1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 58 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::emitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::emitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->emitAssemblerFlag(MCAF_Code16); 72 OutStreamer->emitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->emitAssemblerFlag(MCAF_Code32); 75 } 76 OutStreamer->emitLabel(CurrentFnSym); 77 } 78 79 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { 80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 81 assert(Size && "C++ constructor pointer had zero size!"); 82 83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 84 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 85 86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 87 ARMII::MO_NO_FLAG), 88 (Subtarget->isTargetELF() 89 ? MCSymbolRefExpr::VK_ARM_TARGET1 90 : MCSymbolRefExpr::VK_None), 91 OutContext); 92 93 OutStreamer->emitValue(E, Size); 94 } 95 96 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 97 if (PromotedGlobals.count(GV)) 98 // The global was promoted into a constant pool. It should not be emitted. 99 return; 100 AsmPrinter::emitGlobalVariable(GV); 101 } 102 103 /// runOnMachineFunction - This uses the emitInstruction() 104 /// method to print assembly for each instruction. 105 /// 106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 107 AFI = MF.getInfo<ARMFunctionInfo>(); 108 MCP = MF.getConstantPool(); 109 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 110 111 SetupMachineFunction(MF); 112 const Function &F = MF.getFunction(); 113 const TargetMachine& TM = MF.getTarget(); 114 115 // Collect all globals that had their storage promoted to a constant pool. 116 // Functions are emitted before variables, so this accumulates promoted 117 // globals from all functions in PromotedGlobals. 118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 119 PromotedGlobals.insert(GV); 120 121 // Calculate this function's optimization goal. 122 unsigned OptimizationGoal; 123 if (F.hasOptNone()) 124 // For best debugging illusion, speed and small size sacrificed 125 OptimizationGoal = 6; 126 else if (F.hasMinSize()) 127 // Aggressively for small size, speed and debug illusion sacrificed 128 OptimizationGoal = 4; 129 else if (F.hasOptSize()) 130 // For small size, but speed and debugging illusion preserved 131 OptimizationGoal = 3; 132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 133 // Aggressively for speed, small size and debug illusion sacrificed 134 OptimizationGoal = 2; 135 else if (TM.getOptLevel() > CodeGenOpt::None) 136 // For speed, but small size and good debug illusion preserved 137 OptimizationGoal = 1; 138 else // TM.getOptLevel() == CodeGenOpt::None 139 // For good debugging, but speed and small size preserved 140 OptimizationGoal = 5; 141 142 // Combine a new optimization goal with existing ones. 143 if (OptimizationGoals == -1) // uninitialized goals 144 OptimizationGoals = OptimizationGoal; 145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 146 OptimizationGoals = 0; 147 148 if (Subtarget->isTargetCOFF()) { 149 bool Internal = F.hasInternalLinkage(); 150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 151 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 153 154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 155 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 156 OutStreamer->EmitCOFFSymbolType(Type); 157 OutStreamer->EndCOFFSymbolDef(); 158 } 159 160 // Emit the rest of the function body. 161 emitFunctionBody(); 162 163 // Emit the XRay table for this function. 164 emitXRayTable(); 165 166 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 167 // These are created per function, rather than per TU, since it's 168 // relatively easy to exceed the thumb branch range within a TU. 169 if (! ThumbIndirectPads.empty()) { 170 OutStreamer->emitAssemblerFlag(MCAF_Code16); 171 emitAlignment(Align(2)); 172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 173 OutStreamer->emitLabel(TIP.second); 174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 175 .addReg(TIP.first) 176 // Add predicate operands. 177 .addImm(ARMCC::AL) 178 .addReg(0)); 179 } 180 ThumbIndirectPads.clear(); 181 } 182 183 // We didn't modify anything. 184 return false; 185 } 186 187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 188 raw_ostream &O) { 189 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 190 unsigned TF = MO.getTargetFlags(); 191 if (TF & ARMII::MO_LO16) 192 O << ":lower16:"; 193 else if (TF & ARMII::MO_HI16) 194 O << ":upper16:"; 195 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 196 printOffset(MO.getOffset(), O); 197 } 198 199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 200 raw_ostream &O) { 201 const MachineOperand &MO = MI->getOperand(OpNum); 202 203 switch (MO.getType()) { 204 default: llvm_unreachable("<unknown operand type>"); 205 case MachineOperand::MO_Register: { 206 Register Reg = MO.getReg(); 207 assert(Register::isPhysicalRegister(Reg)); 208 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 209 if(ARM::GPRPairRegClass.contains(Reg)) { 210 const MachineFunction &MF = *MI->getParent()->getParent(); 211 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 212 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 213 } 214 O << ARMInstPrinter::getRegisterName(Reg); 215 break; 216 } 217 case MachineOperand::MO_Immediate: { 218 O << '#'; 219 unsigned TF = MO.getTargetFlags(); 220 if (TF == ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF == ARMII::MO_HI16) 223 O << ":upper16:"; 224 O << MO.getImm(); 225 break; 226 } 227 case MachineOperand::MO_MachineBasicBlock: 228 MO.getMBB()->getSymbol()->print(O, MAI); 229 return; 230 case MachineOperand::MO_GlobalAddress: { 231 PrintSymbolOperand(MO, O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 243 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 244 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 245 const DataLayout &DL = getDataLayout(); 246 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 247 "CPI" + Twine(getFunctionNumber()) + "_" + 248 Twine(CPID)); 249 } 250 251 //===--------------------------------------------------------------------===// 252 253 MCSymbol *ARMAsmPrinter:: 254 GetARMJTIPICJumpTableLabel(unsigned uid) const { 255 const DataLayout &DL = getDataLayout(); 256 SmallString<60> Name; 257 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 258 << getFunctionNumber() << '_' << uid; 259 return OutContext.getOrCreateSymbol(Name); 260 } 261 262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 263 const char *ExtraCode, raw_ostream &O) { 264 // Does this asm operand have a single letter operand modifier? 265 if (ExtraCode && ExtraCode[0]) { 266 if (ExtraCode[1] != 0) return true; // Unknown modifier. 267 268 switch (ExtraCode[0]) { 269 default: 270 // See if this is a generic print operand 271 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 272 case 'P': // Print a VFP double precision register. 273 case 'q': // Print a NEON quad precision register. 274 printOperand(MI, OpNum, O); 275 return false; 276 case 'y': // Print a VFP single precision register as indexed double. 277 if (MI->getOperand(OpNum).isReg()) { 278 Register Reg = MI->getOperand(OpNum).getReg(); 279 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 280 // Find the 'd' register that has this 's' register as a sub-register, 281 // and determine the lane number. 282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 283 if (!ARM::DPRRegClass.contains(*SR)) 284 continue; 285 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 286 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 287 return false; 288 } 289 } 290 return true; 291 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 292 if (!MI->getOperand(OpNum).isImm()) 293 return true; 294 O << ~(MI->getOperand(OpNum).getImm()); 295 return false; 296 case 'L': // The low 16 bits of an immediate constant. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << (MI->getOperand(OpNum).getImm() & 0xffff); 300 return false; 301 case 'M': { // A register range suitable for LDM/STM. 302 if (!MI->getOperand(OpNum).isReg()) 303 return true; 304 const MachineOperand &MO = MI->getOperand(OpNum); 305 Register RegBegin = MO.getReg(); 306 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 307 // already got the operands in registers that are operands to the 308 // inline asm statement. 309 O << "{"; 310 if (ARM::GPRPairRegClass.contains(RegBegin)) { 311 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 312 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 313 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 314 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 315 } 316 O << ARMInstPrinter::getRegisterName(RegBegin); 317 318 // FIXME: The register allocator not only may not have given us the 319 // registers in sequence, but may not be in ascending registers. This 320 // will require changes in the register allocator that'll need to be 321 // propagated down here if the operands change. 322 unsigned RegOps = OpNum + 1; 323 while (MI->getOperand(RegOps).isReg()) { 324 O << ", " 325 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 326 RegOps++; 327 } 328 329 O << "}"; 330 331 return false; 332 } 333 case 'R': // The most significant register of a pair. 334 case 'Q': { // The least significant register of a pair. 335 if (OpNum == 0) 336 return true; 337 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 338 if (!FlagsOP.isImm()) 339 return true; 340 unsigned Flags = FlagsOP.getImm(); 341 342 // This operand may not be the one that actually provides the register. If 343 // it's tied to a previous one then we should refer instead to that one 344 // for registers and their classes. 345 unsigned TiedIdx; 346 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 347 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 348 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 349 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 350 } 351 Flags = MI->getOperand(OpNum).getImm(); 352 353 // Later code expects OpNum to be pointing at the register rather than 354 // the flags. 355 OpNum += 1; 356 } 357 358 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 359 unsigned RC; 360 bool FirstHalf; 361 const ARMBaseTargetMachine &ATM = 362 static_cast<const ARMBaseTargetMachine &>(TM); 363 364 // 'Q' should correspond to the low order register and 'R' to the high 365 // order register. Whether this corresponds to the upper or lower half 366 // depends on the endianess mode. 367 if (ExtraCode[0] == 'Q') 368 FirstHalf = ATM.isLittleEndian(); 369 else 370 // ExtraCode[0] == 'R'. 371 FirstHalf = !ATM.isLittleEndian(); 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 374 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 375 if (NumVals != 1) 376 return true; 377 const MachineOperand &MO = MI->getOperand(OpNum); 378 if (!MO.isReg()) 379 return true; 380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 381 Register Reg = 382 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 383 O << ARMInstPrinter::getRegisterName(Reg); 384 return false; 385 } 386 if (NumVals != 2) 387 return true; 388 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 389 if (RegOp >= MI->getNumOperands()) 390 return true; 391 const MachineOperand &MO = MI->getOperand(RegOp); 392 if (!MO.isReg()) 393 return true; 394 Register Reg = MO.getReg(); 395 O << ARMInstPrinter::getRegisterName(Reg); 396 return false; 397 } 398 399 case 'e': // The low doubleword register of a NEON quad register. 400 case 'f': { // The high doubleword register of a NEON quad register. 401 if (!MI->getOperand(OpNum).isReg()) 402 return true; 403 Register Reg = MI->getOperand(OpNum).getReg(); 404 if (!ARM::QPRRegClass.contains(Reg)) 405 return true; 406 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 407 Register SubReg = 408 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 409 O << ARMInstPrinter::getRegisterName(SubReg); 410 return false; 411 } 412 413 // This modifier is not yet supported. 414 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 415 return true; 416 case 'H': { // The highest-numbered register of a pair. 417 const MachineOperand &MO = MI->getOperand(OpNum); 418 if (!MO.isReg()) 419 return true; 420 const MachineFunction &MF = *MI->getParent()->getParent(); 421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 422 Register Reg = MO.getReg(); 423 if(!ARM::GPRPairRegClass.contains(Reg)) 424 return false; 425 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 426 O << ARMInstPrinter::getRegisterName(Reg); 427 return false; 428 } 429 } 430 } 431 432 printOperand(MI, OpNum, O); 433 return false; 434 } 435 436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 437 unsigned OpNum, const char *ExtraCode, 438 raw_ostream &O) { 439 // Does this asm operand have a single letter operand modifier? 440 if (ExtraCode && ExtraCode[0]) { 441 if (ExtraCode[1] != 0) return true; // Unknown modifier. 442 443 switch (ExtraCode[0]) { 444 case 'A': // A memory operand for a VLD1/VST1 instruction. 445 default: return true; // Unknown modifier. 446 case 'm': // The base register of a memory operand. 447 if (!MI->getOperand(OpNum).isReg()) 448 return true; 449 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 450 return false; 451 } 452 } 453 454 const MachineOperand &MO = MI->getOperand(OpNum); 455 assert(MO.isReg() && "unexpected inline asm memory operand"); 456 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 457 return false; 458 } 459 460 static bool isThumb(const MCSubtargetInfo& STI) { 461 return STI.getFeatureBits()[ARM::ModeThumb]; 462 } 463 464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 465 const MCSubtargetInfo *EndInfo) const { 466 // If either end mode is unknown (EndInfo == NULL) or different than 467 // the start mode, then restore the start mode. 468 const bool WasThumb = isThumb(StartInfo); 469 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 470 OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 471 } 472 } 473 474 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { 475 const Triple &TT = TM.getTargetTriple(); 476 // Use unified assembler syntax. 477 OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); 478 479 // Emit ARM Build Attributes 480 if (TT.isOSBinFormatELF()) 481 emitAttributes(); 482 483 // Use the triple's architecture and subarchitecture to determine 484 // if we're thumb for the purposes of the top level code16 assembler 485 // flag. 486 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 487 OutStreamer->emitAssemblerFlag(MCAF_Code16); 488 } 489 490 static void 491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 492 MachineModuleInfoImpl::StubValueTy &MCSym) { 493 // L_foo$stub: 494 OutStreamer.emitLabel(StubLabel); 495 // .indirect_symbol _foo 496 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 497 498 if (MCSym.getInt()) 499 // External to current translation unit. 500 OutStreamer.emitIntValue(0, 4/*size*/); 501 else 502 // Internal to current translation unit. 503 // 504 // When we place the LSDA into the TEXT section, the type info 505 // pointers need to be indirect and pc-rel. We accomplish this by 506 // using NLPs; however, sometimes the types are local to the file. 507 // We need to fill in the value for the NLP in those cases. 508 OutStreamer.emitValue( 509 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 510 4 /*size*/); 511 } 512 513 514 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { 515 const Triple &TT = TM.getTargetTriple(); 516 if (TT.isOSBinFormatMachO()) { 517 // All darwin targets use mach-o. 518 const TargetLoweringObjectFileMachO &TLOFMacho = 519 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 520 MachineModuleInfoMachO &MMIMacho = 521 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 522 523 // Output non-lazy-pointers for external and common global variables. 524 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 525 526 if (!Stubs.empty()) { 527 // Switch with ".non_lazy_symbol_pointer" directive. 528 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 529 emitAlignment(Align(4)); 530 531 for (auto &Stub : Stubs) 532 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 533 534 Stubs.clear(); 535 OutStreamer->AddBlankLine(); 536 } 537 538 Stubs = MMIMacho.GetThreadLocalGVStubList(); 539 if (!Stubs.empty()) { 540 // Switch with ".non_lazy_symbol_pointer" directive. 541 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 542 emitAlignment(Align(4)); 543 544 for (auto &Stub : Stubs) 545 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 546 547 Stubs.clear(); 548 OutStreamer->AddBlankLine(); 549 } 550 551 // Funny Darwin hack: This flag tells the linker that no global symbols 552 // contain code that falls through to other global symbols (e.g. the obvious 553 // implementation of multiple entry points). If this doesn't occur, the 554 // linker can safely perform dead code stripping. Since LLVM never 555 // generates code that does this, it is always safe to set. 556 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 557 } 558 559 // The last attribute to be emitted is ABI_optimization_goals 560 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 561 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 562 563 if (OptimizationGoals > 0 && 564 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 565 Subtarget->isTargetMuslAEABI())) 566 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 567 OptimizationGoals = -1; 568 569 ATS.finishAttributeSection(); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() 574 // FIXME: 575 // The following seem like one-off assembler flags, but they actually need 576 // to appear in the .ARM.attributes section in ELF. 577 // Instead of subclassing the MCELFStreamer, we do the work here. 578 579 // Returns true if all functions have the same function attribute value. 580 // It also returns true when the module has no functions. 581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 582 StringRef Value) { 583 return !any_of(M, [&](const Function &F) { 584 return F.getFnAttribute(Attr).getValueAsString() != Value; 585 }); 586 } 587 // Returns true if all functions have the same denormal mode. 588 // It also returns true when the module has no functions. 589 static bool checkDenormalAttributeConsistency(const Module &M, 590 StringRef Attr, 591 DenormalMode Value) { 592 return !any_of(M, [&](const Function &F) { 593 StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); 594 return parseDenormalFPAttribute(AttrVal) != Value; 595 }); 596 } 597 598 void ARMAsmPrinter::emitAttributes() { 599 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 600 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 601 602 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 603 604 ATS.switchVendor("aeabi"); 605 606 // Compute ARM ELF Attributes based on the default subtarget that 607 // we'd have constructed. The existing ARM behavior isn't LTO clean 608 // anyhow. 609 // FIXME: For ifunc related functions we could iterate over and look 610 // for a feature string that doesn't match the default one. 611 const Triple &TT = TM.getTargetTriple(); 612 StringRef CPU = TM.getTargetCPU(); 613 StringRef FS = TM.getTargetFeatureString(); 614 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 615 if (!FS.empty()) { 616 if (!ArchFS.empty()) 617 ArchFS = (Twine(ArchFS) + "," + FS).str(); 618 else 619 ArchFS = std::string(FS); 620 } 621 const ARMBaseTargetMachine &ATM = 622 static_cast<const ARMBaseTargetMachine &>(TM); 623 const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, 624 ATM.isLittleEndian()); 625 626 // Emit build attributes for the available hardware. 627 ATS.emitTargetAttributes(STI); 628 629 // RW data addressing. 630 if (isPositionIndependent()) { 631 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 632 ARMBuildAttrs::AddressRWPCRel); 633 } else if (STI.isRWPI()) { 634 // RWPI specific attributes. 635 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 636 ARMBuildAttrs::AddressRWSBRel); 637 } 638 639 // RO data addressing. 640 if (isPositionIndependent() || STI.isROPI()) { 641 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 642 ARMBuildAttrs::AddressROPCRel); 643 } 644 645 // GOT use. 646 if (isPositionIndependent()) { 647 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 648 ARMBuildAttrs::AddressGOT); 649 } else { 650 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 651 ARMBuildAttrs::AddressDirect); 652 } 653 654 // Set FP Denormals. 655 if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", 656 DenormalMode::getPreserveSign())) 657 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 658 ARMBuildAttrs::PreserveFPSign); 659 else if (checkDenormalAttributeConsistency(*MMI->getModule(), 660 "denormal-fp-math", 661 DenormalMode::getPositiveZero())) 662 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 663 ARMBuildAttrs::PositiveZero); 664 else if (!TM.Options.UnsafeFPMath) 665 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 666 ARMBuildAttrs::IEEEDenormals); 667 else { 668 if (!STI.hasVFP2Base()) { 669 // When the target doesn't have an FPU (by design or 670 // intention), the assumptions made on the software support 671 // mirror that of the equivalent hardware support *if it 672 // existed*. For v7 and better we indicate that denormals are 673 // flushed preserving sign, and for V6 we indicate that 674 // denormals are flushed to positive zero. 675 if (STI.hasV7Ops()) 676 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 677 ARMBuildAttrs::PreserveFPSign); 678 } else if (STI.hasVFP3Base()) { 679 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 680 // the sign bit of the zero matches the sign bit of the input or 681 // result that is being flushed to zero. 682 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 683 ARMBuildAttrs::PreserveFPSign); 684 } 685 // For VFPv2 implementations it is implementation defined as 686 // to whether denormals are flushed to positive zero or to 687 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 688 // LLVM has chosen to flush this to positive zero (most likely for 689 // GCC compatibility), so that's the chosen value here (the 690 // absence of its emission implies zero). 691 } 692 693 // Set FP exceptions and rounding 694 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 695 "no-trapping-math", "true") || 696 TM.Options.NoTrappingFPMath) 697 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 698 ARMBuildAttrs::Not_Allowed); 699 else if (!TM.Options.UnsafeFPMath) { 700 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 701 702 // If the user has permitted this code to choose the IEEE 754 703 // rounding at run-time, emit the rounding attribute. 704 if (TM.Options.HonorSignDependentRoundingFPMathOption) 705 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 706 } 707 708 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 709 // equivalent of GCC's -ffinite-math-only flag. 710 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 711 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 712 ARMBuildAttrs::Allowed); 713 else 714 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 715 ARMBuildAttrs::AllowIEEE754); 716 717 // FIXME: add more flags to ARMBuildAttributes.h 718 // 8-bytes alignment stuff. 719 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 720 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 721 722 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 723 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 724 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 725 726 // FIXME: To support emitting this build attribute as GCC does, the 727 // -mfp16-format option and associated plumbing must be 728 // supported. For now the __fp16 type is exposed by default, so this 729 // attribute should be emitted with value 1. 730 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 731 ARMBuildAttrs::FP16FormatIEEE); 732 733 if (MMI) { 734 if (const Module *SourceModule = MMI->getModule()) { 735 // ABI_PCS_wchar_t to indicate wchar_t width 736 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 737 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 738 SourceModule->getModuleFlag("wchar_size"))) { 739 int WCharWidth = WCharWidthValue->getZExtValue(); 740 assert((WCharWidth == 2 || WCharWidth == 4) && 741 "wchar_t width must be 2 or 4 bytes"); 742 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 743 } 744 745 // ABI_enum_size to indicate enum width 746 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 747 // (all enums contain a value needing 32 bits to encode). 748 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 749 SourceModule->getModuleFlag("min_enum_size"))) { 750 int EnumWidth = EnumWidthValue->getZExtValue(); 751 assert((EnumWidth == 1 || EnumWidth == 4) && 752 "Minimum enum width must be 1 or 4 bytes"); 753 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 754 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 755 } 756 } 757 } 758 759 // We currently do not support using R9 as the TLS pointer. 760 if (STI.isRWPI()) 761 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 762 ARMBuildAttrs::R9IsSB); 763 else if (STI.isR9Reserved()) 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 765 ARMBuildAttrs::R9Reserved); 766 else 767 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 768 ARMBuildAttrs::R9IsGPR); 769 } 770 771 //===----------------------------------------------------------------------===// 772 773 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 774 unsigned LabelId, MCContext &Ctx) { 775 776 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 777 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 778 return Label; 779 } 780 781 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 782 unsigned LabelId, MCContext &Ctx) { 783 784 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 785 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 786 return Label; 787 } 788 789 static MCSymbolRefExpr::VariantKind 790 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 791 switch (Modifier) { 792 case ARMCP::no_modifier: 793 return MCSymbolRefExpr::VK_None; 794 case ARMCP::TLSGD: 795 return MCSymbolRefExpr::VK_TLSGD; 796 case ARMCP::TPOFF: 797 return MCSymbolRefExpr::VK_TPOFF; 798 case ARMCP::GOTTPOFF: 799 return MCSymbolRefExpr::VK_GOTTPOFF; 800 case ARMCP::SBREL: 801 return MCSymbolRefExpr::VK_ARM_SBREL; 802 case ARMCP::GOT_PREL: 803 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 804 case ARMCP::SECREL: 805 return MCSymbolRefExpr::VK_SECREL; 806 } 807 llvm_unreachable("Invalid ARMCPModifier!"); 808 } 809 810 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 811 unsigned char TargetFlags) { 812 if (Subtarget->isTargetMachO()) { 813 bool IsIndirect = 814 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 815 816 if (!IsIndirect) 817 return getSymbol(GV); 818 819 // FIXME: Remove this when Darwin transition to @GOT like syntax. 820 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 821 MachineModuleInfoMachO &MMIMachO = 822 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 823 MachineModuleInfoImpl::StubValueTy &StubSym = 824 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 825 : MMIMachO.getGVStubEntry(MCSym); 826 827 if (!StubSym.getPointer()) 828 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 829 !GV->hasInternalLinkage()); 830 return MCSym; 831 } else if (Subtarget->isTargetCOFF()) { 832 assert(Subtarget->isTargetWindows() && 833 "Windows is the only supported COFF target"); 834 835 bool IsIndirect = 836 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 837 if (!IsIndirect) 838 return getSymbol(GV); 839 840 SmallString<128> Name; 841 if (TargetFlags & ARMII::MO_DLLIMPORT) 842 Name = "__imp_"; 843 else if (TargetFlags & ARMII::MO_COFFSTUB) 844 Name = ".refptr."; 845 getNameWithPrefix(Name, GV); 846 847 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 848 849 if (TargetFlags & ARMII::MO_COFFSTUB) { 850 MachineModuleInfoCOFF &MMICOFF = 851 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 852 MachineModuleInfoImpl::StubValueTy &StubSym = 853 MMICOFF.getGVStubEntry(MCSym); 854 855 if (!StubSym.getPointer()) 856 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 857 } 858 859 return MCSym; 860 } else if (Subtarget->isTargetELF()) { 861 return getSymbol(GV); 862 } 863 llvm_unreachable("unexpected target"); 864 } 865 866 void ARMAsmPrinter::emitMachineConstantPoolValue( 867 MachineConstantPoolValue *MCPV) { 868 const DataLayout &DL = getDataLayout(); 869 int Size = DL.getTypeAllocSize(MCPV->getType()); 870 871 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 872 873 if (ACPV->isPromotedGlobal()) { 874 // This constant pool entry is actually a global whose storage has been 875 // promoted into the constant pool. This global may be referenced still 876 // by debug information, and due to the way AsmPrinter is set up, the debug 877 // info is immutable by the time we decide to promote globals to constant 878 // pools. Because of this, we need to ensure we emit a symbol for the global 879 // with private linkage (the default) so debug info can refer to it. 880 // 881 // However, if this global is promoted into several functions we must ensure 882 // we don't try and emit duplicate symbols! 883 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 884 for (const auto *GV : ACPC->promotedGlobals()) { 885 if (!EmittedPromotedGlobalLabels.count(GV)) { 886 MCSymbol *GVSym = getSymbol(GV); 887 OutStreamer->emitLabel(GVSym); 888 EmittedPromotedGlobalLabels.insert(GV); 889 } 890 } 891 return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 892 } 893 894 MCSymbol *MCSym; 895 if (ACPV->isLSDA()) { 896 MCSym = getCurExceptionSym(); 897 } else if (ACPV->isBlockAddress()) { 898 const BlockAddress *BA = 899 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 900 MCSym = GetBlockAddressSymbol(BA); 901 } else if (ACPV->isGlobalValue()) { 902 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 903 904 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 905 // flag the global as MO_NONLAZY. 906 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 907 MCSym = GetARMGVSymbol(GV, TF); 908 } else if (ACPV->isMachineBasicBlock()) { 909 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 910 MCSym = MBB->getSymbol(); 911 } else { 912 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 913 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 914 MCSym = GetExternalSymbolSymbol(Sym); 915 } 916 917 // Create an MCSymbol for the reference. 918 const MCExpr *Expr = 919 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 920 OutContext); 921 922 if (ACPV->getPCAdjustment()) { 923 MCSymbol *PCLabel = 924 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 925 ACPV->getLabelId(), OutContext); 926 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 927 PCRelExpr = 928 MCBinaryExpr::createAdd(PCRelExpr, 929 MCConstantExpr::create(ACPV->getPCAdjustment(), 930 OutContext), 931 OutContext); 932 if (ACPV->mustAddCurrentAddress()) { 933 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 934 // label, so just emit a local label end reference that instead. 935 MCSymbol *DotSym = OutContext.createTempSymbol(); 936 OutStreamer->emitLabel(DotSym); 937 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 938 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 939 } 940 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 941 } 942 OutStreamer->emitValue(Expr, Size); 943 } 944 945 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { 946 const MachineOperand &MO1 = MI->getOperand(1); 947 unsigned JTI = MO1.getIndex(); 948 949 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 950 // ARM mode tables. 951 emitAlignment(Align(4)); 952 953 // Emit a label for the jump table. 954 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 955 OutStreamer->emitLabel(JTISymbol); 956 957 // Mark the jump table as data-in-code. 958 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 959 960 // Emit each entry of the table. 961 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 962 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 963 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 964 965 for (MachineBasicBlock *MBB : JTBBs) { 966 // Construct an MCExpr for the entry. We want a value of the form: 967 // (BasicBlockAddr - TableBeginAddr) 968 // 969 // For example, a table with entries jumping to basic blocks BB0 and BB1 970 // would look like: 971 // LJTI_0_0: 972 // .word (LBB0 - LJTI_0_0) 973 // .word (LBB1 - LJTI_0_0) 974 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 975 976 if (isPositionIndependent() || Subtarget->isROPI()) 977 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 978 OutContext), 979 OutContext); 980 // If we're generating a table of Thumb addresses in static relocation 981 // model, we need to add one to keep interworking correctly. 982 else if (AFI->isThumbFunction()) 983 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 984 OutContext); 985 OutStreamer->emitValue(Expr, 4); 986 } 987 // Mark the end of jump table data-in-code region. 988 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 989 } 990 991 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { 992 const MachineOperand &MO1 = MI->getOperand(1); 993 unsigned JTI = MO1.getIndex(); 994 995 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 996 // ARM mode tables. 997 emitAlignment(Align(4)); 998 999 // Emit a label for the jump table. 1000 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1001 OutStreamer->emitLabel(JTISymbol); 1002 1003 // Emit each entry of the table. 1004 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1005 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1006 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1007 1008 for (MachineBasicBlock *MBB : JTBBs) { 1009 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1010 OutContext); 1011 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1012 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1013 .addExpr(MBBSymbolExpr) 1014 .addImm(ARMCC::AL) 1015 .addReg(0)); 1016 } 1017 } 1018 1019 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, 1020 unsigned OffsetWidth) { 1021 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1022 const MachineOperand &MO1 = MI->getOperand(1); 1023 unsigned JTI = MO1.getIndex(); 1024 1025 if (Subtarget->isThumb1Only()) 1026 emitAlignment(Align(4)); 1027 1028 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1029 OutStreamer->emitLabel(JTISymbol); 1030 1031 // Emit each entry of the table. 1032 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1033 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1034 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1035 1036 // Mark the jump table as data-in-code. 1037 OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1038 : MCDR_DataRegionJT16); 1039 1040 for (auto MBB : JTBBs) { 1041 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1042 OutContext); 1043 // Otherwise it's an offset from the dispatch instruction. Construct an 1044 // MCExpr for the entry. We want a value of the form: 1045 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1046 // 1047 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1048 // would look like: 1049 // LJTI_0_0: 1050 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1051 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1052 // where LCPI0_0 is a label defined just before the TBB instruction using 1053 // this table. 1054 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1055 const MCExpr *Expr = MCBinaryExpr::createAdd( 1056 MCSymbolRefExpr::create(TBInstPC, OutContext), 1057 MCConstantExpr::create(4, OutContext), OutContext); 1058 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1059 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1060 OutContext); 1061 OutStreamer->emitValue(Expr, OffsetWidth); 1062 } 1063 // Mark the end of jump table data-in-code region. 32-bit offsets use 1064 // actual branch instructions here, so we don't mark those as a data-region 1065 // at all. 1066 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1067 1068 // Make sure the next instruction is 2-byte aligned. 1069 emitAlignment(Align(2)); 1070 } 1071 1072 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1073 assert(MI->getFlag(MachineInstr::FrameSetup) && 1074 "Only instruction which are involved into frame setup code are allowed"); 1075 1076 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1077 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1078 const MachineFunction &MF = *MI->getParent()->getParent(); 1079 const TargetRegisterInfo *TargetRegInfo = 1080 MF.getSubtarget().getRegisterInfo(); 1081 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1082 1083 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1084 unsigned Opc = MI->getOpcode(); 1085 unsigned SrcReg, DstReg; 1086 1087 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1088 // Two special cases: 1089 // 1) tPUSH does not have src/dst regs. 1090 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1091 // load. Yes, this is pretty fragile, but for now I don't see better 1092 // way... :( 1093 SrcReg = DstReg = ARM::SP; 1094 } else { 1095 SrcReg = MI->getOperand(1).getReg(); 1096 DstReg = MI->getOperand(0).getReg(); 1097 } 1098 1099 // Try to figure out the unwinding opcode out of src / dst regs. 1100 if (MI->mayStore()) { 1101 // Register saves. 1102 assert(DstReg == ARM::SP && 1103 "Only stack pointer as a destination reg is supported"); 1104 1105 SmallVector<unsigned, 4> RegList; 1106 // Skip src & dst reg, and pred ops. 1107 unsigned StartOp = 2 + 2; 1108 // Use all the operands. 1109 unsigned NumOffset = 0; 1110 // Amount of SP adjustment folded into a push. 1111 unsigned Pad = 0; 1112 1113 switch (Opc) { 1114 default: 1115 MI->print(errs()); 1116 llvm_unreachable("Unsupported opcode for unwinding information"); 1117 case ARM::tPUSH: 1118 // Special case here: no src & dst reg, but two extra imp ops. 1119 StartOp = 2; NumOffset = 2; 1120 LLVM_FALLTHROUGH; 1121 case ARM::STMDB_UPD: 1122 case ARM::t2STMDB_UPD: 1123 case ARM::VSTMDDB_UPD: 1124 assert(SrcReg == ARM::SP && 1125 "Only stack pointer as a source reg is supported"); 1126 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1127 i != NumOps; ++i) { 1128 const MachineOperand &MO = MI->getOperand(i); 1129 // Actually, there should never be any impdef stuff here. Skip it 1130 // temporary to workaround PR11902. 1131 if (MO.isImplicit()) 1132 continue; 1133 // Registers, pushed as a part of folding an SP update into the 1134 // push instruction are marked as undef and should not be 1135 // restored when unwinding, because the function can modify the 1136 // corresponding stack slots. 1137 if (MO.isUndef()) { 1138 assert(RegList.empty() && 1139 "Pad registers must come before restored ones"); 1140 unsigned Width = 1141 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1142 Pad += Width; 1143 continue; 1144 } 1145 // Check for registers that are remapped (for a Thumb1 prologue that 1146 // saves high registers). 1147 Register Reg = MO.getReg(); 1148 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1149 Reg = RemappedReg; 1150 RegList.push_back(Reg); 1151 } 1152 break; 1153 case ARM::STR_PRE_IMM: 1154 case ARM::STR_PRE_REG: 1155 case ARM::t2STR_PRE: 1156 assert(MI->getOperand(2).getReg() == ARM::SP && 1157 "Only stack pointer as a source reg is supported"); 1158 RegList.push_back(SrcReg); 1159 break; 1160 } 1161 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1162 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1163 // Account for the SP adjustment, folded into the push. 1164 if (Pad) 1165 ATS.emitPad(Pad); 1166 } 1167 } else { 1168 // Changes of stack / frame pointer. 1169 if (SrcReg == ARM::SP) { 1170 int64_t Offset = 0; 1171 switch (Opc) { 1172 default: 1173 MI->print(errs()); 1174 llvm_unreachable("Unsupported opcode for unwinding information"); 1175 case ARM::MOVr: 1176 case ARM::tMOVr: 1177 Offset = 0; 1178 break; 1179 case ARM::ADDri: 1180 case ARM::t2ADDri: 1181 case ARM::t2ADDri12: 1182 case ARM::t2ADDspImm: 1183 case ARM::t2ADDspImm12: 1184 Offset = -MI->getOperand(2).getImm(); 1185 break; 1186 case ARM::SUBri: 1187 case ARM::t2SUBri: 1188 case ARM::t2SUBri12: 1189 case ARM::t2SUBspImm: 1190 case ARM::t2SUBspImm12: 1191 Offset = MI->getOperand(2).getImm(); 1192 break; 1193 case ARM::tSUBspi: 1194 Offset = MI->getOperand(2).getImm()*4; 1195 break; 1196 case ARM::tADDspi: 1197 case ARM::tADDrSPi: 1198 Offset = -MI->getOperand(2).getImm()*4; 1199 break; 1200 case ARM::tLDRpci: { 1201 // Grab the constpool index and check, whether it corresponds to 1202 // original or cloned constpool entry. 1203 unsigned CPI = MI->getOperand(1).getIndex(); 1204 const MachineConstantPool *MCP = MF.getConstantPool(); 1205 if (CPI >= MCP->getConstants().size()) 1206 CPI = AFI->getOriginalCPIdx(CPI); 1207 assert(CPI != -1U && "Invalid constpool index"); 1208 1209 // Derive the actual offset. 1210 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1211 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1212 // FIXME: Check for user, it should be "add" instruction! 1213 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1214 break; 1215 } 1216 } 1217 1218 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1219 if (DstReg == FramePtr && FramePtr != ARM::SP) 1220 // Set-up of the frame pointer. Positive values correspond to "add" 1221 // instruction. 1222 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1223 else if (DstReg == ARM::SP) { 1224 // Change of SP by an offset. Positive values correspond to "sub" 1225 // instruction. 1226 ATS.emitPad(Offset); 1227 } else { 1228 // Move of SP to a register. Positive values correspond to an "add" 1229 // instruction. 1230 ATS.emitMovSP(DstReg, -Offset); 1231 } 1232 } 1233 } else if (DstReg == ARM::SP) { 1234 MI->print(errs()); 1235 llvm_unreachable("Unsupported opcode for unwinding information"); 1236 } else if (Opc == ARM::tMOVr) { 1237 // If a Thumb1 function spills r8-r11, we copy the values to low 1238 // registers before pushing them. Record the copy so we can emit the 1239 // correct ".save" later. 1240 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1241 } else { 1242 MI->print(errs()); 1243 llvm_unreachable("Unsupported opcode for unwinding information"); 1244 } 1245 } 1246 } 1247 1248 // Simple pseudo-instructions have their lowering (with expansion to real 1249 // instructions) auto-generated. 1250 #include "ARMGenMCPseudoLowering.inc" 1251 1252 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { 1253 const DataLayout &DL = getDataLayout(); 1254 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1255 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1256 1257 const MachineFunction &MF = *MI->getParent()->getParent(); 1258 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1259 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1260 1261 // If we just ended a constant pool, mark it as such. 1262 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1263 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1264 InConstantPool = false; 1265 } 1266 1267 // Emit unwinding stuff for frame-related instructions 1268 if (Subtarget->isTargetEHABICompatible() && 1269 MI->getFlag(MachineInstr::FrameSetup)) 1270 EmitUnwindingInstruction(MI); 1271 1272 // Do any auto-generated pseudo lowerings. 1273 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1274 return; 1275 1276 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1277 "Pseudo flag setting opcode should be expanded early"); 1278 1279 // Check for manual lowerings. 1280 unsigned Opc = MI->getOpcode(); 1281 switch (Opc) { 1282 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1283 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1284 case ARM::LEApcrel: 1285 case ARM::tLEApcrel: 1286 case ARM::t2LEApcrel: { 1287 // FIXME: Need to also handle globals and externals 1288 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1289 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1290 ARM::t2LEApcrel ? ARM::t2ADR 1291 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1292 : ARM::ADR)) 1293 .addReg(MI->getOperand(0).getReg()) 1294 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1295 // Add predicate operands. 1296 .addImm(MI->getOperand(2).getImm()) 1297 .addReg(MI->getOperand(3).getReg())); 1298 return; 1299 } 1300 case ARM::LEApcrelJT: 1301 case ARM::tLEApcrelJT: 1302 case ARM::t2LEApcrelJT: { 1303 MCSymbol *JTIPICSymbol = 1304 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1305 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1306 ARM::t2LEApcrelJT ? ARM::t2ADR 1307 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1308 : ARM::ADR)) 1309 .addReg(MI->getOperand(0).getReg()) 1310 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1311 // Add predicate operands. 1312 .addImm(MI->getOperand(2).getImm()) 1313 .addReg(MI->getOperand(3).getReg())); 1314 return; 1315 } 1316 // Darwin call instructions are just normal call instructions with different 1317 // clobber semantics (they clobber R9). 1318 case ARM::BX_CALL: { 1319 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1320 .addReg(ARM::LR) 1321 .addReg(ARM::PC) 1322 // Add predicate operands. 1323 .addImm(ARMCC::AL) 1324 .addReg(0) 1325 // Add 's' bit operand (always reg0 for this) 1326 .addReg(0)); 1327 1328 assert(Subtarget->hasV4TOps()); 1329 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1330 .addReg(MI->getOperand(0).getReg())); 1331 return; 1332 } 1333 case ARM::tBX_CALL: { 1334 if (Subtarget->hasV5TOps()) 1335 llvm_unreachable("Expected BLX to be selected for v5t+"); 1336 1337 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1338 // that the saved lr has its LSB set correctly (the arch doesn't 1339 // have blx). 1340 // So here we generate a bl to a small jump pad that does bx rN. 1341 // The jump pads are emitted after the function body. 1342 1343 Register TReg = MI->getOperand(0).getReg(); 1344 MCSymbol *TRegSym = nullptr; 1345 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1346 if (TIP.first == TReg) { 1347 TRegSym = TIP.second; 1348 break; 1349 } 1350 } 1351 1352 if (!TRegSym) { 1353 TRegSym = OutContext.createTempSymbol(); 1354 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1355 } 1356 1357 // Create a link-saving branch to the Reg Indirect Jump Pad. 1358 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1359 // Predicate comes first here. 1360 .addImm(ARMCC::AL).addReg(0) 1361 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1362 return; 1363 } 1364 case ARM::BMOVPCRX_CALL: { 1365 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1366 .addReg(ARM::LR) 1367 .addReg(ARM::PC) 1368 // Add predicate operands. 1369 .addImm(ARMCC::AL) 1370 .addReg(0) 1371 // Add 's' bit operand (always reg0 for this) 1372 .addReg(0)); 1373 1374 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1375 .addReg(ARM::PC) 1376 .addReg(MI->getOperand(0).getReg()) 1377 // Add predicate operands. 1378 .addImm(ARMCC::AL) 1379 .addReg(0) 1380 // Add 's' bit operand (always reg0 for this) 1381 .addReg(0)); 1382 return; 1383 } 1384 case ARM::BMOVPCB_CALL: { 1385 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1386 .addReg(ARM::LR) 1387 .addReg(ARM::PC) 1388 // Add predicate operands. 1389 .addImm(ARMCC::AL) 1390 .addReg(0) 1391 // Add 's' bit operand (always reg0 for this) 1392 .addReg(0)); 1393 1394 const MachineOperand &Op = MI->getOperand(0); 1395 const GlobalValue *GV = Op.getGlobal(); 1396 const unsigned TF = Op.getTargetFlags(); 1397 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1398 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1399 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1400 .addExpr(GVSymExpr) 1401 // Add predicate operands. 1402 .addImm(ARMCC::AL) 1403 .addReg(0)); 1404 return; 1405 } 1406 case ARM::MOVi16_ga_pcrel: 1407 case ARM::t2MOVi16_ga_pcrel: { 1408 MCInst TmpInst; 1409 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1410 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1411 1412 unsigned TF = MI->getOperand(1).getTargetFlags(); 1413 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1414 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1415 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1416 1417 MCSymbol *LabelSym = 1418 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1419 MI->getOperand(2).getImm(), OutContext); 1420 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1421 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1422 const MCExpr *PCRelExpr = 1423 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1424 MCBinaryExpr::createAdd(LabelSymExpr, 1425 MCConstantExpr::create(PCAdj, OutContext), 1426 OutContext), OutContext), OutContext); 1427 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1428 1429 // Add predicate operands. 1430 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1431 TmpInst.addOperand(MCOperand::createReg(0)); 1432 // Add 's' bit operand (always reg0 for this) 1433 TmpInst.addOperand(MCOperand::createReg(0)); 1434 EmitToStreamer(*OutStreamer, TmpInst); 1435 return; 1436 } 1437 case ARM::MOVTi16_ga_pcrel: 1438 case ARM::t2MOVTi16_ga_pcrel: { 1439 MCInst TmpInst; 1440 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1441 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1442 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1443 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1444 1445 unsigned TF = MI->getOperand(2).getTargetFlags(); 1446 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1447 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1448 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1449 1450 MCSymbol *LabelSym = 1451 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1452 MI->getOperand(3).getImm(), OutContext); 1453 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1454 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1455 const MCExpr *PCRelExpr = 1456 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1457 MCBinaryExpr::createAdd(LabelSymExpr, 1458 MCConstantExpr::create(PCAdj, OutContext), 1459 OutContext), OutContext), OutContext); 1460 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1461 // Add predicate operands. 1462 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1463 TmpInst.addOperand(MCOperand::createReg(0)); 1464 // Add 's' bit operand (always reg0 for this) 1465 TmpInst.addOperand(MCOperand::createReg(0)); 1466 EmitToStreamer(*OutStreamer, TmpInst); 1467 return; 1468 } 1469 case ARM::t2BFi: 1470 case ARM::t2BFic: 1471 case ARM::t2BFLi: 1472 case ARM::t2BFr: 1473 case ARM::t2BFLr: { 1474 // This is a Branch Future instruction. 1475 1476 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1477 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1478 MI->getOperand(0).getIndex(), OutContext), 1479 OutContext); 1480 1481 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1482 if (MI->getOperand(1).isReg()) { 1483 // For BFr/BFLr 1484 MCInst.addReg(MI->getOperand(1).getReg()); 1485 } else { 1486 // For BFi/BFLi/BFic 1487 const MCExpr *BranchTarget; 1488 if (MI->getOperand(1).isMBB()) 1489 BranchTarget = MCSymbolRefExpr::create( 1490 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1491 else if (MI->getOperand(1).isGlobal()) { 1492 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1493 BranchTarget = MCSymbolRefExpr::create( 1494 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1495 } else if (MI->getOperand(1).isSymbol()) { 1496 BranchTarget = MCSymbolRefExpr::create( 1497 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1498 OutContext); 1499 } else 1500 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1501 1502 MCInst.addExpr(BranchTarget); 1503 } 1504 1505 if (Opc == ARM::t2BFic) { 1506 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1507 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1508 MI->getOperand(2).getIndex(), OutContext), 1509 OutContext); 1510 MCInst.addExpr(ElseLabel); 1511 MCInst.addImm(MI->getOperand(3).getImm()); 1512 } else { 1513 MCInst.addImm(MI->getOperand(2).getImm()) 1514 .addReg(MI->getOperand(3).getReg()); 1515 } 1516 1517 EmitToStreamer(*OutStreamer, MCInst); 1518 return; 1519 } 1520 case ARM::t2BF_LabelPseudo: { 1521 // This is a pseudo op for a label used by a branch future instruction 1522 1523 // Emit the label. 1524 OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1525 getFunctionNumber(), 1526 MI->getOperand(0).getIndex(), OutContext)); 1527 return; 1528 } 1529 case ARM::tPICADD: { 1530 // This is a pseudo op for a label + instruction sequence, which looks like: 1531 // LPC0: 1532 // add r0, pc 1533 // This adds the address of LPC0 to r0. 1534 1535 // Emit the label. 1536 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1537 getFunctionNumber(), 1538 MI->getOperand(2).getImm(), OutContext)); 1539 1540 // Form and emit the add. 1541 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1542 .addReg(MI->getOperand(0).getReg()) 1543 .addReg(MI->getOperand(0).getReg()) 1544 .addReg(ARM::PC) 1545 // Add predicate operands. 1546 .addImm(ARMCC::AL) 1547 .addReg(0)); 1548 return; 1549 } 1550 case ARM::PICADD: { 1551 // This is a pseudo op for a label + instruction sequence, which looks like: 1552 // LPC0: 1553 // add r0, pc, r0 1554 // This adds the address of LPC0 to r0. 1555 1556 // Emit the label. 1557 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1558 getFunctionNumber(), 1559 MI->getOperand(2).getImm(), OutContext)); 1560 1561 // Form and emit the add. 1562 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1563 .addReg(MI->getOperand(0).getReg()) 1564 .addReg(ARM::PC) 1565 .addReg(MI->getOperand(1).getReg()) 1566 // Add predicate operands. 1567 .addImm(MI->getOperand(3).getImm()) 1568 .addReg(MI->getOperand(4).getReg()) 1569 // Add 's' bit operand (always reg0 for this) 1570 .addReg(0)); 1571 return; 1572 } 1573 case ARM::PICSTR: 1574 case ARM::PICSTRB: 1575 case ARM::PICSTRH: 1576 case ARM::PICLDR: 1577 case ARM::PICLDRB: 1578 case ARM::PICLDRH: 1579 case ARM::PICLDRSB: 1580 case ARM::PICLDRSH: { 1581 // This is a pseudo op for a label + instruction sequence, which looks like: 1582 // LPC0: 1583 // OP r0, [pc, r0] 1584 // The LCP0 label is referenced by a constant pool entry in order to get 1585 // a PC-relative address at the ldr instruction. 1586 1587 // Emit the label. 1588 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1589 getFunctionNumber(), 1590 MI->getOperand(2).getImm(), OutContext)); 1591 1592 // Form and emit the load 1593 unsigned Opcode; 1594 switch (MI->getOpcode()) { 1595 default: 1596 llvm_unreachable("Unexpected opcode!"); 1597 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1598 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1599 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1600 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1601 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1602 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1603 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1604 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1605 } 1606 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1607 .addReg(MI->getOperand(0).getReg()) 1608 .addReg(ARM::PC) 1609 .addReg(MI->getOperand(1).getReg()) 1610 .addImm(0) 1611 // Add predicate operands. 1612 .addImm(MI->getOperand(3).getImm()) 1613 .addReg(MI->getOperand(4).getReg())); 1614 1615 return; 1616 } 1617 case ARM::CONSTPOOL_ENTRY: { 1618 if (Subtarget->genExecuteOnly()) 1619 llvm_unreachable("execute-only should not generate constant pools"); 1620 1621 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1622 /// in the function. The first operand is the ID# for this instruction, the 1623 /// second is the index into the MachineConstantPool that this is, the third 1624 /// is the size in bytes of this constant pool entry. 1625 /// The required alignment is specified on the basic block holding this MI. 1626 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1627 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1628 1629 // If this is the first entry of the pool, mark it. 1630 if (!InConstantPool) { 1631 OutStreamer->emitDataRegion(MCDR_DataRegion); 1632 InConstantPool = true; 1633 } 1634 1635 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 1636 1637 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1638 if (MCPE.isMachineConstantPoolEntry()) 1639 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1640 else 1641 emitGlobalConstant(DL, MCPE.Val.ConstVal); 1642 return; 1643 } 1644 case ARM::JUMPTABLE_ADDRS: 1645 emitJumpTableAddrs(MI); 1646 return; 1647 case ARM::JUMPTABLE_INSTS: 1648 emitJumpTableInsts(MI); 1649 return; 1650 case ARM::JUMPTABLE_TBB: 1651 case ARM::JUMPTABLE_TBH: 1652 emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1653 return; 1654 case ARM::t2BR_JT: { 1655 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1656 .addReg(ARM::PC) 1657 .addReg(MI->getOperand(0).getReg()) 1658 // Add predicate operands. 1659 .addImm(ARMCC::AL) 1660 .addReg(0)); 1661 return; 1662 } 1663 case ARM::t2TBB_JT: 1664 case ARM::t2TBH_JT: { 1665 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1666 // Lower and emit the PC label, then the instruction itself. 1667 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1668 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1669 .addReg(MI->getOperand(0).getReg()) 1670 .addReg(MI->getOperand(1).getReg()) 1671 // Add predicate operands. 1672 .addImm(ARMCC::AL) 1673 .addReg(0)); 1674 return; 1675 } 1676 case ARM::tTBB_JT: 1677 case ARM::tTBH_JT: { 1678 1679 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1680 Register Base = MI->getOperand(0).getReg(); 1681 Register Idx = MI->getOperand(1).getReg(); 1682 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1683 1684 // Multiply up idx if necessary. 1685 if (!Is8Bit) 1686 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1687 .addReg(Idx) 1688 .addReg(ARM::CPSR) 1689 .addReg(Idx) 1690 .addImm(1) 1691 // Add predicate operands. 1692 .addImm(ARMCC::AL) 1693 .addReg(0)); 1694 1695 if (Base == ARM::PC) { 1696 // TBB [base, idx] = 1697 // ADDS idx, idx, base 1698 // LDRB idx, [idx, #4] ; or LDRH if TBH 1699 // LSLS idx, #1 1700 // ADDS pc, pc, idx 1701 1702 // When using PC as the base, it's important that there is no padding 1703 // between the last ADDS and the start of the jump table. The jump table 1704 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1705 // 1706 // FIXME: Ideally we could vary the LDRB index based on the padding 1707 // between the sequence and jump table, however that relies on MCExprs 1708 // for load indexes which are currently not supported. 1709 OutStreamer->emitCodeAlignment(4); 1710 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1711 .addReg(Idx) 1712 .addReg(Idx) 1713 .addReg(Base) 1714 // Add predicate operands. 1715 .addImm(ARMCC::AL) 1716 .addReg(0)); 1717 1718 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1719 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1720 .addReg(Idx) 1721 .addReg(Idx) 1722 .addImm(Is8Bit ? 4 : 2) 1723 // Add predicate operands. 1724 .addImm(ARMCC::AL) 1725 .addReg(0)); 1726 } else { 1727 // TBB [base, idx] = 1728 // LDRB idx, [base, idx] ; or LDRH if TBH 1729 // LSLS idx, #1 1730 // ADDS pc, pc, idx 1731 1732 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1733 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1734 .addReg(Idx) 1735 .addReg(Base) 1736 .addReg(Idx) 1737 // Add predicate operands. 1738 .addImm(ARMCC::AL) 1739 .addReg(0)); 1740 } 1741 1742 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1743 .addReg(Idx) 1744 .addReg(ARM::CPSR) 1745 .addReg(Idx) 1746 .addImm(1) 1747 // Add predicate operands. 1748 .addImm(ARMCC::AL) 1749 .addReg(0)); 1750 1751 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1752 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1753 .addReg(ARM::PC) 1754 .addReg(ARM::PC) 1755 .addReg(Idx) 1756 // Add predicate operands. 1757 .addImm(ARMCC::AL) 1758 .addReg(0)); 1759 return; 1760 } 1761 case ARM::tBR_JTr: 1762 case ARM::BR_JTr: { 1763 // mov pc, target 1764 MCInst TmpInst; 1765 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1766 ARM::MOVr : ARM::tMOVr; 1767 TmpInst.setOpcode(Opc); 1768 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1769 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1770 // Add predicate operands. 1771 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1772 TmpInst.addOperand(MCOperand::createReg(0)); 1773 // Add 's' bit operand (always reg0 for this) 1774 if (Opc == ARM::MOVr) 1775 TmpInst.addOperand(MCOperand::createReg(0)); 1776 EmitToStreamer(*OutStreamer, TmpInst); 1777 return; 1778 } 1779 case ARM::BR_JTm_i12: { 1780 // ldr pc, target 1781 MCInst TmpInst; 1782 TmpInst.setOpcode(ARM::LDRi12); 1783 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1784 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1785 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1786 // Add predicate operands. 1787 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1788 TmpInst.addOperand(MCOperand::createReg(0)); 1789 EmitToStreamer(*OutStreamer, TmpInst); 1790 return; 1791 } 1792 case ARM::BR_JTm_rs: { 1793 // ldr pc, target 1794 MCInst TmpInst; 1795 TmpInst.setOpcode(ARM::LDRrs); 1796 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1797 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1798 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1799 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1800 // Add predicate operands. 1801 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1802 TmpInst.addOperand(MCOperand::createReg(0)); 1803 EmitToStreamer(*OutStreamer, TmpInst); 1804 return; 1805 } 1806 case ARM::BR_JTadd: { 1807 // add pc, target, idx 1808 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1809 .addReg(ARM::PC) 1810 .addReg(MI->getOperand(0).getReg()) 1811 .addReg(MI->getOperand(1).getReg()) 1812 // Add predicate operands. 1813 .addImm(ARMCC::AL) 1814 .addReg(0) 1815 // Add 's' bit operand (always reg0 for this) 1816 .addReg(0)); 1817 return; 1818 } 1819 case ARM::SPACE: 1820 OutStreamer->emitZeros(MI->getOperand(1).getImm()); 1821 return; 1822 case ARM::TRAP: { 1823 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1824 // FIXME: Remove this special case when they do. 1825 if (!Subtarget->isTargetMachO()) { 1826 uint32_t Val = 0xe7ffdefeUL; 1827 OutStreamer->AddComment("trap"); 1828 ATS.emitInst(Val); 1829 return; 1830 } 1831 break; 1832 } 1833 case ARM::TRAPNaCl: { 1834 uint32_t Val = 0xe7fedef0UL; 1835 OutStreamer->AddComment("trap"); 1836 ATS.emitInst(Val); 1837 return; 1838 } 1839 case ARM::tTRAP: { 1840 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1841 // FIXME: Remove this special case when they do. 1842 if (!Subtarget->isTargetMachO()) { 1843 uint16_t Val = 0xdefe; 1844 OutStreamer->AddComment("trap"); 1845 ATS.emitInst(Val, 'n'); 1846 return; 1847 } 1848 break; 1849 } 1850 case ARM::t2Int_eh_sjlj_setjmp: 1851 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1852 case ARM::tInt_eh_sjlj_setjmp: { 1853 // Two incoming args: GPR:$src, GPR:$val 1854 // mov $val, pc 1855 // adds $val, #7 1856 // str $val, [$src, #4] 1857 // movs r0, #0 1858 // b LSJLJEH 1859 // movs r0, #1 1860 // LSJLJEH: 1861 Register SrcReg = MI->getOperand(0).getReg(); 1862 Register ValReg = MI->getOperand(1).getReg(); 1863 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1864 OutStreamer->AddComment("eh_setjmp begin"); 1865 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1866 .addReg(ValReg) 1867 .addReg(ARM::PC) 1868 // Predicate. 1869 .addImm(ARMCC::AL) 1870 .addReg(0)); 1871 1872 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1873 .addReg(ValReg) 1874 // 's' bit operand 1875 .addReg(ARM::CPSR) 1876 .addReg(ValReg) 1877 .addImm(7) 1878 // Predicate. 1879 .addImm(ARMCC::AL) 1880 .addReg(0)); 1881 1882 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1883 .addReg(ValReg) 1884 .addReg(SrcReg) 1885 // The offset immediate is #4. The operand value is scaled by 4 for the 1886 // tSTR instruction. 1887 .addImm(1) 1888 // Predicate. 1889 .addImm(ARMCC::AL) 1890 .addReg(0)); 1891 1892 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1893 .addReg(ARM::R0) 1894 .addReg(ARM::CPSR) 1895 .addImm(0) 1896 // Predicate. 1897 .addImm(ARMCC::AL) 1898 .addReg(0)); 1899 1900 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1901 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1902 .addExpr(SymbolExpr) 1903 .addImm(ARMCC::AL) 1904 .addReg(0)); 1905 1906 OutStreamer->AddComment("eh_setjmp end"); 1907 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1908 .addReg(ARM::R0) 1909 .addReg(ARM::CPSR) 1910 .addImm(1) 1911 // Predicate. 1912 .addImm(ARMCC::AL) 1913 .addReg(0)); 1914 1915 OutStreamer->emitLabel(Label); 1916 return; 1917 } 1918 1919 case ARM::Int_eh_sjlj_setjmp_nofp: 1920 case ARM::Int_eh_sjlj_setjmp: { 1921 // Two incoming args: GPR:$src, GPR:$val 1922 // add $val, pc, #8 1923 // str $val, [$src, #+4] 1924 // mov r0, #0 1925 // add pc, pc, #0 1926 // mov r0, #1 1927 Register SrcReg = MI->getOperand(0).getReg(); 1928 Register ValReg = MI->getOperand(1).getReg(); 1929 1930 OutStreamer->AddComment("eh_setjmp begin"); 1931 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1932 .addReg(ValReg) 1933 .addReg(ARM::PC) 1934 .addImm(8) 1935 // Predicate. 1936 .addImm(ARMCC::AL) 1937 .addReg(0) 1938 // 's' bit operand (always reg0 for this). 1939 .addReg(0)); 1940 1941 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1942 .addReg(ValReg) 1943 .addReg(SrcReg) 1944 .addImm(4) 1945 // Predicate. 1946 .addImm(ARMCC::AL) 1947 .addReg(0)); 1948 1949 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1950 .addReg(ARM::R0) 1951 .addImm(0) 1952 // Predicate. 1953 .addImm(ARMCC::AL) 1954 .addReg(0) 1955 // 's' bit operand (always reg0 for this). 1956 .addReg(0)); 1957 1958 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1959 .addReg(ARM::PC) 1960 .addReg(ARM::PC) 1961 .addImm(0) 1962 // Predicate. 1963 .addImm(ARMCC::AL) 1964 .addReg(0) 1965 // 's' bit operand (always reg0 for this). 1966 .addReg(0)); 1967 1968 OutStreamer->AddComment("eh_setjmp end"); 1969 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1970 .addReg(ARM::R0) 1971 .addImm(1) 1972 // Predicate. 1973 .addImm(ARMCC::AL) 1974 .addReg(0) 1975 // 's' bit operand (always reg0 for this). 1976 .addReg(0)); 1977 return; 1978 } 1979 case ARM::Int_eh_sjlj_longjmp: { 1980 // ldr sp, [$src, #8] 1981 // ldr $scratch, [$src, #4] 1982 // ldr r7, [$src] 1983 // bx $scratch 1984 Register SrcReg = MI->getOperand(0).getReg(); 1985 Register ScratchReg = MI->getOperand(1).getReg(); 1986 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1987 .addReg(ARM::SP) 1988 .addReg(SrcReg) 1989 .addImm(8) 1990 // Predicate. 1991 .addImm(ARMCC::AL) 1992 .addReg(0)); 1993 1994 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1995 .addReg(ScratchReg) 1996 .addReg(SrcReg) 1997 .addImm(4) 1998 // Predicate. 1999 .addImm(ARMCC::AL) 2000 .addReg(0)); 2001 2002 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2003 // These platforms always use the same frame register 2004 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2005 .addReg(FramePtr) 2006 .addReg(SrcReg) 2007 .addImm(0) 2008 // Predicate. 2009 .addImm(ARMCC::AL) 2010 .addReg(0)); 2011 } else { 2012 // If the calling code might use either R7 or R11 as 2013 // frame pointer register, restore it into both. 2014 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2015 .addReg(ARM::R7) 2016 .addReg(SrcReg) 2017 .addImm(0) 2018 // Predicate. 2019 .addImm(ARMCC::AL) 2020 .addReg(0)); 2021 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2022 .addReg(ARM::R11) 2023 .addReg(SrcReg) 2024 .addImm(0) 2025 // Predicate. 2026 .addImm(ARMCC::AL) 2027 .addReg(0)); 2028 } 2029 2030 assert(Subtarget->hasV4TOps()); 2031 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2032 .addReg(ScratchReg) 2033 // Predicate. 2034 .addImm(ARMCC::AL) 2035 .addReg(0)); 2036 return; 2037 } 2038 case ARM::tInt_eh_sjlj_longjmp: { 2039 // ldr $scratch, [$src, #8] 2040 // mov sp, $scratch 2041 // ldr $scratch, [$src, #4] 2042 // ldr r7, [$src] 2043 // bx $scratch 2044 Register SrcReg = MI->getOperand(0).getReg(); 2045 Register ScratchReg = MI->getOperand(1).getReg(); 2046 2047 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2048 .addReg(ScratchReg) 2049 .addReg(SrcReg) 2050 // The offset immediate is #8. The operand value is scaled by 4 for the 2051 // tLDR instruction. 2052 .addImm(2) 2053 // Predicate. 2054 .addImm(ARMCC::AL) 2055 .addReg(0)); 2056 2057 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2058 .addReg(ARM::SP) 2059 .addReg(ScratchReg) 2060 // Predicate. 2061 .addImm(ARMCC::AL) 2062 .addReg(0)); 2063 2064 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2065 .addReg(ScratchReg) 2066 .addReg(SrcReg) 2067 .addImm(1) 2068 // Predicate. 2069 .addImm(ARMCC::AL) 2070 .addReg(0)); 2071 2072 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2073 // These platforms always use the same frame register 2074 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2075 .addReg(FramePtr) 2076 .addReg(SrcReg) 2077 .addImm(0) 2078 // Predicate. 2079 .addImm(ARMCC::AL) 2080 .addReg(0)); 2081 } else { 2082 // If the calling code might use either R7 or R11 as 2083 // frame pointer register, restore it into both. 2084 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2085 .addReg(ARM::R7) 2086 .addReg(SrcReg) 2087 .addImm(0) 2088 // Predicate. 2089 .addImm(ARMCC::AL) 2090 .addReg(0)); 2091 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2092 .addReg(ARM::R11) 2093 .addReg(SrcReg) 2094 .addImm(0) 2095 // Predicate. 2096 .addImm(ARMCC::AL) 2097 .addReg(0)); 2098 } 2099 2100 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2101 .addReg(ScratchReg) 2102 // Predicate. 2103 .addImm(ARMCC::AL) 2104 .addReg(0)); 2105 return; 2106 } 2107 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2108 // ldr.w r11, [$src, #0] 2109 // ldr.w sp, [$src, #8] 2110 // ldr.w pc, [$src, #4] 2111 2112 Register SrcReg = MI->getOperand(0).getReg(); 2113 2114 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2115 .addReg(ARM::R11) 2116 .addReg(SrcReg) 2117 .addImm(0) 2118 // Predicate 2119 .addImm(ARMCC::AL) 2120 .addReg(0)); 2121 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2122 .addReg(ARM::SP) 2123 .addReg(SrcReg) 2124 .addImm(8) 2125 // Predicate 2126 .addImm(ARMCC::AL) 2127 .addReg(0)); 2128 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2129 .addReg(ARM::PC) 2130 .addReg(SrcReg) 2131 .addImm(4) 2132 // Predicate 2133 .addImm(ARMCC::AL) 2134 .addReg(0)); 2135 return; 2136 } 2137 case ARM::PATCHABLE_FUNCTION_ENTER: 2138 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2139 return; 2140 case ARM::PATCHABLE_FUNCTION_EXIT: 2141 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2142 return; 2143 case ARM::PATCHABLE_TAIL_CALL: 2144 LowerPATCHABLE_TAIL_CALL(*MI); 2145 return; 2146 } 2147 2148 MCInst TmpInst; 2149 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2150 2151 EmitToStreamer(*OutStreamer, TmpInst); 2152 } 2153 2154 //===----------------------------------------------------------------------===// 2155 // Target Registry Stuff 2156 //===----------------------------------------------------------------------===// 2157 2158 // Force static initialization. 2159 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { 2160 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2161 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2162 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2163 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2164 } 2165