1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 58 InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::EmitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::EmitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 72 OutStreamer->EmitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 75 } 76 OutStreamer->EmitLabel(CurrentFnSym); 77 } 78 79 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 81 assert(Size && "C++ constructor pointer had zero size!"); 82 83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 84 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 85 86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 87 ARMII::MO_NO_FLAG), 88 (Subtarget->isTargetELF() 89 ? MCSymbolRefExpr::VK_ARM_TARGET1 90 : MCSymbolRefExpr::VK_None), 91 OutContext); 92 93 OutStreamer->EmitValue(E, Size); 94 } 95 96 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 97 if (PromotedGlobals.count(GV)) 98 // The global was promoted into a constant pool. It should not be emitted. 99 return; 100 AsmPrinter::EmitGlobalVariable(GV); 101 } 102 103 /// runOnMachineFunction - This uses the EmitInstruction() 104 /// method to print assembly for each instruction. 105 /// 106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 107 AFI = MF.getInfo<ARMFunctionInfo>(); 108 MCP = MF.getConstantPool(); 109 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 110 111 SetupMachineFunction(MF); 112 const Function &F = MF.getFunction(); 113 const TargetMachine& TM = MF.getTarget(); 114 115 // Collect all globals that had their storage promoted to a constant pool. 116 // Functions are emitted before variables, so this accumulates promoted 117 // globals from all functions in PromotedGlobals. 118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 119 PromotedGlobals.insert(GV); 120 121 // Calculate this function's optimization goal. 122 unsigned OptimizationGoal; 123 if (F.hasOptNone()) 124 // For best debugging illusion, speed and small size sacrificed 125 OptimizationGoal = 6; 126 else if (F.hasMinSize()) 127 // Aggressively for small size, speed and debug illusion sacrificed 128 OptimizationGoal = 4; 129 else if (F.hasOptSize()) 130 // For small size, but speed and debugging illusion preserved 131 OptimizationGoal = 3; 132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 133 // Aggressively for speed, small size and debug illusion sacrificed 134 OptimizationGoal = 2; 135 else if (TM.getOptLevel() > CodeGenOpt::None) 136 // For speed, but small size and good debug illusion preserved 137 OptimizationGoal = 1; 138 else // TM.getOptLevel() == CodeGenOpt::None 139 // For good debugging, but speed and small size preserved 140 OptimizationGoal = 5; 141 142 // Combine a new optimization goal with existing ones. 143 if (OptimizationGoals == -1) // uninitialized goals 144 OptimizationGoals = OptimizationGoal; 145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 146 OptimizationGoals = 0; 147 148 if (Subtarget->isTargetCOFF()) { 149 bool Internal = F.hasInternalLinkage(); 150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 151 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 153 154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 155 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 156 OutStreamer->EmitCOFFSymbolType(Type); 157 OutStreamer->EndCOFFSymbolDef(); 158 } 159 160 // Emit the rest of the function body. 161 EmitFunctionBody(); 162 163 // Emit the XRay table for this function. 164 emitXRayTable(); 165 166 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 167 // These are created per function, rather than per TU, since it's 168 // relatively easy to exceed the thumb branch range within a TU. 169 if (! ThumbIndirectPads.empty()) { 170 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 171 EmitAlignment(1); 172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 173 OutStreamer->EmitLabel(TIP.second); 174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 175 .addReg(TIP.first) 176 // Add predicate operands. 177 .addImm(ARMCC::AL) 178 .addReg(0)); 179 } 180 ThumbIndirectPads.clear(); 181 } 182 183 // We didn't modify anything. 184 return false; 185 } 186 187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 188 raw_ostream &O) { 189 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 190 unsigned TF = MO.getTargetFlags(); 191 if (TF & ARMII::MO_LO16) 192 O << ":lower16:"; 193 else if (TF & ARMII::MO_HI16) 194 O << ":upper16:"; 195 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 196 printOffset(MO.getOffset(), O); 197 } 198 199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 200 raw_ostream &O) { 201 const MachineOperand &MO = MI->getOperand(OpNum); 202 203 switch (MO.getType()) { 204 default: llvm_unreachable("<unknown operand type>"); 205 case MachineOperand::MO_Register: { 206 unsigned Reg = MO.getReg(); 207 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 208 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 209 if(ARM::GPRPairRegClass.contains(Reg)) { 210 const MachineFunction &MF = *MI->getParent()->getParent(); 211 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 212 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 213 } 214 O << ARMInstPrinter::getRegisterName(Reg); 215 break; 216 } 217 case MachineOperand::MO_Immediate: { 218 O << '#'; 219 unsigned TF = MO.getTargetFlags(); 220 if (TF == ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF == ARMII::MO_HI16) 223 O << ":upper16:"; 224 O << MO.getImm(); 225 break; 226 } 227 case MachineOperand::MO_MachineBasicBlock: 228 MO.getMBB()->getSymbol()->print(O, MAI); 229 return; 230 case MachineOperand::MO_GlobalAddress: { 231 PrintSymbolOperand(MO, O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 243 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 244 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 245 const DataLayout &DL = getDataLayout(); 246 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 247 "CPI" + Twine(getFunctionNumber()) + "_" + 248 Twine(CPID)); 249 } 250 251 //===--------------------------------------------------------------------===// 252 253 MCSymbol *ARMAsmPrinter:: 254 GetARMJTIPICJumpTableLabel(unsigned uid) const { 255 const DataLayout &DL = getDataLayout(); 256 SmallString<60> Name; 257 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 258 << getFunctionNumber() << '_' << uid; 259 return OutContext.getOrCreateSymbol(Name); 260 } 261 262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 263 const char *ExtraCode, raw_ostream &O) { 264 // Does this asm operand have a single letter operand modifier? 265 if (ExtraCode && ExtraCode[0]) { 266 if (ExtraCode[1] != 0) return true; // Unknown modifier. 267 268 switch (ExtraCode[0]) { 269 default: 270 // See if this is a generic print operand 271 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 272 case 'P': // Print a VFP double precision register. 273 case 'q': // Print a NEON quad precision register. 274 printOperand(MI, OpNum, O); 275 return false; 276 case 'y': // Print a VFP single precision register as indexed double. 277 if (MI->getOperand(OpNum).isReg()) { 278 unsigned Reg = MI->getOperand(OpNum).getReg(); 279 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 280 // Find the 'd' register that has this 's' register as a sub-register, 281 // and determine the lane number. 282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 283 if (!ARM::DPRRegClass.contains(*SR)) 284 continue; 285 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 286 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 287 return false; 288 } 289 } 290 return true; 291 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 292 if (!MI->getOperand(OpNum).isImm()) 293 return true; 294 O << ~(MI->getOperand(OpNum).getImm()); 295 return false; 296 case 'L': // The low 16 bits of an immediate constant. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << (MI->getOperand(OpNum).getImm() & 0xffff); 300 return false; 301 case 'M': { // A register range suitable for LDM/STM. 302 if (!MI->getOperand(OpNum).isReg()) 303 return true; 304 const MachineOperand &MO = MI->getOperand(OpNum); 305 unsigned RegBegin = MO.getReg(); 306 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 307 // already got the operands in registers that are operands to the 308 // inline asm statement. 309 O << "{"; 310 if (ARM::GPRPairRegClass.contains(RegBegin)) { 311 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 312 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 313 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 314 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 315 } 316 O << ARMInstPrinter::getRegisterName(RegBegin); 317 318 // FIXME: The register allocator not only may not have given us the 319 // registers in sequence, but may not be in ascending registers. This 320 // will require changes in the register allocator that'll need to be 321 // propagated down here if the operands change. 322 unsigned RegOps = OpNum + 1; 323 while (MI->getOperand(RegOps).isReg()) { 324 O << ", " 325 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 326 RegOps++; 327 } 328 329 O << "}"; 330 331 return false; 332 } 333 case 'R': // The most significant register of a pair. 334 case 'Q': { // The least significant register of a pair. 335 if (OpNum == 0) 336 return true; 337 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 338 if (!FlagsOP.isImm()) 339 return true; 340 unsigned Flags = FlagsOP.getImm(); 341 342 // This operand may not be the one that actually provides the register. If 343 // it's tied to a previous one then we should refer instead to that one 344 // for registers and their classes. 345 unsigned TiedIdx; 346 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 347 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 348 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 349 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 350 } 351 Flags = MI->getOperand(OpNum).getImm(); 352 353 // Later code expects OpNum to be pointing at the register rather than 354 // the flags. 355 OpNum += 1; 356 } 357 358 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 359 unsigned RC; 360 bool FirstHalf; 361 const ARMBaseTargetMachine &ATM = 362 static_cast<const ARMBaseTargetMachine &>(TM); 363 364 // 'Q' should correspond to the low order register and 'R' to the high 365 // order register. Whether this corresponds to the upper or lower half 366 // depends on the endianess mode. 367 if (ExtraCode[0] == 'Q') 368 FirstHalf = ATM.isLittleEndian(); 369 else 370 // ExtraCode[0] == 'R'. 371 FirstHalf = !ATM.isLittleEndian(); 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 374 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 375 if (NumVals != 1) 376 return true; 377 const MachineOperand &MO = MI->getOperand(OpNum); 378 if (!MO.isReg()) 379 return true; 380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 381 unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ? 382 ARM::gsub_0 : ARM::gsub_1); 383 O << ARMInstPrinter::getRegisterName(Reg); 384 return false; 385 } 386 if (NumVals != 2) 387 return true; 388 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 389 if (RegOp >= MI->getNumOperands()) 390 return true; 391 const MachineOperand &MO = MI->getOperand(RegOp); 392 if (!MO.isReg()) 393 return true; 394 unsigned Reg = MO.getReg(); 395 O << ARMInstPrinter::getRegisterName(Reg); 396 return false; 397 } 398 399 case 'e': // The low doubleword register of a NEON quad register. 400 case 'f': { // The high doubleword register of a NEON quad register. 401 if (!MI->getOperand(OpNum).isReg()) 402 return true; 403 unsigned Reg = MI->getOperand(OpNum).getReg(); 404 if (!ARM::QPRRegClass.contains(Reg)) 405 return true; 406 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 407 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 408 ARM::dsub_0 : ARM::dsub_1); 409 O << ARMInstPrinter::getRegisterName(SubReg); 410 return false; 411 } 412 413 // This modifier is not yet supported. 414 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 415 return true; 416 case 'H': { // The highest-numbered register of a pair. 417 const MachineOperand &MO = MI->getOperand(OpNum); 418 if (!MO.isReg()) 419 return true; 420 const MachineFunction &MF = *MI->getParent()->getParent(); 421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 422 unsigned Reg = MO.getReg(); 423 if(!ARM::GPRPairRegClass.contains(Reg)) 424 return false; 425 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 426 O << ARMInstPrinter::getRegisterName(Reg); 427 return false; 428 } 429 } 430 } 431 432 printOperand(MI, OpNum, O); 433 return false; 434 } 435 436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 437 unsigned OpNum, const char *ExtraCode, 438 raw_ostream &O) { 439 // Does this asm operand have a single letter operand modifier? 440 if (ExtraCode && ExtraCode[0]) { 441 if (ExtraCode[1] != 0) return true; // Unknown modifier. 442 443 switch (ExtraCode[0]) { 444 case 'A': // A memory operand for a VLD1/VST1 instruction. 445 default: return true; // Unknown modifier. 446 case 'm': // The base register of a memory operand. 447 if (!MI->getOperand(OpNum).isReg()) 448 return true; 449 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 450 return false; 451 } 452 } 453 454 const MachineOperand &MO = MI->getOperand(OpNum); 455 assert(MO.isReg() && "unexpected inline asm memory operand"); 456 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 457 return false; 458 } 459 460 static bool isThumb(const MCSubtargetInfo& STI) { 461 return STI.getFeatureBits()[ARM::ModeThumb]; 462 } 463 464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 465 const MCSubtargetInfo *EndInfo) const { 466 // If either end mode is unknown (EndInfo == NULL) or different than 467 // the start mode, then restore the start mode. 468 const bool WasThumb = isThumb(StartInfo); 469 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 470 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 471 } 472 } 473 474 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 475 const Triple &TT = TM.getTargetTriple(); 476 // Use unified assembler syntax. 477 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 478 479 // Emit ARM Build Attributes 480 if (TT.isOSBinFormatELF()) 481 emitAttributes(); 482 483 // Use the triple's architecture and subarchitecture to determine 484 // if we're thumb for the purposes of the top level code16 assembler 485 // flag. 486 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 487 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 488 } 489 490 static void 491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 492 MachineModuleInfoImpl::StubValueTy &MCSym) { 493 // L_foo$stub: 494 OutStreamer.EmitLabel(StubLabel); 495 // .indirect_symbol _foo 496 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 497 498 if (MCSym.getInt()) 499 // External to current translation unit. 500 OutStreamer.EmitIntValue(0, 4/*size*/); 501 else 502 // Internal to current translation unit. 503 // 504 // When we place the LSDA into the TEXT section, the type info 505 // pointers need to be indirect and pc-rel. We accomplish this by 506 // using NLPs; however, sometimes the types are local to the file. 507 // We need to fill in the value for the NLP in those cases. 508 OutStreamer.EmitValue( 509 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 510 4 /*size*/); 511 } 512 513 514 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 515 const Triple &TT = TM.getTargetTriple(); 516 if (TT.isOSBinFormatMachO()) { 517 // All darwin targets use mach-o. 518 const TargetLoweringObjectFileMachO &TLOFMacho = 519 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 520 MachineModuleInfoMachO &MMIMacho = 521 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 522 523 // Output non-lazy-pointers for external and common global variables. 524 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 525 526 if (!Stubs.empty()) { 527 // Switch with ".non_lazy_symbol_pointer" directive. 528 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 529 EmitAlignment(2); 530 531 for (auto &Stub : Stubs) 532 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 533 534 Stubs.clear(); 535 OutStreamer->AddBlankLine(); 536 } 537 538 Stubs = MMIMacho.GetThreadLocalGVStubList(); 539 if (!Stubs.empty()) { 540 // Switch with ".non_lazy_symbol_pointer" directive. 541 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 542 EmitAlignment(2); 543 544 for (auto &Stub : Stubs) 545 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 546 547 Stubs.clear(); 548 OutStreamer->AddBlankLine(); 549 } 550 551 // Funny Darwin hack: This flag tells the linker that no global symbols 552 // contain code that falls through to other global symbols (e.g. the obvious 553 // implementation of multiple entry points). If this doesn't occur, the 554 // linker can safely perform dead code stripping. Since LLVM never 555 // generates code that does this, it is always safe to set. 556 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 557 } 558 559 // The last attribute to be emitted is ABI_optimization_goals 560 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 561 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 562 563 if (OptimizationGoals > 0 && 564 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 565 Subtarget->isTargetMuslAEABI())) 566 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 567 OptimizationGoals = -1; 568 569 ATS.finishAttributeSection(); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 574 // FIXME: 575 // The following seem like one-off assembler flags, but they actually need 576 // to appear in the .ARM.attributes section in ELF. 577 // Instead of subclassing the MCELFStreamer, we do the work here. 578 579 // Returns true if all functions have the same function attribute value. 580 // It also returns true when the module has no functions. 581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 582 StringRef Value) { 583 return !any_of(M, [&](const Function &F) { 584 return F.getFnAttribute(Attr).getValueAsString() != Value; 585 }); 586 } 587 588 void ARMAsmPrinter::emitAttributes() { 589 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 590 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 591 592 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 593 594 ATS.switchVendor("aeabi"); 595 596 // Compute ARM ELF Attributes based on the default subtarget that 597 // we'd have constructed. The existing ARM behavior isn't LTO clean 598 // anyhow. 599 // FIXME: For ifunc related functions we could iterate over and look 600 // for a feature string that doesn't match the default one. 601 const Triple &TT = TM.getTargetTriple(); 602 StringRef CPU = TM.getTargetCPU(); 603 StringRef FS = TM.getTargetFeatureString(); 604 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 605 if (!FS.empty()) { 606 if (!ArchFS.empty()) 607 ArchFS = (Twine(ArchFS) + "," + FS).str(); 608 else 609 ArchFS = FS; 610 } 611 const ARMBaseTargetMachine &ATM = 612 static_cast<const ARMBaseTargetMachine &>(TM); 613 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 614 615 // Emit build attributes for the available hardware. 616 ATS.emitTargetAttributes(STI); 617 618 // RW data addressing. 619 if (isPositionIndependent()) { 620 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 621 ARMBuildAttrs::AddressRWPCRel); 622 } else if (STI.isRWPI()) { 623 // RWPI specific attributes. 624 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 625 ARMBuildAttrs::AddressRWSBRel); 626 } 627 628 // RO data addressing. 629 if (isPositionIndependent() || STI.isROPI()) { 630 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 631 ARMBuildAttrs::AddressROPCRel); 632 } 633 634 // GOT use. 635 if (isPositionIndependent()) { 636 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 637 ARMBuildAttrs::AddressGOT); 638 } else { 639 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 640 ARMBuildAttrs::AddressDirect); 641 } 642 643 // Set FP Denormals. 644 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 645 "denormal-fp-math", 646 "preserve-sign") || 647 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 648 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 649 ARMBuildAttrs::PreserveFPSign); 650 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 651 "denormal-fp-math", 652 "positive-zero") || 653 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 654 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 655 ARMBuildAttrs::PositiveZero); 656 else if (!TM.Options.UnsafeFPMath) 657 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 658 ARMBuildAttrs::IEEEDenormals); 659 else { 660 if (!STI.hasVFP2Base()) { 661 // When the target doesn't have an FPU (by design or 662 // intention), the assumptions made on the software support 663 // mirror that of the equivalent hardware support *if it 664 // existed*. For v7 and better we indicate that denormals are 665 // flushed preserving sign, and for V6 we indicate that 666 // denormals are flushed to positive zero. 667 if (STI.hasV7Ops()) 668 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 669 ARMBuildAttrs::PreserveFPSign); 670 } else if (STI.hasVFP3Base()) { 671 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 672 // the sign bit of the zero matches the sign bit of the input or 673 // result that is being flushed to zero. 674 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 675 ARMBuildAttrs::PreserveFPSign); 676 } 677 // For VFPv2 implementations it is implementation defined as 678 // to whether denormals are flushed to positive zero or to 679 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 680 // LLVM has chosen to flush this to positive zero (most likely for 681 // GCC compatibility), so that's the chosen value here (the 682 // absence of its emission implies zero). 683 } 684 685 // Set FP exceptions and rounding 686 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 687 "no-trapping-math", "true") || 688 TM.Options.NoTrappingFPMath) 689 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 690 ARMBuildAttrs::Not_Allowed); 691 else if (!TM.Options.UnsafeFPMath) { 692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 693 694 // If the user has permitted this code to choose the IEEE 754 695 // rounding at run-time, emit the rounding attribute. 696 if (TM.Options.HonorSignDependentRoundingFPMathOption) 697 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 698 } 699 700 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 701 // equivalent of GCC's -ffinite-math-only flag. 702 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 703 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 704 ARMBuildAttrs::Allowed); 705 else 706 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 707 ARMBuildAttrs::AllowIEEE754); 708 709 // FIXME: add more flags to ARMBuildAttributes.h 710 // 8-bytes alignment stuff. 711 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 712 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 713 714 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 715 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 716 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 717 718 // FIXME: To support emitting this build attribute as GCC does, the 719 // -mfp16-format option and associated plumbing must be 720 // supported. For now the __fp16 type is exposed by default, so this 721 // attribute should be emitted with value 1. 722 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 723 ARMBuildAttrs::FP16FormatIEEE); 724 725 if (MMI) { 726 if (const Module *SourceModule = MMI->getModule()) { 727 // ABI_PCS_wchar_t to indicate wchar_t width 728 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 729 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 730 SourceModule->getModuleFlag("wchar_size"))) { 731 int WCharWidth = WCharWidthValue->getZExtValue(); 732 assert((WCharWidth == 2 || WCharWidth == 4) && 733 "wchar_t width must be 2 or 4 bytes"); 734 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 735 } 736 737 // ABI_enum_size to indicate enum width 738 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 739 // (all enums contain a value needing 32 bits to encode). 740 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 741 SourceModule->getModuleFlag("min_enum_size"))) { 742 int EnumWidth = EnumWidthValue->getZExtValue(); 743 assert((EnumWidth == 1 || EnumWidth == 4) && 744 "Minimum enum width must be 1 or 4 bytes"); 745 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 746 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 747 } 748 } 749 } 750 751 // We currently do not support using R9 as the TLS pointer. 752 if (STI.isRWPI()) 753 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 754 ARMBuildAttrs::R9IsSB); 755 else if (STI.isR9Reserved()) 756 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 757 ARMBuildAttrs::R9Reserved); 758 else 759 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 760 ARMBuildAttrs::R9IsGPR); 761 } 762 763 //===----------------------------------------------------------------------===// 764 765 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 766 unsigned LabelId, MCContext &Ctx) { 767 768 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 769 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 770 return Label; 771 } 772 773 static MCSymbolRefExpr::VariantKind 774 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 775 switch (Modifier) { 776 case ARMCP::no_modifier: 777 return MCSymbolRefExpr::VK_None; 778 case ARMCP::TLSGD: 779 return MCSymbolRefExpr::VK_TLSGD; 780 case ARMCP::TPOFF: 781 return MCSymbolRefExpr::VK_TPOFF; 782 case ARMCP::GOTTPOFF: 783 return MCSymbolRefExpr::VK_GOTTPOFF; 784 case ARMCP::SBREL: 785 return MCSymbolRefExpr::VK_ARM_SBREL; 786 case ARMCP::GOT_PREL: 787 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 788 case ARMCP::SECREL: 789 return MCSymbolRefExpr::VK_SECREL; 790 } 791 llvm_unreachable("Invalid ARMCPModifier!"); 792 } 793 794 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 795 unsigned char TargetFlags) { 796 if (Subtarget->isTargetMachO()) { 797 bool IsIndirect = 798 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 799 800 if (!IsIndirect) 801 return getSymbol(GV); 802 803 // FIXME: Remove this when Darwin transition to @GOT like syntax. 804 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 805 MachineModuleInfoMachO &MMIMachO = 806 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 807 MachineModuleInfoImpl::StubValueTy &StubSym = 808 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 809 : MMIMachO.getGVStubEntry(MCSym); 810 811 if (!StubSym.getPointer()) 812 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 813 !GV->hasInternalLinkage()); 814 return MCSym; 815 } else if (Subtarget->isTargetCOFF()) { 816 assert(Subtarget->isTargetWindows() && 817 "Windows is the only supported COFF target"); 818 819 bool IsIndirect = 820 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 821 if (!IsIndirect) 822 return getSymbol(GV); 823 824 SmallString<128> Name; 825 if (TargetFlags & ARMII::MO_DLLIMPORT) 826 Name = "__imp_"; 827 else if (TargetFlags & ARMII::MO_COFFSTUB) 828 Name = ".refptr."; 829 getNameWithPrefix(Name, GV); 830 831 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 832 833 if (TargetFlags & ARMII::MO_COFFSTUB) { 834 MachineModuleInfoCOFF &MMICOFF = 835 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 836 MachineModuleInfoImpl::StubValueTy &StubSym = 837 MMICOFF.getGVStubEntry(MCSym); 838 839 if (!StubSym.getPointer()) 840 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 841 } 842 843 return MCSym; 844 } else if (Subtarget->isTargetELF()) { 845 return getSymbol(GV); 846 } 847 llvm_unreachable("unexpected target"); 848 } 849 850 void ARMAsmPrinter:: 851 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 852 const DataLayout &DL = getDataLayout(); 853 int Size = DL.getTypeAllocSize(MCPV->getType()); 854 855 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 856 857 if (ACPV->isPromotedGlobal()) { 858 // This constant pool entry is actually a global whose storage has been 859 // promoted into the constant pool. This global may be referenced still 860 // by debug information, and due to the way AsmPrinter is set up, the debug 861 // info is immutable by the time we decide to promote globals to constant 862 // pools. Because of this, we need to ensure we emit a symbol for the global 863 // with private linkage (the default) so debug info can refer to it. 864 // 865 // However, if this global is promoted into several functions we must ensure 866 // we don't try and emit duplicate symbols! 867 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 868 for (const auto *GV : ACPC->promotedGlobals()) { 869 if (!EmittedPromotedGlobalLabels.count(GV)) { 870 MCSymbol *GVSym = getSymbol(GV); 871 OutStreamer->EmitLabel(GVSym); 872 EmittedPromotedGlobalLabels.insert(GV); 873 } 874 } 875 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 876 } 877 878 MCSymbol *MCSym; 879 if (ACPV->isLSDA()) { 880 MCSym = getCurExceptionSym(); 881 } else if (ACPV->isBlockAddress()) { 882 const BlockAddress *BA = 883 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 884 MCSym = GetBlockAddressSymbol(BA); 885 } else if (ACPV->isGlobalValue()) { 886 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 887 888 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 889 // flag the global as MO_NONLAZY. 890 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 891 MCSym = GetARMGVSymbol(GV, TF); 892 } else if (ACPV->isMachineBasicBlock()) { 893 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 894 MCSym = MBB->getSymbol(); 895 } else { 896 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 897 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 898 MCSym = GetExternalSymbolSymbol(Sym); 899 } 900 901 // Create an MCSymbol for the reference. 902 const MCExpr *Expr = 903 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 904 OutContext); 905 906 if (ACPV->getPCAdjustment()) { 907 MCSymbol *PCLabel = 908 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 909 ACPV->getLabelId(), OutContext); 910 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 911 PCRelExpr = 912 MCBinaryExpr::createAdd(PCRelExpr, 913 MCConstantExpr::create(ACPV->getPCAdjustment(), 914 OutContext), 915 OutContext); 916 if (ACPV->mustAddCurrentAddress()) { 917 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 918 // label, so just emit a local label end reference that instead. 919 MCSymbol *DotSym = OutContext.createTempSymbol(); 920 OutStreamer->EmitLabel(DotSym); 921 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 922 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 923 } 924 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 925 } 926 OutStreamer->EmitValue(Expr, Size); 927 } 928 929 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 930 const MachineOperand &MO1 = MI->getOperand(1); 931 unsigned JTI = MO1.getIndex(); 932 933 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 934 // ARM mode tables. 935 EmitAlignment(2); 936 937 // Emit a label for the jump table. 938 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 939 OutStreamer->EmitLabel(JTISymbol); 940 941 // Mark the jump table as data-in-code. 942 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 943 944 // Emit each entry of the table. 945 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 946 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 947 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 948 949 for (MachineBasicBlock *MBB : JTBBs) { 950 // Construct an MCExpr for the entry. We want a value of the form: 951 // (BasicBlockAddr - TableBeginAddr) 952 // 953 // For example, a table with entries jumping to basic blocks BB0 and BB1 954 // would look like: 955 // LJTI_0_0: 956 // .word (LBB0 - LJTI_0_0) 957 // .word (LBB1 - LJTI_0_0) 958 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 959 960 if (isPositionIndependent() || Subtarget->isROPI()) 961 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 962 OutContext), 963 OutContext); 964 // If we're generating a table of Thumb addresses in static relocation 965 // model, we need to add one to keep interworking correctly. 966 else if (AFI->isThumbFunction()) 967 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 968 OutContext); 969 OutStreamer->EmitValue(Expr, 4); 970 } 971 // Mark the end of jump table data-in-code region. 972 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 973 } 974 975 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 976 const MachineOperand &MO1 = MI->getOperand(1); 977 unsigned JTI = MO1.getIndex(); 978 979 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 980 // ARM mode tables. 981 EmitAlignment(2); 982 983 // Emit a label for the jump table. 984 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 985 OutStreamer->EmitLabel(JTISymbol); 986 987 // Emit each entry of the table. 988 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 989 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 990 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 991 992 for (MachineBasicBlock *MBB : JTBBs) { 993 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 994 OutContext); 995 // If this isn't a TBB or TBH, the entries are direct branch instructions. 996 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 997 .addExpr(MBBSymbolExpr) 998 .addImm(ARMCC::AL) 999 .addReg(0)); 1000 } 1001 } 1002 1003 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1004 unsigned OffsetWidth) { 1005 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1006 const MachineOperand &MO1 = MI->getOperand(1); 1007 unsigned JTI = MO1.getIndex(); 1008 1009 if (Subtarget->isThumb1Only()) 1010 EmitAlignment(2); 1011 1012 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1013 OutStreamer->EmitLabel(JTISymbol); 1014 1015 // Emit each entry of the table. 1016 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1017 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1018 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1019 1020 // Mark the jump table as data-in-code. 1021 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1022 : MCDR_DataRegionJT16); 1023 1024 for (auto MBB : JTBBs) { 1025 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1026 OutContext); 1027 // Otherwise it's an offset from the dispatch instruction. Construct an 1028 // MCExpr for the entry. We want a value of the form: 1029 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1030 // 1031 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1032 // would look like: 1033 // LJTI_0_0: 1034 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1035 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1036 // where LCPI0_0 is a label defined just before the TBB instruction using 1037 // this table. 1038 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1039 const MCExpr *Expr = MCBinaryExpr::createAdd( 1040 MCSymbolRefExpr::create(TBInstPC, OutContext), 1041 MCConstantExpr::create(4, OutContext), OutContext); 1042 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1043 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1044 OutContext); 1045 OutStreamer->EmitValue(Expr, OffsetWidth); 1046 } 1047 // Mark the end of jump table data-in-code region. 32-bit offsets use 1048 // actual branch instructions here, so we don't mark those as a data-region 1049 // at all. 1050 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1051 1052 // Make sure the next instruction is 2-byte aligned. 1053 EmitAlignment(1); 1054 } 1055 1056 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1057 assert(MI->getFlag(MachineInstr::FrameSetup) && 1058 "Only instruction which are involved into frame setup code are allowed"); 1059 1060 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1061 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1062 const MachineFunction &MF = *MI->getParent()->getParent(); 1063 const TargetRegisterInfo *TargetRegInfo = 1064 MF.getSubtarget().getRegisterInfo(); 1065 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1066 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1067 1068 unsigned FramePtr = TargetRegInfo->getFrameRegister(MF); 1069 unsigned Opc = MI->getOpcode(); 1070 unsigned SrcReg, DstReg; 1071 1072 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1073 // Two special cases: 1074 // 1) tPUSH does not have src/dst regs. 1075 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1076 // load. Yes, this is pretty fragile, but for now I don't see better 1077 // way... :( 1078 SrcReg = DstReg = ARM::SP; 1079 } else { 1080 SrcReg = MI->getOperand(1).getReg(); 1081 DstReg = MI->getOperand(0).getReg(); 1082 } 1083 1084 // Try to figure out the unwinding opcode out of src / dst regs. 1085 if (MI->mayStore()) { 1086 // Register saves. 1087 assert(DstReg == ARM::SP && 1088 "Only stack pointer as a destination reg is supported"); 1089 1090 SmallVector<unsigned, 4> RegList; 1091 // Skip src & dst reg, and pred ops. 1092 unsigned StartOp = 2 + 2; 1093 // Use all the operands. 1094 unsigned NumOffset = 0; 1095 // Amount of SP adjustment folded into a push. 1096 unsigned Pad = 0; 1097 1098 switch (Opc) { 1099 default: 1100 MI->print(errs()); 1101 llvm_unreachable("Unsupported opcode for unwinding information"); 1102 case ARM::tPUSH: 1103 // Special case here: no src & dst reg, but two extra imp ops. 1104 StartOp = 2; NumOffset = 2; 1105 LLVM_FALLTHROUGH; 1106 case ARM::STMDB_UPD: 1107 case ARM::t2STMDB_UPD: 1108 case ARM::VSTMDDB_UPD: 1109 assert(SrcReg == ARM::SP && 1110 "Only stack pointer as a source reg is supported"); 1111 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1112 i != NumOps; ++i) { 1113 const MachineOperand &MO = MI->getOperand(i); 1114 // Actually, there should never be any impdef stuff here. Skip it 1115 // temporary to workaround PR11902. 1116 if (MO.isImplicit()) 1117 continue; 1118 // Registers, pushed as a part of folding an SP update into the 1119 // push instruction are marked as undef and should not be 1120 // restored when unwinding, because the function can modify the 1121 // corresponding stack slots. 1122 if (MO.isUndef()) { 1123 assert(RegList.empty() && 1124 "Pad registers must come before restored ones"); 1125 unsigned Width = 1126 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1127 Pad += Width; 1128 continue; 1129 } 1130 RegList.push_back(MO.getReg()); 1131 } 1132 break; 1133 case ARM::STR_PRE_IMM: 1134 case ARM::STR_PRE_REG: 1135 case ARM::t2STR_PRE: 1136 assert(MI->getOperand(2).getReg() == ARM::SP && 1137 "Only stack pointer as a source reg is supported"); 1138 RegList.push_back(SrcReg); 1139 break; 1140 } 1141 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1142 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1143 // Account for the SP adjustment, folded into the push. 1144 if (Pad) 1145 ATS.emitPad(Pad); 1146 } 1147 } else { 1148 // Changes of stack / frame pointer. 1149 if (SrcReg == ARM::SP) { 1150 int64_t Offset = 0; 1151 switch (Opc) { 1152 default: 1153 MI->print(errs()); 1154 llvm_unreachable("Unsupported opcode for unwinding information"); 1155 case ARM::MOVr: 1156 case ARM::tMOVr: 1157 Offset = 0; 1158 break; 1159 case ARM::ADDri: 1160 case ARM::t2ADDri: 1161 Offset = -MI->getOperand(2).getImm(); 1162 break; 1163 case ARM::SUBri: 1164 case ARM::t2SUBri: 1165 Offset = MI->getOperand(2).getImm(); 1166 break; 1167 case ARM::tSUBspi: 1168 Offset = MI->getOperand(2).getImm()*4; 1169 break; 1170 case ARM::tADDspi: 1171 case ARM::tADDrSPi: 1172 Offset = -MI->getOperand(2).getImm()*4; 1173 break; 1174 case ARM::tLDRpci: { 1175 // Grab the constpool index and check, whether it corresponds to 1176 // original or cloned constpool entry. 1177 unsigned CPI = MI->getOperand(1).getIndex(); 1178 const MachineConstantPool *MCP = MF.getConstantPool(); 1179 if (CPI >= MCP->getConstants().size()) 1180 CPI = AFI.getOriginalCPIdx(CPI); 1181 assert(CPI != -1U && "Invalid constpool index"); 1182 1183 // Derive the actual offset. 1184 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1185 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1186 // FIXME: Check for user, it should be "add" instruction! 1187 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1188 break; 1189 } 1190 } 1191 1192 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1193 if (DstReg == FramePtr && FramePtr != ARM::SP) 1194 // Set-up of the frame pointer. Positive values correspond to "add" 1195 // instruction. 1196 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1197 else if (DstReg == ARM::SP) { 1198 // Change of SP by an offset. Positive values correspond to "sub" 1199 // instruction. 1200 ATS.emitPad(Offset); 1201 } else { 1202 // Move of SP to a register. Positive values correspond to an "add" 1203 // instruction. 1204 ATS.emitMovSP(DstReg, -Offset); 1205 } 1206 } 1207 } else if (DstReg == ARM::SP) { 1208 MI->print(errs()); 1209 llvm_unreachable("Unsupported opcode for unwinding information"); 1210 } 1211 else { 1212 MI->print(errs()); 1213 llvm_unreachable("Unsupported opcode for unwinding information"); 1214 } 1215 } 1216 } 1217 1218 // Simple pseudo-instructions have their lowering (with expansion to real 1219 // instructions) auto-generated. 1220 #include "ARMGenMCPseudoLowering.inc" 1221 1222 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1223 const DataLayout &DL = getDataLayout(); 1224 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1225 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1226 1227 const MachineFunction &MF = *MI->getParent()->getParent(); 1228 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1229 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1230 1231 // If we just ended a constant pool, mark it as such. 1232 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1233 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1234 InConstantPool = false; 1235 } 1236 1237 // Emit unwinding stuff for frame-related instructions 1238 if (Subtarget->isTargetEHABICompatible() && 1239 MI->getFlag(MachineInstr::FrameSetup)) 1240 EmitUnwindingInstruction(MI); 1241 1242 // Do any auto-generated pseudo lowerings. 1243 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1244 return; 1245 1246 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1247 "Pseudo flag setting opcode should be expanded early"); 1248 1249 // Check for manual lowerings. 1250 unsigned Opc = MI->getOpcode(); 1251 switch (Opc) { 1252 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1253 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1254 case ARM::LEApcrel: 1255 case ARM::tLEApcrel: 1256 case ARM::t2LEApcrel: { 1257 // FIXME: Need to also handle globals and externals 1258 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1259 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1260 ARM::t2LEApcrel ? ARM::t2ADR 1261 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1262 : ARM::ADR)) 1263 .addReg(MI->getOperand(0).getReg()) 1264 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1265 // Add predicate operands. 1266 .addImm(MI->getOperand(2).getImm()) 1267 .addReg(MI->getOperand(3).getReg())); 1268 return; 1269 } 1270 case ARM::LEApcrelJT: 1271 case ARM::tLEApcrelJT: 1272 case ARM::t2LEApcrelJT: { 1273 MCSymbol *JTIPICSymbol = 1274 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1275 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1276 ARM::t2LEApcrelJT ? ARM::t2ADR 1277 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1278 : ARM::ADR)) 1279 .addReg(MI->getOperand(0).getReg()) 1280 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1281 // Add predicate operands. 1282 .addImm(MI->getOperand(2).getImm()) 1283 .addReg(MI->getOperand(3).getReg())); 1284 return; 1285 } 1286 // Darwin call instructions are just normal call instructions with different 1287 // clobber semantics (they clobber R9). 1288 case ARM::BX_CALL: { 1289 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1290 .addReg(ARM::LR) 1291 .addReg(ARM::PC) 1292 // Add predicate operands. 1293 .addImm(ARMCC::AL) 1294 .addReg(0) 1295 // Add 's' bit operand (always reg0 for this) 1296 .addReg(0)); 1297 1298 assert(Subtarget->hasV4TOps()); 1299 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1300 .addReg(MI->getOperand(0).getReg())); 1301 return; 1302 } 1303 case ARM::tBX_CALL: { 1304 if (Subtarget->hasV5TOps()) 1305 llvm_unreachable("Expected BLX to be selected for v5t+"); 1306 1307 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1308 // that the saved lr has its LSB set correctly (the arch doesn't 1309 // have blx). 1310 // So here we generate a bl to a small jump pad that does bx rN. 1311 // The jump pads are emitted after the function body. 1312 1313 unsigned TReg = MI->getOperand(0).getReg(); 1314 MCSymbol *TRegSym = nullptr; 1315 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1316 if (TIP.first == TReg) { 1317 TRegSym = TIP.second; 1318 break; 1319 } 1320 } 1321 1322 if (!TRegSym) { 1323 TRegSym = OutContext.createTempSymbol(); 1324 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1325 } 1326 1327 // Create a link-saving branch to the Reg Indirect Jump Pad. 1328 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1329 // Predicate comes first here. 1330 .addImm(ARMCC::AL).addReg(0) 1331 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1332 return; 1333 } 1334 case ARM::BMOVPCRX_CALL: { 1335 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1336 .addReg(ARM::LR) 1337 .addReg(ARM::PC) 1338 // Add predicate operands. 1339 .addImm(ARMCC::AL) 1340 .addReg(0) 1341 // Add 's' bit operand (always reg0 for this) 1342 .addReg(0)); 1343 1344 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1345 .addReg(ARM::PC) 1346 .addReg(MI->getOperand(0).getReg()) 1347 // Add predicate operands. 1348 .addImm(ARMCC::AL) 1349 .addReg(0) 1350 // Add 's' bit operand (always reg0 for this) 1351 .addReg(0)); 1352 return; 1353 } 1354 case ARM::BMOVPCB_CALL: { 1355 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1356 .addReg(ARM::LR) 1357 .addReg(ARM::PC) 1358 // Add predicate operands. 1359 .addImm(ARMCC::AL) 1360 .addReg(0) 1361 // Add 's' bit operand (always reg0 for this) 1362 .addReg(0)); 1363 1364 const MachineOperand &Op = MI->getOperand(0); 1365 const GlobalValue *GV = Op.getGlobal(); 1366 const unsigned TF = Op.getTargetFlags(); 1367 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1368 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1369 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1370 .addExpr(GVSymExpr) 1371 // Add predicate operands. 1372 .addImm(ARMCC::AL) 1373 .addReg(0)); 1374 return; 1375 } 1376 case ARM::MOVi16_ga_pcrel: 1377 case ARM::t2MOVi16_ga_pcrel: { 1378 MCInst TmpInst; 1379 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1380 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1381 1382 unsigned TF = MI->getOperand(1).getTargetFlags(); 1383 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1384 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1385 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1386 1387 MCSymbol *LabelSym = 1388 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1389 MI->getOperand(2).getImm(), OutContext); 1390 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1391 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1392 const MCExpr *PCRelExpr = 1393 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1394 MCBinaryExpr::createAdd(LabelSymExpr, 1395 MCConstantExpr::create(PCAdj, OutContext), 1396 OutContext), OutContext), OutContext); 1397 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1398 1399 // Add predicate operands. 1400 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1401 TmpInst.addOperand(MCOperand::createReg(0)); 1402 // Add 's' bit operand (always reg0 for this) 1403 TmpInst.addOperand(MCOperand::createReg(0)); 1404 EmitToStreamer(*OutStreamer, TmpInst); 1405 return; 1406 } 1407 case ARM::MOVTi16_ga_pcrel: 1408 case ARM::t2MOVTi16_ga_pcrel: { 1409 MCInst TmpInst; 1410 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1411 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1412 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1413 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1414 1415 unsigned TF = MI->getOperand(2).getTargetFlags(); 1416 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1417 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1418 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1419 1420 MCSymbol *LabelSym = 1421 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1422 MI->getOperand(3).getImm(), OutContext); 1423 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1424 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1425 const MCExpr *PCRelExpr = 1426 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1427 MCBinaryExpr::createAdd(LabelSymExpr, 1428 MCConstantExpr::create(PCAdj, OutContext), 1429 OutContext), OutContext), OutContext); 1430 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1431 // Add predicate operands. 1432 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1433 TmpInst.addOperand(MCOperand::createReg(0)); 1434 // Add 's' bit operand (always reg0 for this) 1435 TmpInst.addOperand(MCOperand::createReg(0)); 1436 EmitToStreamer(*OutStreamer, TmpInst); 1437 return; 1438 } 1439 case ARM::tPICADD: { 1440 // This is a pseudo op for a label + instruction sequence, which looks like: 1441 // LPC0: 1442 // add r0, pc 1443 // This adds the address of LPC0 to r0. 1444 1445 // Emit the label. 1446 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1447 getFunctionNumber(), 1448 MI->getOperand(2).getImm(), OutContext)); 1449 1450 // Form and emit the add. 1451 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1452 .addReg(MI->getOperand(0).getReg()) 1453 .addReg(MI->getOperand(0).getReg()) 1454 .addReg(ARM::PC) 1455 // Add predicate operands. 1456 .addImm(ARMCC::AL) 1457 .addReg(0)); 1458 return; 1459 } 1460 case ARM::PICADD: { 1461 // This is a pseudo op for a label + instruction sequence, which looks like: 1462 // LPC0: 1463 // add r0, pc, r0 1464 // This adds the address of LPC0 to r0. 1465 1466 // Emit the label. 1467 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1468 getFunctionNumber(), 1469 MI->getOperand(2).getImm(), OutContext)); 1470 1471 // Form and emit the add. 1472 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1473 .addReg(MI->getOperand(0).getReg()) 1474 .addReg(ARM::PC) 1475 .addReg(MI->getOperand(1).getReg()) 1476 // Add predicate operands. 1477 .addImm(MI->getOperand(3).getImm()) 1478 .addReg(MI->getOperand(4).getReg()) 1479 // Add 's' bit operand (always reg0 for this) 1480 .addReg(0)); 1481 return; 1482 } 1483 case ARM::PICSTR: 1484 case ARM::PICSTRB: 1485 case ARM::PICSTRH: 1486 case ARM::PICLDR: 1487 case ARM::PICLDRB: 1488 case ARM::PICLDRH: 1489 case ARM::PICLDRSB: 1490 case ARM::PICLDRSH: { 1491 // This is a pseudo op for a label + instruction sequence, which looks like: 1492 // LPC0: 1493 // OP r0, [pc, r0] 1494 // The LCP0 label is referenced by a constant pool entry in order to get 1495 // a PC-relative address at the ldr instruction. 1496 1497 // Emit the label. 1498 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1499 getFunctionNumber(), 1500 MI->getOperand(2).getImm(), OutContext)); 1501 1502 // Form and emit the load 1503 unsigned Opcode; 1504 switch (MI->getOpcode()) { 1505 default: 1506 llvm_unreachable("Unexpected opcode!"); 1507 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1508 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1509 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1510 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1511 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1512 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1513 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1514 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1515 } 1516 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1517 .addReg(MI->getOperand(0).getReg()) 1518 .addReg(ARM::PC) 1519 .addReg(MI->getOperand(1).getReg()) 1520 .addImm(0) 1521 // Add predicate operands. 1522 .addImm(MI->getOperand(3).getImm()) 1523 .addReg(MI->getOperand(4).getReg())); 1524 1525 return; 1526 } 1527 case ARM::CONSTPOOL_ENTRY: { 1528 if (Subtarget->genExecuteOnly()) 1529 llvm_unreachable("execute-only should not generate constant pools"); 1530 1531 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1532 /// in the function. The first operand is the ID# for this instruction, the 1533 /// second is the index into the MachineConstantPool that this is, the third 1534 /// is the size in bytes of this constant pool entry. 1535 /// The required alignment is specified on the basic block holding this MI. 1536 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1537 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1538 1539 // If this is the first entry of the pool, mark it. 1540 if (!InConstantPool) { 1541 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1542 InConstantPool = true; 1543 } 1544 1545 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1546 1547 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1548 if (MCPE.isMachineConstantPoolEntry()) 1549 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1550 else 1551 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1552 return; 1553 } 1554 case ARM::JUMPTABLE_ADDRS: 1555 EmitJumpTableAddrs(MI); 1556 return; 1557 case ARM::JUMPTABLE_INSTS: 1558 EmitJumpTableInsts(MI); 1559 return; 1560 case ARM::JUMPTABLE_TBB: 1561 case ARM::JUMPTABLE_TBH: 1562 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1563 return; 1564 case ARM::t2BR_JT: { 1565 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1566 .addReg(ARM::PC) 1567 .addReg(MI->getOperand(0).getReg()) 1568 // Add predicate operands. 1569 .addImm(ARMCC::AL) 1570 .addReg(0)); 1571 return; 1572 } 1573 case ARM::t2TBB_JT: 1574 case ARM::t2TBH_JT: { 1575 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1576 // Lower and emit the PC label, then the instruction itself. 1577 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1578 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1579 .addReg(MI->getOperand(0).getReg()) 1580 .addReg(MI->getOperand(1).getReg()) 1581 // Add predicate operands. 1582 .addImm(ARMCC::AL) 1583 .addReg(0)); 1584 return; 1585 } 1586 case ARM::tTBB_JT: 1587 case ARM::tTBH_JT: { 1588 1589 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1590 unsigned Base = MI->getOperand(0).getReg(); 1591 unsigned Idx = MI->getOperand(1).getReg(); 1592 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1593 1594 // Multiply up idx if necessary. 1595 if (!Is8Bit) 1596 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1597 .addReg(Idx) 1598 .addReg(ARM::CPSR) 1599 .addReg(Idx) 1600 .addImm(1) 1601 // Add predicate operands. 1602 .addImm(ARMCC::AL) 1603 .addReg(0)); 1604 1605 if (Base == ARM::PC) { 1606 // TBB [base, idx] = 1607 // ADDS idx, idx, base 1608 // LDRB idx, [idx, #4] ; or LDRH if TBH 1609 // LSLS idx, #1 1610 // ADDS pc, pc, idx 1611 1612 // When using PC as the base, it's important that there is no padding 1613 // between the last ADDS and the start of the jump table. The jump table 1614 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1615 // 1616 // FIXME: Ideally we could vary the LDRB index based on the padding 1617 // between the sequence and jump table, however that relies on MCExprs 1618 // for load indexes which are currently not supported. 1619 OutStreamer->EmitCodeAlignment(4); 1620 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1621 .addReg(Idx) 1622 .addReg(Idx) 1623 .addReg(Base) 1624 // Add predicate operands. 1625 .addImm(ARMCC::AL) 1626 .addReg(0)); 1627 1628 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1629 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1630 .addReg(Idx) 1631 .addReg(Idx) 1632 .addImm(Is8Bit ? 4 : 2) 1633 // Add predicate operands. 1634 .addImm(ARMCC::AL) 1635 .addReg(0)); 1636 } else { 1637 // TBB [base, idx] = 1638 // LDRB idx, [base, idx] ; or LDRH if TBH 1639 // LSLS idx, #1 1640 // ADDS pc, pc, idx 1641 1642 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1643 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1644 .addReg(Idx) 1645 .addReg(Base) 1646 .addReg(Idx) 1647 // Add predicate operands. 1648 .addImm(ARMCC::AL) 1649 .addReg(0)); 1650 } 1651 1652 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1653 .addReg(Idx) 1654 .addReg(ARM::CPSR) 1655 .addReg(Idx) 1656 .addImm(1) 1657 // Add predicate operands. 1658 .addImm(ARMCC::AL) 1659 .addReg(0)); 1660 1661 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1662 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1663 .addReg(ARM::PC) 1664 .addReg(ARM::PC) 1665 .addReg(Idx) 1666 // Add predicate operands. 1667 .addImm(ARMCC::AL) 1668 .addReg(0)); 1669 return; 1670 } 1671 case ARM::tBR_JTr: 1672 case ARM::BR_JTr: { 1673 // mov pc, target 1674 MCInst TmpInst; 1675 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1676 ARM::MOVr : ARM::tMOVr; 1677 TmpInst.setOpcode(Opc); 1678 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1679 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1680 // Add predicate operands. 1681 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1682 TmpInst.addOperand(MCOperand::createReg(0)); 1683 // Add 's' bit operand (always reg0 for this) 1684 if (Opc == ARM::MOVr) 1685 TmpInst.addOperand(MCOperand::createReg(0)); 1686 EmitToStreamer(*OutStreamer, TmpInst); 1687 return; 1688 } 1689 case ARM::BR_JTm_i12: { 1690 // ldr pc, target 1691 MCInst TmpInst; 1692 TmpInst.setOpcode(ARM::LDRi12); 1693 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1694 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1695 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1696 // Add predicate operands. 1697 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1698 TmpInst.addOperand(MCOperand::createReg(0)); 1699 EmitToStreamer(*OutStreamer, TmpInst); 1700 return; 1701 } 1702 case ARM::BR_JTm_rs: { 1703 // ldr pc, target 1704 MCInst TmpInst; 1705 TmpInst.setOpcode(ARM::LDRrs); 1706 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1707 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1708 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1709 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1710 // Add predicate operands. 1711 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1712 TmpInst.addOperand(MCOperand::createReg(0)); 1713 EmitToStreamer(*OutStreamer, TmpInst); 1714 return; 1715 } 1716 case ARM::BR_JTadd: { 1717 // add pc, target, idx 1718 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1719 .addReg(ARM::PC) 1720 .addReg(MI->getOperand(0).getReg()) 1721 .addReg(MI->getOperand(1).getReg()) 1722 // Add predicate operands. 1723 .addImm(ARMCC::AL) 1724 .addReg(0) 1725 // Add 's' bit operand (always reg0 for this) 1726 .addReg(0)); 1727 return; 1728 } 1729 case ARM::SPACE: 1730 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1731 return; 1732 case ARM::TRAP: { 1733 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1734 // FIXME: Remove this special case when they do. 1735 if (!Subtarget->isTargetMachO()) { 1736 uint32_t Val = 0xe7ffdefeUL; 1737 OutStreamer->AddComment("trap"); 1738 ATS.emitInst(Val); 1739 return; 1740 } 1741 break; 1742 } 1743 case ARM::TRAPNaCl: { 1744 uint32_t Val = 0xe7fedef0UL; 1745 OutStreamer->AddComment("trap"); 1746 ATS.emitInst(Val); 1747 return; 1748 } 1749 case ARM::tTRAP: { 1750 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1751 // FIXME: Remove this special case when they do. 1752 if (!Subtarget->isTargetMachO()) { 1753 uint16_t Val = 0xdefe; 1754 OutStreamer->AddComment("trap"); 1755 ATS.emitInst(Val, 'n'); 1756 return; 1757 } 1758 break; 1759 } 1760 case ARM::t2Int_eh_sjlj_setjmp: 1761 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1762 case ARM::tInt_eh_sjlj_setjmp: { 1763 // Two incoming args: GPR:$src, GPR:$val 1764 // mov $val, pc 1765 // adds $val, #7 1766 // str $val, [$src, #4] 1767 // movs r0, #0 1768 // b LSJLJEH 1769 // movs r0, #1 1770 // LSJLJEH: 1771 unsigned SrcReg = MI->getOperand(0).getReg(); 1772 unsigned ValReg = MI->getOperand(1).getReg(); 1773 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1774 OutStreamer->AddComment("eh_setjmp begin"); 1775 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1776 .addReg(ValReg) 1777 .addReg(ARM::PC) 1778 // Predicate. 1779 .addImm(ARMCC::AL) 1780 .addReg(0)); 1781 1782 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1783 .addReg(ValReg) 1784 // 's' bit operand 1785 .addReg(ARM::CPSR) 1786 .addReg(ValReg) 1787 .addImm(7) 1788 // Predicate. 1789 .addImm(ARMCC::AL) 1790 .addReg(0)); 1791 1792 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1793 .addReg(ValReg) 1794 .addReg(SrcReg) 1795 // The offset immediate is #4. The operand value is scaled by 4 for the 1796 // tSTR instruction. 1797 .addImm(1) 1798 // Predicate. 1799 .addImm(ARMCC::AL) 1800 .addReg(0)); 1801 1802 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1803 .addReg(ARM::R0) 1804 .addReg(ARM::CPSR) 1805 .addImm(0) 1806 // Predicate. 1807 .addImm(ARMCC::AL) 1808 .addReg(0)); 1809 1810 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1811 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1812 .addExpr(SymbolExpr) 1813 .addImm(ARMCC::AL) 1814 .addReg(0)); 1815 1816 OutStreamer->AddComment("eh_setjmp end"); 1817 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1818 .addReg(ARM::R0) 1819 .addReg(ARM::CPSR) 1820 .addImm(1) 1821 // Predicate. 1822 .addImm(ARMCC::AL) 1823 .addReg(0)); 1824 1825 OutStreamer->EmitLabel(Label); 1826 return; 1827 } 1828 1829 case ARM::Int_eh_sjlj_setjmp_nofp: 1830 case ARM::Int_eh_sjlj_setjmp: { 1831 // Two incoming args: GPR:$src, GPR:$val 1832 // add $val, pc, #8 1833 // str $val, [$src, #+4] 1834 // mov r0, #0 1835 // add pc, pc, #0 1836 // mov r0, #1 1837 unsigned SrcReg = MI->getOperand(0).getReg(); 1838 unsigned ValReg = MI->getOperand(1).getReg(); 1839 1840 OutStreamer->AddComment("eh_setjmp begin"); 1841 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1842 .addReg(ValReg) 1843 .addReg(ARM::PC) 1844 .addImm(8) 1845 // Predicate. 1846 .addImm(ARMCC::AL) 1847 .addReg(0) 1848 // 's' bit operand (always reg0 for this). 1849 .addReg(0)); 1850 1851 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1852 .addReg(ValReg) 1853 .addReg(SrcReg) 1854 .addImm(4) 1855 // Predicate. 1856 .addImm(ARMCC::AL) 1857 .addReg(0)); 1858 1859 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1860 .addReg(ARM::R0) 1861 .addImm(0) 1862 // Predicate. 1863 .addImm(ARMCC::AL) 1864 .addReg(0) 1865 // 's' bit operand (always reg0 for this). 1866 .addReg(0)); 1867 1868 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1869 .addReg(ARM::PC) 1870 .addReg(ARM::PC) 1871 .addImm(0) 1872 // Predicate. 1873 .addImm(ARMCC::AL) 1874 .addReg(0) 1875 // 's' bit operand (always reg0 for this). 1876 .addReg(0)); 1877 1878 OutStreamer->AddComment("eh_setjmp end"); 1879 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1880 .addReg(ARM::R0) 1881 .addImm(1) 1882 // Predicate. 1883 .addImm(ARMCC::AL) 1884 .addReg(0) 1885 // 's' bit operand (always reg0 for this). 1886 .addReg(0)); 1887 return; 1888 } 1889 case ARM::Int_eh_sjlj_longjmp: { 1890 // ldr sp, [$src, #8] 1891 // ldr $scratch, [$src, #4] 1892 // ldr r7, [$src] 1893 // bx $scratch 1894 unsigned SrcReg = MI->getOperand(0).getReg(); 1895 unsigned ScratchReg = MI->getOperand(1).getReg(); 1896 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1897 .addReg(ARM::SP) 1898 .addReg(SrcReg) 1899 .addImm(8) 1900 // Predicate. 1901 .addImm(ARMCC::AL) 1902 .addReg(0)); 1903 1904 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1905 .addReg(ScratchReg) 1906 .addReg(SrcReg) 1907 .addImm(4) 1908 // Predicate. 1909 .addImm(ARMCC::AL) 1910 .addReg(0)); 1911 1912 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1913 // These platforms always use the same frame register 1914 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1915 .addReg(FramePtr) 1916 .addReg(SrcReg) 1917 .addImm(0) 1918 // Predicate. 1919 .addImm(ARMCC::AL) 1920 .addReg(0)); 1921 } else { 1922 // If the calling code might use either R7 or R11 as 1923 // frame pointer register, restore it into both. 1924 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1925 .addReg(ARM::R7) 1926 .addReg(SrcReg) 1927 .addImm(0) 1928 // Predicate. 1929 .addImm(ARMCC::AL) 1930 .addReg(0)); 1931 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1932 .addReg(ARM::R11) 1933 .addReg(SrcReg) 1934 .addImm(0) 1935 // Predicate. 1936 .addImm(ARMCC::AL) 1937 .addReg(0)); 1938 } 1939 1940 assert(Subtarget->hasV4TOps()); 1941 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1942 .addReg(ScratchReg) 1943 // Predicate. 1944 .addImm(ARMCC::AL) 1945 .addReg(0)); 1946 return; 1947 } 1948 case ARM::tInt_eh_sjlj_longjmp: { 1949 // ldr $scratch, [$src, #8] 1950 // mov sp, $scratch 1951 // ldr $scratch, [$src, #4] 1952 // ldr r7, [$src] 1953 // bx $scratch 1954 unsigned SrcReg = MI->getOperand(0).getReg(); 1955 unsigned ScratchReg = MI->getOperand(1).getReg(); 1956 1957 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1958 .addReg(ScratchReg) 1959 .addReg(SrcReg) 1960 // The offset immediate is #8. The operand value is scaled by 4 for the 1961 // tLDR instruction. 1962 .addImm(2) 1963 // Predicate. 1964 .addImm(ARMCC::AL) 1965 .addReg(0)); 1966 1967 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1968 .addReg(ARM::SP) 1969 .addReg(ScratchReg) 1970 // Predicate. 1971 .addImm(ARMCC::AL) 1972 .addReg(0)); 1973 1974 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1975 .addReg(ScratchReg) 1976 .addReg(SrcReg) 1977 .addImm(1) 1978 // Predicate. 1979 .addImm(ARMCC::AL) 1980 .addReg(0)); 1981 1982 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1983 // These platforms always use the same frame register 1984 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1985 .addReg(FramePtr) 1986 .addReg(SrcReg) 1987 .addImm(0) 1988 // Predicate. 1989 .addImm(ARMCC::AL) 1990 .addReg(0)); 1991 } else { 1992 // If the calling code might use either R7 or R11 as 1993 // frame pointer register, restore it into both. 1994 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1995 .addReg(ARM::R7) 1996 .addReg(SrcReg) 1997 .addImm(0) 1998 // Predicate. 1999 .addImm(ARMCC::AL) 2000 .addReg(0)); 2001 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2002 .addReg(ARM::R11) 2003 .addReg(SrcReg) 2004 .addImm(0) 2005 // Predicate. 2006 .addImm(ARMCC::AL) 2007 .addReg(0)); 2008 } 2009 2010 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2011 .addReg(ScratchReg) 2012 // Predicate. 2013 .addImm(ARMCC::AL) 2014 .addReg(0)); 2015 return; 2016 } 2017 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2018 // ldr.w r11, [$src, #0] 2019 // ldr.w sp, [$src, #8] 2020 // ldr.w pc, [$src, #4] 2021 2022 unsigned SrcReg = MI->getOperand(0).getReg(); 2023 2024 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2025 .addReg(ARM::R11) 2026 .addReg(SrcReg) 2027 .addImm(0) 2028 // Predicate 2029 .addImm(ARMCC::AL) 2030 .addReg(0)); 2031 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2032 .addReg(ARM::SP) 2033 .addReg(SrcReg) 2034 .addImm(8) 2035 // Predicate 2036 .addImm(ARMCC::AL) 2037 .addReg(0)); 2038 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2039 .addReg(ARM::PC) 2040 .addReg(SrcReg) 2041 .addImm(4) 2042 // Predicate 2043 .addImm(ARMCC::AL) 2044 .addReg(0)); 2045 return; 2046 } 2047 case ARM::PATCHABLE_FUNCTION_ENTER: 2048 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2049 return; 2050 case ARM::PATCHABLE_FUNCTION_EXIT: 2051 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2052 return; 2053 case ARM::PATCHABLE_TAIL_CALL: 2054 LowerPATCHABLE_TAIL_CALL(*MI); 2055 return; 2056 } 2057 2058 MCInst TmpInst; 2059 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2060 2061 EmitToStreamer(*OutStreamer, TmpInst); 2062 } 2063 2064 //===----------------------------------------------------------------------===// 2065 // Target Registry Stuff 2066 //===----------------------------------------------------------------------===// 2067 2068 // Force static initialization. 2069 extern "C" void LLVMInitializeARMAsmPrinter() { 2070 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2071 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2072 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2073 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2074 } 2075