1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 58 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::emitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::emitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->emitAssemblerFlag(MCAF_Code16); 72 OutStreamer->emitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->emitAssemblerFlag(MCAF_Code32); 75 } 76 OutStreamer->emitLabel(CurrentFnSym); 77 } 78 79 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { 80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 81 assert(Size && "C++ constructor pointer had zero size!"); 82 83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 84 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 85 86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 87 ARMII::MO_NO_FLAG), 88 (Subtarget->isTargetELF() 89 ? MCSymbolRefExpr::VK_ARM_TARGET1 90 : MCSymbolRefExpr::VK_None), 91 OutContext); 92 93 OutStreamer->emitValue(E, Size); 94 } 95 96 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 97 if (PromotedGlobals.count(GV)) 98 // The global was promoted into a constant pool. It should not be emitted. 99 return; 100 AsmPrinter::emitGlobalVariable(GV); 101 } 102 103 /// runOnMachineFunction - This uses the emitInstruction() 104 /// method to print assembly for each instruction. 105 /// 106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 107 AFI = MF.getInfo<ARMFunctionInfo>(); 108 MCP = MF.getConstantPool(); 109 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 110 111 SetupMachineFunction(MF); 112 const Function &F = MF.getFunction(); 113 const TargetMachine& TM = MF.getTarget(); 114 115 // Collect all globals that had their storage promoted to a constant pool. 116 // Functions are emitted before variables, so this accumulates promoted 117 // globals from all functions in PromotedGlobals. 118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 119 PromotedGlobals.insert(GV); 120 121 // Calculate this function's optimization goal. 122 unsigned OptimizationGoal; 123 if (F.hasOptNone()) 124 // For best debugging illusion, speed and small size sacrificed 125 OptimizationGoal = 6; 126 else if (F.hasMinSize()) 127 // Aggressively for small size, speed and debug illusion sacrificed 128 OptimizationGoal = 4; 129 else if (F.hasOptSize()) 130 // For small size, but speed and debugging illusion preserved 131 OptimizationGoal = 3; 132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 133 // Aggressively for speed, small size and debug illusion sacrificed 134 OptimizationGoal = 2; 135 else if (TM.getOptLevel() > CodeGenOpt::None) 136 // For speed, but small size and good debug illusion preserved 137 OptimizationGoal = 1; 138 else // TM.getOptLevel() == CodeGenOpt::None 139 // For good debugging, but speed and small size preserved 140 OptimizationGoal = 5; 141 142 // Combine a new optimization goal with existing ones. 143 if (OptimizationGoals == -1) // uninitialized goals 144 OptimizationGoals = OptimizationGoal; 145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 146 OptimizationGoals = 0; 147 148 if (Subtarget->isTargetCOFF()) { 149 bool Internal = F.hasInternalLinkage(); 150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 151 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 153 154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 155 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 156 OutStreamer->EmitCOFFSymbolType(Type); 157 OutStreamer->EndCOFFSymbolDef(); 158 } 159 160 // Emit the rest of the function body. 161 emitFunctionBody(); 162 163 // Emit the XRay table for this function. 164 emitXRayTable(); 165 166 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 167 // These are created per function, rather than per TU, since it's 168 // relatively easy to exceed the thumb branch range within a TU. 169 if (! ThumbIndirectPads.empty()) { 170 OutStreamer->emitAssemblerFlag(MCAF_Code16); 171 emitAlignment(Align(2)); 172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 173 OutStreamer->emitLabel(TIP.second); 174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 175 .addReg(TIP.first) 176 // Add predicate operands. 177 .addImm(ARMCC::AL) 178 .addReg(0)); 179 } 180 ThumbIndirectPads.clear(); 181 } 182 183 // We didn't modify anything. 184 return false; 185 } 186 187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 188 raw_ostream &O) { 189 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 190 unsigned TF = MO.getTargetFlags(); 191 if (TF & ARMII::MO_LO16) 192 O << ":lower16:"; 193 else if (TF & ARMII::MO_HI16) 194 O << ":upper16:"; 195 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 196 printOffset(MO.getOffset(), O); 197 } 198 199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 200 raw_ostream &O) { 201 const MachineOperand &MO = MI->getOperand(OpNum); 202 203 switch (MO.getType()) { 204 default: llvm_unreachable("<unknown operand type>"); 205 case MachineOperand::MO_Register: { 206 Register Reg = MO.getReg(); 207 assert(Register::isPhysicalRegister(Reg)); 208 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 209 if(ARM::GPRPairRegClass.contains(Reg)) { 210 const MachineFunction &MF = *MI->getParent()->getParent(); 211 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 212 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 213 } 214 O << ARMInstPrinter::getRegisterName(Reg); 215 break; 216 } 217 case MachineOperand::MO_Immediate: { 218 O << '#'; 219 unsigned TF = MO.getTargetFlags(); 220 if (TF == ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF == ARMII::MO_HI16) 223 O << ":upper16:"; 224 O << MO.getImm(); 225 break; 226 } 227 case MachineOperand::MO_MachineBasicBlock: 228 MO.getMBB()->getSymbol()->print(O, MAI); 229 return; 230 case MachineOperand::MO_GlobalAddress: { 231 PrintSymbolOperand(MO, O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 243 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 244 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 245 const DataLayout &DL = getDataLayout(); 246 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 247 "CPI" + Twine(getFunctionNumber()) + "_" + 248 Twine(CPID)); 249 } 250 251 //===--------------------------------------------------------------------===// 252 253 MCSymbol *ARMAsmPrinter:: 254 GetARMJTIPICJumpTableLabel(unsigned uid) const { 255 const DataLayout &DL = getDataLayout(); 256 SmallString<60> Name; 257 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 258 << getFunctionNumber() << '_' << uid; 259 return OutContext.getOrCreateSymbol(Name); 260 } 261 262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 263 const char *ExtraCode, raw_ostream &O) { 264 // Does this asm operand have a single letter operand modifier? 265 if (ExtraCode && ExtraCode[0]) { 266 if (ExtraCode[1] != 0) return true; // Unknown modifier. 267 268 switch (ExtraCode[0]) { 269 default: 270 // See if this is a generic print operand 271 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 272 case 'P': // Print a VFP double precision register. 273 case 'q': // Print a NEON quad precision register. 274 printOperand(MI, OpNum, O); 275 return false; 276 case 'y': // Print a VFP single precision register as indexed double. 277 if (MI->getOperand(OpNum).isReg()) { 278 Register Reg = MI->getOperand(OpNum).getReg(); 279 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 280 // Find the 'd' register that has this 's' register as a sub-register, 281 // and determine the lane number. 282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 283 if (!ARM::DPRRegClass.contains(*SR)) 284 continue; 285 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 286 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 287 return false; 288 } 289 } 290 return true; 291 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 292 if (!MI->getOperand(OpNum).isImm()) 293 return true; 294 O << ~(MI->getOperand(OpNum).getImm()); 295 return false; 296 case 'L': // The low 16 bits of an immediate constant. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << (MI->getOperand(OpNum).getImm() & 0xffff); 300 return false; 301 case 'M': { // A register range suitable for LDM/STM. 302 if (!MI->getOperand(OpNum).isReg()) 303 return true; 304 const MachineOperand &MO = MI->getOperand(OpNum); 305 Register RegBegin = MO.getReg(); 306 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 307 // already got the operands in registers that are operands to the 308 // inline asm statement. 309 O << "{"; 310 if (ARM::GPRPairRegClass.contains(RegBegin)) { 311 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 312 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 313 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 314 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 315 } 316 O << ARMInstPrinter::getRegisterName(RegBegin); 317 318 // FIXME: The register allocator not only may not have given us the 319 // registers in sequence, but may not be in ascending registers. This 320 // will require changes in the register allocator that'll need to be 321 // propagated down here if the operands change. 322 unsigned RegOps = OpNum + 1; 323 while (MI->getOperand(RegOps).isReg()) { 324 O << ", " 325 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 326 RegOps++; 327 } 328 329 O << "}"; 330 331 return false; 332 } 333 case 'R': // The most significant register of a pair. 334 case 'Q': { // The least significant register of a pair. 335 if (OpNum == 0) 336 return true; 337 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 338 if (!FlagsOP.isImm()) 339 return true; 340 unsigned Flags = FlagsOP.getImm(); 341 342 // This operand may not be the one that actually provides the register. If 343 // it's tied to a previous one then we should refer instead to that one 344 // for registers and their classes. 345 unsigned TiedIdx; 346 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 347 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 348 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 349 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 350 } 351 Flags = MI->getOperand(OpNum).getImm(); 352 353 // Later code expects OpNum to be pointing at the register rather than 354 // the flags. 355 OpNum += 1; 356 } 357 358 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 359 unsigned RC; 360 bool FirstHalf; 361 const ARMBaseTargetMachine &ATM = 362 static_cast<const ARMBaseTargetMachine &>(TM); 363 364 // 'Q' should correspond to the low order register and 'R' to the high 365 // order register. Whether this corresponds to the upper or lower half 366 // depends on the endianess mode. 367 if (ExtraCode[0] == 'Q') 368 FirstHalf = ATM.isLittleEndian(); 369 else 370 // ExtraCode[0] == 'R'. 371 FirstHalf = !ATM.isLittleEndian(); 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 374 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 375 if (NumVals != 1) 376 return true; 377 const MachineOperand &MO = MI->getOperand(OpNum); 378 if (!MO.isReg()) 379 return true; 380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 381 Register Reg = 382 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 383 O << ARMInstPrinter::getRegisterName(Reg); 384 return false; 385 } 386 if (NumVals != 2) 387 return true; 388 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 389 if (RegOp >= MI->getNumOperands()) 390 return true; 391 const MachineOperand &MO = MI->getOperand(RegOp); 392 if (!MO.isReg()) 393 return true; 394 Register Reg = MO.getReg(); 395 O << ARMInstPrinter::getRegisterName(Reg); 396 return false; 397 } 398 399 case 'e': // The low doubleword register of a NEON quad register. 400 case 'f': { // The high doubleword register of a NEON quad register. 401 if (!MI->getOperand(OpNum).isReg()) 402 return true; 403 Register Reg = MI->getOperand(OpNum).getReg(); 404 if (!ARM::QPRRegClass.contains(Reg)) 405 return true; 406 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 407 Register SubReg = 408 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 409 O << ARMInstPrinter::getRegisterName(SubReg); 410 return false; 411 } 412 413 // This modifier is not yet supported. 414 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 415 return true; 416 case 'H': { // The highest-numbered register of a pair. 417 const MachineOperand &MO = MI->getOperand(OpNum); 418 if (!MO.isReg()) 419 return true; 420 const MachineFunction &MF = *MI->getParent()->getParent(); 421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 422 Register Reg = MO.getReg(); 423 if(!ARM::GPRPairRegClass.contains(Reg)) 424 return false; 425 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 426 O << ARMInstPrinter::getRegisterName(Reg); 427 return false; 428 } 429 } 430 } 431 432 printOperand(MI, OpNum, O); 433 return false; 434 } 435 436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 437 unsigned OpNum, const char *ExtraCode, 438 raw_ostream &O) { 439 // Does this asm operand have a single letter operand modifier? 440 if (ExtraCode && ExtraCode[0]) { 441 if (ExtraCode[1] != 0) return true; // Unknown modifier. 442 443 switch (ExtraCode[0]) { 444 case 'A': // A memory operand for a VLD1/VST1 instruction. 445 default: return true; // Unknown modifier. 446 case 'm': // The base register of a memory operand. 447 if (!MI->getOperand(OpNum).isReg()) 448 return true; 449 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 450 return false; 451 } 452 } 453 454 const MachineOperand &MO = MI->getOperand(OpNum); 455 assert(MO.isReg() && "unexpected inline asm memory operand"); 456 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 457 return false; 458 } 459 460 static bool isThumb(const MCSubtargetInfo& STI) { 461 return STI.getFeatureBits()[ARM::ModeThumb]; 462 } 463 464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 465 const MCSubtargetInfo *EndInfo) const { 466 // If either end mode is unknown (EndInfo == NULL) or different than 467 // the start mode, then restore the start mode. 468 const bool WasThumb = isThumb(StartInfo); 469 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 470 OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 471 } 472 } 473 474 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { 475 const Triple &TT = TM.getTargetTriple(); 476 // Use unified assembler syntax. 477 OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); 478 479 // Emit ARM Build Attributes 480 if (TT.isOSBinFormatELF()) 481 emitAttributes(); 482 483 // Use the triple's architecture and subarchitecture to determine 484 // if we're thumb for the purposes of the top level code16 assembler 485 // flag. 486 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 487 OutStreamer->emitAssemblerFlag(MCAF_Code16); 488 } 489 490 static void 491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 492 MachineModuleInfoImpl::StubValueTy &MCSym) { 493 // L_foo$stub: 494 OutStreamer.emitLabel(StubLabel); 495 // .indirect_symbol _foo 496 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 497 498 if (MCSym.getInt()) 499 // External to current translation unit. 500 OutStreamer.emitIntValue(0, 4/*size*/); 501 else 502 // Internal to current translation unit. 503 // 504 // When we place the LSDA into the TEXT section, the type info 505 // pointers need to be indirect and pc-rel. We accomplish this by 506 // using NLPs; however, sometimes the types are local to the file. 507 // We need to fill in the value for the NLP in those cases. 508 OutStreamer.emitValue( 509 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 510 4 /*size*/); 511 } 512 513 514 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { 515 const Triple &TT = TM.getTargetTriple(); 516 if (TT.isOSBinFormatMachO()) { 517 // All darwin targets use mach-o. 518 const TargetLoweringObjectFileMachO &TLOFMacho = 519 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 520 MachineModuleInfoMachO &MMIMacho = 521 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 522 523 // Output non-lazy-pointers for external and common global variables. 524 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 525 526 if (!Stubs.empty()) { 527 // Switch with ".non_lazy_symbol_pointer" directive. 528 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 529 emitAlignment(Align(4)); 530 531 for (auto &Stub : Stubs) 532 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 533 534 Stubs.clear(); 535 OutStreamer->AddBlankLine(); 536 } 537 538 Stubs = MMIMacho.GetThreadLocalGVStubList(); 539 if (!Stubs.empty()) { 540 // Switch with ".non_lazy_symbol_pointer" directive. 541 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 542 emitAlignment(Align(4)); 543 544 for (auto &Stub : Stubs) 545 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 546 547 Stubs.clear(); 548 OutStreamer->AddBlankLine(); 549 } 550 551 // Funny Darwin hack: This flag tells the linker that no global symbols 552 // contain code that falls through to other global symbols (e.g. the obvious 553 // implementation of multiple entry points). If this doesn't occur, the 554 // linker can safely perform dead code stripping. Since LLVM never 555 // generates code that does this, it is always safe to set. 556 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 557 } 558 559 // The last attribute to be emitted is ABI_optimization_goals 560 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 561 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 562 563 if (OptimizationGoals > 0 && 564 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 565 Subtarget->isTargetMuslAEABI())) 566 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 567 OptimizationGoals = -1; 568 569 ATS.finishAttributeSection(); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() 574 // FIXME: 575 // The following seem like one-off assembler flags, but they actually need 576 // to appear in the .ARM.attributes section in ELF. 577 // Instead of subclassing the MCELFStreamer, we do the work here. 578 579 // Returns true if all functions have the same function attribute value. 580 // It also returns true when the module has no functions. 581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 582 StringRef Value) { 583 return !any_of(M, [&](const Function &F) { 584 return F.getFnAttribute(Attr).getValueAsString() != Value; 585 }); 586 } 587 // Returns true if all functions have the same denormal mode. 588 // It also returns true when the module has no functions. 589 static bool checkDenormalAttributeConsistency(const Module &M, 590 StringRef Attr, 591 DenormalMode Value) { 592 return !any_of(M, [&](const Function &F) { 593 StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); 594 return parseDenormalFPAttribute(AttrVal) != Value; 595 }); 596 } 597 598 void ARMAsmPrinter::emitAttributes() { 599 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 600 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 601 602 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 603 604 ATS.switchVendor("aeabi"); 605 606 // Compute ARM ELF Attributes based on the default subtarget that 607 // we'd have constructed. The existing ARM behavior isn't LTO clean 608 // anyhow. 609 // FIXME: For ifunc related functions we could iterate over and look 610 // for a feature string that doesn't match the default one. 611 const Triple &TT = TM.getTargetTriple(); 612 StringRef CPU = TM.getTargetCPU(); 613 StringRef FS = TM.getTargetFeatureString(); 614 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 615 if (!FS.empty()) { 616 if (!ArchFS.empty()) 617 ArchFS = (Twine(ArchFS) + "," + FS).str(); 618 else 619 ArchFS = std::string(FS); 620 } 621 const ARMBaseTargetMachine &ATM = 622 static_cast<const ARMBaseTargetMachine &>(TM); 623 const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, 624 ATM.isLittleEndian()); 625 626 // Emit build attributes for the available hardware. 627 ATS.emitTargetAttributes(STI); 628 629 // RW data addressing. 630 if (isPositionIndependent()) { 631 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 632 ARMBuildAttrs::AddressRWPCRel); 633 } else if (STI.isRWPI()) { 634 // RWPI specific attributes. 635 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 636 ARMBuildAttrs::AddressRWSBRel); 637 } 638 639 // RO data addressing. 640 if (isPositionIndependent() || STI.isROPI()) { 641 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 642 ARMBuildAttrs::AddressROPCRel); 643 } 644 645 // GOT use. 646 if (isPositionIndependent()) { 647 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 648 ARMBuildAttrs::AddressGOT); 649 } else { 650 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 651 ARMBuildAttrs::AddressDirect); 652 } 653 654 // Set FP Denormals. 655 if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", 656 DenormalMode::getPreserveSign())) 657 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 658 ARMBuildAttrs::PreserveFPSign); 659 else if (checkDenormalAttributeConsistency(*MMI->getModule(), 660 "denormal-fp-math", 661 DenormalMode::getPositiveZero())) 662 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 663 ARMBuildAttrs::PositiveZero); 664 else if (!TM.Options.UnsafeFPMath) 665 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 666 ARMBuildAttrs::IEEEDenormals); 667 else { 668 if (!STI.hasVFP2Base()) { 669 // When the target doesn't have an FPU (by design or 670 // intention), the assumptions made on the software support 671 // mirror that of the equivalent hardware support *if it 672 // existed*. For v7 and better we indicate that denormals are 673 // flushed preserving sign, and for V6 we indicate that 674 // denormals are flushed to positive zero. 675 if (STI.hasV7Ops()) 676 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 677 ARMBuildAttrs::PreserveFPSign); 678 } else if (STI.hasVFP3Base()) { 679 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 680 // the sign bit of the zero matches the sign bit of the input or 681 // result that is being flushed to zero. 682 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 683 ARMBuildAttrs::PreserveFPSign); 684 } 685 // For VFPv2 implementations it is implementation defined as 686 // to whether denormals are flushed to positive zero or to 687 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 688 // LLVM has chosen to flush this to positive zero (most likely for 689 // GCC compatibility), so that's the chosen value here (the 690 // absence of its emission implies zero). 691 } 692 693 // Set FP exceptions and rounding 694 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 695 "no-trapping-math", "true") || 696 TM.Options.NoTrappingFPMath) 697 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 698 ARMBuildAttrs::Not_Allowed); 699 else if (!TM.Options.UnsafeFPMath) { 700 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 701 702 // If the user has permitted this code to choose the IEEE 754 703 // rounding at run-time, emit the rounding attribute. 704 if (TM.Options.HonorSignDependentRoundingFPMathOption) 705 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 706 } 707 708 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 709 // equivalent of GCC's -ffinite-math-only flag. 710 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 711 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 712 ARMBuildAttrs::Allowed); 713 else 714 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 715 ARMBuildAttrs::AllowIEEE754); 716 717 // FIXME: add more flags to ARMBuildAttributes.h 718 // 8-bytes alignment stuff. 719 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 720 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 721 722 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 723 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 724 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 725 726 // FIXME: To support emitting this build attribute as GCC does, the 727 // -mfp16-format option and associated plumbing must be 728 // supported. For now the __fp16 type is exposed by default, so this 729 // attribute should be emitted with value 1. 730 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 731 ARMBuildAttrs::FP16FormatIEEE); 732 733 if (MMI) { 734 if (const Module *SourceModule = MMI->getModule()) { 735 // ABI_PCS_wchar_t to indicate wchar_t width 736 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 737 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 738 SourceModule->getModuleFlag("wchar_size"))) { 739 int WCharWidth = WCharWidthValue->getZExtValue(); 740 assert((WCharWidth == 2 || WCharWidth == 4) && 741 "wchar_t width must be 2 or 4 bytes"); 742 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 743 } 744 745 // ABI_enum_size to indicate enum width 746 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 747 // (all enums contain a value needing 32 bits to encode). 748 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 749 SourceModule->getModuleFlag("min_enum_size"))) { 750 int EnumWidth = EnumWidthValue->getZExtValue(); 751 assert((EnumWidth == 1 || EnumWidth == 4) && 752 "Minimum enum width must be 1 or 4 bytes"); 753 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 754 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 755 } 756 } 757 } 758 759 // We currently do not support using R9 as the TLS pointer. 760 if (STI.isRWPI()) 761 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 762 ARMBuildAttrs::R9IsSB); 763 else if (STI.isR9Reserved()) 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 765 ARMBuildAttrs::R9Reserved); 766 else 767 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 768 ARMBuildAttrs::R9IsGPR); 769 } 770 771 //===----------------------------------------------------------------------===// 772 773 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 774 unsigned LabelId, MCContext &Ctx) { 775 776 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 777 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 778 return Label; 779 } 780 781 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 782 unsigned LabelId, MCContext &Ctx) { 783 784 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 785 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 786 return Label; 787 } 788 789 static MCSymbolRefExpr::VariantKind 790 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 791 switch (Modifier) { 792 case ARMCP::no_modifier: 793 return MCSymbolRefExpr::VK_None; 794 case ARMCP::TLSGD: 795 return MCSymbolRefExpr::VK_TLSGD; 796 case ARMCP::TPOFF: 797 return MCSymbolRefExpr::VK_TPOFF; 798 case ARMCP::GOTTPOFF: 799 return MCSymbolRefExpr::VK_GOTTPOFF; 800 case ARMCP::SBREL: 801 return MCSymbolRefExpr::VK_ARM_SBREL; 802 case ARMCP::GOT_PREL: 803 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 804 case ARMCP::SECREL: 805 return MCSymbolRefExpr::VK_SECREL; 806 } 807 llvm_unreachable("Invalid ARMCPModifier!"); 808 } 809 810 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 811 unsigned char TargetFlags) { 812 if (Subtarget->isTargetMachO()) { 813 bool IsIndirect = 814 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 815 816 if (!IsIndirect) 817 return getSymbol(GV); 818 819 // FIXME: Remove this when Darwin transition to @GOT like syntax. 820 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 821 MachineModuleInfoMachO &MMIMachO = 822 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 823 MachineModuleInfoImpl::StubValueTy &StubSym = 824 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 825 : MMIMachO.getGVStubEntry(MCSym); 826 827 if (!StubSym.getPointer()) 828 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 829 !GV->hasInternalLinkage()); 830 return MCSym; 831 } else if (Subtarget->isTargetCOFF()) { 832 assert(Subtarget->isTargetWindows() && 833 "Windows is the only supported COFF target"); 834 835 bool IsIndirect = 836 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 837 if (!IsIndirect) 838 return getSymbol(GV); 839 840 SmallString<128> Name; 841 if (TargetFlags & ARMII::MO_DLLIMPORT) 842 Name = "__imp_"; 843 else if (TargetFlags & ARMII::MO_COFFSTUB) 844 Name = ".refptr."; 845 getNameWithPrefix(Name, GV); 846 847 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 848 849 if (TargetFlags & ARMII::MO_COFFSTUB) { 850 MachineModuleInfoCOFF &MMICOFF = 851 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 852 MachineModuleInfoImpl::StubValueTy &StubSym = 853 MMICOFF.getGVStubEntry(MCSym); 854 855 if (!StubSym.getPointer()) 856 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 857 } 858 859 return MCSym; 860 } else if (Subtarget->isTargetELF()) { 861 return getSymbol(GV); 862 } 863 llvm_unreachable("unexpected target"); 864 } 865 866 void ARMAsmPrinter::emitMachineConstantPoolValue( 867 MachineConstantPoolValue *MCPV) { 868 const DataLayout &DL = getDataLayout(); 869 int Size = DL.getTypeAllocSize(MCPV->getType()); 870 871 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 872 873 if (ACPV->isPromotedGlobal()) { 874 // This constant pool entry is actually a global whose storage has been 875 // promoted into the constant pool. This global may be referenced still 876 // by debug information, and due to the way AsmPrinter is set up, the debug 877 // info is immutable by the time we decide to promote globals to constant 878 // pools. Because of this, we need to ensure we emit a symbol for the global 879 // with private linkage (the default) so debug info can refer to it. 880 // 881 // However, if this global is promoted into several functions we must ensure 882 // we don't try and emit duplicate symbols! 883 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 884 for (const auto *GV : ACPC->promotedGlobals()) { 885 if (!EmittedPromotedGlobalLabels.count(GV)) { 886 MCSymbol *GVSym = getSymbol(GV); 887 OutStreamer->emitLabel(GVSym); 888 EmittedPromotedGlobalLabels.insert(GV); 889 } 890 } 891 return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 892 } 893 894 MCSymbol *MCSym; 895 if (ACPV->isLSDA()) { 896 MCSym = getCurExceptionSym(); 897 } else if (ACPV->isBlockAddress()) { 898 const BlockAddress *BA = 899 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 900 MCSym = GetBlockAddressSymbol(BA); 901 } else if (ACPV->isGlobalValue()) { 902 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 903 904 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 905 // flag the global as MO_NONLAZY. 906 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 907 MCSym = GetARMGVSymbol(GV, TF); 908 } else if (ACPV->isMachineBasicBlock()) { 909 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 910 MCSym = MBB->getSymbol(); 911 } else { 912 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 913 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 914 MCSym = GetExternalSymbolSymbol(Sym); 915 } 916 917 // Create an MCSymbol for the reference. 918 const MCExpr *Expr = 919 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 920 OutContext); 921 922 if (ACPV->getPCAdjustment()) { 923 MCSymbol *PCLabel = 924 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 925 ACPV->getLabelId(), OutContext); 926 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 927 PCRelExpr = 928 MCBinaryExpr::createAdd(PCRelExpr, 929 MCConstantExpr::create(ACPV->getPCAdjustment(), 930 OutContext), 931 OutContext); 932 if (ACPV->mustAddCurrentAddress()) { 933 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 934 // label, so just emit a local label end reference that instead. 935 MCSymbol *DotSym = OutContext.createTempSymbol(); 936 OutStreamer->emitLabel(DotSym); 937 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 938 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 939 } 940 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 941 } 942 OutStreamer->emitValue(Expr, Size); 943 } 944 945 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { 946 const MachineOperand &MO1 = MI->getOperand(1); 947 unsigned JTI = MO1.getIndex(); 948 949 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 950 // ARM mode tables. 951 emitAlignment(Align(4)); 952 953 // Emit a label for the jump table. 954 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 955 OutStreamer->emitLabel(JTISymbol); 956 957 // Mark the jump table as data-in-code. 958 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 959 960 // Emit each entry of the table. 961 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 962 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 963 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 964 965 for (MachineBasicBlock *MBB : JTBBs) { 966 // Construct an MCExpr for the entry. We want a value of the form: 967 // (BasicBlockAddr - TableBeginAddr) 968 // 969 // For example, a table with entries jumping to basic blocks BB0 and BB1 970 // would look like: 971 // LJTI_0_0: 972 // .word (LBB0 - LJTI_0_0) 973 // .word (LBB1 - LJTI_0_0) 974 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 975 976 if (isPositionIndependent() || Subtarget->isROPI()) 977 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 978 OutContext), 979 OutContext); 980 // If we're generating a table of Thumb addresses in static relocation 981 // model, we need to add one to keep interworking correctly. 982 else if (AFI->isThumbFunction()) 983 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 984 OutContext); 985 OutStreamer->emitValue(Expr, 4); 986 } 987 // Mark the end of jump table data-in-code region. 988 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 989 } 990 991 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { 992 const MachineOperand &MO1 = MI->getOperand(1); 993 unsigned JTI = MO1.getIndex(); 994 995 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 996 // ARM mode tables. 997 emitAlignment(Align(4)); 998 999 // Emit a label for the jump table. 1000 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1001 OutStreamer->emitLabel(JTISymbol); 1002 1003 // Emit each entry of the table. 1004 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1005 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1006 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1007 1008 for (MachineBasicBlock *MBB : JTBBs) { 1009 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1010 OutContext); 1011 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1012 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1013 .addExpr(MBBSymbolExpr) 1014 .addImm(ARMCC::AL) 1015 .addReg(0)); 1016 } 1017 } 1018 1019 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, 1020 unsigned OffsetWidth) { 1021 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1022 const MachineOperand &MO1 = MI->getOperand(1); 1023 unsigned JTI = MO1.getIndex(); 1024 1025 if (Subtarget->isThumb1Only()) 1026 emitAlignment(Align(4)); 1027 1028 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1029 OutStreamer->emitLabel(JTISymbol); 1030 1031 // Emit each entry of the table. 1032 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1033 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1034 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1035 1036 // Mark the jump table as data-in-code. 1037 OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1038 : MCDR_DataRegionJT16); 1039 1040 for (auto MBB : JTBBs) { 1041 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1042 OutContext); 1043 // Otherwise it's an offset from the dispatch instruction. Construct an 1044 // MCExpr for the entry. We want a value of the form: 1045 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1046 // 1047 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1048 // would look like: 1049 // LJTI_0_0: 1050 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1051 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1052 // where LCPI0_0 is a label defined just before the TBB instruction using 1053 // this table. 1054 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1055 const MCExpr *Expr = MCBinaryExpr::createAdd( 1056 MCSymbolRefExpr::create(TBInstPC, OutContext), 1057 MCConstantExpr::create(4, OutContext), OutContext); 1058 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1059 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1060 OutContext); 1061 OutStreamer->emitValue(Expr, OffsetWidth); 1062 } 1063 // Mark the end of jump table data-in-code region. 32-bit offsets use 1064 // actual branch instructions here, so we don't mark those as a data-region 1065 // at all. 1066 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1067 1068 // Make sure the next instruction is 2-byte aligned. 1069 emitAlignment(Align(2)); 1070 } 1071 1072 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1073 assert(MI->getFlag(MachineInstr::FrameSetup) && 1074 "Only instruction which are involved into frame setup code are allowed"); 1075 1076 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1077 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1078 const MachineFunction &MF = *MI->getParent()->getParent(); 1079 const TargetRegisterInfo *TargetRegInfo = 1080 MF.getSubtarget().getRegisterInfo(); 1081 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1082 1083 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1084 unsigned Opc = MI->getOpcode(); 1085 unsigned SrcReg, DstReg; 1086 1087 switch (Opc) { 1088 case ARM::tPUSH: 1089 // special case: tPUSH does not have src/dst regs. 1090 SrcReg = DstReg = ARM::SP; 1091 break; 1092 case ARM::tLDRpci: 1093 case ARM::t2MOVi16: 1094 case ARM::t2MOVTi16: 1095 // special cases: 1096 // 1) for Thumb1 code we sometimes materialize the constant via constpool 1097 // load. 1098 // 2) for Thumb2 execute only code we materialize the constant via 1099 // immediate constants in 2 seperate instructions (MOVW/MOVT). 1100 SrcReg = ~0U; 1101 DstReg = MI->getOperand(0).getReg(); 1102 break; 1103 default: 1104 SrcReg = MI->getOperand(1).getReg(); 1105 DstReg = MI->getOperand(0).getReg(); 1106 break; 1107 } 1108 1109 // Try to figure out the unwinding opcode out of src / dst regs. 1110 if (MI->mayStore()) { 1111 // Register saves. 1112 assert(DstReg == ARM::SP && 1113 "Only stack pointer as a destination reg is supported"); 1114 1115 SmallVector<unsigned, 4> RegList; 1116 // Skip src & dst reg, and pred ops. 1117 unsigned StartOp = 2 + 2; 1118 // Use all the operands. 1119 unsigned NumOffset = 0; 1120 // Amount of SP adjustment folded into a push. 1121 unsigned Pad = 0; 1122 1123 switch (Opc) { 1124 default: 1125 MI->print(errs()); 1126 llvm_unreachable("Unsupported opcode for unwinding information"); 1127 case ARM::tPUSH: 1128 // Special case here: no src & dst reg, but two extra imp ops. 1129 StartOp = 2; NumOffset = 2; 1130 LLVM_FALLTHROUGH; 1131 case ARM::STMDB_UPD: 1132 case ARM::t2STMDB_UPD: 1133 case ARM::VSTMDDB_UPD: 1134 assert(SrcReg == ARM::SP && 1135 "Only stack pointer as a source reg is supported"); 1136 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1137 i != NumOps; ++i) { 1138 const MachineOperand &MO = MI->getOperand(i); 1139 // Actually, there should never be any impdef stuff here. Skip it 1140 // temporary to workaround PR11902. 1141 if (MO.isImplicit()) 1142 continue; 1143 // Registers, pushed as a part of folding an SP update into the 1144 // push instruction are marked as undef and should not be 1145 // restored when unwinding, because the function can modify the 1146 // corresponding stack slots. 1147 if (MO.isUndef()) { 1148 assert(RegList.empty() && 1149 "Pad registers must come before restored ones"); 1150 unsigned Width = 1151 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1152 Pad += Width; 1153 continue; 1154 } 1155 // Check for registers that are remapped (for a Thumb1 prologue that 1156 // saves high registers). 1157 Register Reg = MO.getReg(); 1158 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1159 Reg = RemappedReg; 1160 RegList.push_back(Reg); 1161 } 1162 break; 1163 case ARM::STR_PRE_IMM: 1164 case ARM::STR_PRE_REG: 1165 case ARM::t2STR_PRE: 1166 assert(MI->getOperand(2).getReg() == ARM::SP && 1167 "Only stack pointer as a source reg is supported"); 1168 RegList.push_back(SrcReg); 1169 break; 1170 } 1171 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1172 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1173 // Account for the SP adjustment, folded into the push. 1174 if (Pad) 1175 ATS.emitPad(Pad); 1176 } 1177 } else { 1178 // Changes of stack / frame pointer. 1179 if (SrcReg == ARM::SP) { 1180 int64_t Offset = 0; 1181 switch (Opc) { 1182 default: 1183 MI->print(errs()); 1184 llvm_unreachable("Unsupported opcode for unwinding information"); 1185 case ARM::MOVr: 1186 case ARM::tMOVr: 1187 Offset = 0; 1188 break; 1189 case ARM::ADDri: 1190 case ARM::t2ADDri: 1191 case ARM::t2ADDri12: 1192 case ARM::t2ADDspImm: 1193 case ARM::t2ADDspImm12: 1194 Offset = -MI->getOperand(2).getImm(); 1195 break; 1196 case ARM::SUBri: 1197 case ARM::t2SUBri: 1198 case ARM::t2SUBri12: 1199 case ARM::t2SUBspImm: 1200 case ARM::t2SUBspImm12: 1201 Offset = MI->getOperand(2).getImm(); 1202 break; 1203 case ARM::tSUBspi: 1204 Offset = MI->getOperand(2).getImm()*4; 1205 break; 1206 case ARM::tADDspi: 1207 case ARM::tADDrSPi: 1208 Offset = -MI->getOperand(2).getImm()*4; 1209 break; 1210 case ARM::tADDhirr: 1211 Offset = 1212 -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg()); 1213 break; 1214 } 1215 1216 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1217 if (DstReg == FramePtr && FramePtr != ARM::SP) 1218 // Set-up of the frame pointer. Positive values correspond to "add" 1219 // instruction. 1220 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1221 else if (DstReg == ARM::SP) { 1222 // Change of SP by an offset. Positive values correspond to "sub" 1223 // instruction. 1224 ATS.emitPad(Offset); 1225 } else { 1226 // Move of SP to a register. Positive values correspond to an "add" 1227 // instruction. 1228 ATS.emitMovSP(DstReg, -Offset); 1229 } 1230 } 1231 } else if (DstReg == ARM::SP) { 1232 MI->print(errs()); 1233 llvm_unreachable("Unsupported opcode for unwinding information"); 1234 } else { 1235 int64_t Offset = 0; 1236 switch (Opc) { 1237 case ARM::tMOVr: 1238 // If a Thumb1 function spills r8-r11, we copy the values to low 1239 // registers before pushing them. Record the copy so we can emit the 1240 // correct ".save" later. 1241 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1242 break; 1243 case ARM::tLDRpci: { 1244 // Grab the constpool index and check, whether it corresponds to 1245 // original or cloned constpool entry. 1246 unsigned CPI = MI->getOperand(1).getIndex(); 1247 const MachineConstantPool *MCP = MF.getConstantPool(); 1248 if (CPI >= MCP->getConstants().size()) 1249 CPI = AFI->getOriginalCPIdx(CPI); 1250 assert(CPI != -1U && "Invalid constpool index"); 1251 1252 // Derive the actual offset. 1253 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1254 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1255 Offset = cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1256 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1257 break; 1258 } 1259 case ARM::t2MOVi16: 1260 Offset = MI->getOperand(1).getImm(); 1261 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1262 break; 1263 case ARM::t2MOVTi16: 1264 Offset = MI->getOperand(2).getImm(); 1265 AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); 1266 break; 1267 default: 1268 MI->print(errs()); 1269 llvm_unreachable("Unsupported opcode for unwinding information"); 1270 } 1271 } 1272 } 1273 } 1274 1275 // Simple pseudo-instructions have their lowering (with expansion to real 1276 // instructions) auto-generated. 1277 #include "ARMGenMCPseudoLowering.inc" 1278 1279 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { 1280 const DataLayout &DL = getDataLayout(); 1281 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1282 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1283 1284 const MachineFunction &MF = *MI->getParent()->getParent(); 1285 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1286 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1287 1288 // If we just ended a constant pool, mark it as such. 1289 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1290 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1291 InConstantPool = false; 1292 } 1293 1294 // Emit unwinding stuff for frame-related instructions 1295 if (Subtarget->isTargetEHABICompatible() && 1296 MI->getFlag(MachineInstr::FrameSetup)) 1297 EmitUnwindingInstruction(MI); 1298 1299 // Do any auto-generated pseudo lowerings. 1300 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1301 return; 1302 1303 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1304 "Pseudo flag setting opcode should be expanded early"); 1305 1306 // Check for manual lowerings. 1307 unsigned Opc = MI->getOpcode(); 1308 switch (Opc) { 1309 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1310 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1311 case ARM::LEApcrel: 1312 case ARM::tLEApcrel: 1313 case ARM::t2LEApcrel: { 1314 // FIXME: Need to also handle globals and externals 1315 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1316 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1317 ARM::t2LEApcrel ? ARM::t2ADR 1318 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1319 : ARM::ADR)) 1320 .addReg(MI->getOperand(0).getReg()) 1321 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1322 // Add predicate operands. 1323 .addImm(MI->getOperand(2).getImm()) 1324 .addReg(MI->getOperand(3).getReg())); 1325 return; 1326 } 1327 case ARM::LEApcrelJT: 1328 case ARM::tLEApcrelJT: 1329 case ARM::t2LEApcrelJT: { 1330 MCSymbol *JTIPICSymbol = 1331 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1332 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1333 ARM::t2LEApcrelJT ? ARM::t2ADR 1334 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1335 : ARM::ADR)) 1336 .addReg(MI->getOperand(0).getReg()) 1337 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1338 // Add predicate operands. 1339 .addImm(MI->getOperand(2).getImm()) 1340 .addReg(MI->getOperand(3).getReg())); 1341 return; 1342 } 1343 // Darwin call instructions are just normal call instructions with different 1344 // clobber semantics (they clobber R9). 1345 case ARM::BX_CALL: { 1346 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1347 .addReg(ARM::LR) 1348 .addReg(ARM::PC) 1349 // Add predicate operands. 1350 .addImm(ARMCC::AL) 1351 .addReg(0) 1352 // Add 's' bit operand (always reg0 for this) 1353 .addReg(0)); 1354 1355 assert(Subtarget->hasV4TOps()); 1356 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1357 .addReg(MI->getOperand(0).getReg())); 1358 return; 1359 } 1360 case ARM::tBX_CALL: { 1361 if (Subtarget->hasV5TOps()) 1362 llvm_unreachable("Expected BLX to be selected for v5t+"); 1363 1364 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1365 // that the saved lr has its LSB set correctly (the arch doesn't 1366 // have blx). 1367 // So here we generate a bl to a small jump pad that does bx rN. 1368 // The jump pads are emitted after the function body. 1369 1370 Register TReg = MI->getOperand(0).getReg(); 1371 MCSymbol *TRegSym = nullptr; 1372 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1373 if (TIP.first == TReg) { 1374 TRegSym = TIP.second; 1375 break; 1376 } 1377 } 1378 1379 if (!TRegSym) { 1380 TRegSym = OutContext.createTempSymbol(); 1381 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1382 } 1383 1384 // Create a link-saving branch to the Reg Indirect Jump Pad. 1385 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1386 // Predicate comes first here. 1387 .addImm(ARMCC::AL).addReg(0) 1388 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1389 return; 1390 } 1391 case ARM::BMOVPCRX_CALL: { 1392 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1393 .addReg(ARM::LR) 1394 .addReg(ARM::PC) 1395 // Add predicate operands. 1396 .addImm(ARMCC::AL) 1397 .addReg(0) 1398 // Add 's' bit operand (always reg0 for this) 1399 .addReg(0)); 1400 1401 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1402 .addReg(ARM::PC) 1403 .addReg(MI->getOperand(0).getReg()) 1404 // Add predicate operands. 1405 .addImm(ARMCC::AL) 1406 .addReg(0) 1407 // Add 's' bit operand (always reg0 for this) 1408 .addReg(0)); 1409 return; 1410 } 1411 case ARM::BMOVPCB_CALL: { 1412 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1413 .addReg(ARM::LR) 1414 .addReg(ARM::PC) 1415 // Add predicate operands. 1416 .addImm(ARMCC::AL) 1417 .addReg(0) 1418 // Add 's' bit operand (always reg0 for this) 1419 .addReg(0)); 1420 1421 const MachineOperand &Op = MI->getOperand(0); 1422 const GlobalValue *GV = Op.getGlobal(); 1423 const unsigned TF = Op.getTargetFlags(); 1424 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1425 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1426 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1427 .addExpr(GVSymExpr) 1428 // Add predicate operands. 1429 .addImm(ARMCC::AL) 1430 .addReg(0)); 1431 return; 1432 } 1433 case ARM::MOVi16_ga_pcrel: 1434 case ARM::t2MOVi16_ga_pcrel: { 1435 MCInst TmpInst; 1436 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1437 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1438 1439 unsigned TF = MI->getOperand(1).getTargetFlags(); 1440 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1441 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1442 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1443 1444 MCSymbol *LabelSym = 1445 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1446 MI->getOperand(2).getImm(), OutContext); 1447 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1448 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1449 const MCExpr *PCRelExpr = 1450 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1451 MCBinaryExpr::createAdd(LabelSymExpr, 1452 MCConstantExpr::create(PCAdj, OutContext), 1453 OutContext), OutContext), OutContext); 1454 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1455 1456 // Add predicate operands. 1457 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1458 TmpInst.addOperand(MCOperand::createReg(0)); 1459 // Add 's' bit operand (always reg0 for this) 1460 TmpInst.addOperand(MCOperand::createReg(0)); 1461 EmitToStreamer(*OutStreamer, TmpInst); 1462 return; 1463 } 1464 case ARM::MOVTi16_ga_pcrel: 1465 case ARM::t2MOVTi16_ga_pcrel: { 1466 MCInst TmpInst; 1467 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1468 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1469 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1470 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1471 1472 unsigned TF = MI->getOperand(2).getTargetFlags(); 1473 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1474 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1475 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1476 1477 MCSymbol *LabelSym = 1478 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1479 MI->getOperand(3).getImm(), OutContext); 1480 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1481 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1482 const MCExpr *PCRelExpr = 1483 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1484 MCBinaryExpr::createAdd(LabelSymExpr, 1485 MCConstantExpr::create(PCAdj, OutContext), 1486 OutContext), OutContext), OutContext); 1487 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1488 // Add predicate operands. 1489 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1490 TmpInst.addOperand(MCOperand::createReg(0)); 1491 // Add 's' bit operand (always reg0 for this) 1492 TmpInst.addOperand(MCOperand::createReg(0)); 1493 EmitToStreamer(*OutStreamer, TmpInst); 1494 return; 1495 } 1496 case ARM::t2BFi: 1497 case ARM::t2BFic: 1498 case ARM::t2BFLi: 1499 case ARM::t2BFr: 1500 case ARM::t2BFLr: { 1501 // This is a Branch Future instruction. 1502 1503 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1504 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1505 MI->getOperand(0).getIndex(), OutContext), 1506 OutContext); 1507 1508 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1509 if (MI->getOperand(1).isReg()) { 1510 // For BFr/BFLr 1511 MCInst.addReg(MI->getOperand(1).getReg()); 1512 } else { 1513 // For BFi/BFLi/BFic 1514 const MCExpr *BranchTarget; 1515 if (MI->getOperand(1).isMBB()) 1516 BranchTarget = MCSymbolRefExpr::create( 1517 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1518 else if (MI->getOperand(1).isGlobal()) { 1519 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1520 BranchTarget = MCSymbolRefExpr::create( 1521 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1522 } else if (MI->getOperand(1).isSymbol()) { 1523 BranchTarget = MCSymbolRefExpr::create( 1524 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1525 OutContext); 1526 } else 1527 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1528 1529 MCInst.addExpr(BranchTarget); 1530 } 1531 1532 if (Opc == ARM::t2BFic) { 1533 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1534 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1535 MI->getOperand(2).getIndex(), OutContext), 1536 OutContext); 1537 MCInst.addExpr(ElseLabel); 1538 MCInst.addImm(MI->getOperand(3).getImm()); 1539 } else { 1540 MCInst.addImm(MI->getOperand(2).getImm()) 1541 .addReg(MI->getOperand(3).getReg()); 1542 } 1543 1544 EmitToStreamer(*OutStreamer, MCInst); 1545 return; 1546 } 1547 case ARM::t2BF_LabelPseudo: { 1548 // This is a pseudo op for a label used by a branch future instruction 1549 1550 // Emit the label. 1551 OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1552 getFunctionNumber(), 1553 MI->getOperand(0).getIndex(), OutContext)); 1554 return; 1555 } 1556 case ARM::tPICADD: { 1557 // This is a pseudo op for a label + instruction sequence, which looks like: 1558 // LPC0: 1559 // add r0, pc 1560 // This adds the address of LPC0 to r0. 1561 1562 // Emit the label. 1563 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1564 getFunctionNumber(), 1565 MI->getOperand(2).getImm(), OutContext)); 1566 1567 // Form and emit the add. 1568 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1569 .addReg(MI->getOperand(0).getReg()) 1570 .addReg(MI->getOperand(0).getReg()) 1571 .addReg(ARM::PC) 1572 // Add predicate operands. 1573 .addImm(ARMCC::AL) 1574 .addReg(0)); 1575 return; 1576 } 1577 case ARM::PICADD: { 1578 // This is a pseudo op for a label + instruction sequence, which looks like: 1579 // LPC0: 1580 // add r0, pc, r0 1581 // This adds the address of LPC0 to r0. 1582 1583 // Emit the label. 1584 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1585 getFunctionNumber(), 1586 MI->getOperand(2).getImm(), OutContext)); 1587 1588 // Form and emit the add. 1589 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1590 .addReg(MI->getOperand(0).getReg()) 1591 .addReg(ARM::PC) 1592 .addReg(MI->getOperand(1).getReg()) 1593 // Add predicate operands. 1594 .addImm(MI->getOperand(3).getImm()) 1595 .addReg(MI->getOperand(4).getReg()) 1596 // Add 's' bit operand (always reg0 for this) 1597 .addReg(0)); 1598 return; 1599 } 1600 case ARM::PICSTR: 1601 case ARM::PICSTRB: 1602 case ARM::PICSTRH: 1603 case ARM::PICLDR: 1604 case ARM::PICLDRB: 1605 case ARM::PICLDRH: 1606 case ARM::PICLDRSB: 1607 case ARM::PICLDRSH: { 1608 // This is a pseudo op for a label + instruction sequence, which looks like: 1609 // LPC0: 1610 // OP r0, [pc, r0] 1611 // The LCP0 label is referenced by a constant pool entry in order to get 1612 // a PC-relative address at the ldr instruction. 1613 1614 // Emit the label. 1615 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1616 getFunctionNumber(), 1617 MI->getOperand(2).getImm(), OutContext)); 1618 1619 // Form and emit the load 1620 unsigned Opcode; 1621 switch (MI->getOpcode()) { 1622 default: 1623 llvm_unreachable("Unexpected opcode!"); 1624 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1625 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1626 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1627 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1628 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1629 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1630 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1631 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1632 } 1633 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1634 .addReg(MI->getOperand(0).getReg()) 1635 .addReg(ARM::PC) 1636 .addReg(MI->getOperand(1).getReg()) 1637 .addImm(0) 1638 // Add predicate operands. 1639 .addImm(MI->getOperand(3).getImm()) 1640 .addReg(MI->getOperand(4).getReg())); 1641 1642 return; 1643 } 1644 case ARM::CONSTPOOL_ENTRY: { 1645 if (Subtarget->genExecuteOnly()) 1646 llvm_unreachable("execute-only should not generate constant pools"); 1647 1648 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1649 /// in the function. The first operand is the ID# for this instruction, the 1650 /// second is the index into the MachineConstantPool that this is, the third 1651 /// is the size in bytes of this constant pool entry. 1652 /// The required alignment is specified on the basic block holding this MI. 1653 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1654 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1655 1656 // If this is the first entry of the pool, mark it. 1657 if (!InConstantPool) { 1658 OutStreamer->emitDataRegion(MCDR_DataRegion); 1659 InConstantPool = true; 1660 } 1661 1662 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 1663 1664 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1665 if (MCPE.isMachineConstantPoolEntry()) 1666 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1667 else 1668 emitGlobalConstant(DL, MCPE.Val.ConstVal); 1669 return; 1670 } 1671 case ARM::JUMPTABLE_ADDRS: 1672 emitJumpTableAddrs(MI); 1673 return; 1674 case ARM::JUMPTABLE_INSTS: 1675 emitJumpTableInsts(MI); 1676 return; 1677 case ARM::JUMPTABLE_TBB: 1678 case ARM::JUMPTABLE_TBH: 1679 emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1680 return; 1681 case ARM::t2BR_JT: { 1682 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1683 .addReg(ARM::PC) 1684 .addReg(MI->getOperand(0).getReg()) 1685 // Add predicate operands. 1686 .addImm(ARMCC::AL) 1687 .addReg(0)); 1688 return; 1689 } 1690 case ARM::t2TBB_JT: 1691 case ARM::t2TBH_JT: { 1692 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1693 // Lower and emit the PC label, then the instruction itself. 1694 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1695 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1696 .addReg(MI->getOperand(0).getReg()) 1697 .addReg(MI->getOperand(1).getReg()) 1698 // Add predicate operands. 1699 .addImm(ARMCC::AL) 1700 .addReg(0)); 1701 return; 1702 } 1703 case ARM::tTBB_JT: 1704 case ARM::tTBH_JT: { 1705 1706 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1707 Register Base = MI->getOperand(0).getReg(); 1708 Register Idx = MI->getOperand(1).getReg(); 1709 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1710 1711 // Multiply up idx if necessary. 1712 if (!Is8Bit) 1713 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1714 .addReg(Idx) 1715 .addReg(ARM::CPSR) 1716 .addReg(Idx) 1717 .addImm(1) 1718 // Add predicate operands. 1719 .addImm(ARMCC::AL) 1720 .addReg(0)); 1721 1722 if (Base == ARM::PC) { 1723 // TBB [base, idx] = 1724 // ADDS idx, idx, base 1725 // LDRB idx, [idx, #4] ; or LDRH if TBH 1726 // LSLS idx, #1 1727 // ADDS pc, pc, idx 1728 1729 // When using PC as the base, it's important that there is no padding 1730 // between the last ADDS and the start of the jump table. The jump table 1731 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1732 // 1733 // FIXME: Ideally we could vary the LDRB index based on the padding 1734 // between the sequence and jump table, however that relies on MCExprs 1735 // for load indexes which are currently not supported. 1736 OutStreamer->emitCodeAlignment(4); 1737 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1738 .addReg(Idx) 1739 .addReg(Idx) 1740 .addReg(Base) 1741 // Add predicate operands. 1742 .addImm(ARMCC::AL) 1743 .addReg(0)); 1744 1745 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1746 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1747 .addReg(Idx) 1748 .addReg(Idx) 1749 .addImm(Is8Bit ? 4 : 2) 1750 // Add predicate operands. 1751 .addImm(ARMCC::AL) 1752 .addReg(0)); 1753 } else { 1754 // TBB [base, idx] = 1755 // LDRB idx, [base, idx] ; or LDRH if TBH 1756 // LSLS idx, #1 1757 // ADDS pc, pc, idx 1758 1759 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1760 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1761 .addReg(Idx) 1762 .addReg(Base) 1763 .addReg(Idx) 1764 // Add predicate operands. 1765 .addImm(ARMCC::AL) 1766 .addReg(0)); 1767 } 1768 1769 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1770 .addReg(Idx) 1771 .addReg(ARM::CPSR) 1772 .addReg(Idx) 1773 .addImm(1) 1774 // Add predicate operands. 1775 .addImm(ARMCC::AL) 1776 .addReg(0)); 1777 1778 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1779 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1780 .addReg(ARM::PC) 1781 .addReg(ARM::PC) 1782 .addReg(Idx) 1783 // Add predicate operands. 1784 .addImm(ARMCC::AL) 1785 .addReg(0)); 1786 return; 1787 } 1788 case ARM::tBR_JTr: 1789 case ARM::BR_JTr: { 1790 // mov pc, target 1791 MCInst TmpInst; 1792 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1793 ARM::MOVr : ARM::tMOVr; 1794 TmpInst.setOpcode(Opc); 1795 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1796 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1797 // Add predicate operands. 1798 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1799 TmpInst.addOperand(MCOperand::createReg(0)); 1800 // Add 's' bit operand (always reg0 for this) 1801 if (Opc == ARM::MOVr) 1802 TmpInst.addOperand(MCOperand::createReg(0)); 1803 EmitToStreamer(*OutStreamer, TmpInst); 1804 return; 1805 } 1806 case ARM::BR_JTm_i12: { 1807 // ldr pc, target 1808 MCInst TmpInst; 1809 TmpInst.setOpcode(ARM::LDRi12); 1810 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1811 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1812 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1813 // Add predicate operands. 1814 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1815 TmpInst.addOperand(MCOperand::createReg(0)); 1816 EmitToStreamer(*OutStreamer, TmpInst); 1817 return; 1818 } 1819 case ARM::BR_JTm_rs: { 1820 // ldr pc, target 1821 MCInst TmpInst; 1822 TmpInst.setOpcode(ARM::LDRrs); 1823 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1824 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1825 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1826 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1827 // Add predicate operands. 1828 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1829 TmpInst.addOperand(MCOperand::createReg(0)); 1830 EmitToStreamer(*OutStreamer, TmpInst); 1831 return; 1832 } 1833 case ARM::BR_JTadd: { 1834 // add pc, target, idx 1835 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1836 .addReg(ARM::PC) 1837 .addReg(MI->getOperand(0).getReg()) 1838 .addReg(MI->getOperand(1).getReg()) 1839 // Add predicate operands. 1840 .addImm(ARMCC::AL) 1841 .addReg(0) 1842 // Add 's' bit operand (always reg0 for this) 1843 .addReg(0)); 1844 return; 1845 } 1846 case ARM::SPACE: 1847 OutStreamer->emitZeros(MI->getOperand(1).getImm()); 1848 return; 1849 case ARM::TRAP: { 1850 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1851 // FIXME: Remove this special case when they do. 1852 if (!Subtarget->isTargetMachO()) { 1853 uint32_t Val = 0xe7ffdefeUL; 1854 OutStreamer->AddComment("trap"); 1855 ATS.emitInst(Val); 1856 return; 1857 } 1858 break; 1859 } 1860 case ARM::TRAPNaCl: { 1861 uint32_t Val = 0xe7fedef0UL; 1862 OutStreamer->AddComment("trap"); 1863 ATS.emitInst(Val); 1864 return; 1865 } 1866 case ARM::tTRAP: { 1867 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1868 // FIXME: Remove this special case when they do. 1869 if (!Subtarget->isTargetMachO()) { 1870 uint16_t Val = 0xdefe; 1871 OutStreamer->AddComment("trap"); 1872 ATS.emitInst(Val, 'n'); 1873 return; 1874 } 1875 break; 1876 } 1877 case ARM::t2Int_eh_sjlj_setjmp: 1878 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1879 case ARM::tInt_eh_sjlj_setjmp: { 1880 // Two incoming args: GPR:$src, GPR:$val 1881 // mov $val, pc 1882 // adds $val, #7 1883 // str $val, [$src, #4] 1884 // movs r0, #0 1885 // b LSJLJEH 1886 // movs r0, #1 1887 // LSJLJEH: 1888 Register SrcReg = MI->getOperand(0).getReg(); 1889 Register ValReg = MI->getOperand(1).getReg(); 1890 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1891 OutStreamer->AddComment("eh_setjmp begin"); 1892 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1893 .addReg(ValReg) 1894 .addReg(ARM::PC) 1895 // Predicate. 1896 .addImm(ARMCC::AL) 1897 .addReg(0)); 1898 1899 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1900 .addReg(ValReg) 1901 // 's' bit operand 1902 .addReg(ARM::CPSR) 1903 .addReg(ValReg) 1904 .addImm(7) 1905 // Predicate. 1906 .addImm(ARMCC::AL) 1907 .addReg(0)); 1908 1909 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1910 .addReg(ValReg) 1911 .addReg(SrcReg) 1912 // The offset immediate is #4. The operand value is scaled by 4 for the 1913 // tSTR instruction. 1914 .addImm(1) 1915 // Predicate. 1916 .addImm(ARMCC::AL) 1917 .addReg(0)); 1918 1919 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1920 .addReg(ARM::R0) 1921 .addReg(ARM::CPSR) 1922 .addImm(0) 1923 // Predicate. 1924 .addImm(ARMCC::AL) 1925 .addReg(0)); 1926 1927 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1928 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1929 .addExpr(SymbolExpr) 1930 .addImm(ARMCC::AL) 1931 .addReg(0)); 1932 1933 OutStreamer->AddComment("eh_setjmp end"); 1934 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1935 .addReg(ARM::R0) 1936 .addReg(ARM::CPSR) 1937 .addImm(1) 1938 // Predicate. 1939 .addImm(ARMCC::AL) 1940 .addReg(0)); 1941 1942 OutStreamer->emitLabel(Label); 1943 return; 1944 } 1945 1946 case ARM::Int_eh_sjlj_setjmp_nofp: 1947 case ARM::Int_eh_sjlj_setjmp: { 1948 // Two incoming args: GPR:$src, GPR:$val 1949 // add $val, pc, #8 1950 // str $val, [$src, #+4] 1951 // mov r0, #0 1952 // add pc, pc, #0 1953 // mov r0, #1 1954 Register SrcReg = MI->getOperand(0).getReg(); 1955 Register ValReg = MI->getOperand(1).getReg(); 1956 1957 OutStreamer->AddComment("eh_setjmp begin"); 1958 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1959 .addReg(ValReg) 1960 .addReg(ARM::PC) 1961 .addImm(8) 1962 // Predicate. 1963 .addImm(ARMCC::AL) 1964 .addReg(0) 1965 // 's' bit operand (always reg0 for this). 1966 .addReg(0)); 1967 1968 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1969 .addReg(ValReg) 1970 .addReg(SrcReg) 1971 .addImm(4) 1972 // Predicate. 1973 .addImm(ARMCC::AL) 1974 .addReg(0)); 1975 1976 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1977 .addReg(ARM::R0) 1978 .addImm(0) 1979 // Predicate. 1980 .addImm(ARMCC::AL) 1981 .addReg(0) 1982 // 's' bit operand (always reg0 for this). 1983 .addReg(0)); 1984 1985 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1986 .addReg(ARM::PC) 1987 .addReg(ARM::PC) 1988 .addImm(0) 1989 // Predicate. 1990 .addImm(ARMCC::AL) 1991 .addReg(0) 1992 // 's' bit operand (always reg0 for this). 1993 .addReg(0)); 1994 1995 OutStreamer->AddComment("eh_setjmp end"); 1996 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1997 .addReg(ARM::R0) 1998 .addImm(1) 1999 // Predicate. 2000 .addImm(ARMCC::AL) 2001 .addReg(0) 2002 // 's' bit operand (always reg0 for this). 2003 .addReg(0)); 2004 return; 2005 } 2006 case ARM::Int_eh_sjlj_longjmp: { 2007 // ldr sp, [$src, #8] 2008 // ldr $scratch, [$src, #4] 2009 // ldr r7, [$src] 2010 // bx $scratch 2011 Register SrcReg = MI->getOperand(0).getReg(); 2012 Register ScratchReg = MI->getOperand(1).getReg(); 2013 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2014 .addReg(ARM::SP) 2015 .addReg(SrcReg) 2016 .addImm(8) 2017 // Predicate. 2018 .addImm(ARMCC::AL) 2019 .addReg(0)); 2020 2021 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2022 .addReg(ScratchReg) 2023 .addReg(SrcReg) 2024 .addImm(4) 2025 // Predicate. 2026 .addImm(ARMCC::AL) 2027 .addReg(0)); 2028 2029 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2030 // These platforms always use the same frame register 2031 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2032 .addReg(FramePtr) 2033 .addReg(SrcReg) 2034 .addImm(0) 2035 // Predicate. 2036 .addImm(ARMCC::AL) 2037 .addReg(0)); 2038 } else { 2039 // If the calling code might use either R7 or R11 as 2040 // frame pointer register, restore it into both. 2041 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2042 .addReg(ARM::R7) 2043 .addReg(SrcReg) 2044 .addImm(0) 2045 // Predicate. 2046 .addImm(ARMCC::AL) 2047 .addReg(0)); 2048 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2049 .addReg(ARM::R11) 2050 .addReg(SrcReg) 2051 .addImm(0) 2052 // Predicate. 2053 .addImm(ARMCC::AL) 2054 .addReg(0)); 2055 } 2056 2057 assert(Subtarget->hasV4TOps()); 2058 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2059 .addReg(ScratchReg) 2060 // Predicate. 2061 .addImm(ARMCC::AL) 2062 .addReg(0)); 2063 return; 2064 } 2065 case ARM::tInt_eh_sjlj_longjmp: { 2066 // ldr $scratch, [$src, #8] 2067 // mov sp, $scratch 2068 // ldr $scratch, [$src, #4] 2069 // ldr r7, [$src] 2070 // bx $scratch 2071 Register SrcReg = MI->getOperand(0).getReg(); 2072 Register ScratchReg = MI->getOperand(1).getReg(); 2073 2074 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2075 .addReg(ScratchReg) 2076 .addReg(SrcReg) 2077 // The offset immediate is #8. The operand value is scaled by 4 for the 2078 // tLDR instruction. 2079 .addImm(2) 2080 // Predicate. 2081 .addImm(ARMCC::AL) 2082 .addReg(0)); 2083 2084 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2085 .addReg(ARM::SP) 2086 .addReg(ScratchReg) 2087 // Predicate. 2088 .addImm(ARMCC::AL) 2089 .addReg(0)); 2090 2091 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2092 .addReg(ScratchReg) 2093 .addReg(SrcReg) 2094 .addImm(1) 2095 // Predicate. 2096 .addImm(ARMCC::AL) 2097 .addReg(0)); 2098 2099 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2100 // These platforms always use the same frame register 2101 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2102 .addReg(FramePtr) 2103 .addReg(SrcReg) 2104 .addImm(0) 2105 // Predicate. 2106 .addImm(ARMCC::AL) 2107 .addReg(0)); 2108 } else { 2109 // If the calling code might use either R7 or R11 as 2110 // frame pointer register, restore it into both. 2111 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2112 .addReg(ARM::R7) 2113 .addReg(SrcReg) 2114 .addImm(0) 2115 // Predicate. 2116 .addImm(ARMCC::AL) 2117 .addReg(0)); 2118 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2119 .addReg(ARM::R11) 2120 .addReg(SrcReg) 2121 .addImm(0) 2122 // Predicate. 2123 .addImm(ARMCC::AL) 2124 .addReg(0)); 2125 } 2126 2127 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2128 .addReg(ScratchReg) 2129 // Predicate. 2130 .addImm(ARMCC::AL) 2131 .addReg(0)); 2132 return; 2133 } 2134 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2135 // ldr.w r11, [$src, #0] 2136 // ldr.w sp, [$src, #8] 2137 // ldr.w pc, [$src, #4] 2138 2139 Register SrcReg = MI->getOperand(0).getReg(); 2140 2141 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2142 .addReg(ARM::R11) 2143 .addReg(SrcReg) 2144 .addImm(0) 2145 // Predicate 2146 .addImm(ARMCC::AL) 2147 .addReg(0)); 2148 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2149 .addReg(ARM::SP) 2150 .addReg(SrcReg) 2151 .addImm(8) 2152 // Predicate 2153 .addImm(ARMCC::AL) 2154 .addReg(0)); 2155 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2156 .addReg(ARM::PC) 2157 .addReg(SrcReg) 2158 .addImm(4) 2159 // Predicate 2160 .addImm(ARMCC::AL) 2161 .addReg(0)); 2162 return; 2163 } 2164 case ARM::PATCHABLE_FUNCTION_ENTER: 2165 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2166 return; 2167 case ARM::PATCHABLE_FUNCTION_EXIT: 2168 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2169 return; 2170 case ARM::PATCHABLE_TAIL_CALL: 2171 LowerPATCHABLE_TAIL_CALL(*MI); 2172 return; 2173 } 2174 2175 MCInst TmpInst; 2176 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2177 2178 EmitToStreamer(*OutStreamer, TmpInst); 2179 } 2180 2181 //===----------------------------------------------------------------------===// 2182 // Target Registry Stuff 2183 //===----------------------------------------------------------------------===// 2184 2185 // Force static initialization. 2186 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { 2187 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2188 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2189 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2190 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2191 } 2192