1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/COFF.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ELF.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/TargetParser.h" 51 #include "llvm/Support/TargetRegistry.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cctype> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 60 std::unique_ptr<MCStreamer> Streamer) 61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 62 InConstantPool(false), OptimizationGoals(-1) {} 63 64 void ARMAsmPrinter::EmitFunctionBodyEnd() { 65 // Make sure to terminate any constant pools that were at the end 66 // of the function. 67 if (!InConstantPool) 68 return; 69 InConstantPool = false; 70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 71 } 72 73 void ARMAsmPrinter::EmitFunctionEntryLabel() { 74 if (AFI->isThumbFunction()) { 75 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 76 OutStreamer->EmitThumbFunc(CurrentFnSym); 77 } else { 78 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 79 } 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 101 if (PromotedGlobals.count(GV)) 102 // The global was promoted into a constant pool. It should not be emitted. 103 return; 104 AsmPrinter::EmitGlobalVariable(GV); 105 } 106 107 /// runOnMachineFunction - This uses the EmitInstruction() 108 /// method to print assembly for each instruction. 109 /// 110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 111 AFI = MF.getInfo<ARMFunctionInfo>(); 112 MCP = MF.getConstantPool(); 113 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 114 115 SetupMachineFunction(MF); 116 const Function* F = MF.getFunction(); 117 const TargetMachine& TM = MF.getTarget(); 118 119 // Collect all globals that had their storage promoted to a constant pool. 120 // Functions are emitted before variables, so this accumulates promoted 121 // globals from all functions in PromotedGlobals. 122 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 123 PromotedGlobals.insert(GV); 124 125 // Calculate this function's optimization goal. 126 unsigned OptimizationGoal; 127 if (F->hasFnAttribute(Attribute::OptimizeNone)) 128 // For best debugging illusion, speed and small size sacrificed 129 OptimizationGoal = 6; 130 else if (F->optForMinSize()) 131 // Aggressively for small size, speed and debug illusion sacrificed 132 OptimizationGoal = 4; 133 else if (F->optForSize()) 134 // For small size, but speed and debugging illusion preserved 135 OptimizationGoal = 3; 136 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 137 // Aggressively for speed, small size and debug illusion sacrificed 138 OptimizationGoal = 2; 139 else if (TM.getOptLevel() > CodeGenOpt::None) 140 // For speed, but small size and good debug illusion preserved 141 OptimizationGoal = 1; 142 else // TM.getOptLevel() == CodeGenOpt::None 143 // For good debugging, but speed and small size preserved 144 OptimizationGoal = 5; 145 146 // Combine a new optimization goal with existing ones. 147 if (OptimizationGoals == -1) // uninitialized goals 148 OptimizationGoals = OptimizationGoal; 149 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 150 OptimizationGoals = 0; 151 152 if (Subtarget->isTargetCOFF()) { 153 bool Internal = F->hasInternalLinkage(); 154 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 155 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 156 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 157 158 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 159 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 160 OutStreamer->EmitCOFFSymbolType(Type); 161 OutStreamer->EndCOFFSymbolDef(); 162 } 163 164 // Emit the rest of the function body. 165 EmitFunctionBody(); 166 167 // Emit the XRay table for this function. 168 emitXRayTable(); 169 170 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 171 // These are created per function, rather than per TU, since it's 172 // relatively easy to exceed the thumb branch range within a TU. 173 if (! ThumbIndirectPads.empty()) { 174 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 175 EmitAlignment(1); 176 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 177 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 178 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 179 .addReg(ThumbIndirectPads[i].first) 180 // Add predicate operands. 181 .addImm(ARMCC::AL) 182 .addReg(0)); 183 } 184 ThumbIndirectPads.clear(); 185 } 186 187 // We didn't modify anything. 188 return false; 189 } 190 191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 192 raw_ostream &O) { 193 const MachineOperand &MO = MI->getOperand(OpNum); 194 unsigned TF = MO.getTargetFlags(); 195 196 switch (MO.getType()) { 197 default: llvm_unreachable("<unknown operand type>"); 198 case MachineOperand::MO_Register: { 199 unsigned Reg = MO.getReg(); 200 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 201 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 202 if(ARM::GPRPairRegClass.contains(Reg)) { 203 const MachineFunction &MF = *MI->getParent()->getParent(); 204 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 205 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 206 } 207 O << ARMInstPrinter::getRegisterName(Reg); 208 break; 209 } 210 case MachineOperand::MO_Immediate: { 211 int64_t Imm = MO.getImm(); 212 O << '#'; 213 if (TF == ARMII::MO_LO16) 214 O << ":lower16:"; 215 else if (TF == ARMII::MO_HI16) 216 O << ":upper16:"; 217 O << Imm; 218 break; 219 } 220 case MachineOperand::MO_MachineBasicBlock: 221 MO.getMBB()->getSymbol()->print(O, MAI); 222 return; 223 case MachineOperand::MO_GlobalAddress: { 224 const GlobalValue *GV = MO.getGlobal(); 225 if (TF & ARMII::MO_LO16) 226 O << ":lower16:"; 227 else if (TF & ARMII::MO_HI16) 228 O << ":upper16:"; 229 GetARMGVSymbol(GV, TF)->print(O, MAI); 230 231 printOffset(MO.getOffset(), O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 //===--------------------------------------------------------------------===// 243 244 MCSymbol *ARMAsmPrinter:: 245 GetARMJTIPICJumpTableLabel(unsigned uid) const { 246 const DataLayout &DL = getDataLayout(); 247 SmallString<60> Name; 248 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 249 << getFunctionNumber() << '_' << uid; 250 return OutContext.getOrCreateSymbol(Name); 251 } 252 253 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 254 unsigned AsmVariant, const char *ExtraCode, 255 raw_ostream &O) { 256 // Does this asm operand have a single letter operand modifier? 257 if (ExtraCode && ExtraCode[0]) { 258 if (ExtraCode[1] != 0) return true; // Unknown modifier. 259 260 switch (ExtraCode[0]) { 261 default: 262 // See if this is a generic print operand 263 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 264 case 'a': // Print as a memory address. 265 if (MI->getOperand(OpNum).isReg()) { 266 O << "[" 267 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 268 << "]"; 269 return false; 270 } 271 LLVM_FALLTHROUGH; 272 case 'c': // Don't print "#" before an immediate operand. 273 if (!MI->getOperand(OpNum).isImm()) 274 return true; 275 O << MI->getOperand(OpNum).getImm(); 276 return false; 277 case 'P': // Print a VFP double precision register. 278 case 'q': // Print a NEON quad precision register. 279 printOperand(MI, OpNum, O); 280 return false; 281 case 'y': // Print a VFP single precision register as indexed double. 282 if (MI->getOperand(OpNum).isReg()) { 283 unsigned Reg = MI->getOperand(OpNum).getReg(); 284 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 285 // Find the 'd' register that has this 's' register as a sub-register, 286 // and determine the lane number. 287 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 288 if (!ARM::DPRRegClass.contains(*SR)) 289 continue; 290 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 291 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 292 return false; 293 } 294 } 295 return true; 296 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << ~(MI->getOperand(OpNum).getImm()); 300 return false; 301 case 'L': // The low 16 bits of an immediate constant. 302 if (!MI->getOperand(OpNum).isImm()) 303 return true; 304 O << (MI->getOperand(OpNum).getImm() & 0xffff); 305 return false; 306 case 'M': { // A register range suitable for LDM/STM. 307 if (!MI->getOperand(OpNum).isReg()) 308 return true; 309 const MachineOperand &MO = MI->getOperand(OpNum); 310 unsigned RegBegin = MO.getReg(); 311 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 312 // already got the operands in registers that are operands to the 313 // inline asm statement. 314 O << "{"; 315 if (ARM::GPRPairRegClass.contains(RegBegin)) { 316 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 317 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 318 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 319 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 320 } 321 O << ARMInstPrinter::getRegisterName(RegBegin); 322 323 // FIXME: The register allocator not only may not have given us the 324 // registers in sequence, but may not be in ascending registers. This 325 // will require changes in the register allocator that'll need to be 326 // propagated down here if the operands change. 327 unsigned RegOps = OpNum + 1; 328 while (MI->getOperand(RegOps).isReg()) { 329 O << ", " 330 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 331 RegOps++; 332 } 333 334 O << "}"; 335 336 return false; 337 } 338 case 'R': // The most significant register of a pair. 339 case 'Q': { // The least significant register of a pair. 340 if (OpNum == 0) 341 return true; 342 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 343 if (!FlagsOP.isImm()) 344 return true; 345 unsigned Flags = FlagsOP.getImm(); 346 347 // This operand may not be the one that actually provides the register. If 348 // it's tied to a previous one then we should refer instead to that one 349 // for registers and their classes. 350 unsigned TiedIdx; 351 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 352 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 353 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 354 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 355 } 356 Flags = MI->getOperand(OpNum).getImm(); 357 358 // Later code expects OpNum to be pointing at the register rather than 359 // the flags. 360 OpNum += 1; 361 } 362 363 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 364 unsigned RC; 365 InlineAsm::hasRegClassConstraint(Flags, RC); 366 if (RC == ARM::GPRPairRegClassID) { 367 if (NumVals != 1) 368 return true; 369 const MachineOperand &MO = MI->getOperand(OpNum); 370 if (!MO.isReg()) 371 return true; 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 374 ARM::gsub_0 : ARM::gsub_1); 375 O << ARMInstPrinter::getRegisterName(Reg); 376 return false; 377 } 378 if (NumVals != 2) 379 return true; 380 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 381 if (RegOp >= MI->getNumOperands()) 382 return true; 383 const MachineOperand &MO = MI->getOperand(RegOp); 384 if (!MO.isReg()) 385 return true; 386 unsigned Reg = MO.getReg(); 387 O << ARMInstPrinter::getRegisterName(Reg); 388 return false; 389 } 390 391 case 'e': // The low doubleword register of a NEON quad register. 392 case 'f': { // The high doubleword register of a NEON quad register. 393 if (!MI->getOperand(OpNum).isReg()) 394 return true; 395 unsigned Reg = MI->getOperand(OpNum).getReg(); 396 if (!ARM::QPRRegClass.contains(Reg)) 397 return true; 398 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 399 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 400 ARM::dsub_0 : ARM::dsub_1); 401 O << ARMInstPrinter::getRegisterName(SubReg); 402 return false; 403 } 404 405 // This modifier is not yet supported. 406 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 407 return true; 408 case 'H': { // The highest-numbered register of a pair. 409 const MachineOperand &MO = MI->getOperand(OpNum); 410 if (!MO.isReg()) 411 return true; 412 const MachineFunction &MF = *MI->getParent()->getParent(); 413 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 414 unsigned Reg = MO.getReg(); 415 if(!ARM::GPRPairRegClass.contains(Reg)) 416 return false; 417 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 418 O << ARMInstPrinter::getRegisterName(Reg); 419 return false; 420 } 421 } 422 } 423 424 printOperand(MI, OpNum, O); 425 return false; 426 } 427 428 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 429 unsigned OpNum, unsigned AsmVariant, 430 const char *ExtraCode, 431 raw_ostream &O) { 432 // Does this asm operand have a single letter operand modifier? 433 if (ExtraCode && ExtraCode[0]) { 434 if (ExtraCode[1] != 0) return true; // Unknown modifier. 435 436 switch (ExtraCode[0]) { 437 case 'A': // A memory operand for a VLD1/VST1 instruction. 438 default: return true; // Unknown modifier. 439 case 'm': // The base register of a memory operand. 440 if (!MI->getOperand(OpNum).isReg()) 441 return true; 442 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 443 return false; 444 } 445 } 446 447 const MachineOperand &MO = MI->getOperand(OpNum); 448 assert(MO.isReg() && "unexpected inline asm memory operand"); 449 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 450 return false; 451 } 452 453 static bool isThumb(const MCSubtargetInfo& STI) { 454 return STI.getFeatureBits()[ARM::ModeThumb]; 455 } 456 457 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 458 const MCSubtargetInfo *EndInfo) const { 459 // If either end mode is unknown (EndInfo == NULL) or different than 460 // the start mode, then restore the start mode. 461 const bool WasThumb = isThumb(StartInfo); 462 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 463 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 464 } 465 } 466 467 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 468 const Triple &TT = TM.getTargetTriple(); 469 // Use unified assembler syntax. 470 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 471 472 // Emit ARM Build Attributes 473 if (TT.isOSBinFormatELF()) 474 emitAttributes(); 475 476 // Use the triple's architecture and subarchitecture to determine 477 // if we're thumb for the purposes of the top level code16 assembler 478 // flag. 479 bool isThumb = TT.getArch() == Triple::thumb || 480 TT.getArch() == Triple::thumbeb || 481 TT.getSubArch() == Triple::ARMSubArch_v7m || 482 TT.getSubArch() == Triple::ARMSubArch_v6m; 483 if (!M.getModuleInlineAsm().empty() && isThumb) 484 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 485 } 486 487 static void 488 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 489 MachineModuleInfoImpl::StubValueTy &MCSym) { 490 // L_foo$stub: 491 OutStreamer.EmitLabel(StubLabel); 492 // .indirect_symbol _foo 493 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 494 495 if (MCSym.getInt()) 496 // External to current translation unit. 497 OutStreamer.EmitIntValue(0, 4/*size*/); 498 else 499 // Internal to current translation unit. 500 // 501 // When we place the LSDA into the TEXT section, the type info 502 // pointers need to be indirect and pc-rel. We accomplish this by 503 // using NLPs; however, sometimes the types are local to the file. 504 // We need to fill in the value for the NLP in those cases. 505 OutStreamer.EmitValue( 506 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 507 4 /*size*/); 508 } 509 510 511 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 512 const Triple &TT = TM.getTargetTriple(); 513 if (TT.isOSBinFormatMachO()) { 514 // All darwin targets use mach-o. 515 const TargetLoweringObjectFileMachO &TLOFMacho = 516 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 517 MachineModuleInfoMachO &MMIMacho = 518 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 519 520 // Output non-lazy-pointers for external and common global variables. 521 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 522 523 if (!Stubs.empty()) { 524 // Switch with ".non_lazy_symbol_pointer" directive. 525 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 526 EmitAlignment(2); 527 528 for (auto &Stub : Stubs) 529 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 530 531 Stubs.clear(); 532 OutStreamer->AddBlankLine(); 533 } 534 535 Stubs = MMIMacho.GetThreadLocalGVStubList(); 536 if (!Stubs.empty()) { 537 // Switch with ".non_lazy_symbol_pointer" directive. 538 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 539 EmitAlignment(2); 540 541 for (auto &Stub : Stubs) 542 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 543 544 Stubs.clear(); 545 OutStreamer->AddBlankLine(); 546 } 547 548 // Funny Darwin hack: This flag tells the linker that no global symbols 549 // contain code that falls through to other global symbols (e.g. the obvious 550 // implementation of multiple entry points). If this doesn't occur, the 551 // linker can safely perform dead code stripping. Since LLVM never 552 // generates code that does this, it is always safe to set. 553 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 554 } 555 556 if (TT.isOSBinFormatCOFF()) { 557 const auto &TLOF = 558 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering()); 559 560 std::string Flags; 561 raw_string_ostream OS(Flags); 562 563 for (const auto &Function : M) 564 TLOF.emitLinkerFlagsForGlobal(OS, &Function); 565 for (const auto &Global : M.globals()) 566 TLOF.emitLinkerFlagsForGlobal(OS, &Global); 567 for (const auto &Alias : M.aliases()) 568 TLOF.emitLinkerFlagsForGlobal(OS, &Alias); 569 570 OS.flush(); 571 572 // Output collected flags 573 if (!Flags.empty()) { 574 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 575 OutStreamer->EmitBytes(Flags); 576 } 577 } 578 579 // The last attribute to be emitted is ABI_optimization_goals 580 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 581 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 582 583 if (OptimizationGoals > 0 && 584 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 585 Subtarget->isTargetMuslAEABI())) 586 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 587 OptimizationGoals = -1; 588 589 ATS.finishAttributeSection(); 590 } 591 592 static bool isV8M(const ARMSubtarget *Subtarget) { 593 // Note that v8M Baseline is a subset of v6T2! 594 return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) || 595 Subtarget->hasV8MMainlineOps(); 596 } 597 598 //===----------------------------------------------------------------------===// 599 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 600 // FIXME: 601 // The following seem like one-off assembler flags, but they actually need 602 // to appear in the .ARM.attributes section in ELF. 603 // Instead of subclassing the MCELFStreamer, we do the work here. 604 605 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 606 const ARMSubtarget *Subtarget) { 607 if (CPU == "xscale") 608 return ARMBuildAttrs::v5TEJ; 609 610 if (Subtarget->hasV8Ops()) { 611 if (Subtarget->isRClass()) 612 return ARMBuildAttrs::v8_R; 613 return ARMBuildAttrs::v8_A; 614 } else if (Subtarget->hasV8MMainlineOps()) 615 return ARMBuildAttrs::v8_M_Main; 616 else if (Subtarget->hasV7Ops()) { 617 if (Subtarget->isMClass() && Subtarget->hasDSP()) 618 return ARMBuildAttrs::v7E_M; 619 return ARMBuildAttrs::v7; 620 } else if (Subtarget->hasV6T2Ops()) 621 return ARMBuildAttrs::v6T2; 622 else if (Subtarget->hasV8MBaselineOps()) 623 return ARMBuildAttrs::v8_M_Base; 624 else if (Subtarget->hasV6MOps()) 625 return ARMBuildAttrs::v6S_M; 626 else if (Subtarget->hasV6Ops()) 627 return ARMBuildAttrs::v6; 628 else if (Subtarget->hasV5TEOps()) 629 return ARMBuildAttrs::v5TE; 630 else if (Subtarget->hasV5TOps()) 631 return ARMBuildAttrs::v5T; 632 else if (Subtarget->hasV4TOps()) 633 return ARMBuildAttrs::v4T; 634 else 635 return ARMBuildAttrs::v4; 636 } 637 638 // Returns true if all functions have the same function attribute value. 639 // It also returns true when the module has no functions. 640 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 641 StringRef Value) { 642 return !any_of(M, [&](const Function &F) { 643 return F.getFnAttribute(Attr).getValueAsString() != Value; 644 }); 645 } 646 647 void ARMAsmPrinter::emitAttributes() { 648 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 649 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 650 651 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 652 653 ATS.switchVendor("aeabi"); 654 655 // Compute ARM ELF Attributes based on the default subtarget that 656 // we'd have constructed. The existing ARM behavior isn't LTO clean 657 // anyhow. 658 // FIXME: For ifunc related functions we could iterate over and look 659 // for a feature string that doesn't match the default one. 660 const Triple &TT = TM.getTargetTriple(); 661 StringRef CPU = TM.getTargetCPU(); 662 StringRef FS = TM.getTargetFeatureString(); 663 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 664 if (!FS.empty()) { 665 if (!ArchFS.empty()) 666 ArchFS = (Twine(ArchFS) + "," + FS).str(); 667 else 668 ArchFS = FS; 669 } 670 const ARMBaseTargetMachine &ATM = 671 static_cast<const ARMBaseTargetMachine &>(TM); 672 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 673 674 const std::string &CPUString = STI.getCPUString(); 675 676 if (!StringRef(CPUString).startswith("generic")) { 677 // FIXME: remove krait check when GNU tools support krait cpu 678 if (STI.isKrait()) { 679 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 680 // We consider krait as a "cortex-a9" + hwdiv CPU 681 // Enable hwdiv through ".arch_extension idiv" 682 if (STI.hasDivide() || STI.hasDivideInARMMode()) 683 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM); 684 } else 685 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 686 } 687 688 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 689 690 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 691 // profile is not applicable (e.g. pre v7, or cross-profile code)". 692 if (STI.hasV7Ops() || isV8M(&STI)) { 693 if (STI.isAClass()) { 694 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 695 ARMBuildAttrs::ApplicationProfile); 696 } else if (STI.isRClass()) { 697 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 698 ARMBuildAttrs::RealTimeProfile); 699 } else if (STI.isMClass()) { 700 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 701 ARMBuildAttrs::MicroControllerProfile); 702 } 703 } 704 705 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 706 STI.hasARMOps() ? ARMBuildAttrs::Allowed 707 : ARMBuildAttrs::Not_Allowed); 708 if (isV8M(&STI)) { 709 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 710 ARMBuildAttrs::AllowThumbDerived); 711 } else if (STI.isThumb1Only()) { 712 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 713 } else if (STI.hasThumb2()) { 714 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 715 ARMBuildAttrs::AllowThumb32); 716 } 717 718 if (STI.hasNEON()) { 719 /* NEON is not exactly a VFP architecture, but GAS emit one of 720 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 721 if (STI.hasFPARMv8()) { 722 if (STI.hasCrypto()) 723 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 724 else 725 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 726 } else if (STI.hasVFP4()) 727 ATS.emitFPU(ARM::FK_NEON_VFPV4); 728 else 729 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 730 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 731 if (STI.hasV8Ops()) 732 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 733 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 734 ARMBuildAttrs::AllowNeonARMv8); 735 } else { 736 if (STI.hasFPARMv8()) 737 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 738 // FPU, but there are two different names for it depending on the CPU. 739 ATS.emitFPU(STI.hasD16() 740 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 741 : ARM::FK_FP_ARMV8); 742 else if (STI.hasVFP4()) 743 ATS.emitFPU(STI.hasD16() 744 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 745 : ARM::FK_VFPV4); 746 else if (STI.hasVFP3()) 747 ATS.emitFPU(STI.hasD16() 748 // +d16 749 ? (STI.isFPOnlySP() 750 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 751 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 752 // -d16 753 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 754 else if (STI.hasVFP2()) 755 ATS.emitFPU(ARM::FK_VFPV2); 756 } 757 758 // RW data addressing. 759 if (isPositionIndependent()) { 760 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 761 ARMBuildAttrs::AddressRWPCRel); 762 } else if (STI.isRWPI()) { 763 // RWPI specific attributes. 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 765 ARMBuildAttrs::AddressRWSBRel); 766 } 767 768 // RO data addressing. 769 if (isPositionIndependent() || STI.isROPI()) { 770 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 771 ARMBuildAttrs::AddressROPCRel); 772 } 773 774 // GOT use. 775 if (isPositionIndependent()) { 776 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 777 ARMBuildAttrs::AddressGOT); 778 } else { 779 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 780 ARMBuildAttrs::AddressDirect); 781 } 782 783 // Set FP Denormals. 784 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 785 "denormal-fp-math", 786 "preserve-sign") || 787 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 788 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 789 ARMBuildAttrs::PreserveFPSign); 790 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 791 "denormal-fp-math", 792 "positive-zero") || 793 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 794 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 795 ARMBuildAttrs::PositiveZero); 796 else if (!TM.Options.UnsafeFPMath) 797 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 798 ARMBuildAttrs::IEEEDenormals); 799 else { 800 if (!STI.hasVFP2()) { 801 // When the target doesn't have an FPU (by design or 802 // intention), the assumptions made on the software support 803 // mirror that of the equivalent hardware support *if it 804 // existed*. For v7 and better we indicate that denormals are 805 // flushed preserving sign, and for V6 we indicate that 806 // denormals are flushed to positive zero. 807 if (STI.hasV7Ops()) 808 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 809 ARMBuildAttrs::PreserveFPSign); 810 } else if (STI.hasVFP3()) { 811 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 812 // the sign bit of the zero matches the sign bit of the input or 813 // result that is being flushed to zero. 814 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 815 ARMBuildAttrs::PreserveFPSign); 816 } 817 // For VFPv2 implementations it is implementation defined as 818 // to whether denormals are flushed to positive zero or to 819 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 820 // LLVM has chosen to flush this to positive zero (most likely for 821 // GCC compatibility), so that's the chosen value here (the 822 // absence of its emission implies zero). 823 } 824 825 // Set FP exceptions and rounding 826 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 827 "no-trapping-math", "true") || 828 TM.Options.NoTrappingFPMath) 829 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 830 ARMBuildAttrs::Not_Allowed); 831 else if (!TM.Options.UnsafeFPMath) { 832 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 833 834 // If the user has permitted this code to choose the IEEE 754 835 // rounding at run-time, emit the rounding attribute. 836 if (TM.Options.HonorSignDependentRoundingFPMathOption) 837 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 838 } 839 840 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 841 // equivalent of GCC's -ffinite-math-only flag. 842 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 843 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 844 ARMBuildAttrs::Allowed); 845 else 846 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 847 ARMBuildAttrs::AllowIEEE754); 848 849 if (STI.allowsUnalignedMem()) 850 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 851 ARMBuildAttrs::Allowed); 852 else 853 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 854 ARMBuildAttrs::Not_Allowed); 855 856 // FIXME: add more flags to ARMBuildAttributes.h 857 // 8-bytes alignment stuff. 858 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 859 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 860 861 // ABI_HardFP_use attribute to indicate single precision FP. 862 if (STI.isFPOnlySP()) 863 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 864 ARMBuildAttrs::HardFPSinglePrecision); 865 866 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 867 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 868 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 869 870 // FIXME: Should we signal R9 usage? 871 872 if (STI.hasFP16()) 873 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 874 875 // FIXME: To support emitting this build attribute as GCC does, the 876 // -mfp16-format option and associated plumbing must be 877 // supported. For now the __fp16 type is exposed by default, so this 878 // attribute should be emitted with value 1. 879 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 880 ARMBuildAttrs::FP16FormatIEEE); 881 882 if (STI.hasMPExtension()) 883 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 884 885 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 886 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 887 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 888 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 889 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 890 // otherwise, the default value (AllowDIVIfExists) applies. 891 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 892 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 893 894 if (STI.hasDSP() && isV8M(&STI)) 895 ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); 896 897 if (MMI) { 898 if (const Module *SourceModule = MMI->getModule()) { 899 // ABI_PCS_wchar_t to indicate wchar_t width 900 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 901 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 902 SourceModule->getModuleFlag("wchar_size"))) { 903 int WCharWidth = WCharWidthValue->getZExtValue(); 904 assert((WCharWidth == 2 || WCharWidth == 4) && 905 "wchar_t width must be 2 or 4 bytes"); 906 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 907 } 908 909 // ABI_enum_size to indicate enum width 910 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 911 // (all enums contain a value needing 32 bits to encode). 912 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 913 SourceModule->getModuleFlag("min_enum_size"))) { 914 int EnumWidth = EnumWidthValue->getZExtValue(); 915 assert((EnumWidth == 1 || EnumWidth == 4) && 916 "Minimum enum width must be 1 or 4 bytes"); 917 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 918 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 919 } 920 } 921 } 922 923 // We currently do not support using R9 as the TLS pointer. 924 if (STI.isRWPI()) 925 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 926 ARMBuildAttrs::R9IsSB); 927 else if (STI.isR9Reserved()) 928 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 929 ARMBuildAttrs::R9Reserved); 930 else 931 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 932 ARMBuildAttrs::R9IsGPR); 933 934 if (STI.hasTrustZone() && STI.hasVirtualization()) 935 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 936 ARMBuildAttrs::AllowTZVirtualization); 937 else if (STI.hasTrustZone()) 938 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 939 ARMBuildAttrs::AllowTZ); 940 else if (STI.hasVirtualization()) 941 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 942 ARMBuildAttrs::AllowVirtualization); 943 } 944 945 //===----------------------------------------------------------------------===// 946 947 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 948 unsigned LabelId, MCContext &Ctx) { 949 950 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 951 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 952 return Label; 953 } 954 955 static MCSymbolRefExpr::VariantKind 956 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 957 switch (Modifier) { 958 case ARMCP::no_modifier: 959 return MCSymbolRefExpr::VK_None; 960 case ARMCP::TLSGD: 961 return MCSymbolRefExpr::VK_TLSGD; 962 case ARMCP::TPOFF: 963 return MCSymbolRefExpr::VK_TPOFF; 964 case ARMCP::GOTTPOFF: 965 return MCSymbolRefExpr::VK_GOTTPOFF; 966 case ARMCP::SBREL: 967 return MCSymbolRefExpr::VK_ARM_SBREL; 968 case ARMCP::GOT_PREL: 969 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 970 case ARMCP::SECREL: 971 return MCSymbolRefExpr::VK_SECREL; 972 } 973 llvm_unreachable("Invalid ARMCPModifier!"); 974 } 975 976 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 977 unsigned char TargetFlags) { 978 if (Subtarget->isTargetMachO()) { 979 bool IsIndirect = 980 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 981 982 if (!IsIndirect) 983 return getSymbol(GV); 984 985 // FIXME: Remove this when Darwin transition to @GOT like syntax. 986 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 987 MachineModuleInfoMachO &MMIMachO = 988 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 989 MachineModuleInfoImpl::StubValueTy &StubSym = 990 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 991 : MMIMachO.getGVStubEntry(MCSym); 992 993 if (!StubSym.getPointer()) 994 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 995 !GV->hasInternalLinkage()); 996 return MCSym; 997 } else if (Subtarget->isTargetCOFF()) { 998 assert(Subtarget->isTargetWindows() && 999 "Windows is the only supported COFF target"); 1000 1001 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 1002 if (!IsIndirect) 1003 return getSymbol(GV); 1004 1005 SmallString<128> Name; 1006 Name = "__imp_"; 1007 getNameWithPrefix(Name, GV); 1008 1009 return OutContext.getOrCreateSymbol(Name); 1010 } else if (Subtarget->isTargetELF()) { 1011 return getSymbol(GV); 1012 } 1013 llvm_unreachable("unexpected target"); 1014 } 1015 1016 void ARMAsmPrinter:: 1017 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1018 const DataLayout &DL = getDataLayout(); 1019 int Size = DL.getTypeAllocSize(MCPV->getType()); 1020 1021 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 1022 1023 if (ACPV->isPromotedGlobal()) { 1024 // This constant pool entry is actually a global whose storage has been 1025 // promoted into the constant pool. This global may be referenced still 1026 // by debug information, and due to the way AsmPrinter is set up, the debug 1027 // info is immutable by the time we decide to promote globals to constant 1028 // pools. Because of this, we need to ensure we emit a symbol for the global 1029 // with private linkage (the default) so debug info can refer to it. 1030 // 1031 // However, if this global is promoted into several functions we must ensure 1032 // we don't try and emit duplicate symbols! 1033 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 1034 auto *GV = ACPC->getPromotedGlobal(); 1035 if (!EmittedPromotedGlobalLabels.count(GV)) { 1036 MCSymbol *GVSym = getSymbol(GV); 1037 OutStreamer->EmitLabel(GVSym); 1038 EmittedPromotedGlobalLabels.insert(GV); 1039 } 1040 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 1041 } 1042 1043 MCSymbol *MCSym; 1044 if (ACPV->isLSDA()) { 1045 MCSym = getCurExceptionSym(); 1046 } else if (ACPV->isBlockAddress()) { 1047 const BlockAddress *BA = 1048 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 1049 MCSym = GetBlockAddressSymbol(BA); 1050 } else if (ACPV->isGlobalValue()) { 1051 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 1052 1053 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 1054 // flag the global as MO_NONLAZY. 1055 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 1056 MCSym = GetARMGVSymbol(GV, TF); 1057 } else if (ACPV->isMachineBasicBlock()) { 1058 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 1059 MCSym = MBB->getSymbol(); 1060 } else { 1061 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 1062 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 1063 MCSym = GetExternalSymbolSymbol(Sym); 1064 } 1065 1066 // Create an MCSymbol for the reference. 1067 const MCExpr *Expr = 1068 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 1069 OutContext); 1070 1071 if (ACPV->getPCAdjustment()) { 1072 MCSymbol *PCLabel = 1073 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1074 ACPV->getLabelId(), OutContext); 1075 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 1076 PCRelExpr = 1077 MCBinaryExpr::createAdd(PCRelExpr, 1078 MCConstantExpr::create(ACPV->getPCAdjustment(), 1079 OutContext), 1080 OutContext); 1081 if (ACPV->mustAddCurrentAddress()) { 1082 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 1083 // label, so just emit a local label end reference that instead. 1084 MCSymbol *DotSym = OutContext.createTempSymbol(); 1085 OutStreamer->EmitLabel(DotSym); 1086 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 1087 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 1088 } 1089 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 1090 } 1091 OutStreamer->EmitValue(Expr, Size); 1092 } 1093 1094 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 1095 const MachineOperand &MO1 = MI->getOperand(1); 1096 unsigned JTI = MO1.getIndex(); 1097 1098 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1099 // ARM mode tables. 1100 EmitAlignment(2); 1101 1102 // Emit a label for the jump table. 1103 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1104 OutStreamer->EmitLabel(JTISymbol); 1105 1106 // Mark the jump table as data-in-code. 1107 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1108 1109 // Emit each entry of the table. 1110 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1111 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1112 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1113 1114 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1115 MachineBasicBlock *MBB = JTBBs[i]; 1116 // Construct an MCExpr for the entry. We want a value of the form: 1117 // (BasicBlockAddr - TableBeginAddr) 1118 // 1119 // For example, a table with entries jumping to basic blocks BB0 and BB1 1120 // would look like: 1121 // LJTI_0_0: 1122 // .word (LBB0 - LJTI_0_0) 1123 // .word (LBB1 - LJTI_0_0) 1124 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1125 1126 if (isPositionIndependent() || Subtarget->isROPI()) 1127 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1128 OutContext), 1129 OutContext); 1130 // If we're generating a table of Thumb addresses in static relocation 1131 // model, we need to add one to keep interworking correctly. 1132 else if (AFI->isThumbFunction()) 1133 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1134 OutContext); 1135 OutStreamer->EmitValue(Expr, 4); 1136 } 1137 // Mark the end of jump table data-in-code region. 1138 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1139 } 1140 1141 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 1142 const MachineOperand &MO1 = MI->getOperand(1); 1143 unsigned JTI = MO1.getIndex(); 1144 1145 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1146 // ARM mode tables. 1147 EmitAlignment(2); 1148 1149 // Emit a label for the jump table. 1150 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1151 OutStreamer->EmitLabel(JTISymbol); 1152 1153 // Emit each entry of the table. 1154 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1155 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1156 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1157 1158 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1159 MachineBasicBlock *MBB = JTBBs[i]; 1160 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1161 OutContext); 1162 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1163 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1164 .addExpr(MBBSymbolExpr) 1165 .addImm(ARMCC::AL) 1166 .addReg(0)); 1167 } 1168 } 1169 1170 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1171 unsigned OffsetWidth) { 1172 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1173 const MachineOperand &MO1 = MI->getOperand(1); 1174 unsigned JTI = MO1.getIndex(); 1175 1176 if (Subtarget->isThumb1Only()) 1177 EmitAlignment(2); 1178 1179 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1180 OutStreamer->EmitLabel(JTISymbol); 1181 1182 // Emit each entry of the table. 1183 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1184 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1185 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1186 1187 // Mark the jump table as data-in-code. 1188 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1189 : MCDR_DataRegionJT16); 1190 1191 for (auto MBB : JTBBs) { 1192 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1193 OutContext); 1194 // Otherwise it's an offset from the dispatch instruction. Construct an 1195 // MCExpr for the entry. We want a value of the form: 1196 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1197 // 1198 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1199 // would look like: 1200 // LJTI_0_0: 1201 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1202 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1203 // where LCPI0_0 is a label defined just before the TBB instruction using 1204 // this table. 1205 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1206 const MCExpr *Expr = MCBinaryExpr::createAdd( 1207 MCSymbolRefExpr::create(TBInstPC, OutContext), 1208 MCConstantExpr::create(4, OutContext), OutContext); 1209 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1210 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1211 OutContext); 1212 OutStreamer->EmitValue(Expr, OffsetWidth); 1213 } 1214 // Mark the end of jump table data-in-code region. 32-bit offsets use 1215 // actual branch instructions here, so we don't mark those as a data-region 1216 // at all. 1217 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1218 1219 // Make sure the next instruction is 2-byte aligned. 1220 EmitAlignment(1); 1221 } 1222 1223 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1224 assert(MI->getFlag(MachineInstr::FrameSetup) && 1225 "Only instruction which are involved into frame setup code are allowed"); 1226 1227 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1228 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1229 const MachineFunction &MF = *MI->getParent()->getParent(); 1230 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1231 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1232 1233 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1234 unsigned Opc = MI->getOpcode(); 1235 unsigned SrcReg, DstReg; 1236 1237 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1238 // Two special cases: 1239 // 1) tPUSH does not have src/dst regs. 1240 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1241 // load. Yes, this is pretty fragile, but for now I don't see better 1242 // way... :( 1243 SrcReg = DstReg = ARM::SP; 1244 } else { 1245 SrcReg = MI->getOperand(1).getReg(); 1246 DstReg = MI->getOperand(0).getReg(); 1247 } 1248 1249 // Try to figure out the unwinding opcode out of src / dst regs. 1250 if (MI->mayStore()) { 1251 // Register saves. 1252 assert(DstReg == ARM::SP && 1253 "Only stack pointer as a destination reg is supported"); 1254 1255 SmallVector<unsigned, 4> RegList; 1256 // Skip src & dst reg, and pred ops. 1257 unsigned StartOp = 2 + 2; 1258 // Use all the operands. 1259 unsigned NumOffset = 0; 1260 1261 switch (Opc) { 1262 default: 1263 MI->print(errs()); 1264 llvm_unreachable("Unsupported opcode for unwinding information"); 1265 case ARM::tPUSH: 1266 // Special case here: no src & dst reg, but two extra imp ops. 1267 StartOp = 2; NumOffset = 2; 1268 case ARM::STMDB_UPD: 1269 case ARM::t2STMDB_UPD: 1270 case ARM::VSTMDDB_UPD: 1271 assert(SrcReg == ARM::SP && 1272 "Only stack pointer as a source reg is supported"); 1273 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1274 i != NumOps; ++i) { 1275 const MachineOperand &MO = MI->getOperand(i); 1276 // Actually, there should never be any impdef stuff here. Skip it 1277 // temporary to workaround PR11902. 1278 if (MO.isImplicit()) 1279 continue; 1280 RegList.push_back(MO.getReg()); 1281 } 1282 break; 1283 case ARM::STR_PRE_IMM: 1284 case ARM::STR_PRE_REG: 1285 case ARM::t2STR_PRE: 1286 assert(MI->getOperand(2).getReg() == ARM::SP && 1287 "Only stack pointer as a source reg is supported"); 1288 RegList.push_back(SrcReg); 1289 break; 1290 } 1291 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1292 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1293 } else { 1294 // Changes of stack / frame pointer. 1295 if (SrcReg == ARM::SP) { 1296 int64_t Offset = 0; 1297 switch (Opc) { 1298 default: 1299 MI->print(errs()); 1300 llvm_unreachable("Unsupported opcode for unwinding information"); 1301 case ARM::MOVr: 1302 case ARM::tMOVr: 1303 Offset = 0; 1304 break; 1305 case ARM::ADDri: 1306 case ARM::t2ADDri: 1307 Offset = -MI->getOperand(2).getImm(); 1308 break; 1309 case ARM::SUBri: 1310 case ARM::t2SUBri: 1311 Offset = MI->getOperand(2).getImm(); 1312 break; 1313 case ARM::tSUBspi: 1314 Offset = MI->getOperand(2).getImm()*4; 1315 break; 1316 case ARM::tADDspi: 1317 case ARM::tADDrSPi: 1318 Offset = -MI->getOperand(2).getImm()*4; 1319 break; 1320 case ARM::tLDRpci: { 1321 // Grab the constpool index and check, whether it corresponds to 1322 // original or cloned constpool entry. 1323 unsigned CPI = MI->getOperand(1).getIndex(); 1324 const MachineConstantPool *MCP = MF.getConstantPool(); 1325 if (CPI >= MCP->getConstants().size()) 1326 CPI = AFI.getOriginalCPIdx(CPI); 1327 assert(CPI != -1U && "Invalid constpool index"); 1328 1329 // Derive the actual offset. 1330 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1331 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1332 // FIXME: Check for user, it should be "add" instruction! 1333 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1334 break; 1335 } 1336 } 1337 1338 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1339 if (DstReg == FramePtr && FramePtr != ARM::SP) 1340 // Set-up of the frame pointer. Positive values correspond to "add" 1341 // instruction. 1342 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1343 else if (DstReg == ARM::SP) { 1344 // Change of SP by an offset. Positive values correspond to "sub" 1345 // instruction. 1346 ATS.emitPad(Offset); 1347 } else { 1348 // Move of SP to a register. Positive values correspond to an "add" 1349 // instruction. 1350 ATS.emitMovSP(DstReg, -Offset); 1351 } 1352 } 1353 } else if (DstReg == ARM::SP) { 1354 MI->print(errs()); 1355 llvm_unreachable("Unsupported opcode for unwinding information"); 1356 } 1357 else { 1358 MI->print(errs()); 1359 llvm_unreachable("Unsupported opcode for unwinding information"); 1360 } 1361 } 1362 } 1363 1364 // Simple pseudo-instructions have their lowering (with expansion to real 1365 // instructions) auto-generated. 1366 #include "ARMGenMCPseudoLowering.inc" 1367 1368 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1369 const DataLayout &DL = getDataLayout(); 1370 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1371 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1372 1373 // If we just ended a constant pool, mark it as such. 1374 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1375 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1376 InConstantPool = false; 1377 } 1378 1379 // Emit unwinding stuff for frame-related instructions 1380 if (Subtarget->isTargetEHABICompatible() && 1381 MI->getFlag(MachineInstr::FrameSetup)) 1382 EmitUnwindingInstruction(MI); 1383 1384 // Do any auto-generated pseudo lowerings. 1385 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1386 return; 1387 1388 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1389 "Pseudo flag setting opcode should be expanded early"); 1390 1391 // Check for manual lowerings. 1392 unsigned Opc = MI->getOpcode(); 1393 switch (Opc) { 1394 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1395 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1396 case ARM::LEApcrel: 1397 case ARM::tLEApcrel: 1398 case ARM::t2LEApcrel: { 1399 // FIXME: Need to also handle globals and externals 1400 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1401 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1402 ARM::t2LEApcrel ? ARM::t2ADR 1403 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1404 : ARM::ADR)) 1405 .addReg(MI->getOperand(0).getReg()) 1406 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1407 // Add predicate operands. 1408 .addImm(MI->getOperand(2).getImm()) 1409 .addReg(MI->getOperand(3).getReg())); 1410 return; 1411 } 1412 case ARM::LEApcrelJT: 1413 case ARM::tLEApcrelJT: 1414 case ARM::t2LEApcrelJT: { 1415 MCSymbol *JTIPICSymbol = 1416 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1417 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1418 ARM::t2LEApcrelJT ? ARM::t2ADR 1419 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1420 : ARM::ADR)) 1421 .addReg(MI->getOperand(0).getReg()) 1422 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1423 // Add predicate operands. 1424 .addImm(MI->getOperand(2).getImm()) 1425 .addReg(MI->getOperand(3).getReg())); 1426 return; 1427 } 1428 // Darwin call instructions are just normal call instructions with different 1429 // clobber semantics (they clobber R9). 1430 case ARM::BX_CALL: { 1431 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1432 .addReg(ARM::LR) 1433 .addReg(ARM::PC) 1434 // Add predicate operands. 1435 .addImm(ARMCC::AL) 1436 .addReg(0) 1437 // Add 's' bit operand (always reg0 for this) 1438 .addReg(0)); 1439 1440 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1441 .addReg(MI->getOperand(0).getReg())); 1442 return; 1443 } 1444 case ARM::tBX_CALL: { 1445 if (Subtarget->hasV5TOps()) 1446 llvm_unreachable("Expected BLX to be selected for v5t+"); 1447 1448 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1449 // that the saved lr has its LSB set correctly (the arch doesn't 1450 // have blx). 1451 // So here we generate a bl to a small jump pad that does bx rN. 1452 // The jump pads are emitted after the function body. 1453 1454 unsigned TReg = MI->getOperand(0).getReg(); 1455 MCSymbol *TRegSym = nullptr; 1456 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1457 if (ThumbIndirectPads[i].first == TReg) { 1458 TRegSym = ThumbIndirectPads[i].second; 1459 break; 1460 } 1461 } 1462 1463 if (!TRegSym) { 1464 TRegSym = OutContext.createTempSymbol(); 1465 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1466 } 1467 1468 // Create a link-saving branch to the Reg Indirect Jump Pad. 1469 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1470 // Predicate comes first here. 1471 .addImm(ARMCC::AL).addReg(0) 1472 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1473 return; 1474 } 1475 case ARM::BMOVPCRX_CALL: { 1476 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1477 .addReg(ARM::LR) 1478 .addReg(ARM::PC) 1479 // Add predicate operands. 1480 .addImm(ARMCC::AL) 1481 .addReg(0) 1482 // Add 's' bit operand (always reg0 for this) 1483 .addReg(0)); 1484 1485 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1486 .addReg(ARM::PC) 1487 .addReg(MI->getOperand(0).getReg()) 1488 // Add predicate operands. 1489 .addImm(ARMCC::AL) 1490 .addReg(0) 1491 // Add 's' bit operand (always reg0 for this) 1492 .addReg(0)); 1493 return; 1494 } 1495 case ARM::BMOVPCB_CALL: { 1496 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1497 .addReg(ARM::LR) 1498 .addReg(ARM::PC) 1499 // Add predicate operands. 1500 .addImm(ARMCC::AL) 1501 .addReg(0) 1502 // Add 's' bit operand (always reg0 for this) 1503 .addReg(0)); 1504 1505 const MachineOperand &Op = MI->getOperand(0); 1506 const GlobalValue *GV = Op.getGlobal(); 1507 const unsigned TF = Op.getTargetFlags(); 1508 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1509 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1510 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1511 .addExpr(GVSymExpr) 1512 // Add predicate operands. 1513 .addImm(ARMCC::AL) 1514 .addReg(0)); 1515 return; 1516 } 1517 case ARM::MOVi16_ga_pcrel: 1518 case ARM::t2MOVi16_ga_pcrel: { 1519 MCInst TmpInst; 1520 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1521 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1522 1523 unsigned TF = MI->getOperand(1).getTargetFlags(); 1524 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1525 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1526 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1527 1528 MCSymbol *LabelSym = 1529 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1530 MI->getOperand(2).getImm(), OutContext); 1531 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1532 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1533 const MCExpr *PCRelExpr = 1534 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1535 MCBinaryExpr::createAdd(LabelSymExpr, 1536 MCConstantExpr::create(PCAdj, OutContext), 1537 OutContext), OutContext), OutContext); 1538 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1539 1540 // Add predicate operands. 1541 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1542 TmpInst.addOperand(MCOperand::createReg(0)); 1543 // Add 's' bit operand (always reg0 for this) 1544 TmpInst.addOperand(MCOperand::createReg(0)); 1545 EmitToStreamer(*OutStreamer, TmpInst); 1546 return; 1547 } 1548 case ARM::MOVTi16_ga_pcrel: 1549 case ARM::t2MOVTi16_ga_pcrel: { 1550 MCInst TmpInst; 1551 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1552 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1553 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1554 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1555 1556 unsigned TF = MI->getOperand(2).getTargetFlags(); 1557 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1558 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1559 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1560 1561 MCSymbol *LabelSym = 1562 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1563 MI->getOperand(3).getImm(), OutContext); 1564 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1565 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1566 const MCExpr *PCRelExpr = 1567 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1568 MCBinaryExpr::createAdd(LabelSymExpr, 1569 MCConstantExpr::create(PCAdj, OutContext), 1570 OutContext), OutContext), OutContext); 1571 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1572 // Add predicate operands. 1573 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1574 TmpInst.addOperand(MCOperand::createReg(0)); 1575 // Add 's' bit operand (always reg0 for this) 1576 TmpInst.addOperand(MCOperand::createReg(0)); 1577 EmitToStreamer(*OutStreamer, TmpInst); 1578 return; 1579 } 1580 case ARM::tPICADD: { 1581 // This is a pseudo op for a label + instruction sequence, which looks like: 1582 // LPC0: 1583 // add r0, pc 1584 // This adds the address of LPC0 to r0. 1585 1586 // Emit the label. 1587 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1588 getFunctionNumber(), 1589 MI->getOperand(2).getImm(), OutContext)); 1590 1591 // Form and emit the add. 1592 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1593 .addReg(MI->getOperand(0).getReg()) 1594 .addReg(MI->getOperand(0).getReg()) 1595 .addReg(ARM::PC) 1596 // Add predicate operands. 1597 .addImm(ARMCC::AL) 1598 .addReg(0)); 1599 return; 1600 } 1601 case ARM::PICADD: { 1602 // This is a pseudo op for a label + instruction sequence, which looks like: 1603 // LPC0: 1604 // add r0, pc, r0 1605 // This adds the address of LPC0 to r0. 1606 1607 // Emit the label. 1608 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1609 getFunctionNumber(), 1610 MI->getOperand(2).getImm(), OutContext)); 1611 1612 // Form and emit the add. 1613 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1614 .addReg(MI->getOperand(0).getReg()) 1615 .addReg(ARM::PC) 1616 .addReg(MI->getOperand(1).getReg()) 1617 // Add predicate operands. 1618 .addImm(MI->getOperand(3).getImm()) 1619 .addReg(MI->getOperand(4).getReg()) 1620 // Add 's' bit operand (always reg0 for this) 1621 .addReg(0)); 1622 return; 1623 } 1624 case ARM::PICSTR: 1625 case ARM::PICSTRB: 1626 case ARM::PICSTRH: 1627 case ARM::PICLDR: 1628 case ARM::PICLDRB: 1629 case ARM::PICLDRH: 1630 case ARM::PICLDRSB: 1631 case ARM::PICLDRSH: { 1632 // This is a pseudo op for a label + instruction sequence, which looks like: 1633 // LPC0: 1634 // OP r0, [pc, r0] 1635 // The LCP0 label is referenced by a constant pool entry in order to get 1636 // a PC-relative address at the ldr instruction. 1637 1638 // Emit the label. 1639 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1640 getFunctionNumber(), 1641 MI->getOperand(2).getImm(), OutContext)); 1642 1643 // Form and emit the load 1644 unsigned Opcode; 1645 switch (MI->getOpcode()) { 1646 default: 1647 llvm_unreachable("Unexpected opcode!"); 1648 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1649 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1650 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1651 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1652 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1653 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1654 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1655 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1656 } 1657 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1658 .addReg(MI->getOperand(0).getReg()) 1659 .addReg(ARM::PC) 1660 .addReg(MI->getOperand(1).getReg()) 1661 .addImm(0) 1662 // Add predicate operands. 1663 .addImm(MI->getOperand(3).getImm()) 1664 .addReg(MI->getOperand(4).getReg())); 1665 1666 return; 1667 } 1668 case ARM::CONSTPOOL_ENTRY: { 1669 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1670 /// in the function. The first operand is the ID# for this instruction, the 1671 /// second is the index into the MachineConstantPool that this is, the third 1672 /// is the size in bytes of this constant pool entry. 1673 /// The required alignment is specified on the basic block holding this MI. 1674 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1675 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1676 1677 // If this is the first entry of the pool, mark it. 1678 if (!InConstantPool) { 1679 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1680 InConstantPool = true; 1681 } 1682 1683 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1684 1685 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1686 if (MCPE.isMachineConstantPoolEntry()) 1687 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1688 else 1689 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1690 return; 1691 } 1692 case ARM::JUMPTABLE_ADDRS: 1693 EmitJumpTableAddrs(MI); 1694 return; 1695 case ARM::JUMPTABLE_INSTS: 1696 EmitJumpTableInsts(MI); 1697 return; 1698 case ARM::JUMPTABLE_TBB: 1699 case ARM::JUMPTABLE_TBH: 1700 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1701 return; 1702 case ARM::t2BR_JT: { 1703 // Lower and emit the instruction itself, then the jump table following it. 1704 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1705 .addReg(ARM::PC) 1706 .addReg(MI->getOperand(0).getReg()) 1707 // Add predicate operands. 1708 .addImm(ARMCC::AL) 1709 .addReg(0)); 1710 return; 1711 } 1712 case ARM::t2TBB_JT: 1713 case ARM::t2TBH_JT: { 1714 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1715 // Lower and emit the PC label, then the instruction itself. 1716 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1717 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1718 .addReg(MI->getOperand(0).getReg()) 1719 .addReg(MI->getOperand(1).getReg()) 1720 // Add predicate operands. 1721 .addImm(ARMCC::AL) 1722 .addReg(0)); 1723 return; 1724 } 1725 case ARM::tTBB_JT: 1726 case ARM::tTBH_JT: { 1727 1728 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1729 unsigned Base = MI->getOperand(0).getReg(); 1730 unsigned Idx = MI->getOperand(1).getReg(); 1731 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1732 1733 // Multiply up idx if necessary. 1734 if (!Is8Bit) 1735 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1736 .addReg(Idx) 1737 .addReg(ARM::CPSR) 1738 .addReg(Idx) 1739 .addImm(1) 1740 // Add predicate operands. 1741 .addImm(ARMCC::AL) 1742 .addReg(0)); 1743 1744 if (Base == ARM::PC) { 1745 // TBB [base, idx] = 1746 // ADDS idx, idx, base 1747 // LDRB idx, [idx, #4] ; or LDRH if TBH 1748 // LSLS idx, #1 1749 // ADDS pc, pc, idx 1750 1751 // When using PC as the base, it's important that there is no padding 1752 // between the last ADDS and the start of the jump table. The jump table 1753 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1754 // 1755 // FIXME: Ideally we could vary the LDRB index based on the padding 1756 // between the sequence and jump table, however that relies on MCExprs 1757 // for load indexes which are currently not supported. 1758 OutStreamer->EmitCodeAlignment(4); 1759 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1760 .addReg(Idx) 1761 .addReg(Idx) 1762 .addReg(Base) 1763 // Add predicate operands. 1764 .addImm(ARMCC::AL) 1765 .addReg(0)); 1766 1767 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1768 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1769 .addReg(Idx) 1770 .addReg(Idx) 1771 .addImm(Is8Bit ? 4 : 2) 1772 // Add predicate operands. 1773 .addImm(ARMCC::AL) 1774 .addReg(0)); 1775 } else { 1776 // TBB [base, idx] = 1777 // LDRB idx, [base, idx] ; or LDRH if TBH 1778 // LSLS idx, #1 1779 // ADDS pc, pc, idx 1780 1781 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1782 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1783 .addReg(Idx) 1784 .addReg(Base) 1785 .addReg(Idx) 1786 // Add predicate operands. 1787 .addImm(ARMCC::AL) 1788 .addReg(0)); 1789 } 1790 1791 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1792 .addReg(Idx) 1793 .addReg(ARM::CPSR) 1794 .addReg(Idx) 1795 .addImm(1) 1796 // Add predicate operands. 1797 .addImm(ARMCC::AL) 1798 .addReg(0)); 1799 1800 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1801 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1802 .addReg(ARM::PC) 1803 .addReg(ARM::PC) 1804 .addReg(Idx) 1805 // Add predicate operands. 1806 .addImm(ARMCC::AL) 1807 .addReg(0)); 1808 return; 1809 } 1810 case ARM::tBR_JTr: 1811 case ARM::BR_JTr: { 1812 // Lower and emit the instruction itself, then the jump table following it. 1813 // mov pc, target 1814 MCInst TmpInst; 1815 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1816 ARM::MOVr : ARM::tMOVr; 1817 TmpInst.setOpcode(Opc); 1818 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1819 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1820 // Add predicate operands. 1821 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1822 TmpInst.addOperand(MCOperand::createReg(0)); 1823 // Add 's' bit operand (always reg0 for this) 1824 if (Opc == ARM::MOVr) 1825 TmpInst.addOperand(MCOperand::createReg(0)); 1826 EmitToStreamer(*OutStreamer, TmpInst); 1827 return; 1828 } 1829 case ARM::BR_JTm: { 1830 // Lower and emit the instruction itself, then the jump table following it. 1831 // ldr pc, target 1832 MCInst TmpInst; 1833 if (MI->getOperand(1).getReg() == 0) { 1834 // literal offset 1835 TmpInst.setOpcode(ARM::LDRi12); 1836 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1837 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1838 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1839 } else { 1840 TmpInst.setOpcode(ARM::LDRrs); 1841 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1842 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1843 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1844 TmpInst.addOperand(MCOperand::createImm(0)); 1845 } 1846 // Add predicate operands. 1847 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1848 TmpInst.addOperand(MCOperand::createReg(0)); 1849 EmitToStreamer(*OutStreamer, TmpInst); 1850 return; 1851 } 1852 case ARM::BR_JTadd: { 1853 // Lower and emit the instruction itself, then the jump table following it. 1854 // add pc, target, idx 1855 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1856 .addReg(ARM::PC) 1857 .addReg(MI->getOperand(0).getReg()) 1858 .addReg(MI->getOperand(1).getReg()) 1859 // Add predicate operands. 1860 .addImm(ARMCC::AL) 1861 .addReg(0) 1862 // Add 's' bit operand (always reg0 for this) 1863 .addReg(0)); 1864 return; 1865 } 1866 case ARM::SPACE: 1867 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1868 return; 1869 case ARM::TRAP: { 1870 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1871 // FIXME: Remove this special case when they do. 1872 if (!Subtarget->isTargetMachO()) { 1873 uint32_t Val = 0xe7ffdefeUL; 1874 OutStreamer->AddComment("trap"); 1875 ATS.emitInst(Val); 1876 return; 1877 } 1878 break; 1879 } 1880 case ARM::TRAPNaCl: { 1881 uint32_t Val = 0xe7fedef0UL; 1882 OutStreamer->AddComment("trap"); 1883 ATS.emitInst(Val); 1884 return; 1885 } 1886 case ARM::tTRAP: { 1887 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1888 // FIXME: Remove this special case when they do. 1889 if (!Subtarget->isTargetMachO()) { 1890 uint16_t Val = 0xdefe; 1891 OutStreamer->AddComment("trap"); 1892 ATS.emitInst(Val, 'n'); 1893 return; 1894 } 1895 break; 1896 } 1897 case ARM::t2Int_eh_sjlj_setjmp: 1898 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1899 case ARM::tInt_eh_sjlj_setjmp: { 1900 // Two incoming args: GPR:$src, GPR:$val 1901 // mov $val, pc 1902 // adds $val, #7 1903 // str $val, [$src, #4] 1904 // movs r0, #0 1905 // b LSJLJEH 1906 // movs r0, #1 1907 // LSJLJEH: 1908 unsigned SrcReg = MI->getOperand(0).getReg(); 1909 unsigned ValReg = MI->getOperand(1).getReg(); 1910 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1911 OutStreamer->AddComment("eh_setjmp begin"); 1912 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1913 .addReg(ValReg) 1914 .addReg(ARM::PC) 1915 // Predicate. 1916 .addImm(ARMCC::AL) 1917 .addReg(0)); 1918 1919 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1920 .addReg(ValReg) 1921 // 's' bit operand 1922 .addReg(ARM::CPSR) 1923 .addReg(ValReg) 1924 .addImm(7) 1925 // Predicate. 1926 .addImm(ARMCC::AL) 1927 .addReg(0)); 1928 1929 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1930 .addReg(ValReg) 1931 .addReg(SrcReg) 1932 // The offset immediate is #4. The operand value is scaled by 4 for the 1933 // tSTR instruction. 1934 .addImm(1) 1935 // Predicate. 1936 .addImm(ARMCC::AL) 1937 .addReg(0)); 1938 1939 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1940 .addReg(ARM::R0) 1941 .addReg(ARM::CPSR) 1942 .addImm(0) 1943 // Predicate. 1944 .addImm(ARMCC::AL) 1945 .addReg(0)); 1946 1947 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1948 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1949 .addExpr(SymbolExpr) 1950 .addImm(ARMCC::AL) 1951 .addReg(0)); 1952 1953 OutStreamer->AddComment("eh_setjmp end"); 1954 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1955 .addReg(ARM::R0) 1956 .addReg(ARM::CPSR) 1957 .addImm(1) 1958 // Predicate. 1959 .addImm(ARMCC::AL) 1960 .addReg(0)); 1961 1962 OutStreamer->EmitLabel(Label); 1963 return; 1964 } 1965 1966 case ARM::Int_eh_sjlj_setjmp_nofp: 1967 case ARM::Int_eh_sjlj_setjmp: { 1968 // Two incoming args: GPR:$src, GPR:$val 1969 // add $val, pc, #8 1970 // str $val, [$src, #+4] 1971 // mov r0, #0 1972 // add pc, pc, #0 1973 // mov r0, #1 1974 unsigned SrcReg = MI->getOperand(0).getReg(); 1975 unsigned ValReg = MI->getOperand(1).getReg(); 1976 1977 OutStreamer->AddComment("eh_setjmp begin"); 1978 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1979 .addReg(ValReg) 1980 .addReg(ARM::PC) 1981 .addImm(8) 1982 // Predicate. 1983 .addImm(ARMCC::AL) 1984 .addReg(0) 1985 // 's' bit operand (always reg0 for this). 1986 .addReg(0)); 1987 1988 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1989 .addReg(ValReg) 1990 .addReg(SrcReg) 1991 .addImm(4) 1992 // Predicate. 1993 .addImm(ARMCC::AL) 1994 .addReg(0)); 1995 1996 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1997 .addReg(ARM::R0) 1998 .addImm(0) 1999 // Predicate. 2000 .addImm(ARMCC::AL) 2001 .addReg(0) 2002 // 's' bit operand (always reg0 for this). 2003 .addReg(0)); 2004 2005 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 2006 .addReg(ARM::PC) 2007 .addReg(ARM::PC) 2008 .addImm(0) 2009 // Predicate. 2010 .addImm(ARMCC::AL) 2011 .addReg(0) 2012 // 's' bit operand (always reg0 for this). 2013 .addReg(0)); 2014 2015 OutStreamer->AddComment("eh_setjmp end"); 2016 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2017 .addReg(ARM::R0) 2018 .addImm(1) 2019 // Predicate. 2020 .addImm(ARMCC::AL) 2021 .addReg(0) 2022 // 's' bit operand (always reg0 for this). 2023 .addReg(0)); 2024 return; 2025 } 2026 case ARM::Int_eh_sjlj_longjmp: { 2027 // ldr sp, [$src, #8] 2028 // ldr $scratch, [$src, #4] 2029 // ldr r7, [$src] 2030 // bx $scratch 2031 unsigned SrcReg = MI->getOperand(0).getReg(); 2032 unsigned ScratchReg = MI->getOperand(1).getReg(); 2033 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2034 .addReg(ARM::SP) 2035 .addReg(SrcReg) 2036 .addImm(8) 2037 // Predicate. 2038 .addImm(ARMCC::AL) 2039 .addReg(0)); 2040 2041 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2042 .addReg(ScratchReg) 2043 .addReg(SrcReg) 2044 .addImm(4) 2045 // Predicate. 2046 .addImm(ARMCC::AL) 2047 .addReg(0)); 2048 2049 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2050 .addReg(ARM::R7) 2051 .addReg(SrcReg) 2052 .addImm(0) 2053 // Predicate. 2054 .addImm(ARMCC::AL) 2055 .addReg(0)); 2056 2057 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2058 .addReg(ScratchReg) 2059 // Predicate. 2060 .addImm(ARMCC::AL) 2061 .addReg(0)); 2062 return; 2063 } 2064 case ARM::tInt_eh_sjlj_longjmp: { 2065 // ldr $scratch, [$src, #8] 2066 // mov sp, $scratch 2067 // ldr $scratch, [$src, #4] 2068 // ldr r7, [$src] 2069 // bx $scratch 2070 unsigned SrcReg = MI->getOperand(0).getReg(); 2071 unsigned ScratchReg = MI->getOperand(1).getReg(); 2072 2073 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2074 .addReg(ScratchReg) 2075 .addReg(SrcReg) 2076 // The offset immediate is #8. The operand value is scaled by 4 for the 2077 // tLDR instruction. 2078 .addImm(2) 2079 // Predicate. 2080 .addImm(ARMCC::AL) 2081 .addReg(0)); 2082 2083 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2084 .addReg(ARM::SP) 2085 .addReg(ScratchReg) 2086 // Predicate. 2087 .addImm(ARMCC::AL) 2088 .addReg(0)); 2089 2090 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2091 .addReg(ScratchReg) 2092 .addReg(SrcReg) 2093 .addImm(1) 2094 // Predicate. 2095 .addImm(ARMCC::AL) 2096 .addReg(0)); 2097 2098 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2099 .addReg(ARM::R7) 2100 .addReg(SrcReg) 2101 .addImm(0) 2102 // Predicate. 2103 .addImm(ARMCC::AL) 2104 .addReg(0)); 2105 2106 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2107 .addReg(ScratchReg) 2108 // Predicate. 2109 .addImm(ARMCC::AL) 2110 .addReg(0)); 2111 return; 2112 } 2113 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2114 // ldr.w r11, [$src, #0] 2115 // ldr.w sp, [$src, #8] 2116 // ldr.w pc, [$src, #4] 2117 2118 unsigned SrcReg = MI->getOperand(0).getReg(); 2119 2120 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2121 .addReg(ARM::R11) 2122 .addReg(SrcReg) 2123 .addImm(0) 2124 // Predicate 2125 .addImm(ARMCC::AL) 2126 .addReg(0)); 2127 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2128 .addReg(ARM::SP) 2129 .addReg(SrcReg) 2130 .addImm(8) 2131 // Predicate 2132 .addImm(ARMCC::AL) 2133 .addReg(0)); 2134 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2135 .addReg(ARM::PC) 2136 .addReg(SrcReg) 2137 .addImm(4) 2138 // Predicate 2139 .addImm(ARMCC::AL) 2140 .addReg(0)); 2141 return; 2142 } 2143 case ARM::PATCHABLE_FUNCTION_ENTER: 2144 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2145 return; 2146 case ARM::PATCHABLE_FUNCTION_EXIT: 2147 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2148 return; 2149 case ARM::PATCHABLE_TAIL_CALL: 2150 LowerPATCHABLE_TAIL_CALL(*MI); 2151 return; 2152 } 2153 2154 MCInst TmpInst; 2155 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2156 2157 EmitToStreamer(*OutStreamer, TmpInst); 2158 } 2159 2160 //===----------------------------------------------------------------------===// 2161 // Target Registry Stuff 2162 //===----------------------------------------------------------------------===// 2163 2164 // Force static initialization. 2165 extern "C" void LLVMInitializeARMAsmPrinter() { 2166 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2167 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2168 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2169 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2170 } 2171