1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format ARM assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMAsmPrinter.h"
15 #include "ARM.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMTargetMachine.h"
19 #include "ARMTargetObjectFile.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMMCExpr.h"
23 #include "TargetInfo/ARMTargetInfo.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/TargetParser.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetMachine.h"
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "asm-printer"
54 
55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
56                              std::unique_ptr<MCStreamer> Streamer)
57     : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr),
58       MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {}
59 
60 void ARMAsmPrinter::emitFunctionBodyEnd() {
61   // Make sure to terminate any constant pools that were at the end
62   // of the function.
63   if (!InConstantPool)
64     return;
65   InConstantPool = false;
66   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
67 }
68 
69 void ARMAsmPrinter::emitFunctionEntryLabel() {
70   if (AFI->isThumbFunction()) {
71     OutStreamer->emitAssemblerFlag(MCAF_Code16);
72     OutStreamer->emitThumbFunc(CurrentFnSym);
73   } else {
74     OutStreamer->emitAssemblerFlag(MCAF_Code32);
75   }
76   OutStreamer->emitLabel(CurrentFnSym);
77 }
78 
79 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) {
80   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
81   assert(Size && "C++ constructor pointer had zero size!");
82 
83   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
84   assert(GV && "C++ constructor pointer was not a GlobalValue!");
85 
86   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
87                                                            ARMII::MO_NO_FLAG),
88                                             (Subtarget->isTargetELF()
89                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
90                                              : MCSymbolRefExpr::VK_None),
91                                             OutContext);
92 
93   OutStreamer->emitValue(E, Size);
94 }
95 
96 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
97   if (PromotedGlobals.count(GV))
98     // The global was promoted into a constant pool. It should not be emitted.
99     return;
100   AsmPrinter::emitGlobalVariable(GV);
101 }
102 
103 /// runOnMachineFunction - This uses the emitInstruction()
104 /// method to print assembly for each instruction.
105 ///
106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
107   AFI = MF.getInfo<ARMFunctionInfo>();
108   MCP = MF.getConstantPool();
109   Subtarget = &MF.getSubtarget<ARMSubtarget>();
110 
111   SetupMachineFunction(MF);
112   const Function &F = MF.getFunction();
113   const TargetMachine& TM = MF.getTarget();
114 
115   // Collect all globals that had their storage promoted to a constant pool.
116   // Functions are emitted before variables, so this accumulates promoted
117   // globals from all functions in PromotedGlobals.
118   for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
119     PromotedGlobals.insert(GV);
120 
121   // Calculate this function's optimization goal.
122   unsigned OptimizationGoal;
123   if (F.hasOptNone())
124     // For best debugging illusion, speed and small size sacrificed
125     OptimizationGoal = 6;
126   else if (F.hasMinSize())
127     // Aggressively for small size, speed and debug illusion sacrificed
128     OptimizationGoal = 4;
129   else if (F.hasOptSize())
130     // For small size, but speed and debugging illusion preserved
131     OptimizationGoal = 3;
132   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
133     // Aggressively for speed, small size and debug illusion sacrificed
134     OptimizationGoal = 2;
135   else if (TM.getOptLevel() > CodeGenOpt::None)
136     // For speed, but small size and good debug illusion preserved
137     OptimizationGoal = 1;
138   else // TM.getOptLevel() == CodeGenOpt::None
139     // For good debugging, but speed and small size preserved
140     OptimizationGoal = 5;
141 
142   // Combine a new optimization goal with existing ones.
143   if (OptimizationGoals == -1) // uninitialized goals
144     OptimizationGoals = OptimizationGoal;
145   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
146     OptimizationGoals = 0;
147 
148   if (Subtarget->isTargetCOFF()) {
149     bool Internal = F.hasInternalLinkage();
150     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
151                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
152     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
153 
154     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
155     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
156     OutStreamer->EmitCOFFSymbolType(Type);
157     OutStreamer->EndCOFFSymbolDef();
158   }
159 
160   // Emit the rest of the function body.
161   emitFunctionBody();
162 
163   // Emit the XRay table for this function.
164   emitXRayTable();
165 
166   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
167   // These are created per function, rather than per TU, since it's
168   // relatively easy to exceed the thumb branch range within a TU.
169   if (! ThumbIndirectPads.empty()) {
170     OutStreamer->emitAssemblerFlag(MCAF_Code16);
171     emitAlignment(Align(2));
172     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
173       OutStreamer->emitLabel(TIP.second);
174       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
175         .addReg(TIP.first)
176         // Add predicate operands.
177         .addImm(ARMCC::AL)
178         .addReg(0));
179     }
180     ThumbIndirectPads.clear();
181   }
182 
183   // We didn't modify anything.
184   return false;
185 }
186 
187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
188                                        raw_ostream &O) {
189   assert(MO.isGlobal() && "caller should check MO.isGlobal");
190   unsigned TF = MO.getTargetFlags();
191   if (TF & ARMII::MO_LO16)
192     O << ":lower16:";
193   else if (TF & ARMII::MO_HI16)
194     O << ":upper16:";
195   GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI);
196   printOffset(MO.getOffset(), O);
197 }
198 
199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
200                                  raw_ostream &O) {
201   const MachineOperand &MO = MI->getOperand(OpNum);
202 
203   switch (MO.getType()) {
204   default: llvm_unreachable("<unknown operand type>");
205   case MachineOperand::MO_Register: {
206     Register Reg = MO.getReg();
207     assert(Register::isPhysicalRegister(Reg));
208     assert(!MO.getSubReg() && "Subregs should be eliminated!");
209     if(ARM::GPRPairRegClass.contains(Reg)) {
210       const MachineFunction &MF = *MI->getParent()->getParent();
211       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
212       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
213     }
214     O << ARMInstPrinter::getRegisterName(Reg);
215     break;
216   }
217   case MachineOperand::MO_Immediate: {
218     O << '#';
219     unsigned TF = MO.getTargetFlags();
220     if (TF == ARMII::MO_LO16)
221       O << ":lower16:";
222     else if (TF == ARMII::MO_HI16)
223       O << ":upper16:";
224     O << MO.getImm();
225     break;
226   }
227   case MachineOperand::MO_MachineBasicBlock:
228     MO.getMBB()->getSymbol()->print(O, MAI);
229     return;
230   case MachineOperand::MO_GlobalAddress: {
231     PrintSymbolOperand(MO, O);
232     break;
233   }
234   case MachineOperand::MO_ConstantPoolIndex:
235     if (Subtarget->genExecuteOnly())
236       llvm_unreachable("execute-only should not generate constant pools");
237     GetCPISymbol(MO.getIndex())->print(O, MAI);
238     break;
239   }
240 }
241 
242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
243   // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
244   // indexes in MachineConstantPool, which isn't in sync with indexes used here.
245   const DataLayout &DL = getDataLayout();
246   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
247                                       "CPI" + Twine(getFunctionNumber()) + "_" +
248                                       Twine(CPID));
249 }
250 
251 //===--------------------------------------------------------------------===//
252 
253 MCSymbol *ARMAsmPrinter::
254 GetARMJTIPICJumpTableLabel(unsigned uid) const {
255   const DataLayout &DL = getDataLayout();
256   SmallString<60> Name;
257   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
258                             << getFunctionNumber() << '_' << uid;
259   return OutContext.getOrCreateSymbol(Name);
260 }
261 
262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
263                                     const char *ExtraCode, raw_ostream &O) {
264   // Does this asm operand have a single letter operand modifier?
265   if (ExtraCode && ExtraCode[0]) {
266     if (ExtraCode[1] != 0) return true; // Unknown modifier.
267 
268     switch (ExtraCode[0]) {
269     default:
270       // See if this is a generic print operand
271       return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
272     case 'P': // Print a VFP double precision register.
273     case 'q': // Print a NEON quad precision register.
274       printOperand(MI, OpNum, O);
275       return false;
276     case 'y': // Print a VFP single precision register as indexed double.
277       if (MI->getOperand(OpNum).isReg()) {
278         Register Reg = MI->getOperand(OpNum).getReg();
279         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
280         // Find the 'd' register that has this 's' register as a sub-register,
281         // and determine the lane number.
282         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
283           if (!ARM::DPRRegClass.contains(*SR))
284             continue;
285           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
286           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
287           return false;
288         }
289       }
290       return true;
291     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
292       if (!MI->getOperand(OpNum).isImm())
293         return true;
294       O << ~(MI->getOperand(OpNum).getImm());
295       return false;
296     case 'L': // The low 16 bits of an immediate constant.
297       if (!MI->getOperand(OpNum).isImm())
298         return true;
299       O << (MI->getOperand(OpNum).getImm() & 0xffff);
300       return false;
301     case 'M': { // A register range suitable for LDM/STM.
302       if (!MI->getOperand(OpNum).isReg())
303         return true;
304       const MachineOperand &MO = MI->getOperand(OpNum);
305       Register RegBegin = MO.getReg();
306       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
307       // already got the operands in registers that are operands to the
308       // inline asm statement.
309       O << "{";
310       if (ARM::GPRPairRegClass.contains(RegBegin)) {
311         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
312         Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
313         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
314         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
315       }
316       O << ARMInstPrinter::getRegisterName(RegBegin);
317 
318       // FIXME: The register allocator not only may not have given us the
319       // registers in sequence, but may not be in ascending registers. This
320       // will require changes in the register allocator that'll need to be
321       // propagated down here if the operands change.
322       unsigned RegOps = OpNum + 1;
323       while (MI->getOperand(RegOps).isReg()) {
324         O << ", "
325           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
326         RegOps++;
327       }
328 
329       O << "}";
330 
331       return false;
332     }
333     case 'R': // The most significant register of a pair.
334     case 'Q': { // The least significant register of a pair.
335       if (OpNum == 0)
336         return true;
337       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
338       if (!FlagsOP.isImm())
339         return true;
340       unsigned Flags = FlagsOP.getImm();
341 
342       // This operand may not be the one that actually provides the register. If
343       // it's tied to a previous one then we should refer instead to that one
344       // for registers and their classes.
345       unsigned TiedIdx;
346       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
347         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
348           unsigned OpFlags = MI->getOperand(OpNum).getImm();
349           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
350         }
351         Flags = MI->getOperand(OpNum).getImm();
352 
353         // Later code expects OpNum to be pointing at the register rather than
354         // the flags.
355         OpNum += 1;
356       }
357 
358       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
359       unsigned RC;
360       bool FirstHalf;
361       const ARMBaseTargetMachine &ATM =
362         static_cast<const ARMBaseTargetMachine &>(TM);
363 
364       // 'Q' should correspond to the low order register and 'R' to the high
365       // order register.  Whether this corresponds to the upper or lower half
366       // depends on the endianess mode.
367       if (ExtraCode[0] == 'Q')
368         FirstHalf = ATM.isLittleEndian();
369       else
370         // ExtraCode[0] == 'R'.
371         FirstHalf = !ATM.isLittleEndian();
372       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
373       if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
374           ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
375         if (NumVals != 1)
376           return true;
377         const MachineOperand &MO = MI->getOperand(OpNum);
378         if (!MO.isReg())
379           return true;
380         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
381         Register Reg =
382             TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1);
383         O << ARMInstPrinter::getRegisterName(Reg);
384         return false;
385       }
386       if (NumVals != 2)
387         return true;
388       unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
389       if (RegOp >= MI->getNumOperands())
390         return true;
391       const MachineOperand &MO = MI->getOperand(RegOp);
392       if (!MO.isReg())
393         return true;
394       Register Reg = MO.getReg();
395       O << ARMInstPrinter::getRegisterName(Reg);
396       return false;
397     }
398 
399     case 'e': // The low doubleword register of a NEON quad register.
400     case 'f': { // The high doubleword register of a NEON quad register.
401       if (!MI->getOperand(OpNum).isReg())
402         return true;
403       Register Reg = MI->getOperand(OpNum).getReg();
404       if (!ARM::QPRRegClass.contains(Reg))
405         return true;
406       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
407       Register SubReg =
408           TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1);
409       O << ARMInstPrinter::getRegisterName(SubReg);
410       return false;
411     }
412 
413     // This modifier is not yet supported.
414     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
415       return true;
416     case 'H': { // The highest-numbered register of a pair.
417       const MachineOperand &MO = MI->getOperand(OpNum);
418       if (!MO.isReg())
419         return true;
420       const MachineFunction &MF = *MI->getParent()->getParent();
421       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
422       Register Reg = MO.getReg();
423       if(!ARM::GPRPairRegClass.contains(Reg))
424         return false;
425       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
426       O << ARMInstPrinter::getRegisterName(Reg);
427       return false;
428     }
429     }
430   }
431 
432   printOperand(MI, OpNum, O);
433   return false;
434 }
435 
436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
437                                           unsigned OpNum, const char *ExtraCode,
438                                           raw_ostream &O) {
439   // Does this asm operand have a single letter operand modifier?
440   if (ExtraCode && ExtraCode[0]) {
441     if (ExtraCode[1] != 0) return true; // Unknown modifier.
442 
443     switch (ExtraCode[0]) {
444       case 'A': // A memory operand for a VLD1/VST1 instruction.
445       default: return true;  // Unknown modifier.
446       case 'm': // The base register of a memory operand.
447         if (!MI->getOperand(OpNum).isReg())
448           return true;
449         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
450         return false;
451     }
452   }
453 
454   const MachineOperand &MO = MI->getOperand(OpNum);
455   assert(MO.isReg() && "unexpected inline asm memory operand");
456   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
457   return false;
458 }
459 
460 static bool isThumb(const MCSubtargetInfo& STI) {
461   return STI.getFeatureBits()[ARM::ModeThumb];
462 }
463 
464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
465                                      const MCSubtargetInfo *EndInfo) const {
466   // If either end mode is unknown (EndInfo == NULL) or different than
467   // the start mode, then restore the start mode.
468   const bool WasThumb = isThumb(StartInfo);
469   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
470     OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
471   }
472 }
473 
474 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) {
475   const Triple &TT = TM.getTargetTriple();
476   // Use unified assembler syntax.
477   OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified);
478 
479   // Emit ARM Build Attributes
480   if (TT.isOSBinFormatELF())
481     emitAttributes();
482 
483   // Use the triple's architecture and subarchitecture to determine
484   // if we're thumb for the purposes of the top level code16 assembler
485   // flag.
486   if (!M.getModuleInlineAsm().empty() && TT.isThumb())
487     OutStreamer->emitAssemblerFlag(MCAF_Code16);
488 }
489 
490 static void
491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
492                          MachineModuleInfoImpl::StubValueTy &MCSym) {
493   // L_foo$stub:
494   OutStreamer.emitLabel(StubLabel);
495   //   .indirect_symbol _foo
496   OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
497 
498   if (MCSym.getInt())
499     // External to current translation unit.
500     OutStreamer.emitIntValue(0, 4/*size*/);
501   else
502     // Internal to current translation unit.
503     //
504     // When we place the LSDA into the TEXT section, the type info
505     // pointers need to be indirect and pc-rel. We accomplish this by
506     // using NLPs; however, sometimes the types are local to the file.
507     // We need to fill in the value for the NLP in those cases.
508     OutStreamer.emitValue(
509         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
510         4 /*size*/);
511 }
512 
513 
514 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) {
515   const Triple &TT = TM.getTargetTriple();
516   if (TT.isOSBinFormatMachO()) {
517     // All darwin targets use mach-o.
518     const TargetLoweringObjectFileMachO &TLOFMacho =
519       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
520     MachineModuleInfoMachO &MMIMacho =
521       MMI->getObjFileInfo<MachineModuleInfoMachO>();
522 
523     // Output non-lazy-pointers for external and common global variables.
524     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
525 
526     if (!Stubs.empty()) {
527       // Switch with ".non_lazy_symbol_pointer" directive.
528       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
529       emitAlignment(Align(4));
530 
531       for (auto &Stub : Stubs)
532         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
533 
534       Stubs.clear();
535       OutStreamer->AddBlankLine();
536     }
537 
538     Stubs = MMIMacho.GetThreadLocalGVStubList();
539     if (!Stubs.empty()) {
540       // Switch with ".non_lazy_symbol_pointer" directive.
541       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
542       emitAlignment(Align(4));
543 
544       for (auto &Stub : Stubs)
545         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
546 
547       Stubs.clear();
548       OutStreamer->AddBlankLine();
549     }
550 
551     // Funny Darwin hack: This flag tells the linker that no global symbols
552     // contain code that falls through to other global symbols (e.g. the obvious
553     // implementation of multiple entry points).  If this doesn't occur, the
554     // linker can safely perform dead code stripping.  Since LLVM never
555     // generates code that does this, it is always safe to set.
556     OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols);
557   }
558 
559   // The last attribute to be emitted is ABI_optimization_goals
560   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
561   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
562 
563   if (OptimizationGoals > 0 &&
564       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
565        Subtarget->isTargetMuslAEABI()))
566     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
567   OptimizationGoals = -1;
568 
569   ATS.finishAttributeSection();
570 }
571 
572 //===----------------------------------------------------------------------===//
573 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile()
574 // FIXME:
575 // The following seem like one-off assembler flags, but they actually need
576 // to appear in the .ARM.attributes section in ELF.
577 // Instead of subclassing the MCELFStreamer, we do the work here.
578 
579  // Returns true if all functions have the same function attribute value.
580  // It also returns true when the module has no functions.
581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
582                                                StringRef Value) {
583    return !any_of(M, [&](const Function &F) {
584        return F.getFnAttribute(Attr).getValueAsString() != Value;
585    });
586 }
587 // Returns true if all functions have the same denormal mode.
588 // It also returns true when the module has no functions.
589 static bool checkDenormalAttributeConsistency(const Module &M,
590                                               StringRef Attr,
591                                               DenormalMode Value) {
592   return !any_of(M, [&](const Function &F) {
593     StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString();
594     return parseDenormalFPAttribute(AttrVal) != Value;
595   });
596 }
597 
598 void ARMAsmPrinter::emitAttributes() {
599   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
600   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
601 
602   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
603 
604   ATS.switchVendor("aeabi");
605 
606   // Compute ARM ELF Attributes based on the default subtarget that
607   // we'd have constructed. The existing ARM behavior isn't LTO clean
608   // anyhow.
609   // FIXME: For ifunc related functions we could iterate over and look
610   // for a feature string that doesn't match the default one.
611   const Triple &TT = TM.getTargetTriple();
612   StringRef CPU = TM.getTargetCPU();
613   StringRef FS = TM.getTargetFeatureString();
614   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
615   if (!FS.empty()) {
616     if (!ArchFS.empty())
617       ArchFS = (Twine(ArchFS) + "," + FS).str();
618     else
619       ArchFS = std::string(FS);
620   }
621   const ARMBaseTargetMachine &ATM =
622       static_cast<const ARMBaseTargetMachine &>(TM);
623   const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM,
624                          ATM.isLittleEndian());
625 
626   // Emit build attributes for the available hardware.
627   ATS.emitTargetAttributes(STI);
628 
629   // RW data addressing.
630   if (isPositionIndependent()) {
631     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
632                       ARMBuildAttrs::AddressRWPCRel);
633   } else if (STI.isRWPI()) {
634     // RWPI specific attributes.
635     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
636                       ARMBuildAttrs::AddressRWSBRel);
637   }
638 
639   // RO data addressing.
640   if (isPositionIndependent() || STI.isROPI()) {
641     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
642                       ARMBuildAttrs::AddressROPCRel);
643   }
644 
645   // GOT use.
646   if (isPositionIndependent()) {
647     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
648                       ARMBuildAttrs::AddressGOT);
649   } else {
650     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
651                       ARMBuildAttrs::AddressDirect);
652   }
653 
654   // Set FP Denormals.
655   if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math",
656                                         DenormalMode::getPreserveSign()))
657     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
658                       ARMBuildAttrs::PreserveFPSign);
659   else if (checkDenormalAttributeConsistency(*MMI->getModule(),
660                                              "denormal-fp-math",
661                                              DenormalMode::getPositiveZero()))
662     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
663                       ARMBuildAttrs::PositiveZero);
664   else if (!TM.Options.UnsafeFPMath)
665     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
666                       ARMBuildAttrs::IEEEDenormals);
667   else {
668     if (!STI.hasVFP2Base()) {
669       // When the target doesn't have an FPU (by design or
670       // intention), the assumptions made on the software support
671       // mirror that of the equivalent hardware support *if it
672       // existed*. For v7 and better we indicate that denormals are
673       // flushed preserving sign, and for V6 we indicate that
674       // denormals are flushed to positive zero.
675       if (STI.hasV7Ops())
676         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
677                           ARMBuildAttrs::PreserveFPSign);
678     } else if (STI.hasVFP3Base()) {
679       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
680       // the sign bit of the zero matches the sign bit of the input or
681       // result that is being flushed to zero.
682       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
683                         ARMBuildAttrs::PreserveFPSign);
684     }
685     // For VFPv2 implementations it is implementation defined as
686     // to whether denormals are flushed to positive zero or to
687     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
688     // LLVM has chosen to flush this to positive zero (most likely for
689     // GCC compatibility), so that's the chosen value here (the
690     // absence of its emission implies zero).
691   }
692 
693   // Set FP exceptions and rounding
694   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
695                                          "no-trapping-math", "true") ||
696       TM.Options.NoTrappingFPMath)
697     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
698                       ARMBuildAttrs::Not_Allowed);
699   else if (!TM.Options.UnsafeFPMath) {
700     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
701 
702     // If the user has permitted this code to choose the IEEE 754
703     // rounding at run-time, emit the rounding attribute.
704     if (TM.Options.HonorSignDependentRoundingFPMathOption)
705       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
706   }
707 
708   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
709   // equivalent of GCC's -ffinite-math-only flag.
710   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
711     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
712                       ARMBuildAttrs::Allowed);
713   else
714     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
715                       ARMBuildAttrs::AllowIEEE754);
716 
717   // FIXME: add more flags to ARMBuildAttributes.h
718   // 8-bytes alignment stuff.
719   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
720   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
721 
722   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
723   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
724     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
725 
726   // FIXME: To support emitting this build attribute as GCC does, the
727   // -mfp16-format option and associated plumbing must be
728   // supported. For now the __fp16 type is exposed by default, so this
729   // attribute should be emitted with value 1.
730   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
731                     ARMBuildAttrs::FP16FormatIEEE);
732 
733   if (MMI) {
734     if (const Module *SourceModule = MMI->getModule()) {
735       // ABI_PCS_wchar_t to indicate wchar_t width
736       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
737       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
738               SourceModule->getModuleFlag("wchar_size"))) {
739         int WCharWidth = WCharWidthValue->getZExtValue();
740         assert((WCharWidth == 2 || WCharWidth == 4) &&
741                "wchar_t width must be 2 or 4 bytes");
742         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
743       }
744 
745       // ABI_enum_size to indicate enum width
746       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
747       //        (all enums contain a value needing 32 bits to encode).
748       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
749               SourceModule->getModuleFlag("min_enum_size"))) {
750         int EnumWidth = EnumWidthValue->getZExtValue();
751         assert((EnumWidth == 1 || EnumWidth == 4) &&
752                "Minimum enum width must be 1 or 4 bytes");
753         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
754         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
755       }
756     }
757   }
758 
759   // We currently do not support using R9 as the TLS pointer.
760   if (STI.isRWPI())
761     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
762                       ARMBuildAttrs::R9IsSB);
763   else if (STI.isR9Reserved())
764     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
765                       ARMBuildAttrs::R9Reserved);
766   else
767     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
768                       ARMBuildAttrs::R9IsGPR);
769 }
770 
771 //===----------------------------------------------------------------------===//
772 
773 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber,
774                              unsigned LabelId, MCContext &Ctx) {
775 
776   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
777                        + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId));
778   return Label;
779 }
780 
781 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
782                              unsigned LabelId, MCContext &Ctx) {
783 
784   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
785                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
786   return Label;
787 }
788 
789 static MCSymbolRefExpr::VariantKind
790 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
791   switch (Modifier) {
792   case ARMCP::no_modifier:
793     return MCSymbolRefExpr::VK_None;
794   case ARMCP::TLSGD:
795     return MCSymbolRefExpr::VK_TLSGD;
796   case ARMCP::TPOFF:
797     return MCSymbolRefExpr::VK_TPOFF;
798   case ARMCP::GOTTPOFF:
799     return MCSymbolRefExpr::VK_GOTTPOFF;
800   case ARMCP::SBREL:
801     return MCSymbolRefExpr::VK_ARM_SBREL;
802   case ARMCP::GOT_PREL:
803     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
804   case ARMCP::SECREL:
805     return MCSymbolRefExpr::VK_SECREL;
806   }
807   llvm_unreachable("Invalid ARMCPModifier!");
808 }
809 
810 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
811                                         unsigned char TargetFlags) {
812   if (Subtarget->isTargetMachO()) {
813     bool IsIndirect =
814         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
815 
816     if (!IsIndirect)
817       return getSymbol(GV);
818 
819     // FIXME: Remove this when Darwin transition to @GOT like syntax.
820     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
821     MachineModuleInfoMachO &MMIMachO =
822       MMI->getObjFileInfo<MachineModuleInfoMachO>();
823     MachineModuleInfoImpl::StubValueTy &StubSym =
824         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
825                             : MMIMachO.getGVStubEntry(MCSym);
826 
827     if (!StubSym.getPointer())
828       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
829                                                    !GV->hasInternalLinkage());
830     return MCSym;
831   } else if (Subtarget->isTargetCOFF()) {
832     assert(Subtarget->isTargetWindows() &&
833            "Windows is the only supported COFF target");
834 
835     bool IsIndirect =
836         (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
837     if (!IsIndirect)
838       return getSymbol(GV);
839 
840     SmallString<128> Name;
841     if (TargetFlags & ARMII::MO_DLLIMPORT)
842       Name = "__imp_";
843     else if (TargetFlags & ARMII::MO_COFFSTUB)
844       Name = ".refptr.";
845     getNameWithPrefix(Name, GV);
846 
847     MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);
848 
849     if (TargetFlags & ARMII::MO_COFFSTUB) {
850       MachineModuleInfoCOFF &MMICOFF =
851           MMI->getObjFileInfo<MachineModuleInfoCOFF>();
852       MachineModuleInfoImpl::StubValueTy &StubSym =
853           MMICOFF.getGVStubEntry(MCSym);
854 
855       if (!StubSym.getPointer())
856         StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
857     }
858 
859     return MCSym;
860   } else if (Subtarget->isTargetELF()) {
861     return getSymbol(GV);
862   }
863   llvm_unreachable("unexpected target");
864 }
865 
866 void ARMAsmPrinter::emitMachineConstantPoolValue(
867     MachineConstantPoolValue *MCPV) {
868   const DataLayout &DL = getDataLayout();
869   int Size = DL.getTypeAllocSize(MCPV->getType());
870 
871   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
872 
873   if (ACPV->isPromotedGlobal()) {
874     // This constant pool entry is actually a global whose storage has been
875     // promoted into the constant pool. This global may be referenced still
876     // by debug information, and due to the way AsmPrinter is set up, the debug
877     // info is immutable by the time we decide to promote globals to constant
878     // pools. Because of this, we need to ensure we emit a symbol for the global
879     // with private linkage (the default) so debug info can refer to it.
880     //
881     // However, if this global is promoted into several functions we must ensure
882     // we don't try and emit duplicate symbols!
883     auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
884     for (const auto *GV : ACPC->promotedGlobals()) {
885       if (!EmittedPromotedGlobalLabels.count(GV)) {
886         MCSymbol *GVSym = getSymbol(GV);
887         OutStreamer->emitLabel(GVSym);
888         EmittedPromotedGlobalLabels.insert(GV);
889       }
890     }
891     return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
892   }
893 
894   MCSymbol *MCSym;
895   if (ACPV->isLSDA()) {
896     MCSym = getCurExceptionSym();
897   } else if (ACPV->isBlockAddress()) {
898     const BlockAddress *BA =
899       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
900     MCSym = GetBlockAddressSymbol(BA);
901   } else if (ACPV->isGlobalValue()) {
902     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
903 
904     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
905     // flag the global as MO_NONLAZY.
906     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
907     MCSym = GetARMGVSymbol(GV, TF);
908   } else if (ACPV->isMachineBasicBlock()) {
909     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
910     MCSym = MBB->getSymbol();
911   } else {
912     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
913     auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
914     MCSym = GetExternalSymbolSymbol(Sym);
915   }
916 
917   // Create an MCSymbol for the reference.
918   const MCExpr *Expr =
919     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
920                             OutContext);
921 
922   if (ACPV->getPCAdjustment()) {
923     MCSymbol *PCLabel =
924         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
925                     ACPV->getLabelId(), OutContext);
926     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
927     PCRelExpr =
928       MCBinaryExpr::createAdd(PCRelExpr,
929                               MCConstantExpr::create(ACPV->getPCAdjustment(),
930                                                      OutContext),
931                               OutContext);
932     if (ACPV->mustAddCurrentAddress()) {
933       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
934       // label, so just emit a local label end reference that instead.
935       MCSymbol *DotSym = OutContext.createTempSymbol();
936       OutStreamer->emitLabel(DotSym);
937       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
938       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
939     }
940     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
941   }
942   OutStreamer->emitValue(Expr, Size);
943 }
944 
945 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) {
946   const MachineOperand &MO1 = MI->getOperand(1);
947   unsigned JTI = MO1.getIndex();
948 
949   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
950   // ARM mode tables.
951   emitAlignment(Align(4));
952 
953   // Emit a label for the jump table.
954   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
955   OutStreamer->emitLabel(JTISymbol);
956 
957   // Mark the jump table as data-in-code.
958   OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
959 
960   // Emit each entry of the table.
961   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
962   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
963   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
964 
965   for (MachineBasicBlock *MBB : JTBBs) {
966     // Construct an MCExpr for the entry. We want a value of the form:
967     // (BasicBlockAddr - TableBeginAddr)
968     //
969     // For example, a table with entries jumping to basic blocks BB0 and BB1
970     // would look like:
971     // LJTI_0_0:
972     //    .word (LBB0 - LJTI_0_0)
973     //    .word (LBB1 - LJTI_0_0)
974     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
975 
976     if (isPositionIndependent() || Subtarget->isROPI())
977       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
978                                                                    OutContext),
979                                      OutContext);
980     // If we're generating a table of Thumb addresses in static relocation
981     // model, we need to add one to keep interworking correctly.
982     else if (AFI->isThumbFunction())
983       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
984                                      OutContext);
985     OutStreamer->emitValue(Expr, 4);
986   }
987   // Mark the end of jump table data-in-code region.
988   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
989 }
990 
991 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) {
992   const MachineOperand &MO1 = MI->getOperand(1);
993   unsigned JTI = MO1.getIndex();
994 
995   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
996   // ARM mode tables.
997   emitAlignment(Align(4));
998 
999   // Emit a label for the jump table.
1000   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1001   OutStreamer->emitLabel(JTISymbol);
1002 
1003   // Emit each entry of the table.
1004   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1005   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1006   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1007 
1008   for (MachineBasicBlock *MBB : JTBBs) {
1009     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1010                                                           OutContext);
1011     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1012     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1013         .addExpr(MBBSymbolExpr)
1014         .addImm(ARMCC::AL)
1015         .addReg(0));
1016   }
1017 }
1018 
1019 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI,
1020                                         unsigned OffsetWidth) {
1021   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1022   const MachineOperand &MO1 = MI->getOperand(1);
1023   unsigned JTI = MO1.getIndex();
1024 
1025   if (Subtarget->isThumb1Only())
1026     emitAlignment(Align(4));
1027 
1028   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1029   OutStreamer->emitLabel(JTISymbol);
1030 
1031   // Emit each entry of the table.
1032   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1033   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1034   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1035 
1036   // Mark the jump table as data-in-code.
1037   OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1038                                                : MCDR_DataRegionJT16);
1039 
1040   for (auto MBB : JTBBs) {
1041     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1042                                                           OutContext);
1043     // Otherwise it's an offset from the dispatch instruction. Construct an
1044     // MCExpr for the entry. We want a value of the form:
1045     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1046     //
1047     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1048     // would look like:
1049     // LJTI_0_0:
1050     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1051     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1052     // where LCPI0_0 is a label defined just before the TBB instruction using
1053     // this table.
1054     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1055     const MCExpr *Expr = MCBinaryExpr::createAdd(
1056         MCSymbolRefExpr::create(TBInstPC, OutContext),
1057         MCConstantExpr::create(4, OutContext), OutContext);
1058     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1059     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1060                                    OutContext);
1061     OutStreamer->emitValue(Expr, OffsetWidth);
1062   }
1063   // Mark the end of jump table data-in-code region. 32-bit offsets use
1064   // actual branch instructions here, so we don't mark those as a data-region
1065   // at all.
1066   OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1067 
1068   // Make sure the next instruction is 2-byte aligned.
1069   emitAlignment(Align(2));
1070 }
1071 
1072 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1073   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1074       "Only instruction which are involved into frame setup code are allowed");
1075 
1076   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1077   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1078   const MachineFunction &MF = *MI->getParent()->getParent();
1079   const TargetRegisterInfo *TargetRegInfo =
1080     MF.getSubtarget().getRegisterInfo();
1081   const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();
1082 
1083   Register FramePtr = TargetRegInfo->getFrameRegister(MF);
1084   unsigned Opc = MI->getOpcode();
1085   unsigned SrcReg, DstReg;
1086 
1087   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1088     // Two special cases:
1089     // 1) tPUSH does not have src/dst regs.
1090     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1091     // load. Yes, this is pretty fragile, but for now I don't see better
1092     // way... :(
1093     SrcReg = DstReg = ARM::SP;
1094   } else {
1095     SrcReg = MI->getOperand(1).getReg();
1096     DstReg = MI->getOperand(0).getReg();
1097   }
1098 
1099   // Try to figure out the unwinding opcode out of src / dst regs.
1100   if (MI->mayStore()) {
1101     // Register saves.
1102     assert(DstReg == ARM::SP &&
1103            "Only stack pointer as a destination reg is supported");
1104 
1105     SmallVector<unsigned, 4> RegList;
1106     // Skip src & dst reg, and pred ops.
1107     unsigned StartOp = 2 + 2;
1108     // Use all the operands.
1109     unsigned NumOffset = 0;
1110     // Amount of SP adjustment folded into a push.
1111     unsigned Pad = 0;
1112 
1113     switch (Opc) {
1114     default:
1115       MI->print(errs());
1116       llvm_unreachable("Unsupported opcode for unwinding information");
1117     case ARM::tPUSH:
1118       // Special case here: no src & dst reg, but two extra imp ops.
1119       StartOp = 2; NumOffset = 2;
1120       LLVM_FALLTHROUGH;
1121     case ARM::STMDB_UPD:
1122     case ARM::t2STMDB_UPD:
1123     case ARM::VSTMDDB_UPD:
1124       assert(SrcReg == ARM::SP &&
1125              "Only stack pointer as a source reg is supported");
1126       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1127            i != NumOps; ++i) {
1128         const MachineOperand &MO = MI->getOperand(i);
1129         // Actually, there should never be any impdef stuff here. Skip it
1130         // temporary to workaround PR11902.
1131         if (MO.isImplicit())
1132           continue;
1133         // Registers, pushed as a part of folding an SP update into the
1134         // push instruction are marked as undef and should not be
1135         // restored when unwinding, because the function can modify the
1136         // corresponding stack slots.
1137         if (MO.isUndef()) {
1138           assert(RegList.empty() &&
1139                  "Pad registers must come before restored ones");
1140           unsigned Width =
1141             TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
1142           Pad += Width;
1143           continue;
1144         }
1145         // Check for registers that are remapped (for a Thumb1 prologue that
1146         // saves high registers).
1147         Register Reg = MO.getReg();
1148         if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg))
1149           Reg = RemappedReg;
1150         RegList.push_back(Reg);
1151       }
1152       break;
1153     case ARM::STR_PRE_IMM:
1154     case ARM::STR_PRE_REG:
1155     case ARM::t2STR_PRE:
1156       assert(MI->getOperand(2).getReg() == ARM::SP &&
1157              "Only stack pointer as a source reg is supported");
1158       RegList.push_back(SrcReg);
1159       break;
1160     }
1161     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1162       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1163       // Account for the SP adjustment, folded into the push.
1164       if (Pad)
1165         ATS.emitPad(Pad);
1166     }
1167   } else {
1168     // Changes of stack / frame pointer.
1169     if (SrcReg == ARM::SP) {
1170       int64_t Offset = 0;
1171       switch (Opc) {
1172       default:
1173         MI->print(errs());
1174         llvm_unreachable("Unsupported opcode for unwinding information");
1175       case ARM::MOVr:
1176       case ARM::tMOVr:
1177         Offset = 0;
1178         break;
1179       case ARM::ADDri:
1180       case ARM::t2ADDri:
1181       case ARM::t2ADDri12:
1182       case ARM::t2ADDspImm:
1183       case ARM::t2ADDspImm12:
1184         Offset = -MI->getOperand(2).getImm();
1185         break;
1186       case ARM::SUBri:
1187       case ARM::t2SUBri:
1188       case ARM::t2SUBri12:
1189       case ARM::t2SUBspImm:
1190       case ARM::t2SUBspImm12:
1191         Offset = MI->getOperand(2).getImm();
1192         break;
1193       case ARM::tSUBspi:
1194         Offset = MI->getOperand(2).getImm()*4;
1195         break;
1196       case ARM::tADDspi:
1197       case ARM::tADDrSPi:
1198         Offset = -MI->getOperand(2).getImm()*4;
1199         break;
1200       case ARM::tLDRpci: {
1201         // Grab the constpool index and check, whether it corresponds to
1202         // original or cloned constpool entry.
1203         unsigned CPI = MI->getOperand(1).getIndex();
1204         const MachineConstantPool *MCP = MF.getConstantPool();
1205         if (CPI >= MCP->getConstants().size())
1206           CPI = AFI->getOriginalCPIdx(CPI);
1207         assert(CPI != -1U && "Invalid constpool index");
1208 
1209         // Derive the actual offset.
1210         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1211         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1212         // FIXME: Check for user, it should be "add" instruction!
1213         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1214         break;
1215       }
1216       }
1217 
1218       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1219         if (DstReg == FramePtr && FramePtr != ARM::SP)
1220           // Set-up of the frame pointer. Positive values correspond to "add"
1221           // instruction.
1222           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1223         else if (DstReg == ARM::SP) {
1224           // Change of SP by an offset. Positive values correspond to "sub"
1225           // instruction.
1226           ATS.emitPad(Offset);
1227         } else {
1228           // Move of SP to a register.  Positive values correspond to an "add"
1229           // instruction.
1230           ATS.emitMovSP(DstReg, -Offset);
1231         }
1232       }
1233     } else if (DstReg == ARM::SP) {
1234       MI->print(errs());
1235       llvm_unreachable("Unsupported opcode for unwinding information");
1236     } else if (Opc == ARM::tMOVr) {
1237       // If a Thumb1 function spills r8-r11, we copy the values to low
1238       // registers before pushing them. Record the copy so we can emit the
1239       // correct ".save" later.
1240       AFI->EHPrologueRemappedRegs[DstReg] = SrcReg;
1241     } else {
1242       MI->print(errs());
1243       llvm_unreachable("Unsupported opcode for unwinding information");
1244     }
1245   }
1246 }
1247 
1248 // Simple pseudo-instructions have their lowering (with expansion to real
1249 // instructions) auto-generated.
1250 #include "ARMGenMCPseudoLowering.inc"
1251 
1252 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) {
1253   const DataLayout &DL = getDataLayout();
1254   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1255   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1256 
1257   const MachineFunction &MF = *MI->getParent()->getParent();
1258   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
1259   unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
1260 
1261   // If we just ended a constant pool, mark it as such.
1262   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1263     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1264     InConstantPool = false;
1265   }
1266 
1267   // Emit unwinding stuff for frame-related instructions
1268   if (Subtarget->isTargetEHABICompatible() &&
1269        MI->getFlag(MachineInstr::FrameSetup))
1270     EmitUnwindingInstruction(MI);
1271 
1272   // Do any auto-generated pseudo lowerings.
1273   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1274     return;
1275 
1276   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1277          "Pseudo flag setting opcode should be expanded early");
1278 
1279   // Check for manual lowerings.
1280   unsigned Opc = MI->getOpcode();
1281   switch (Opc) {
1282   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1283   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1284   case ARM::LEApcrel:
1285   case ARM::tLEApcrel:
1286   case ARM::t2LEApcrel: {
1287     // FIXME: Need to also handle globals and externals
1288     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1289     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1290                                                ARM::t2LEApcrel ? ARM::t2ADR
1291                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1292                      : ARM::ADR))
1293       .addReg(MI->getOperand(0).getReg())
1294       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1295       // Add predicate operands.
1296       .addImm(MI->getOperand(2).getImm())
1297       .addReg(MI->getOperand(3).getReg()));
1298     return;
1299   }
1300   case ARM::LEApcrelJT:
1301   case ARM::tLEApcrelJT:
1302   case ARM::t2LEApcrelJT: {
1303     MCSymbol *JTIPICSymbol =
1304       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1305     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1306                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1307                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1308                      : ARM::ADR))
1309       .addReg(MI->getOperand(0).getReg())
1310       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1311       // Add predicate operands.
1312       .addImm(MI->getOperand(2).getImm())
1313       .addReg(MI->getOperand(3).getReg()));
1314     return;
1315   }
1316   // Darwin call instructions are just normal call instructions with different
1317   // clobber semantics (they clobber R9).
1318   case ARM::BX_CALL: {
1319     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1320       .addReg(ARM::LR)
1321       .addReg(ARM::PC)
1322       // Add predicate operands.
1323       .addImm(ARMCC::AL)
1324       .addReg(0)
1325       // Add 's' bit operand (always reg0 for this)
1326       .addReg(0));
1327 
1328     assert(Subtarget->hasV4TOps());
1329     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1330       .addReg(MI->getOperand(0).getReg()));
1331     return;
1332   }
1333   case ARM::tBX_CALL: {
1334     if (Subtarget->hasV5TOps())
1335       llvm_unreachable("Expected BLX to be selected for v5t+");
1336 
1337     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1338     // that the saved lr has its LSB set correctly (the arch doesn't
1339     // have blx).
1340     // So here we generate a bl to a small jump pad that does bx rN.
1341     // The jump pads are emitted after the function body.
1342 
1343     Register TReg = MI->getOperand(0).getReg();
1344     MCSymbol *TRegSym = nullptr;
1345     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
1346       if (TIP.first == TReg) {
1347         TRegSym = TIP.second;
1348         break;
1349       }
1350     }
1351 
1352     if (!TRegSym) {
1353       TRegSym = OutContext.createTempSymbol();
1354       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1355     }
1356 
1357     // Create a link-saving branch to the Reg Indirect Jump Pad.
1358     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1359         // Predicate comes first here.
1360         .addImm(ARMCC::AL).addReg(0)
1361         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1362     return;
1363   }
1364   case ARM::BMOVPCRX_CALL: {
1365     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1366       .addReg(ARM::LR)
1367       .addReg(ARM::PC)
1368       // Add predicate operands.
1369       .addImm(ARMCC::AL)
1370       .addReg(0)
1371       // Add 's' bit operand (always reg0 for this)
1372       .addReg(0));
1373 
1374     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1375       .addReg(ARM::PC)
1376       .addReg(MI->getOperand(0).getReg())
1377       // Add predicate operands.
1378       .addImm(ARMCC::AL)
1379       .addReg(0)
1380       // Add 's' bit operand (always reg0 for this)
1381       .addReg(0));
1382     return;
1383   }
1384   case ARM::BMOVPCB_CALL: {
1385     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1386       .addReg(ARM::LR)
1387       .addReg(ARM::PC)
1388       // Add predicate operands.
1389       .addImm(ARMCC::AL)
1390       .addReg(0)
1391       // Add 's' bit operand (always reg0 for this)
1392       .addReg(0));
1393 
1394     const MachineOperand &Op = MI->getOperand(0);
1395     const GlobalValue *GV = Op.getGlobal();
1396     const unsigned TF = Op.getTargetFlags();
1397     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1398     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1399     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1400       .addExpr(GVSymExpr)
1401       // Add predicate operands.
1402       .addImm(ARMCC::AL)
1403       .addReg(0));
1404     return;
1405   }
1406   case ARM::MOVi16_ga_pcrel:
1407   case ARM::t2MOVi16_ga_pcrel: {
1408     MCInst TmpInst;
1409     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1410     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1411 
1412     unsigned TF = MI->getOperand(1).getTargetFlags();
1413     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1414     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1415     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1416 
1417     MCSymbol *LabelSym =
1418         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1419                     MI->getOperand(2).getImm(), OutContext);
1420     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1421     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1422     const MCExpr *PCRelExpr =
1423       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1424                                       MCBinaryExpr::createAdd(LabelSymExpr,
1425                                       MCConstantExpr::create(PCAdj, OutContext),
1426                                       OutContext), OutContext), OutContext);
1427       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1428 
1429     // Add predicate operands.
1430     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1431     TmpInst.addOperand(MCOperand::createReg(0));
1432     // Add 's' bit operand (always reg0 for this)
1433     TmpInst.addOperand(MCOperand::createReg(0));
1434     EmitToStreamer(*OutStreamer, TmpInst);
1435     return;
1436   }
1437   case ARM::MOVTi16_ga_pcrel:
1438   case ARM::t2MOVTi16_ga_pcrel: {
1439     MCInst TmpInst;
1440     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1441                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1442     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1443     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1444 
1445     unsigned TF = MI->getOperand(2).getTargetFlags();
1446     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1447     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1448     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1449 
1450     MCSymbol *LabelSym =
1451         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1452                     MI->getOperand(3).getImm(), OutContext);
1453     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1454     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1455     const MCExpr *PCRelExpr =
1456         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1457                                    MCBinaryExpr::createAdd(LabelSymExpr,
1458                                       MCConstantExpr::create(PCAdj, OutContext),
1459                                           OutContext), OutContext), OutContext);
1460       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1461     // Add predicate operands.
1462     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1463     TmpInst.addOperand(MCOperand::createReg(0));
1464     // Add 's' bit operand (always reg0 for this)
1465     TmpInst.addOperand(MCOperand::createReg(0));
1466     EmitToStreamer(*OutStreamer, TmpInst);
1467     return;
1468   }
1469   case ARM::t2BFi:
1470   case ARM::t2BFic:
1471   case ARM::t2BFLi:
1472   case ARM::t2BFr:
1473   case ARM::t2BFLr: {
1474     // This is a Branch Future instruction.
1475 
1476     const MCExpr *BranchLabel = MCSymbolRefExpr::create(
1477         getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1478                    MI->getOperand(0).getIndex(), OutContext),
1479         OutContext);
1480 
1481     auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel);
1482     if (MI->getOperand(1).isReg()) {
1483       // For BFr/BFLr
1484       MCInst.addReg(MI->getOperand(1).getReg());
1485     } else {
1486       // For BFi/BFLi/BFic
1487       const MCExpr *BranchTarget;
1488       if (MI->getOperand(1).isMBB())
1489         BranchTarget = MCSymbolRefExpr::create(
1490             MI->getOperand(1).getMBB()->getSymbol(), OutContext);
1491       else if (MI->getOperand(1).isGlobal()) {
1492         const GlobalValue *GV = MI->getOperand(1).getGlobal();
1493         BranchTarget = MCSymbolRefExpr::create(
1494             GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext);
1495       } else if (MI->getOperand(1).isSymbol()) {
1496         BranchTarget = MCSymbolRefExpr::create(
1497             GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()),
1498             OutContext);
1499       } else
1500         llvm_unreachable("Unhandled operand kind in Branch Future instruction");
1501 
1502       MCInst.addExpr(BranchTarget);
1503     }
1504 
1505       if (Opc == ARM::t2BFic) {
1506         const MCExpr *ElseLabel = MCSymbolRefExpr::create(
1507             getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1508                        MI->getOperand(2).getIndex(), OutContext),
1509             OutContext);
1510         MCInst.addExpr(ElseLabel);
1511         MCInst.addImm(MI->getOperand(3).getImm());
1512       } else {
1513         MCInst.addImm(MI->getOperand(2).getImm())
1514             .addReg(MI->getOperand(3).getReg());
1515       }
1516 
1517     EmitToStreamer(*OutStreamer, MCInst);
1518     return;
1519   }
1520   case ARM::t2BF_LabelPseudo: {
1521     // This is a pseudo op for a label used by a branch future instruction
1522 
1523     // Emit the label.
1524     OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(),
1525                                        getFunctionNumber(),
1526                                        MI->getOperand(0).getIndex(), OutContext));
1527     return;
1528   }
1529   case ARM::tPICADD: {
1530     // This is a pseudo op for a label + instruction sequence, which looks like:
1531     // LPC0:
1532     //     add r0, pc
1533     // This adds the address of LPC0 to r0.
1534 
1535     // Emit the label.
1536     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1537                                        getFunctionNumber(),
1538                                        MI->getOperand(2).getImm(), OutContext));
1539 
1540     // Form and emit the add.
1541     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1542       .addReg(MI->getOperand(0).getReg())
1543       .addReg(MI->getOperand(0).getReg())
1544       .addReg(ARM::PC)
1545       // Add predicate operands.
1546       .addImm(ARMCC::AL)
1547       .addReg(0));
1548     return;
1549   }
1550   case ARM::PICADD: {
1551     // This is a pseudo op for a label + instruction sequence, which looks like:
1552     // LPC0:
1553     //     add r0, pc, r0
1554     // This adds the address of LPC0 to r0.
1555 
1556     // Emit the label.
1557     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1558                                        getFunctionNumber(),
1559                                        MI->getOperand(2).getImm(), OutContext));
1560 
1561     // Form and emit the add.
1562     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1563       .addReg(MI->getOperand(0).getReg())
1564       .addReg(ARM::PC)
1565       .addReg(MI->getOperand(1).getReg())
1566       // Add predicate operands.
1567       .addImm(MI->getOperand(3).getImm())
1568       .addReg(MI->getOperand(4).getReg())
1569       // Add 's' bit operand (always reg0 for this)
1570       .addReg(0));
1571     return;
1572   }
1573   case ARM::PICSTR:
1574   case ARM::PICSTRB:
1575   case ARM::PICSTRH:
1576   case ARM::PICLDR:
1577   case ARM::PICLDRB:
1578   case ARM::PICLDRH:
1579   case ARM::PICLDRSB:
1580   case ARM::PICLDRSH: {
1581     // This is a pseudo op for a label + instruction sequence, which looks like:
1582     // LPC0:
1583     //     OP r0, [pc, r0]
1584     // The LCP0 label is referenced by a constant pool entry in order to get
1585     // a PC-relative address at the ldr instruction.
1586 
1587     // Emit the label.
1588     OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1589                                        getFunctionNumber(),
1590                                        MI->getOperand(2).getImm(), OutContext));
1591 
1592     // Form and emit the load
1593     unsigned Opcode;
1594     switch (MI->getOpcode()) {
1595     default:
1596       llvm_unreachable("Unexpected opcode!");
1597     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1598     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1599     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1600     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1601     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1602     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1603     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1604     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1605     }
1606     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1607       .addReg(MI->getOperand(0).getReg())
1608       .addReg(ARM::PC)
1609       .addReg(MI->getOperand(1).getReg())
1610       .addImm(0)
1611       // Add predicate operands.
1612       .addImm(MI->getOperand(3).getImm())
1613       .addReg(MI->getOperand(4).getReg()));
1614 
1615     return;
1616   }
1617   case ARM::CONSTPOOL_ENTRY: {
1618     if (Subtarget->genExecuteOnly())
1619       llvm_unreachable("execute-only should not generate constant pools");
1620 
1621     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1622     /// in the function.  The first operand is the ID# for this instruction, the
1623     /// second is the index into the MachineConstantPool that this is, the third
1624     /// is the size in bytes of this constant pool entry.
1625     /// The required alignment is specified on the basic block holding this MI.
1626     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1627     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1628 
1629     // If this is the first entry of the pool, mark it.
1630     if (!InConstantPool) {
1631       OutStreamer->emitDataRegion(MCDR_DataRegion);
1632       InConstantPool = true;
1633     }
1634 
1635     OutStreamer->emitLabel(GetCPISymbol(LabelId));
1636 
1637     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1638     if (MCPE.isMachineConstantPoolEntry())
1639       emitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1640     else
1641       emitGlobalConstant(DL, MCPE.Val.ConstVal);
1642     return;
1643   }
1644   case ARM::JUMPTABLE_ADDRS:
1645     emitJumpTableAddrs(MI);
1646     return;
1647   case ARM::JUMPTABLE_INSTS:
1648     emitJumpTableInsts(MI);
1649     return;
1650   case ARM::JUMPTABLE_TBB:
1651   case ARM::JUMPTABLE_TBH:
1652     emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1653     return;
1654   case ARM::t2BR_JT: {
1655     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1656       .addReg(ARM::PC)
1657       .addReg(MI->getOperand(0).getReg())
1658       // Add predicate operands.
1659       .addImm(ARMCC::AL)
1660       .addReg(0));
1661     return;
1662   }
1663   case ARM::t2TBB_JT:
1664   case ARM::t2TBH_JT: {
1665     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1666     // Lower and emit the PC label, then the instruction itself.
1667     OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1668     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1669                                      .addReg(MI->getOperand(0).getReg())
1670                                      .addReg(MI->getOperand(1).getReg())
1671                                      // Add predicate operands.
1672                                      .addImm(ARMCC::AL)
1673                                      .addReg(0));
1674     return;
1675   }
1676   case ARM::tTBB_JT:
1677   case ARM::tTBH_JT: {
1678 
1679     bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1680     Register Base = MI->getOperand(0).getReg();
1681     Register Idx = MI->getOperand(1).getReg();
1682     assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1683 
1684     // Multiply up idx if necessary.
1685     if (!Is8Bit)
1686       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1687                                        .addReg(Idx)
1688                                        .addReg(ARM::CPSR)
1689                                        .addReg(Idx)
1690                                        .addImm(1)
1691                                        // Add predicate operands.
1692                                        .addImm(ARMCC::AL)
1693                                        .addReg(0));
1694 
1695     if (Base == ARM::PC) {
1696       // TBB [base, idx] =
1697       //    ADDS idx, idx, base
1698       //    LDRB idx, [idx, #4] ; or LDRH if TBH
1699       //    LSLS idx, #1
1700       //    ADDS pc, pc, idx
1701 
1702       // When using PC as the base, it's important that there is no padding
1703       // between the last ADDS and the start of the jump table. The jump table
1704       // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1705       //
1706       // FIXME: Ideally we could vary the LDRB index based on the padding
1707       // between the sequence and jump table, however that relies on MCExprs
1708       // for load indexes which are currently not supported.
1709       OutStreamer->emitCodeAlignment(4);
1710       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1711                                        .addReg(Idx)
1712                                        .addReg(Idx)
1713                                        .addReg(Base)
1714                                        // Add predicate operands.
1715                                        .addImm(ARMCC::AL)
1716                                        .addReg(0));
1717 
1718       unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1719       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1720                                        .addReg(Idx)
1721                                        .addReg(Idx)
1722                                        .addImm(Is8Bit ? 4 : 2)
1723                                        // Add predicate operands.
1724                                        .addImm(ARMCC::AL)
1725                                        .addReg(0));
1726     } else {
1727       // TBB [base, idx] =
1728       //    LDRB idx, [base, idx] ; or LDRH if TBH
1729       //    LSLS idx, #1
1730       //    ADDS pc, pc, idx
1731 
1732       unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1733       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1734                                        .addReg(Idx)
1735                                        .addReg(Base)
1736                                        .addReg(Idx)
1737                                        // Add predicate operands.
1738                                        .addImm(ARMCC::AL)
1739                                        .addReg(0));
1740     }
1741 
1742     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1743                                      .addReg(Idx)
1744                                      .addReg(ARM::CPSR)
1745                                      .addReg(Idx)
1746                                      .addImm(1)
1747                                      // Add predicate operands.
1748                                      .addImm(ARMCC::AL)
1749                                      .addReg(0));
1750 
1751     OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1752     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1753                                      .addReg(ARM::PC)
1754                                      .addReg(ARM::PC)
1755                                      .addReg(Idx)
1756                                      // Add predicate operands.
1757                                      .addImm(ARMCC::AL)
1758                                      .addReg(0));
1759     return;
1760   }
1761   case ARM::tBR_JTr:
1762   case ARM::BR_JTr: {
1763     // mov pc, target
1764     MCInst TmpInst;
1765     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1766       ARM::MOVr : ARM::tMOVr;
1767     TmpInst.setOpcode(Opc);
1768     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1769     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1770     // Add predicate operands.
1771     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1772     TmpInst.addOperand(MCOperand::createReg(0));
1773     // Add 's' bit operand (always reg0 for this)
1774     if (Opc == ARM::MOVr)
1775       TmpInst.addOperand(MCOperand::createReg(0));
1776     EmitToStreamer(*OutStreamer, TmpInst);
1777     return;
1778   }
1779   case ARM::BR_JTm_i12: {
1780     // ldr pc, target
1781     MCInst TmpInst;
1782     TmpInst.setOpcode(ARM::LDRi12);
1783     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1784     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1785     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1786     // Add predicate operands.
1787     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1788     TmpInst.addOperand(MCOperand::createReg(0));
1789     EmitToStreamer(*OutStreamer, TmpInst);
1790     return;
1791   }
1792   case ARM::BR_JTm_rs: {
1793     // ldr pc, target
1794     MCInst TmpInst;
1795     TmpInst.setOpcode(ARM::LDRrs);
1796     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1797     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1798     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1799     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1800     // Add predicate operands.
1801     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1802     TmpInst.addOperand(MCOperand::createReg(0));
1803     EmitToStreamer(*OutStreamer, TmpInst);
1804     return;
1805   }
1806   case ARM::BR_JTadd: {
1807     // add pc, target, idx
1808     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1809       .addReg(ARM::PC)
1810       .addReg(MI->getOperand(0).getReg())
1811       .addReg(MI->getOperand(1).getReg())
1812       // Add predicate operands.
1813       .addImm(ARMCC::AL)
1814       .addReg(0)
1815       // Add 's' bit operand (always reg0 for this)
1816       .addReg(0));
1817     return;
1818   }
1819   case ARM::SPACE:
1820     OutStreamer->emitZeros(MI->getOperand(1).getImm());
1821     return;
1822   case ARM::TRAP: {
1823     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1824     // FIXME: Remove this special case when they do.
1825     if (!Subtarget->isTargetMachO()) {
1826       uint32_t Val = 0xe7ffdefeUL;
1827       OutStreamer->AddComment("trap");
1828       ATS.emitInst(Val);
1829       return;
1830     }
1831     break;
1832   }
1833   case ARM::TRAPNaCl: {
1834     uint32_t Val = 0xe7fedef0UL;
1835     OutStreamer->AddComment("trap");
1836     ATS.emitInst(Val);
1837     return;
1838   }
1839   case ARM::tTRAP: {
1840     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1841     // FIXME: Remove this special case when they do.
1842     if (!Subtarget->isTargetMachO()) {
1843       uint16_t Val = 0xdefe;
1844       OutStreamer->AddComment("trap");
1845       ATS.emitInst(Val, 'n');
1846       return;
1847     }
1848     break;
1849   }
1850   case ARM::t2Int_eh_sjlj_setjmp:
1851   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1852   case ARM::tInt_eh_sjlj_setjmp: {
1853     // Two incoming args: GPR:$src, GPR:$val
1854     // mov $val, pc
1855     // adds $val, #7
1856     // str $val, [$src, #4]
1857     // movs r0, #0
1858     // b LSJLJEH
1859     // movs r0, #1
1860     // LSJLJEH:
1861     Register SrcReg = MI->getOperand(0).getReg();
1862     Register ValReg = MI->getOperand(1).getReg();
1863     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1864     OutStreamer->AddComment("eh_setjmp begin");
1865     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1866       .addReg(ValReg)
1867       .addReg(ARM::PC)
1868       // Predicate.
1869       .addImm(ARMCC::AL)
1870       .addReg(0));
1871 
1872     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1873       .addReg(ValReg)
1874       // 's' bit operand
1875       .addReg(ARM::CPSR)
1876       .addReg(ValReg)
1877       .addImm(7)
1878       // Predicate.
1879       .addImm(ARMCC::AL)
1880       .addReg(0));
1881 
1882     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1883       .addReg(ValReg)
1884       .addReg(SrcReg)
1885       // The offset immediate is #4. The operand value is scaled by 4 for the
1886       // tSTR instruction.
1887       .addImm(1)
1888       // Predicate.
1889       .addImm(ARMCC::AL)
1890       .addReg(0));
1891 
1892     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1893       .addReg(ARM::R0)
1894       .addReg(ARM::CPSR)
1895       .addImm(0)
1896       // Predicate.
1897       .addImm(ARMCC::AL)
1898       .addReg(0));
1899 
1900     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1901     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1902       .addExpr(SymbolExpr)
1903       .addImm(ARMCC::AL)
1904       .addReg(0));
1905 
1906     OutStreamer->AddComment("eh_setjmp end");
1907     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1908       .addReg(ARM::R0)
1909       .addReg(ARM::CPSR)
1910       .addImm(1)
1911       // Predicate.
1912       .addImm(ARMCC::AL)
1913       .addReg(0));
1914 
1915     OutStreamer->emitLabel(Label);
1916     return;
1917   }
1918 
1919   case ARM::Int_eh_sjlj_setjmp_nofp:
1920   case ARM::Int_eh_sjlj_setjmp: {
1921     // Two incoming args: GPR:$src, GPR:$val
1922     // add $val, pc, #8
1923     // str $val, [$src, #+4]
1924     // mov r0, #0
1925     // add pc, pc, #0
1926     // mov r0, #1
1927     Register SrcReg = MI->getOperand(0).getReg();
1928     Register ValReg = MI->getOperand(1).getReg();
1929 
1930     OutStreamer->AddComment("eh_setjmp begin");
1931     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1932       .addReg(ValReg)
1933       .addReg(ARM::PC)
1934       .addImm(8)
1935       // Predicate.
1936       .addImm(ARMCC::AL)
1937       .addReg(0)
1938       // 's' bit operand (always reg0 for this).
1939       .addReg(0));
1940 
1941     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1942       .addReg(ValReg)
1943       .addReg(SrcReg)
1944       .addImm(4)
1945       // Predicate.
1946       .addImm(ARMCC::AL)
1947       .addReg(0));
1948 
1949     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1950       .addReg(ARM::R0)
1951       .addImm(0)
1952       // Predicate.
1953       .addImm(ARMCC::AL)
1954       .addReg(0)
1955       // 's' bit operand (always reg0 for this).
1956       .addReg(0));
1957 
1958     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1959       .addReg(ARM::PC)
1960       .addReg(ARM::PC)
1961       .addImm(0)
1962       // Predicate.
1963       .addImm(ARMCC::AL)
1964       .addReg(0)
1965       // 's' bit operand (always reg0 for this).
1966       .addReg(0));
1967 
1968     OutStreamer->AddComment("eh_setjmp end");
1969     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1970       .addReg(ARM::R0)
1971       .addImm(1)
1972       // Predicate.
1973       .addImm(ARMCC::AL)
1974       .addReg(0)
1975       // 's' bit operand (always reg0 for this).
1976       .addReg(0));
1977     return;
1978   }
1979   case ARM::Int_eh_sjlj_longjmp: {
1980     // ldr sp, [$src, #8]
1981     // ldr $scratch, [$src, #4]
1982     // ldr r7, [$src]
1983     // bx $scratch
1984     Register SrcReg = MI->getOperand(0).getReg();
1985     Register ScratchReg = MI->getOperand(1).getReg();
1986     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1987       .addReg(ARM::SP)
1988       .addReg(SrcReg)
1989       .addImm(8)
1990       // Predicate.
1991       .addImm(ARMCC::AL)
1992       .addReg(0));
1993 
1994     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1995       .addReg(ScratchReg)
1996       .addReg(SrcReg)
1997       .addImm(4)
1998       // Predicate.
1999       .addImm(ARMCC::AL)
2000       .addReg(0));
2001 
2002     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
2003       // These platforms always use the same frame register
2004       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2005         .addReg(FramePtr)
2006         .addReg(SrcReg)
2007         .addImm(0)
2008         // Predicate.
2009         .addImm(ARMCC::AL)
2010         .addReg(0));
2011     } else {
2012       // If the calling code might use either R7 or R11 as
2013       // frame pointer register, restore it into both.
2014       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2015         .addReg(ARM::R7)
2016         .addReg(SrcReg)
2017         .addImm(0)
2018         // Predicate.
2019         .addImm(ARMCC::AL)
2020         .addReg(0));
2021       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2022         .addReg(ARM::R11)
2023         .addReg(SrcReg)
2024         .addImm(0)
2025         // Predicate.
2026         .addImm(ARMCC::AL)
2027         .addReg(0));
2028     }
2029 
2030     assert(Subtarget->hasV4TOps());
2031     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
2032       .addReg(ScratchReg)
2033       // Predicate.
2034       .addImm(ARMCC::AL)
2035       .addReg(0));
2036     return;
2037   }
2038   case ARM::tInt_eh_sjlj_longjmp: {
2039     // ldr $scratch, [$src, #8]
2040     // mov sp, $scratch
2041     // ldr $scratch, [$src, #4]
2042     // ldr r7, [$src]
2043     // bx $scratch
2044     Register SrcReg = MI->getOperand(0).getReg();
2045     Register ScratchReg = MI->getOperand(1).getReg();
2046 
2047     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2048       .addReg(ScratchReg)
2049       .addReg(SrcReg)
2050       // The offset immediate is #8. The operand value is scaled by 4 for the
2051       // tLDR instruction.
2052       .addImm(2)
2053       // Predicate.
2054       .addImm(ARMCC::AL)
2055       .addReg(0));
2056 
2057     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
2058       .addReg(ARM::SP)
2059       .addReg(ScratchReg)
2060       // Predicate.
2061       .addImm(ARMCC::AL)
2062       .addReg(0));
2063 
2064     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2065       .addReg(ScratchReg)
2066       .addReg(SrcReg)
2067       .addImm(1)
2068       // Predicate.
2069       .addImm(ARMCC::AL)
2070       .addReg(0));
2071 
2072     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
2073       // These platforms always use the same frame register
2074       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2075         .addReg(FramePtr)
2076         .addReg(SrcReg)
2077         .addImm(0)
2078         // Predicate.
2079         .addImm(ARMCC::AL)
2080         .addReg(0));
2081     } else {
2082       // If the calling code might use either R7 or R11 as
2083       // frame pointer register, restore it into both.
2084       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2085         .addReg(ARM::R7)
2086         .addReg(SrcReg)
2087         .addImm(0)
2088         // Predicate.
2089         .addImm(ARMCC::AL)
2090         .addReg(0));
2091       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2092         .addReg(ARM::R11)
2093         .addReg(SrcReg)
2094         .addImm(0)
2095         // Predicate.
2096         .addImm(ARMCC::AL)
2097         .addReg(0));
2098     }
2099 
2100     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
2101       .addReg(ScratchReg)
2102       // Predicate.
2103       .addImm(ARMCC::AL)
2104       .addReg(0));
2105     return;
2106   }
2107   case ARM::tInt_WIN_eh_sjlj_longjmp: {
2108     // ldr.w r11, [$src, #0]
2109     // ldr.w  sp, [$src, #8]
2110     // ldr.w  pc, [$src, #4]
2111 
2112     Register SrcReg = MI->getOperand(0).getReg();
2113 
2114     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2115                                      .addReg(ARM::R11)
2116                                      .addReg(SrcReg)
2117                                      .addImm(0)
2118                                      // Predicate
2119                                      .addImm(ARMCC::AL)
2120                                      .addReg(0));
2121     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2122                                      .addReg(ARM::SP)
2123                                      .addReg(SrcReg)
2124                                      .addImm(8)
2125                                      // Predicate
2126                                      .addImm(ARMCC::AL)
2127                                      .addReg(0));
2128     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2129                                      .addReg(ARM::PC)
2130                                      .addReg(SrcReg)
2131                                      .addImm(4)
2132                                      // Predicate
2133                                      .addImm(ARMCC::AL)
2134                                      .addReg(0));
2135     return;
2136   }
2137   case ARM::PATCHABLE_FUNCTION_ENTER:
2138     LowerPATCHABLE_FUNCTION_ENTER(*MI);
2139     return;
2140   case ARM::PATCHABLE_FUNCTION_EXIT:
2141     LowerPATCHABLE_FUNCTION_EXIT(*MI);
2142     return;
2143   case ARM::PATCHABLE_TAIL_CALL:
2144     LowerPATCHABLE_TAIL_CALL(*MI);
2145     return;
2146   }
2147 
2148   MCInst TmpInst;
2149   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2150 
2151   EmitToStreamer(*OutStreamer, TmpInst);
2152 }
2153 
2154 //===----------------------------------------------------------------------===//
2155 // Target Registry Stuff
2156 //===----------------------------------------------------------------------===//
2157 
2158 // Force static initialization.
2159 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() {
2160   RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2161   RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2162   RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2163   RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
2164 }
2165