1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "InstPrinter/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "MCTargetDesc/ARMMCExpr.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCSectionMachO.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/COFF.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ELF.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/TargetParser.h"
51 #include "llvm/Support/TargetRegistry.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cctype>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "asm-printer"
58 
59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
60                              std::unique_ptr<MCStreamer> Streamer)
61     : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
62       InConstantPool(false), OptimizationGoals(-1) {}
63 
64 void ARMAsmPrinter::EmitFunctionBodyEnd() {
65   // Make sure to terminate any constant pools that were at the end
66   // of the function.
67   if (!InConstantPool)
68     return;
69   InConstantPool = false;
70   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
71 }
72 
73 void ARMAsmPrinter::EmitFunctionEntryLabel() {
74   if (AFI->isThumbFunction()) {
75     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
76     OutStreamer->EmitThumbFunc(CurrentFnSym);
77   }
78 
79   OutStreamer->EmitLabel(CurrentFnSym);
80 }
81 
82 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
83   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
84   assert(Size && "C++ constructor pointer had zero size!");
85 
86   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
87   assert(GV && "C++ constructor pointer was not a GlobalValue!");
88 
89   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
90                                                            ARMII::MO_NO_FLAG),
91                                             (Subtarget->isTargetELF()
92                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
93                                              : MCSymbolRefExpr::VK_None),
94                                             OutContext);
95 
96   OutStreamer->EmitValue(E, Size);
97 }
98 
99 /// runOnMachineFunction - This uses the EmitInstruction()
100 /// method to print assembly for each instruction.
101 ///
102 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
103   AFI = MF.getInfo<ARMFunctionInfo>();
104   MCP = MF.getConstantPool();
105   Subtarget = &MF.getSubtarget<ARMSubtarget>();
106 
107   SetupMachineFunction(MF);
108   const Function* F = MF.getFunction();
109   const TargetMachine& TM = MF.getTarget();
110 
111   // Calculate this function's optimization goal.
112   unsigned OptimizationGoal;
113   if (F->hasFnAttribute(Attribute::OptimizeNone))
114     // For best debugging illusion, speed and small size sacrificed
115     OptimizationGoal = 6;
116   else if (F->optForMinSize())
117     // Aggressively for small size, speed and debug illusion sacrificed
118     OptimizationGoal = 4;
119   else if (F->optForSize())
120     // For small size, but speed and debugging illusion preserved
121     OptimizationGoal = 3;
122   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
123     // Aggressively for speed, small size and debug illusion sacrificed
124     OptimizationGoal = 2;
125   else if (TM.getOptLevel() > CodeGenOpt::None)
126     // For speed, but small size and good debug illusion preserved
127     OptimizationGoal = 1;
128   else // TM.getOptLevel() == CodeGenOpt::None
129     // For good debugging, but speed and small size preserved
130     OptimizationGoal = 5;
131 
132   // Combine a new optimization goal with existing ones.
133   if (OptimizationGoals == -1) // uninitialized goals
134     OptimizationGoals = OptimizationGoal;
135   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
136     OptimizationGoals = 0;
137 
138   if (Subtarget->isTargetCOFF()) {
139     bool Internal = F->hasInternalLinkage();
140     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
141                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
142     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
143 
144     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
145     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
146     OutStreamer->EmitCOFFSymbolType(Type);
147     OutStreamer->EndCOFFSymbolDef();
148   }
149 
150   // Emit the rest of the function body.
151   EmitFunctionBody();
152 
153   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
154   // These are created per function, rather than per TU, since it's
155   // relatively easy to exceed the thumb branch range within a TU.
156   if (! ThumbIndirectPads.empty()) {
157     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
158     EmitAlignment(1);
159     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
160       OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
161       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
162         .addReg(ThumbIndirectPads[i].first)
163         // Add predicate operands.
164         .addImm(ARMCC::AL)
165         .addReg(0));
166     }
167     ThumbIndirectPads.clear();
168   }
169 
170   // We didn't modify anything.
171   return false;
172 }
173 
174 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
175                                  raw_ostream &O) {
176   const MachineOperand &MO = MI->getOperand(OpNum);
177   unsigned TF = MO.getTargetFlags();
178 
179   switch (MO.getType()) {
180   default: llvm_unreachable("<unknown operand type>");
181   case MachineOperand::MO_Register: {
182     unsigned Reg = MO.getReg();
183     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
184     assert(!MO.getSubReg() && "Subregs should be eliminated!");
185     if(ARM::GPRPairRegClass.contains(Reg)) {
186       const MachineFunction &MF = *MI->getParent()->getParent();
187       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
188       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
189     }
190     O << ARMInstPrinter::getRegisterName(Reg);
191     break;
192   }
193   case MachineOperand::MO_Immediate: {
194     int64_t Imm = MO.getImm();
195     O << '#';
196     if (TF == ARMII::MO_LO16)
197       O << ":lower16:";
198     else if (TF == ARMII::MO_HI16)
199       O << ":upper16:";
200     O << Imm;
201     break;
202   }
203   case MachineOperand::MO_MachineBasicBlock:
204     MO.getMBB()->getSymbol()->print(O, MAI);
205     return;
206   case MachineOperand::MO_GlobalAddress: {
207     const GlobalValue *GV = MO.getGlobal();
208     if (TF & ARMII::MO_LO16)
209       O << ":lower16:";
210     else if (TF & ARMII::MO_HI16)
211       O << ":upper16:";
212     GetARMGVSymbol(GV, TF)->print(O, MAI);
213 
214     printOffset(MO.getOffset(), O);
215     if (TF == ARMII::MO_PLT)
216       O << "(PLT)";
217     break;
218   }
219   case MachineOperand::MO_ConstantPoolIndex:
220     GetCPISymbol(MO.getIndex())->print(O, MAI);
221     break;
222   }
223 }
224 
225 //===--------------------------------------------------------------------===//
226 
227 MCSymbol *ARMAsmPrinter::
228 GetARMJTIPICJumpTableLabel(unsigned uid) const {
229   const DataLayout &DL = getDataLayout();
230   SmallString<60> Name;
231   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
232                             << getFunctionNumber() << '_' << uid;
233   return OutContext.getOrCreateSymbol(Name);
234 }
235 
236 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
237                                     unsigned AsmVariant, const char *ExtraCode,
238                                     raw_ostream &O) {
239   // Does this asm operand have a single letter operand modifier?
240   if (ExtraCode && ExtraCode[0]) {
241     if (ExtraCode[1] != 0) return true; // Unknown modifier.
242 
243     switch (ExtraCode[0]) {
244     default:
245       // See if this is a generic print operand
246       return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
247     case 'a': // Print as a memory address.
248       if (MI->getOperand(OpNum).isReg()) {
249         O << "["
250           << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
251           << "]";
252         return false;
253       }
254       // Fallthrough
255     case 'c': // Don't print "#" before an immediate operand.
256       if (!MI->getOperand(OpNum).isImm())
257         return true;
258       O << MI->getOperand(OpNum).getImm();
259       return false;
260     case 'P': // Print a VFP double precision register.
261     case 'q': // Print a NEON quad precision register.
262       printOperand(MI, OpNum, O);
263       return false;
264     case 'y': // Print a VFP single precision register as indexed double.
265       if (MI->getOperand(OpNum).isReg()) {
266         unsigned Reg = MI->getOperand(OpNum).getReg();
267         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
268         // Find the 'd' register that has this 's' register as a sub-register,
269         // and determine the lane number.
270         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
271           if (!ARM::DPRRegClass.contains(*SR))
272             continue;
273           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
274           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
275           return false;
276         }
277       }
278       return true;
279     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
280       if (!MI->getOperand(OpNum).isImm())
281         return true;
282       O << ~(MI->getOperand(OpNum).getImm());
283       return false;
284     case 'L': // The low 16 bits of an immediate constant.
285       if (!MI->getOperand(OpNum).isImm())
286         return true;
287       O << (MI->getOperand(OpNum).getImm() & 0xffff);
288       return false;
289     case 'M': { // A register range suitable for LDM/STM.
290       if (!MI->getOperand(OpNum).isReg())
291         return true;
292       const MachineOperand &MO = MI->getOperand(OpNum);
293       unsigned RegBegin = MO.getReg();
294       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
295       // already got the operands in registers that are operands to the
296       // inline asm statement.
297       O << "{";
298       if (ARM::GPRPairRegClass.contains(RegBegin)) {
299         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
300         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
301         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
302         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
303       }
304       O << ARMInstPrinter::getRegisterName(RegBegin);
305 
306       // FIXME: The register allocator not only may not have given us the
307       // registers in sequence, but may not be in ascending registers. This
308       // will require changes in the register allocator that'll need to be
309       // propagated down here if the operands change.
310       unsigned RegOps = OpNum + 1;
311       while (MI->getOperand(RegOps).isReg()) {
312         O << ", "
313           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
314         RegOps++;
315       }
316 
317       O << "}";
318 
319       return false;
320     }
321     case 'R': // The most significant register of a pair.
322     case 'Q': { // The least significant register of a pair.
323       if (OpNum == 0)
324         return true;
325       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
326       if (!FlagsOP.isImm())
327         return true;
328       unsigned Flags = FlagsOP.getImm();
329 
330       // This operand may not be the one that actually provides the register. If
331       // it's tied to a previous one then we should refer instead to that one
332       // for registers and their classes.
333       unsigned TiedIdx;
334       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
335         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
336           unsigned OpFlags = MI->getOperand(OpNum).getImm();
337           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
338         }
339         Flags = MI->getOperand(OpNum).getImm();
340 
341         // Later code expects OpNum to be pointing at the register rather than
342         // the flags.
343         OpNum += 1;
344       }
345 
346       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
347       unsigned RC;
348       InlineAsm::hasRegClassConstraint(Flags, RC);
349       if (RC == ARM::GPRPairRegClassID) {
350         if (NumVals != 1)
351           return true;
352         const MachineOperand &MO = MI->getOperand(OpNum);
353         if (!MO.isReg())
354           return true;
355         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
356         unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
357             ARM::gsub_0 : ARM::gsub_1);
358         O << ARMInstPrinter::getRegisterName(Reg);
359         return false;
360       }
361       if (NumVals != 2)
362         return true;
363       unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
364       if (RegOp >= MI->getNumOperands())
365         return true;
366       const MachineOperand &MO = MI->getOperand(RegOp);
367       if (!MO.isReg())
368         return true;
369       unsigned Reg = MO.getReg();
370       O << ARMInstPrinter::getRegisterName(Reg);
371       return false;
372     }
373 
374     case 'e': // The low doubleword register of a NEON quad register.
375     case 'f': { // The high doubleword register of a NEON quad register.
376       if (!MI->getOperand(OpNum).isReg())
377         return true;
378       unsigned Reg = MI->getOperand(OpNum).getReg();
379       if (!ARM::QPRRegClass.contains(Reg))
380         return true;
381       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
382       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
383                                        ARM::dsub_0 : ARM::dsub_1);
384       O << ARMInstPrinter::getRegisterName(SubReg);
385       return false;
386     }
387 
388     // This modifier is not yet supported.
389     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
390       return true;
391     case 'H': { // The highest-numbered register of a pair.
392       const MachineOperand &MO = MI->getOperand(OpNum);
393       if (!MO.isReg())
394         return true;
395       const MachineFunction &MF = *MI->getParent()->getParent();
396       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
397       unsigned Reg = MO.getReg();
398       if(!ARM::GPRPairRegClass.contains(Reg))
399         return false;
400       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
401       O << ARMInstPrinter::getRegisterName(Reg);
402       return false;
403     }
404     }
405   }
406 
407   printOperand(MI, OpNum, O);
408   return false;
409 }
410 
411 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
412                                           unsigned OpNum, unsigned AsmVariant,
413                                           const char *ExtraCode,
414                                           raw_ostream &O) {
415   // Does this asm operand have a single letter operand modifier?
416   if (ExtraCode && ExtraCode[0]) {
417     if (ExtraCode[1] != 0) return true; // Unknown modifier.
418 
419     switch (ExtraCode[0]) {
420       case 'A': // A memory operand for a VLD1/VST1 instruction.
421       default: return true;  // Unknown modifier.
422       case 'm': // The base register of a memory operand.
423         if (!MI->getOperand(OpNum).isReg())
424           return true;
425         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
426         return false;
427     }
428   }
429 
430   const MachineOperand &MO = MI->getOperand(OpNum);
431   assert(MO.isReg() && "unexpected inline asm memory operand");
432   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
433   return false;
434 }
435 
436 static bool isThumb(const MCSubtargetInfo& STI) {
437   return STI.getFeatureBits()[ARM::ModeThumb];
438 }
439 
440 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
441                                      const MCSubtargetInfo *EndInfo) const {
442   // If either end mode is unknown (EndInfo == NULL) or different than
443   // the start mode, then restore the start mode.
444   const bool WasThumb = isThumb(StartInfo);
445   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
446     OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
447   }
448 }
449 
450 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
451   const Triple &TT = TM.getTargetTriple();
452   // Use unified assembler syntax.
453   OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
454 
455   // Emit ARM Build Attributes
456   if (TT.isOSBinFormatELF())
457     emitAttributes();
458 
459   // Use the triple's architecture and subarchitecture to determine
460   // if we're thumb for the purposes of the top level code16 assembler
461   // flag.
462   bool isThumb = TT.getArch() == Triple::thumb ||
463                  TT.getArch() == Triple::thumbeb ||
464                  TT.getSubArch() == Triple::ARMSubArch_v7m ||
465                  TT.getSubArch() == Triple::ARMSubArch_v6m;
466   if (!M.getModuleInlineAsm().empty() && isThumb)
467     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
468 }
469 
470 static void
471 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
472                          MachineModuleInfoImpl::StubValueTy &MCSym) {
473   // L_foo$stub:
474   OutStreamer.EmitLabel(StubLabel);
475   //   .indirect_symbol _foo
476   OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
477 
478   if (MCSym.getInt())
479     // External to current translation unit.
480     OutStreamer.EmitIntValue(0, 4/*size*/);
481   else
482     // Internal to current translation unit.
483     //
484     // When we place the LSDA into the TEXT section, the type info
485     // pointers need to be indirect and pc-rel. We accomplish this by
486     // using NLPs; however, sometimes the types are local to the file.
487     // We need to fill in the value for the NLP in those cases.
488     OutStreamer.EmitValue(
489         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
490         4 /*size*/);
491 }
492 
493 
494 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
495   const Triple &TT = TM.getTargetTriple();
496   if (TT.isOSBinFormatMachO()) {
497     // All darwin targets use mach-o.
498     const TargetLoweringObjectFileMachO &TLOFMacho =
499       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
500     MachineModuleInfoMachO &MMIMacho =
501       MMI->getObjFileInfo<MachineModuleInfoMachO>();
502 
503     // Output non-lazy-pointers for external and common global variables.
504     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
505 
506     if (!Stubs.empty()) {
507       // Switch with ".non_lazy_symbol_pointer" directive.
508       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
509       EmitAlignment(2);
510 
511       for (auto &Stub : Stubs)
512         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
513 
514       Stubs.clear();
515       OutStreamer->AddBlankLine();
516     }
517 
518     Stubs = MMIMacho.GetHiddenGVStubList();
519     if (!Stubs.empty()) {
520       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
521       EmitAlignment(2);
522 
523       for (auto &Stub : Stubs)
524         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
525 
526       Stubs.clear();
527       OutStreamer->AddBlankLine();
528     }
529 
530     // Funny Darwin hack: This flag tells the linker that no global symbols
531     // contain code that falls through to other global symbols (e.g. the obvious
532     // implementation of multiple entry points).  If this doesn't occur, the
533     // linker can safely perform dead code stripping.  Since LLVM never
534     // generates code that does this, it is always safe to set.
535     OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
536   }
537 
538   // The last attribute to be emitted is ABI_optimization_goals
539   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
540   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
541 
542   if (OptimizationGoals > 0 &&
543       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI()))
544     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
545   OptimizationGoals = -1;
546 
547   ATS.finishAttributeSection();
548 }
549 
550 static bool isV8M(const ARMSubtarget *Subtarget) {
551   // Note that v8M Baseline is a subset of v6T2!
552   return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) ||
553          Subtarget->hasV8MMainlineOps();
554 }
555 
556 //===----------------------------------------------------------------------===//
557 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
558 // FIXME:
559 // The following seem like one-off assembler flags, but they actually need
560 // to appear in the .ARM.attributes section in ELF.
561 // Instead of subclassing the MCELFStreamer, we do the work here.
562 
563 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
564                                             const ARMSubtarget *Subtarget) {
565   if (CPU == "xscale")
566     return ARMBuildAttrs::v5TEJ;
567 
568   if (Subtarget->hasV8Ops())
569     return ARMBuildAttrs::v8_A;
570   else if (Subtarget->hasV8MMainlineOps())
571     return ARMBuildAttrs::v8_M_Main;
572   else if (Subtarget->hasV7Ops()) {
573     if (Subtarget->isMClass() && Subtarget->hasDSP())
574       return ARMBuildAttrs::v7E_M;
575     return ARMBuildAttrs::v7;
576   } else if (Subtarget->hasV6T2Ops())
577     return ARMBuildAttrs::v6T2;
578   else if (Subtarget->hasV8MBaselineOps())
579     return ARMBuildAttrs::v8_M_Base;
580   else if (Subtarget->hasV6MOps())
581     return ARMBuildAttrs::v6S_M;
582   else if (Subtarget->hasV6Ops())
583     return ARMBuildAttrs::v6;
584   else if (Subtarget->hasV5TEOps())
585     return ARMBuildAttrs::v5TE;
586   else if (Subtarget->hasV5TOps())
587     return ARMBuildAttrs::v5T;
588   else if (Subtarget->hasV4TOps())
589     return ARMBuildAttrs::v4T;
590   else
591     return ARMBuildAttrs::v4;
592 }
593 
594 void ARMAsmPrinter::emitAttributes() {
595   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
596   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
597 
598   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
599 
600   ATS.switchVendor("aeabi");
601 
602   // Compute ARM ELF Attributes based on the default subtarget that
603   // we'd have constructed. The existing ARM behavior isn't LTO clean
604   // anyhow.
605   // FIXME: For ifunc related functions we could iterate over and look
606   // for a feature string that doesn't match the default one.
607   const Triple &TT = TM.getTargetTriple();
608   StringRef CPU = TM.getTargetCPU();
609   StringRef FS = TM.getTargetFeatureString();
610   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
611   if (!FS.empty()) {
612     if (!ArchFS.empty())
613       ArchFS = (Twine(ArchFS) + "," + FS).str();
614     else
615       ArchFS = FS;
616   }
617   const ARMBaseTargetMachine &ATM =
618       static_cast<const ARMBaseTargetMachine &>(TM);
619   const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
620 
621   std::string CPUString = STI.getCPUString();
622 
623   if (CPUString.find("generic") != 0) { //CPUString doesn't start with "generic"
624     // FIXME: remove krait check when GNU tools support krait cpu
625     if (STI.isKrait()) {
626       ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
627       // We consider krait as a "cortex-a9" + hwdiv CPU
628       // Enable hwdiv through ".arch_extension idiv"
629       if (STI.hasDivide() || STI.hasDivideInARMMode())
630         ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM);
631     } else
632       ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
633   }
634 
635   ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
636 
637   // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
638   // profile is not applicable (e.g. pre v7, or cross-profile code)".
639   if (STI.hasV7Ops() || isV8M(&STI)) {
640     if (STI.isAClass()) {
641       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
642                         ARMBuildAttrs::ApplicationProfile);
643     } else if (STI.isRClass()) {
644       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
645                         ARMBuildAttrs::RealTimeProfile);
646     } else if (STI.isMClass()) {
647       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
648                         ARMBuildAttrs::MicroControllerProfile);
649     }
650   }
651 
652   ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
653                     STI.hasARMOps() ? ARMBuildAttrs::Allowed
654                                     : ARMBuildAttrs::Not_Allowed);
655   if (isV8M(&STI)) {
656     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
657                       ARMBuildAttrs::AllowThumbDerived);
658   } else if (STI.isThumb1Only()) {
659     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
660   } else if (STI.hasThumb2()) {
661     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
662                       ARMBuildAttrs::AllowThumb32);
663   }
664 
665   if (STI.hasNEON()) {
666     /* NEON is not exactly a VFP architecture, but GAS emit one of
667      * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
668     if (STI.hasFPARMv8()) {
669       if (STI.hasCrypto())
670         ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
671       else
672         ATS.emitFPU(ARM::FK_NEON_FP_ARMV8);
673     } else if (STI.hasVFP4())
674       ATS.emitFPU(ARM::FK_NEON_VFPV4);
675     else
676       ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON);
677     // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
678     if (STI.hasV8Ops())
679       ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
680                         STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a:
681                                             ARMBuildAttrs::AllowNeonARMv8);
682   } else {
683     if (STI.hasFPARMv8())
684       // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
685       // FPU, but there are two different names for it depending on the CPU.
686       ATS.emitFPU(STI.hasD16()
687                   ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16)
688                   : ARM::FK_FP_ARMV8);
689     else if (STI.hasVFP4())
690       ATS.emitFPU(STI.hasD16()
691                   ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16)
692                   : ARM::FK_VFPV4);
693     else if (STI.hasVFP3())
694       ATS.emitFPU(STI.hasD16()
695                   // +d16
696                   ? (STI.isFPOnlySP()
697                      ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD)
698                      : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16))
699                   // -d16
700                   : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3));
701     else if (STI.hasVFP2())
702       ATS.emitFPU(ARM::FK_VFPV2);
703   }
704 
705   if (TM.getRelocationModel() == Reloc::PIC_) {
706     // PIC specific attributes.
707     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
708                       ARMBuildAttrs::AddressRWPCRel);
709     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
710                       ARMBuildAttrs::AddressROPCRel);
711     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
712                       ARMBuildAttrs::AddressGOT);
713   } else {
714     // Allow direct addressing of imported data for all other relocation models.
715     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
716                       ARMBuildAttrs::AddressDirect);
717   }
718 
719   // Signal various FP modes.
720   if (!TM.Options.UnsafeFPMath) {
721     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
722                       ARMBuildAttrs::IEEEDenormals);
723     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
724 
725     // If the user has permitted this code to choose the IEEE 754
726     // rounding at run-time, emit the rounding attribute.
727     if (TM.Options.HonorSignDependentRoundingFPMathOption)
728       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
729   } else {
730     if (!STI.hasVFP2()) {
731       // When the target doesn't have an FPU (by design or
732       // intention), the assumptions made on the software support
733       // mirror that of the equivalent hardware support *if it
734       // existed*. For v7 and better we indicate that denormals are
735       // flushed preserving sign, and for V6 we indicate that
736       // denormals are flushed to positive zero.
737       if (STI.hasV7Ops())
738         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
739                           ARMBuildAttrs::PreserveFPSign);
740     } else if (STI.hasVFP3()) {
741       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
742       // the sign bit of the zero matches the sign bit of the input or
743       // result that is being flushed to zero.
744       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
745                         ARMBuildAttrs::PreserveFPSign);
746     }
747     // For VFPv2 implementations it is implementation defined as
748     // to whether denormals are flushed to positive zero or to
749     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
750     // LLVM has chosen to flush this to positive zero (most likely for
751     // GCC compatibility), so that's the chosen value here (the
752     // absence of its emission implies zero).
753   }
754 
755   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
756   // equivalent of GCC's -ffinite-math-only flag.
757   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
758     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
759                       ARMBuildAttrs::Allowed);
760   else
761     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
762                       ARMBuildAttrs::AllowIEE754);
763 
764   if (STI.allowsUnalignedMem())
765     ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
766                       ARMBuildAttrs::Allowed);
767   else
768     ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
769                       ARMBuildAttrs::Not_Allowed);
770 
771   // FIXME: add more flags to ARMBuildAttributes.h
772   // 8-bytes alignment stuff.
773   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
774   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
775 
776   // ABI_HardFP_use attribute to indicate single precision FP.
777   if (STI.isFPOnlySP())
778     ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
779                       ARMBuildAttrs::HardFPSinglePrecision);
780 
781   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
782   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
783     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
784 
785   // FIXME: Should we signal R9 usage?
786 
787   if (STI.hasFP16())
788     ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
789 
790   // FIXME: To support emitting this build attribute as GCC does, the
791   // -mfp16-format option and associated plumbing must be
792   // supported. For now the __fp16 type is exposed by default, so this
793   // attribute should be emitted with value 1.
794   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
795                     ARMBuildAttrs::FP16FormatIEEE);
796 
797   if (STI.hasMPExtension())
798     ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
799 
800   // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
801   // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
802   // It is not possible to produce DisallowDIV: if hwdiv is present in the base
803   // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
804   // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
805   // otherwise, the default value (AllowDIVIfExists) applies.
806   if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
807     ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
808 
809   if (STI.hasDSP() && isV8M(&STI))
810     ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
811 
812   if (MMI) {
813     if (const Module *SourceModule = MMI->getModule()) {
814       // ABI_PCS_wchar_t to indicate wchar_t width
815       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
816       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
817               SourceModule->getModuleFlag("wchar_size"))) {
818         int WCharWidth = WCharWidthValue->getZExtValue();
819         assert((WCharWidth == 2 || WCharWidth == 4) &&
820                "wchar_t width must be 2 or 4 bytes");
821         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
822       }
823 
824       // ABI_enum_size to indicate enum width
825       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
826       //        (all enums contain a value needing 32 bits to encode).
827       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
828               SourceModule->getModuleFlag("min_enum_size"))) {
829         int EnumWidth = EnumWidthValue->getZExtValue();
830         assert((EnumWidth == 1 || EnumWidth == 4) &&
831                "Minimum enum width must be 1 or 4 bytes");
832         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
833         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
834       }
835     }
836   }
837 
838   // TODO: We currently only support either reserving the register, or treating
839   // it as another callee-saved register, but not as SB or a TLS pointer; It
840   // would instead be nicer to push this from the frontend as metadata, as we do
841   // for the wchar and enum size tags
842   if (STI.isR9Reserved())
843     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved);
844   else
845     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR);
846 
847   if (STI.hasTrustZone() && STI.hasVirtualization())
848     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
849                       ARMBuildAttrs::AllowTZVirtualization);
850   else if (STI.hasTrustZone())
851     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
852                       ARMBuildAttrs::AllowTZ);
853   else if (STI.hasVirtualization())
854     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
855                       ARMBuildAttrs::AllowVirtualization);
856 }
857 
858 //===----------------------------------------------------------------------===//
859 
860 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
861                              unsigned LabelId, MCContext &Ctx) {
862 
863   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
864                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
865   return Label;
866 }
867 
868 static MCSymbolRefExpr::VariantKind
869 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
870   switch (Modifier) {
871   case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
872   case ARMCP::TLSGD:       return MCSymbolRefExpr::VK_TLSGD;
873   case ARMCP::TPOFF:       return MCSymbolRefExpr::VK_TPOFF;
874   case ARMCP::GOTTPOFF:    return MCSymbolRefExpr::VK_GOTTPOFF;
875   case ARMCP::GOT_PREL:    return MCSymbolRefExpr::VK_ARM_GOT_PREL;
876   }
877   llvm_unreachable("Invalid ARMCPModifier!");
878 }
879 
880 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
881                                         unsigned char TargetFlags) {
882   if (Subtarget->isTargetMachO()) {
883     bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) &&
884       Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
885 
886     if (!IsIndirect)
887       return getSymbol(GV);
888 
889     // FIXME: Remove this when Darwin transition to @GOT like syntax.
890     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
891     MachineModuleInfoMachO &MMIMachO =
892       MMI->getObjFileInfo<MachineModuleInfoMachO>();
893     MachineModuleInfoImpl::StubValueTy &StubSym =
894       GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym)
895                                 : MMIMachO.getGVStubEntry(MCSym);
896     if (!StubSym.getPointer())
897       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
898                                                    !GV->hasInternalLinkage());
899     return MCSym;
900   } else if (Subtarget->isTargetCOFF()) {
901     assert(Subtarget->isTargetWindows() &&
902            "Windows is the only supported COFF target");
903 
904     bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
905     if (!IsIndirect)
906       return getSymbol(GV);
907 
908     SmallString<128> Name;
909     Name = "__imp_";
910     getNameWithPrefix(Name, GV);
911 
912     return OutContext.getOrCreateSymbol(Name);
913   } else if (Subtarget->isTargetELF()) {
914     return getSymbol(GV);
915   }
916   llvm_unreachable("unexpected target");
917 }
918 
919 void ARMAsmPrinter::
920 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
921   const DataLayout &DL = getDataLayout();
922   int Size = DL.getTypeAllocSize(MCPV->getType());
923 
924   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
925 
926   MCSymbol *MCSym;
927   if (ACPV->isLSDA()) {
928     MCSym = getCurExceptionSym();
929   } else if (ACPV->isBlockAddress()) {
930     const BlockAddress *BA =
931       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
932     MCSym = GetBlockAddressSymbol(BA);
933   } else if (ACPV->isGlobalValue()) {
934     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
935 
936     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
937     // flag the global as MO_NONLAZY.
938     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
939     MCSym = GetARMGVSymbol(GV, TF);
940   } else if (ACPV->isMachineBasicBlock()) {
941     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
942     MCSym = MBB->getSymbol();
943   } else {
944     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
945     const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
946     MCSym = GetExternalSymbolSymbol(Sym);
947   }
948 
949   // Create an MCSymbol for the reference.
950   const MCExpr *Expr =
951     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
952                             OutContext);
953 
954   if (ACPV->getPCAdjustment()) {
955     MCSymbol *PCLabel =
956         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
957                     ACPV->getLabelId(), OutContext);
958     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
959     PCRelExpr =
960       MCBinaryExpr::createAdd(PCRelExpr,
961                               MCConstantExpr::create(ACPV->getPCAdjustment(),
962                                                      OutContext),
963                               OutContext);
964     if (ACPV->mustAddCurrentAddress()) {
965       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
966       // label, so just emit a local label end reference that instead.
967       MCSymbol *DotSym = OutContext.createTempSymbol();
968       OutStreamer->EmitLabel(DotSym);
969       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
970       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
971     }
972     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
973   }
974   OutStreamer->EmitValue(Expr, Size);
975 }
976 
977 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
978   const MachineOperand &MO1 = MI->getOperand(1);
979   unsigned JTI = MO1.getIndex();
980 
981   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
982   // ARM mode tables.
983   EmitAlignment(2);
984 
985   // Emit a label for the jump table.
986   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
987   OutStreamer->EmitLabel(JTISymbol);
988 
989   // Mark the jump table as data-in-code.
990   OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
991 
992   // Emit each entry of the table.
993   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
994   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
995   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
996 
997   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
998     MachineBasicBlock *MBB = JTBBs[i];
999     // Construct an MCExpr for the entry. We want a value of the form:
1000     // (BasicBlockAddr - TableBeginAddr)
1001     //
1002     // For example, a table with entries jumping to basic blocks BB0 and BB1
1003     // would look like:
1004     // LJTI_0_0:
1005     //    .word (LBB0 - LJTI_0_0)
1006     //    .word (LBB1 - LJTI_0_0)
1007     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1008 
1009     if (TM.getRelocationModel() == Reloc::PIC_)
1010       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
1011                                                                    OutContext),
1012                                      OutContext);
1013     // If we're generating a table of Thumb addresses in static relocation
1014     // model, we need to add one to keep interworking correctly.
1015     else if (AFI->isThumbFunction())
1016       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
1017                                      OutContext);
1018     OutStreamer->EmitValue(Expr, 4);
1019   }
1020   // Mark the end of jump table data-in-code region.
1021   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1022 }
1023 
1024 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
1025   const MachineOperand &MO1 = MI->getOperand(1);
1026   unsigned JTI = MO1.getIndex();
1027 
1028   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1029   OutStreamer->EmitLabel(JTISymbol);
1030 
1031   // Emit each entry of the table.
1032   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1033   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1034   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1035 
1036   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1037     MachineBasicBlock *MBB = JTBBs[i];
1038     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1039                                                           OutContext);
1040     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1041     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1042         .addExpr(MBBSymbolExpr)
1043         .addImm(ARMCC::AL)
1044         .addReg(0));
1045   }
1046 }
1047 
1048 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1049                                         unsigned OffsetWidth) {
1050   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1051   const MachineOperand &MO1 = MI->getOperand(1);
1052   unsigned JTI = MO1.getIndex();
1053 
1054   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1055   OutStreamer->EmitLabel(JTISymbol);
1056 
1057   // Emit each entry of the table.
1058   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1059   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1060   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1061 
1062   // Mark the jump table as data-in-code.
1063   OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1064                                                : MCDR_DataRegionJT16);
1065 
1066   for (auto MBB : JTBBs) {
1067     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1068                                                           OutContext);
1069     // Otherwise it's an offset from the dispatch instruction. Construct an
1070     // MCExpr for the entry. We want a value of the form:
1071     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1072     //
1073     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1074     // would look like:
1075     // LJTI_0_0:
1076     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1077     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1078     // where LCPI0_0 is a label defined just before the TBB instruction using
1079     // this table.
1080     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1081     const MCExpr *Expr = MCBinaryExpr::createAdd(
1082         MCSymbolRefExpr::create(TBInstPC, OutContext),
1083         MCConstantExpr::create(4, OutContext), OutContext);
1084     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1085     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1086                                    OutContext);
1087     OutStreamer->EmitValue(Expr, OffsetWidth);
1088   }
1089   // Mark the end of jump table data-in-code region. 32-bit offsets use
1090   // actual branch instructions here, so we don't mark those as a data-region
1091   // at all.
1092   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1093 
1094   // Make sure the next instruction is 2-byte aligned.
1095   EmitAlignment(1);
1096 }
1097 
1098 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1099   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1100       "Only instruction which are involved into frame setup code are allowed");
1101 
1102   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1103   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1104   const MachineFunction &MF = *MI->getParent()->getParent();
1105   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1106   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1107 
1108   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1109   unsigned Opc = MI->getOpcode();
1110   unsigned SrcReg, DstReg;
1111 
1112   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1113     // Two special cases:
1114     // 1) tPUSH does not have src/dst regs.
1115     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1116     // load. Yes, this is pretty fragile, but for now I don't see better
1117     // way... :(
1118     SrcReg = DstReg = ARM::SP;
1119   } else {
1120     SrcReg = MI->getOperand(1).getReg();
1121     DstReg = MI->getOperand(0).getReg();
1122   }
1123 
1124   // Try to figure out the unwinding opcode out of src / dst regs.
1125   if (MI->mayStore()) {
1126     // Register saves.
1127     assert(DstReg == ARM::SP &&
1128            "Only stack pointer as a destination reg is supported");
1129 
1130     SmallVector<unsigned, 4> RegList;
1131     // Skip src & dst reg, and pred ops.
1132     unsigned StartOp = 2 + 2;
1133     // Use all the operands.
1134     unsigned NumOffset = 0;
1135 
1136     switch (Opc) {
1137     default:
1138       MI->dump();
1139       llvm_unreachable("Unsupported opcode for unwinding information");
1140     case ARM::tPUSH:
1141       // Special case here: no src & dst reg, but two extra imp ops.
1142       StartOp = 2; NumOffset = 2;
1143     case ARM::STMDB_UPD:
1144     case ARM::t2STMDB_UPD:
1145     case ARM::VSTMDDB_UPD:
1146       assert(SrcReg == ARM::SP &&
1147              "Only stack pointer as a source reg is supported");
1148       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1149            i != NumOps; ++i) {
1150         const MachineOperand &MO = MI->getOperand(i);
1151         // Actually, there should never be any impdef stuff here. Skip it
1152         // temporary to workaround PR11902.
1153         if (MO.isImplicit())
1154           continue;
1155         RegList.push_back(MO.getReg());
1156       }
1157       break;
1158     case ARM::STR_PRE_IMM:
1159     case ARM::STR_PRE_REG:
1160     case ARM::t2STR_PRE:
1161       assert(MI->getOperand(2).getReg() == ARM::SP &&
1162              "Only stack pointer as a source reg is supported");
1163       RegList.push_back(SrcReg);
1164       break;
1165     }
1166     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1167       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1168   } else {
1169     // Changes of stack / frame pointer.
1170     if (SrcReg == ARM::SP) {
1171       int64_t Offset = 0;
1172       switch (Opc) {
1173       default:
1174         MI->dump();
1175         llvm_unreachable("Unsupported opcode for unwinding information");
1176       case ARM::MOVr:
1177       case ARM::tMOVr:
1178         Offset = 0;
1179         break;
1180       case ARM::ADDri:
1181       case ARM::t2ADDri:
1182         Offset = -MI->getOperand(2).getImm();
1183         break;
1184       case ARM::SUBri:
1185       case ARM::t2SUBri:
1186         Offset = MI->getOperand(2).getImm();
1187         break;
1188       case ARM::tSUBspi:
1189         Offset = MI->getOperand(2).getImm()*4;
1190         break;
1191       case ARM::tADDspi:
1192       case ARM::tADDrSPi:
1193         Offset = -MI->getOperand(2).getImm()*4;
1194         break;
1195       case ARM::tLDRpci: {
1196         // Grab the constpool index and check, whether it corresponds to
1197         // original or cloned constpool entry.
1198         unsigned CPI = MI->getOperand(1).getIndex();
1199         const MachineConstantPool *MCP = MF.getConstantPool();
1200         if (CPI >= MCP->getConstants().size())
1201           CPI = AFI.getOriginalCPIdx(CPI);
1202         assert(CPI != -1U && "Invalid constpool index");
1203 
1204         // Derive the actual offset.
1205         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1206         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1207         // FIXME: Check for user, it should be "add" instruction!
1208         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1209         break;
1210       }
1211       }
1212 
1213       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1214         if (DstReg == FramePtr && FramePtr != ARM::SP)
1215           // Set-up of the frame pointer. Positive values correspond to "add"
1216           // instruction.
1217           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1218         else if (DstReg == ARM::SP) {
1219           // Change of SP by an offset. Positive values correspond to "sub"
1220           // instruction.
1221           ATS.emitPad(Offset);
1222         } else {
1223           // Move of SP to a register.  Positive values correspond to an "add"
1224           // instruction.
1225           ATS.emitMovSP(DstReg, -Offset);
1226         }
1227       }
1228     } else if (DstReg == ARM::SP) {
1229       MI->dump();
1230       llvm_unreachable("Unsupported opcode for unwinding information");
1231     }
1232     else {
1233       MI->dump();
1234       llvm_unreachable("Unsupported opcode for unwinding information");
1235     }
1236   }
1237 }
1238 
1239 // Simple pseudo-instructions have their lowering (with expansion to real
1240 // instructions) auto-generated.
1241 #include "ARMGenMCPseudoLowering.inc"
1242 
1243 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1244   const DataLayout &DL = getDataLayout();
1245   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1246   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1247 
1248   // If we just ended a constant pool, mark it as such.
1249   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1250     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1251     InConstantPool = false;
1252   }
1253 
1254   // Emit unwinding stuff for frame-related instructions
1255   if (Subtarget->isTargetEHABICompatible() &&
1256        MI->getFlag(MachineInstr::FrameSetup))
1257     EmitUnwindingInstruction(MI);
1258 
1259   // Do any auto-generated pseudo lowerings.
1260   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1261     return;
1262 
1263   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1264          "Pseudo flag setting opcode should be expanded early");
1265 
1266   // Check for manual lowerings.
1267   unsigned Opc = MI->getOpcode();
1268   switch (Opc) {
1269   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1270   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1271   case ARM::LEApcrel:
1272   case ARM::tLEApcrel:
1273   case ARM::t2LEApcrel: {
1274     // FIXME: Need to also handle globals and externals
1275     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1276     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1277                                                ARM::t2LEApcrel ? ARM::t2ADR
1278                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1279                      : ARM::ADR))
1280       .addReg(MI->getOperand(0).getReg())
1281       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1282       // Add predicate operands.
1283       .addImm(MI->getOperand(2).getImm())
1284       .addReg(MI->getOperand(3).getReg()));
1285     return;
1286   }
1287   case ARM::LEApcrelJT:
1288   case ARM::tLEApcrelJT:
1289   case ARM::t2LEApcrelJT: {
1290     MCSymbol *JTIPICSymbol =
1291       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1292     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1293                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1294                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1295                      : ARM::ADR))
1296       .addReg(MI->getOperand(0).getReg())
1297       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1298       // Add predicate operands.
1299       .addImm(MI->getOperand(2).getImm())
1300       .addReg(MI->getOperand(3).getReg()));
1301     return;
1302   }
1303   // Darwin call instructions are just normal call instructions with different
1304   // clobber semantics (they clobber R9).
1305   case ARM::BX_CALL: {
1306     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1307       .addReg(ARM::LR)
1308       .addReg(ARM::PC)
1309       // Add predicate operands.
1310       .addImm(ARMCC::AL)
1311       .addReg(0)
1312       // Add 's' bit operand (always reg0 for this)
1313       .addReg(0));
1314 
1315     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1316       .addReg(MI->getOperand(0).getReg()));
1317     return;
1318   }
1319   case ARM::tBX_CALL: {
1320     if (Subtarget->hasV5TOps())
1321       llvm_unreachable("Expected BLX to be selected for v5t+");
1322 
1323     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1324     // that the saved lr has its LSB set correctly (the arch doesn't
1325     // have blx).
1326     // So here we generate a bl to a small jump pad that does bx rN.
1327     // The jump pads are emitted after the function body.
1328 
1329     unsigned TReg = MI->getOperand(0).getReg();
1330     MCSymbol *TRegSym = nullptr;
1331     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
1332       if (ThumbIndirectPads[i].first == TReg) {
1333         TRegSym = ThumbIndirectPads[i].second;
1334         break;
1335       }
1336     }
1337 
1338     if (!TRegSym) {
1339       TRegSym = OutContext.createTempSymbol();
1340       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1341     }
1342 
1343     // Create a link-saving branch to the Reg Indirect Jump Pad.
1344     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1345         // Predicate comes first here.
1346         .addImm(ARMCC::AL).addReg(0)
1347         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1348     return;
1349   }
1350   case ARM::BMOVPCRX_CALL: {
1351     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1352       .addReg(ARM::LR)
1353       .addReg(ARM::PC)
1354       // Add predicate operands.
1355       .addImm(ARMCC::AL)
1356       .addReg(0)
1357       // Add 's' bit operand (always reg0 for this)
1358       .addReg(0));
1359 
1360     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1361       .addReg(ARM::PC)
1362       .addReg(MI->getOperand(0).getReg())
1363       // Add predicate operands.
1364       .addImm(ARMCC::AL)
1365       .addReg(0)
1366       // Add 's' bit operand (always reg0 for this)
1367       .addReg(0));
1368     return;
1369   }
1370   case ARM::BMOVPCB_CALL: {
1371     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1372       .addReg(ARM::LR)
1373       .addReg(ARM::PC)
1374       // Add predicate operands.
1375       .addImm(ARMCC::AL)
1376       .addReg(0)
1377       // Add 's' bit operand (always reg0 for this)
1378       .addReg(0));
1379 
1380     const MachineOperand &Op = MI->getOperand(0);
1381     const GlobalValue *GV = Op.getGlobal();
1382     const unsigned TF = Op.getTargetFlags();
1383     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1384     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1385     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1386       .addExpr(GVSymExpr)
1387       // Add predicate operands.
1388       .addImm(ARMCC::AL)
1389       .addReg(0));
1390     return;
1391   }
1392   case ARM::MOVi16_ga_pcrel:
1393   case ARM::t2MOVi16_ga_pcrel: {
1394     MCInst TmpInst;
1395     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1396     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1397 
1398     unsigned TF = MI->getOperand(1).getTargetFlags();
1399     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1400     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1401     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1402 
1403     MCSymbol *LabelSym =
1404         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1405                     MI->getOperand(2).getImm(), OutContext);
1406     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1407     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1408     const MCExpr *PCRelExpr =
1409       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1410                                       MCBinaryExpr::createAdd(LabelSymExpr,
1411                                       MCConstantExpr::create(PCAdj, OutContext),
1412                                       OutContext), OutContext), OutContext);
1413       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1414 
1415     // Add predicate operands.
1416     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1417     TmpInst.addOperand(MCOperand::createReg(0));
1418     // Add 's' bit operand (always reg0 for this)
1419     TmpInst.addOperand(MCOperand::createReg(0));
1420     EmitToStreamer(*OutStreamer, TmpInst);
1421     return;
1422   }
1423   case ARM::MOVTi16_ga_pcrel:
1424   case ARM::t2MOVTi16_ga_pcrel: {
1425     MCInst TmpInst;
1426     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1427                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1428     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1429     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1430 
1431     unsigned TF = MI->getOperand(2).getTargetFlags();
1432     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1433     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1434     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1435 
1436     MCSymbol *LabelSym =
1437         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1438                     MI->getOperand(3).getImm(), OutContext);
1439     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1440     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1441     const MCExpr *PCRelExpr =
1442         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1443                                    MCBinaryExpr::createAdd(LabelSymExpr,
1444                                       MCConstantExpr::create(PCAdj, OutContext),
1445                                           OutContext), OutContext), OutContext);
1446       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1447     // Add predicate operands.
1448     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1449     TmpInst.addOperand(MCOperand::createReg(0));
1450     // Add 's' bit operand (always reg0 for this)
1451     TmpInst.addOperand(MCOperand::createReg(0));
1452     EmitToStreamer(*OutStreamer, TmpInst);
1453     return;
1454   }
1455   case ARM::tPICADD: {
1456     // This is a pseudo op for a label + instruction sequence, which looks like:
1457     // LPC0:
1458     //     add r0, pc
1459     // This adds the address of LPC0 to r0.
1460 
1461     // Emit the label.
1462     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1463                                        getFunctionNumber(),
1464                                        MI->getOperand(2).getImm(), OutContext));
1465 
1466     // Form and emit the add.
1467     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1468       .addReg(MI->getOperand(0).getReg())
1469       .addReg(MI->getOperand(0).getReg())
1470       .addReg(ARM::PC)
1471       // Add predicate operands.
1472       .addImm(ARMCC::AL)
1473       .addReg(0));
1474     return;
1475   }
1476   case ARM::PICADD: {
1477     // This is a pseudo op for a label + instruction sequence, which looks like:
1478     // LPC0:
1479     //     add r0, pc, r0
1480     // This adds the address of LPC0 to r0.
1481 
1482     // Emit the label.
1483     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1484                                        getFunctionNumber(),
1485                                        MI->getOperand(2).getImm(), OutContext));
1486 
1487     // Form and emit the add.
1488     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1489       .addReg(MI->getOperand(0).getReg())
1490       .addReg(ARM::PC)
1491       .addReg(MI->getOperand(1).getReg())
1492       // Add predicate operands.
1493       .addImm(MI->getOperand(3).getImm())
1494       .addReg(MI->getOperand(4).getReg())
1495       // Add 's' bit operand (always reg0 for this)
1496       .addReg(0));
1497     return;
1498   }
1499   case ARM::PICSTR:
1500   case ARM::PICSTRB:
1501   case ARM::PICSTRH:
1502   case ARM::PICLDR:
1503   case ARM::PICLDRB:
1504   case ARM::PICLDRH:
1505   case ARM::PICLDRSB:
1506   case ARM::PICLDRSH: {
1507     // This is a pseudo op for a label + instruction sequence, which looks like:
1508     // LPC0:
1509     //     OP r0, [pc, r0]
1510     // The LCP0 label is referenced by a constant pool entry in order to get
1511     // a PC-relative address at the ldr instruction.
1512 
1513     // Emit the label.
1514     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1515                                        getFunctionNumber(),
1516                                        MI->getOperand(2).getImm(), OutContext));
1517 
1518     // Form and emit the load
1519     unsigned Opcode;
1520     switch (MI->getOpcode()) {
1521     default:
1522       llvm_unreachable("Unexpected opcode!");
1523     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1524     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1525     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1526     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1527     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1528     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1529     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1530     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1531     }
1532     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1533       .addReg(MI->getOperand(0).getReg())
1534       .addReg(ARM::PC)
1535       .addReg(MI->getOperand(1).getReg())
1536       .addImm(0)
1537       // Add predicate operands.
1538       .addImm(MI->getOperand(3).getImm())
1539       .addReg(MI->getOperand(4).getReg()));
1540 
1541     return;
1542   }
1543   case ARM::CONSTPOOL_ENTRY: {
1544     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1545     /// in the function.  The first operand is the ID# for this instruction, the
1546     /// second is the index into the MachineConstantPool that this is, the third
1547     /// is the size in bytes of this constant pool entry.
1548     /// The required alignment is specified on the basic block holding this MI.
1549     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1550     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1551 
1552     // If this is the first entry of the pool, mark it.
1553     if (!InConstantPool) {
1554       OutStreamer->EmitDataRegion(MCDR_DataRegion);
1555       InConstantPool = true;
1556     }
1557 
1558     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1559 
1560     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1561     if (MCPE.isMachineConstantPoolEntry())
1562       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1563     else
1564       EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1565     return;
1566   }
1567   case ARM::JUMPTABLE_ADDRS:
1568     EmitJumpTableAddrs(MI);
1569     return;
1570   case ARM::JUMPTABLE_INSTS:
1571     EmitJumpTableInsts(MI);
1572     return;
1573   case ARM::JUMPTABLE_TBB:
1574   case ARM::JUMPTABLE_TBH:
1575     EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1576     return;
1577   case ARM::t2BR_JT: {
1578     // Lower and emit the instruction itself, then the jump table following it.
1579     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1580       .addReg(ARM::PC)
1581       .addReg(MI->getOperand(0).getReg())
1582       // Add predicate operands.
1583       .addImm(ARMCC::AL)
1584       .addReg(0));
1585     return;
1586   }
1587   case ARM::t2TBB_JT:
1588   case ARM::t2TBH_JT: {
1589     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1590     // Lower and emit the PC label, then the instruction itself.
1591     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1592     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1593                                      .addReg(MI->getOperand(0).getReg())
1594                                      .addReg(MI->getOperand(1).getReg())
1595                                      // Add predicate operands.
1596                                      .addImm(ARMCC::AL)
1597                                      .addReg(0));
1598     return;
1599   }
1600   case ARM::tBR_JTr:
1601   case ARM::BR_JTr: {
1602     // Lower and emit the instruction itself, then the jump table following it.
1603     // mov pc, target
1604     MCInst TmpInst;
1605     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1606       ARM::MOVr : ARM::tMOVr;
1607     TmpInst.setOpcode(Opc);
1608     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1609     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1610     // Add predicate operands.
1611     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1612     TmpInst.addOperand(MCOperand::createReg(0));
1613     // Add 's' bit operand (always reg0 for this)
1614     if (Opc == ARM::MOVr)
1615       TmpInst.addOperand(MCOperand::createReg(0));
1616     EmitToStreamer(*OutStreamer, TmpInst);
1617     return;
1618   }
1619   case ARM::BR_JTm: {
1620     // Lower and emit the instruction itself, then the jump table following it.
1621     // ldr pc, target
1622     MCInst TmpInst;
1623     if (MI->getOperand(1).getReg() == 0) {
1624       // literal offset
1625       TmpInst.setOpcode(ARM::LDRi12);
1626       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1627       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1628       TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1629     } else {
1630       TmpInst.setOpcode(ARM::LDRrs);
1631       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1632       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1633       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1634       TmpInst.addOperand(MCOperand::createImm(0));
1635     }
1636     // Add predicate operands.
1637     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1638     TmpInst.addOperand(MCOperand::createReg(0));
1639     EmitToStreamer(*OutStreamer, TmpInst);
1640     return;
1641   }
1642   case ARM::BR_JTadd: {
1643     // Lower and emit the instruction itself, then the jump table following it.
1644     // add pc, target, idx
1645     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1646       .addReg(ARM::PC)
1647       .addReg(MI->getOperand(0).getReg())
1648       .addReg(MI->getOperand(1).getReg())
1649       // Add predicate operands.
1650       .addImm(ARMCC::AL)
1651       .addReg(0)
1652       // Add 's' bit operand (always reg0 for this)
1653       .addReg(0));
1654     return;
1655   }
1656   case ARM::SPACE:
1657     OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1658     return;
1659   case ARM::TRAP: {
1660     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1661     // FIXME: Remove this special case when they do.
1662     if (!Subtarget->isTargetMachO()) {
1663       uint32_t Val = 0xe7ffdefeUL;
1664       OutStreamer->AddComment("trap");
1665       ATS.emitInst(Val);
1666       return;
1667     }
1668     break;
1669   }
1670   case ARM::TRAPNaCl: {
1671     uint32_t Val = 0xe7fedef0UL;
1672     OutStreamer->AddComment("trap");
1673     ATS.emitInst(Val);
1674     return;
1675   }
1676   case ARM::tTRAP: {
1677     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1678     // FIXME: Remove this special case when they do.
1679     if (!Subtarget->isTargetMachO()) {
1680       uint16_t Val = 0xdefe;
1681       OutStreamer->AddComment("trap");
1682       ATS.emitInst(Val, 'n');
1683       return;
1684     }
1685     break;
1686   }
1687   case ARM::t2Int_eh_sjlj_setjmp:
1688   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1689   case ARM::tInt_eh_sjlj_setjmp: {
1690     // Two incoming args: GPR:$src, GPR:$val
1691     // mov $val, pc
1692     // adds $val, #7
1693     // str $val, [$src, #4]
1694     // movs r0, #0
1695     // b LSJLJEH
1696     // movs r0, #1
1697     // LSJLJEH:
1698     unsigned SrcReg = MI->getOperand(0).getReg();
1699     unsigned ValReg = MI->getOperand(1).getReg();
1700     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1701     OutStreamer->AddComment("eh_setjmp begin");
1702     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1703       .addReg(ValReg)
1704       .addReg(ARM::PC)
1705       // Predicate.
1706       .addImm(ARMCC::AL)
1707       .addReg(0));
1708 
1709     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1710       .addReg(ValReg)
1711       // 's' bit operand
1712       .addReg(ARM::CPSR)
1713       .addReg(ValReg)
1714       .addImm(7)
1715       // Predicate.
1716       .addImm(ARMCC::AL)
1717       .addReg(0));
1718 
1719     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1720       .addReg(ValReg)
1721       .addReg(SrcReg)
1722       // The offset immediate is #4. The operand value is scaled by 4 for the
1723       // tSTR instruction.
1724       .addImm(1)
1725       // Predicate.
1726       .addImm(ARMCC::AL)
1727       .addReg(0));
1728 
1729     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1730       .addReg(ARM::R0)
1731       .addReg(ARM::CPSR)
1732       .addImm(0)
1733       // Predicate.
1734       .addImm(ARMCC::AL)
1735       .addReg(0));
1736 
1737     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1738     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1739       .addExpr(SymbolExpr)
1740       .addImm(ARMCC::AL)
1741       .addReg(0));
1742 
1743     OutStreamer->AddComment("eh_setjmp end");
1744     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1745       .addReg(ARM::R0)
1746       .addReg(ARM::CPSR)
1747       .addImm(1)
1748       // Predicate.
1749       .addImm(ARMCC::AL)
1750       .addReg(0));
1751 
1752     OutStreamer->EmitLabel(Label);
1753     return;
1754   }
1755 
1756   case ARM::Int_eh_sjlj_setjmp_nofp:
1757   case ARM::Int_eh_sjlj_setjmp: {
1758     // Two incoming args: GPR:$src, GPR:$val
1759     // add $val, pc, #8
1760     // str $val, [$src, #+4]
1761     // mov r0, #0
1762     // add pc, pc, #0
1763     // mov r0, #1
1764     unsigned SrcReg = MI->getOperand(0).getReg();
1765     unsigned ValReg = MI->getOperand(1).getReg();
1766 
1767     OutStreamer->AddComment("eh_setjmp begin");
1768     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1769       .addReg(ValReg)
1770       .addReg(ARM::PC)
1771       .addImm(8)
1772       // Predicate.
1773       .addImm(ARMCC::AL)
1774       .addReg(0)
1775       // 's' bit operand (always reg0 for this).
1776       .addReg(0));
1777 
1778     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1779       .addReg(ValReg)
1780       .addReg(SrcReg)
1781       .addImm(4)
1782       // Predicate.
1783       .addImm(ARMCC::AL)
1784       .addReg(0));
1785 
1786     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1787       .addReg(ARM::R0)
1788       .addImm(0)
1789       // Predicate.
1790       .addImm(ARMCC::AL)
1791       .addReg(0)
1792       // 's' bit operand (always reg0 for this).
1793       .addReg(0));
1794 
1795     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1796       .addReg(ARM::PC)
1797       .addReg(ARM::PC)
1798       .addImm(0)
1799       // Predicate.
1800       .addImm(ARMCC::AL)
1801       .addReg(0)
1802       // 's' bit operand (always reg0 for this).
1803       .addReg(0));
1804 
1805     OutStreamer->AddComment("eh_setjmp end");
1806     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1807       .addReg(ARM::R0)
1808       .addImm(1)
1809       // Predicate.
1810       .addImm(ARMCC::AL)
1811       .addReg(0)
1812       // 's' bit operand (always reg0 for this).
1813       .addReg(0));
1814     return;
1815   }
1816   case ARM::Int_eh_sjlj_longjmp: {
1817     // ldr sp, [$src, #8]
1818     // ldr $scratch, [$src, #4]
1819     // ldr r7, [$src]
1820     // bx $scratch
1821     unsigned SrcReg = MI->getOperand(0).getReg();
1822     unsigned ScratchReg = MI->getOperand(1).getReg();
1823     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1824       .addReg(ARM::SP)
1825       .addReg(SrcReg)
1826       .addImm(8)
1827       // Predicate.
1828       .addImm(ARMCC::AL)
1829       .addReg(0));
1830 
1831     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1832       .addReg(ScratchReg)
1833       .addReg(SrcReg)
1834       .addImm(4)
1835       // Predicate.
1836       .addImm(ARMCC::AL)
1837       .addReg(0));
1838 
1839     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1840       .addReg(ARM::R7)
1841       .addReg(SrcReg)
1842       .addImm(0)
1843       // Predicate.
1844       .addImm(ARMCC::AL)
1845       .addReg(0));
1846 
1847     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1848       .addReg(ScratchReg)
1849       // Predicate.
1850       .addImm(ARMCC::AL)
1851       .addReg(0));
1852     return;
1853   }
1854   case ARM::tInt_eh_sjlj_longjmp:
1855   case ARM::tInt_WIN_eh_sjlj_longjmp: {
1856     // ldr $scratch, [$src, #8]
1857     // mov sp, $scratch
1858     // ldr $scratch, [$src, #4]
1859     // ldr r7, [$src]
1860     // bx $scratch
1861     unsigned SrcReg = MI->getOperand(0).getReg();
1862     unsigned ScratchReg = MI->getOperand(1).getReg();
1863 
1864     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1865       .addReg(ScratchReg)
1866       .addReg(SrcReg)
1867       // The offset immediate is #8. The operand value is scaled by 4 for the
1868       // tLDR instruction.
1869       .addImm(2)
1870       // Predicate.
1871       .addImm(ARMCC::AL)
1872       .addReg(0));
1873 
1874     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1875       .addReg(ARM::SP)
1876       .addReg(ScratchReg)
1877       // Predicate.
1878       .addImm(ARMCC::AL)
1879       .addReg(0));
1880 
1881     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1882       .addReg(ScratchReg)
1883       .addReg(SrcReg)
1884       .addImm(1)
1885       // Predicate.
1886       .addImm(ARMCC::AL)
1887       .addReg(0));
1888 
1889     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1890       .addReg(Opc == ARM::tInt_WIN_eh_sjlj_longjmp ? ARM::R11 : ARM::R7)
1891       .addReg(SrcReg)
1892       .addImm(0)
1893       // Predicate.
1894       .addImm(ARMCC::AL)
1895       .addReg(0));
1896 
1897     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
1898       .addReg(ScratchReg)
1899       // Predicate.
1900       .addImm(ARMCC::AL)
1901       .addReg(0));
1902     return;
1903   }
1904   }
1905 
1906   MCInst TmpInst;
1907   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
1908 
1909   EmitToStreamer(*OutStreamer, TmpInst);
1910 }
1911 
1912 //===----------------------------------------------------------------------===//
1913 // Target Registry Stuff
1914 //===----------------------------------------------------------------------===//
1915 
1916 // Force static initialization.
1917 extern "C" void LLVMInitializeARMAsmPrinter() {
1918   RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
1919   RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
1920   RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
1921   RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
1922 }
1923