this apparently increases their latencies. 4722 return 1; 4723 } 4724 return 0; 4725 } 4726 4727 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4728 const MachineInstr &MI, 4729 unsigned *PredCost) const { 4730 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4731 MI.isImplicitDef()) 4732 return 1; 4733 4734 // An instruction scheduler typically runs on unbundled instructions, however 4735 // other passes may query the latency of a bundled instruction. 4736 if (MI.isBundle()) { 4737 unsigned Latency = 0; 4738 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4739 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4740 while (++I != E && I->isInsideBundle()) { 4741 if (I->getOpcode() != ARM::t2IT) 4742 Latency += getInstrLatency(ItinData, *I, PredCost); 4743 } 4744 return Latency; 4745 } 4746 4747 const MCInstrDesc &MCID = MI.getDesc(); 4748 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4749 !Subtarget.cheapPredicableCPSRDef()))) { 4750 // When predicated, CPSR is an additional source operand for CPSR updating 4751 // instructions, this apparently increases their latencies. 4752 *PredCost = 1; 4753 } 4754 // Be sure to call getStageLatency for an empty itinerary in case it has a 4755 // valid MinLatency property. 4756 if (!ItinData) 4757 return MI.mayLoad() ? 3 : 1; 4758 4759 unsigned Class = MCID.getSchedClass(); 4760 4761 // For instructions with variable uops, use uops as latency. 4762 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4763 return getNumMicroOps(ItinData, MI); 4764 4765 // For the common case, fall back on the itinerary's latency. 4766 unsigned Latency = ItinData->getStageLatency(Class); 4767 4768 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4769 unsigned DefAlign = 4770 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4771 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4772 if (Adj >= 0 || (int)Latency > -Adj) { 4773 return Latency + Adj; 4774 } 4775 return Latency; 4776 } 4777 4778 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4779 SDNode *Node) const { 4780 if (!Node->isMachineOpcode()) 4781 return 1; 4782 4783 if (!ItinData || ItinData->isEmpty()) 4784 return 1; 4785 4786 unsigned Opcode = Node->getMachineOpcode(); 4787 switch (Opcode) { 4788 default: 4789 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4790 case ARM::VLDMQIA: 4791 case ARM::VSTMQIA: 4792 return 2; 4793 } 4794 } 4795 4796 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4797 const MachineRegisterInfo *MRI, 4798 const MachineInstr &DefMI, 4799 unsigned DefIdx, 4800 const MachineInstr &UseMI, 4801 unsigned UseIdx) const { 4802 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4803 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4804 if (Subtarget.nonpipelinedVFP() && 4805 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4806 return true; 4807 4808 // Hoist VFP / NEON instructions with 4 or higher latency. 4809 unsigned Latency = 4810 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4811 if (Latency <= 3) 4812 return false; 4813 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4814 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4815 } 4816 4817 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4818 const MachineInstr &DefMI, 4819 unsigned DefIdx) const { 4820 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4821 if (!ItinData || ItinData->isEmpty()) 4822 return false; 4823 4824 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4825 if (DDomain == ARMII::DomainGeneral) { 4826 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4827 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4828 return (DefCycle != -1 && DefCycle <= 2); 4829 } 4830 return false; 4831 } 4832 4833 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4834 StringRef &ErrInfo) const { 4835 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4836 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4837 return false; 4838 } 4839 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4840 // Make sure we don't generate a lo-lo mov that isn't supported. 4841 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4842 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4843 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4844 return false; 4845 } 4846 } 4847 if (MI.getOpcode() == ARM::tPUSH || 4848 MI.getOpcode() == ARM::tPOP || 4849 MI.getOpcode() == ARM::tPOP_RET) { 4850 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) { 4851 if (MO.isImplicit() || !MO.isReg()) 4852 continue; 4853 Register Reg = MO.getReg(); 4854 if (Reg < ARM::R0 || Reg > ARM::R7) { 4855 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4856 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4857 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4858 return false; 4859 } 4860 } 4861 } 4862 } 4863 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4864 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4865 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4866 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4867 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4868 return false; 4869 } 4870 } 4871 return true; 4872 } 4873 4874 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4875 unsigned LoadImmOpc, 4876 unsigned LoadOpc) const { 4877 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4878 "ROPI/RWPI not currently supported with stack guard"); 4879 4880 MachineBasicBlock &MBB = *MI->getParent(); 4881 DebugLoc DL = MI->getDebugLoc(); 4882 Register Reg = MI->getOperand(0).getReg(); 4883 MachineInstrBuilder MIB; 4884 unsigned int Offset = 0; 4885 4886 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) { 4887 assert(Subtarget.isReadTPHard() && 4888 "TLS stack protector requires hardware TLS register"); 4889 4890 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4891 .addImm(15) 4892 .addImm(0) 4893 .addImm(13) 4894 .addImm(0) 4895 .addImm(3) 4896 .add(predOps(ARMCC::AL)); 4897 4898 Module &M = *MBB.getParent()->getFunction().getParent(); 4899 Offset = M.getStackProtectorGuardOffset(); 4900 if (Offset & ~0xfffU) { 4901 // The offset won't fit in the LDR's 12-bit immediate field, so emit an 4902 // extra ADD to cover the delta. This gives us a guaranteed 8 additional 4903 // bits, resulting in a range of 0 to +1 MiB for the guard offset. 4904 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri; 4905 BuildMI(MBB, MI, DL, get(AddOpc), Reg) 4906 .addReg(Reg, RegState::Kill) 4907 .addImm(Offset & ~0xfffU) 4908 .add(predOps(ARMCC::AL)) 4909 .addReg(0); 4910 Offset &= 0xfffU; 4911 } 4912 } else { 4913 const GlobalValue *GV = 4914 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4915 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV); 4916 4917 unsigned TargetFlags = ARMII::MO_NO_FLAG; 4918 if (Subtarget.isTargetMachO()) { 4919 TargetFlags |= ARMII::MO_NONLAZY; 4920 } else if (Subtarget.isTargetCOFF()) { 4921 if (GV->hasDLLImportStorageClass()) 4922 TargetFlags |= ARMII::MO_DLLIMPORT; 4923 else if (IsIndirect) 4924 TargetFlags |= ARMII::MO_COFFSTUB; 4925 } else if (Subtarget.isGVInGOT(GV)) { 4926 TargetFlags |= ARMII::MO_GOT; 4927 } 4928 4929 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4930 .addGlobalAddress(GV, 0, TargetFlags); 4931 4932 if (IsIndirect) { 4933 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4934 MIB.addReg(Reg, RegState::Kill).addImm(0); 4935 auto Flags = MachineMemOperand::MOLoad | 4936 MachineMemOperand::MODereferenceable | 4937 MachineMemOperand::MOInvariant; 4938 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4939 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4940 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4941 } 4942 } 4943 4944 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4945 MIB.addReg(Reg, RegState::Kill) 4946 .addImm(Offset) 4947 .cloneMemRefs(*MI) 4948 .add(predOps(ARMCC::AL)); 4949 } 4950 4951 bool 4952 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4953 unsigned &AddSubOpc, 4954 bool &NegAcc, bool &HasLane) const { 4955 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4956 if (I == MLxEntryMap.end()) 4957 return false; 4958 4959 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4960 MulOpc = Entry.MulOpc; 4961 AddSubOpc = Entry.AddSubOpc; 4962 NegAcc = Entry.NegAcc; 4963 HasLane = Entry.HasLane; 4964 return true; 4965 } 4966 4967 //===----------------------------------------------------------------------===// 4968 // Execution domains. 4969 //===----------------------------------------------------------------------===// 4970 // 4971 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4972 // and some can go down both. The vmov instructions go down the VFP pipeline, 4973 // but they can be changed to vorr equivalents that are executed by the NEON 4974 // pipeline. 4975 // 4976 // We use the following execution domain numbering: 4977 // 4978 enum ARMExeDomain { 4979 ExeGeneric = 0, 4980 ExeVFP = 1, 4981 ExeNEON = 2 4982 }; 4983 4984 // 4985 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4986 // 4987 std::pair<uint16_t, uint16_t> 4988 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4989 // If we don't have access to NEON instructions then we won't be able 4990 // to swizzle anything to the NEON domain. Check to make sure. 4991 if (Subtarget.hasNEON()) { 4992 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4993 // if they are not predicated. 4994 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4995 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4996 4997 // CortexA9 is particularly picky about mixing the two and wants these 4998 // converted. 4999 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 5000 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 5001 MI.getOpcode() == ARM::VMOVS)) 5002 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5003 } 5004 // No other instructions can be swizzled, so just determine their domain. 5005 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 5006 5007 if (Domain & ARMII::DomainNEON) 5008 return std::make_pair(ExeNEON, 0); 5009 5010 // Certain instructions can go either way on Cortex-A8. 5011 // Treat them as NEON instructions. 5012 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 5013 return std::make_pair(ExeNEON, 0); 5014 5015 if (Domain & ARMII::DomainVFP) 5016 return std::make_pair(ExeVFP, 0); 5017 5018 return std::make_pair(ExeGeneric, 0); 5019 } 5020 5021 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 5022 unsigned SReg, unsigned &Lane) { 5023 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 5024 Lane = 0; 5025 5026 if (DReg != ARM::NoRegister) 5027 return DReg; 5028 5029 Lane = 1; 5030 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 5031 5032 assert(DReg && "S-register with no D super-register?"); 5033 return DReg; 5034 } 5035 5036 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 5037 /// set ImplicitSReg to a register number that must be marked as implicit-use or 5038 /// zero if no register needs to be defined as implicit-use. 5039 /// 5040 /// If the function cannot determine if an SPR should be marked implicit use or 5041 /// not, it returns false. 5042 /// 5043 /// This function handles cases where an instruction is being modified from taking 5044 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 5045 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 5046 /// lane of the DPR). 5047 /// 5048 /// If the other SPR is defined, an implicit-use of it should be added. Else, 5049 /// (including the case where the DPR itself is defined), it should not. 5050 /// 5051 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 5052 MachineInstr &MI, unsigned DReg, 5053 unsigned Lane, unsigned &ImplicitSReg) { 5054 // If the DPR is defined or used already, the other SPR lane will be chained 5055 // correctly, so there is nothing to be done. 5056 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 5057 ImplicitSReg = 0; 5058 return true; 5059 } 5060 5061 // Otherwise we need to go searching to see if the SPR is set explicitly. 5062 ImplicitSReg = TRI->getSubReg(DReg, 5063 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5064 MachineBasicBlock::LivenessQueryResult LQR = 5065 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5066 5067 if (LQR == MachineBasicBlock::LQR_Live) 5068 return true; 5069 else if (LQR == MachineBasicBlock::LQR_Unknown) 5070 return false; 5071 5072 // If the register is known not to be live, there is no need to add an 5073 // implicit-use. 5074 ImplicitSReg = 0; 5075 return true; 5076 } 5077 5078 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5079 unsigned Domain) const { 5080 unsigned DstReg, SrcReg, DReg; 5081 unsigned Lane; 5082 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5083 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5084 switch (MI.getOpcode()) { 5085 default: 5086 llvm_unreachable("cannot handle opcode!"); 5087 break; 5088 case ARM::VMOVD: 5089 if (Domain != ExeNEON) 5090 break; 5091 5092 // Zap the predicate operands. 5093 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5094 5095 // Make sure we've got NEON instructions. 5096 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5097 5098 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5099 DstReg = MI.getOperand(0).getReg(); 5100 SrcReg = MI.getOperand(1).getReg(); 5101 5102 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5103 MI.RemoveOperand(i - 1); 5104 5105 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5106 MI.setDesc(get(ARM::VORRd)); 5107 MIB.addReg(DstReg, RegState::Define) 5108 .addReg(SrcReg) 5109 .addReg(SrcReg) 5110 .add(predOps(ARMCC::AL)); 5111 break; 5112 case ARM::VMOVRS: 5113 if (Domain != ExeNEON) 5114 break; 5115 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5116 5117 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5118 DstReg = MI.getOperand(0).getReg(); 5119 SrcReg = MI.getOperand(1).getReg(); 5120 5121 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5122 MI.RemoveOperand(i - 1); 5123 5124 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5125 5126 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5127 // Note that DSrc has been widened and the other lane may be undef, which 5128 // contaminates the entire register. 5129 MI.setDesc(get(ARM::VGETLNi32)); 5130 MIB.addReg(DstReg, RegState::Define) 5131 .addReg(DReg, RegState::Undef) 5132 .addImm(Lane) 5133 .add(predOps(ARMCC::AL)); 5134 5135 // The old source should be an implicit use, otherwise we might think it 5136 // was dead before here. 5137 MIB.addReg(SrcReg, RegState::Implicit); 5138 break; 5139 case ARM::VMOVSR: { 5140 if (Domain != ExeNEON) 5141 break; 5142 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5143 5144 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5145 DstReg = MI.getOperand(0).getReg(); 5146 SrcReg = MI.getOperand(1).getReg(); 5147 5148 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5149 5150 unsigned ImplicitSReg; 5151 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5152 break; 5153 5154 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5155 MI.RemoveOperand(i - 1); 5156 5157 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5158 // Again DDst may be undefined at the beginning of this instruction. 5159 MI.setDesc(get(ARM::VSETLNi32)); 5160 MIB.addReg(DReg, RegState::Define) 5161 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5162 .addReg(SrcReg) 5163 .addImm(Lane) 5164 .add(predOps(ARMCC::AL)); 5165 5166 // The narrower destination must be marked as set to keep previous chains 5167 // in place. 5168 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5169 if (ImplicitSReg != 0) 5170 MIB.addReg(ImplicitSReg, RegState::Implicit); 5171 break; 5172 } 5173 case ARM::VMOVS: { 5174 if (Domain != ExeNEON) 5175 break; 5176 5177 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5178 DstReg = MI.getOperand(0).getReg(); 5179 SrcReg = MI.getOperand(1).getReg(); 5180 5181 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5182 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5183 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5184 5185 unsigned ImplicitSReg; 5186 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5187 break; 5188 5189 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5190 MI.RemoveOperand(i - 1); 5191 5192 if (DSrc == DDst) { 5193 // Destination can be: 5194 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5195 MI.setDesc(get(ARM::VDUPLN32d)); 5196 MIB.addReg(DDst, RegState::Define) 5197 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5198 .addImm(SrcLane) 5199 .add(predOps(ARMCC::AL)); 5200 5201 // Neither the source or the destination are naturally represented any 5202 // more, so add them in manually. 5203 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5204 MIB.addReg(SrcReg, RegState::Implicit); 5205 if (ImplicitSReg != 0) 5206 MIB.addReg(ImplicitSReg, RegState::Implicit); 5207 break; 5208 } 5209 5210 // In general there's no single instruction that can perform an S <-> S 5211 // move in NEON space, but a pair of VEXT instructions *can* do the 5212 // job. It turns out that the VEXTs needed will only use DSrc once, with 5213 // the position based purely on the combination of lane-0 and lane-1 5214 // involved. For example 5215 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5216 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5217 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5218 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5219 // 5220 // Pattern of the MachineInstrs is: 5221 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5222 MachineInstrBuilder NewMIB; 5223 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5224 DDst); 5225 5226 // On the first instruction, both DSrc and DDst may be undef if present. 5227 // Specifically when the original instruction didn't have them as an 5228 // <imp-use>. 5229 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5230 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5231 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5232 5233 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5234 CurUndef = !MI.readsRegister(CurReg, TRI); 5235 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5236 .addImm(1) 5237 .add(predOps(ARMCC::AL)); 5238 5239 if (SrcLane == DstLane) 5240 NewMIB.addReg(SrcReg, RegState::Implicit); 5241 5242 MI.setDesc(get(ARM::VEXTd32)); 5243 MIB.addReg(DDst, RegState::Define); 5244 5245 // On the second instruction, DDst has definitely been defined above, so 5246 // it is not undef. DSrc, if present, can be undef as above. 5247 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5248 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5249 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5250 5251 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5252 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5253 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5254 .addImm(1) 5255 .add(predOps(ARMCC::AL)); 5256 5257 if (SrcLane != DstLane) 5258 MIB.addReg(SrcReg, RegState::Implicit); 5259 5260 // As before, the original destination is no longer represented, add it 5261 // implicitly. 5262 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5263 if (ImplicitSReg != 0) 5264 MIB.addReg(ImplicitSReg, RegState::Implicit); 5265 break; 5266 } 5267 } 5268 } 5269 5270 //===----------------------------------------------------------------------===// 5271 // Partial register updates 5272 //===----------------------------------------------------------------------===// 5273 // 5274 // Swift renames NEON registers with 64-bit granularity. That means any 5275 // instruction writing an S-reg implicitly reads the containing D-reg. The 5276 // problem is mostly avoided by translating f32 operations to v2f32 operations 5277 // on D-registers, but f32 loads are still a problem. 5278 // 5279 // These instructions can load an f32 into a NEON register: 5280 // 5281 // VLDRS - Only writes S, partial D update. 5282 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5283 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5284 // 5285 // FCONSTD can be used as a dependency-breaking instruction. 5286 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5287 const MachineInstr &MI, unsigned OpNum, 5288 const TargetRegisterInfo *TRI) const { 5289 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5290 if (!PartialUpdateClearance) 5291 return 0; 5292 5293 assert(TRI && "Need TRI instance"); 5294 5295 const MachineOperand &MO = MI.getOperand(OpNum); 5296 if (MO.readsReg()) 5297 return 0; 5298 Register Reg = MO.getReg(); 5299 int UseOp = -1; 5300 5301 switch (MI.getOpcode()) { 5302 // Normal instructions writing only an S-register. 5303 case ARM::VLDRS: 5304 case ARM::FCONSTS: 5305 case ARM::VMOVSR: 5306 case ARM::VMOVv8i8: 5307 case ARM::VMOVv4i16: 5308 case ARM::VMOVv2i32: 5309 case ARM::VMOVv2f32: 5310 case ARM::VMOVv1i64: 5311 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5312 break; 5313 5314 // Explicitly reads the dependency. 5315 case ARM::VLD1LNd32: 5316 UseOp = 3; 5317 break; 5318 default: 5319 return 0; 5320 } 5321 5322 // If this instruction actually reads a value from Reg, there is no unwanted 5323 // dependency. 5324 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5325 return 0; 5326 5327 // We must be able to clobber the whole D-reg. 5328 if (Register::isVirtualRegister(Reg)) { 5329 // Virtual register must be a def undef foo:ssub_0 operand. 5330 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5331 return 0; 5332 } else if (ARM::SPRRegClass.contains(Reg)) { 5333 // Physical register: MI must define the full D-reg. 5334 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5335 &ARM::DPRRegClass); 5336 if (!DReg || !MI.definesRegister(DReg, TRI)) 5337 return 0; 5338 } 5339 5340 // MI has an unwanted D-register dependency. 5341 // Avoid defs in the previous N instructrions. 5342 return PartialUpdateClearance; 5343 } 5344 5345 // Break a partial register dependency after getPartialRegUpdateClearance 5346 // returned non-zero. 5347 void ARMBaseInstrInfo::breakPartialRegDependency( 5348 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5349 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5350 assert(TRI && "Need TRI instance"); 5351 5352 const MachineOperand &MO = MI.getOperand(OpNum); 5353 Register Reg = MO.getReg(); 5354 assert(Register::isPhysicalRegister(Reg) && 5355 "Can't break virtual register dependencies."); 5356 unsigned DReg = Reg; 5357 5358 // If MI defines an S-reg, find the corresponding D super-register. 5359 if (ARM::SPRRegClass.contains(Reg)) { 5360 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5361 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5362 } 5363 5364 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5365 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5366 5367 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5368 // the full D-register by loading the same value to both lanes. The 5369 // instruction is micro-coded with 2 uops, so don't do this until we can 5370 // properly schedule micro-coded instructions. The dispatcher stalls cause 5371 // too big regressions. 5372 5373 // Insert the dependency-breaking FCONSTD before MI. 5374 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5375 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5376 .addImm(96) 5377 .add(predOps(ARMCC::AL)); 5378 MI.addRegisterKilled(DReg, TRI, true); 5379 } 5380 5381 bool ARMBaseInstrInfo::hasNOP() const { 5382 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5383 } 5384 5385 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5386 if (MI->getNumOperands() < 4) 5387 return true; 5388 unsigned ShOpVal = MI->getOperand(3).getImm(); 5389 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5390 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5391 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5392 ((ShImm == 1 || ShImm == 2) && 5393 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5394 return true; 5395 5396 return false; 5397 } 5398 5399 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5400 const MachineInstr &MI, unsigned DefIdx, 5401 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5402 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5403 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5404 5405 switch (MI.getOpcode()) { 5406 case ARM::VMOVDRR: 5407 // dX = VMOVDRR rY, rZ 5408 // is the same as: 5409 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5410 // Populate the InputRegs accordingly. 5411 // rY 5412 const MachineOperand *MOReg = &MI.getOperand(1); 5413 if (!MOReg->isUndef()) 5414 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5415 MOReg->getSubReg(), ARM::ssub_0)); 5416 // rZ 5417 MOReg = &MI.getOperand(2); 5418 if (!MOReg->isUndef()) 5419 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5420 MOReg->getSubReg(), ARM::ssub_1)); 5421 return true; 5422 } 5423 llvm_unreachable("Target dependent opcode missing"); 5424 } 5425 5426 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5427 const MachineInstr &MI, unsigned DefIdx, 5428 RegSubRegPairAndIdx &InputReg) const { 5429 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5430 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5431 5432 switch (MI.getOpcode()) { 5433 case ARM::VMOVRRD: 5434 // rX, rY = VMOVRRD dZ 5435 // is the same as: 5436 // rX = EXTRACT_SUBREG dZ, ssub_0 5437 // rY = EXTRACT_SUBREG dZ, ssub_1 5438 const MachineOperand &MOReg = MI.getOperand(2); 5439 if (MOReg.isUndef()) 5440 return false; 5441 InputReg.Reg = MOReg.getReg(); 5442 InputReg.SubReg = MOReg.getSubReg(); 5443 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5444 return true; 5445 } 5446 llvm_unreachable("Target dependent opcode missing"); 5447 } 5448 5449 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5450 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5451 RegSubRegPairAndIdx &InsertedReg) const { 5452 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5453 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5454 5455 switch (MI.getOpcode()) { 5456 case ARM::VSETLNi32: 5457 case ARM::MVE_VMOV_to_lane_32: 5458 // dX = VSETLNi32 dY, rZ, imm 5459 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm 5460 const MachineOperand &MOBaseReg = MI.getOperand(1); 5461 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5462 if (MOInsertedReg.isUndef()) 5463 return false; 5464 const MachineOperand &MOIndex = MI.getOperand(3); 5465 BaseReg.Reg = MOBaseReg.getReg(); 5466 BaseReg.SubReg = MOBaseReg.getSubReg(); 5467 5468 InsertedReg.Reg = MOInsertedReg.getReg(); 5469 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5470 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); 5471 return true; 5472 } 5473 llvm_unreachable("Target dependent opcode missing"); 5474 } 5475 5476 std::pair<unsigned, unsigned> 5477 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5478 const unsigned Mask = ARMII::MO_OPTION_MASK; 5479 return std::make_pair(TF & Mask, TF & ~Mask); 5480 } 5481 5482 ArrayRef<std::pair<unsigned, const char *>> 5483 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5484 using namespace ARMII; 5485 5486 static const std::pair<unsigned, const char *> TargetFlags[] = { 5487 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5488 return makeArrayRef(TargetFlags); 5489 } 5490 5491 ArrayRef<std::pair<unsigned, const char *>> 5492 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5493 using namespace ARMII; 5494 5495 static const std::pair<unsigned, const char *> TargetFlags[] = { 5496 {MO_COFFSTUB, "arm-coffstub"}, 5497 {MO_GOT, "arm-got"}, 5498 {MO_SBREL, "arm-sbrel"}, 5499 {MO_DLLIMPORT, "arm-dllimport"}, 5500 {MO_SECREL, "arm-secrel"}, 5501 {MO_NONLAZY, "arm-nonlazy"}}; 5502 return makeArrayRef(TargetFlags); 5503 } 5504 5505 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, 5506 Register Reg) const { 5507 int Sign = 1; 5508 unsigned Opcode = MI.getOpcode(); 5509 int64_t Offset = 0; 5510 5511 // TODO: Handle cases where Reg is a super- or sub-register of the 5512 // destination register. 5513 const MachineOperand &Op0 = MI.getOperand(0); 5514 if (!Op0.isReg() || Reg != Op0.getReg()) 5515 return None; 5516 5517 // We describe SUBri or ADDri instructions. 5518 if (Opcode == ARM::SUBri) 5519 Sign = -1; 5520 else if (Opcode != ARM::ADDri) 5521 return None; 5522 5523 // TODO: Third operand can be global address (usually some string). Since 5524 // strings can be relocated we cannot calculate their offsets for 5525 // now. 5526 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5527 return None; 5528 5529 Offset = MI.getOperand(2).getImm() * Sign; 5530 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5531 } 5532 5533 bool llvm::registerDefinedBetween(unsigned Reg, 5534 MachineBasicBlock::iterator From, 5535 MachineBasicBlock::iterator To, 5536 const TargetRegisterInfo *TRI) { 5537 for (auto I = From; I != To; ++I) 5538 if (I->modifiesRegister(Reg, TRI)) 5539 return true; 5540 return false; 5541 } 5542 5543 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5544 const TargetRegisterInfo *TRI) { 5545 // Search backwards to the instruction that defines CSPR. This may or not 5546 // be a CMP, we check that after this loop. If we find another instruction 5547 // that reads cpsr, we return nullptr. 5548 MachineBasicBlock::iterator CmpMI = Br; 5549 while (CmpMI != Br->getParent()->begin()) { 5550 --CmpMI; 5551 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5552 break; 5553 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5554 break; 5555 } 5556 5557 // Check that this inst is a CMP r[0-7], #0 and that the register 5558 // is not redefined between the cmp and the br. 5559 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5560 return nullptr; 5561 Register Reg = CmpMI->getOperand(0).getReg(); 5562 Register PredReg; 5563 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5564 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5565 return nullptr; 5566 if (!isARMLowRegister(Reg)) 5567 return nullptr; 5568 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5569 return nullptr; 5570 5571 return &*CmpMI; 5572 } 5573 5574 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5575 const ARMSubtarget *Subtarget, 5576 bool ForCodesize) { 5577 if (Subtarget->isThumb()) { 5578 if (Val <= 255) // MOV 5579 return ForCodesize ? 2 : 1; 5580 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5581 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5582 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5583 return ForCodesize ? 4 : 1; 5584 if (Val <= 510) // MOV + ADDi8 5585 return ForCodesize ? 4 : 2; 5586 if (~Val <= 255) // MOV + MVN 5587 return ForCodesize ? 4 : 2; 5588 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5589 return ForCodesize ? 4 : 2; 5590 } else { 5591 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5592 return ForCodesize ? 4 : 1; 5593 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5594 return ForCodesize ? 4 : 1; 5595 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5596 return ForCodesize ? 4 : 1; 5597 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5598 return ForCodesize ? 8 : 2; 5599 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5600 return ForCodesize ? 8 : 2; 5601 } 5602 if (Subtarget->useMovt()) // MOVW + MOVT 5603 return ForCodesize ? 8 : 2; 5604 return ForCodesize ? 8 : 3; // Literal pool load 5605 } 5606 5607 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5608 const ARMSubtarget *Subtarget, 5609 bool ForCodesize) { 5610 // Check with ForCodesize 5611 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5612 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5613 if (Cost1 < Cost2) 5614 return true; 5615 if (Cost1 > Cost2) 5616 return false; 5617 5618 // If they are equal, try with !ForCodesize 5619 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5620 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5621 } 5622 5623 /// Constants defining how certain sequences should be outlined. 5624 /// This encompasses how an outlined function should be called, and what kind of 5625 /// frame should be emitted for that outlined function. 5626 /// 5627 /// \p MachineOutlinerTailCall implies that the function is being created from 5628 /// a sequence of instructions ending in a return. 5629 /// 5630 /// That is, 5631 /// 5632 /// I1 OUTLINED_FUNCTION: 5633 /// I2 --> B OUTLINED_FUNCTION I1 5634 /// BX LR I2 5635 /// BX LR 5636 /// 5637 /// +-------------------------+--------+-----+ 5638 /// | | Thumb2 | ARM | 5639 /// +-------------------------+--------+-----+ 5640 /// | Call overhead in Bytes | 4 | 4 | 5641 /// | Frame overhead in Bytes | 0 | 0 | 5642 /// | Stack fixup required | No | No | 5643 /// +-------------------------+--------+-----+ 5644 /// 5645 /// \p MachineOutlinerThunk implies that the function is being created from 5646 /// a sequence of instructions ending in a call. The outlined function is 5647 /// called with a BL instruction, and the outlined function tail-calls the 5648 /// original call destination. 5649 /// 5650 /// That is, 5651 /// 5652 /// I1 OUTLINED_FUNCTION: 5653 /// I2 --> BL OUTLINED_FUNCTION I1 5654 /// BL f I2 5655 /// B f 5656 /// 5657 /// +-------------------------+--------+-----+ 5658 /// | | Thumb2 | ARM | 5659 /// +-------------------------+--------+-----+ 5660 /// | Call overhead in Bytes | 4 | 4 | 5661 /// | Frame overhead in Bytes | 0 | 0 | 5662 /// | Stack fixup required | No | No | 5663 /// +-------------------------+--------+-----+ 5664 /// 5665 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5666 /// a BL instruction, but doesn't require LR to be saved and restored. This 5667 /// happens when LR is known to be dead. 5668 /// 5669 /// That is, 5670 /// 5671 /// I1 OUTLINED_FUNCTION: 5672 /// I2 --> BL OUTLINED_FUNCTION I1 5673 /// I3 I2 5674 /// I3 5675 /// BX LR 5676 /// 5677 /// +-------------------------+--------+-----+ 5678 /// | | Thumb2 | ARM | 5679 /// +-------------------------+--------+-----+ 5680 /// | Call overhead in Bytes | 4 | 4 | 5681 /// | Frame overhead in Bytes | 4 | 4 | 5682 /// | Stack fixup required | No | No | 5683 /// +-------------------------+--------+-----+ 5684 /// 5685 /// \p MachineOutlinerRegSave implies that the function should be called with a 5686 /// save and restore of LR to an available register. This allows us to avoid 5687 /// stack fixups. Note that this outlining variant is compatible with the 5688 /// NoLRSave case. 5689 /// 5690 /// That is, 5691 /// 5692 /// I1 Save LR OUTLINED_FUNCTION: 5693 /// I2 --> BL OUTLINED_FUNCTION I1 5694 /// I3 Restore LR I2 5695 /// I3 5696 /// BX LR 5697 /// 5698 /// +-------------------------+--------+-----+ 5699 /// | | Thumb2 | ARM | 5700 /// +-------------------------+--------+-----+ 5701 /// | Call overhead in Bytes | 8 | 12 | 5702 /// | Frame overhead in Bytes | 2 | 4 | 5703 /// | Stack fixup required | No | No | 5704 /// +-------------------------+--------+-----+ 5705 /// 5706 /// \p MachineOutlinerDefault implies that the function should be called with 5707 /// a save and restore of LR to the stack. 5708 /// 5709 /// That is, 5710 /// 5711 /// I1 Save LR OUTLINED_FUNCTION: 5712 /// I2 --> BL OUTLINED_FUNCTION I1 5713 /// I3 Restore LR I2 5714 /// I3 5715 /// BX LR 5716 /// 5717 /// +-------------------------+--------+-----+ 5718 /// | | Thumb2 | ARM | 5719 /// +-------------------------+--------+-----+ 5720 /// | Call overhead in Bytes | 8 | 12 | 5721 /// | Frame overhead in Bytes | 2 | 4 | 5722 /// | Stack fixup required | Yes | Yes | 5723 /// +-------------------------+--------+-----+ 5724 5725 enum MachineOutlinerClass { 5726 MachineOutlinerTailCall, 5727 MachineOutlinerThunk, 5728 MachineOutlinerNoLRSave, 5729 MachineOutlinerRegSave, 5730 MachineOutlinerDefault 5731 }; 5732 5733 enum MachineOutlinerMBBFlags { 5734 LRUnavailableSomewhere = 0x2, 5735 HasCalls = 0x4, 5736 UnsafeRegsDead = 0x8 5737 }; 5738 5739 struct OutlinerCosts { 5740 int CallTailCall; 5741 int FrameTailCall; 5742 int CallThunk; 5743 int FrameThunk; 5744 int CallNoLRSave; 5745 int FrameNoLRSave; 5746 int CallRegSave; 5747 int FrameRegSave; 5748 int CallDefault; 5749 int FrameDefault; 5750 int SaveRestoreLROnStack; 5751 5752 OutlinerCosts(const ARMSubtarget &target) 5753 : CallTailCall(target.isThumb() ? 4 : 4), 5754 FrameTailCall(target.isThumb() ? 0 : 0), 5755 CallThunk(target.isThumb() ? 4 : 4), 5756 FrameThunk(target.isThumb() ? 0 : 0), 5757 CallNoLRSave(target.isThumb() ? 4 : 4), 5758 FrameNoLRSave(target.isThumb() ? 4 : 4), 5759 CallRegSave(target.isThumb() ? 8 : 12), 5760 FrameRegSave(target.isThumb() ? 2 : 4), 5761 CallDefault(target.isThumb() ? 8 : 12), 5762 FrameDefault(target.isThumb() ? 2 : 4), 5763 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5764 }; 5765 5766 unsigned 5767 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const { 5768 assert(C.LRUWasSet && "LRU wasn't set?"); 5769 MachineFunction *MF = C.getMF(); 5770 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>( 5771 MF->getSubtarget().getRegisterInfo()); 5772 5773 BitVector regsReserved = ARI->getReservedRegs(*MF); 5774 // Check if there is an available register across the sequence that we can 5775 // use. 5776 for (unsigned Reg : ARM::rGPRRegClass) { 5777 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5778 Reg != ARM::LR && // LR is not reserved, but don't use it. 5779 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5780 C.LRU.available(Reg) && C.UsedInSequence.available(Reg)) 5781 return Reg; 5782 } 5783 5784 // No suitable register. Return 0. 5785 return 0u; 5786 } 5787 5788 // Compute liveness of LR at the point after the interval [I, E), which 5789 // denotes a *backward* iteration through instructions. Used only for return 5790 // basic blocks, which do not end with a tail call. 5791 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5792 MachineBasicBlock::reverse_iterator I, 5793 MachineBasicBlock::reverse_iterator E) { 5794 // At the end of the function LR dead. 5795 bool Live = false; 5796 for (; I != E; ++I) { 5797 const MachineInstr &MI = *I; 5798 5799 // Check defs of LR. 5800 if (MI.modifiesRegister(ARM::LR, &TRI)) 5801 Live = false; 5802 5803 // Check uses of LR. 5804 unsigned Opcode = MI.getOpcode(); 5805 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5806 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5807 Opcode == ARM::tBXNS_RET) { 5808 // These instructions use LR, but it's not an (explicit or implicit) 5809 // operand. 5810 Live = true; 5811 continue; 5812 } 5813 if (MI.readsRegister(ARM::LR, &TRI)) 5814 Live = true; 5815 } 5816 return !Live; 5817 } 5818 5819 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo( 5820 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5821 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 5822 unsigned SequenceSize = 5823 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 5824 [this](unsigned Sum, const MachineInstr &MI) { 5825 return Sum + getInstSizeInBytes(MI); 5826 }); 5827 5828 // Properties about candidate MBBs that hold for all of them. 5829 unsigned FlagsSetInAll = 0xF; 5830 5831 // Compute liveness information for each candidate, and set FlagsSetInAll. 5832 const TargetRegisterInfo &TRI = getRegisterInfo(); 5833 std::for_each( 5834 RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), 5835 [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; }); 5836 5837 // According to the ARM Procedure Call Standard, the following are 5838 // undefined on entry/exit from a function call: 5839 // 5840 // * Register R12(IP), 5841 // * Condition codes (and thus the CPSR register) 5842 // 5843 // Since we control the instructions which are part of the outlined regions 5844 // we don't need to be fully compliant with the AAPCS, but we have to 5845 // guarantee that if a veneer is inserted at link time the code is still 5846 // correct. Because of this, we can't outline any sequence of instructions 5847 // where one of these registers is live into/across it. Thus, we need to 5848 // delete those candidates. 5849 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5850 // If the unsafe registers in this block are all dead, then we don't need 5851 // to compute liveness here. 5852 if (C.Flags & UnsafeRegsDead) 5853 return false; 5854 C.initLRU(TRI); 5855 LiveRegUnits LRU = C.LRU; 5856 return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR)); 5857 }; 5858 5859 // Are there any candidates where those registers are live? 5860 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5861 // Erase every candidate that violates the restrictions above. (It could be 5862 // true that we have viable candidates, so it's not worth bailing out in 5863 // the case that, say, 1 out of 20 candidates violate the restructions.) 5864 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5865 5866 // If the sequence doesn't have enough candidates left, then we're done. 5867 if (RepeatedSequenceLocs.size() < 2) 5868 return outliner::OutlinedFunction(); 5869 } 5870 5871 // Partition the candidates in two sets: one with BTI enabled and one with BTI 5872 // disabled. Remove the candidates from the smaller set. We expect the 5873 // majority of the candidates to be in consensus with regard to branch target 5874 // enforcement with just a few oddballs, but if they are the same number 5875 // prefer the non-BTI ones for outlining, since they have less overhead. 5876 auto NoBTI = 5877 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5878 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5879 return AFI.branchTargetEnforcement(); 5880 }); 5881 if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) > 5882 std::distance(NoBTI, RepeatedSequenceLocs.end())) 5883 RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end()); 5884 else 5885 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI); 5886 if (RepeatedSequenceLocs.size() < 2) 5887 return outliner::OutlinedFunction(); 5888 5889 // At this point, we have only "safe" candidates to outline. Figure out 5890 // frame + call instruction information. 5891 5892 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 5893 5894 // Helper lambda which sets call information for every candidate. 5895 auto SetCandidateCallInfo = 5896 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5897 for (outliner::Candidate &C : RepeatedSequenceLocs) 5898 C.setCallInfo(CallID, NumBytesForCall); 5899 }; 5900 5901 OutlinerCosts Costs(Subtarget); 5902 const auto &SomeMFI = 5903 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>(); 5904 // Adjust costs to account for the BTI instructions. 5905 if (SomeMFI.branchTargetEnforcement()) { 5906 Costs.FrameDefault += 4; 5907 Costs.FrameNoLRSave += 4; 5908 Costs.FrameRegSave += 4; 5909 Costs.FrameTailCall += 4; 5910 Costs.FrameThunk += 4; 5911 } 5912 unsigned FrameID = MachineOutlinerDefault; 5913 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 5914 5915 // If the last instruction in any candidate is a terminator, then we should 5916 // tail call all of the candidates. 5917 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 5918 FrameID = MachineOutlinerTailCall; 5919 NumBytesToCreateFrame = Costs.FrameTailCall; 5920 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 5921 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 5922 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 5923 LastInstrOpcode == ARM::tBLXr || 5924 LastInstrOpcode == ARM::tBLXr_noip || 5925 LastInstrOpcode == ARM::tBLXi) { 5926 FrameID = MachineOutlinerThunk; 5927 NumBytesToCreateFrame = Costs.FrameThunk; 5928 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 5929 } else { 5930 // We need to decide how to emit calls + frames. We can always emit the same 5931 // frame if we don't need to save to the stack. If we have to save to the 5932 // stack, then we need a different frame. 5933 unsigned NumBytesNoStackCalls = 0; 5934 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 5935 5936 for (outliner::Candidate &C : RepeatedSequenceLocs) { 5937 C.initLRU(TRI); 5938 // LR liveness is overestimated in return blocks, unless they end with a 5939 // tail call. 5940 const auto Last = C.getMBB()->rbegin(); 5941 const bool LRIsAvailable = 5942 C.getMBB()->isReturnBlock() && !Last->isCall() 5943 ? isLRAvailable(TRI, Last, 5944 (MachineBasicBlock::reverse_iterator)C.front()) 5945 : C.LRU.available(ARM::LR); 5946 if (LRIsAvailable) { 5947 FrameID = MachineOutlinerNoLRSave; 5948 NumBytesNoStackCalls += Costs.CallNoLRSave; 5949 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 5950 CandidatesWithoutStackFixups.push_back(C); 5951 } 5952 5953 // Is an unused register available? If so, we won't modify the stack, so 5954 // we can outline with the same frame type as those that don't save LR. 5955 else if (findRegisterToSaveLRTo(C)) { 5956 FrameID = MachineOutlinerRegSave; 5957 NumBytesNoStackCalls += Costs.CallRegSave; 5958 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 5959 CandidatesWithoutStackFixups.push_back(C); 5960 } 5961 5962 // Is SP used in the sequence at all? If not, we don't have to modify 5963 // the stack, so we are guaranteed to get the same frame. 5964 else if (C.UsedInSequence.available(ARM::SP)) { 5965 NumBytesNoStackCalls += Costs.CallDefault; 5966 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 5967 CandidatesWithoutStackFixups.push_back(C); 5968 } 5969 5970 // If we outline this, we need to modify the stack. Pretend we don't 5971 // outline this by saving all of its bytes. 5972 else 5973 NumBytesNoStackCalls += SequenceSize; 5974 } 5975 5976 // If there are no places where we have to save LR, then note that we don't 5977 // have to update the stack. Otherwise, give every candidate the default 5978 // call type 5979 if (NumBytesNoStackCalls <= 5980 RepeatedSequenceLocs.size() * Costs.CallDefault) { 5981 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 5982 FrameID = MachineOutlinerNoLRSave; 5983 } else 5984 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 5985 } 5986 5987 // Does every candidate's MBB contain a call? If so, then we might have a 5988 // call in the range. 5989 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 5990 // check if the range contains a call. These require a save + restore of 5991 // the link register. 5992 if (std::any_of(FirstCand.front(), FirstCand.back(), 5993 [](const MachineInstr &MI) { return MI.isCall(); })) 5994 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 5995 5996 // Handle the last instruction separately. If it is tail call, then the 5997 // last instruction is a call, we don't want to save + restore in this 5998 // case. However, it could be possible that the last instruction is a 5999 // call without it being valid to tail call this sequence. We should 6000 // consider this as well. 6001 else if (FrameID != MachineOutlinerThunk && 6002 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) 6003 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6004 } 6005 6006 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 6007 NumBytesToCreateFrame, FrameID); 6008 } 6009 6010 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, 6011 int64_t Fixup, 6012 bool Updt) const { 6013 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP); 6014 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); 6015 if (SPIdx < 0) 6016 // No SP operand 6017 return true; 6018 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) 6019 // If SP is not the base register we can't do much 6020 return false; 6021 6022 // Stack might be involved but addressing mode doesn't handle any offset. 6023 // Rq: AddrModeT1_[1|2|4] don't operate on SP 6024 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions 6025 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple 6026 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple 6027 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register 6028 AddrMode == ARMII::AddrModeT2_pc || // PCrel access 6029 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST 6030 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE 6031 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE 6032 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR 6033 AddrMode == ARMII::AddrModeNone || 6034 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions 6035 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm 6036 return false; 6037 6038 unsigned NumOps = MI->getDesc().getNumOperands(); 6039 unsigned ImmIdx = NumOps - 3; 6040 6041 const MachineOperand &Offset = MI->getOperand(ImmIdx); 6042 assert(Offset.isImm() && "Is not an immediate"); 6043 int64_t OffVal = Offset.getImm(); 6044 6045 if (OffVal < 0) 6046 // Don't override data if the are below SP. 6047 return false; 6048 6049 unsigned NumBits = 0; 6050 unsigned Scale = 1; 6051 6052 switch (AddrMode) { 6053 case ARMII::AddrMode3: 6054 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) 6055 return false; 6056 OffVal = ARM_AM::getAM3Offset(OffVal); 6057 NumBits = 8; 6058 break; 6059 case ARMII::AddrMode5: 6060 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) 6061 return false; 6062 OffVal = ARM_AM::getAM5Offset(OffVal); 6063 NumBits = 8; 6064 Scale = 4; 6065 break; 6066 case ARMII::AddrMode5FP16: 6067 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) 6068 return false; 6069 OffVal = ARM_AM::getAM5FP16Offset(OffVal); 6070 NumBits = 8; 6071 Scale = 2; 6072 break; 6073 case ARMII::AddrModeT2_i8pos: 6074 NumBits = 8; 6075 break; 6076 case ARMII::AddrModeT2_i8s4: 6077 // FIXME: Values are already scaled in this addressing mode. 6078 assert((Fixup & 3) == 0 && "Can't encode this offset!"); 6079 NumBits = 10; 6080 break; 6081 case ARMII::AddrModeT2_ldrex: 6082 NumBits = 8; 6083 Scale = 4; 6084 break; 6085 case ARMII::AddrModeT2_i12: 6086 case ARMII::AddrMode_i12: 6087 NumBits = 12; 6088 break; 6089 case ARMII::AddrModeT1_s: // SP-relative LD/ST 6090 NumBits = 8; 6091 Scale = 4; 6092 break; 6093 default: 6094 llvm_unreachable("Unsupported addressing mode!"); 6095 } 6096 // Make sure the offset is encodable for instructions that scale the 6097 // immediate. 6098 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && 6099 "Can't encode this offset!"); 6100 OffVal += Fixup / Scale; 6101 6102 unsigned Mask = (1 << NumBits) - 1; 6103 6104 if (OffVal <= Mask) { 6105 if (Updt) 6106 MI->getOperand(ImmIdx).setImm(OffVal); 6107 return true; 6108 } 6109 6110 return false; 6111 } 6112 6113 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes( 6114 Function &F, std::vector<outliner::Candidate> &Candidates) const { 6115 outliner::Candidate &C = Candidates.front(); 6116 // branch-target-enforcement is guaranteed to be consistent between all 6117 // candidates, so we only need to look at one. 6118 const Function &CFn = C.getMF()->getFunction(); 6119 if (CFn.hasFnAttribute("branch-target-enforcement")) 6120 F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement")); 6121 6122 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates); 6123 } 6124 6125 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 6126 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 6127 const Function &F = MF.getFunction(); 6128 6129 // Can F be deduplicated by the linker? If it can, don't outline from it. 6130 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 6131 return false; 6132 6133 // Don't outline from functions with section markings; the program could 6134 // expect that all the code is in the named section. 6135 // FIXME: Allow outlining from multiple functions with the same section 6136 // marking. 6137 if (F.hasSection()) 6138 return false; 6139 6140 // FIXME: Thumb1 outlining is not handled 6141 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 6142 return false; 6143 6144 // It's safe to outline from MF. 6145 return true; 6146 } 6147 6148 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 6149 unsigned &Flags) const { 6150 // Check if LR is available through all of the MBB. If it's not, then set 6151 // a flag. 6152 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 6153 "Suitable Machine Function for outlining must track liveness"); 6154 6155 LiveRegUnits LRU(getRegisterInfo()); 6156 6157 std::for_each(MBB.rbegin(), MBB.rend(), 6158 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); }); 6159 6160 // Check if each of the unsafe registers are available... 6161 bool R12AvailableInBlock = LRU.available(ARM::R12); 6162 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 6163 6164 // If all of these are dead (and not live out), we know we don't have to check 6165 // them later. 6166 if (R12AvailableInBlock && CPSRAvailableInBlock) 6167 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 6168 6169 // Now, add the live outs to the set. 6170 LRU.addLiveOuts(MBB); 6171 6172 // If any of these registers is available in the MBB, but also a live out of 6173 // the block, then we know outlining is unsafe. 6174 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 6175 return false; 6176 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 6177 return false; 6178 6179 // Check if there's a call inside this MachineBasicBlock. If there is, then 6180 // set a flag. 6181 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 6182 Flags |= MachineOutlinerMBBFlags::HasCalls; 6183 6184 // LR liveness is overestimated in return blocks. 6185 6186 bool LRIsAvailable = 6187 MBB.isReturnBlock() && !MBB.back().isCall() 6188 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 6189 : LRU.available(ARM::LR); 6190 if (!LRIsAvailable) 6191 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 6192 6193 return true; 6194 } 6195 6196 outliner::InstrType 6197 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, 6198 unsigned Flags) const { 6199 MachineInstr &MI = *MIT; 6200 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6201 6202 // Be conservative with inline ASM 6203 if (MI.isInlineAsm()) 6204 return outliner::InstrType::Illegal; 6205 6206 // Don't allow debug values to impact outlining type. 6207 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 6208 return outliner::InstrType::Invisible; 6209 6210 // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much 6211 // so we can go ahead and skip over them. 6212 if (MI.isKill() || MI.isImplicitDef()) 6213 return outliner::InstrType::Invisible; 6214 6215 // PIC instructions contain labels, outlining them would break offset 6216 // computing. unsigned Opc = MI.getOpcode(); 6217 unsigned Opc = MI.getOpcode(); 6218 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6219 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6220 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6221 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6222 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6223 Opc == ARM::t2MOV_ga_pcrel) 6224 return outliner::InstrType::Illegal; 6225 6226 // Be conservative with ARMv8.1 MVE instructions. 6227 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6228 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6229 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || 6230 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6231 Opc == ARM::t2LoopEndDec) 6232 return outliner::InstrType::Illegal; 6233 6234 const MCInstrDesc &MCID = MI.getDesc(); 6235 uint64_t MIFlags = MCID.TSFlags; 6236 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6237 return outliner::InstrType::Illegal; 6238 6239 // Is this a terminator for a basic block? 6240 if (MI.isTerminator()) { 6241 // Don't outline if the branch is not unconditional. 6242 if (isPredicated(MI)) 6243 return outliner::InstrType::Illegal; 6244 6245 // Is this the end of a function? 6246 if (MI.getParent()->succ_empty()) 6247 return outliner::InstrType::Legal; 6248 6249 // It's not, so don't outline it. 6250 return outliner::InstrType::Illegal; 6251 } 6252 6253 // Make sure none of the operands are un-outlinable. 6254 for (const MachineOperand &MOP : MI.operands()) { 6255 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 6256 MOP.isTargetIndex()) 6257 return outliner::InstrType::Illegal; 6258 } 6259 6260 // Don't outline if link register or program counter value are used. 6261 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6262 return outliner::InstrType::Illegal; 6263 6264 if (MI.isCall()) { 6265 // Get the function associated with the call. Look at each operand and find 6266 // the one that represents the calle and get its name. 6267 const Function *Callee = nullptr; 6268 for (const MachineOperand &MOP : MI.operands()) { 6269 if (MOP.isGlobal()) { 6270 Callee = dyn_cast<Function>(MOP.getGlobal()); 6271 break; 6272 } 6273 } 6274 6275 // Dont't outline calls to "mcount" like functions, in particular Linux 6276 // kernel function tracing relies on it. 6277 if (Callee && 6278 (Callee->getName() == "\01__gnu_mcount_nc" || 6279 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6280 return outliner::InstrType::Illegal; 6281 6282 // If we don't know anything about the callee, assume it depends on the 6283 // stack layout of the caller. In that case, it's only legal to outline 6284 // as a tail-call. Explicitly list the call instructions we know about so 6285 // we don't get unexpected results with call pseudo-instructions. 6286 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6287 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6288 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6289 Opc == ARM::tBLXi) 6290 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6291 6292 if (!Callee) 6293 return UnknownCallOutlineType; 6294 6295 // We have a function we have information about. Check if it's something we 6296 // can safely outline. 6297 MachineFunction *MF = MI.getParent()->getParent(); 6298 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 6299 6300 // We don't know what's going on with the callee at all. Don't touch it. 6301 if (!CalleeMF) 6302 return UnknownCallOutlineType; 6303 6304 // Check if we know anything about the callee saves on the function. If we 6305 // don't, then don't touch it, since that implies that we haven't computed 6306 // anything about its stack frame yet. 6307 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6308 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6309 MFI.getNumObjects() > 0) 6310 return UnknownCallOutlineType; 6311 6312 // At this point, we can say that CalleeMF ought to not pass anything on the 6313 // stack. Therefore, we can outline it. 6314 return outliner::InstrType::Legal; 6315 } 6316 6317 // Since calls are handled, don't touch LR or PC 6318 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6319 return outliner::InstrType::Illegal; 6320 6321 // Does this use the stack? 6322 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6323 // True if there is no chance that any outlined candidate from this range 6324 // could require stack fixups. That is, both 6325 // * LR is available in the range (No save/restore around call) 6326 // * The range doesn't include calls (No save/restore in outlined frame) 6327 // are true. 6328 // FIXME: This is very restrictive; the flags check the whole block, 6329 // not just the bit we will try to outline. 6330 bool MightNeedStackFixUp = 6331 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6332 MachineOutlinerMBBFlags::HasCalls)); 6333 6334 if (!MightNeedStackFixUp) 6335 return outliner::InstrType::Legal; 6336 6337 // Any modification of SP will break our code to save/restore LR. 6338 // FIXME: We could handle some instructions which add a constant offset to 6339 // SP, with a bit more work. 6340 if (MI.modifiesRegister(ARM::SP, TRI)) 6341 return outliner::InstrType::Illegal; 6342 6343 // At this point, we have a stack instruction that we might need to fix up. 6344 // up. We'll handle it if it's a load or store. 6345 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), 6346 false)) 6347 return outliner::InstrType::Legal; 6348 6349 // We can't fix it up, so don't outline it. 6350 return outliner::InstrType::Illegal; 6351 } 6352 6353 // Be conservative with IT blocks. 6354 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6355 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6356 return outliner::InstrType::Illegal; 6357 6358 // Don't outline positions. 6359 if (MI.isPosition()) 6360 return outliner::InstrType::Illegal; 6361 6362 return outliner::InstrType::Legal; 6363 } 6364 6365 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 6366 for (MachineInstr &MI : MBB) { 6367 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); 6368 } 6369 } 6370 6371 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6372 MachineBasicBlock::iterator It) const { 6373 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6374 int Align = -Subtarget.getStackAlignment().value(); 6375 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6376 .addReg(ARM::LR, RegState::Kill) 6377 .addReg(ARM::SP) 6378 .addImm(Align) 6379 .add(predOps(ARMCC::AL)); 6380 } 6381 6382 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack( 6383 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6384 MachineFunction &MF = *MBB.getParent(); 6385 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6386 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6387 int Align = Subtarget.getStackAlignment().value(); 6388 // Add a CFI saying the stack was moved down. 6389 int64_t StackPosEntry = 6390 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6391 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6392 .addCFIIndex(StackPosEntry) 6393 .setMIFlags(MachineInstr::FrameSetup); 6394 6395 // Add a CFI saying that the LR that we want to find is now higher than 6396 // before. 6397 int64_t LRPosEntry = 6398 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align)); 6399 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6400 .addCFIIndex(LRPosEntry) 6401 .setMIFlags(MachineInstr::FrameSetup); 6402 } 6403 6404 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6405 MachineBasicBlock::iterator It, 6406 Register Reg) const { 6407 MachineFunction &MF = *MBB.getParent(); 6408 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6409 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6410 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6411 6412 int64_t LRPosEntry = MF.addFrameInst( 6413 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6414 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6415 .addCFIIndex(LRPosEntry) 6416 .setMIFlags(MachineInstr::FrameSetup); 6417 } 6418 6419 void ARMBaseInstrInfo::restoreLRFromStack( 6420 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6421 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6422 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6423 .addReg(ARM::SP, RegState::Define) 6424 .addReg(ARM::SP); 6425 if (!Subtarget.isThumb()) 6426 MIB.addReg(0); 6427 MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL)); 6428 } 6429 6430 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack( 6431 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6432 // Now stack has moved back up... 6433 MachineFunction &MF = *MBB.getParent(); 6434 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6435 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6436 int64_t StackPosEntry = 6437 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6438 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6439 .addCFIIndex(StackPosEntry) 6440 .setMIFlags(MachineInstr::FrameDestroy); 6441 6442 // ... and we have restored LR. 6443 int64_t LRPosEntry = 6444 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6445 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6446 .addCFIIndex(LRPosEntry) 6447 .setMIFlags(MachineInstr::FrameDestroy); 6448 } 6449 6450 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6451 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6452 MachineFunction &MF = *MBB.getParent(); 6453 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6454 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6455 6456 int64_t LRPosEntry = 6457 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6458 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6459 .addCFIIndex(LRPosEntry) 6460 .setMIFlags(MachineInstr::FrameDestroy); 6461 } 6462 6463 void ARMBaseInstrInfo::buildOutlinedFrame( 6464 MachineBasicBlock &MBB, MachineFunction &MF, 6465 const outliner::OutlinedFunction &OF) const { 6466 // For thunk outlining, rewrite the last instruction from a call to a 6467 // tail-call. 6468 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6469 MachineInstr *Call = &*--MBB.instr_end(); 6470 bool isThumb = Subtarget.isThumb(); 6471 unsigned FuncOp = isThumb ? 2 : 0; 6472 unsigned Opc = Call->getOperand(FuncOp).isReg() 6473 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6474 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6475 : ARM::tTAILJMPdND 6476 : ARM::TAILJMPd; 6477 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6478 .add(Call->getOperand(FuncOp)); 6479 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6480 MIB.add(predOps(ARMCC::AL)); 6481 Call->eraseFromParent(); 6482 } 6483 6484 // Is there a call in the outlined range? 6485 auto IsNonTailCall = [](MachineInstr &MI) { 6486 return MI.isCall() && !MI.isReturn(); 6487 }; 6488 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 6489 MachineBasicBlock::iterator It = MBB.begin(); 6490 MachineBasicBlock::iterator Et = MBB.end(); 6491 6492 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6493 OF.FrameConstructionID == MachineOutlinerThunk) 6494 Et = std::prev(MBB.end()); 6495 6496 // We have to save and restore LR, we need to add it to the liveins if it 6497 // is not already part of the set. This is suffient since outlined 6498 // functions only have one block. 6499 if (!MBB.isLiveIn(ARM::LR)) 6500 MBB.addLiveIn(ARM::LR); 6501 6502 // Insert a save before the outlined region 6503 saveLROnStack(MBB, It); 6504 emitCFIForLRSaveOnStack(MBB, It); 6505 6506 // Fix up the instructions in the range, since we're going to modify the 6507 // stack. 6508 assert(OF.FrameConstructionID != MachineOutlinerDefault && 6509 "Can only fix up stack references once"); 6510 fixupPostOutline(MBB); 6511 6512 // Insert a restore before the terminator for the function. Restore LR. 6513 restoreLRFromStack(MBB, Et); 6514 emitCFIForLRRestoreFromStack(MBB, Et); 6515 } 6516 6517 // If this is a tail call outlined function, then there's already a return. 6518 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6519 OF.FrameConstructionID == MachineOutlinerThunk) 6520 return; 6521 6522 // Here we have to insert the return ourselves. Get the correct opcode from 6523 // current feature set. 6524 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6525 .add(predOps(ARMCC::AL)); 6526 6527 // Did we have to modify the stack by saving the link register? 6528 if (OF.FrameConstructionID != MachineOutlinerDefault && 6529 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) 6530 return; 6531 6532 // We modified the stack. 6533 // Walk over the basic block and fix up all the stack accesses. 6534 fixupPostOutline(MBB); 6535 } 6536 6537 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6538 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6539 MachineFunction &MF, const outliner::Candidate &C) const { 6540 MachineInstrBuilder MIB; 6541 MachineBasicBlock::iterator CallPt; 6542 unsigned Opc; 6543 bool isThumb = Subtarget.isThumb(); 6544 6545 // Are we tail calling? 6546 if (C.CallConstructionID == MachineOutlinerTailCall) { 6547 // If yes, then we can just branch to the label. 6548 Opc = isThumb 6549 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6550 : ARM::TAILJMPd; 6551 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6552 .addGlobalAddress(M.getNamedValue(MF.getName())); 6553 if (isThumb) 6554 MIB.add(predOps(ARMCC::AL)); 6555 It = MBB.insert(It, MIB); 6556 return It; 6557 } 6558 6559 // Create the call instruction. 6560 Opc = isThumb ? ARM::tBL : ARM::BL; 6561 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6562 if (isThumb) 6563 CallMIB.add(predOps(ARMCC::AL)); 6564 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6565 6566 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6567 C.CallConstructionID == MachineOutlinerThunk) { 6568 // No, so just insert the call. 6569 It = MBB.insert(It, CallMIB); 6570 return It; 6571 } 6572 6573 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6574 // Can we save to a register? 6575 if (C.CallConstructionID == MachineOutlinerRegSave) { 6576 unsigned Reg = findRegisterToSaveLRTo(C); 6577 assert(Reg != 0 && "No callee-saved register available?"); 6578 6579 // Save and restore LR from that register. 6580 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6581 if (!AFI.isLRSpilled()) 6582 emitCFIForLRSaveToReg(MBB, It, Reg); 6583 CallPt = MBB.insert(It, CallMIB); 6584 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6585 if (!AFI.isLRSpilled()) 6586 emitCFIForLRRestoreFromReg(MBB, It); 6587 It--; 6588 return CallPt; 6589 } 6590 // We have the default case. Save and restore from SP. 6591 if (!MBB.isLiveIn(ARM::LR)) 6592 MBB.addLiveIn(ARM::LR); 6593 saveLROnStack(MBB, It); 6594 if (!AFI.isLRSpilled()) 6595 emitCFIForLRSaveOnStack(MBB, It); 6596 CallPt = MBB.insert(It, CallMIB); 6597 restoreLRFromStack(MBB, It); 6598 if (!AFI.isLRSpilled()) 6599 emitCFIForLRRestoreFromStack(MBB, It); 6600 It--; 6601 return CallPt; 6602 } 6603 6604 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6605 MachineFunction &MF) const { 6606 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6607 } 6608 6609 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 6610 AAResults *AA) const { 6611 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6612 // the tail predication conversion. This means that the element count 6613 // register has to be live for longer, but that has to be better than 6614 // spill/restore and VPT predication. 6615 return isVCTP(&MI) && !isPredicated(MI); 6616 } 6617 6618 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6619 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6620 : ARM::BLX; 6621 } 6622 6623 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6624 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6625 : ARM::tBLXr; 6626 } 6627 6628 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6629 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6630 : ARM::BLX_pred; 6631 } 6632 6633