1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "InstPrinter/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "MCTargetDesc/ARMMCExpr.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCSectionMachO.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/COFF.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ELF.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/TargetParser.h"
51 #include "llvm/Support/TargetRegistry.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cctype>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "asm-printer"
58 
59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
60                              std::unique_ptr<MCStreamer> Streamer)
61     : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
62       InConstantPool(false), OptimizationGoals(-1) {}
63 
64 void ARMAsmPrinter::EmitFunctionBodyEnd() {
65   // Make sure to terminate any constant pools that were at the end
66   // of the function.
67   if (!InConstantPool)
68     return;
69   InConstantPool = false;
70   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
71 }
72 
73 void ARMAsmPrinter::EmitFunctionEntryLabel() {
74   if (AFI->isThumbFunction()) {
75     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
76     OutStreamer->EmitThumbFunc(CurrentFnSym);
77   }
78 
79   OutStreamer->EmitLabel(CurrentFnSym);
80 }
81 
82 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
83   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
84   assert(Size && "C++ constructor pointer had zero size!");
85 
86   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
87   assert(GV && "C++ constructor pointer was not a GlobalValue!");
88 
89   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
90                                                            ARMII::MO_NO_FLAG),
91                                             (Subtarget->isTargetELF()
92                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
93                                              : MCSymbolRefExpr::VK_None),
94                                             OutContext);
95 
96   OutStreamer->EmitValue(E, Size);
97 }
98 
99 /// runOnMachineFunction - This uses the EmitInstruction()
100 /// method to print assembly for each instruction.
101 ///
102 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
103   AFI = MF.getInfo<ARMFunctionInfo>();
104   MCP = MF.getConstantPool();
105   Subtarget = &MF.getSubtarget<ARMSubtarget>();
106 
107   SetupMachineFunction(MF);
108   const Function* F = MF.getFunction();
109   const TargetMachine& TM = MF.getTarget();
110 
111   // Calculate this function's optimization goal.
112   unsigned OptimizationGoal;
113   if (F->hasFnAttribute(Attribute::OptimizeNone))
114     // For best debugging illusion, speed and small size sacrificed
115     OptimizationGoal = 6;
116   else if (F->optForMinSize())
117     // Aggressively for small size, speed and debug illusion sacrificed
118     OptimizationGoal = 4;
119   else if (F->optForSize())
120     // For small size, but speed and debugging illusion preserved
121     OptimizationGoal = 3;
122   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
123     // Aggressively for speed, small size and debug illusion sacrificed
124     OptimizationGoal = 2;
125   else if (TM.getOptLevel() > CodeGenOpt::None)
126     // For speed, but small size and good debug illusion preserved
127     OptimizationGoal = 1;
128   else // TM.getOptLevel() == CodeGenOpt::None
129     // For good debugging, but speed and small size preserved
130     OptimizationGoal = 5;
131 
132   // Combine a new optimization goal with existing ones.
133   if (OptimizationGoals == -1) // uninitialized goals
134     OptimizationGoals = OptimizationGoal;
135   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
136     OptimizationGoals = 0;
137 
138   if (Subtarget->isTargetCOFF()) {
139     bool Internal = F->hasInternalLinkage();
140     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
141                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
142     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
143 
144     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
145     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
146     OutStreamer->EmitCOFFSymbolType(Type);
147     OutStreamer->EndCOFFSymbolDef();
148   }
149 
150   // Emit the rest of the function body.
151   EmitFunctionBody();
152 
153   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
154   // These are created per function, rather than per TU, since it's
155   // relatively easy to exceed the thumb branch range within a TU.
156   if (! ThumbIndirectPads.empty()) {
157     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
158     EmitAlignment(1);
159     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
160       OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
161       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
162         .addReg(ThumbIndirectPads[i].first)
163         // Add predicate operands.
164         .addImm(ARMCC::AL)
165         .addReg(0));
166     }
167     ThumbIndirectPads.clear();
168   }
169 
170   // We didn't modify anything.
171   return false;
172 }
173 
174 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
175                                  raw_ostream &O) {
176   const MachineOperand &MO = MI->getOperand(OpNum);
177   unsigned TF = MO.getTargetFlags();
178 
179   switch (MO.getType()) {
180   default: llvm_unreachable("<unknown operand type>");
181   case MachineOperand::MO_Register: {
182     unsigned Reg = MO.getReg();
183     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
184     assert(!MO.getSubReg() && "Subregs should be eliminated!");
185     if(ARM::GPRPairRegClass.contains(Reg)) {
186       const MachineFunction &MF = *MI->getParent()->getParent();
187       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
188       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
189     }
190     O << ARMInstPrinter::getRegisterName(Reg);
191     break;
192   }
193   case MachineOperand::MO_Immediate: {
194     int64_t Imm = MO.getImm();
195     O << '#';
196     if (TF == ARMII::MO_LO16)
197       O << ":lower16:";
198     else if (TF == ARMII::MO_HI16)
199       O << ":upper16:";
200     O << Imm;
201     break;
202   }
203   case MachineOperand::MO_MachineBasicBlock:
204     MO.getMBB()->getSymbol()->print(O, MAI);
205     return;
206   case MachineOperand::MO_GlobalAddress: {
207     const GlobalValue *GV = MO.getGlobal();
208     if (TF & ARMII::MO_LO16)
209       O << ":lower16:";
210     else if (TF & ARMII::MO_HI16)
211       O << ":upper16:";
212     GetARMGVSymbol(GV, TF)->print(O, MAI);
213 
214     printOffset(MO.getOffset(), O);
215     break;
216   }
217   case MachineOperand::MO_ConstantPoolIndex:
218     GetCPISymbol(MO.getIndex())->print(O, MAI);
219     break;
220   }
221 }
222 
223 //===--------------------------------------------------------------------===//
224 
225 MCSymbol *ARMAsmPrinter::
226 GetARMJTIPICJumpTableLabel(unsigned uid) const {
227   const DataLayout &DL = getDataLayout();
228   SmallString<60> Name;
229   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
230                             << getFunctionNumber() << '_' << uid;
231   return OutContext.getOrCreateSymbol(Name);
232 }
233 
234 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
235                                     unsigned AsmVariant, const char *ExtraCode,
236                                     raw_ostream &O) {
237   // Does this asm operand have a single letter operand modifier?
238   if (ExtraCode && ExtraCode[0]) {
239     if (ExtraCode[1] != 0) return true; // Unknown modifier.
240 
241     switch (ExtraCode[0]) {
242     default:
243       // See if this is a generic print operand
244       return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
245     case 'a': // Print as a memory address.
246       if (MI->getOperand(OpNum).isReg()) {
247         O << "["
248           << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
249           << "]";
250         return false;
251       }
252       LLVM_FALLTHROUGH;
253     case 'c': // Don't print "#" before an immediate operand.
254       if (!MI->getOperand(OpNum).isImm())
255         return true;
256       O << MI->getOperand(OpNum).getImm();
257       return false;
258     case 'P': // Print a VFP double precision register.
259     case 'q': // Print a NEON quad precision register.
260       printOperand(MI, OpNum, O);
261       return false;
262     case 'y': // Print a VFP single precision register as indexed double.
263       if (MI->getOperand(OpNum).isReg()) {
264         unsigned Reg = MI->getOperand(OpNum).getReg();
265         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
266         // Find the 'd' register that has this 's' register as a sub-register,
267         // and determine the lane number.
268         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
269           if (!ARM::DPRRegClass.contains(*SR))
270             continue;
271           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
272           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
273           return false;
274         }
275       }
276       return true;
277     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
278       if (!MI->getOperand(OpNum).isImm())
279         return true;
280       O << ~(MI->getOperand(OpNum).getImm());
281       return false;
282     case 'L': // The low 16 bits of an immediate constant.
283       if (!MI->getOperand(OpNum).isImm())
284         return true;
285       O << (MI->getOperand(OpNum).getImm() & 0xffff);
286       return false;
287     case 'M': { // A register range suitable for LDM/STM.
288       if (!MI->getOperand(OpNum).isReg())
289         return true;
290       const MachineOperand &MO = MI->getOperand(OpNum);
291       unsigned RegBegin = MO.getReg();
292       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
293       // already got the operands in registers that are operands to the
294       // inline asm statement.
295       O << "{";
296       if (ARM::GPRPairRegClass.contains(RegBegin)) {
297         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
298         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
299         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
300         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
301       }
302       O << ARMInstPrinter::getRegisterName(RegBegin);
303 
304       // FIXME: The register allocator not only may not have given us the
305       // registers in sequence, but may not be in ascending registers. This
306       // will require changes in the register allocator that'll need to be
307       // propagated down here if the operands change.
308       unsigned RegOps = OpNum + 1;
309       while (MI->getOperand(RegOps).isReg()) {
310         O << ", "
311           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
312         RegOps++;
313       }
314 
315       O << "}";
316 
317       return false;
318     }
319     case 'R': // The most significant register of a pair.
320     case 'Q': { // The least significant register of a pair.
321       if (OpNum == 0)
322         return true;
323       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
324       if (!FlagsOP.isImm())
325         return true;
326       unsigned Flags = FlagsOP.getImm();
327 
328       // This operand may not be the one that actually provides the register. If
329       // it's tied to a previous one then we should refer instead to that one
330       // for registers and their classes.
331       unsigned TiedIdx;
332       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
333         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
334           unsigned OpFlags = MI->getOperand(OpNum).getImm();
335           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
336         }
337         Flags = MI->getOperand(OpNum).getImm();
338 
339         // Later code expects OpNum to be pointing at the register rather than
340         // the flags.
341         OpNum += 1;
342       }
343 
344       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
345       unsigned RC;
346       InlineAsm::hasRegClassConstraint(Flags, RC);
347       if (RC == ARM::GPRPairRegClassID) {
348         if (NumVals != 1)
349           return true;
350         const MachineOperand &MO = MI->getOperand(OpNum);
351         if (!MO.isReg())
352           return true;
353         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
354         unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
355             ARM::gsub_0 : ARM::gsub_1);
356         O << ARMInstPrinter::getRegisterName(Reg);
357         return false;
358       }
359       if (NumVals != 2)
360         return true;
361       unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
362       if (RegOp >= MI->getNumOperands())
363         return true;
364       const MachineOperand &MO = MI->getOperand(RegOp);
365       if (!MO.isReg())
366         return true;
367       unsigned Reg = MO.getReg();
368       O << ARMInstPrinter::getRegisterName(Reg);
369       return false;
370     }
371 
372     case 'e': // The low doubleword register of a NEON quad register.
373     case 'f': { // The high doubleword register of a NEON quad register.
374       if (!MI->getOperand(OpNum).isReg())
375         return true;
376       unsigned Reg = MI->getOperand(OpNum).getReg();
377       if (!ARM::QPRRegClass.contains(Reg))
378         return true;
379       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
380       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
381                                        ARM::dsub_0 : ARM::dsub_1);
382       O << ARMInstPrinter::getRegisterName(SubReg);
383       return false;
384     }
385 
386     // This modifier is not yet supported.
387     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
388       return true;
389     case 'H': { // The highest-numbered register of a pair.
390       const MachineOperand &MO = MI->getOperand(OpNum);
391       if (!MO.isReg())
392         return true;
393       const MachineFunction &MF = *MI->getParent()->getParent();
394       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
395       unsigned Reg = MO.getReg();
396       if(!ARM::GPRPairRegClass.contains(Reg))
397         return false;
398       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
399       O << ARMInstPrinter::getRegisterName(Reg);
400       return false;
401     }
402     }
403   }
404 
405   printOperand(MI, OpNum, O);
406   return false;
407 }
408 
409 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
410                                           unsigned OpNum, unsigned AsmVariant,
411                                           const char *ExtraCode,
412                                           raw_ostream &O) {
413   // Does this asm operand have a single letter operand modifier?
414   if (ExtraCode && ExtraCode[0]) {
415     if (ExtraCode[1] != 0) return true; // Unknown modifier.
416 
417     switch (ExtraCode[0]) {
418       case 'A': // A memory operand for a VLD1/VST1 instruction.
419       default: return true;  // Unknown modifier.
420       case 'm': // The base register of a memory operand.
421         if (!MI->getOperand(OpNum).isReg())
422           return true;
423         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
424         return false;
425     }
426   }
427 
428   const MachineOperand &MO = MI->getOperand(OpNum);
429   assert(MO.isReg() && "unexpected inline asm memory operand");
430   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
431   return false;
432 }
433 
434 static bool isThumb(const MCSubtargetInfo& STI) {
435   return STI.getFeatureBits()[ARM::ModeThumb];
436 }
437 
438 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
439                                      const MCSubtargetInfo *EndInfo) const {
440   // If either end mode is unknown (EndInfo == NULL) or different than
441   // the start mode, then restore the start mode.
442   const bool WasThumb = isThumb(StartInfo);
443   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
444     OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
445   }
446 }
447 
448 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
449   const Triple &TT = TM.getTargetTriple();
450   // Use unified assembler syntax.
451   OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
452 
453   // Emit ARM Build Attributes
454   if (TT.isOSBinFormatELF())
455     emitAttributes();
456 
457   // Use the triple's architecture and subarchitecture to determine
458   // if we're thumb for the purposes of the top level code16 assembler
459   // flag.
460   bool isThumb = TT.getArch() == Triple::thumb ||
461                  TT.getArch() == Triple::thumbeb ||
462                  TT.getSubArch() == Triple::ARMSubArch_v7m ||
463                  TT.getSubArch() == Triple::ARMSubArch_v6m;
464   if (!M.getModuleInlineAsm().empty() && isThumb)
465     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
466 }
467 
468 static void
469 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
470                          MachineModuleInfoImpl::StubValueTy &MCSym) {
471   // L_foo$stub:
472   OutStreamer.EmitLabel(StubLabel);
473   //   .indirect_symbol _foo
474   OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
475 
476   if (MCSym.getInt())
477     // External to current translation unit.
478     OutStreamer.EmitIntValue(0, 4/*size*/);
479   else
480     // Internal to current translation unit.
481     //
482     // When we place the LSDA into the TEXT section, the type info
483     // pointers need to be indirect and pc-rel. We accomplish this by
484     // using NLPs; however, sometimes the types are local to the file.
485     // We need to fill in the value for the NLP in those cases.
486     OutStreamer.EmitValue(
487         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
488         4 /*size*/);
489 }
490 
491 
492 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
493   const Triple &TT = TM.getTargetTriple();
494   if (TT.isOSBinFormatMachO()) {
495     // All darwin targets use mach-o.
496     const TargetLoweringObjectFileMachO &TLOFMacho =
497       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
498     MachineModuleInfoMachO &MMIMacho =
499       MMI->getObjFileInfo<MachineModuleInfoMachO>();
500 
501     // Output non-lazy-pointers for external and common global variables.
502     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
503 
504     if (!Stubs.empty()) {
505       // Switch with ".non_lazy_symbol_pointer" directive.
506       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
507       EmitAlignment(2);
508 
509       for (auto &Stub : Stubs)
510         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
511 
512       Stubs.clear();
513       OutStreamer->AddBlankLine();
514     }
515 
516     Stubs = MMIMacho.GetThreadLocalGVStubList();
517     if (!Stubs.empty()) {
518       // Switch with ".non_lazy_symbol_pointer" directive.
519       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
520       EmitAlignment(2);
521 
522       for (auto &Stub : Stubs)
523         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
524 
525       Stubs.clear();
526       OutStreamer->AddBlankLine();
527     }
528 
529     // Funny Darwin hack: This flag tells the linker that no global symbols
530     // contain code that falls through to other global symbols (e.g. the obvious
531     // implementation of multiple entry points).  If this doesn't occur, the
532     // linker can safely perform dead code stripping.  Since LLVM never
533     // generates code that does this, it is always safe to set.
534     OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
535   }
536 
537   if (TT.isOSBinFormatCOFF()) {
538     const auto &TLOF =
539         static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering());
540 
541     std::string Flags;
542     raw_string_ostream OS(Flags);
543 
544     for (const auto &Function : M)
545       TLOF.emitLinkerFlagsForGlobal(OS, &Function, *Mang);
546     for (const auto &Global : M.globals())
547       TLOF.emitLinkerFlagsForGlobal(OS, &Global, *Mang);
548     for (const auto &Alias : M.aliases())
549       TLOF.emitLinkerFlagsForGlobal(OS, &Alias, *Mang);
550 
551     OS.flush();
552 
553     // Output collected flags
554     if (!Flags.empty()) {
555       OutStreamer->SwitchSection(TLOF.getDrectveSection());
556       OutStreamer->EmitBytes(Flags);
557     }
558   }
559 
560   // The last attribute to be emitted is ABI_optimization_goals
561   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
562   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
563 
564   if (OptimizationGoals > 0 &&
565       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
566        Subtarget->isTargetMuslAEABI()))
567     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
568   OptimizationGoals = -1;
569 
570   ATS.finishAttributeSection();
571 }
572 
573 static bool isV8M(const ARMSubtarget *Subtarget) {
574   // Note that v8M Baseline is a subset of v6T2!
575   return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) ||
576          Subtarget->hasV8MMainlineOps();
577 }
578 
579 //===----------------------------------------------------------------------===//
580 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
581 // FIXME:
582 // The following seem like one-off assembler flags, but they actually need
583 // to appear in the .ARM.attributes section in ELF.
584 // Instead of subclassing the MCELFStreamer, we do the work here.
585 
586 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
587                                             const ARMSubtarget *Subtarget) {
588   if (CPU == "xscale")
589     return ARMBuildAttrs::v5TEJ;
590 
591   if (Subtarget->hasV8Ops())
592     return ARMBuildAttrs::v8_A;
593   else if (Subtarget->hasV8MMainlineOps())
594     return ARMBuildAttrs::v8_M_Main;
595   else if (Subtarget->hasV7Ops()) {
596     if (Subtarget->isMClass() && Subtarget->hasDSP())
597       return ARMBuildAttrs::v7E_M;
598     return ARMBuildAttrs::v7;
599   } else if (Subtarget->hasV6T2Ops())
600     return ARMBuildAttrs::v6T2;
601   else if (Subtarget->hasV8MBaselineOps())
602     return ARMBuildAttrs::v8_M_Base;
603   else if (Subtarget->hasV6MOps())
604     return ARMBuildAttrs::v6S_M;
605   else if (Subtarget->hasV6Ops())
606     return ARMBuildAttrs::v6;
607   else if (Subtarget->hasV5TEOps())
608     return ARMBuildAttrs::v5TE;
609   else if (Subtarget->hasV5TOps())
610     return ARMBuildAttrs::v5T;
611   else if (Subtarget->hasV4TOps())
612     return ARMBuildAttrs::v4T;
613   else
614     return ARMBuildAttrs::v4;
615 }
616 
617 // Returns true if all functions have the same function attribute value
618 static bool haveAllFunctionsAttribute(const Module &M, StringRef Attr,
619                                       StringRef Value) {
620   for (auto &F : M)
621     if (F.getFnAttribute(Attr).getValueAsString() != Value)
622       return false;
623 
624   return true;
625 }
626 
627 
628 void ARMAsmPrinter::emitAttributes() {
629   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
630   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
631 
632   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
633 
634   ATS.switchVendor("aeabi");
635 
636   // Compute ARM ELF Attributes based on the default subtarget that
637   // we'd have constructed. The existing ARM behavior isn't LTO clean
638   // anyhow.
639   // FIXME: For ifunc related functions we could iterate over and look
640   // for a feature string that doesn't match the default one.
641   const Triple &TT = TM.getTargetTriple();
642   StringRef CPU = TM.getTargetCPU();
643   StringRef FS = TM.getTargetFeatureString();
644   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
645   if (!FS.empty()) {
646     if (!ArchFS.empty())
647       ArchFS = (Twine(ArchFS) + "," + FS).str();
648     else
649       ArchFS = FS;
650   }
651   const ARMBaseTargetMachine &ATM =
652       static_cast<const ARMBaseTargetMachine &>(TM);
653   const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
654 
655   const std::string &CPUString = STI.getCPUString();
656 
657   if (!StringRef(CPUString).startswith("generic")) {
658     // FIXME: remove krait check when GNU tools support krait cpu
659     if (STI.isKrait()) {
660       ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
661       // We consider krait as a "cortex-a9" + hwdiv CPU
662       // Enable hwdiv through ".arch_extension idiv"
663       if (STI.hasDivide() || STI.hasDivideInARMMode())
664         ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM);
665     } else
666       ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
667   }
668 
669   ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
670 
671   // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
672   // profile is not applicable (e.g. pre v7, or cross-profile code)".
673   if (STI.hasV7Ops() || isV8M(&STI)) {
674     if (STI.isAClass()) {
675       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
676                         ARMBuildAttrs::ApplicationProfile);
677     } else if (STI.isRClass()) {
678       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
679                         ARMBuildAttrs::RealTimeProfile);
680     } else if (STI.isMClass()) {
681       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
682                         ARMBuildAttrs::MicroControllerProfile);
683     }
684   }
685 
686   ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
687                     STI.hasARMOps() ? ARMBuildAttrs::Allowed
688                                     : ARMBuildAttrs::Not_Allowed);
689   if (isV8M(&STI)) {
690     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
691                       ARMBuildAttrs::AllowThumbDerived);
692   } else if (STI.isThumb1Only()) {
693     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
694   } else if (STI.hasThumb2()) {
695     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
696                       ARMBuildAttrs::AllowThumb32);
697   }
698 
699   if (STI.hasNEON()) {
700     /* NEON is not exactly a VFP architecture, but GAS emit one of
701      * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
702     if (STI.hasFPARMv8()) {
703       if (STI.hasCrypto())
704         ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
705       else
706         ATS.emitFPU(ARM::FK_NEON_FP_ARMV8);
707     } else if (STI.hasVFP4())
708       ATS.emitFPU(ARM::FK_NEON_VFPV4);
709     else
710       ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON);
711     // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
712     if (STI.hasV8Ops())
713       ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
714                         STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a:
715                                             ARMBuildAttrs::AllowNeonARMv8);
716   } else {
717     if (STI.hasFPARMv8())
718       // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
719       // FPU, but there are two different names for it depending on the CPU.
720       ATS.emitFPU(STI.hasD16()
721                   ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16)
722                   : ARM::FK_FP_ARMV8);
723     else if (STI.hasVFP4())
724       ATS.emitFPU(STI.hasD16()
725                   ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16)
726                   : ARM::FK_VFPV4);
727     else if (STI.hasVFP3())
728       ATS.emitFPU(STI.hasD16()
729                   // +d16
730                   ? (STI.isFPOnlySP()
731                      ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD)
732                      : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16))
733                   // -d16
734                   : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3));
735     else if (STI.hasVFP2())
736       ATS.emitFPU(ARM::FK_VFPV2);
737   }
738 
739   // RW data addressing.
740   if (isPositionIndependent()) {
741     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
742                       ARMBuildAttrs::AddressRWPCRel);
743   } else if (STI.isRWPI()) {
744     // RWPI specific attributes.
745     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
746                       ARMBuildAttrs::AddressRWSBRel);
747   }
748 
749   // RO data addressing.
750   if (isPositionIndependent() || STI.isROPI()) {
751     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
752                       ARMBuildAttrs::AddressROPCRel);
753   }
754 
755   // GOT use.
756   if (isPositionIndependent()) {
757     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
758                       ARMBuildAttrs::AddressGOT);
759   } else {
760     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
761                       ARMBuildAttrs::AddressDirect);
762   }
763 
764   // Set FP Denormals.
765   if (haveAllFunctionsAttribute(*MMI->getModule(), "denormal-fp-math",
766                                 "preserve-sign") ||
767       TM.Options.FPDenormalType == FPDenormal::PreserveSign)
768     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
769                       ARMBuildAttrs::PreserveFPSign);
770   else if (haveAllFunctionsAttribute(*MMI->getModule(), "denormal-fp-math",
771                                      "positive-zero") ||
772            TM.Options.FPDenormalType == FPDenormal::PositiveZero)
773     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
774                       ARMBuildAttrs::PositiveZero);
775   else if (!TM.Options.UnsafeFPMath)
776     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
777                       ARMBuildAttrs::IEEEDenormals);
778   else {
779     if (!STI.hasVFP2()) {
780       // When the target doesn't have an FPU (by design or
781       // intention), the assumptions made on the software support
782       // mirror that of the equivalent hardware support *if it
783       // existed*. For v7 and better we indicate that denormals are
784       // flushed preserving sign, and for V6 we indicate that
785       // denormals are flushed to positive zero.
786       if (STI.hasV7Ops())
787         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
788                           ARMBuildAttrs::PreserveFPSign);
789     } else if (STI.hasVFP3()) {
790       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
791       // the sign bit of the zero matches the sign bit of the input or
792       // result that is being flushed to zero.
793       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
794                         ARMBuildAttrs::PreserveFPSign);
795     }
796     // For VFPv2 implementations it is implementation defined as
797     // to whether denormals are flushed to positive zero or to
798     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
799     // LLVM has chosen to flush this to positive zero (most likely for
800     // GCC compatibility), so that's the chosen value here (the
801     // absence of its emission implies zero).
802   }
803 
804   // Set FP exceptions and rounding
805   if (haveAllFunctionsAttribute(*MMI->getModule(), "no-trapping-math", "true") ||
806       TM.Options.NoTrappingFPMath)
807     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
808                       ARMBuildAttrs::Not_Allowed);
809   else if (!TM.Options.UnsafeFPMath) {
810     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
811 
812     // If the user has permitted this code to choose the IEEE 754
813     // rounding at run-time, emit the rounding attribute.
814     if (TM.Options.HonorSignDependentRoundingFPMathOption)
815       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
816   }
817 
818   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
819   // equivalent of GCC's -ffinite-math-only flag.
820   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
821     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
822                       ARMBuildAttrs::Allowed);
823   else
824     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
825                       ARMBuildAttrs::AllowIEE754);
826 
827   if (STI.allowsUnalignedMem())
828     ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
829                       ARMBuildAttrs::Allowed);
830   else
831     ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
832                       ARMBuildAttrs::Not_Allowed);
833 
834   // FIXME: add more flags to ARMBuildAttributes.h
835   // 8-bytes alignment stuff.
836   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
837   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
838 
839   // ABI_HardFP_use attribute to indicate single precision FP.
840   if (STI.isFPOnlySP())
841     ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
842                       ARMBuildAttrs::HardFPSinglePrecision);
843 
844   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
845   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
846     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
847 
848   // FIXME: Should we signal R9 usage?
849 
850   if (STI.hasFP16())
851     ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
852 
853   // FIXME: To support emitting this build attribute as GCC does, the
854   // -mfp16-format option and associated plumbing must be
855   // supported. For now the __fp16 type is exposed by default, so this
856   // attribute should be emitted with value 1.
857   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
858                     ARMBuildAttrs::FP16FormatIEEE);
859 
860   if (STI.hasMPExtension())
861     ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
862 
863   // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
864   // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
865   // It is not possible to produce DisallowDIV: if hwdiv is present in the base
866   // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
867   // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
868   // otherwise, the default value (AllowDIVIfExists) applies.
869   if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
870     ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
871 
872   if (STI.hasDSP() && isV8M(&STI))
873     ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
874 
875   if (MMI) {
876     if (const Module *SourceModule = MMI->getModule()) {
877       // ABI_PCS_wchar_t to indicate wchar_t width
878       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
879       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
880               SourceModule->getModuleFlag("wchar_size"))) {
881         int WCharWidth = WCharWidthValue->getZExtValue();
882         assert((WCharWidth == 2 || WCharWidth == 4) &&
883                "wchar_t width must be 2 or 4 bytes");
884         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
885       }
886 
887       // ABI_enum_size to indicate enum width
888       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
889       //        (all enums contain a value needing 32 bits to encode).
890       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
891               SourceModule->getModuleFlag("min_enum_size"))) {
892         int EnumWidth = EnumWidthValue->getZExtValue();
893         assert((EnumWidth == 1 || EnumWidth == 4) &&
894                "Minimum enum width must be 1 or 4 bytes");
895         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
896         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
897       }
898     }
899   }
900 
901   // We currently do not support using R9 as the TLS pointer.
902   if (STI.isRWPI())
903     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
904                       ARMBuildAttrs::R9IsSB);
905   else if (STI.isR9Reserved())
906     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
907                       ARMBuildAttrs::R9Reserved);
908   else
909     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
910                       ARMBuildAttrs::R9IsGPR);
911 
912   if (STI.hasTrustZone() && STI.hasVirtualization())
913     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
914                       ARMBuildAttrs::AllowTZVirtualization);
915   else if (STI.hasTrustZone())
916     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
917                       ARMBuildAttrs::AllowTZ);
918   else if (STI.hasVirtualization())
919     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
920                       ARMBuildAttrs::AllowVirtualization);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 
925 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
926                              unsigned LabelId, MCContext &Ctx) {
927 
928   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
929                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
930   return Label;
931 }
932 
933 static MCSymbolRefExpr::VariantKind
934 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
935   switch (Modifier) {
936   case ARMCP::no_modifier:
937     return MCSymbolRefExpr::VK_None;
938   case ARMCP::TLSGD:
939     return MCSymbolRefExpr::VK_TLSGD;
940   case ARMCP::TPOFF:
941     return MCSymbolRefExpr::VK_TPOFF;
942   case ARMCP::GOTTPOFF:
943     return MCSymbolRefExpr::VK_GOTTPOFF;
944   case ARMCP::SBREL:
945     return MCSymbolRefExpr::VK_ARM_SBREL;
946   case ARMCP::GOT_PREL:
947     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
948   case ARMCP::SECREL:
949     return MCSymbolRefExpr::VK_SECREL;
950   }
951   llvm_unreachable("Invalid ARMCPModifier!");
952 }
953 
954 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
955                                         unsigned char TargetFlags) {
956   if (Subtarget->isTargetMachO()) {
957     bool IsIndirect =
958         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
959 
960     if (!IsIndirect)
961       return getSymbol(GV);
962 
963     // FIXME: Remove this when Darwin transition to @GOT like syntax.
964     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
965     MachineModuleInfoMachO &MMIMachO =
966       MMI->getObjFileInfo<MachineModuleInfoMachO>();
967     MachineModuleInfoImpl::StubValueTy &StubSym =
968         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
969                             : MMIMachO.getGVStubEntry(MCSym);
970 
971     if (!StubSym.getPointer())
972       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
973                                                    !GV->hasInternalLinkage());
974     return MCSym;
975   } else if (Subtarget->isTargetCOFF()) {
976     assert(Subtarget->isTargetWindows() &&
977            "Windows is the only supported COFF target");
978 
979     bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
980     if (!IsIndirect)
981       return getSymbol(GV);
982 
983     SmallString<128> Name;
984     Name = "__imp_";
985     getNameWithPrefix(Name, GV);
986 
987     return OutContext.getOrCreateSymbol(Name);
988   } else if (Subtarget->isTargetELF()) {
989     return getSymbol(GV);
990   }
991   llvm_unreachable("unexpected target");
992 }
993 
994 void ARMAsmPrinter::
995 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
996   const DataLayout &DL = getDataLayout();
997   int Size = DL.getTypeAllocSize(MCPV->getType());
998 
999   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
1000 
1001   MCSymbol *MCSym;
1002   if (ACPV->isLSDA()) {
1003     MCSym = getCurExceptionSym();
1004   } else if (ACPV->isBlockAddress()) {
1005     const BlockAddress *BA =
1006       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
1007     MCSym = GetBlockAddressSymbol(BA);
1008   } else if (ACPV->isGlobalValue()) {
1009     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
1010 
1011     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
1012     // flag the global as MO_NONLAZY.
1013     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
1014     MCSym = GetARMGVSymbol(GV, TF);
1015   } else if (ACPV->isMachineBasicBlock()) {
1016     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
1017     MCSym = MBB->getSymbol();
1018   } else {
1019     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
1020     const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
1021     MCSym = GetExternalSymbolSymbol(Sym);
1022   }
1023 
1024   // Create an MCSymbol for the reference.
1025   const MCExpr *Expr =
1026     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
1027                             OutContext);
1028 
1029   if (ACPV->getPCAdjustment()) {
1030     MCSymbol *PCLabel =
1031         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1032                     ACPV->getLabelId(), OutContext);
1033     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
1034     PCRelExpr =
1035       MCBinaryExpr::createAdd(PCRelExpr,
1036                               MCConstantExpr::create(ACPV->getPCAdjustment(),
1037                                                      OutContext),
1038                               OutContext);
1039     if (ACPV->mustAddCurrentAddress()) {
1040       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
1041       // label, so just emit a local label end reference that instead.
1042       MCSymbol *DotSym = OutContext.createTempSymbol();
1043       OutStreamer->EmitLabel(DotSym);
1044       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
1045       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
1046     }
1047     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
1048   }
1049   OutStreamer->EmitValue(Expr, Size);
1050 }
1051 
1052 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
1053   const MachineOperand &MO1 = MI->getOperand(1);
1054   unsigned JTI = MO1.getIndex();
1055 
1056   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
1057   // ARM mode tables.
1058   EmitAlignment(2);
1059 
1060   // Emit a label for the jump table.
1061   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1062   OutStreamer->EmitLabel(JTISymbol);
1063 
1064   // Mark the jump table as data-in-code.
1065   OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1066 
1067   // Emit each entry of the table.
1068   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1069   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1070   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1071 
1072   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1073     MachineBasicBlock *MBB = JTBBs[i];
1074     // Construct an MCExpr for the entry. We want a value of the form:
1075     // (BasicBlockAddr - TableBeginAddr)
1076     //
1077     // For example, a table with entries jumping to basic blocks BB0 and BB1
1078     // would look like:
1079     // LJTI_0_0:
1080     //    .word (LBB0 - LJTI_0_0)
1081     //    .word (LBB1 - LJTI_0_0)
1082     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1083 
1084     if (isPositionIndependent() || Subtarget->isROPI())
1085       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
1086                                                                    OutContext),
1087                                      OutContext);
1088     // If we're generating a table of Thumb addresses in static relocation
1089     // model, we need to add one to keep interworking correctly.
1090     else if (AFI->isThumbFunction())
1091       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
1092                                      OutContext);
1093     OutStreamer->EmitValue(Expr, 4);
1094   }
1095   // Mark the end of jump table data-in-code region.
1096   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1097 }
1098 
1099 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
1100   const MachineOperand &MO1 = MI->getOperand(1);
1101   unsigned JTI = MO1.getIndex();
1102 
1103   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1104   OutStreamer->EmitLabel(JTISymbol);
1105 
1106   // Emit each entry of the table.
1107   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1108   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1109   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1110 
1111   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1112     MachineBasicBlock *MBB = JTBBs[i];
1113     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1114                                                           OutContext);
1115     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1116     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1117         .addExpr(MBBSymbolExpr)
1118         .addImm(ARMCC::AL)
1119         .addReg(0));
1120   }
1121 }
1122 
1123 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1124                                         unsigned OffsetWidth) {
1125   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1126   const MachineOperand &MO1 = MI->getOperand(1);
1127   unsigned JTI = MO1.getIndex();
1128 
1129   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1130   OutStreamer->EmitLabel(JTISymbol);
1131 
1132   // Emit each entry of the table.
1133   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1134   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1135   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1136 
1137   // Mark the jump table as data-in-code.
1138   OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1139                                                : MCDR_DataRegionJT16);
1140 
1141   for (auto MBB : JTBBs) {
1142     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1143                                                           OutContext);
1144     // Otherwise it's an offset from the dispatch instruction. Construct an
1145     // MCExpr for the entry. We want a value of the form:
1146     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1147     //
1148     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1149     // would look like:
1150     // LJTI_0_0:
1151     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1152     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1153     // where LCPI0_0 is a label defined just before the TBB instruction using
1154     // this table.
1155     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1156     const MCExpr *Expr = MCBinaryExpr::createAdd(
1157         MCSymbolRefExpr::create(TBInstPC, OutContext),
1158         MCConstantExpr::create(4, OutContext), OutContext);
1159     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1160     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1161                                    OutContext);
1162     OutStreamer->EmitValue(Expr, OffsetWidth);
1163   }
1164   // Mark the end of jump table data-in-code region. 32-bit offsets use
1165   // actual branch instructions here, so we don't mark those as a data-region
1166   // at all.
1167   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1168 
1169   // Make sure the next instruction is 2-byte aligned.
1170   EmitAlignment(1);
1171 }
1172 
1173 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1174   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1175       "Only instruction which are involved into frame setup code are allowed");
1176 
1177   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1178   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1179   const MachineFunction &MF = *MI->getParent()->getParent();
1180   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1181   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1182 
1183   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1184   unsigned Opc = MI->getOpcode();
1185   unsigned SrcReg, DstReg;
1186 
1187   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1188     // Two special cases:
1189     // 1) tPUSH does not have src/dst regs.
1190     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1191     // load. Yes, this is pretty fragile, but for now I don't see better
1192     // way... :(
1193     SrcReg = DstReg = ARM::SP;
1194   } else {
1195     SrcReg = MI->getOperand(1).getReg();
1196     DstReg = MI->getOperand(0).getReg();
1197   }
1198 
1199   // Try to figure out the unwinding opcode out of src / dst regs.
1200   if (MI->mayStore()) {
1201     // Register saves.
1202     assert(DstReg == ARM::SP &&
1203            "Only stack pointer as a destination reg is supported");
1204 
1205     SmallVector<unsigned, 4> RegList;
1206     // Skip src & dst reg, and pred ops.
1207     unsigned StartOp = 2 + 2;
1208     // Use all the operands.
1209     unsigned NumOffset = 0;
1210 
1211     switch (Opc) {
1212     default:
1213       MI->dump();
1214       llvm_unreachable("Unsupported opcode for unwinding information");
1215     case ARM::tPUSH:
1216       // Special case here: no src & dst reg, but two extra imp ops.
1217       StartOp = 2; NumOffset = 2;
1218     case ARM::STMDB_UPD:
1219     case ARM::t2STMDB_UPD:
1220     case ARM::VSTMDDB_UPD:
1221       assert(SrcReg == ARM::SP &&
1222              "Only stack pointer as a source reg is supported");
1223       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1224            i != NumOps; ++i) {
1225         const MachineOperand &MO = MI->getOperand(i);
1226         // Actually, there should never be any impdef stuff here. Skip it
1227         // temporary to workaround PR11902.
1228         if (MO.isImplicit())
1229           continue;
1230         RegList.push_back(MO.getReg());
1231       }
1232       break;
1233     case ARM::STR_PRE_IMM:
1234     case ARM::STR_PRE_REG:
1235     case ARM::t2STR_PRE:
1236       assert(MI->getOperand(2).getReg() == ARM::SP &&
1237              "Only stack pointer as a source reg is supported");
1238       RegList.push_back(SrcReg);
1239       break;
1240     }
1241     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1242       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1243   } else {
1244     // Changes of stack / frame pointer.
1245     if (SrcReg == ARM::SP) {
1246       int64_t Offset = 0;
1247       switch (Opc) {
1248       default:
1249         MI->dump();
1250         llvm_unreachable("Unsupported opcode for unwinding information");
1251       case ARM::MOVr:
1252       case ARM::tMOVr:
1253         Offset = 0;
1254         break;
1255       case ARM::ADDri:
1256       case ARM::t2ADDri:
1257         Offset = -MI->getOperand(2).getImm();
1258         break;
1259       case ARM::SUBri:
1260       case ARM::t2SUBri:
1261         Offset = MI->getOperand(2).getImm();
1262         break;
1263       case ARM::tSUBspi:
1264         Offset = MI->getOperand(2).getImm()*4;
1265         break;
1266       case ARM::tADDspi:
1267       case ARM::tADDrSPi:
1268         Offset = -MI->getOperand(2).getImm()*4;
1269         break;
1270       case ARM::tLDRpci: {
1271         // Grab the constpool index and check, whether it corresponds to
1272         // original or cloned constpool entry.
1273         unsigned CPI = MI->getOperand(1).getIndex();
1274         const MachineConstantPool *MCP = MF.getConstantPool();
1275         if (CPI >= MCP->getConstants().size())
1276           CPI = AFI.getOriginalCPIdx(CPI);
1277         assert(CPI != -1U && "Invalid constpool index");
1278 
1279         // Derive the actual offset.
1280         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1281         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1282         // FIXME: Check for user, it should be "add" instruction!
1283         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1284         break;
1285       }
1286       }
1287 
1288       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1289         if (DstReg == FramePtr && FramePtr != ARM::SP)
1290           // Set-up of the frame pointer. Positive values correspond to "add"
1291           // instruction.
1292           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1293         else if (DstReg == ARM::SP) {
1294           // Change of SP by an offset. Positive values correspond to "sub"
1295           // instruction.
1296           ATS.emitPad(Offset);
1297         } else {
1298           // Move of SP to a register.  Positive values correspond to an "add"
1299           // instruction.
1300           ATS.emitMovSP(DstReg, -Offset);
1301         }
1302       }
1303     } else if (DstReg == ARM::SP) {
1304       MI->dump();
1305       llvm_unreachable("Unsupported opcode for unwinding information");
1306     }
1307     else {
1308       MI->dump();
1309       llvm_unreachable("Unsupported opcode for unwinding information");
1310     }
1311   }
1312 }
1313 
1314 // Simple pseudo-instructions have their lowering (with expansion to real
1315 // instructions) auto-generated.
1316 #include "ARMGenMCPseudoLowering.inc"
1317 
1318 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1319   const DataLayout &DL = getDataLayout();
1320   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1321   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1322 
1323   // If we just ended a constant pool, mark it as such.
1324   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1325     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1326     InConstantPool = false;
1327   }
1328 
1329   // Emit unwinding stuff for frame-related instructions
1330   if (Subtarget->isTargetEHABICompatible() &&
1331        MI->getFlag(MachineInstr::FrameSetup))
1332     EmitUnwindingInstruction(MI);
1333 
1334   // Do any auto-generated pseudo lowerings.
1335   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1336     return;
1337 
1338   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1339          "Pseudo flag setting opcode should be expanded early");
1340 
1341   // Check for manual lowerings.
1342   unsigned Opc = MI->getOpcode();
1343   switch (Opc) {
1344   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1345   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1346   case ARM::LEApcrel:
1347   case ARM::tLEApcrel:
1348   case ARM::t2LEApcrel: {
1349     // FIXME: Need to also handle globals and externals
1350     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1351     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1352                                                ARM::t2LEApcrel ? ARM::t2ADR
1353                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1354                      : ARM::ADR))
1355       .addReg(MI->getOperand(0).getReg())
1356       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1357       // Add predicate operands.
1358       .addImm(MI->getOperand(2).getImm())
1359       .addReg(MI->getOperand(3).getReg()));
1360     return;
1361   }
1362   case ARM::LEApcrelJT:
1363   case ARM::tLEApcrelJT:
1364   case ARM::t2LEApcrelJT: {
1365     MCSymbol *JTIPICSymbol =
1366       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1367     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1368                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1369                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1370                      : ARM::ADR))
1371       .addReg(MI->getOperand(0).getReg())
1372       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1373       // Add predicate operands.
1374       .addImm(MI->getOperand(2).getImm())
1375       .addReg(MI->getOperand(3).getReg()));
1376     return;
1377   }
1378   // Darwin call instructions are just normal call instructions with different
1379   // clobber semantics (they clobber R9).
1380   case ARM::BX_CALL: {
1381     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1382       .addReg(ARM::LR)
1383       .addReg(ARM::PC)
1384       // Add predicate operands.
1385       .addImm(ARMCC::AL)
1386       .addReg(0)
1387       // Add 's' bit operand (always reg0 for this)
1388       .addReg(0));
1389 
1390     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1391       .addReg(MI->getOperand(0).getReg()));
1392     return;
1393   }
1394   case ARM::tBX_CALL: {
1395     if (Subtarget->hasV5TOps())
1396       llvm_unreachable("Expected BLX to be selected for v5t+");
1397 
1398     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1399     // that the saved lr has its LSB set correctly (the arch doesn't
1400     // have blx).
1401     // So here we generate a bl to a small jump pad that does bx rN.
1402     // The jump pads are emitted after the function body.
1403 
1404     unsigned TReg = MI->getOperand(0).getReg();
1405     MCSymbol *TRegSym = nullptr;
1406     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
1407       if (ThumbIndirectPads[i].first == TReg) {
1408         TRegSym = ThumbIndirectPads[i].second;
1409         break;
1410       }
1411     }
1412 
1413     if (!TRegSym) {
1414       TRegSym = OutContext.createTempSymbol();
1415       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1416     }
1417 
1418     // Create a link-saving branch to the Reg Indirect Jump Pad.
1419     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1420         // Predicate comes first here.
1421         .addImm(ARMCC::AL).addReg(0)
1422         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1423     return;
1424   }
1425   case ARM::BMOVPCRX_CALL: {
1426     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1427       .addReg(ARM::LR)
1428       .addReg(ARM::PC)
1429       // Add predicate operands.
1430       .addImm(ARMCC::AL)
1431       .addReg(0)
1432       // Add 's' bit operand (always reg0 for this)
1433       .addReg(0));
1434 
1435     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1436       .addReg(ARM::PC)
1437       .addReg(MI->getOperand(0).getReg())
1438       // Add predicate operands.
1439       .addImm(ARMCC::AL)
1440       .addReg(0)
1441       // Add 's' bit operand (always reg0 for this)
1442       .addReg(0));
1443     return;
1444   }
1445   case ARM::BMOVPCB_CALL: {
1446     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1447       .addReg(ARM::LR)
1448       .addReg(ARM::PC)
1449       // Add predicate operands.
1450       .addImm(ARMCC::AL)
1451       .addReg(0)
1452       // Add 's' bit operand (always reg0 for this)
1453       .addReg(0));
1454 
1455     const MachineOperand &Op = MI->getOperand(0);
1456     const GlobalValue *GV = Op.getGlobal();
1457     const unsigned TF = Op.getTargetFlags();
1458     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1459     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1460     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1461       .addExpr(GVSymExpr)
1462       // Add predicate operands.
1463       .addImm(ARMCC::AL)
1464       .addReg(0));
1465     return;
1466   }
1467   case ARM::MOVi16_ga_pcrel:
1468   case ARM::t2MOVi16_ga_pcrel: {
1469     MCInst TmpInst;
1470     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1471     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1472 
1473     unsigned TF = MI->getOperand(1).getTargetFlags();
1474     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1475     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1476     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1477 
1478     MCSymbol *LabelSym =
1479         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1480                     MI->getOperand(2).getImm(), OutContext);
1481     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1482     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1483     const MCExpr *PCRelExpr =
1484       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1485                                       MCBinaryExpr::createAdd(LabelSymExpr,
1486                                       MCConstantExpr::create(PCAdj, OutContext),
1487                                       OutContext), OutContext), OutContext);
1488       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1489 
1490     // Add predicate operands.
1491     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1492     TmpInst.addOperand(MCOperand::createReg(0));
1493     // Add 's' bit operand (always reg0 for this)
1494     TmpInst.addOperand(MCOperand::createReg(0));
1495     EmitToStreamer(*OutStreamer, TmpInst);
1496     return;
1497   }
1498   case ARM::MOVTi16_ga_pcrel:
1499   case ARM::t2MOVTi16_ga_pcrel: {
1500     MCInst TmpInst;
1501     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1502                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1503     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1504     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1505 
1506     unsigned TF = MI->getOperand(2).getTargetFlags();
1507     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1508     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1509     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1510 
1511     MCSymbol *LabelSym =
1512         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1513                     MI->getOperand(3).getImm(), OutContext);
1514     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1515     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1516     const MCExpr *PCRelExpr =
1517         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1518                                    MCBinaryExpr::createAdd(LabelSymExpr,
1519                                       MCConstantExpr::create(PCAdj, OutContext),
1520                                           OutContext), OutContext), OutContext);
1521       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1522     // Add predicate operands.
1523     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1524     TmpInst.addOperand(MCOperand::createReg(0));
1525     // Add 's' bit operand (always reg0 for this)
1526     TmpInst.addOperand(MCOperand::createReg(0));
1527     EmitToStreamer(*OutStreamer, TmpInst);
1528     return;
1529   }
1530   case ARM::tPICADD: {
1531     // This is a pseudo op for a label + instruction sequence, which looks like:
1532     // LPC0:
1533     //     add r0, pc
1534     // This adds the address of LPC0 to r0.
1535 
1536     // Emit the label.
1537     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1538                                        getFunctionNumber(),
1539                                        MI->getOperand(2).getImm(), OutContext));
1540 
1541     // Form and emit the add.
1542     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1543       .addReg(MI->getOperand(0).getReg())
1544       .addReg(MI->getOperand(0).getReg())
1545       .addReg(ARM::PC)
1546       // Add predicate operands.
1547       .addImm(ARMCC::AL)
1548       .addReg(0));
1549     return;
1550   }
1551   case ARM::PICADD: {
1552     // This is a pseudo op for a label + instruction sequence, which looks like:
1553     // LPC0:
1554     //     add r0, pc, r0
1555     // This adds the address of LPC0 to r0.
1556 
1557     // Emit the label.
1558     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1559                                        getFunctionNumber(),
1560                                        MI->getOperand(2).getImm(), OutContext));
1561 
1562     // Form and emit the add.
1563     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1564       .addReg(MI->getOperand(0).getReg())
1565       .addReg(ARM::PC)
1566       .addReg(MI->getOperand(1).getReg())
1567       // Add predicate operands.
1568       .addImm(MI->getOperand(3).getImm())
1569       .addReg(MI->getOperand(4).getReg())
1570       // Add 's' bit operand (always reg0 for this)
1571       .addReg(0));
1572     return;
1573   }
1574   case ARM::PICSTR:
1575   case ARM::PICSTRB:
1576   case ARM::PICSTRH:
1577   case ARM::PICLDR:
1578   case ARM::PICLDRB:
1579   case ARM::PICLDRH:
1580   case ARM::PICLDRSB:
1581   case ARM::PICLDRSH: {
1582     // This is a pseudo op for a label + instruction sequence, which looks like:
1583     // LPC0:
1584     //     OP r0, [pc, r0]
1585     // The LCP0 label is referenced by a constant pool entry in order to get
1586     // a PC-relative address at the ldr instruction.
1587 
1588     // Emit the label.
1589     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1590                                        getFunctionNumber(),
1591                                        MI->getOperand(2).getImm(), OutContext));
1592 
1593     // Form and emit the load
1594     unsigned Opcode;
1595     switch (MI->getOpcode()) {
1596     default:
1597       llvm_unreachable("Unexpected opcode!");
1598     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1599     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1600     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1601     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1602     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1603     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1604     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1605     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1606     }
1607     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1608       .addReg(MI->getOperand(0).getReg())
1609       .addReg(ARM::PC)
1610       .addReg(MI->getOperand(1).getReg())
1611       .addImm(0)
1612       // Add predicate operands.
1613       .addImm(MI->getOperand(3).getImm())
1614       .addReg(MI->getOperand(4).getReg()));
1615 
1616     return;
1617   }
1618   case ARM::CONSTPOOL_ENTRY: {
1619     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1620     /// in the function.  The first operand is the ID# for this instruction, the
1621     /// second is the index into the MachineConstantPool that this is, the third
1622     /// is the size in bytes of this constant pool entry.
1623     /// The required alignment is specified on the basic block holding this MI.
1624     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1625     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1626 
1627     // If this is the first entry of the pool, mark it.
1628     if (!InConstantPool) {
1629       OutStreamer->EmitDataRegion(MCDR_DataRegion);
1630       InConstantPool = true;
1631     }
1632 
1633     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1634 
1635     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1636     if (MCPE.isMachineConstantPoolEntry())
1637       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1638     else
1639       EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1640     return;
1641   }
1642   case ARM::JUMPTABLE_ADDRS:
1643     EmitJumpTableAddrs(MI);
1644     return;
1645   case ARM::JUMPTABLE_INSTS:
1646     EmitJumpTableInsts(MI);
1647     return;
1648   case ARM::JUMPTABLE_TBB:
1649   case ARM::JUMPTABLE_TBH:
1650     EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1651     return;
1652   case ARM::t2BR_JT: {
1653     // Lower and emit the instruction itself, then the jump table following it.
1654     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1655       .addReg(ARM::PC)
1656       .addReg(MI->getOperand(0).getReg())
1657       // Add predicate operands.
1658       .addImm(ARMCC::AL)
1659       .addReg(0));
1660     return;
1661   }
1662   case ARM::t2TBB_JT:
1663   case ARM::t2TBH_JT: {
1664     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1665     // Lower and emit the PC label, then the instruction itself.
1666     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1667     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1668                                      .addReg(MI->getOperand(0).getReg())
1669                                      .addReg(MI->getOperand(1).getReg())
1670                                      // Add predicate operands.
1671                                      .addImm(ARMCC::AL)
1672                                      .addReg(0));
1673     return;
1674   }
1675   case ARM::tBR_JTr:
1676   case ARM::BR_JTr: {
1677     // Lower and emit the instruction itself, then the jump table following it.
1678     // mov pc, target
1679     MCInst TmpInst;
1680     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1681       ARM::MOVr : ARM::tMOVr;
1682     TmpInst.setOpcode(Opc);
1683     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1684     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1685     // Add predicate operands.
1686     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1687     TmpInst.addOperand(MCOperand::createReg(0));
1688     // Add 's' bit operand (always reg0 for this)
1689     if (Opc == ARM::MOVr)
1690       TmpInst.addOperand(MCOperand::createReg(0));
1691     EmitToStreamer(*OutStreamer, TmpInst);
1692     return;
1693   }
1694   case ARM::BR_JTm: {
1695     // Lower and emit the instruction itself, then the jump table following it.
1696     // ldr pc, target
1697     MCInst TmpInst;
1698     if (MI->getOperand(1).getReg() == 0) {
1699       // literal offset
1700       TmpInst.setOpcode(ARM::LDRi12);
1701       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1702       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1703       TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1704     } else {
1705       TmpInst.setOpcode(ARM::LDRrs);
1706       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1707       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1708       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1709       TmpInst.addOperand(MCOperand::createImm(0));
1710     }
1711     // Add predicate operands.
1712     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1713     TmpInst.addOperand(MCOperand::createReg(0));
1714     EmitToStreamer(*OutStreamer, TmpInst);
1715     return;
1716   }
1717   case ARM::BR_JTadd: {
1718     // Lower and emit the instruction itself, then the jump table following it.
1719     // add pc, target, idx
1720     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1721       .addReg(ARM::PC)
1722       .addReg(MI->getOperand(0).getReg())
1723       .addReg(MI->getOperand(1).getReg())
1724       // Add predicate operands.
1725       .addImm(ARMCC::AL)
1726       .addReg(0)
1727       // Add 's' bit operand (always reg0 for this)
1728       .addReg(0));
1729     return;
1730   }
1731   case ARM::SPACE:
1732     OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1733     return;
1734   case ARM::TRAP: {
1735     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1736     // FIXME: Remove this special case when they do.
1737     if (!Subtarget->isTargetMachO()) {
1738       uint32_t Val = 0xe7ffdefeUL;
1739       OutStreamer->AddComment("trap");
1740       ATS.emitInst(Val);
1741       return;
1742     }
1743     break;
1744   }
1745   case ARM::TRAPNaCl: {
1746     uint32_t Val = 0xe7fedef0UL;
1747     OutStreamer->AddComment("trap");
1748     ATS.emitInst(Val);
1749     return;
1750   }
1751   case ARM::tTRAP: {
1752     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1753     // FIXME: Remove this special case when they do.
1754     if (!Subtarget->isTargetMachO()) {
1755       uint16_t Val = 0xdefe;
1756       OutStreamer->AddComment("trap");
1757       ATS.emitInst(Val, 'n');
1758       return;
1759     }
1760     break;
1761   }
1762   case ARM::t2Int_eh_sjlj_setjmp:
1763   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1764   case ARM::tInt_eh_sjlj_setjmp: {
1765     // Two incoming args: GPR:$src, GPR:$val
1766     // mov $val, pc
1767     // adds $val, #7
1768     // str $val, [$src, #4]
1769     // movs r0, #0
1770     // b LSJLJEH
1771     // movs r0, #1
1772     // LSJLJEH:
1773     unsigned SrcReg = MI->getOperand(0).getReg();
1774     unsigned ValReg = MI->getOperand(1).getReg();
1775     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1776     OutStreamer->AddComment("eh_setjmp begin");
1777     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1778       .addReg(ValReg)
1779       .addReg(ARM::PC)
1780       // Predicate.
1781       .addImm(ARMCC::AL)
1782       .addReg(0));
1783 
1784     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1785       .addReg(ValReg)
1786       // 's' bit operand
1787       .addReg(ARM::CPSR)
1788       .addReg(ValReg)
1789       .addImm(7)
1790       // Predicate.
1791       .addImm(ARMCC::AL)
1792       .addReg(0));
1793 
1794     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1795       .addReg(ValReg)
1796       .addReg(SrcReg)
1797       // The offset immediate is #4. The operand value is scaled by 4 for the
1798       // tSTR instruction.
1799       .addImm(1)
1800       // Predicate.
1801       .addImm(ARMCC::AL)
1802       .addReg(0));
1803 
1804     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1805       .addReg(ARM::R0)
1806       .addReg(ARM::CPSR)
1807       .addImm(0)
1808       // Predicate.
1809       .addImm(ARMCC::AL)
1810       .addReg(0));
1811 
1812     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1813     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1814       .addExpr(SymbolExpr)
1815       .addImm(ARMCC::AL)
1816       .addReg(0));
1817 
1818     OutStreamer->AddComment("eh_setjmp end");
1819     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1820       .addReg(ARM::R0)
1821       .addReg(ARM::CPSR)
1822       .addImm(1)
1823       // Predicate.
1824       .addImm(ARMCC::AL)
1825       .addReg(0));
1826 
1827     OutStreamer->EmitLabel(Label);
1828     return;
1829   }
1830 
1831   case ARM::Int_eh_sjlj_setjmp_nofp:
1832   case ARM::Int_eh_sjlj_setjmp: {
1833     // Two incoming args: GPR:$src, GPR:$val
1834     // add $val, pc, #8
1835     // str $val, [$src, #+4]
1836     // mov r0, #0
1837     // add pc, pc, #0
1838     // mov r0, #1
1839     unsigned SrcReg = MI->getOperand(0).getReg();
1840     unsigned ValReg = MI->getOperand(1).getReg();
1841 
1842     OutStreamer->AddComment("eh_setjmp begin");
1843     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1844       .addReg(ValReg)
1845       .addReg(ARM::PC)
1846       .addImm(8)
1847       // Predicate.
1848       .addImm(ARMCC::AL)
1849       .addReg(0)
1850       // 's' bit operand (always reg0 for this).
1851       .addReg(0));
1852 
1853     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1854       .addReg(ValReg)
1855       .addReg(SrcReg)
1856       .addImm(4)
1857       // Predicate.
1858       .addImm(ARMCC::AL)
1859       .addReg(0));
1860 
1861     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1862       .addReg(ARM::R0)
1863       .addImm(0)
1864       // Predicate.
1865       .addImm(ARMCC::AL)
1866       .addReg(0)
1867       // 's' bit operand (always reg0 for this).
1868       .addReg(0));
1869 
1870     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1871       .addReg(ARM::PC)
1872       .addReg(ARM::PC)
1873       .addImm(0)
1874       // Predicate.
1875       .addImm(ARMCC::AL)
1876       .addReg(0)
1877       // 's' bit operand (always reg0 for this).
1878       .addReg(0));
1879 
1880     OutStreamer->AddComment("eh_setjmp end");
1881     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1882       .addReg(ARM::R0)
1883       .addImm(1)
1884       // Predicate.
1885       .addImm(ARMCC::AL)
1886       .addReg(0)
1887       // 's' bit operand (always reg0 for this).
1888       .addReg(0));
1889     return;
1890   }
1891   case ARM::Int_eh_sjlj_longjmp: {
1892     // ldr sp, [$src, #8]
1893     // ldr $scratch, [$src, #4]
1894     // ldr r7, [$src]
1895     // bx $scratch
1896     unsigned SrcReg = MI->getOperand(0).getReg();
1897     unsigned ScratchReg = MI->getOperand(1).getReg();
1898     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1899       .addReg(ARM::SP)
1900       .addReg(SrcReg)
1901       .addImm(8)
1902       // Predicate.
1903       .addImm(ARMCC::AL)
1904       .addReg(0));
1905 
1906     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1907       .addReg(ScratchReg)
1908       .addReg(SrcReg)
1909       .addImm(4)
1910       // Predicate.
1911       .addImm(ARMCC::AL)
1912       .addReg(0));
1913 
1914     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1915       .addReg(ARM::R7)
1916       .addReg(SrcReg)
1917       .addImm(0)
1918       // Predicate.
1919       .addImm(ARMCC::AL)
1920       .addReg(0));
1921 
1922     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1923       .addReg(ScratchReg)
1924       // Predicate.
1925       .addImm(ARMCC::AL)
1926       .addReg(0));
1927     return;
1928   }
1929   case ARM::tInt_eh_sjlj_longjmp: {
1930     // ldr $scratch, [$src, #8]
1931     // mov sp, $scratch
1932     // ldr $scratch, [$src, #4]
1933     // ldr r7, [$src]
1934     // bx $scratch
1935     unsigned SrcReg = MI->getOperand(0).getReg();
1936     unsigned ScratchReg = MI->getOperand(1).getReg();
1937 
1938     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1939       .addReg(ScratchReg)
1940       .addReg(SrcReg)
1941       // The offset immediate is #8. The operand value is scaled by 4 for the
1942       // tLDR instruction.
1943       .addImm(2)
1944       // Predicate.
1945       .addImm(ARMCC::AL)
1946       .addReg(0));
1947 
1948     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1949       .addReg(ARM::SP)
1950       .addReg(ScratchReg)
1951       // Predicate.
1952       .addImm(ARMCC::AL)
1953       .addReg(0));
1954 
1955     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1956       .addReg(ScratchReg)
1957       .addReg(SrcReg)
1958       .addImm(1)
1959       // Predicate.
1960       .addImm(ARMCC::AL)
1961       .addReg(0));
1962 
1963     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1964       .addReg(ARM::R7)
1965       .addReg(SrcReg)
1966       .addImm(0)
1967       // Predicate.
1968       .addImm(ARMCC::AL)
1969       .addReg(0));
1970 
1971     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
1972       .addReg(ScratchReg)
1973       // Predicate.
1974       .addImm(ARMCC::AL)
1975       .addReg(0));
1976     return;
1977   }
1978   case ARM::tInt_WIN_eh_sjlj_longjmp: {
1979     // ldr.w r11, [$src, #0]
1980     // ldr.w  sp, [$src, #8]
1981     // ldr.w  pc, [$src, #4]
1982 
1983     unsigned SrcReg = MI->getOperand(0).getReg();
1984 
1985     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
1986                                      .addReg(ARM::R11)
1987                                      .addReg(SrcReg)
1988                                      .addImm(0)
1989                                      // Predicate
1990                                      .addImm(ARMCC::AL)
1991                                      .addReg(0));
1992     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
1993                                      .addReg(ARM::SP)
1994                                      .addReg(SrcReg)
1995                                      .addImm(8)
1996                                      // Predicate
1997                                      .addImm(ARMCC::AL)
1998                                      .addReg(0));
1999     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2000                                      .addReg(ARM::PC)
2001                                      .addReg(SrcReg)
2002                                      .addImm(4)
2003                                      // Predicate
2004                                      .addImm(ARMCC::AL)
2005                                      .addReg(0));
2006     return;
2007   }
2008   }
2009 
2010   MCInst TmpInst;
2011   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2012 
2013   EmitToStreamer(*OutStreamer, TmpInst);
2014 }
2015 
2016 //===----------------------------------------------------------------------===//
2017 // Target Registry Stuff
2018 //===----------------------------------------------------------------------===//
2019 
2020 // Force static initialization.
2021 extern "C" void LLVMInitializeARMAsmPrinter() {
2022   RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
2023   RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
2024   RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
2025   RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
2026 }
2027