1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "InstPrinter/ARMInstPrinter.h" 21 #include "MCTargetDesc/ARMAddressingModes.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/BinaryFormat/COFF.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCAssembler.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCELFStreamer.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCInstBuilder.h" 40 #include "llvm/MC/MCObjectStreamer.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/Support/ARMBuildAttributes.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetParser.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 using namespace llvm; 51 52 #define DEBUG_TYPE "asm-printer" 53 54 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 55 std::unique_ptr<MCStreamer> Streamer) 56 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 57 InConstantPool(false), OptimizationGoals(-1) {} 58 59 void ARMAsmPrinter::EmitFunctionBodyEnd() { 60 // Make sure to terminate any constant pools that were at the end 61 // of the function. 62 if (!InConstantPool) 63 return; 64 InConstantPool = false; 65 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 66 } 67 68 void ARMAsmPrinter::EmitFunctionEntryLabel() { 69 if (AFI->isThumbFunction()) { 70 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 71 OutStreamer->EmitThumbFunc(CurrentFnSym); 72 } else { 73 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 74 } 75 OutStreamer->EmitLabel(CurrentFnSym); 76 } 77 78 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 79 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 80 assert(Size && "C++ constructor pointer had zero size!"); 81 82 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 83 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 84 85 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 86 ARMII::MO_NO_FLAG), 87 (Subtarget->isTargetELF() 88 ? MCSymbolRefExpr::VK_ARM_TARGET1 89 : MCSymbolRefExpr::VK_None), 90 OutContext); 91 92 OutStreamer->EmitValue(E, Size); 93 } 94 95 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 96 if (PromotedGlobals.count(GV)) 97 // The global was promoted into a constant pool. It should not be emitted. 98 return; 99 AsmPrinter::EmitGlobalVariable(GV); 100 } 101 102 /// runOnMachineFunction - This uses the EmitInstruction() 103 /// method to print assembly for each instruction. 104 /// 105 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 106 AFI = MF.getInfo<ARMFunctionInfo>(); 107 MCP = MF.getConstantPool(); 108 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 109 110 SetupMachineFunction(MF); 111 const Function &F = MF.getFunction(); 112 const TargetMachine& TM = MF.getTarget(); 113 114 // Collect all globals that had their storage promoted to a constant pool. 115 // Functions are emitted before variables, so this accumulates promoted 116 // globals from all functions in PromotedGlobals. 117 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 118 PromotedGlobals.insert(GV); 119 120 // Calculate this function's optimization goal. 121 unsigned OptimizationGoal; 122 if (F.hasOptNone()) 123 // For best debugging illusion, speed and small size sacrificed 124 OptimizationGoal = 6; 125 else if (F.hasMinSize()) 126 // Aggressively for small size, speed and debug illusion sacrificed 127 OptimizationGoal = 4; 128 else if (F.hasOptSize()) 129 // For small size, but speed and debugging illusion preserved 130 OptimizationGoal = 3; 131 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 132 // Aggressively for speed, small size and debug illusion sacrificed 133 OptimizationGoal = 2; 134 else if (TM.getOptLevel() > CodeGenOpt::None) 135 // For speed, but small size and good debug illusion preserved 136 OptimizationGoal = 1; 137 else // TM.getOptLevel() == CodeGenOpt::None 138 // For good debugging, but speed and small size preserved 139 OptimizationGoal = 5; 140 141 // Combine a new optimization goal with existing ones. 142 if (OptimizationGoals == -1) // uninitialized goals 143 OptimizationGoals = OptimizationGoal; 144 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 145 OptimizationGoals = 0; 146 147 if (Subtarget->isTargetCOFF()) { 148 bool Internal = F.hasInternalLinkage(); 149 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 150 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 151 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 152 153 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 154 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 155 OutStreamer->EmitCOFFSymbolType(Type); 156 OutStreamer->EndCOFFSymbolDef(); 157 } 158 159 // Emit the rest of the function body. 160 EmitFunctionBody(); 161 162 // Emit the XRay table for this function. 163 emitXRayTable(); 164 165 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 166 // These are created per function, rather than per TU, since it's 167 // relatively easy to exceed the thumb branch range within a TU. 168 if (! ThumbIndirectPads.empty()) { 169 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 170 EmitAlignment(1); 171 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 172 OutStreamer->EmitLabel(TIP.second); 173 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 174 .addReg(TIP.first) 175 // Add predicate operands. 176 .addImm(ARMCC::AL) 177 .addReg(0)); 178 } 179 ThumbIndirectPads.clear(); 180 } 181 182 // We didn't modify anything. 183 return false; 184 } 185 186 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 187 raw_ostream &O) { 188 const MachineOperand &MO = MI->getOperand(OpNum); 189 unsigned TF = MO.getTargetFlags(); 190 191 switch (MO.getType()) { 192 default: llvm_unreachable("<unknown operand type>"); 193 case MachineOperand::MO_Register: { 194 unsigned Reg = MO.getReg(); 195 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 196 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 197 if(ARM::GPRPairRegClass.contains(Reg)) { 198 const MachineFunction &MF = *MI->getParent()->getParent(); 199 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 200 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 201 } 202 O << ARMInstPrinter::getRegisterName(Reg); 203 break; 204 } 205 case MachineOperand::MO_Immediate: { 206 int64_t Imm = MO.getImm(); 207 O << '#'; 208 if (TF == ARMII::MO_LO16) 209 O << ":lower16:"; 210 else if (TF == ARMII::MO_HI16) 211 O << ":upper16:"; 212 O << Imm; 213 break; 214 } 215 case MachineOperand::MO_MachineBasicBlock: 216 MO.getMBB()->getSymbol()->print(O, MAI); 217 return; 218 case MachineOperand::MO_GlobalAddress: { 219 const GlobalValue *GV = MO.getGlobal(); 220 if (TF & ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF & ARMII::MO_HI16) 223 O << ":upper16:"; 224 GetARMGVSymbol(GV, TF)->print(O, MAI); 225 226 printOffset(MO.getOffset(), O); 227 break; 228 } 229 case MachineOperand::MO_ConstantPoolIndex: 230 if (Subtarget->genExecuteOnly()) 231 llvm_unreachable("execute-only should not generate constant pools"); 232 GetCPISymbol(MO.getIndex())->print(O, MAI); 233 break; 234 } 235 } 236 237 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 238 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 239 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 240 const DataLayout &DL = getDataLayout(); 241 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 242 "CPI" + Twine(getFunctionNumber()) + "_" + 243 Twine(CPID)); 244 } 245 246 //===--------------------------------------------------------------------===// 247 248 MCSymbol *ARMAsmPrinter:: 249 GetARMJTIPICJumpTableLabel(unsigned uid) const { 250 const DataLayout &DL = getDataLayout(); 251 SmallString<60> Name; 252 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 253 << getFunctionNumber() << '_' << uid; 254 return OutContext.getOrCreateSymbol(Name); 255 } 256 257 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 258 const char *ExtraCode, raw_ostream &O) { 259 // Does this asm operand have a single letter operand modifier? 260 if (ExtraCode && ExtraCode[0]) { 261 if (ExtraCode[1] != 0) return true; // Unknown modifier. 262 263 switch (ExtraCode[0]) { 264 default: 265 // See if this is a generic print operand 266 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 267 case 'P': // Print a VFP double precision register. 268 case 'q': // Print a NEON quad precision register. 269 printOperand(MI, OpNum, O); 270 return false; 271 case 'y': // Print a VFP single precision register as indexed double. 272 if (MI->getOperand(OpNum).isReg()) { 273 unsigned Reg = MI->getOperand(OpNum).getReg(); 274 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 275 // Find the 'd' register that has this 's' register as a sub-register, 276 // and determine the lane number. 277 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 278 if (!ARM::DPRRegClass.contains(*SR)) 279 continue; 280 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 281 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 282 return false; 283 } 284 } 285 return true; 286 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 287 if (!MI->getOperand(OpNum).isImm()) 288 return true; 289 O << ~(MI->getOperand(OpNum).getImm()); 290 return false; 291 case 'L': // The low 16 bits of an immediate constant. 292 if (!MI->getOperand(OpNum).isImm()) 293 return true; 294 O << (MI->getOperand(OpNum).getImm() & 0xffff); 295 return false; 296 case 'M': { // A register range suitable for LDM/STM. 297 if (!MI->getOperand(OpNum).isReg()) 298 return true; 299 const MachineOperand &MO = MI->getOperand(OpNum); 300 unsigned RegBegin = MO.getReg(); 301 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 302 // already got the operands in registers that are operands to the 303 // inline asm statement. 304 O << "{"; 305 if (ARM::GPRPairRegClass.contains(RegBegin)) { 306 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 307 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 308 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 309 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 310 } 311 O << ARMInstPrinter::getRegisterName(RegBegin); 312 313 // FIXME: The register allocator not only may not have given us the 314 // registers in sequence, but may not be in ascending registers. This 315 // will require changes in the register allocator that'll need to be 316 // propagated down here if the operands change. 317 unsigned RegOps = OpNum + 1; 318 while (MI->getOperand(RegOps).isReg()) { 319 O << ", " 320 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 321 RegOps++; 322 } 323 324 O << "}"; 325 326 return false; 327 } 328 case 'R': // The most significant register of a pair. 329 case 'Q': { // The least significant register of a pair. 330 if (OpNum == 0) 331 return true; 332 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 333 if (!FlagsOP.isImm()) 334 return true; 335 unsigned Flags = FlagsOP.getImm(); 336 337 // This operand may not be the one that actually provides the register. If 338 // it's tied to a previous one then we should refer instead to that one 339 // for registers and their classes. 340 unsigned TiedIdx; 341 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 342 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 343 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 344 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 345 } 346 Flags = MI->getOperand(OpNum).getImm(); 347 348 // Later code expects OpNum to be pointing at the register rather than 349 // the flags. 350 OpNum += 1; 351 } 352 353 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 354 unsigned RC; 355 bool FirstHalf; 356 const ARMBaseTargetMachine &ATM = 357 static_cast<const ARMBaseTargetMachine &>(TM); 358 359 // 'Q' should correspond to the low order register and 'R' to the high 360 // order register. Whether this corresponds to the upper or lower half 361 // depends on the endianess mode. 362 if (ExtraCode[0] == 'Q') 363 FirstHalf = ATM.isLittleEndian(); 364 else 365 // ExtraCode[0] == 'R'. 366 FirstHalf = !ATM.isLittleEndian(); 367 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 368 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 369 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 370 if (NumVals != 1) 371 return true; 372 const MachineOperand &MO = MI->getOperand(OpNum); 373 if (!MO.isReg()) 374 return true; 375 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 376 unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ? 377 ARM::gsub_0 : ARM::gsub_1); 378 O << ARMInstPrinter::getRegisterName(Reg); 379 return false; 380 } 381 if (NumVals != 2) 382 return true; 383 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 384 if (RegOp >= MI->getNumOperands()) 385 return true; 386 const MachineOperand &MO = MI->getOperand(RegOp); 387 if (!MO.isReg()) 388 return true; 389 unsigned Reg = MO.getReg(); 390 O << ARMInstPrinter::getRegisterName(Reg); 391 return false; 392 } 393 394 case 'e': // The low doubleword register of a NEON quad register. 395 case 'f': { // The high doubleword register of a NEON quad register. 396 if (!MI->getOperand(OpNum).isReg()) 397 return true; 398 unsigned Reg = MI->getOperand(OpNum).getReg(); 399 if (!ARM::QPRRegClass.contains(Reg)) 400 return true; 401 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 402 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 403 ARM::dsub_0 : ARM::dsub_1); 404 O << ARMInstPrinter::getRegisterName(SubReg); 405 return false; 406 } 407 408 // This modifier is not yet supported. 409 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 410 return true; 411 case 'H': { // The highest-numbered register of a pair. 412 const MachineOperand &MO = MI->getOperand(OpNum); 413 if (!MO.isReg()) 414 return true; 415 const MachineFunction &MF = *MI->getParent()->getParent(); 416 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 417 unsigned Reg = MO.getReg(); 418 if(!ARM::GPRPairRegClass.contains(Reg)) 419 return false; 420 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 421 O << ARMInstPrinter::getRegisterName(Reg); 422 return false; 423 } 424 } 425 } 426 427 printOperand(MI, OpNum, O); 428 return false; 429 } 430 431 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 432 unsigned OpNum, const char *ExtraCode, 433 raw_ostream &O) { 434 // Does this asm operand have a single letter operand modifier? 435 if (ExtraCode && ExtraCode[0]) { 436 if (ExtraCode[1] != 0) return true; // Unknown modifier. 437 438 switch (ExtraCode[0]) { 439 case 'A': // A memory operand for a VLD1/VST1 instruction. 440 default: return true; // Unknown modifier. 441 case 'm': // The base register of a memory operand. 442 if (!MI->getOperand(OpNum).isReg()) 443 return true; 444 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 445 return false; 446 } 447 } 448 449 const MachineOperand &MO = MI->getOperand(OpNum); 450 assert(MO.isReg() && "unexpected inline asm memory operand"); 451 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 452 return false; 453 } 454 455 static bool isThumb(const MCSubtargetInfo& STI) { 456 return STI.getFeatureBits()[ARM::ModeThumb]; 457 } 458 459 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 460 const MCSubtargetInfo *EndInfo) const { 461 // If either end mode is unknown (EndInfo == NULL) or different than 462 // the start mode, then restore the start mode. 463 const bool WasThumb = isThumb(StartInfo); 464 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 465 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 466 } 467 } 468 469 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 470 const Triple &TT = TM.getTargetTriple(); 471 // Use unified assembler syntax. 472 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 473 474 // Emit ARM Build Attributes 475 if (TT.isOSBinFormatELF()) 476 emitAttributes(); 477 478 // Use the triple's architecture and subarchitecture to determine 479 // if we're thumb for the purposes of the top level code16 assembler 480 // flag. 481 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 482 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 483 } 484 485 static void 486 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 487 MachineModuleInfoImpl::StubValueTy &MCSym) { 488 // L_foo$stub: 489 OutStreamer.EmitLabel(StubLabel); 490 // .indirect_symbol _foo 491 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 492 493 if (MCSym.getInt()) 494 // External to current translation unit. 495 OutStreamer.EmitIntValue(0, 4/*size*/); 496 else 497 // Internal to current translation unit. 498 // 499 // When we place the LSDA into the TEXT section, the type info 500 // pointers need to be indirect and pc-rel. We accomplish this by 501 // using NLPs; however, sometimes the types are local to the file. 502 // We need to fill in the value for the NLP in those cases. 503 OutStreamer.EmitValue( 504 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 505 4 /*size*/); 506 } 507 508 509 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 510 const Triple &TT = TM.getTargetTriple(); 511 if (TT.isOSBinFormatMachO()) { 512 // All darwin targets use mach-o. 513 const TargetLoweringObjectFileMachO &TLOFMacho = 514 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 515 MachineModuleInfoMachO &MMIMacho = 516 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 517 518 // Output non-lazy-pointers for external and common global variables. 519 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 520 521 if (!Stubs.empty()) { 522 // Switch with ".non_lazy_symbol_pointer" directive. 523 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 524 EmitAlignment(2); 525 526 for (auto &Stub : Stubs) 527 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 528 529 Stubs.clear(); 530 OutStreamer->AddBlankLine(); 531 } 532 533 Stubs = MMIMacho.GetThreadLocalGVStubList(); 534 if (!Stubs.empty()) { 535 // Switch with ".non_lazy_symbol_pointer" directive. 536 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 537 EmitAlignment(2); 538 539 for (auto &Stub : Stubs) 540 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 541 542 Stubs.clear(); 543 OutStreamer->AddBlankLine(); 544 } 545 546 // Funny Darwin hack: This flag tells the linker that no global symbols 547 // contain code that falls through to other global symbols (e.g. the obvious 548 // implementation of multiple entry points). If this doesn't occur, the 549 // linker can safely perform dead code stripping. Since LLVM never 550 // generates code that does this, it is always safe to set. 551 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 552 } 553 554 // The last attribute to be emitted is ABI_optimization_goals 555 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 556 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 557 558 if (OptimizationGoals > 0 && 559 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 560 Subtarget->isTargetMuslAEABI())) 561 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 562 OptimizationGoals = -1; 563 564 ATS.finishAttributeSection(); 565 } 566 567 //===----------------------------------------------------------------------===// 568 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 569 // FIXME: 570 // The following seem like one-off assembler flags, but they actually need 571 // to appear in the .ARM.attributes section in ELF. 572 // Instead of subclassing the MCELFStreamer, we do the work here. 573 574 // Returns true if all functions have the same function attribute value. 575 // It also returns true when the module has no functions. 576 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 577 StringRef Value) { 578 return !any_of(M, [&](const Function &F) { 579 return F.getFnAttribute(Attr).getValueAsString() != Value; 580 }); 581 } 582 583 void ARMAsmPrinter::emitAttributes() { 584 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 585 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 586 587 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 588 589 ATS.switchVendor("aeabi"); 590 591 // Compute ARM ELF Attributes based on the default subtarget that 592 // we'd have constructed. The existing ARM behavior isn't LTO clean 593 // anyhow. 594 // FIXME: For ifunc related functions we could iterate over and look 595 // for a feature string that doesn't match the default one. 596 const Triple &TT = TM.getTargetTriple(); 597 StringRef CPU = TM.getTargetCPU(); 598 StringRef FS = TM.getTargetFeatureString(); 599 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 600 if (!FS.empty()) { 601 if (!ArchFS.empty()) 602 ArchFS = (Twine(ArchFS) + "," + FS).str(); 603 else 604 ArchFS = FS; 605 } 606 const ARMBaseTargetMachine &ATM = 607 static_cast<const ARMBaseTargetMachine &>(TM); 608 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 609 610 // Emit build attributes for the available hardware. 611 ATS.emitTargetAttributes(STI); 612 613 // RW data addressing. 614 if (isPositionIndependent()) { 615 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 616 ARMBuildAttrs::AddressRWPCRel); 617 } else if (STI.isRWPI()) { 618 // RWPI specific attributes. 619 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 620 ARMBuildAttrs::AddressRWSBRel); 621 } 622 623 // RO data addressing. 624 if (isPositionIndependent() || STI.isROPI()) { 625 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 626 ARMBuildAttrs::AddressROPCRel); 627 } 628 629 // GOT use. 630 if (isPositionIndependent()) { 631 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 632 ARMBuildAttrs::AddressGOT); 633 } else { 634 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 635 ARMBuildAttrs::AddressDirect); 636 } 637 638 // Set FP Denormals. 639 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 640 "denormal-fp-math", 641 "preserve-sign") || 642 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 643 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 644 ARMBuildAttrs::PreserveFPSign); 645 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 646 "denormal-fp-math", 647 "positive-zero") || 648 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 649 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 650 ARMBuildAttrs::PositiveZero); 651 else if (!TM.Options.UnsafeFPMath) 652 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 653 ARMBuildAttrs::IEEEDenormals); 654 else { 655 if (!STI.hasVFP2()) { 656 // When the target doesn't have an FPU (by design or 657 // intention), the assumptions made on the software support 658 // mirror that of the equivalent hardware support *if it 659 // existed*. For v7 and better we indicate that denormals are 660 // flushed preserving sign, and for V6 we indicate that 661 // denormals are flushed to positive zero. 662 if (STI.hasV7Ops()) 663 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 664 ARMBuildAttrs::PreserveFPSign); 665 } else if (STI.hasVFP3()) { 666 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 667 // the sign bit of the zero matches the sign bit of the input or 668 // result that is being flushed to zero. 669 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 670 ARMBuildAttrs::PreserveFPSign); 671 } 672 // For VFPv2 implementations it is implementation defined as 673 // to whether denormals are flushed to positive zero or to 674 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 675 // LLVM has chosen to flush this to positive zero (most likely for 676 // GCC compatibility), so that's the chosen value here (the 677 // absence of its emission implies zero). 678 } 679 680 // Set FP exceptions and rounding 681 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 682 "no-trapping-math", "true") || 683 TM.Options.NoTrappingFPMath) 684 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 685 ARMBuildAttrs::Not_Allowed); 686 else if (!TM.Options.UnsafeFPMath) { 687 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 688 689 // If the user has permitted this code to choose the IEEE 754 690 // rounding at run-time, emit the rounding attribute. 691 if (TM.Options.HonorSignDependentRoundingFPMathOption) 692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 693 } 694 695 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 696 // equivalent of GCC's -ffinite-math-only flag. 697 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 698 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 699 ARMBuildAttrs::Allowed); 700 else 701 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 702 ARMBuildAttrs::AllowIEEE754); 703 704 // FIXME: add more flags to ARMBuildAttributes.h 705 // 8-bytes alignment stuff. 706 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 707 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 708 709 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 710 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 711 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 712 713 // FIXME: To support emitting this build attribute as GCC does, the 714 // -mfp16-format option and associated plumbing must be 715 // supported. For now the __fp16 type is exposed by default, so this 716 // attribute should be emitted with value 1. 717 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 718 ARMBuildAttrs::FP16FormatIEEE); 719 720 if (MMI) { 721 if (const Module *SourceModule = MMI->getModule()) { 722 // ABI_PCS_wchar_t to indicate wchar_t width 723 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 724 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 725 SourceModule->getModuleFlag("wchar_size"))) { 726 int WCharWidth = WCharWidthValue->getZExtValue(); 727 assert((WCharWidth == 2 || WCharWidth == 4) && 728 "wchar_t width must be 2 or 4 bytes"); 729 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 730 } 731 732 // ABI_enum_size to indicate enum width 733 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 734 // (all enums contain a value needing 32 bits to encode). 735 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 736 SourceModule->getModuleFlag("min_enum_size"))) { 737 int EnumWidth = EnumWidthValue->getZExtValue(); 738 assert((EnumWidth == 1 || EnumWidth == 4) && 739 "Minimum enum width must be 1 or 4 bytes"); 740 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 741 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 742 } 743 } 744 } 745 746 // We currently do not support using R9 as the TLS pointer. 747 if (STI.isRWPI()) 748 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 749 ARMBuildAttrs::R9IsSB); 750 else if (STI.isR9Reserved()) 751 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 752 ARMBuildAttrs::R9Reserved); 753 else 754 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 755 ARMBuildAttrs::R9IsGPR); 756 } 757 758 //===----------------------------------------------------------------------===// 759 760 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 761 unsigned LabelId, MCContext &Ctx) { 762 763 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 764 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 765 return Label; 766 } 767 768 static MCSymbolRefExpr::VariantKind 769 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 770 switch (Modifier) { 771 case ARMCP::no_modifier: 772 return MCSymbolRefExpr::VK_None; 773 case ARMCP::TLSGD: 774 return MCSymbolRefExpr::VK_TLSGD; 775 case ARMCP::TPOFF: 776 return MCSymbolRefExpr::VK_TPOFF; 777 case ARMCP::GOTTPOFF: 778 return MCSymbolRefExpr::VK_GOTTPOFF; 779 case ARMCP::SBREL: 780 return MCSymbolRefExpr::VK_ARM_SBREL; 781 case ARMCP::GOT_PREL: 782 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 783 case ARMCP::SECREL: 784 return MCSymbolRefExpr::VK_SECREL; 785 } 786 llvm_unreachable("Invalid ARMCPModifier!"); 787 } 788 789 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 790 unsigned char TargetFlags) { 791 if (Subtarget->isTargetMachO()) { 792 bool IsIndirect = 793 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 794 795 if (!IsIndirect) 796 return getSymbol(GV); 797 798 // FIXME: Remove this when Darwin transition to @GOT like syntax. 799 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 800 MachineModuleInfoMachO &MMIMachO = 801 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 802 MachineModuleInfoImpl::StubValueTy &StubSym = 803 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 804 : MMIMachO.getGVStubEntry(MCSym); 805 806 if (!StubSym.getPointer()) 807 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 808 !GV->hasInternalLinkage()); 809 return MCSym; 810 } else if (Subtarget->isTargetCOFF()) { 811 assert(Subtarget->isTargetWindows() && 812 "Windows is the only supported COFF target"); 813 814 bool IsIndirect = 815 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 816 if (!IsIndirect) 817 return getSymbol(GV); 818 819 SmallString<128> Name; 820 if (TargetFlags & ARMII::MO_DLLIMPORT) 821 Name = "__imp_"; 822 else if (TargetFlags & ARMII::MO_COFFSTUB) 823 Name = ".refptr."; 824 getNameWithPrefix(Name, GV); 825 826 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 827 828 if (TargetFlags & ARMII::MO_COFFSTUB) { 829 MachineModuleInfoCOFF &MMICOFF = 830 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 831 MachineModuleInfoImpl::StubValueTy &StubSym = 832 MMICOFF.getGVStubEntry(MCSym); 833 834 if (!StubSym.getPointer()) 835 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 836 } 837 838 return MCSym; 839 } else if (Subtarget->isTargetELF()) { 840 return getSymbol(GV); 841 } 842 llvm_unreachable("unexpected target"); 843 } 844 845 void ARMAsmPrinter:: 846 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 847 const DataLayout &DL = getDataLayout(); 848 int Size = DL.getTypeAllocSize(MCPV->getType()); 849 850 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 851 852 if (ACPV->isPromotedGlobal()) { 853 // This constant pool entry is actually a global whose storage has been 854 // promoted into the constant pool. This global may be referenced still 855 // by debug information, and due to the way AsmPrinter is set up, the debug 856 // info is immutable by the time we decide to promote globals to constant 857 // pools. Because of this, we need to ensure we emit a symbol for the global 858 // with private linkage (the default) so debug info can refer to it. 859 // 860 // However, if this global is promoted into several functions we must ensure 861 // we don't try and emit duplicate symbols! 862 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 863 for (const auto *GV : ACPC->promotedGlobals()) { 864 if (!EmittedPromotedGlobalLabels.count(GV)) { 865 MCSymbol *GVSym = getSymbol(GV); 866 OutStreamer->EmitLabel(GVSym); 867 EmittedPromotedGlobalLabels.insert(GV); 868 } 869 } 870 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 871 } 872 873 MCSymbol *MCSym; 874 if (ACPV->isLSDA()) { 875 MCSym = getCurExceptionSym(); 876 } else if (ACPV->isBlockAddress()) { 877 const BlockAddress *BA = 878 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 879 MCSym = GetBlockAddressSymbol(BA); 880 } else if (ACPV->isGlobalValue()) { 881 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 882 883 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 884 // flag the global as MO_NONLAZY. 885 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 886 MCSym = GetARMGVSymbol(GV, TF); 887 } else if (ACPV->isMachineBasicBlock()) { 888 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 889 MCSym = MBB->getSymbol(); 890 } else { 891 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 892 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 893 MCSym = GetExternalSymbolSymbol(Sym); 894 } 895 896 // Create an MCSymbol for the reference. 897 const MCExpr *Expr = 898 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 899 OutContext); 900 901 if (ACPV->getPCAdjustment()) { 902 MCSymbol *PCLabel = 903 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 904 ACPV->getLabelId(), OutContext); 905 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 906 PCRelExpr = 907 MCBinaryExpr::createAdd(PCRelExpr, 908 MCConstantExpr::create(ACPV->getPCAdjustment(), 909 OutContext), 910 OutContext); 911 if (ACPV->mustAddCurrentAddress()) { 912 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 913 // label, so just emit a local label end reference that instead. 914 MCSymbol *DotSym = OutContext.createTempSymbol(); 915 OutStreamer->EmitLabel(DotSym); 916 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 917 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 918 } 919 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 920 } 921 OutStreamer->EmitValue(Expr, Size); 922 } 923 924 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 925 const MachineOperand &MO1 = MI->getOperand(1); 926 unsigned JTI = MO1.getIndex(); 927 928 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 929 // ARM mode tables. 930 EmitAlignment(2); 931 932 // Emit a label for the jump table. 933 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 934 OutStreamer->EmitLabel(JTISymbol); 935 936 // Mark the jump table as data-in-code. 937 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 938 939 // Emit each entry of the table. 940 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 941 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 942 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 943 944 for (MachineBasicBlock *MBB : JTBBs) { 945 // Construct an MCExpr for the entry. We want a value of the form: 946 // (BasicBlockAddr - TableBeginAddr) 947 // 948 // For example, a table with entries jumping to basic blocks BB0 and BB1 949 // would look like: 950 // LJTI_0_0: 951 // .word (LBB0 - LJTI_0_0) 952 // .word (LBB1 - LJTI_0_0) 953 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 954 955 if (isPositionIndependent() || Subtarget->isROPI()) 956 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 957 OutContext), 958 OutContext); 959 // If we're generating a table of Thumb addresses in static relocation 960 // model, we need to add one to keep interworking correctly. 961 else if (AFI->isThumbFunction()) 962 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 963 OutContext); 964 OutStreamer->EmitValue(Expr, 4); 965 } 966 // Mark the end of jump table data-in-code region. 967 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 968 } 969 970 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 971 const MachineOperand &MO1 = MI->getOperand(1); 972 unsigned JTI = MO1.getIndex(); 973 974 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 975 // ARM mode tables. 976 EmitAlignment(2); 977 978 // Emit a label for the jump table. 979 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 980 OutStreamer->EmitLabel(JTISymbol); 981 982 // Emit each entry of the table. 983 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 984 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 985 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 986 987 for (MachineBasicBlock *MBB : JTBBs) { 988 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 989 OutContext); 990 // If this isn't a TBB or TBH, the entries are direct branch instructions. 991 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 992 .addExpr(MBBSymbolExpr) 993 .addImm(ARMCC::AL) 994 .addReg(0)); 995 } 996 } 997 998 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 999 unsigned OffsetWidth) { 1000 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1001 const MachineOperand &MO1 = MI->getOperand(1); 1002 unsigned JTI = MO1.getIndex(); 1003 1004 if (Subtarget->isThumb1Only()) 1005 EmitAlignment(2); 1006 1007 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1008 OutStreamer->EmitLabel(JTISymbol); 1009 1010 // Emit each entry of the table. 1011 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1012 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1013 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1014 1015 // Mark the jump table as data-in-code. 1016 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1017 : MCDR_DataRegionJT16); 1018 1019 for (auto MBB : JTBBs) { 1020 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1021 OutContext); 1022 // Otherwise it's an offset from the dispatch instruction. Construct an 1023 // MCExpr for the entry. We want a value of the form: 1024 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1025 // 1026 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1027 // would look like: 1028 // LJTI_0_0: 1029 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1030 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1031 // where LCPI0_0 is a label defined just before the TBB instruction using 1032 // this table. 1033 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1034 const MCExpr *Expr = MCBinaryExpr::createAdd( 1035 MCSymbolRefExpr::create(TBInstPC, OutContext), 1036 MCConstantExpr::create(4, OutContext), OutContext); 1037 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1038 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1039 OutContext); 1040 OutStreamer->EmitValue(Expr, OffsetWidth); 1041 } 1042 // Mark the end of jump table data-in-code region. 32-bit offsets use 1043 // actual branch instructions here, so we don't mark those as a data-region 1044 // at all. 1045 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1046 1047 // Make sure the next instruction is 2-byte aligned. 1048 EmitAlignment(1); 1049 } 1050 1051 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1052 assert(MI->getFlag(MachineInstr::FrameSetup) && 1053 "Only instruction which are involved into frame setup code are allowed"); 1054 1055 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1056 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1057 const MachineFunction &MF = *MI->getParent()->getParent(); 1058 const TargetRegisterInfo *TargetRegInfo = 1059 MF.getSubtarget().getRegisterInfo(); 1060 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1061 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1062 1063 unsigned FramePtr = TargetRegInfo->getFrameRegister(MF); 1064 unsigned Opc = MI->getOpcode(); 1065 unsigned SrcReg, DstReg; 1066 1067 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1068 // Two special cases: 1069 // 1) tPUSH does not have src/dst regs. 1070 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1071 // load. Yes, this is pretty fragile, but for now I don't see better 1072 // way... :( 1073 SrcReg = DstReg = ARM::SP; 1074 } else { 1075 SrcReg = MI->getOperand(1).getReg(); 1076 DstReg = MI->getOperand(0).getReg(); 1077 } 1078 1079 // Try to figure out the unwinding opcode out of src / dst regs. 1080 if (MI->mayStore()) { 1081 // Register saves. 1082 assert(DstReg == ARM::SP && 1083 "Only stack pointer as a destination reg is supported"); 1084 1085 SmallVector<unsigned, 4> RegList; 1086 // Skip src & dst reg, and pred ops. 1087 unsigned StartOp = 2 + 2; 1088 // Use all the operands. 1089 unsigned NumOffset = 0; 1090 // Amount of SP adjustment folded into a push. 1091 unsigned Pad = 0; 1092 1093 switch (Opc) { 1094 default: 1095 MI->print(errs()); 1096 llvm_unreachable("Unsupported opcode for unwinding information"); 1097 case ARM::tPUSH: 1098 // Special case here: no src & dst reg, but two extra imp ops. 1099 StartOp = 2; NumOffset = 2; 1100 LLVM_FALLTHROUGH; 1101 case ARM::STMDB_UPD: 1102 case ARM::t2STMDB_UPD: 1103 case ARM::VSTMDDB_UPD: 1104 assert(SrcReg == ARM::SP && 1105 "Only stack pointer as a source reg is supported"); 1106 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1107 i != NumOps; ++i) { 1108 const MachineOperand &MO = MI->getOperand(i); 1109 // Actually, there should never be any impdef stuff here. Skip it 1110 // temporary to workaround PR11902. 1111 if (MO.isImplicit()) 1112 continue; 1113 // Registers, pushed as a part of folding an SP update into the 1114 // push instruction are marked as undef and should not be 1115 // restored when unwinding, because the function can modify the 1116 // corresponding stack slots. 1117 if (MO.isUndef()) { 1118 assert(RegList.empty() && 1119 "Pad registers must come before restored ones"); 1120 unsigned Width = 1121 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1122 Pad += Width; 1123 continue; 1124 } 1125 RegList.push_back(MO.getReg()); 1126 } 1127 break; 1128 case ARM::STR_PRE_IMM: 1129 case ARM::STR_PRE_REG: 1130 case ARM::t2STR_PRE: 1131 assert(MI->getOperand(2).getReg() == ARM::SP && 1132 "Only stack pointer as a source reg is supported"); 1133 RegList.push_back(SrcReg); 1134 break; 1135 } 1136 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1137 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1138 // Account for the SP adjustment, folded into the push. 1139 if (Pad) 1140 ATS.emitPad(Pad); 1141 } 1142 } else { 1143 // Changes of stack / frame pointer. 1144 if (SrcReg == ARM::SP) { 1145 int64_t Offset = 0; 1146 switch (Opc) { 1147 default: 1148 MI->print(errs()); 1149 llvm_unreachable("Unsupported opcode for unwinding information"); 1150 case ARM::MOVr: 1151 case ARM::tMOVr: 1152 Offset = 0; 1153 break; 1154 case ARM::ADDri: 1155 case ARM::t2ADDri: 1156 Offset = -MI->getOperand(2).getImm(); 1157 break; 1158 case ARM::SUBri: 1159 case ARM::t2SUBri: 1160 Offset = MI->getOperand(2).getImm(); 1161 break; 1162 case ARM::tSUBspi: 1163 Offset = MI->getOperand(2).getImm()*4; 1164 break; 1165 case ARM::tADDspi: 1166 case ARM::tADDrSPi: 1167 Offset = -MI->getOperand(2).getImm()*4; 1168 break; 1169 case ARM::tLDRpci: { 1170 // Grab the constpool index and check, whether it corresponds to 1171 // original or cloned constpool entry. 1172 unsigned CPI = MI->getOperand(1).getIndex(); 1173 const MachineConstantPool *MCP = MF.getConstantPool(); 1174 if (CPI >= MCP->getConstants().size()) 1175 CPI = AFI.getOriginalCPIdx(CPI); 1176 assert(CPI != -1U && "Invalid constpool index"); 1177 1178 // Derive the actual offset. 1179 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1180 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1181 // FIXME: Check for user, it should be "add" instruction! 1182 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1183 break; 1184 } 1185 } 1186 1187 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1188 if (DstReg == FramePtr && FramePtr != ARM::SP) 1189 // Set-up of the frame pointer. Positive values correspond to "add" 1190 // instruction. 1191 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1192 else if (DstReg == ARM::SP) { 1193 // Change of SP by an offset. Positive values correspond to "sub" 1194 // instruction. 1195 ATS.emitPad(Offset); 1196 } else { 1197 // Move of SP to a register. Positive values correspond to an "add" 1198 // instruction. 1199 ATS.emitMovSP(DstReg, -Offset); 1200 } 1201 } 1202 } else if (DstReg == ARM::SP) { 1203 MI->print(errs()); 1204 llvm_unreachable("Unsupported opcode for unwinding information"); 1205 } 1206 else { 1207 MI->print(errs()); 1208 llvm_unreachable("Unsupported opcode for unwinding information"); 1209 } 1210 } 1211 } 1212 1213 // Simple pseudo-instructions have their lowering (with expansion to real 1214 // instructions) auto-generated. 1215 #include "ARMGenMCPseudoLowering.inc" 1216 1217 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1218 const DataLayout &DL = getDataLayout(); 1219 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1220 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1221 1222 const MachineFunction &MF = *MI->getParent()->getParent(); 1223 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1224 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1225 1226 // If we just ended a constant pool, mark it as such. 1227 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1228 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1229 InConstantPool = false; 1230 } 1231 1232 // Emit unwinding stuff for frame-related instructions 1233 if (Subtarget->isTargetEHABICompatible() && 1234 MI->getFlag(MachineInstr::FrameSetup)) 1235 EmitUnwindingInstruction(MI); 1236 1237 // Do any auto-generated pseudo lowerings. 1238 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1239 return; 1240 1241 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1242 "Pseudo flag setting opcode should be expanded early"); 1243 1244 // Check for manual lowerings. 1245 unsigned Opc = MI->getOpcode(); 1246 switch (Opc) { 1247 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1248 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1249 case ARM::LEApcrel: 1250 case ARM::tLEApcrel: 1251 case ARM::t2LEApcrel: { 1252 // FIXME: Need to also handle globals and externals 1253 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1254 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1255 ARM::t2LEApcrel ? ARM::t2ADR 1256 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1257 : ARM::ADR)) 1258 .addReg(MI->getOperand(0).getReg()) 1259 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1260 // Add predicate operands. 1261 .addImm(MI->getOperand(2).getImm()) 1262 .addReg(MI->getOperand(3).getReg())); 1263 return; 1264 } 1265 case ARM::LEApcrelJT: 1266 case ARM::tLEApcrelJT: 1267 case ARM::t2LEApcrelJT: { 1268 MCSymbol *JTIPICSymbol = 1269 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1270 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1271 ARM::t2LEApcrelJT ? ARM::t2ADR 1272 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1273 : ARM::ADR)) 1274 .addReg(MI->getOperand(0).getReg()) 1275 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1276 // Add predicate operands. 1277 .addImm(MI->getOperand(2).getImm()) 1278 .addReg(MI->getOperand(3).getReg())); 1279 return; 1280 } 1281 // Darwin call instructions are just normal call instructions with different 1282 // clobber semantics (they clobber R9). 1283 case ARM::BX_CALL: { 1284 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1285 .addReg(ARM::LR) 1286 .addReg(ARM::PC) 1287 // Add predicate operands. 1288 .addImm(ARMCC::AL) 1289 .addReg(0) 1290 // Add 's' bit operand (always reg0 for this) 1291 .addReg(0)); 1292 1293 assert(Subtarget->hasV4TOps()); 1294 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1295 .addReg(MI->getOperand(0).getReg())); 1296 return; 1297 } 1298 case ARM::tBX_CALL: { 1299 if (Subtarget->hasV5TOps()) 1300 llvm_unreachable("Expected BLX to be selected for v5t+"); 1301 1302 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1303 // that the saved lr has its LSB set correctly (the arch doesn't 1304 // have blx). 1305 // So here we generate a bl to a small jump pad that does bx rN. 1306 // The jump pads are emitted after the function body. 1307 1308 unsigned TReg = MI->getOperand(0).getReg(); 1309 MCSymbol *TRegSym = nullptr; 1310 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1311 if (TIP.first == TReg) { 1312 TRegSym = TIP.second; 1313 break; 1314 } 1315 } 1316 1317 if (!TRegSym) { 1318 TRegSym = OutContext.createTempSymbol(); 1319 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1320 } 1321 1322 // Create a link-saving branch to the Reg Indirect Jump Pad. 1323 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1324 // Predicate comes first here. 1325 .addImm(ARMCC::AL).addReg(0) 1326 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1327 return; 1328 } 1329 case ARM::BMOVPCRX_CALL: { 1330 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1331 .addReg(ARM::LR) 1332 .addReg(ARM::PC) 1333 // Add predicate operands. 1334 .addImm(ARMCC::AL) 1335 .addReg(0) 1336 // Add 's' bit operand (always reg0 for this) 1337 .addReg(0)); 1338 1339 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1340 .addReg(ARM::PC) 1341 .addReg(MI->getOperand(0).getReg()) 1342 // Add predicate operands. 1343 .addImm(ARMCC::AL) 1344 .addReg(0) 1345 // Add 's' bit operand (always reg0 for this) 1346 .addReg(0)); 1347 return; 1348 } 1349 case ARM::BMOVPCB_CALL: { 1350 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1351 .addReg(ARM::LR) 1352 .addReg(ARM::PC) 1353 // Add predicate operands. 1354 .addImm(ARMCC::AL) 1355 .addReg(0) 1356 // Add 's' bit operand (always reg0 for this) 1357 .addReg(0)); 1358 1359 const MachineOperand &Op = MI->getOperand(0); 1360 const GlobalValue *GV = Op.getGlobal(); 1361 const unsigned TF = Op.getTargetFlags(); 1362 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1363 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1364 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1365 .addExpr(GVSymExpr) 1366 // Add predicate operands. 1367 .addImm(ARMCC::AL) 1368 .addReg(0)); 1369 return; 1370 } 1371 case ARM::MOVi16_ga_pcrel: 1372 case ARM::t2MOVi16_ga_pcrel: { 1373 MCInst TmpInst; 1374 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1375 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1376 1377 unsigned TF = MI->getOperand(1).getTargetFlags(); 1378 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1379 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1380 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1381 1382 MCSymbol *LabelSym = 1383 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1384 MI->getOperand(2).getImm(), OutContext); 1385 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1386 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1387 const MCExpr *PCRelExpr = 1388 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1389 MCBinaryExpr::createAdd(LabelSymExpr, 1390 MCConstantExpr::create(PCAdj, OutContext), 1391 OutContext), OutContext), OutContext); 1392 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1393 1394 // Add predicate operands. 1395 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1396 TmpInst.addOperand(MCOperand::createReg(0)); 1397 // Add 's' bit operand (always reg0 for this) 1398 TmpInst.addOperand(MCOperand::createReg(0)); 1399 EmitToStreamer(*OutStreamer, TmpInst); 1400 return; 1401 } 1402 case ARM::MOVTi16_ga_pcrel: 1403 case ARM::t2MOVTi16_ga_pcrel: { 1404 MCInst TmpInst; 1405 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1406 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1407 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1408 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1409 1410 unsigned TF = MI->getOperand(2).getTargetFlags(); 1411 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1412 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1413 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1414 1415 MCSymbol *LabelSym = 1416 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1417 MI->getOperand(3).getImm(), OutContext); 1418 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1419 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1420 const MCExpr *PCRelExpr = 1421 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1422 MCBinaryExpr::createAdd(LabelSymExpr, 1423 MCConstantExpr::create(PCAdj, OutContext), 1424 OutContext), OutContext), OutContext); 1425 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1426 // Add predicate operands. 1427 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1428 TmpInst.addOperand(MCOperand::createReg(0)); 1429 // Add 's' bit operand (always reg0 for this) 1430 TmpInst.addOperand(MCOperand::createReg(0)); 1431 EmitToStreamer(*OutStreamer, TmpInst); 1432 return; 1433 } 1434 case ARM::tPICADD: { 1435 // This is a pseudo op for a label + instruction sequence, which looks like: 1436 // LPC0: 1437 // add r0, pc 1438 // This adds the address of LPC0 to r0. 1439 1440 // Emit the label. 1441 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1442 getFunctionNumber(), 1443 MI->getOperand(2).getImm(), OutContext)); 1444 1445 // Form and emit the add. 1446 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1447 .addReg(MI->getOperand(0).getReg()) 1448 .addReg(MI->getOperand(0).getReg()) 1449 .addReg(ARM::PC) 1450 // Add predicate operands. 1451 .addImm(ARMCC::AL) 1452 .addReg(0)); 1453 return; 1454 } 1455 case ARM::PICADD: { 1456 // This is a pseudo op for a label + instruction sequence, which looks like: 1457 // LPC0: 1458 // add r0, pc, r0 1459 // This adds the address of LPC0 to r0. 1460 1461 // Emit the label. 1462 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1463 getFunctionNumber(), 1464 MI->getOperand(2).getImm(), OutContext)); 1465 1466 // Form and emit the add. 1467 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1468 .addReg(MI->getOperand(0).getReg()) 1469 .addReg(ARM::PC) 1470 .addReg(MI->getOperand(1).getReg()) 1471 // Add predicate operands. 1472 .addImm(MI->getOperand(3).getImm()) 1473 .addReg(MI->getOperand(4).getReg()) 1474 // Add 's' bit operand (always reg0 for this) 1475 .addReg(0)); 1476 return; 1477 } 1478 case ARM::PICSTR: 1479 case ARM::PICSTRB: 1480 case ARM::PICSTRH: 1481 case ARM::PICLDR: 1482 case ARM::PICLDRB: 1483 case ARM::PICLDRH: 1484 case ARM::PICLDRSB: 1485 case ARM::PICLDRSH: { 1486 // This is a pseudo op for a label + instruction sequence, which looks like: 1487 // LPC0: 1488 // OP r0, [pc, r0] 1489 // The LCP0 label is referenced by a constant pool entry in order to get 1490 // a PC-relative address at the ldr instruction. 1491 1492 // Emit the label. 1493 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1494 getFunctionNumber(), 1495 MI->getOperand(2).getImm(), OutContext)); 1496 1497 // Form and emit the load 1498 unsigned Opcode; 1499 switch (MI->getOpcode()) { 1500 default: 1501 llvm_unreachable("Unexpected opcode!"); 1502 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1503 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1504 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1505 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1506 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1507 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1508 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1509 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1510 } 1511 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1512 .addReg(MI->getOperand(0).getReg()) 1513 .addReg(ARM::PC) 1514 .addReg(MI->getOperand(1).getReg()) 1515 .addImm(0) 1516 // Add predicate operands. 1517 .addImm(MI->getOperand(3).getImm()) 1518 .addReg(MI->getOperand(4).getReg())); 1519 1520 return; 1521 } 1522 case ARM::CONSTPOOL_ENTRY: { 1523 if (Subtarget->genExecuteOnly()) 1524 llvm_unreachable("execute-only should not generate constant pools"); 1525 1526 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1527 /// in the function. The first operand is the ID# for this instruction, the 1528 /// second is the index into the MachineConstantPool that this is, the third 1529 /// is the size in bytes of this constant pool entry. 1530 /// The required alignment is specified on the basic block holding this MI. 1531 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1532 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1533 1534 // If this is the first entry of the pool, mark it. 1535 if (!InConstantPool) { 1536 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1537 InConstantPool = true; 1538 } 1539 1540 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1541 1542 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1543 if (MCPE.isMachineConstantPoolEntry()) 1544 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1545 else 1546 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1547 return; 1548 } 1549 case ARM::JUMPTABLE_ADDRS: 1550 EmitJumpTableAddrs(MI); 1551 return; 1552 case ARM::JUMPTABLE_INSTS: 1553 EmitJumpTableInsts(MI); 1554 return; 1555 case ARM::JUMPTABLE_TBB: 1556 case ARM::JUMPTABLE_TBH: 1557 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1558 return; 1559 case ARM::t2BR_JT: { 1560 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1561 .addReg(ARM::PC) 1562 .addReg(MI->getOperand(0).getReg()) 1563 // Add predicate operands. 1564 .addImm(ARMCC::AL) 1565 .addReg(0)); 1566 return; 1567 } 1568 case ARM::t2TBB_JT: 1569 case ARM::t2TBH_JT: { 1570 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1571 // Lower and emit the PC label, then the instruction itself. 1572 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1573 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1574 .addReg(MI->getOperand(0).getReg()) 1575 .addReg(MI->getOperand(1).getReg()) 1576 // Add predicate operands. 1577 .addImm(ARMCC::AL) 1578 .addReg(0)); 1579 return; 1580 } 1581 case ARM::tTBB_JT: 1582 case ARM::tTBH_JT: { 1583 1584 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1585 unsigned Base = MI->getOperand(0).getReg(); 1586 unsigned Idx = MI->getOperand(1).getReg(); 1587 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1588 1589 // Multiply up idx if necessary. 1590 if (!Is8Bit) 1591 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1592 .addReg(Idx) 1593 .addReg(ARM::CPSR) 1594 .addReg(Idx) 1595 .addImm(1) 1596 // Add predicate operands. 1597 .addImm(ARMCC::AL) 1598 .addReg(0)); 1599 1600 if (Base == ARM::PC) { 1601 // TBB [base, idx] = 1602 // ADDS idx, idx, base 1603 // LDRB idx, [idx, #4] ; or LDRH if TBH 1604 // LSLS idx, #1 1605 // ADDS pc, pc, idx 1606 1607 // When using PC as the base, it's important that there is no padding 1608 // between the last ADDS and the start of the jump table. The jump table 1609 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1610 // 1611 // FIXME: Ideally we could vary the LDRB index based on the padding 1612 // between the sequence and jump table, however that relies on MCExprs 1613 // for load indexes which are currently not supported. 1614 OutStreamer->EmitCodeAlignment(4); 1615 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1616 .addReg(Idx) 1617 .addReg(Idx) 1618 .addReg(Base) 1619 // Add predicate operands. 1620 .addImm(ARMCC::AL) 1621 .addReg(0)); 1622 1623 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1624 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1625 .addReg(Idx) 1626 .addReg(Idx) 1627 .addImm(Is8Bit ? 4 : 2) 1628 // Add predicate operands. 1629 .addImm(ARMCC::AL) 1630 .addReg(0)); 1631 } else { 1632 // TBB [base, idx] = 1633 // LDRB idx, [base, idx] ; or LDRH if TBH 1634 // LSLS idx, #1 1635 // ADDS pc, pc, idx 1636 1637 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1638 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1639 .addReg(Idx) 1640 .addReg(Base) 1641 .addReg(Idx) 1642 // Add predicate operands. 1643 .addImm(ARMCC::AL) 1644 .addReg(0)); 1645 } 1646 1647 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1648 .addReg(Idx) 1649 .addReg(ARM::CPSR) 1650 .addReg(Idx) 1651 .addImm(1) 1652 // Add predicate operands. 1653 .addImm(ARMCC::AL) 1654 .addReg(0)); 1655 1656 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1657 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1658 .addReg(ARM::PC) 1659 .addReg(ARM::PC) 1660 .addReg(Idx) 1661 // Add predicate operands. 1662 .addImm(ARMCC::AL) 1663 .addReg(0)); 1664 return; 1665 } 1666 case ARM::tBR_JTr: 1667 case ARM::BR_JTr: { 1668 // mov pc, target 1669 MCInst TmpInst; 1670 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1671 ARM::MOVr : ARM::tMOVr; 1672 TmpInst.setOpcode(Opc); 1673 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1674 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1675 // Add predicate operands. 1676 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1677 TmpInst.addOperand(MCOperand::createReg(0)); 1678 // Add 's' bit operand (always reg0 for this) 1679 if (Opc == ARM::MOVr) 1680 TmpInst.addOperand(MCOperand::createReg(0)); 1681 EmitToStreamer(*OutStreamer, TmpInst); 1682 return; 1683 } 1684 case ARM::BR_JTm_i12: { 1685 // ldr pc, target 1686 MCInst TmpInst; 1687 TmpInst.setOpcode(ARM::LDRi12); 1688 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1689 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1690 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1691 // Add predicate operands. 1692 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1693 TmpInst.addOperand(MCOperand::createReg(0)); 1694 EmitToStreamer(*OutStreamer, TmpInst); 1695 return; 1696 } 1697 case ARM::BR_JTm_rs: { 1698 // ldr pc, target 1699 MCInst TmpInst; 1700 TmpInst.setOpcode(ARM::LDRrs); 1701 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1702 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1703 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1704 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1705 // Add predicate operands. 1706 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1707 TmpInst.addOperand(MCOperand::createReg(0)); 1708 EmitToStreamer(*OutStreamer, TmpInst); 1709 return; 1710 } 1711 case ARM::BR_JTadd: { 1712 // add pc, target, idx 1713 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1714 .addReg(ARM::PC) 1715 .addReg(MI->getOperand(0).getReg()) 1716 .addReg(MI->getOperand(1).getReg()) 1717 // Add predicate operands. 1718 .addImm(ARMCC::AL) 1719 .addReg(0) 1720 // Add 's' bit operand (always reg0 for this) 1721 .addReg(0)); 1722 return; 1723 } 1724 case ARM::SPACE: 1725 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1726 return; 1727 case ARM::TRAP: { 1728 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1729 // FIXME: Remove this special case when they do. 1730 if (!Subtarget->isTargetMachO()) { 1731 uint32_t Val = 0xe7ffdefeUL; 1732 OutStreamer->AddComment("trap"); 1733 ATS.emitInst(Val); 1734 return; 1735 } 1736 break; 1737 } 1738 case ARM::TRAPNaCl: { 1739 uint32_t Val = 0xe7fedef0UL; 1740 OutStreamer->AddComment("trap"); 1741 ATS.emitInst(Val); 1742 return; 1743 } 1744 case ARM::tTRAP: { 1745 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1746 // FIXME: Remove this special case when they do. 1747 if (!Subtarget->isTargetMachO()) { 1748 uint16_t Val = 0xdefe; 1749 OutStreamer->AddComment("trap"); 1750 ATS.emitInst(Val, 'n'); 1751 return; 1752 } 1753 break; 1754 } 1755 case ARM::t2Int_eh_sjlj_setjmp: 1756 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1757 case ARM::tInt_eh_sjlj_setjmp: { 1758 // Two incoming args: GPR:$src, GPR:$val 1759 // mov $val, pc 1760 // adds $val, #7 1761 // str $val, [$src, #4] 1762 // movs r0, #0 1763 // b LSJLJEH 1764 // movs r0, #1 1765 // LSJLJEH: 1766 unsigned SrcReg = MI->getOperand(0).getReg(); 1767 unsigned ValReg = MI->getOperand(1).getReg(); 1768 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1769 OutStreamer->AddComment("eh_setjmp begin"); 1770 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1771 .addReg(ValReg) 1772 .addReg(ARM::PC) 1773 // Predicate. 1774 .addImm(ARMCC::AL) 1775 .addReg(0)); 1776 1777 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1778 .addReg(ValReg) 1779 // 's' bit operand 1780 .addReg(ARM::CPSR) 1781 .addReg(ValReg) 1782 .addImm(7) 1783 // Predicate. 1784 .addImm(ARMCC::AL) 1785 .addReg(0)); 1786 1787 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1788 .addReg(ValReg) 1789 .addReg(SrcReg) 1790 // The offset immediate is #4. The operand value is scaled by 4 for the 1791 // tSTR instruction. 1792 .addImm(1) 1793 // Predicate. 1794 .addImm(ARMCC::AL) 1795 .addReg(0)); 1796 1797 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1798 .addReg(ARM::R0) 1799 .addReg(ARM::CPSR) 1800 .addImm(0) 1801 // Predicate. 1802 .addImm(ARMCC::AL) 1803 .addReg(0)); 1804 1805 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1806 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1807 .addExpr(SymbolExpr) 1808 .addImm(ARMCC::AL) 1809 .addReg(0)); 1810 1811 OutStreamer->AddComment("eh_setjmp end"); 1812 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1813 .addReg(ARM::R0) 1814 .addReg(ARM::CPSR) 1815 .addImm(1) 1816 // Predicate. 1817 .addImm(ARMCC::AL) 1818 .addReg(0)); 1819 1820 OutStreamer->EmitLabel(Label); 1821 return; 1822 } 1823 1824 case ARM::Int_eh_sjlj_setjmp_nofp: 1825 case ARM::Int_eh_sjlj_setjmp: { 1826 // Two incoming args: GPR:$src, GPR:$val 1827 // add $val, pc, #8 1828 // str $val, [$src, #+4] 1829 // mov r0, #0 1830 // add pc, pc, #0 1831 // mov r0, #1 1832 unsigned SrcReg = MI->getOperand(0).getReg(); 1833 unsigned ValReg = MI->getOperand(1).getReg(); 1834 1835 OutStreamer->AddComment("eh_setjmp begin"); 1836 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1837 .addReg(ValReg) 1838 .addReg(ARM::PC) 1839 .addImm(8) 1840 // Predicate. 1841 .addImm(ARMCC::AL) 1842 .addReg(0) 1843 // 's' bit operand (always reg0 for this). 1844 .addReg(0)); 1845 1846 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1847 .addReg(ValReg) 1848 .addReg(SrcReg) 1849 .addImm(4) 1850 // Predicate. 1851 .addImm(ARMCC::AL) 1852 .addReg(0)); 1853 1854 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1855 .addReg(ARM::R0) 1856 .addImm(0) 1857 // Predicate. 1858 .addImm(ARMCC::AL) 1859 .addReg(0) 1860 // 's' bit operand (always reg0 for this). 1861 .addReg(0)); 1862 1863 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1864 .addReg(ARM::PC) 1865 .addReg(ARM::PC) 1866 .addImm(0) 1867 // Predicate. 1868 .addImm(ARMCC::AL) 1869 .addReg(0) 1870 // 's' bit operand (always reg0 for this). 1871 .addReg(0)); 1872 1873 OutStreamer->AddComment("eh_setjmp end"); 1874 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1875 .addReg(ARM::R0) 1876 .addImm(1) 1877 // Predicate. 1878 .addImm(ARMCC::AL) 1879 .addReg(0) 1880 // 's' bit operand (always reg0 for this). 1881 .addReg(0)); 1882 return; 1883 } 1884 case ARM::Int_eh_sjlj_longjmp: { 1885 // ldr sp, [$src, #8] 1886 // ldr $scratch, [$src, #4] 1887 // ldr r7, [$src] 1888 // bx $scratch 1889 unsigned SrcReg = MI->getOperand(0).getReg(); 1890 unsigned ScratchReg = MI->getOperand(1).getReg(); 1891 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1892 .addReg(ARM::SP) 1893 .addReg(SrcReg) 1894 .addImm(8) 1895 // Predicate. 1896 .addImm(ARMCC::AL) 1897 .addReg(0)); 1898 1899 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1900 .addReg(ScratchReg) 1901 .addReg(SrcReg) 1902 .addImm(4) 1903 // Predicate. 1904 .addImm(ARMCC::AL) 1905 .addReg(0)); 1906 1907 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1908 // These platforms always use the same frame register 1909 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1910 .addReg(FramePtr) 1911 .addReg(SrcReg) 1912 .addImm(0) 1913 // Predicate. 1914 .addImm(ARMCC::AL) 1915 .addReg(0)); 1916 } else { 1917 // If the calling code might use either R7 or R11 as 1918 // frame pointer register, restore it into both. 1919 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1920 .addReg(ARM::R7) 1921 .addReg(SrcReg) 1922 .addImm(0) 1923 // Predicate. 1924 .addImm(ARMCC::AL) 1925 .addReg(0)); 1926 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1927 .addReg(ARM::R11) 1928 .addReg(SrcReg) 1929 .addImm(0) 1930 // Predicate. 1931 .addImm(ARMCC::AL) 1932 .addReg(0)); 1933 } 1934 1935 assert(Subtarget->hasV4TOps()); 1936 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1937 .addReg(ScratchReg) 1938 // Predicate. 1939 .addImm(ARMCC::AL) 1940 .addReg(0)); 1941 return; 1942 } 1943 case ARM::tInt_eh_sjlj_longjmp: { 1944 // ldr $scratch, [$src, #8] 1945 // mov sp, $scratch 1946 // ldr $scratch, [$src, #4] 1947 // ldr r7, [$src] 1948 // bx $scratch 1949 unsigned SrcReg = MI->getOperand(0).getReg(); 1950 unsigned ScratchReg = MI->getOperand(1).getReg(); 1951 1952 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1953 .addReg(ScratchReg) 1954 .addReg(SrcReg) 1955 // The offset immediate is #8. The operand value is scaled by 4 for the 1956 // tLDR instruction. 1957 .addImm(2) 1958 // Predicate. 1959 .addImm(ARMCC::AL) 1960 .addReg(0)); 1961 1962 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1963 .addReg(ARM::SP) 1964 .addReg(ScratchReg) 1965 // Predicate. 1966 .addImm(ARMCC::AL) 1967 .addReg(0)); 1968 1969 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1970 .addReg(ScratchReg) 1971 .addReg(SrcReg) 1972 .addImm(1) 1973 // Predicate. 1974 .addImm(ARMCC::AL) 1975 .addReg(0)); 1976 1977 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1978 // These platforms always use the same frame register 1979 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1980 .addReg(FramePtr) 1981 .addReg(SrcReg) 1982 .addImm(0) 1983 // Predicate. 1984 .addImm(ARMCC::AL) 1985 .addReg(0)); 1986 } else { 1987 // If the calling code might use either R7 or R11 as 1988 // frame pointer register, restore it into both. 1989 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1990 .addReg(ARM::R7) 1991 .addReg(SrcReg) 1992 .addImm(0) 1993 // Predicate. 1994 .addImm(ARMCC::AL) 1995 .addReg(0)); 1996 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1997 .addReg(ARM::R11) 1998 .addReg(SrcReg) 1999 .addImm(0) 2000 // Predicate. 2001 .addImm(ARMCC::AL) 2002 .addReg(0)); 2003 } 2004 2005 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2006 .addReg(ScratchReg) 2007 // Predicate. 2008 .addImm(ARMCC::AL) 2009 .addReg(0)); 2010 return; 2011 } 2012 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2013 // ldr.w r11, [$src, #0] 2014 // ldr.w sp, [$src, #8] 2015 // ldr.w pc, [$src, #4] 2016 2017 unsigned SrcReg = MI->getOperand(0).getReg(); 2018 2019 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2020 .addReg(ARM::R11) 2021 .addReg(SrcReg) 2022 .addImm(0) 2023 // Predicate 2024 .addImm(ARMCC::AL) 2025 .addReg(0)); 2026 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2027 .addReg(ARM::SP) 2028 .addReg(SrcReg) 2029 .addImm(8) 2030 // Predicate 2031 .addImm(ARMCC::AL) 2032 .addReg(0)); 2033 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2034 .addReg(ARM::PC) 2035 .addReg(SrcReg) 2036 .addImm(4) 2037 // Predicate 2038 .addImm(ARMCC::AL) 2039 .addReg(0)); 2040 return; 2041 } 2042 case ARM::PATCHABLE_FUNCTION_ENTER: 2043 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2044 return; 2045 case ARM::PATCHABLE_FUNCTION_EXIT: 2046 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2047 return; 2048 case ARM::PATCHABLE_TAIL_CALL: 2049 LowerPATCHABLE_TAIL_CALL(*MI); 2050 return; 2051 } 2052 2053 MCInst TmpInst; 2054 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2055 2056 EmitToStreamer(*OutStreamer, TmpInst); 2057 } 2058 2059 //===----------------------------------------------------------------------===// 2060 // Target Registry Stuff 2061 //===----------------------------------------------------------------------===// 2062 2063 // Force static initialization. 2064 extern "C" void LLVMInitializeARMAsmPrinter() { 2065 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2066 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2067 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2068 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2069 } 2070