1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/COFF.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ELF.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/TargetParser.h" 51 #include "llvm/Support/TargetRegistry.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cctype> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 60 std::unique_ptr<MCStreamer> Streamer) 61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 62 InConstantPool(false), OptimizationGoals(-1) {} 63 64 void ARMAsmPrinter::EmitFunctionBodyEnd() { 65 // Make sure to terminate any constant pools that were at the end 66 // of the function. 67 if (!InConstantPool) 68 return; 69 InConstantPool = false; 70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 71 } 72 73 void ARMAsmPrinter::EmitFunctionEntryLabel() { 74 if (AFI->isThumbFunction()) { 75 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 76 OutStreamer->EmitThumbFunc(CurrentFnSym); 77 } else { 78 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 79 } 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 101 if (PromotedGlobals.count(GV)) 102 // The global was promoted into a constant pool. It should not be emitted. 103 return; 104 AsmPrinter::EmitGlobalVariable(GV); 105 } 106 107 /// runOnMachineFunction - This uses the EmitInstruction() 108 /// method to print assembly for each instruction. 109 /// 110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 111 AFI = MF.getInfo<ARMFunctionInfo>(); 112 MCP = MF.getConstantPool(); 113 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 114 115 SetupMachineFunction(MF); 116 const Function* F = MF.getFunction(); 117 const TargetMachine& TM = MF.getTarget(); 118 119 // Collect all globals that had their storage promoted to a constant pool. 120 // Functions are emitted before variables, so this accumulates promoted 121 // globals from all functions in PromotedGlobals. 122 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 123 PromotedGlobals.insert(GV); 124 125 // Calculate this function's optimization goal. 126 unsigned OptimizationGoal; 127 if (F->hasFnAttribute(Attribute::OptimizeNone)) 128 // For best debugging illusion, speed and small size sacrificed 129 OptimizationGoal = 6; 130 else if (F->optForMinSize()) 131 // Aggressively for small size, speed and debug illusion sacrificed 132 OptimizationGoal = 4; 133 else if (F->optForSize()) 134 // For small size, but speed and debugging illusion preserved 135 OptimizationGoal = 3; 136 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 137 // Aggressively for speed, small size and debug illusion sacrificed 138 OptimizationGoal = 2; 139 else if (TM.getOptLevel() > CodeGenOpt::None) 140 // For speed, but small size and good debug illusion preserved 141 OptimizationGoal = 1; 142 else // TM.getOptLevel() == CodeGenOpt::None 143 // For good debugging, but speed and small size preserved 144 OptimizationGoal = 5; 145 146 // Combine a new optimization goal with existing ones. 147 if (OptimizationGoals == -1) // uninitialized goals 148 OptimizationGoals = OptimizationGoal; 149 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 150 OptimizationGoals = 0; 151 152 if (Subtarget->isTargetCOFF()) { 153 bool Internal = F->hasInternalLinkage(); 154 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 155 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 156 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 157 158 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 159 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 160 OutStreamer->EmitCOFFSymbolType(Type); 161 OutStreamer->EndCOFFSymbolDef(); 162 } 163 164 // Emit the rest of the function body. 165 EmitFunctionBody(); 166 167 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 168 // These are created per function, rather than per TU, since it's 169 // relatively easy to exceed the thumb branch range within a TU. 170 if (! ThumbIndirectPads.empty()) { 171 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 172 EmitAlignment(1); 173 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 174 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 175 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 176 .addReg(ThumbIndirectPads[i].first) 177 // Add predicate operands. 178 .addImm(ARMCC::AL) 179 .addReg(0)); 180 } 181 ThumbIndirectPads.clear(); 182 } 183 184 // We didn't modify anything. 185 return false; 186 } 187 188 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 189 raw_ostream &O) { 190 const MachineOperand &MO = MI->getOperand(OpNum); 191 unsigned TF = MO.getTargetFlags(); 192 193 switch (MO.getType()) { 194 default: llvm_unreachable("<unknown operand type>"); 195 case MachineOperand::MO_Register: { 196 unsigned Reg = MO.getReg(); 197 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 198 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 199 if(ARM::GPRPairRegClass.contains(Reg)) { 200 const MachineFunction &MF = *MI->getParent()->getParent(); 201 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 202 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 203 } 204 O << ARMInstPrinter::getRegisterName(Reg); 205 break; 206 } 207 case MachineOperand::MO_Immediate: { 208 int64_t Imm = MO.getImm(); 209 O << '#'; 210 if (TF == ARMII::MO_LO16) 211 O << ":lower16:"; 212 else if (TF == ARMII::MO_HI16) 213 O << ":upper16:"; 214 O << Imm; 215 break; 216 } 217 case MachineOperand::MO_MachineBasicBlock: 218 MO.getMBB()->getSymbol()->print(O, MAI); 219 return; 220 case MachineOperand::MO_GlobalAddress: { 221 const GlobalValue *GV = MO.getGlobal(); 222 if (TF & ARMII::MO_LO16) 223 O << ":lower16:"; 224 else if (TF & ARMII::MO_HI16) 225 O << ":upper16:"; 226 GetARMGVSymbol(GV, TF)->print(O, MAI); 227 228 printOffset(MO.getOffset(), O); 229 break; 230 } 231 case MachineOperand::MO_ConstantPoolIndex: 232 if (Subtarget->genExecuteOnly()) 233 llvm_unreachable("execute-only should not generate constant pools"); 234 GetCPISymbol(MO.getIndex())->print(O, MAI); 235 break; 236 } 237 } 238 239 //===--------------------------------------------------------------------===// 240 241 MCSymbol *ARMAsmPrinter:: 242 GetARMJTIPICJumpTableLabel(unsigned uid) const { 243 const DataLayout &DL = getDataLayout(); 244 SmallString<60> Name; 245 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 246 << getFunctionNumber() << '_' << uid; 247 return OutContext.getOrCreateSymbol(Name); 248 } 249 250 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 251 unsigned AsmVariant, const char *ExtraCode, 252 raw_ostream &O) { 253 // Does this asm operand have a single letter operand modifier? 254 if (ExtraCode && ExtraCode[0]) { 255 if (ExtraCode[1] != 0) return true; // Unknown modifier. 256 257 switch (ExtraCode[0]) { 258 default: 259 // See if this is a generic print operand 260 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 261 case 'a': // Print as a memory address. 262 if (MI->getOperand(OpNum).isReg()) { 263 O << "[" 264 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 265 << "]"; 266 return false; 267 } 268 LLVM_FALLTHROUGH; 269 case 'c': // Don't print "#" before an immediate operand. 270 if (!MI->getOperand(OpNum).isImm()) 271 return true; 272 O << MI->getOperand(OpNum).getImm(); 273 return false; 274 case 'P': // Print a VFP double precision register. 275 case 'q': // Print a NEON quad precision register. 276 printOperand(MI, OpNum, O); 277 return false; 278 case 'y': // Print a VFP single precision register as indexed double. 279 if (MI->getOperand(OpNum).isReg()) { 280 unsigned Reg = MI->getOperand(OpNum).getReg(); 281 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 282 // Find the 'd' register that has this 's' register as a sub-register, 283 // and determine the lane number. 284 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 285 if (!ARM::DPRRegClass.contains(*SR)) 286 continue; 287 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 288 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 289 return false; 290 } 291 } 292 return true; 293 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 294 if (!MI->getOperand(OpNum).isImm()) 295 return true; 296 O << ~(MI->getOperand(OpNum).getImm()); 297 return false; 298 case 'L': // The low 16 bits of an immediate constant. 299 if (!MI->getOperand(OpNum).isImm()) 300 return true; 301 O << (MI->getOperand(OpNum).getImm() & 0xffff); 302 return false; 303 case 'M': { // A register range suitable for LDM/STM. 304 if (!MI->getOperand(OpNum).isReg()) 305 return true; 306 const MachineOperand &MO = MI->getOperand(OpNum); 307 unsigned RegBegin = MO.getReg(); 308 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 309 // already got the operands in registers that are operands to the 310 // inline asm statement. 311 O << "{"; 312 if (ARM::GPRPairRegClass.contains(RegBegin)) { 313 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 314 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 315 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 316 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 317 } 318 O << ARMInstPrinter::getRegisterName(RegBegin); 319 320 // FIXME: The register allocator not only may not have given us the 321 // registers in sequence, but may not be in ascending registers. This 322 // will require changes in the register allocator that'll need to be 323 // propagated down here if the operands change. 324 unsigned RegOps = OpNum + 1; 325 while (MI->getOperand(RegOps).isReg()) { 326 O << ", " 327 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 328 RegOps++; 329 } 330 331 O << "}"; 332 333 return false; 334 } 335 case 'R': // The most significant register of a pair. 336 case 'Q': { // The least significant register of a pair. 337 if (OpNum == 0) 338 return true; 339 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 340 if (!FlagsOP.isImm()) 341 return true; 342 unsigned Flags = FlagsOP.getImm(); 343 344 // This operand may not be the one that actually provides the register. If 345 // it's tied to a previous one then we should refer instead to that one 346 // for registers and their classes. 347 unsigned TiedIdx; 348 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 349 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 350 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 351 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 352 } 353 Flags = MI->getOperand(OpNum).getImm(); 354 355 // Later code expects OpNum to be pointing at the register rather than 356 // the flags. 357 OpNum += 1; 358 } 359 360 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 361 unsigned RC; 362 InlineAsm::hasRegClassConstraint(Flags, RC); 363 if (RC == ARM::GPRPairRegClassID) { 364 if (NumVals != 1) 365 return true; 366 const MachineOperand &MO = MI->getOperand(OpNum); 367 if (!MO.isReg()) 368 return true; 369 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 370 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 371 ARM::gsub_0 : ARM::gsub_1); 372 O << ARMInstPrinter::getRegisterName(Reg); 373 return false; 374 } 375 if (NumVals != 2) 376 return true; 377 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 378 if (RegOp >= MI->getNumOperands()) 379 return true; 380 const MachineOperand &MO = MI->getOperand(RegOp); 381 if (!MO.isReg()) 382 return true; 383 unsigned Reg = MO.getReg(); 384 O << ARMInstPrinter::getRegisterName(Reg); 385 return false; 386 } 387 388 case 'e': // The low doubleword register of a NEON quad register. 389 case 'f': { // The high doubleword register of a NEON quad register. 390 if (!MI->getOperand(OpNum).isReg()) 391 return true; 392 unsigned Reg = MI->getOperand(OpNum).getReg(); 393 if (!ARM::QPRRegClass.contains(Reg)) 394 return true; 395 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 396 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 397 ARM::dsub_0 : ARM::dsub_1); 398 O << ARMInstPrinter::getRegisterName(SubReg); 399 return false; 400 } 401 402 // This modifier is not yet supported. 403 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 404 return true; 405 case 'H': { // The highest-numbered register of a pair. 406 const MachineOperand &MO = MI->getOperand(OpNum); 407 if (!MO.isReg()) 408 return true; 409 const MachineFunction &MF = *MI->getParent()->getParent(); 410 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 411 unsigned Reg = MO.getReg(); 412 if(!ARM::GPRPairRegClass.contains(Reg)) 413 return false; 414 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 415 O << ARMInstPrinter::getRegisterName(Reg); 416 return false; 417 } 418 } 419 } 420 421 printOperand(MI, OpNum, O); 422 return false; 423 } 424 425 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 426 unsigned OpNum, unsigned AsmVariant, 427 const char *ExtraCode, 428 raw_ostream &O) { 429 // Does this asm operand have a single letter operand modifier? 430 if (ExtraCode && ExtraCode[0]) { 431 if (ExtraCode[1] != 0) return true; // Unknown modifier. 432 433 switch (ExtraCode[0]) { 434 case 'A': // A memory operand for a VLD1/VST1 instruction. 435 default: return true; // Unknown modifier. 436 case 'm': // The base register of a memory operand. 437 if (!MI->getOperand(OpNum).isReg()) 438 return true; 439 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 440 return false; 441 } 442 } 443 444 const MachineOperand &MO = MI->getOperand(OpNum); 445 assert(MO.isReg() && "unexpected inline asm memory operand"); 446 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 447 return false; 448 } 449 450 static bool isThumb(const MCSubtargetInfo& STI) { 451 return STI.getFeatureBits()[ARM::ModeThumb]; 452 } 453 454 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 455 const MCSubtargetInfo *EndInfo) const { 456 // If either end mode is unknown (EndInfo == NULL) or different than 457 // the start mode, then restore the start mode. 458 const bool WasThumb = isThumb(StartInfo); 459 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 460 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 461 } 462 } 463 464 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 465 const Triple &TT = TM.getTargetTriple(); 466 // Use unified assembler syntax. 467 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 468 469 // Emit ARM Build Attributes 470 if (TT.isOSBinFormatELF()) 471 emitAttributes(); 472 473 // Use the triple's architecture and subarchitecture to determine 474 // if we're thumb for the purposes of the top level code16 assembler 475 // flag. 476 bool isThumb = TT.getArch() == Triple::thumb || 477 TT.getArch() == Triple::thumbeb || 478 TT.getSubArch() == Triple::ARMSubArch_v7m || 479 TT.getSubArch() == Triple::ARMSubArch_v6m; 480 if (!M.getModuleInlineAsm().empty() && isThumb) 481 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 482 } 483 484 static void 485 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 486 MachineModuleInfoImpl::StubValueTy &MCSym) { 487 // L_foo$stub: 488 OutStreamer.EmitLabel(StubLabel); 489 // .indirect_symbol _foo 490 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 491 492 if (MCSym.getInt()) 493 // External to current translation unit. 494 OutStreamer.EmitIntValue(0, 4/*size*/); 495 else 496 // Internal to current translation unit. 497 // 498 // When we place the LSDA into the TEXT section, the type info 499 // pointers need to be indirect and pc-rel. We accomplish this by 500 // using NLPs; however, sometimes the types are local to the file. 501 // We need to fill in the value for the NLP in those cases. 502 OutStreamer.EmitValue( 503 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 504 4 /*size*/); 505 } 506 507 508 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 509 const Triple &TT = TM.getTargetTriple(); 510 if (TT.isOSBinFormatMachO()) { 511 // All darwin targets use mach-o. 512 const TargetLoweringObjectFileMachO &TLOFMacho = 513 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 514 MachineModuleInfoMachO &MMIMacho = 515 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 516 517 // Output non-lazy-pointers for external and common global variables. 518 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 519 520 if (!Stubs.empty()) { 521 // Switch with ".non_lazy_symbol_pointer" directive. 522 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 523 EmitAlignment(2); 524 525 for (auto &Stub : Stubs) 526 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 527 528 Stubs.clear(); 529 OutStreamer->AddBlankLine(); 530 } 531 532 Stubs = MMIMacho.GetThreadLocalGVStubList(); 533 if (!Stubs.empty()) { 534 // Switch with ".non_lazy_symbol_pointer" directive. 535 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 536 EmitAlignment(2); 537 538 for (auto &Stub : Stubs) 539 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 540 541 Stubs.clear(); 542 OutStreamer->AddBlankLine(); 543 } 544 545 // Funny Darwin hack: This flag tells the linker that no global symbols 546 // contain code that falls through to other global symbols (e.g. the obvious 547 // implementation of multiple entry points). If this doesn't occur, the 548 // linker can safely perform dead code stripping. Since LLVM never 549 // generates code that does this, it is always safe to set. 550 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 551 } 552 553 if (TT.isOSBinFormatCOFF()) { 554 const auto &TLOF = 555 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering()); 556 557 std::string Flags; 558 raw_string_ostream OS(Flags); 559 560 for (const auto &Function : M) 561 TLOF.emitLinkerFlagsForGlobal(OS, &Function); 562 for (const auto &Global : M.globals()) 563 TLOF.emitLinkerFlagsForGlobal(OS, &Global); 564 for (const auto &Alias : M.aliases()) 565 TLOF.emitLinkerFlagsForGlobal(OS, &Alias); 566 567 OS.flush(); 568 569 // Output collected flags 570 if (!Flags.empty()) { 571 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 572 OutStreamer->EmitBytes(Flags); 573 } 574 } 575 576 // The last attribute to be emitted is ABI_optimization_goals 577 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 578 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 579 580 if (OptimizationGoals > 0 && 581 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 582 Subtarget->isTargetMuslAEABI())) 583 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 584 OptimizationGoals = -1; 585 586 ATS.finishAttributeSection(); 587 } 588 589 static bool isV8M(const ARMSubtarget *Subtarget) { 590 // Note that v8M Baseline is a subset of v6T2! 591 return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) || 592 Subtarget->hasV8MMainlineOps(); 593 } 594 595 //===----------------------------------------------------------------------===// 596 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 597 // FIXME: 598 // The following seem like one-off assembler flags, but they actually need 599 // to appear in the .ARM.attributes section in ELF. 600 // Instead of subclassing the MCELFStreamer, we do the work here. 601 602 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 603 const ARMSubtarget *Subtarget) { 604 if (CPU == "xscale") 605 return ARMBuildAttrs::v5TEJ; 606 607 if (Subtarget->hasV8Ops()) { 608 if (Subtarget->isRClass()) 609 return ARMBuildAttrs::v8_R; 610 return ARMBuildAttrs::v8_A; 611 } else if (Subtarget->hasV8MMainlineOps()) 612 return ARMBuildAttrs::v8_M_Main; 613 else if (Subtarget->hasV7Ops()) { 614 if (Subtarget->isMClass() && Subtarget->hasDSP()) 615 return ARMBuildAttrs::v7E_M; 616 return ARMBuildAttrs::v7; 617 } else if (Subtarget->hasV6T2Ops()) 618 return ARMBuildAttrs::v6T2; 619 else if (Subtarget->hasV8MBaselineOps()) 620 return ARMBuildAttrs::v8_M_Base; 621 else if (Subtarget->hasV6MOps()) 622 return ARMBuildAttrs::v6S_M; 623 else if (Subtarget->hasV6Ops()) 624 return ARMBuildAttrs::v6; 625 else if (Subtarget->hasV5TEOps()) 626 return ARMBuildAttrs::v5TE; 627 else if (Subtarget->hasV5TOps()) 628 return ARMBuildAttrs::v5T; 629 else if (Subtarget->hasV4TOps()) 630 return ARMBuildAttrs::v4T; 631 else 632 return ARMBuildAttrs::v4; 633 } 634 635 // Returns true if all functions have the same function attribute value. 636 // It also returns true when the module has no functions. 637 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 638 StringRef Value) { 639 return !any_of(M, [&](const Function &F) { 640 return F.getFnAttribute(Attr).getValueAsString() != Value; 641 }); 642 } 643 644 void ARMAsmPrinter::emitAttributes() { 645 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 646 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 647 648 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 649 650 ATS.switchVendor("aeabi"); 651 652 // Compute ARM ELF Attributes based on the default subtarget that 653 // we'd have constructed. The existing ARM behavior isn't LTO clean 654 // anyhow. 655 // FIXME: For ifunc related functions we could iterate over and look 656 // for a feature string that doesn't match the default one. 657 const Triple &TT = TM.getTargetTriple(); 658 StringRef CPU = TM.getTargetCPU(); 659 StringRef FS = TM.getTargetFeatureString(); 660 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 661 if (!FS.empty()) { 662 if (!ArchFS.empty()) 663 ArchFS = (Twine(ArchFS) + "," + FS).str(); 664 else 665 ArchFS = FS; 666 } 667 const ARMBaseTargetMachine &ATM = 668 static_cast<const ARMBaseTargetMachine &>(TM); 669 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 670 671 const std::string &CPUString = STI.getCPUString(); 672 673 if (!StringRef(CPUString).startswith("generic")) { 674 // FIXME: remove krait check when GNU tools support krait cpu 675 if (STI.isKrait()) { 676 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 677 // We consider krait as a "cortex-a9" + hwdiv CPU 678 // Enable hwdiv through ".arch_extension idiv" 679 if (STI.hasDivide() || STI.hasDivideInARMMode()) 680 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM); 681 } else 682 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 683 } 684 685 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 686 687 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 688 // profile is not applicable (e.g. pre v7, or cross-profile code)". 689 if (STI.hasV7Ops() || isV8M(&STI)) { 690 if (STI.isAClass()) { 691 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 692 ARMBuildAttrs::ApplicationProfile); 693 } else if (STI.isRClass()) { 694 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 695 ARMBuildAttrs::RealTimeProfile); 696 } else if (STI.isMClass()) { 697 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 698 ARMBuildAttrs::MicroControllerProfile); 699 } 700 } 701 702 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 703 STI.hasARMOps() ? ARMBuildAttrs::Allowed 704 : ARMBuildAttrs::Not_Allowed); 705 if (isV8M(&STI)) { 706 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 707 ARMBuildAttrs::AllowThumbDerived); 708 } else if (STI.isThumb1Only()) { 709 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 710 } else if (STI.hasThumb2()) { 711 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 712 ARMBuildAttrs::AllowThumb32); 713 } 714 715 if (STI.hasNEON()) { 716 /* NEON is not exactly a VFP architecture, but GAS emit one of 717 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 718 if (STI.hasFPARMv8()) { 719 if (STI.hasCrypto()) 720 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 721 else 722 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 723 } else if (STI.hasVFP4()) 724 ATS.emitFPU(ARM::FK_NEON_VFPV4); 725 else 726 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 727 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 728 if (STI.hasV8Ops()) 729 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 730 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 731 ARMBuildAttrs::AllowNeonARMv8); 732 } else { 733 if (STI.hasFPARMv8()) 734 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 735 // FPU, but there are two different names for it depending on the CPU. 736 ATS.emitFPU(STI.hasD16() 737 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 738 : ARM::FK_FP_ARMV8); 739 else if (STI.hasVFP4()) 740 ATS.emitFPU(STI.hasD16() 741 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 742 : ARM::FK_VFPV4); 743 else if (STI.hasVFP3()) 744 ATS.emitFPU(STI.hasD16() 745 // +d16 746 ? (STI.isFPOnlySP() 747 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 748 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 749 // -d16 750 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 751 else if (STI.hasVFP2()) 752 ATS.emitFPU(ARM::FK_VFPV2); 753 } 754 755 // RW data addressing. 756 if (isPositionIndependent()) { 757 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 758 ARMBuildAttrs::AddressRWPCRel); 759 } else if (STI.isRWPI()) { 760 // RWPI specific attributes. 761 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 762 ARMBuildAttrs::AddressRWSBRel); 763 } 764 765 // RO data addressing. 766 if (isPositionIndependent() || STI.isROPI()) { 767 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 768 ARMBuildAttrs::AddressROPCRel); 769 } 770 771 // GOT use. 772 if (isPositionIndependent()) { 773 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 774 ARMBuildAttrs::AddressGOT); 775 } else { 776 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 777 ARMBuildAttrs::AddressDirect); 778 } 779 780 // Set FP Denormals. 781 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 782 "denormal-fp-math", 783 "preserve-sign") || 784 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 785 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 786 ARMBuildAttrs::PreserveFPSign); 787 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 788 "denormal-fp-math", 789 "positive-zero") || 790 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 791 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 792 ARMBuildAttrs::PositiveZero); 793 else if (!TM.Options.UnsafeFPMath) 794 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 795 ARMBuildAttrs::IEEEDenormals); 796 else { 797 if (!STI.hasVFP2()) { 798 // When the target doesn't have an FPU (by design or 799 // intention), the assumptions made on the software support 800 // mirror that of the equivalent hardware support *if it 801 // existed*. For v7 and better we indicate that denormals are 802 // flushed preserving sign, and for V6 we indicate that 803 // denormals are flushed to positive zero. 804 if (STI.hasV7Ops()) 805 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 806 ARMBuildAttrs::PreserveFPSign); 807 } else if (STI.hasVFP3()) { 808 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 809 // the sign bit of the zero matches the sign bit of the input or 810 // result that is being flushed to zero. 811 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 812 ARMBuildAttrs::PreserveFPSign); 813 } 814 // For VFPv2 implementations it is implementation defined as 815 // to whether denormals are flushed to positive zero or to 816 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 817 // LLVM has chosen to flush this to positive zero (most likely for 818 // GCC compatibility), so that's the chosen value here (the 819 // absence of its emission implies zero). 820 } 821 822 // Set FP exceptions and rounding 823 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 824 "no-trapping-math", "true") || 825 TM.Options.NoTrappingFPMath) 826 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 827 ARMBuildAttrs::Not_Allowed); 828 else if (!TM.Options.UnsafeFPMath) { 829 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 830 831 // If the user has permitted this code to choose the IEEE 754 832 // rounding at run-time, emit the rounding attribute. 833 if (TM.Options.HonorSignDependentRoundingFPMathOption) 834 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 835 } 836 837 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 838 // equivalent of GCC's -ffinite-math-only flag. 839 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 840 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 841 ARMBuildAttrs::Allowed); 842 else 843 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 844 ARMBuildAttrs::AllowIEE754); 845 846 if (STI.allowsUnalignedMem()) 847 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 848 ARMBuildAttrs::Allowed); 849 else 850 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 851 ARMBuildAttrs::Not_Allowed); 852 853 // FIXME: add more flags to ARMBuildAttributes.h 854 // 8-bytes alignment stuff. 855 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 856 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 857 858 // ABI_HardFP_use attribute to indicate single precision FP. 859 if (STI.isFPOnlySP()) 860 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 861 ARMBuildAttrs::HardFPSinglePrecision); 862 863 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 864 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 865 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 866 867 // FIXME: Should we signal R9 usage? 868 869 if (STI.hasFP16()) 870 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 871 872 // FIXME: To support emitting this build attribute as GCC does, the 873 // -mfp16-format option and associated plumbing must be 874 // supported. For now the __fp16 type is exposed by default, so this 875 // attribute should be emitted with value 1. 876 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 877 ARMBuildAttrs::FP16FormatIEEE); 878 879 if (STI.hasMPExtension()) 880 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 881 882 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 883 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 884 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 885 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 886 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 887 // otherwise, the default value (AllowDIVIfExists) applies. 888 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 889 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 890 891 if (STI.hasDSP() && isV8M(&STI)) 892 ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); 893 894 if (MMI) { 895 if (const Module *SourceModule = MMI->getModule()) { 896 // ABI_PCS_wchar_t to indicate wchar_t width 897 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 898 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 899 SourceModule->getModuleFlag("wchar_size"))) { 900 int WCharWidth = WCharWidthValue->getZExtValue(); 901 assert((WCharWidth == 2 || WCharWidth == 4) && 902 "wchar_t width must be 2 or 4 bytes"); 903 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 904 } 905 906 // ABI_enum_size to indicate enum width 907 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 908 // (all enums contain a value needing 32 bits to encode). 909 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 910 SourceModule->getModuleFlag("min_enum_size"))) { 911 int EnumWidth = EnumWidthValue->getZExtValue(); 912 assert((EnumWidth == 1 || EnumWidth == 4) && 913 "Minimum enum width must be 1 or 4 bytes"); 914 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 915 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 916 } 917 } 918 } 919 920 // We currently do not support using R9 as the TLS pointer. 921 if (STI.isRWPI()) 922 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 923 ARMBuildAttrs::R9IsSB); 924 else if (STI.isR9Reserved()) 925 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 926 ARMBuildAttrs::R9Reserved); 927 else 928 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 929 ARMBuildAttrs::R9IsGPR); 930 931 if (STI.hasTrustZone() && STI.hasVirtualization()) 932 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 933 ARMBuildAttrs::AllowTZVirtualization); 934 else if (STI.hasTrustZone()) 935 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 936 ARMBuildAttrs::AllowTZ); 937 else if (STI.hasVirtualization()) 938 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 939 ARMBuildAttrs::AllowVirtualization); 940 } 941 942 //===----------------------------------------------------------------------===// 943 944 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 945 unsigned LabelId, MCContext &Ctx) { 946 947 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 948 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 949 return Label; 950 } 951 952 static MCSymbolRefExpr::VariantKind 953 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 954 switch (Modifier) { 955 case ARMCP::no_modifier: 956 return MCSymbolRefExpr::VK_None; 957 case ARMCP::TLSGD: 958 return MCSymbolRefExpr::VK_TLSGD; 959 case ARMCP::TPOFF: 960 return MCSymbolRefExpr::VK_TPOFF; 961 case ARMCP::GOTTPOFF: 962 return MCSymbolRefExpr::VK_GOTTPOFF; 963 case ARMCP::SBREL: 964 return MCSymbolRefExpr::VK_ARM_SBREL; 965 case ARMCP::GOT_PREL: 966 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 967 case ARMCP::SECREL: 968 return MCSymbolRefExpr::VK_SECREL; 969 } 970 llvm_unreachable("Invalid ARMCPModifier!"); 971 } 972 973 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 974 unsigned char TargetFlags) { 975 if (Subtarget->isTargetMachO()) { 976 bool IsIndirect = 977 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 978 979 if (!IsIndirect) 980 return getSymbol(GV); 981 982 // FIXME: Remove this when Darwin transition to @GOT like syntax. 983 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 984 MachineModuleInfoMachO &MMIMachO = 985 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 986 MachineModuleInfoImpl::StubValueTy &StubSym = 987 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 988 : MMIMachO.getGVStubEntry(MCSym); 989 990 if (!StubSym.getPointer()) 991 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 992 !GV->hasInternalLinkage()); 993 return MCSym; 994 } else if (Subtarget->isTargetCOFF()) { 995 assert(Subtarget->isTargetWindows() && 996 "Windows is the only supported COFF target"); 997 998 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 999 if (!IsIndirect) 1000 return getSymbol(GV); 1001 1002 SmallString<128> Name; 1003 Name = "__imp_"; 1004 getNameWithPrefix(Name, GV); 1005 1006 return OutContext.getOrCreateSymbol(Name); 1007 } else if (Subtarget->isTargetELF()) { 1008 return getSymbol(GV); 1009 } 1010 llvm_unreachable("unexpected target"); 1011 } 1012 1013 void ARMAsmPrinter:: 1014 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1015 const DataLayout &DL = getDataLayout(); 1016 int Size = DL.getTypeAllocSize(MCPV->getType()); 1017 1018 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 1019 1020 if (ACPV->isPromotedGlobal()) { 1021 // This constant pool entry is actually a global whose storage has been 1022 // promoted into the constant pool. This global may be referenced still 1023 // by debug information, and due to the way AsmPrinter is set up, the debug 1024 // info is immutable by the time we decide to promote globals to constant 1025 // pools. Because of this, we need to ensure we emit a symbol for the global 1026 // with private linkage (the default) so debug info can refer to it. 1027 // 1028 // However, if this global is promoted into several functions we must ensure 1029 // we don't try and emit duplicate symbols! 1030 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 1031 auto *GV = ACPC->getPromotedGlobal(); 1032 if (!EmittedPromotedGlobalLabels.count(GV)) { 1033 MCSymbol *GVSym = getSymbol(GV); 1034 OutStreamer->EmitLabel(GVSym); 1035 EmittedPromotedGlobalLabels.insert(GV); 1036 } 1037 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 1038 } 1039 1040 MCSymbol *MCSym; 1041 if (ACPV->isLSDA()) { 1042 MCSym = getCurExceptionSym(); 1043 } else if (ACPV->isBlockAddress()) { 1044 const BlockAddress *BA = 1045 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 1046 MCSym = GetBlockAddressSymbol(BA); 1047 } else if (ACPV->isGlobalValue()) { 1048 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 1049 1050 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 1051 // flag the global as MO_NONLAZY. 1052 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 1053 MCSym = GetARMGVSymbol(GV, TF); 1054 } else if (ACPV->isMachineBasicBlock()) { 1055 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 1056 MCSym = MBB->getSymbol(); 1057 } else { 1058 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 1059 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 1060 MCSym = GetExternalSymbolSymbol(Sym); 1061 } 1062 1063 // Create an MCSymbol for the reference. 1064 const MCExpr *Expr = 1065 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 1066 OutContext); 1067 1068 if (ACPV->getPCAdjustment()) { 1069 MCSymbol *PCLabel = 1070 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1071 ACPV->getLabelId(), OutContext); 1072 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 1073 PCRelExpr = 1074 MCBinaryExpr::createAdd(PCRelExpr, 1075 MCConstantExpr::create(ACPV->getPCAdjustment(), 1076 OutContext), 1077 OutContext); 1078 if (ACPV->mustAddCurrentAddress()) { 1079 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 1080 // label, so just emit a local label end reference that instead. 1081 MCSymbol *DotSym = OutContext.createTempSymbol(); 1082 OutStreamer->EmitLabel(DotSym); 1083 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 1084 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 1085 } 1086 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 1087 } 1088 OutStreamer->EmitValue(Expr, Size); 1089 } 1090 1091 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 1092 const MachineOperand &MO1 = MI->getOperand(1); 1093 unsigned JTI = MO1.getIndex(); 1094 1095 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1096 // ARM mode tables. 1097 EmitAlignment(2); 1098 1099 // Emit a label for the jump table. 1100 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1101 OutStreamer->EmitLabel(JTISymbol); 1102 1103 // Mark the jump table as data-in-code. 1104 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1105 1106 // Emit each entry of the table. 1107 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1108 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1109 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1110 1111 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1112 MachineBasicBlock *MBB = JTBBs[i]; 1113 // Construct an MCExpr for the entry. We want a value of the form: 1114 // (BasicBlockAddr - TableBeginAddr) 1115 // 1116 // For example, a table with entries jumping to basic blocks BB0 and BB1 1117 // would look like: 1118 // LJTI_0_0: 1119 // .word (LBB0 - LJTI_0_0) 1120 // .word (LBB1 - LJTI_0_0) 1121 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1122 1123 if (isPositionIndependent() || Subtarget->isROPI()) 1124 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1125 OutContext), 1126 OutContext); 1127 // If we're generating a table of Thumb addresses in static relocation 1128 // model, we need to add one to keep interworking correctly. 1129 else if (AFI->isThumbFunction()) 1130 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1131 OutContext); 1132 OutStreamer->EmitValue(Expr, 4); 1133 } 1134 // Mark the end of jump table data-in-code region. 1135 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1136 } 1137 1138 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 1139 const MachineOperand &MO1 = MI->getOperand(1); 1140 unsigned JTI = MO1.getIndex(); 1141 1142 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1143 OutStreamer->EmitLabel(JTISymbol); 1144 1145 // Emit each entry of the table. 1146 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1147 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1148 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1149 1150 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1151 MachineBasicBlock *MBB = JTBBs[i]; 1152 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1153 OutContext); 1154 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1155 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1156 .addExpr(MBBSymbolExpr) 1157 .addImm(ARMCC::AL) 1158 .addReg(0)); 1159 } 1160 } 1161 1162 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1163 unsigned OffsetWidth) { 1164 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1165 const MachineOperand &MO1 = MI->getOperand(1); 1166 unsigned JTI = MO1.getIndex(); 1167 1168 if (Subtarget->isThumb1Only()) 1169 EmitAlignment(2); 1170 1171 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1172 OutStreamer->EmitLabel(JTISymbol); 1173 1174 // Emit each entry of the table. 1175 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1176 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1177 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1178 1179 // Mark the jump table as data-in-code. 1180 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1181 : MCDR_DataRegionJT16); 1182 1183 for (auto MBB : JTBBs) { 1184 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1185 OutContext); 1186 // Otherwise it's an offset from the dispatch instruction. Construct an 1187 // MCExpr for the entry. We want a value of the form: 1188 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1189 // 1190 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1191 // would look like: 1192 // LJTI_0_0: 1193 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1194 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1195 // where LCPI0_0 is a label defined just before the TBB instruction using 1196 // this table. 1197 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1198 const MCExpr *Expr = MCBinaryExpr::createAdd( 1199 MCSymbolRefExpr::create(TBInstPC, OutContext), 1200 MCConstantExpr::create(4, OutContext), OutContext); 1201 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1202 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1203 OutContext); 1204 OutStreamer->EmitValue(Expr, OffsetWidth); 1205 } 1206 // Mark the end of jump table data-in-code region. 32-bit offsets use 1207 // actual branch instructions here, so we don't mark those as a data-region 1208 // at all. 1209 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1210 1211 // Make sure the next instruction is 2-byte aligned. 1212 EmitAlignment(1); 1213 } 1214 1215 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1216 assert(MI->getFlag(MachineInstr::FrameSetup) && 1217 "Only instruction which are involved into frame setup code are allowed"); 1218 1219 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1220 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1221 const MachineFunction &MF = *MI->getParent()->getParent(); 1222 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1223 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1224 1225 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1226 unsigned Opc = MI->getOpcode(); 1227 unsigned SrcReg, DstReg; 1228 1229 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1230 // Two special cases: 1231 // 1) tPUSH does not have src/dst regs. 1232 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1233 // load. Yes, this is pretty fragile, but for now I don't see better 1234 // way... :( 1235 SrcReg = DstReg = ARM::SP; 1236 } else { 1237 SrcReg = MI->getOperand(1).getReg(); 1238 DstReg = MI->getOperand(0).getReg(); 1239 } 1240 1241 // Try to figure out the unwinding opcode out of src / dst regs. 1242 if (MI->mayStore()) { 1243 // Register saves. 1244 assert(DstReg == ARM::SP && 1245 "Only stack pointer as a destination reg is supported"); 1246 1247 SmallVector<unsigned, 4> RegList; 1248 // Skip src & dst reg, and pred ops. 1249 unsigned StartOp = 2 + 2; 1250 // Use all the operands. 1251 unsigned NumOffset = 0; 1252 1253 switch (Opc) { 1254 default: 1255 MI->dump(); 1256 llvm_unreachable("Unsupported opcode for unwinding information"); 1257 case ARM::tPUSH: 1258 // Special case here: no src & dst reg, but two extra imp ops. 1259 StartOp = 2; NumOffset = 2; 1260 case ARM::STMDB_UPD: 1261 case ARM::t2STMDB_UPD: 1262 case ARM::VSTMDDB_UPD: 1263 assert(SrcReg == ARM::SP && 1264 "Only stack pointer as a source reg is supported"); 1265 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1266 i != NumOps; ++i) { 1267 const MachineOperand &MO = MI->getOperand(i); 1268 // Actually, there should never be any impdef stuff here. Skip it 1269 // temporary to workaround PR11902. 1270 if (MO.isImplicit()) 1271 continue; 1272 RegList.push_back(MO.getReg()); 1273 } 1274 break; 1275 case ARM::STR_PRE_IMM: 1276 case ARM::STR_PRE_REG: 1277 case ARM::t2STR_PRE: 1278 assert(MI->getOperand(2).getReg() == ARM::SP && 1279 "Only stack pointer as a source reg is supported"); 1280 RegList.push_back(SrcReg); 1281 break; 1282 } 1283 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1284 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1285 } else { 1286 // Changes of stack / frame pointer. 1287 if (SrcReg == ARM::SP) { 1288 int64_t Offset = 0; 1289 switch (Opc) { 1290 default: 1291 MI->dump(); 1292 llvm_unreachable("Unsupported opcode for unwinding information"); 1293 case ARM::MOVr: 1294 case ARM::tMOVr: 1295 Offset = 0; 1296 break; 1297 case ARM::ADDri: 1298 case ARM::t2ADDri: 1299 Offset = -MI->getOperand(2).getImm(); 1300 break; 1301 case ARM::SUBri: 1302 case ARM::t2SUBri: 1303 Offset = MI->getOperand(2).getImm(); 1304 break; 1305 case ARM::tSUBspi: 1306 Offset = MI->getOperand(2).getImm()*4; 1307 break; 1308 case ARM::tADDspi: 1309 case ARM::tADDrSPi: 1310 Offset = -MI->getOperand(2).getImm()*4; 1311 break; 1312 case ARM::tLDRpci: { 1313 // Grab the constpool index and check, whether it corresponds to 1314 // original or cloned constpool entry. 1315 unsigned CPI = MI->getOperand(1).getIndex(); 1316 const MachineConstantPool *MCP = MF.getConstantPool(); 1317 if (CPI >= MCP->getConstants().size()) 1318 CPI = AFI.getOriginalCPIdx(CPI); 1319 assert(CPI != -1U && "Invalid constpool index"); 1320 1321 // Derive the actual offset. 1322 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1323 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1324 // FIXME: Check for user, it should be "add" instruction! 1325 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1326 break; 1327 } 1328 } 1329 1330 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1331 if (DstReg == FramePtr && FramePtr != ARM::SP) 1332 // Set-up of the frame pointer. Positive values correspond to "add" 1333 // instruction. 1334 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1335 else if (DstReg == ARM::SP) { 1336 // Change of SP by an offset. Positive values correspond to "sub" 1337 // instruction. 1338 ATS.emitPad(Offset); 1339 } else { 1340 // Move of SP to a register. Positive values correspond to an "add" 1341 // instruction. 1342 ATS.emitMovSP(DstReg, -Offset); 1343 } 1344 } 1345 } else if (DstReg == ARM::SP) { 1346 MI->dump(); 1347 llvm_unreachable("Unsupported opcode for unwinding information"); 1348 } 1349 else { 1350 MI->dump(); 1351 llvm_unreachable("Unsupported opcode for unwinding information"); 1352 } 1353 } 1354 } 1355 1356 // Simple pseudo-instructions have their lowering (with expansion to real 1357 // instructions) auto-generated. 1358 #include "ARMGenMCPseudoLowering.inc" 1359 1360 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1361 const DataLayout &DL = getDataLayout(); 1362 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1363 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1364 1365 // If we just ended a constant pool, mark it as such. 1366 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1367 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1368 InConstantPool = false; 1369 } 1370 1371 // Emit unwinding stuff for frame-related instructions 1372 if (Subtarget->isTargetEHABICompatible() && 1373 MI->getFlag(MachineInstr::FrameSetup)) 1374 EmitUnwindingInstruction(MI); 1375 1376 // Do any auto-generated pseudo lowerings. 1377 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1378 return; 1379 1380 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1381 "Pseudo flag setting opcode should be expanded early"); 1382 1383 // Check for manual lowerings. 1384 unsigned Opc = MI->getOpcode(); 1385 switch (Opc) { 1386 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1387 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1388 case ARM::LEApcrel: 1389 case ARM::tLEApcrel: 1390 case ARM::t2LEApcrel: { 1391 // FIXME: Need to also handle globals and externals 1392 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1393 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1394 ARM::t2LEApcrel ? ARM::t2ADR 1395 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1396 : ARM::ADR)) 1397 .addReg(MI->getOperand(0).getReg()) 1398 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1399 // Add predicate operands. 1400 .addImm(MI->getOperand(2).getImm()) 1401 .addReg(MI->getOperand(3).getReg())); 1402 return; 1403 } 1404 case ARM::LEApcrelJT: 1405 case ARM::tLEApcrelJT: 1406 case ARM::t2LEApcrelJT: { 1407 MCSymbol *JTIPICSymbol = 1408 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1409 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1410 ARM::t2LEApcrelJT ? ARM::t2ADR 1411 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1412 : ARM::ADR)) 1413 .addReg(MI->getOperand(0).getReg()) 1414 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1415 // Add predicate operands. 1416 .addImm(MI->getOperand(2).getImm()) 1417 .addReg(MI->getOperand(3).getReg())); 1418 return; 1419 } 1420 // Darwin call instructions are just normal call instructions with different 1421 // clobber semantics (they clobber R9). 1422 case ARM::BX_CALL: { 1423 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1424 .addReg(ARM::LR) 1425 .addReg(ARM::PC) 1426 // Add predicate operands. 1427 .addImm(ARMCC::AL) 1428 .addReg(0) 1429 // Add 's' bit operand (always reg0 for this) 1430 .addReg(0)); 1431 1432 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1433 .addReg(MI->getOperand(0).getReg())); 1434 return; 1435 } 1436 case ARM::tBX_CALL: { 1437 if (Subtarget->hasV5TOps()) 1438 llvm_unreachable("Expected BLX to be selected for v5t+"); 1439 1440 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1441 // that the saved lr has its LSB set correctly (the arch doesn't 1442 // have blx). 1443 // So here we generate a bl to a small jump pad that does bx rN. 1444 // The jump pads are emitted after the function body. 1445 1446 unsigned TReg = MI->getOperand(0).getReg(); 1447 MCSymbol *TRegSym = nullptr; 1448 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1449 if (ThumbIndirectPads[i].first == TReg) { 1450 TRegSym = ThumbIndirectPads[i].second; 1451 break; 1452 } 1453 } 1454 1455 if (!TRegSym) { 1456 TRegSym = OutContext.createTempSymbol(); 1457 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1458 } 1459 1460 // Create a link-saving branch to the Reg Indirect Jump Pad. 1461 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1462 // Predicate comes first here. 1463 .addImm(ARMCC::AL).addReg(0) 1464 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1465 return; 1466 } 1467 case ARM::BMOVPCRX_CALL: { 1468 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1469 .addReg(ARM::LR) 1470 .addReg(ARM::PC) 1471 // Add predicate operands. 1472 .addImm(ARMCC::AL) 1473 .addReg(0) 1474 // Add 's' bit operand (always reg0 for this) 1475 .addReg(0)); 1476 1477 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1478 .addReg(ARM::PC) 1479 .addReg(MI->getOperand(0).getReg()) 1480 // Add predicate operands. 1481 .addImm(ARMCC::AL) 1482 .addReg(0) 1483 // Add 's' bit operand (always reg0 for this) 1484 .addReg(0)); 1485 return; 1486 } 1487 case ARM::BMOVPCB_CALL: { 1488 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1489 .addReg(ARM::LR) 1490 .addReg(ARM::PC) 1491 // Add predicate operands. 1492 .addImm(ARMCC::AL) 1493 .addReg(0) 1494 // Add 's' bit operand (always reg0 for this) 1495 .addReg(0)); 1496 1497 const MachineOperand &Op = MI->getOperand(0); 1498 const GlobalValue *GV = Op.getGlobal(); 1499 const unsigned TF = Op.getTargetFlags(); 1500 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1501 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1502 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1503 .addExpr(GVSymExpr) 1504 // Add predicate operands. 1505 .addImm(ARMCC::AL) 1506 .addReg(0)); 1507 return; 1508 } 1509 case ARM::MOVi16_ga_pcrel: 1510 case ARM::t2MOVi16_ga_pcrel: { 1511 MCInst TmpInst; 1512 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1513 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1514 1515 unsigned TF = MI->getOperand(1).getTargetFlags(); 1516 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1517 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1518 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1519 1520 MCSymbol *LabelSym = 1521 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1522 MI->getOperand(2).getImm(), OutContext); 1523 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1524 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1525 const MCExpr *PCRelExpr = 1526 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1527 MCBinaryExpr::createAdd(LabelSymExpr, 1528 MCConstantExpr::create(PCAdj, OutContext), 1529 OutContext), OutContext), OutContext); 1530 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1531 1532 // Add predicate operands. 1533 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1534 TmpInst.addOperand(MCOperand::createReg(0)); 1535 // Add 's' bit operand (always reg0 for this) 1536 TmpInst.addOperand(MCOperand::createReg(0)); 1537 EmitToStreamer(*OutStreamer, TmpInst); 1538 return; 1539 } 1540 case ARM::MOVTi16_ga_pcrel: 1541 case ARM::t2MOVTi16_ga_pcrel: { 1542 MCInst TmpInst; 1543 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1544 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1545 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1546 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1547 1548 unsigned TF = MI->getOperand(2).getTargetFlags(); 1549 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1550 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1551 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1552 1553 MCSymbol *LabelSym = 1554 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1555 MI->getOperand(3).getImm(), OutContext); 1556 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1557 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1558 const MCExpr *PCRelExpr = 1559 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1560 MCBinaryExpr::createAdd(LabelSymExpr, 1561 MCConstantExpr::create(PCAdj, OutContext), 1562 OutContext), OutContext), OutContext); 1563 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1564 // Add predicate operands. 1565 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1566 TmpInst.addOperand(MCOperand::createReg(0)); 1567 // Add 's' bit operand (always reg0 for this) 1568 TmpInst.addOperand(MCOperand::createReg(0)); 1569 EmitToStreamer(*OutStreamer, TmpInst); 1570 return; 1571 } 1572 case ARM::tPICADD: { 1573 // This is a pseudo op for a label + instruction sequence, which looks like: 1574 // LPC0: 1575 // add r0, pc 1576 // This adds the address of LPC0 to r0. 1577 1578 // Emit the label. 1579 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1580 getFunctionNumber(), 1581 MI->getOperand(2).getImm(), OutContext)); 1582 1583 // Form and emit the add. 1584 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1585 .addReg(MI->getOperand(0).getReg()) 1586 .addReg(MI->getOperand(0).getReg()) 1587 .addReg(ARM::PC) 1588 // Add predicate operands. 1589 .addImm(ARMCC::AL) 1590 .addReg(0)); 1591 return; 1592 } 1593 case ARM::PICADD: { 1594 // This is a pseudo op for a label + instruction sequence, which looks like: 1595 // LPC0: 1596 // add r0, pc, r0 1597 // This adds the address of LPC0 to r0. 1598 1599 // Emit the label. 1600 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1601 getFunctionNumber(), 1602 MI->getOperand(2).getImm(), OutContext)); 1603 1604 // Form and emit the add. 1605 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1606 .addReg(MI->getOperand(0).getReg()) 1607 .addReg(ARM::PC) 1608 .addReg(MI->getOperand(1).getReg()) 1609 // Add predicate operands. 1610 .addImm(MI->getOperand(3).getImm()) 1611 .addReg(MI->getOperand(4).getReg()) 1612 // Add 's' bit operand (always reg0 for this) 1613 .addReg(0)); 1614 return; 1615 } 1616 case ARM::PICSTR: 1617 case ARM::PICSTRB: 1618 case ARM::PICSTRH: 1619 case ARM::PICLDR: 1620 case ARM::PICLDRB: 1621 case ARM::PICLDRH: 1622 case ARM::PICLDRSB: 1623 case ARM::PICLDRSH: { 1624 // This is a pseudo op for a label + instruction sequence, which looks like: 1625 // LPC0: 1626 // OP r0, [pc, r0] 1627 // The LCP0 label is referenced by a constant pool entry in order to get 1628 // a PC-relative address at the ldr instruction. 1629 1630 // Emit the label. 1631 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1632 getFunctionNumber(), 1633 MI->getOperand(2).getImm(), OutContext)); 1634 1635 // Form and emit the load 1636 unsigned Opcode; 1637 switch (MI->getOpcode()) { 1638 default: 1639 llvm_unreachable("Unexpected opcode!"); 1640 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1641 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1642 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1643 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1644 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1645 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1646 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1647 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1648 } 1649 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1650 .addReg(MI->getOperand(0).getReg()) 1651 .addReg(ARM::PC) 1652 .addReg(MI->getOperand(1).getReg()) 1653 .addImm(0) 1654 // Add predicate operands. 1655 .addImm(MI->getOperand(3).getImm()) 1656 .addReg(MI->getOperand(4).getReg())); 1657 1658 return; 1659 } 1660 case ARM::CONSTPOOL_ENTRY: { 1661 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1662 /// in the function. The first operand is the ID# for this instruction, the 1663 /// second is the index into the MachineConstantPool that this is, the third 1664 /// is the size in bytes of this constant pool entry. 1665 /// The required alignment is specified on the basic block holding this MI. 1666 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1667 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1668 1669 // If this is the first entry of the pool, mark it. 1670 if (!InConstantPool) { 1671 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1672 InConstantPool = true; 1673 } 1674 1675 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1676 1677 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1678 if (MCPE.isMachineConstantPoolEntry()) 1679 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1680 else 1681 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1682 return; 1683 } 1684 case ARM::JUMPTABLE_ADDRS: 1685 EmitJumpTableAddrs(MI); 1686 return; 1687 case ARM::JUMPTABLE_INSTS: 1688 EmitJumpTableInsts(MI); 1689 return; 1690 case ARM::JUMPTABLE_TBB: 1691 case ARM::JUMPTABLE_TBH: 1692 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1693 return; 1694 case ARM::t2BR_JT: { 1695 // Lower and emit the instruction itself, then the jump table following it. 1696 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1697 .addReg(ARM::PC) 1698 .addReg(MI->getOperand(0).getReg()) 1699 // Add predicate operands. 1700 .addImm(ARMCC::AL) 1701 .addReg(0)); 1702 return; 1703 } 1704 case ARM::t2TBB_JT: 1705 case ARM::t2TBH_JT: { 1706 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1707 // Lower and emit the PC label, then the instruction itself. 1708 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1709 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1710 .addReg(MI->getOperand(0).getReg()) 1711 .addReg(MI->getOperand(1).getReg()) 1712 // Add predicate operands. 1713 .addImm(ARMCC::AL) 1714 .addReg(0)); 1715 return; 1716 } 1717 case ARM::tTBB_JT: 1718 case ARM::tTBH_JT: { 1719 1720 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1721 unsigned Base = MI->getOperand(0).getReg(); 1722 unsigned Idx = MI->getOperand(1).getReg(); 1723 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1724 1725 // Multiply up idx if necessary. 1726 if (!Is8Bit) 1727 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1728 .addReg(Idx) 1729 .addReg(ARM::CPSR) 1730 .addReg(Idx) 1731 .addImm(1) 1732 // Add predicate operands. 1733 .addImm(ARMCC::AL) 1734 .addReg(0)); 1735 1736 if (Base == ARM::PC) { 1737 // TBB [base, idx] = 1738 // ADDS idx, idx, base 1739 // LDRB idx, [idx, #4] ; or LDRH if TBH 1740 // LSLS idx, #1 1741 // ADDS pc, pc, idx 1742 1743 // When using PC as the base, it's important that there is no padding 1744 // between the last ADDS and the start of the jump table. The jump table 1745 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1746 // 1747 // FIXME: Ideally we could vary the LDRB index based on the padding 1748 // between the sequence and jump table, however that relies on MCExprs 1749 // for load indexes which are currently not supported. 1750 OutStreamer->EmitCodeAlignment(4); 1751 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1752 .addReg(Idx) 1753 .addReg(Idx) 1754 .addReg(Base) 1755 // Add predicate operands. 1756 .addImm(ARMCC::AL) 1757 .addReg(0)); 1758 1759 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1760 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1761 .addReg(Idx) 1762 .addReg(Idx) 1763 .addImm(Is8Bit ? 4 : 2) 1764 // Add predicate operands. 1765 .addImm(ARMCC::AL) 1766 .addReg(0)); 1767 } else { 1768 // TBB [base, idx] = 1769 // LDRB idx, [base, idx] ; or LDRH if TBH 1770 // LSLS idx, #1 1771 // ADDS pc, pc, idx 1772 1773 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1774 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1775 .addReg(Idx) 1776 .addReg(Base) 1777 .addReg(Idx) 1778 // Add predicate operands. 1779 .addImm(ARMCC::AL) 1780 .addReg(0)); 1781 } 1782 1783 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1784 .addReg(Idx) 1785 .addReg(ARM::CPSR) 1786 .addReg(Idx) 1787 .addImm(1) 1788 // Add predicate operands. 1789 .addImm(ARMCC::AL) 1790 .addReg(0)); 1791 1792 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1793 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1794 .addReg(ARM::PC) 1795 .addReg(ARM::PC) 1796 .addReg(Idx) 1797 // Add predicate operands. 1798 .addImm(ARMCC::AL) 1799 .addReg(0)); 1800 return; 1801 } 1802 case ARM::tBR_JTr: 1803 case ARM::BR_JTr: { 1804 // Lower and emit the instruction itself, then the jump table following it. 1805 // mov pc, target 1806 MCInst TmpInst; 1807 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1808 ARM::MOVr : ARM::tMOVr; 1809 TmpInst.setOpcode(Opc); 1810 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1811 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1812 // Add predicate operands. 1813 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1814 TmpInst.addOperand(MCOperand::createReg(0)); 1815 // Add 's' bit operand (always reg0 for this) 1816 if (Opc == ARM::MOVr) 1817 TmpInst.addOperand(MCOperand::createReg(0)); 1818 EmitToStreamer(*OutStreamer, TmpInst); 1819 return; 1820 } 1821 case ARM::BR_JTm: { 1822 // Lower and emit the instruction itself, then the jump table following it. 1823 // ldr pc, target 1824 MCInst TmpInst; 1825 if (MI->getOperand(1).getReg() == 0) { 1826 // literal offset 1827 TmpInst.setOpcode(ARM::LDRi12); 1828 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1829 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1830 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1831 } else { 1832 TmpInst.setOpcode(ARM::LDRrs); 1833 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1834 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1835 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1836 TmpInst.addOperand(MCOperand::createImm(0)); 1837 } 1838 // Add predicate operands. 1839 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1840 TmpInst.addOperand(MCOperand::createReg(0)); 1841 EmitToStreamer(*OutStreamer, TmpInst); 1842 return; 1843 } 1844 case ARM::BR_JTadd: { 1845 // Lower and emit the instruction itself, then the jump table following it. 1846 // add pc, target, idx 1847 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1848 .addReg(ARM::PC) 1849 .addReg(MI->getOperand(0).getReg()) 1850 .addReg(MI->getOperand(1).getReg()) 1851 // Add predicate operands. 1852 .addImm(ARMCC::AL) 1853 .addReg(0) 1854 // Add 's' bit operand (always reg0 for this) 1855 .addReg(0)); 1856 return; 1857 } 1858 case ARM::SPACE: 1859 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1860 return; 1861 case ARM::TRAP: { 1862 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1863 // FIXME: Remove this special case when they do. 1864 if (!Subtarget->isTargetMachO()) { 1865 uint32_t Val = 0xe7ffdefeUL; 1866 OutStreamer->AddComment("trap"); 1867 ATS.emitInst(Val); 1868 return; 1869 } 1870 break; 1871 } 1872 case ARM::TRAPNaCl: { 1873 uint32_t Val = 0xe7fedef0UL; 1874 OutStreamer->AddComment("trap"); 1875 ATS.emitInst(Val); 1876 return; 1877 } 1878 case ARM::tTRAP: { 1879 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1880 // FIXME: Remove this special case when they do. 1881 if (!Subtarget->isTargetMachO()) { 1882 uint16_t Val = 0xdefe; 1883 OutStreamer->AddComment("trap"); 1884 ATS.emitInst(Val, 'n'); 1885 return; 1886 } 1887 break; 1888 } 1889 case ARM::t2Int_eh_sjlj_setjmp: 1890 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1891 case ARM::tInt_eh_sjlj_setjmp: { 1892 // Two incoming args: GPR:$src, GPR:$val 1893 // mov $val, pc 1894 // adds $val, #7 1895 // str $val, [$src, #4] 1896 // movs r0, #0 1897 // b LSJLJEH 1898 // movs r0, #1 1899 // LSJLJEH: 1900 unsigned SrcReg = MI->getOperand(0).getReg(); 1901 unsigned ValReg = MI->getOperand(1).getReg(); 1902 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1903 OutStreamer->AddComment("eh_setjmp begin"); 1904 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1905 .addReg(ValReg) 1906 .addReg(ARM::PC) 1907 // Predicate. 1908 .addImm(ARMCC::AL) 1909 .addReg(0)); 1910 1911 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1912 .addReg(ValReg) 1913 // 's' bit operand 1914 .addReg(ARM::CPSR) 1915 .addReg(ValReg) 1916 .addImm(7) 1917 // Predicate. 1918 .addImm(ARMCC::AL) 1919 .addReg(0)); 1920 1921 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1922 .addReg(ValReg) 1923 .addReg(SrcReg) 1924 // The offset immediate is #4. The operand value is scaled by 4 for the 1925 // tSTR instruction. 1926 .addImm(1) 1927 // Predicate. 1928 .addImm(ARMCC::AL) 1929 .addReg(0)); 1930 1931 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1932 .addReg(ARM::R0) 1933 .addReg(ARM::CPSR) 1934 .addImm(0) 1935 // Predicate. 1936 .addImm(ARMCC::AL) 1937 .addReg(0)); 1938 1939 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1940 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1941 .addExpr(SymbolExpr) 1942 .addImm(ARMCC::AL) 1943 .addReg(0)); 1944 1945 OutStreamer->AddComment("eh_setjmp end"); 1946 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1947 .addReg(ARM::R0) 1948 .addReg(ARM::CPSR) 1949 .addImm(1) 1950 // Predicate. 1951 .addImm(ARMCC::AL) 1952 .addReg(0)); 1953 1954 OutStreamer->EmitLabel(Label); 1955 return; 1956 } 1957 1958 case ARM::Int_eh_sjlj_setjmp_nofp: 1959 case ARM::Int_eh_sjlj_setjmp: { 1960 // Two incoming args: GPR:$src, GPR:$val 1961 // add $val, pc, #8 1962 // str $val, [$src, #+4] 1963 // mov r0, #0 1964 // add pc, pc, #0 1965 // mov r0, #1 1966 unsigned SrcReg = MI->getOperand(0).getReg(); 1967 unsigned ValReg = MI->getOperand(1).getReg(); 1968 1969 OutStreamer->AddComment("eh_setjmp begin"); 1970 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1971 .addReg(ValReg) 1972 .addReg(ARM::PC) 1973 .addImm(8) 1974 // Predicate. 1975 .addImm(ARMCC::AL) 1976 .addReg(0) 1977 // 's' bit operand (always reg0 for this). 1978 .addReg(0)); 1979 1980 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1981 .addReg(ValReg) 1982 .addReg(SrcReg) 1983 .addImm(4) 1984 // Predicate. 1985 .addImm(ARMCC::AL) 1986 .addReg(0)); 1987 1988 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1989 .addReg(ARM::R0) 1990 .addImm(0) 1991 // Predicate. 1992 .addImm(ARMCC::AL) 1993 .addReg(0) 1994 // 's' bit operand (always reg0 for this). 1995 .addReg(0)); 1996 1997 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1998 .addReg(ARM::PC) 1999 .addReg(ARM::PC) 2000 .addImm(0) 2001 // Predicate. 2002 .addImm(ARMCC::AL) 2003 .addReg(0) 2004 // 's' bit operand (always reg0 for this). 2005 .addReg(0)); 2006 2007 OutStreamer->AddComment("eh_setjmp end"); 2008 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2009 .addReg(ARM::R0) 2010 .addImm(1) 2011 // Predicate. 2012 .addImm(ARMCC::AL) 2013 .addReg(0) 2014 // 's' bit operand (always reg0 for this). 2015 .addReg(0)); 2016 return; 2017 } 2018 case ARM::Int_eh_sjlj_longjmp: { 2019 // ldr sp, [$src, #8] 2020 // ldr $scratch, [$src, #4] 2021 // ldr r7, [$src] 2022 // bx $scratch 2023 unsigned SrcReg = MI->getOperand(0).getReg(); 2024 unsigned ScratchReg = MI->getOperand(1).getReg(); 2025 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2026 .addReg(ARM::SP) 2027 .addReg(SrcReg) 2028 .addImm(8) 2029 // Predicate. 2030 .addImm(ARMCC::AL) 2031 .addReg(0)); 2032 2033 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2034 .addReg(ScratchReg) 2035 .addReg(SrcReg) 2036 .addImm(4) 2037 // Predicate. 2038 .addImm(ARMCC::AL) 2039 .addReg(0)); 2040 2041 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2042 .addReg(ARM::R7) 2043 .addReg(SrcReg) 2044 .addImm(0) 2045 // Predicate. 2046 .addImm(ARMCC::AL) 2047 .addReg(0)); 2048 2049 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2050 .addReg(ScratchReg) 2051 // Predicate. 2052 .addImm(ARMCC::AL) 2053 .addReg(0)); 2054 return; 2055 } 2056 case ARM::tInt_eh_sjlj_longjmp: { 2057 // ldr $scratch, [$src, #8] 2058 // mov sp, $scratch 2059 // ldr $scratch, [$src, #4] 2060 // ldr r7, [$src] 2061 // bx $scratch 2062 unsigned SrcReg = MI->getOperand(0).getReg(); 2063 unsigned ScratchReg = MI->getOperand(1).getReg(); 2064 2065 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2066 .addReg(ScratchReg) 2067 .addReg(SrcReg) 2068 // The offset immediate is #8. The operand value is scaled by 4 for the 2069 // tLDR instruction. 2070 .addImm(2) 2071 // Predicate. 2072 .addImm(ARMCC::AL) 2073 .addReg(0)); 2074 2075 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2076 .addReg(ARM::SP) 2077 .addReg(ScratchReg) 2078 // Predicate. 2079 .addImm(ARMCC::AL) 2080 .addReg(0)); 2081 2082 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2083 .addReg(ScratchReg) 2084 .addReg(SrcReg) 2085 .addImm(1) 2086 // Predicate. 2087 .addImm(ARMCC::AL) 2088 .addReg(0)); 2089 2090 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2091 .addReg(ARM::R7) 2092 .addReg(SrcReg) 2093 .addImm(0) 2094 // Predicate. 2095 .addImm(ARMCC::AL) 2096 .addReg(0)); 2097 2098 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2099 .addReg(ScratchReg) 2100 // Predicate. 2101 .addImm(ARMCC::AL) 2102 .addReg(0)); 2103 return; 2104 } 2105 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2106 // ldr.w r11, [$src, #0] 2107 // ldr.w sp, [$src, #8] 2108 // ldr.w pc, [$src, #4] 2109 2110 unsigned SrcReg = MI->getOperand(0).getReg(); 2111 2112 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2113 .addReg(ARM::R11) 2114 .addReg(SrcReg) 2115 .addImm(0) 2116 // Predicate 2117 .addImm(ARMCC::AL) 2118 .addReg(0)); 2119 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2120 .addReg(ARM::SP) 2121 .addReg(SrcReg) 2122 .addImm(8) 2123 // Predicate 2124 .addImm(ARMCC::AL) 2125 .addReg(0)); 2126 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2127 .addReg(ARM::PC) 2128 .addReg(SrcReg) 2129 .addImm(4) 2130 // Predicate 2131 .addImm(ARMCC::AL) 2132 .addReg(0)); 2133 return; 2134 } 2135 case ARM::PATCHABLE_FUNCTION_ENTER: 2136 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2137 return; 2138 case ARM::PATCHABLE_FUNCTION_EXIT: 2139 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2140 return; 2141 case ARM::PATCHABLE_TAIL_CALL: 2142 LowerPATCHABLE_TAIL_CALL(*MI); 2143 return; 2144 } 2145 2146 MCInst TmpInst; 2147 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2148 2149 EmitToStreamer(*OutStreamer, TmpInst); 2150 } 2151 2152 //===----------------------------------------------------------------------===// 2153 // Target Registry Stuff 2154 //===----------------------------------------------------------------------===// 2155 2156 // Force static initialization. 2157 extern "C" void LLVMInitializeARMAsmPrinter() { 2158 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2159 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2160 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2161 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2162 } 2163