1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/COFF.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ELF.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/TargetParser.h" 51 #include "llvm/Support/TargetRegistry.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cctype> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 60 std::unique_ptr<MCStreamer> Streamer) 61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 62 InConstantPool(false), OptimizationGoals(-1) {} 63 64 void ARMAsmPrinter::EmitFunctionBodyEnd() { 65 // Make sure to terminate any constant pools that were at the end 66 // of the function. 67 if (!InConstantPool) 68 return; 69 InConstantPool = false; 70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 71 } 72 73 void ARMAsmPrinter::EmitFunctionEntryLabel() { 74 if (AFI->isThumbFunction()) { 75 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 76 OutStreamer->EmitThumbFunc(CurrentFnSym); 77 } else { 78 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 79 } 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 101 if (PromotedGlobals.count(GV)) 102 // The global was promoted into a constant pool. It should not be emitted. 103 return; 104 AsmPrinter::EmitGlobalVariable(GV); 105 } 106 107 /// runOnMachineFunction - This uses the EmitInstruction() 108 /// method to print assembly for each instruction. 109 /// 110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 111 AFI = MF.getInfo<ARMFunctionInfo>(); 112 MCP = MF.getConstantPool(); 113 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 114 115 SetupMachineFunction(MF); 116 const Function* F = MF.getFunction(); 117 const TargetMachine& TM = MF.getTarget(); 118 119 // Collect all globals that had their storage promoted to a constant pool. 120 // Functions are emitted before variables, so this accumulates promoted 121 // globals from all functions in PromotedGlobals. 122 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 123 PromotedGlobals.insert(GV); 124 125 // Calculate this function's optimization goal. 126 unsigned OptimizationGoal; 127 if (F->hasFnAttribute(Attribute::OptimizeNone)) 128 // For best debugging illusion, speed and small size sacrificed 129 OptimizationGoal = 6; 130 else if (F->optForMinSize()) 131 // Aggressively for small size, speed and debug illusion sacrificed 132 OptimizationGoal = 4; 133 else if (F->optForSize()) 134 // For small size, but speed and debugging illusion preserved 135 OptimizationGoal = 3; 136 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 137 // Aggressively for speed, small size and debug illusion sacrificed 138 OptimizationGoal = 2; 139 else if (TM.getOptLevel() > CodeGenOpt::None) 140 // For speed, but small size and good debug illusion preserved 141 OptimizationGoal = 1; 142 else // TM.getOptLevel() == CodeGenOpt::None 143 // For good debugging, but speed and small size preserved 144 OptimizationGoal = 5; 145 146 // Combine a new optimization goal with existing ones. 147 if (OptimizationGoals == -1) // uninitialized goals 148 OptimizationGoals = OptimizationGoal; 149 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 150 OptimizationGoals = 0; 151 152 if (Subtarget->isTargetCOFF()) { 153 bool Internal = F->hasInternalLinkage(); 154 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 155 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 156 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 157 158 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 159 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 160 OutStreamer->EmitCOFFSymbolType(Type); 161 OutStreamer->EndCOFFSymbolDef(); 162 } 163 164 // Emit the rest of the function body. 165 EmitFunctionBody(); 166 167 // Emit the XRay table for this function. 168 EmitXRayTable(); 169 170 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 171 // These are created per function, rather than per TU, since it's 172 // relatively easy to exceed the thumb branch range within a TU. 173 if (! ThumbIndirectPads.empty()) { 174 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 175 EmitAlignment(1); 176 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 177 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 178 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 179 .addReg(ThumbIndirectPads[i].first) 180 // Add predicate operands. 181 .addImm(ARMCC::AL) 182 .addReg(0)); 183 } 184 ThumbIndirectPads.clear(); 185 } 186 187 // We didn't modify anything. 188 return false; 189 } 190 191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 192 raw_ostream &O) { 193 const MachineOperand &MO = MI->getOperand(OpNum); 194 unsigned TF = MO.getTargetFlags(); 195 196 switch (MO.getType()) { 197 default: llvm_unreachable("<unknown operand type>"); 198 case MachineOperand::MO_Register: { 199 unsigned Reg = MO.getReg(); 200 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 201 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 202 if(ARM::GPRPairRegClass.contains(Reg)) { 203 const MachineFunction &MF = *MI->getParent()->getParent(); 204 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 205 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 206 } 207 O << ARMInstPrinter::getRegisterName(Reg); 208 break; 209 } 210 case MachineOperand::MO_Immediate: { 211 int64_t Imm = MO.getImm(); 212 O << '#'; 213 if (TF == ARMII::MO_LO16) 214 O << ":lower16:"; 215 else if (TF == ARMII::MO_HI16) 216 O << ":upper16:"; 217 O << Imm; 218 break; 219 } 220 case MachineOperand::MO_MachineBasicBlock: 221 MO.getMBB()->getSymbol()->print(O, MAI); 222 return; 223 case MachineOperand::MO_GlobalAddress: { 224 const GlobalValue *GV = MO.getGlobal(); 225 if (TF & ARMII::MO_LO16) 226 O << ":lower16:"; 227 else if (TF & ARMII::MO_HI16) 228 O << ":upper16:"; 229 GetARMGVSymbol(GV, TF)->print(O, MAI); 230 231 printOffset(MO.getOffset(), O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 GetCPISymbol(MO.getIndex())->print(O, MAI); 236 break; 237 } 238 } 239 240 //===--------------------------------------------------------------------===// 241 242 MCSymbol *ARMAsmPrinter:: 243 GetARMJTIPICJumpTableLabel(unsigned uid) const { 244 const DataLayout &DL = getDataLayout(); 245 SmallString<60> Name; 246 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 247 << getFunctionNumber() << '_' << uid; 248 return OutContext.getOrCreateSymbol(Name); 249 } 250 251 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 252 unsigned AsmVariant, const char *ExtraCode, 253 raw_ostream &O) { 254 // Does this asm operand have a single letter operand modifier? 255 if (ExtraCode && ExtraCode[0]) { 256 if (ExtraCode[1] != 0) return true; // Unknown modifier. 257 258 switch (ExtraCode[0]) { 259 default: 260 // See if this is a generic print operand 261 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 262 case 'a': // Print as a memory address. 263 if (MI->getOperand(OpNum).isReg()) { 264 O << "[" 265 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 266 << "]"; 267 return false; 268 } 269 LLVM_FALLTHROUGH; 270 case 'c': // Don't print "#" before an immediate operand. 271 if (!MI->getOperand(OpNum).isImm()) 272 return true; 273 O << MI->getOperand(OpNum).getImm(); 274 return false; 275 case 'P': // Print a VFP double precision register. 276 case 'q': // Print a NEON quad precision register. 277 printOperand(MI, OpNum, O); 278 return false; 279 case 'y': // Print a VFP single precision register as indexed double. 280 if (MI->getOperand(OpNum).isReg()) { 281 unsigned Reg = MI->getOperand(OpNum).getReg(); 282 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 283 // Find the 'd' register that has this 's' register as a sub-register, 284 // and determine the lane number. 285 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 286 if (!ARM::DPRRegClass.contains(*SR)) 287 continue; 288 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 289 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 290 return false; 291 } 292 } 293 return true; 294 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 295 if (!MI->getOperand(OpNum).isImm()) 296 return true; 297 O << ~(MI->getOperand(OpNum).getImm()); 298 return false; 299 case 'L': // The low 16 bits of an immediate constant. 300 if (!MI->getOperand(OpNum).isImm()) 301 return true; 302 O << (MI->getOperand(OpNum).getImm() & 0xffff); 303 return false; 304 case 'M': { // A register range suitable for LDM/STM. 305 if (!MI->getOperand(OpNum).isReg()) 306 return true; 307 const MachineOperand &MO = MI->getOperand(OpNum); 308 unsigned RegBegin = MO.getReg(); 309 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 310 // already got the operands in registers that are operands to the 311 // inline asm statement. 312 O << "{"; 313 if (ARM::GPRPairRegClass.contains(RegBegin)) { 314 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 315 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 316 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 317 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 318 } 319 O << ARMInstPrinter::getRegisterName(RegBegin); 320 321 // FIXME: The register allocator not only may not have given us the 322 // registers in sequence, but may not be in ascending registers. This 323 // will require changes in the register allocator that'll need to be 324 // propagated down here if the operands change. 325 unsigned RegOps = OpNum + 1; 326 while (MI->getOperand(RegOps).isReg()) { 327 O << ", " 328 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 329 RegOps++; 330 } 331 332 O << "}"; 333 334 return false; 335 } 336 case 'R': // The most significant register of a pair. 337 case 'Q': { // The least significant register of a pair. 338 if (OpNum == 0) 339 return true; 340 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 341 if (!FlagsOP.isImm()) 342 return true; 343 unsigned Flags = FlagsOP.getImm(); 344 345 // This operand may not be the one that actually provides the register. If 346 // it's tied to a previous one then we should refer instead to that one 347 // for registers and their classes. 348 unsigned TiedIdx; 349 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 350 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 351 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 352 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 353 } 354 Flags = MI->getOperand(OpNum).getImm(); 355 356 // Later code expects OpNum to be pointing at the register rather than 357 // the flags. 358 OpNum += 1; 359 } 360 361 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 362 unsigned RC; 363 InlineAsm::hasRegClassConstraint(Flags, RC); 364 if (RC == ARM::GPRPairRegClassID) { 365 if (NumVals != 1) 366 return true; 367 const MachineOperand &MO = MI->getOperand(OpNum); 368 if (!MO.isReg()) 369 return true; 370 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 371 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 372 ARM::gsub_0 : ARM::gsub_1); 373 O << ARMInstPrinter::getRegisterName(Reg); 374 return false; 375 } 376 if (NumVals != 2) 377 return true; 378 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 379 if (RegOp >= MI->getNumOperands()) 380 return true; 381 const MachineOperand &MO = MI->getOperand(RegOp); 382 if (!MO.isReg()) 383 return true; 384 unsigned Reg = MO.getReg(); 385 O << ARMInstPrinter::getRegisterName(Reg); 386 return false; 387 } 388 389 case 'e': // The low doubleword register of a NEON quad register. 390 case 'f': { // The high doubleword register of a NEON quad register. 391 if (!MI->getOperand(OpNum).isReg()) 392 return true; 393 unsigned Reg = MI->getOperand(OpNum).getReg(); 394 if (!ARM::QPRRegClass.contains(Reg)) 395 return true; 396 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 397 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 398 ARM::dsub_0 : ARM::dsub_1); 399 O << ARMInstPrinter::getRegisterName(SubReg); 400 return false; 401 } 402 403 // This modifier is not yet supported. 404 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 405 return true; 406 case 'H': { // The highest-numbered register of a pair. 407 const MachineOperand &MO = MI->getOperand(OpNum); 408 if (!MO.isReg()) 409 return true; 410 const MachineFunction &MF = *MI->getParent()->getParent(); 411 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 412 unsigned Reg = MO.getReg(); 413 if(!ARM::GPRPairRegClass.contains(Reg)) 414 return false; 415 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 416 O << ARMInstPrinter::getRegisterName(Reg); 417 return false; 418 } 419 } 420 } 421 422 printOperand(MI, OpNum, O); 423 return false; 424 } 425 426 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 427 unsigned OpNum, unsigned AsmVariant, 428 const char *ExtraCode, 429 raw_ostream &O) { 430 // Does this asm operand have a single letter operand modifier? 431 if (ExtraCode && ExtraCode[0]) { 432 if (ExtraCode[1] != 0) return true; // Unknown modifier. 433 434 switch (ExtraCode[0]) { 435 case 'A': // A memory operand for a VLD1/VST1 instruction. 436 default: return true; // Unknown modifier. 437 case 'm': // The base register of a memory operand. 438 if (!MI->getOperand(OpNum).isReg()) 439 return true; 440 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 441 return false; 442 } 443 } 444 445 const MachineOperand &MO = MI->getOperand(OpNum); 446 assert(MO.isReg() && "unexpected inline asm memory operand"); 447 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 448 return false; 449 } 450 451 static bool isThumb(const MCSubtargetInfo& STI) { 452 return STI.getFeatureBits()[ARM::ModeThumb]; 453 } 454 455 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 456 const MCSubtargetInfo *EndInfo) const { 457 // If either end mode is unknown (EndInfo == NULL) or different than 458 // the start mode, then restore the start mode. 459 const bool WasThumb = isThumb(StartInfo); 460 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 461 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 462 } 463 } 464 465 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 466 const Triple &TT = TM.getTargetTriple(); 467 // Use unified assembler syntax. 468 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 469 470 // Emit ARM Build Attributes 471 if (TT.isOSBinFormatELF()) 472 emitAttributes(); 473 474 // Use the triple's architecture and subarchitecture to determine 475 // if we're thumb for the purposes of the top level code16 assembler 476 // flag. 477 bool isThumb = TT.getArch() == Triple::thumb || 478 TT.getArch() == Triple::thumbeb || 479 TT.getSubArch() == Triple::ARMSubArch_v7m || 480 TT.getSubArch() == Triple::ARMSubArch_v6m; 481 if (!M.getModuleInlineAsm().empty() && isThumb) 482 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 483 } 484 485 static void 486 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 487 MachineModuleInfoImpl::StubValueTy &MCSym) { 488 // L_foo$stub: 489 OutStreamer.EmitLabel(StubLabel); 490 // .indirect_symbol _foo 491 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 492 493 if (MCSym.getInt()) 494 // External to current translation unit. 495 OutStreamer.EmitIntValue(0, 4/*size*/); 496 else 497 // Internal to current translation unit. 498 // 499 // When we place the LSDA into the TEXT section, the type info 500 // pointers need to be indirect and pc-rel. We accomplish this by 501 // using NLPs; however, sometimes the types are local to the file. 502 // We need to fill in the value for the NLP in those cases. 503 OutStreamer.EmitValue( 504 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 505 4 /*size*/); 506 } 507 508 509 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 510 const Triple &TT = TM.getTargetTriple(); 511 if (TT.isOSBinFormatMachO()) { 512 // All darwin targets use mach-o. 513 const TargetLoweringObjectFileMachO &TLOFMacho = 514 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 515 MachineModuleInfoMachO &MMIMacho = 516 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 517 518 // Output non-lazy-pointers for external and common global variables. 519 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 520 521 if (!Stubs.empty()) { 522 // Switch with ".non_lazy_symbol_pointer" directive. 523 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 524 EmitAlignment(2); 525 526 for (auto &Stub : Stubs) 527 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 528 529 Stubs.clear(); 530 OutStreamer->AddBlankLine(); 531 } 532 533 Stubs = MMIMacho.GetThreadLocalGVStubList(); 534 if (!Stubs.empty()) { 535 // Switch with ".non_lazy_symbol_pointer" directive. 536 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 537 EmitAlignment(2); 538 539 for (auto &Stub : Stubs) 540 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 541 542 Stubs.clear(); 543 OutStreamer->AddBlankLine(); 544 } 545 546 // Funny Darwin hack: This flag tells the linker that no global symbols 547 // contain code that falls through to other global symbols (e.g. the obvious 548 // implementation of multiple entry points). If this doesn't occur, the 549 // linker can safely perform dead code stripping. Since LLVM never 550 // generates code that does this, it is always safe to set. 551 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 552 } 553 554 if (TT.isOSBinFormatCOFF()) { 555 const auto &TLOF = 556 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering()); 557 558 std::string Flags; 559 raw_string_ostream OS(Flags); 560 561 for (const auto &Function : M) 562 TLOF.emitLinkerFlagsForGlobal(OS, &Function); 563 for (const auto &Global : M.globals()) 564 TLOF.emitLinkerFlagsForGlobal(OS, &Global); 565 for (const auto &Alias : M.aliases()) 566 TLOF.emitLinkerFlagsForGlobal(OS, &Alias); 567 568 OS.flush(); 569 570 // Output collected flags 571 if (!Flags.empty()) { 572 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 573 OutStreamer->EmitBytes(Flags); 574 } 575 } 576 577 // The last attribute to be emitted is ABI_optimization_goals 578 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 579 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 580 581 if (OptimizationGoals > 0 && 582 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 583 Subtarget->isTargetMuslAEABI())) 584 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 585 OptimizationGoals = -1; 586 587 ATS.finishAttributeSection(); 588 } 589 590 static bool isV8M(const ARMSubtarget *Subtarget) { 591 // Note that v8M Baseline is a subset of v6T2! 592 return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) || 593 Subtarget->hasV8MMainlineOps(); 594 } 595 596 //===----------------------------------------------------------------------===// 597 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 598 // FIXME: 599 // The following seem like one-off assembler flags, but they actually need 600 // to appear in the .ARM.attributes section in ELF. 601 // Instead of subclassing the MCELFStreamer, we do the work here. 602 603 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 604 const ARMSubtarget *Subtarget) { 605 if (CPU == "xscale") 606 return ARMBuildAttrs::v5TEJ; 607 608 if (Subtarget->hasV8Ops()) { 609 if (Subtarget->isRClass()) 610 return ARMBuildAttrs::v8_R; 611 return ARMBuildAttrs::v8_A; 612 } else if (Subtarget->hasV8MMainlineOps()) 613 return ARMBuildAttrs::v8_M_Main; 614 else if (Subtarget->hasV7Ops()) { 615 if (Subtarget->isMClass() && Subtarget->hasDSP()) 616 return ARMBuildAttrs::v7E_M; 617 return ARMBuildAttrs::v7; 618 } else if (Subtarget->hasV6T2Ops()) 619 return ARMBuildAttrs::v6T2; 620 else if (Subtarget->hasV8MBaselineOps()) 621 return ARMBuildAttrs::v8_M_Base; 622 else if (Subtarget->hasV6MOps()) 623 return ARMBuildAttrs::v6S_M; 624 else if (Subtarget->hasV6Ops()) 625 return ARMBuildAttrs::v6; 626 else if (Subtarget->hasV5TEOps()) 627 return ARMBuildAttrs::v5TE; 628 else if (Subtarget->hasV5TOps()) 629 return ARMBuildAttrs::v5T; 630 else if (Subtarget->hasV4TOps()) 631 return ARMBuildAttrs::v4T; 632 else 633 return ARMBuildAttrs::v4; 634 } 635 636 // Returns true if all functions have the same function attribute value. 637 // It also returns true when the module has no functions. 638 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 639 StringRef Value) { 640 return !any_of(M, [&](const Function &F) { 641 return F.getFnAttribute(Attr).getValueAsString() != Value; 642 }); 643 } 644 645 void ARMAsmPrinter::emitAttributes() { 646 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 647 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 648 649 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 650 651 ATS.switchVendor("aeabi"); 652 653 // Compute ARM ELF Attributes based on the default subtarget that 654 // we'd have constructed. The existing ARM behavior isn't LTO clean 655 // anyhow. 656 // FIXME: For ifunc related functions we could iterate over and look 657 // for a feature string that doesn't match the default one. 658 const Triple &TT = TM.getTargetTriple(); 659 StringRef CPU = TM.getTargetCPU(); 660 StringRef FS = TM.getTargetFeatureString(); 661 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 662 if (!FS.empty()) { 663 if (!ArchFS.empty()) 664 ArchFS = (Twine(ArchFS) + "," + FS).str(); 665 else 666 ArchFS = FS; 667 } 668 const ARMBaseTargetMachine &ATM = 669 static_cast<const ARMBaseTargetMachine &>(TM); 670 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 671 672 const std::string &CPUString = STI.getCPUString(); 673 674 if (!StringRef(CPUString).startswith("generic")) { 675 // FIXME: remove krait check when GNU tools support krait cpu 676 if (STI.isKrait()) { 677 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 678 // We consider krait as a "cortex-a9" + hwdiv CPU 679 // Enable hwdiv through ".arch_extension idiv" 680 if (STI.hasDivide() || STI.hasDivideInARMMode()) 681 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM); 682 } else 683 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 684 } 685 686 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 687 688 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 689 // profile is not applicable (e.g. pre v7, or cross-profile code)". 690 if (STI.hasV7Ops() || isV8M(&STI)) { 691 if (STI.isAClass()) { 692 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 693 ARMBuildAttrs::ApplicationProfile); 694 } else if (STI.isRClass()) { 695 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 696 ARMBuildAttrs::RealTimeProfile); 697 } else if (STI.isMClass()) { 698 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 699 ARMBuildAttrs::MicroControllerProfile); 700 } 701 } 702 703 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 704 STI.hasARMOps() ? ARMBuildAttrs::Allowed 705 : ARMBuildAttrs::Not_Allowed); 706 if (isV8M(&STI)) { 707 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 708 ARMBuildAttrs::AllowThumbDerived); 709 } else if (STI.isThumb1Only()) { 710 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 711 } else if (STI.hasThumb2()) { 712 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 713 ARMBuildAttrs::AllowThumb32); 714 } 715 716 if (STI.hasNEON()) { 717 /* NEON is not exactly a VFP architecture, but GAS emit one of 718 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 719 if (STI.hasFPARMv8()) { 720 if (STI.hasCrypto()) 721 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 722 else 723 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 724 } else if (STI.hasVFP4()) 725 ATS.emitFPU(ARM::FK_NEON_VFPV4); 726 else 727 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 728 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 729 if (STI.hasV8Ops()) 730 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 731 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 732 ARMBuildAttrs::AllowNeonARMv8); 733 } else { 734 if (STI.hasFPARMv8()) 735 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 736 // FPU, but there are two different names for it depending on the CPU. 737 ATS.emitFPU(STI.hasD16() 738 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 739 : ARM::FK_FP_ARMV8); 740 else if (STI.hasVFP4()) 741 ATS.emitFPU(STI.hasD16() 742 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 743 : ARM::FK_VFPV4); 744 else if (STI.hasVFP3()) 745 ATS.emitFPU(STI.hasD16() 746 // +d16 747 ? (STI.isFPOnlySP() 748 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 749 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 750 // -d16 751 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 752 else if (STI.hasVFP2()) 753 ATS.emitFPU(ARM::FK_VFPV2); 754 } 755 756 // RW data addressing. 757 if (isPositionIndependent()) { 758 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 759 ARMBuildAttrs::AddressRWPCRel); 760 } else if (STI.isRWPI()) { 761 // RWPI specific attributes. 762 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 763 ARMBuildAttrs::AddressRWSBRel); 764 } 765 766 // RO data addressing. 767 if (isPositionIndependent() || STI.isROPI()) { 768 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 769 ARMBuildAttrs::AddressROPCRel); 770 } 771 772 // GOT use. 773 if (isPositionIndependent()) { 774 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 775 ARMBuildAttrs::AddressGOT); 776 } else { 777 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 778 ARMBuildAttrs::AddressDirect); 779 } 780 781 // Set FP Denormals. 782 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 783 "denormal-fp-math", 784 "preserve-sign") || 785 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 786 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 787 ARMBuildAttrs::PreserveFPSign); 788 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 789 "denormal-fp-math", 790 "positive-zero") || 791 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 792 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 793 ARMBuildAttrs::PositiveZero); 794 else if (!TM.Options.UnsafeFPMath) 795 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 796 ARMBuildAttrs::IEEEDenormals); 797 else { 798 if (!STI.hasVFP2()) { 799 // When the target doesn't have an FPU (by design or 800 // intention), the assumptions made on the software support 801 // mirror that of the equivalent hardware support *if it 802 // existed*. For v7 and better we indicate that denormals are 803 // flushed preserving sign, and for V6 we indicate that 804 // denormals are flushed to positive zero. 805 if (STI.hasV7Ops()) 806 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 807 ARMBuildAttrs::PreserveFPSign); 808 } else if (STI.hasVFP3()) { 809 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 810 // the sign bit of the zero matches the sign bit of the input or 811 // result that is being flushed to zero. 812 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 813 ARMBuildAttrs::PreserveFPSign); 814 } 815 // For VFPv2 implementations it is implementation defined as 816 // to whether denormals are flushed to positive zero or to 817 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 818 // LLVM has chosen to flush this to positive zero (most likely for 819 // GCC compatibility), so that's the chosen value here (the 820 // absence of its emission implies zero). 821 } 822 823 // Set FP exceptions and rounding 824 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 825 "no-trapping-math", "true") || 826 TM.Options.NoTrappingFPMath) 827 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 828 ARMBuildAttrs::Not_Allowed); 829 else if (!TM.Options.UnsafeFPMath) { 830 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 831 832 // If the user has permitted this code to choose the IEEE 754 833 // rounding at run-time, emit the rounding attribute. 834 if (TM.Options.HonorSignDependentRoundingFPMathOption) 835 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 836 } 837 838 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 839 // equivalent of GCC's -ffinite-math-only flag. 840 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 841 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 842 ARMBuildAttrs::Allowed); 843 else 844 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 845 ARMBuildAttrs::AllowIEE754); 846 847 if (STI.allowsUnalignedMem()) 848 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 849 ARMBuildAttrs::Allowed); 850 else 851 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 852 ARMBuildAttrs::Not_Allowed); 853 854 // FIXME: add more flags to ARMBuildAttributes.h 855 // 8-bytes alignment stuff. 856 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 857 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 858 859 // ABI_HardFP_use attribute to indicate single precision FP. 860 if (STI.isFPOnlySP()) 861 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 862 ARMBuildAttrs::HardFPSinglePrecision); 863 864 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 865 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 866 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 867 868 // FIXME: Should we signal R9 usage? 869 870 if (STI.hasFP16()) 871 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 872 873 // FIXME: To support emitting this build attribute as GCC does, the 874 // -mfp16-format option and associated plumbing must be 875 // supported. For now the __fp16 type is exposed by default, so this 876 // attribute should be emitted with value 1. 877 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 878 ARMBuildAttrs::FP16FormatIEEE); 879 880 if (STI.hasMPExtension()) 881 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 882 883 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 884 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 885 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 886 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 887 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 888 // otherwise, the default value (AllowDIVIfExists) applies. 889 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 890 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 891 892 if (STI.hasDSP() && isV8M(&STI)) 893 ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); 894 895 if (MMI) { 896 if (const Module *SourceModule = MMI->getModule()) { 897 // ABI_PCS_wchar_t to indicate wchar_t width 898 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 899 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 900 SourceModule->getModuleFlag("wchar_size"))) { 901 int WCharWidth = WCharWidthValue->getZExtValue(); 902 assert((WCharWidth == 2 || WCharWidth == 4) && 903 "wchar_t width must be 2 or 4 bytes"); 904 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 905 } 906 907 // ABI_enum_size to indicate enum width 908 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 909 // (all enums contain a value needing 32 bits to encode). 910 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 911 SourceModule->getModuleFlag("min_enum_size"))) { 912 int EnumWidth = EnumWidthValue->getZExtValue(); 913 assert((EnumWidth == 1 || EnumWidth == 4) && 914 "Minimum enum width must be 1 or 4 bytes"); 915 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 916 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 917 } 918 } 919 } 920 921 // We currently do not support using R9 as the TLS pointer. 922 if (STI.isRWPI()) 923 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 924 ARMBuildAttrs::R9IsSB); 925 else if (STI.isR9Reserved()) 926 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 927 ARMBuildAttrs::R9Reserved); 928 else 929 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 930 ARMBuildAttrs::R9IsGPR); 931 932 if (STI.hasTrustZone() && STI.hasVirtualization()) 933 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 934 ARMBuildAttrs::AllowTZVirtualization); 935 else if (STI.hasTrustZone()) 936 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 937 ARMBuildAttrs::AllowTZ); 938 else if (STI.hasVirtualization()) 939 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 940 ARMBuildAttrs::AllowVirtualization); 941 } 942 943 //===----------------------------------------------------------------------===// 944 945 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 946 unsigned LabelId, MCContext &Ctx) { 947 948 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 949 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 950 return Label; 951 } 952 953 static MCSymbolRefExpr::VariantKind 954 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 955 switch (Modifier) { 956 case ARMCP::no_modifier: 957 return MCSymbolRefExpr::VK_None; 958 case ARMCP::TLSGD: 959 return MCSymbolRefExpr::VK_TLSGD; 960 case ARMCP::TPOFF: 961 return MCSymbolRefExpr::VK_TPOFF; 962 case ARMCP::GOTTPOFF: 963 return MCSymbolRefExpr::VK_GOTTPOFF; 964 case ARMCP::SBREL: 965 return MCSymbolRefExpr::VK_ARM_SBREL; 966 case ARMCP::GOT_PREL: 967 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 968 case ARMCP::SECREL: 969 return MCSymbolRefExpr::VK_SECREL; 970 } 971 llvm_unreachable("Invalid ARMCPModifier!"); 972 } 973 974 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 975 unsigned char TargetFlags) { 976 if (Subtarget->isTargetMachO()) { 977 bool IsIndirect = 978 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 979 980 if (!IsIndirect) 981 return getSymbol(GV); 982 983 // FIXME: Remove this when Darwin transition to @GOT like syntax. 984 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 985 MachineModuleInfoMachO &MMIMachO = 986 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 987 MachineModuleInfoImpl::StubValueTy &StubSym = 988 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 989 : MMIMachO.getGVStubEntry(MCSym); 990 991 if (!StubSym.getPointer()) 992 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 993 !GV->hasInternalLinkage()); 994 return MCSym; 995 } else if (Subtarget->isTargetCOFF()) { 996 assert(Subtarget->isTargetWindows() && 997 "Windows is the only supported COFF target"); 998 999 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 1000 if (!IsIndirect) 1001 return getSymbol(GV); 1002 1003 SmallString<128> Name; 1004 Name = "__imp_"; 1005 getNameWithPrefix(Name, GV); 1006 1007 return OutContext.getOrCreateSymbol(Name); 1008 } else if (Subtarget->isTargetELF()) { 1009 return getSymbol(GV); 1010 } 1011 llvm_unreachable("unexpected target"); 1012 } 1013 1014 void ARMAsmPrinter:: 1015 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1016 const DataLayout &DL = getDataLayout(); 1017 int Size = DL.getTypeAllocSize(MCPV->getType()); 1018 1019 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 1020 1021 if (ACPV->isPromotedGlobal()) { 1022 // This constant pool entry is actually a global whose storage has been 1023 // promoted into the constant pool. This global may be referenced still 1024 // by debug information, and due to the way AsmPrinter is set up, the debug 1025 // info is immutable by the time we decide to promote globals to constant 1026 // pools. Because of this, we need to ensure we emit a symbol for the global 1027 // with private linkage (the default) so debug info can refer to it. 1028 // 1029 // However, if this global is promoted into several functions we must ensure 1030 // we don't try and emit duplicate symbols! 1031 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 1032 auto *GV = ACPC->getPromotedGlobal(); 1033 if (!EmittedPromotedGlobalLabels.count(GV)) { 1034 MCSymbol *GVSym = getSymbol(GV); 1035 OutStreamer->EmitLabel(GVSym); 1036 EmittedPromotedGlobalLabels.insert(GV); 1037 } 1038 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 1039 } 1040 1041 MCSymbol *MCSym; 1042 if (ACPV->isLSDA()) { 1043 MCSym = getCurExceptionSym(); 1044 } else if (ACPV->isBlockAddress()) { 1045 const BlockAddress *BA = 1046 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 1047 MCSym = GetBlockAddressSymbol(BA); 1048 } else if (ACPV->isGlobalValue()) { 1049 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 1050 1051 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 1052 // flag the global as MO_NONLAZY. 1053 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 1054 MCSym = GetARMGVSymbol(GV, TF); 1055 } else if (ACPV->isMachineBasicBlock()) { 1056 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 1057 MCSym = MBB->getSymbol(); 1058 } else { 1059 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 1060 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 1061 MCSym = GetExternalSymbolSymbol(Sym); 1062 } 1063 1064 // Create an MCSymbol for the reference. 1065 const MCExpr *Expr = 1066 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 1067 OutContext); 1068 1069 if (ACPV->getPCAdjustment()) { 1070 MCSymbol *PCLabel = 1071 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1072 ACPV->getLabelId(), OutContext); 1073 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 1074 PCRelExpr = 1075 MCBinaryExpr::createAdd(PCRelExpr, 1076 MCConstantExpr::create(ACPV->getPCAdjustment(), 1077 OutContext), 1078 OutContext); 1079 if (ACPV->mustAddCurrentAddress()) { 1080 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 1081 // label, so just emit a local label end reference that instead. 1082 MCSymbol *DotSym = OutContext.createTempSymbol(); 1083 OutStreamer->EmitLabel(DotSym); 1084 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 1085 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 1086 } 1087 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 1088 } 1089 OutStreamer->EmitValue(Expr, Size); 1090 } 1091 1092 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 1093 const MachineOperand &MO1 = MI->getOperand(1); 1094 unsigned JTI = MO1.getIndex(); 1095 1096 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1097 // ARM mode tables. 1098 EmitAlignment(2); 1099 1100 // Emit a label for the jump table. 1101 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1102 OutStreamer->EmitLabel(JTISymbol); 1103 1104 // Mark the jump table as data-in-code. 1105 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1106 1107 // Emit each entry of the table. 1108 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1109 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1110 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1111 1112 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1113 MachineBasicBlock *MBB = JTBBs[i]; 1114 // Construct an MCExpr for the entry. We want a value of the form: 1115 // (BasicBlockAddr - TableBeginAddr) 1116 // 1117 // For example, a table with entries jumping to basic blocks BB0 and BB1 1118 // would look like: 1119 // LJTI_0_0: 1120 // .word (LBB0 - LJTI_0_0) 1121 // .word (LBB1 - LJTI_0_0) 1122 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1123 1124 if (isPositionIndependent() || Subtarget->isROPI()) 1125 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1126 OutContext), 1127 OutContext); 1128 // If we're generating a table of Thumb addresses in static relocation 1129 // model, we need to add one to keep interworking correctly. 1130 else if (AFI->isThumbFunction()) 1131 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1132 OutContext); 1133 OutStreamer->EmitValue(Expr, 4); 1134 } 1135 // Mark the end of jump table data-in-code region. 1136 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1137 } 1138 1139 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 1140 const MachineOperand &MO1 = MI->getOperand(1); 1141 unsigned JTI = MO1.getIndex(); 1142 1143 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1144 OutStreamer->EmitLabel(JTISymbol); 1145 1146 // Emit each entry of the table. 1147 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1148 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1149 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1150 1151 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1152 MachineBasicBlock *MBB = JTBBs[i]; 1153 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1154 OutContext); 1155 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1156 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1157 .addExpr(MBBSymbolExpr) 1158 .addImm(ARMCC::AL) 1159 .addReg(0)); 1160 } 1161 } 1162 1163 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1164 unsigned OffsetWidth) { 1165 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1166 const MachineOperand &MO1 = MI->getOperand(1); 1167 unsigned JTI = MO1.getIndex(); 1168 1169 if (Subtarget->isThumb1Only()) 1170 EmitAlignment(2); 1171 1172 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1173 OutStreamer->EmitLabel(JTISymbol); 1174 1175 // Emit each entry of the table. 1176 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1177 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1178 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1179 1180 // Mark the jump table as data-in-code. 1181 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1182 : MCDR_DataRegionJT16); 1183 1184 for (auto MBB : JTBBs) { 1185 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1186 OutContext); 1187 // Otherwise it's an offset from the dispatch instruction. Construct an 1188 // MCExpr for the entry. We want a value of the form: 1189 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1190 // 1191 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1192 // would look like: 1193 // LJTI_0_0: 1194 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1195 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1196 // where LCPI0_0 is a label defined just before the TBB instruction using 1197 // this table. 1198 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1199 const MCExpr *Expr = MCBinaryExpr::createAdd( 1200 MCSymbolRefExpr::create(TBInstPC, OutContext), 1201 MCConstantExpr::create(4, OutContext), OutContext); 1202 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1203 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1204 OutContext); 1205 OutStreamer->EmitValue(Expr, OffsetWidth); 1206 } 1207 // Mark the end of jump table data-in-code region. 32-bit offsets use 1208 // actual branch instructions here, so we don't mark those as a data-region 1209 // at all. 1210 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1211 1212 // Make sure the next instruction is 2-byte aligned. 1213 EmitAlignment(1); 1214 } 1215 1216 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1217 assert(MI->getFlag(MachineInstr::FrameSetup) && 1218 "Only instruction which are involved into frame setup code are allowed"); 1219 1220 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1221 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1222 const MachineFunction &MF = *MI->getParent()->getParent(); 1223 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1224 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1225 1226 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1227 unsigned Opc = MI->getOpcode(); 1228 unsigned SrcReg, DstReg; 1229 1230 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1231 // Two special cases: 1232 // 1) tPUSH does not have src/dst regs. 1233 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1234 // load. Yes, this is pretty fragile, but for now I don't see better 1235 // way... :( 1236 SrcReg = DstReg = ARM::SP; 1237 } else { 1238 SrcReg = MI->getOperand(1).getReg(); 1239 DstReg = MI->getOperand(0).getReg(); 1240 } 1241 1242 // Try to figure out the unwinding opcode out of src / dst regs. 1243 if (MI->mayStore()) { 1244 // Register saves. 1245 assert(DstReg == ARM::SP && 1246 "Only stack pointer as a destination reg is supported"); 1247 1248 SmallVector<unsigned, 4> RegList; 1249 // Skip src & dst reg, and pred ops. 1250 unsigned StartOp = 2 + 2; 1251 // Use all the operands. 1252 unsigned NumOffset = 0; 1253 1254 switch (Opc) { 1255 default: 1256 MI->dump(); 1257 llvm_unreachable("Unsupported opcode for unwinding information"); 1258 case ARM::tPUSH: 1259 // Special case here: no src & dst reg, but two extra imp ops. 1260 StartOp = 2; NumOffset = 2; 1261 case ARM::STMDB_UPD: 1262 case ARM::t2STMDB_UPD: 1263 case ARM::VSTMDDB_UPD: 1264 assert(SrcReg == ARM::SP && 1265 "Only stack pointer as a source reg is supported"); 1266 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1267 i != NumOps; ++i) { 1268 const MachineOperand &MO = MI->getOperand(i); 1269 // Actually, there should never be any impdef stuff here. Skip it 1270 // temporary to workaround PR11902. 1271 if (MO.isImplicit()) 1272 continue; 1273 RegList.push_back(MO.getReg()); 1274 } 1275 break; 1276 case ARM::STR_PRE_IMM: 1277 case ARM::STR_PRE_REG: 1278 case ARM::t2STR_PRE: 1279 assert(MI->getOperand(2).getReg() == ARM::SP && 1280 "Only stack pointer as a source reg is supported"); 1281 RegList.push_back(SrcReg); 1282 break; 1283 } 1284 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1285 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1286 } else { 1287 // Changes of stack / frame pointer. 1288 if (SrcReg == ARM::SP) { 1289 int64_t Offset = 0; 1290 switch (Opc) { 1291 default: 1292 MI->dump(); 1293 llvm_unreachable("Unsupported opcode for unwinding information"); 1294 case ARM::MOVr: 1295 case ARM::tMOVr: 1296 Offset = 0; 1297 break; 1298 case ARM::ADDri: 1299 case ARM::t2ADDri: 1300 Offset = -MI->getOperand(2).getImm(); 1301 break; 1302 case ARM::SUBri: 1303 case ARM::t2SUBri: 1304 Offset = MI->getOperand(2).getImm(); 1305 break; 1306 case ARM::tSUBspi: 1307 Offset = MI->getOperand(2).getImm()*4; 1308 break; 1309 case ARM::tADDspi: 1310 case ARM::tADDrSPi: 1311 Offset = -MI->getOperand(2).getImm()*4; 1312 break; 1313 case ARM::tLDRpci: { 1314 // Grab the constpool index and check, whether it corresponds to 1315 // original or cloned constpool entry. 1316 unsigned CPI = MI->getOperand(1).getIndex(); 1317 const MachineConstantPool *MCP = MF.getConstantPool(); 1318 if (CPI >= MCP->getConstants().size()) 1319 CPI = AFI.getOriginalCPIdx(CPI); 1320 assert(CPI != -1U && "Invalid constpool index"); 1321 1322 // Derive the actual offset. 1323 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1324 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1325 // FIXME: Check for user, it should be "add" instruction! 1326 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1327 break; 1328 } 1329 } 1330 1331 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1332 if (DstReg == FramePtr && FramePtr != ARM::SP) 1333 // Set-up of the frame pointer. Positive values correspond to "add" 1334 // instruction. 1335 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1336 else if (DstReg == ARM::SP) { 1337 // Change of SP by an offset. Positive values correspond to "sub" 1338 // instruction. 1339 ATS.emitPad(Offset); 1340 } else { 1341 // Move of SP to a register. Positive values correspond to an "add" 1342 // instruction. 1343 ATS.emitMovSP(DstReg, -Offset); 1344 } 1345 } 1346 } else if (DstReg == ARM::SP) { 1347 MI->dump(); 1348 llvm_unreachable("Unsupported opcode for unwinding information"); 1349 } 1350 else { 1351 MI->dump(); 1352 llvm_unreachable("Unsupported opcode for unwinding information"); 1353 } 1354 } 1355 } 1356 1357 // Simple pseudo-instructions have their lowering (with expansion to real 1358 // instructions) auto-generated. 1359 #include "ARMGenMCPseudoLowering.inc" 1360 1361 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1362 const DataLayout &DL = getDataLayout(); 1363 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1364 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1365 1366 // If we just ended a constant pool, mark it as such. 1367 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1368 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1369 InConstantPool = false; 1370 } 1371 1372 // Emit unwinding stuff for frame-related instructions 1373 if (Subtarget->isTargetEHABICompatible() && 1374 MI->getFlag(MachineInstr::FrameSetup)) 1375 EmitUnwindingInstruction(MI); 1376 1377 // Do any auto-generated pseudo lowerings. 1378 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1379 return; 1380 1381 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1382 "Pseudo flag setting opcode should be expanded early"); 1383 1384 // Check for manual lowerings. 1385 unsigned Opc = MI->getOpcode(); 1386 switch (Opc) { 1387 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1388 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1389 case ARM::LEApcrel: 1390 case ARM::tLEApcrel: 1391 case ARM::t2LEApcrel: { 1392 // FIXME: Need to also handle globals and externals 1393 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1394 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1395 ARM::t2LEApcrel ? ARM::t2ADR 1396 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1397 : ARM::ADR)) 1398 .addReg(MI->getOperand(0).getReg()) 1399 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1400 // Add predicate operands. 1401 .addImm(MI->getOperand(2).getImm()) 1402 .addReg(MI->getOperand(3).getReg())); 1403 return; 1404 } 1405 case ARM::LEApcrelJT: 1406 case ARM::tLEApcrelJT: 1407 case ARM::t2LEApcrelJT: { 1408 MCSymbol *JTIPICSymbol = 1409 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1410 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1411 ARM::t2LEApcrelJT ? ARM::t2ADR 1412 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1413 : ARM::ADR)) 1414 .addReg(MI->getOperand(0).getReg()) 1415 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1416 // Add predicate operands. 1417 .addImm(MI->getOperand(2).getImm()) 1418 .addReg(MI->getOperand(3).getReg())); 1419 return; 1420 } 1421 // Darwin call instructions are just normal call instructions with different 1422 // clobber semantics (they clobber R9). 1423 case ARM::BX_CALL: { 1424 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1425 .addReg(ARM::LR) 1426 .addReg(ARM::PC) 1427 // Add predicate operands. 1428 .addImm(ARMCC::AL) 1429 .addReg(0) 1430 // Add 's' bit operand (always reg0 for this) 1431 .addReg(0)); 1432 1433 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1434 .addReg(MI->getOperand(0).getReg())); 1435 return; 1436 } 1437 case ARM::tBX_CALL: { 1438 if (Subtarget->hasV5TOps()) 1439 llvm_unreachable("Expected BLX to be selected for v5t+"); 1440 1441 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1442 // that the saved lr has its LSB set correctly (the arch doesn't 1443 // have blx). 1444 // So here we generate a bl to a small jump pad that does bx rN. 1445 // The jump pads are emitted after the function body. 1446 1447 unsigned TReg = MI->getOperand(0).getReg(); 1448 MCSymbol *TRegSym = nullptr; 1449 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1450 if (ThumbIndirectPads[i].first == TReg) { 1451 TRegSym = ThumbIndirectPads[i].second; 1452 break; 1453 } 1454 } 1455 1456 if (!TRegSym) { 1457 TRegSym = OutContext.createTempSymbol(); 1458 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1459 } 1460 1461 // Create a link-saving branch to the Reg Indirect Jump Pad. 1462 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1463 // Predicate comes first here. 1464 .addImm(ARMCC::AL).addReg(0) 1465 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1466 return; 1467 } 1468 case ARM::BMOVPCRX_CALL: { 1469 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1470 .addReg(ARM::LR) 1471 .addReg(ARM::PC) 1472 // Add predicate operands. 1473 .addImm(ARMCC::AL) 1474 .addReg(0) 1475 // Add 's' bit operand (always reg0 for this) 1476 .addReg(0)); 1477 1478 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1479 .addReg(ARM::PC) 1480 .addReg(MI->getOperand(0).getReg()) 1481 // Add predicate operands. 1482 .addImm(ARMCC::AL) 1483 .addReg(0) 1484 // Add 's' bit operand (always reg0 for this) 1485 .addReg(0)); 1486 return; 1487 } 1488 case ARM::BMOVPCB_CALL: { 1489 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1490 .addReg(ARM::LR) 1491 .addReg(ARM::PC) 1492 // Add predicate operands. 1493 .addImm(ARMCC::AL) 1494 .addReg(0) 1495 // Add 's' bit operand (always reg0 for this) 1496 .addReg(0)); 1497 1498 const MachineOperand &Op = MI->getOperand(0); 1499 const GlobalValue *GV = Op.getGlobal(); 1500 const unsigned TF = Op.getTargetFlags(); 1501 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1502 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1503 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1504 .addExpr(GVSymExpr) 1505 // Add predicate operands. 1506 .addImm(ARMCC::AL) 1507 .addReg(0)); 1508 return; 1509 } 1510 case ARM::MOVi16_ga_pcrel: 1511 case ARM::t2MOVi16_ga_pcrel: { 1512 MCInst TmpInst; 1513 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1514 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1515 1516 unsigned TF = MI->getOperand(1).getTargetFlags(); 1517 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1518 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1519 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1520 1521 MCSymbol *LabelSym = 1522 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1523 MI->getOperand(2).getImm(), OutContext); 1524 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1525 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1526 const MCExpr *PCRelExpr = 1527 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1528 MCBinaryExpr::createAdd(LabelSymExpr, 1529 MCConstantExpr::create(PCAdj, OutContext), 1530 OutContext), OutContext), OutContext); 1531 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1532 1533 // Add predicate operands. 1534 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1535 TmpInst.addOperand(MCOperand::createReg(0)); 1536 // Add 's' bit operand (always reg0 for this) 1537 TmpInst.addOperand(MCOperand::createReg(0)); 1538 EmitToStreamer(*OutStreamer, TmpInst); 1539 return; 1540 } 1541 case ARM::MOVTi16_ga_pcrel: 1542 case ARM::t2MOVTi16_ga_pcrel: { 1543 MCInst TmpInst; 1544 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1545 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1546 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1547 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1548 1549 unsigned TF = MI->getOperand(2).getTargetFlags(); 1550 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1551 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1552 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1553 1554 MCSymbol *LabelSym = 1555 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1556 MI->getOperand(3).getImm(), OutContext); 1557 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1558 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1559 const MCExpr *PCRelExpr = 1560 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1561 MCBinaryExpr::createAdd(LabelSymExpr, 1562 MCConstantExpr::create(PCAdj, OutContext), 1563 OutContext), OutContext), OutContext); 1564 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1565 // Add predicate operands. 1566 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1567 TmpInst.addOperand(MCOperand::createReg(0)); 1568 // Add 's' bit operand (always reg0 for this) 1569 TmpInst.addOperand(MCOperand::createReg(0)); 1570 EmitToStreamer(*OutStreamer, TmpInst); 1571 return; 1572 } 1573 case ARM::tPICADD: { 1574 // This is a pseudo op for a label + instruction sequence, which looks like: 1575 // LPC0: 1576 // add r0, pc 1577 // This adds the address of LPC0 to r0. 1578 1579 // Emit the label. 1580 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1581 getFunctionNumber(), 1582 MI->getOperand(2).getImm(), OutContext)); 1583 1584 // Form and emit the add. 1585 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1586 .addReg(MI->getOperand(0).getReg()) 1587 .addReg(MI->getOperand(0).getReg()) 1588 .addReg(ARM::PC) 1589 // Add predicate operands. 1590 .addImm(ARMCC::AL) 1591 .addReg(0)); 1592 return; 1593 } 1594 case ARM::PICADD: { 1595 // This is a pseudo op for a label + instruction sequence, which looks like: 1596 // LPC0: 1597 // add r0, pc, r0 1598 // This adds the address of LPC0 to r0. 1599 1600 // Emit the label. 1601 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1602 getFunctionNumber(), 1603 MI->getOperand(2).getImm(), OutContext)); 1604 1605 // Form and emit the add. 1606 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1607 .addReg(MI->getOperand(0).getReg()) 1608 .addReg(ARM::PC) 1609 .addReg(MI->getOperand(1).getReg()) 1610 // Add predicate operands. 1611 .addImm(MI->getOperand(3).getImm()) 1612 .addReg(MI->getOperand(4).getReg()) 1613 // Add 's' bit operand (always reg0 for this) 1614 .addReg(0)); 1615 return; 1616 } 1617 case ARM::PICSTR: 1618 case ARM::PICSTRB: 1619 case ARM::PICSTRH: 1620 case ARM::PICLDR: 1621 case ARM::PICLDRB: 1622 case ARM::PICLDRH: 1623 case ARM::PICLDRSB: 1624 case ARM::PICLDRSH: { 1625 // This is a pseudo op for a label + instruction sequence, which looks like: 1626 // LPC0: 1627 // OP r0, [pc, r0] 1628 // The LCP0 label is referenced by a constant pool entry in order to get 1629 // a PC-relative address at the ldr instruction. 1630 1631 // Emit the label. 1632 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1633 getFunctionNumber(), 1634 MI->getOperand(2).getImm(), OutContext)); 1635 1636 // Form and emit the load 1637 unsigned Opcode; 1638 switch (MI->getOpcode()) { 1639 default: 1640 llvm_unreachable("Unexpected opcode!"); 1641 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1642 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1643 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1644 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1645 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1646 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1647 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1648 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1649 } 1650 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1651 .addReg(MI->getOperand(0).getReg()) 1652 .addReg(ARM::PC) 1653 .addReg(MI->getOperand(1).getReg()) 1654 .addImm(0) 1655 // Add predicate operands. 1656 .addImm(MI->getOperand(3).getImm()) 1657 .addReg(MI->getOperand(4).getReg())); 1658 1659 return; 1660 } 1661 case ARM::CONSTPOOL_ENTRY: { 1662 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1663 /// in the function. The first operand is the ID# for this instruction, the 1664 /// second is the index into the MachineConstantPool that this is, the third 1665 /// is the size in bytes of this constant pool entry. 1666 /// The required alignment is specified on the basic block holding this MI. 1667 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1668 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1669 1670 // If this is the first entry of the pool, mark it. 1671 if (!InConstantPool) { 1672 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1673 InConstantPool = true; 1674 } 1675 1676 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1677 1678 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1679 if (MCPE.isMachineConstantPoolEntry()) 1680 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1681 else 1682 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1683 return; 1684 } 1685 case ARM::JUMPTABLE_ADDRS: 1686 EmitJumpTableAddrs(MI); 1687 return; 1688 case ARM::JUMPTABLE_INSTS: 1689 EmitJumpTableInsts(MI); 1690 return; 1691 case ARM::JUMPTABLE_TBB: 1692 case ARM::JUMPTABLE_TBH: 1693 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1694 return; 1695 case ARM::t2BR_JT: { 1696 // Lower and emit the instruction itself, then the jump table following it. 1697 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1698 .addReg(ARM::PC) 1699 .addReg(MI->getOperand(0).getReg()) 1700 // Add predicate operands. 1701 .addImm(ARMCC::AL) 1702 .addReg(0)); 1703 return; 1704 } 1705 case ARM::t2TBB_JT: 1706 case ARM::t2TBH_JT: { 1707 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1708 // Lower and emit the PC label, then the instruction itself. 1709 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1710 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1711 .addReg(MI->getOperand(0).getReg()) 1712 .addReg(MI->getOperand(1).getReg()) 1713 // Add predicate operands. 1714 .addImm(ARMCC::AL) 1715 .addReg(0)); 1716 return; 1717 } 1718 case ARM::tTBB_JT: 1719 case ARM::tTBH_JT: { 1720 1721 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1722 unsigned Base = MI->getOperand(0).getReg(); 1723 unsigned Idx = MI->getOperand(1).getReg(); 1724 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1725 1726 // Multiply up idx if necessary. 1727 if (!Is8Bit) 1728 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1729 .addReg(Idx) 1730 .addReg(ARM::CPSR) 1731 .addReg(Idx) 1732 .addImm(1) 1733 // Add predicate operands. 1734 .addImm(ARMCC::AL) 1735 .addReg(0)); 1736 1737 if (Base == ARM::PC) { 1738 // TBB [base, idx] = 1739 // ADDS idx, idx, base 1740 // LDRB idx, [idx, #4] ; or LDRH if TBH 1741 // LSLS idx, #1 1742 // ADDS pc, pc, idx 1743 1744 // When using PC as the base, it's important that there is no padding 1745 // between the last ADDS and the start of the jump table. The jump table 1746 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1747 // 1748 // FIXME: Ideally we could vary the LDRB index based on the padding 1749 // between the sequence and jump table, however that relies on MCExprs 1750 // for load indexes which are currently not supported. 1751 OutStreamer->EmitCodeAlignment(4); 1752 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1753 .addReg(Idx) 1754 .addReg(Idx) 1755 .addReg(Base) 1756 // Add predicate operands. 1757 .addImm(ARMCC::AL) 1758 .addReg(0)); 1759 1760 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1761 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1762 .addReg(Idx) 1763 .addReg(Idx) 1764 .addImm(Is8Bit ? 4 : 2) 1765 // Add predicate operands. 1766 .addImm(ARMCC::AL) 1767 .addReg(0)); 1768 } else { 1769 // TBB [base, idx] = 1770 // LDRB idx, [base, idx] ; or LDRH if TBH 1771 // LSLS idx, #1 1772 // ADDS pc, pc, idx 1773 1774 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1775 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1776 .addReg(Idx) 1777 .addReg(Base) 1778 .addReg(Idx) 1779 // Add predicate operands. 1780 .addImm(ARMCC::AL) 1781 .addReg(0)); 1782 } 1783 1784 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1785 .addReg(Idx) 1786 .addReg(ARM::CPSR) 1787 .addReg(Idx) 1788 .addImm(1) 1789 // Add predicate operands. 1790 .addImm(ARMCC::AL) 1791 .addReg(0)); 1792 1793 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1794 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1795 .addReg(ARM::PC) 1796 .addReg(ARM::PC) 1797 .addReg(Idx) 1798 // Add predicate operands. 1799 .addImm(ARMCC::AL) 1800 .addReg(0)); 1801 return; 1802 } 1803 case ARM::tBR_JTr: 1804 case ARM::BR_JTr: { 1805 // Lower and emit the instruction itself, then the jump table following it. 1806 // mov pc, target 1807 MCInst TmpInst; 1808 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1809 ARM::MOVr : ARM::tMOVr; 1810 TmpInst.setOpcode(Opc); 1811 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1812 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1813 // Add predicate operands. 1814 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1815 TmpInst.addOperand(MCOperand::createReg(0)); 1816 // Add 's' bit operand (always reg0 for this) 1817 if (Opc == ARM::MOVr) 1818 TmpInst.addOperand(MCOperand::createReg(0)); 1819 EmitToStreamer(*OutStreamer, TmpInst); 1820 return; 1821 } 1822 case ARM::BR_JTm: { 1823 // Lower and emit the instruction itself, then the jump table following it. 1824 // ldr pc, target 1825 MCInst TmpInst; 1826 if (MI->getOperand(1).getReg() == 0) { 1827 // literal offset 1828 TmpInst.setOpcode(ARM::LDRi12); 1829 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1830 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1831 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1832 } else { 1833 TmpInst.setOpcode(ARM::LDRrs); 1834 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1835 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1836 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1837 TmpInst.addOperand(MCOperand::createImm(0)); 1838 } 1839 // Add predicate operands. 1840 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1841 TmpInst.addOperand(MCOperand::createReg(0)); 1842 EmitToStreamer(*OutStreamer, TmpInst); 1843 return; 1844 } 1845 case ARM::BR_JTadd: { 1846 // Lower and emit the instruction itself, then the jump table following it. 1847 // add pc, target, idx 1848 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1849 .addReg(ARM::PC) 1850 .addReg(MI->getOperand(0).getReg()) 1851 .addReg(MI->getOperand(1).getReg()) 1852 // Add predicate operands. 1853 .addImm(ARMCC::AL) 1854 .addReg(0) 1855 // Add 's' bit operand (always reg0 for this) 1856 .addReg(0)); 1857 return; 1858 } 1859 case ARM::SPACE: 1860 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1861 return; 1862 case ARM::TRAP: { 1863 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1864 // FIXME: Remove this special case when they do. 1865 if (!Subtarget->isTargetMachO()) { 1866 uint32_t Val = 0xe7ffdefeUL; 1867 OutStreamer->AddComment("trap"); 1868 ATS.emitInst(Val); 1869 return; 1870 } 1871 break; 1872 } 1873 case ARM::TRAPNaCl: { 1874 uint32_t Val = 0xe7fedef0UL; 1875 OutStreamer->AddComment("trap"); 1876 ATS.emitInst(Val); 1877 return; 1878 } 1879 case ARM::tTRAP: { 1880 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1881 // FIXME: Remove this special case when they do. 1882 if (!Subtarget->isTargetMachO()) { 1883 uint16_t Val = 0xdefe; 1884 OutStreamer->AddComment("trap"); 1885 ATS.emitInst(Val, 'n'); 1886 return; 1887 } 1888 break; 1889 } 1890 case ARM::t2Int_eh_sjlj_setjmp: 1891 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1892 case ARM::tInt_eh_sjlj_setjmp: { 1893 // Two incoming args: GPR:$src, GPR:$val 1894 // mov $val, pc 1895 // adds $val, #7 1896 // str $val, [$src, #4] 1897 // movs r0, #0 1898 // b LSJLJEH 1899 // movs r0, #1 1900 // LSJLJEH: 1901 unsigned SrcReg = MI->getOperand(0).getReg(); 1902 unsigned ValReg = MI->getOperand(1).getReg(); 1903 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1904 OutStreamer->AddComment("eh_setjmp begin"); 1905 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1906 .addReg(ValReg) 1907 .addReg(ARM::PC) 1908 // Predicate. 1909 .addImm(ARMCC::AL) 1910 .addReg(0)); 1911 1912 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1913 .addReg(ValReg) 1914 // 's' bit operand 1915 .addReg(ARM::CPSR) 1916 .addReg(ValReg) 1917 .addImm(7) 1918 // Predicate. 1919 .addImm(ARMCC::AL) 1920 .addReg(0)); 1921 1922 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1923 .addReg(ValReg) 1924 .addReg(SrcReg) 1925 // The offset immediate is #4. The operand value is scaled by 4 for the 1926 // tSTR instruction. 1927 .addImm(1) 1928 // Predicate. 1929 .addImm(ARMCC::AL) 1930 .addReg(0)); 1931 1932 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1933 .addReg(ARM::R0) 1934 .addReg(ARM::CPSR) 1935 .addImm(0) 1936 // Predicate. 1937 .addImm(ARMCC::AL) 1938 .addReg(0)); 1939 1940 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1941 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1942 .addExpr(SymbolExpr) 1943 .addImm(ARMCC::AL) 1944 .addReg(0)); 1945 1946 OutStreamer->AddComment("eh_setjmp end"); 1947 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1948 .addReg(ARM::R0) 1949 .addReg(ARM::CPSR) 1950 .addImm(1) 1951 // Predicate. 1952 .addImm(ARMCC::AL) 1953 .addReg(0)); 1954 1955 OutStreamer->EmitLabel(Label); 1956 return; 1957 } 1958 1959 case ARM::Int_eh_sjlj_setjmp_nofp: 1960 case ARM::Int_eh_sjlj_setjmp: { 1961 // Two incoming args: GPR:$src, GPR:$val 1962 // add $val, pc, #8 1963 // str $val, [$src, #+4] 1964 // mov r0, #0 1965 // add pc, pc, #0 1966 // mov r0, #1 1967 unsigned SrcReg = MI->getOperand(0).getReg(); 1968 unsigned ValReg = MI->getOperand(1).getReg(); 1969 1970 OutStreamer->AddComment("eh_setjmp begin"); 1971 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1972 .addReg(ValReg) 1973 .addReg(ARM::PC) 1974 .addImm(8) 1975 // Predicate. 1976 .addImm(ARMCC::AL) 1977 .addReg(0) 1978 // 's' bit operand (always reg0 for this). 1979 .addReg(0)); 1980 1981 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1982 .addReg(ValReg) 1983 .addReg(SrcReg) 1984 .addImm(4) 1985 // Predicate. 1986 .addImm(ARMCC::AL) 1987 .addReg(0)); 1988 1989 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1990 .addReg(ARM::R0) 1991 .addImm(0) 1992 // Predicate. 1993 .addImm(ARMCC::AL) 1994 .addReg(0) 1995 // 's' bit operand (always reg0 for this). 1996 .addReg(0)); 1997 1998 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1999 .addReg(ARM::PC) 2000 .addReg(ARM::PC) 2001 .addImm(0) 2002 // Predicate. 2003 .addImm(ARMCC::AL) 2004 .addReg(0) 2005 // 's' bit operand (always reg0 for this). 2006 .addReg(0)); 2007 2008 OutStreamer->AddComment("eh_setjmp end"); 2009 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2010 .addReg(ARM::R0) 2011 .addImm(1) 2012 // Predicate. 2013 .addImm(ARMCC::AL) 2014 .addReg(0) 2015 // 's' bit operand (always reg0 for this). 2016 .addReg(0)); 2017 return; 2018 } 2019 case ARM::Int_eh_sjlj_longjmp: { 2020 // ldr sp, [$src, #8] 2021 // ldr $scratch, [$src, #4] 2022 // ldr r7, [$src] 2023 // bx $scratch 2024 unsigned SrcReg = MI->getOperand(0).getReg(); 2025 unsigned ScratchReg = MI->getOperand(1).getReg(); 2026 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2027 .addReg(ARM::SP) 2028 .addReg(SrcReg) 2029 .addImm(8) 2030 // Predicate. 2031 .addImm(ARMCC::AL) 2032 .addReg(0)); 2033 2034 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2035 .addReg(ScratchReg) 2036 .addReg(SrcReg) 2037 .addImm(4) 2038 // Predicate. 2039 .addImm(ARMCC::AL) 2040 .addReg(0)); 2041 2042 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2043 .addReg(ARM::R7) 2044 .addReg(SrcReg) 2045 .addImm(0) 2046 // Predicate. 2047 .addImm(ARMCC::AL) 2048 .addReg(0)); 2049 2050 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2051 .addReg(ScratchReg) 2052 // Predicate. 2053 .addImm(ARMCC::AL) 2054 .addReg(0)); 2055 return; 2056 } 2057 case ARM::tInt_eh_sjlj_longjmp: { 2058 // ldr $scratch, [$src, #8] 2059 // mov sp, $scratch 2060 // ldr $scratch, [$src, #4] 2061 // ldr r7, [$src] 2062 // bx $scratch 2063 unsigned SrcReg = MI->getOperand(0).getReg(); 2064 unsigned ScratchReg = MI->getOperand(1).getReg(); 2065 2066 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2067 .addReg(ScratchReg) 2068 .addReg(SrcReg) 2069 // The offset immediate is #8. The operand value is scaled by 4 for the 2070 // tLDR instruction. 2071 .addImm(2) 2072 // Predicate. 2073 .addImm(ARMCC::AL) 2074 .addReg(0)); 2075 2076 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2077 .addReg(ARM::SP) 2078 .addReg(ScratchReg) 2079 // Predicate. 2080 .addImm(ARMCC::AL) 2081 .addReg(0)); 2082 2083 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2084 .addReg(ScratchReg) 2085 .addReg(SrcReg) 2086 .addImm(1) 2087 // Predicate. 2088 .addImm(ARMCC::AL) 2089 .addReg(0)); 2090 2091 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2092 .addReg(ARM::R7) 2093 .addReg(SrcReg) 2094 .addImm(0) 2095 // Predicate. 2096 .addImm(ARMCC::AL) 2097 .addReg(0)); 2098 2099 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2100 .addReg(ScratchReg) 2101 // Predicate. 2102 .addImm(ARMCC::AL) 2103 .addReg(0)); 2104 return; 2105 } 2106 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2107 // ldr.w r11, [$src, #0] 2108 // ldr.w sp, [$src, #8] 2109 // ldr.w pc, [$src, #4] 2110 2111 unsigned SrcReg = MI->getOperand(0).getReg(); 2112 2113 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2114 .addReg(ARM::R11) 2115 .addReg(SrcReg) 2116 .addImm(0) 2117 // Predicate 2118 .addImm(ARMCC::AL) 2119 .addReg(0)); 2120 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2121 .addReg(ARM::SP) 2122 .addReg(SrcReg) 2123 .addImm(8) 2124 // Predicate 2125 .addImm(ARMCC::AL) 2126 .addReg(0)); 2127 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2128 .addReg(ARM::PC) 2129 .addReg(SrcReg) 2130 .addImm(4) 2131 // Predicate 2132 .addImm(ARMCC::AL) 2133 .addReg(0)); 2134 return; 2135 } 2136 case ARM::PATCHABLE_FUNCTION_ENTER: 2137 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2138 return; 2139 case ARM::PATCHABLE_FUNCTION_EXIT: 2140 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2141 return; 2142 case ARM::PATCHABLE_TAIL_CALL: 2143 LowerPATCHABLE_TAIL_CALL(*MI); 2144 return; 2145 } 2146 2147 MCInst TmpInst; 2148 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2149 2150 EmitToStreamer(*OutStreamer, TmpInst); 2151 } 2152 2153 //===----------------------------------------------------------------------===// 2154 // Target Registry Stuff 2155 //===----------------------------------------------------------------------===// 2156 2157 // Force static initialization. 2158 extern "C" void LLVMInitializeARMAsmPrinter() { 2159 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2160 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2161 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2162 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2163 } 2164