1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/TargetParser.h" 47 #include "llvm/Support/COFF.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ELF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/TargetRegistry.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <cctype> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "asm-printer" 59 60 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 61 std::unique_ptr<MCStreamer> Streamer) 62 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 63 InConstantPool(false), OptimizationGoals(-1) {} 64 65 void ARMAsmPrinter::EmitFunctionBodyEnd() { 66 // Make sure to terminate any constant pools that were at the end 67 // of the function. 68 if (!InConstantPool) 69 return; 70 InConstantPool = false; 71 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 72 } 73 74 void ARMAsmPrinter::EmitFunctionEntryLabel() { 75 if (AFI->isThumbFunction()) { 76 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 77 OutStreamer->EmitThumbFunc(CurrentFnSym); 78 } 79 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 /// runOnMachineFunction - This uses the EmitInstruction() 101 /// method to print assembly for each instruction. 102 /// 103 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 104 AFI = MF.getInfo<ARMFunctionInfo>(); 105 MCP = MF.getConstantPool(); 106 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 107 108 SetupMachineFunction(MF); 109 const Function* F = MF.getFunction(); 110 const TargetMachine& TM = MF.getTarget(); 111 112 // Calculate this function's optimization goal. 113 unsigned OptimizationGoal; 114 if (F->hasFnAttribute(Attribute::OptimizeNone)) 115 // For best debugging illusion, speed and small size sacrificed 116 OptimizationGoal = 6; 117 else if (F->optForMinSize()) 118 // Aggressively for small size, speed and debug illusion sacrificed 119 OptimizationGoal = 4; 120 else if (F->optForSize()) 121 // For small size, but speed and debugging illusion preserved 122 OptimizationGoal = 3; 123 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 124 // Aggressively for speed, small size and debug illusion sacrificed 125 OptimizationGoal = 2; 126 else if (TM.getOptLevel() > CodeGenOpt::None) 127 // For speed, but small size and good debug illusion preserved 128 OptimizationGoal = 1; 129 else // TM.getOptLevel() == CodeGenOpt::None 130 // For good debugging, but speed and small size preserved 131 OptimizationGoal = 5; 132 133 // Combine a new optimization goal with existing ones. 134 if (OptimizationGoals == -1) // uninitialized goals 135 OptimizationGoals = OptimizationGoal; 136 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 137 OptimizationGoals = 0; 138 139 if (Subtarget->isTargetCOFF()) { 140 bool Internal = F->hasInternalLinkage(); 141 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 142 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 143 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 144 145 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 146 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 147 OutStreamer->EmitCOFFSymbolType(Type); 148 OutStreamer->EndCOFFSymbolDef(); 149 } 150 151 // Emit the rest of the function body. 152 EmitFunctionBody(); 153 154 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 155 // These are created per function, rather than per TU, since it's 156 // relatively easy to exceed the thumb branch range within a TU. 157 if (! ThumbIndirectPads.empty()) { 158 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 159 EmitAlignment(1); 160 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 161 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 162 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 163 .addReg(ThumbIndirectPads[i].first) 164 // Add predicate operands. 165 .addImm(ARMCC::AL) 166 .addReg(0)); 167 } 168 ThumbIndirectPads.clear(); 169 } 170 171 // We didn't modify anything. 172 return false; 173 } 174 175 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 176 raw_ostream &O) { 177 const MachineOperand &MO = MI->getOperand(OpNum); 178 unsigned TF = MO.getTargetFlags(); 179 180 switch (MO.getType()) { 181 default: llvm_unreachable("<unknown operand type>"); 182 case MachineOperand::MO_Register: { 183 unsigned Reg = MO.getReg(); 184 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 185 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 186 if(ARM::GPRPairRegClass.contains(Reg)) { 187 const MachineFunction &MF = *MI->getParent()->getParent(); 188 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 189 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 190 } 191 O << ARMInstPrinter::getRegisterName(Reg); 192 break; 193 } 194 case MachineOperand::MO_Immediate: { 195 int64_t Imm = MO.getImm(); 196 O << '#'; 197 if (TF == ARMII::MO_LO16) 198 O << ":lower16:"; 199 else if (TF == ARMII::MO_HI16) 200 O << ":upper16:"; 201 O << Imm; 202 break; 203 } 204 case MachineOperand::MO_MachineBasicBlock: 205 MO.getMBB()->getSymbol()->print(O, MAI); 206 return; 207 case MachineOperand::MO_GlobalAddress: { 208 const GlobalValue *GV = MO.getGlobal(); 209 if (TF & ARMII::MO_LO16) 210 O << ":lower16:"; 211 else if (TF & ARMII::MO_HI16) 212 O << ":upper16:"; 213 GetARMGVSymbol(GV, TF)->print(O, MAI); 214 215 printOffset(MO.getOffset(), O); 216 if (TF == ARMII::MO_PLT) 217 O << "(PLT)"; 218 break; 219 } 220 case MachineOperand::MO_ConstantPoolIndex: 221 GetCPISymbol(MO.getIndex())->print(O, MAI); 222 break; 223 } 224 } 225 226 //===--------------------------------------------------------------------===// 227 228 MCSymbol *ARMAsmPrinter:: 229 GetARMJTIPICJumpTableLabel(unsigned uid) const { 230 const DataLayout &DL = getDataLayout(); 231 SmallString<60> Name; 232 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 233 << getFunctionNumber() << '_' << uid; 234 return OutContext.getOrCreateSymbol(Name); 235 } 236 237 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 238 unsigned AsmVariant, const char *ExtraCode, 239 raw_ostream &O) { 240 // Does this asm operand have a single letter operand modifier? 241 if (ExtraCode && ExtraCode[0]) { 242 if (ExtraCode[1] != 0) return true; // Unknown modifier. 243 244 switch (ExtraCode[0]) { 245 default: 246 // See if this is a generic print operand 247 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 248 case 'a': // Print as a memory address. 249 if (MI->getOperand(OpNum).isReg()) { 250 O << "[" 251 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 252 << "]"; 253 return false; 254 } 255 // Fallthrough 256 case 'c': // Don't print "#" before an immediate operand. 257 if (!MI->getOperand(OpNum).isImm()) 258 return true; 259 O << MI->getOperand(OpNum).getImm(); 260 return false; 261 case 'P': // Print a VFP double precision register. 262 case 'q': // Print a NEON quad precision register. 263 printOperand(MI, OpNum, O); 264 return false; 265 case 'y': // Print a VFP single precision register as indexed double. 266 if (MI->getOperand(OpNum).isReg()) { 267 unsigned Reg = MI->getOperand(OpNum).getReg(); 268 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 269 // Find the 'd' register that has this 's' register as a sub-register, 270 // and determine the lane number. 271 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 272 if (!ARM::DPRRegClass.contains(*SR)) 273 continue; 274 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 275 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 276 return false; 277 } 278 } 279 return true; 280 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 281 if (!MI->getOperand(OpNum).isImm()) 282 return true; 283 O << ~(MI->getOperand(OpNum).getImm()); 284 return false; 285 case 'L': // The low 16 bits of an immediate constant. 286 if (!MI->getOperand(OpNum).isImm()) 287 return true; 288 O << (MI->getOperand(OpNum).getImm() & 0xffff); 289 return false; 290 case 'M': { // A register range suitable for LDM/STM. 291 if (!MI->getOperand(OpNum).isReg()) 292 return true; 293 const MachineOperand &MO = MI->getOperand(OpNum); 294 unsigned RegBegin = MO.getReg(); 295 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 296 // already got the operands in registers that are operands to the 297 // inline asm statement. 298 O << "{"; 299 if (ARM::GPRPairRegClass.contains(RegBegin)) { 300 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 301 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 302 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 303 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 304 } 305 O << ARMInstPrinter::getRegisterName(RegBegin); 306 307 // FIXME: The register allocator not only may not have given us the 308 // registers in sequence, but may not be in ascending registers. This 309 // will require changes in the register allocator that'll need to be 310 // propagated down here if the operands change. 311 unsigned RegOps = OpNum + 1; 312 while (MI->getOperand(RegOps).isReg()) { 313 O << ", " 314 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 315 RegOps++; 316 } 317 318 O << "}"; 319 320 return false; 321 } 322 case 'R': // The most significant register of a pair. 323 case 'Q': { // The least significant register of a pair. 324 if (OpNum == 0) 325 return true; 326 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 327 if (!FlagsOP.isImm()) 328 return true; 329 unsigned Flags = FlagsOP.getImm(); 330 331 // This operand may not be the one that actually provides the register. If 332 // it's tied to a previous one then we should refer instead to that one 333 // for registers and their classes. 334 unsigned TiedIdx; 335 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 336 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 337 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 338 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 339 } 340 Flags = MI->getOperand(OpNum).getImm(); 341 342 // Later code expects OpNum to be pointing at the register rather than 343 // the flags. 344 OpNum += 1; 345 } 346 347 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 348 unsigned RC; 349 InlineAsm::hasRegClassConstraint(Flags, RC); 350 if (RC == ARM::GPRPairRegClassID) { 351 if (NumVals != 1) 352 return true; 353 const MachineOperand &MO = MI->getOperand(OpNum); 354 if (!MO.isReg()) 355 return true; 356 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 357 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 358 ARM::gsub_0 : ARM::gsub_1); 359 O << ARMInstPrinter::getRegisterName(Reg); 360 return false; 361 } 362 if (NumVals != 2) 363 return true; 364 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 365 if (RegOp >= MI->getNumOperands()) 366 return true; 367 const MachineOperand &MO = MI->getOperand(RegOp); 368 if (!MO.isReg()) 369 return true; 370 unsigned Reg = MO.getReg(); 371 O << ARMInstPrinter::getRegisterName(Reg); 372 return false; 373 } 374 375 case 'e': // The low doubleword register of a NEON quad register. 376 case 'f': { // The high doubleword register of a NEON quad register. 377 if (!MI->getOperand(OpNum).isReg()) 378 return true; 379 unsigned Reg = MI->getOperand(OpNum).getReg(); 380 if (!ARM::QPRRegClass.contains(Reg)) 381 return true; 382 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 383 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 384 ARM::dsub_0 : ARM::dsub_1); 385 O << ARMInstPrinter::getRegisterName(SubReg); 386 return false; 387 } 388 389 // This modifier is not yet supported. 390 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 391 return true; 392 case 'H': { // The highest-numbered register of a pair. 393 const MachineOperand &MO = MI->getOperand(OpNum); 394 if (!MO.isReg()) 395 return true; 396 const MachineFunction &MF = *MI->getParent()->getParent(); 397 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 398 unsigned Reg = MO.getReg(); 399 if(!ARM::GPRPairRegClass.contains(Reg)) 400 return false; 401 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 402 O << ARMInstPrinter::getRegisterName(Reg); 403 return false; 404 } 405 } 406 } 407 408 printOperand(MI, OpNum, O); 409 return false; 410 } 411 412 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 413 unsigned OpNum, unsigned AsmVariant, 414 const char *ExtraCode, 415 raw_ostream &O) { 416 // Does this asm operand have a single letter operand modifier? 417 if (ExtraCode && ExtraCode[0]) { 418 if (ExtraCode[1] != 0) return true; // Unknown modifier. 419 420 switch (ExtraCode[0]) { 421 case 'A': // A memory operand for a VLD1/VST1 instruction. 422 default: return true; // Unknown modifier. 423 case 'm': // The base register of a memory operand. 424 if (!MI->getOperand(OpNum).isReg()) 425 return true; 426 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 427 return false; 428 } 429 } 430 431 const MachineOperand &MO = MI->getOperand(OpNum); 432 assert(MO.isReg() && "unexpected inline asm memory operand"); 433 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 434 return false; 435 } 436 437 static bool isThumb(const MCSubtargetInfo& STI) { 438 return STI.getFeatureBits()[ARM::ModeThumb]; 439 } 440 441 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 442 const MCSubtargetInfo *EndInfo) const { 443 // If either end mode is unknown (EndInfo == NULL) or different than 444 // the start mode, then restore the start mode. 445 const bool WasThumb = isThumb(StartInfo); 446 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 447 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 448 } 449 } 450 451 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 452 const Triple &TT = TM.getTargetTriple(); 453 // Use unified assembler syntax. 454 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 455 456 // Emit ARM Build Attributes 457 if (TT.isOSBinFormatELF()) 458 emitAttributes(); 459 460 // Use the triple's architecture and subarchitecture to determine 461 // if we're thumb for the purposes of the top level code16 assembler 462 // flag. 463 bool isThumb = TT.getArch() == Triple::thumb || 464 TT.getArch() == Triple::thumbeb || 465 TT.getSubArch() == Triple::ARMSubArch_v7m || 466 TT.getSubArch() == Triple::ARMSubArch_v6m; 467 if (!M.getModuleInlineAsm().empty() && isThumb) 468 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 469 } 470 471 static void 472 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 473 MachineModuleInfoImpl::StubValueTy &MCSym) { 474 // L_foo$stub: 475 OutStreamer.EmitLabel(StubLabel); 476 // .indirect_symbol _foo 477 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 478 479 if (MCSym.getInt()) 480 // External to current translation unit. 481 OutStreamer.EmitIntValue(0, 4/*size*/); 482 else 483 // Internal to current translation unit. 484 // 485 // When we place the LSDA into the TEXT section, the type info 486 // pointers need to be indirect and pc-rel. We accomplish this by 487 // using NLPs; however, sometimes the types are local to the file. 488 // We need to fill in the value for the NLP in those cases. 489 OutStreamer.EmitValue( 490 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 491 4 /*size*/); 492 } 493 494 495 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 496 const Triple &TT = TM.getTargetTriple(); 497 if (TT.isOSBinFormatMachO()) { 498 // All darwin targets use mach-o. 499 const TargetLoweringObjectFileMachO &TLOFMacho = 500 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 501 MachineModuleInfoMachO &MMIMacho = 502 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 503 504 // Output non-lazy-pointers for external and common global variables. 505 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 506 507 if (!Stubs.empty()) { 508 // Switch with ".non_lazy_symbol_pointer" directive. 509 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 510 EmitAlignment(2); 511 512 for (auto &Stub : Stubs) 513 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 514 515 Stubs.clear(); 516 OutStreamer->AddBlankLine(); 517 } 518 519 Stubs = MMIMacho.GetHiddenGVStubList(); 520 if (!Stubs.empty()) { 521 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 522 EmitAlignment(2); 523 524 for (auto &Stub : Stubs) 525 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 526 527 Stubs.clear(); 528 OutStreamer->AddBlankLine(); 529 } 530 531 // Funny Darwin hack: This flag tells the linker that no global symbols 532 // contain code that falls through to other global symbols (e.g. the obvious 533 // implementation of multiple entry points). If this doesn't occur, the 534 // linker can safely perform dead code stripping. Since LLVM never 535 // generates code that does this, it is always safe to set. 536 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 537 } 538 539 // The last attribute to be emitted is ABI_optimization_goals 540 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 541 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 542 543 if (OptimizationGoals > 0 && 544 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI())) 545 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 546 OptimizationGoals = -1; 547 548 ATS.finishAttributeSection(); 549 } 550 551 static bool isV8M(const ARMSubtarget *Subtarget) { 552 // Note that v8M Baseline is a subset of v6T2! 553 return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) || 554 Subtarget->hasV8MMainlineOps(); 555 } 556 557 //===----------------------------------------------------------------------===// 558 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 559 // FIXME: 560 // The following seem like one-off assembler flags, but they actually need 561 // to appear in the .ARM.attributes section in ELF. 562 // Instead of subclassing the MCELFStreamer, we do the work here. 563 564 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 565 const ARMSubtarget *Subtarget) { 566 if (CPU == "xscale") 567 return ARMBuildAttrs::v5TEJ; 568 569 if (Subtarget->hasV8Ops()) 570 return ARMBuildAttrs::v8_A; 571 else if (Subtarget->hasV8MMainlineOps()) 572 return ARMBuildAttrs::v8_M_Main; 573 else if (Subtarget->hasV7Ops()) { 574 if (Subtarget->isMClass() && Subtarget->hasDSP()) 575 return ARMBuildAttrs::v7E_M; 576 return ARMBuildAttrs::v7; 577 } else if (Subtarget->hasV6T2Ops()) 578 return ARMBuildAttrs::v6T2; 579 else if (Subtarget->hasV8MBaselineOps()) 580 return ARMBuildAttrs::v8_M_Base; 581 else if (Subtarget->hasV6MOps()) 582 return ARMBuildAttrs::v6S_M; 583 else if (Subtarget->hasV6Ops()) 584 return ARMBuildAttrs::v6; 585 else if (Subtarget->hasV5TEOps()) 586 return ARMBuildAttrs::v5TE; 587 else if (Subtarget->hasV5TOps()) 588 return ARMBuildAttrs::v5T; 589 else if (Subtarget->hasV4TOps()) 590 return ARMBuildAttrs::v4T; 591 else 592 return ARMBuildAttrs::v4; 593 } 594 595 void ARMAsmPrinter::emitAttributes() { 596 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 597 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 598 599 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 600 601 ATS.switchVendor("aeabi"); 602 603 // Compute ARM ELF Attributes based on the default subtarget that 604 // we'd have constructed. The existing ARM behavior isn't LTO clean 605 // anyhow. 606 // FIXME: For ifunc related functions we could iterate over and look 607 // for a feature string that doesn't match the default one. 608 const Triple &TT = TM.getTargetTriple(); 609 StringRef CPU = TM.getTargetCPU(); 610 StringRef FS = TM.getTargetFeatureString(); 611 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 612 if (!FS.empty()) { 613 if (!ArchFS.empty()) 614 ArchFS = (Twine(ArchFS) + "," + FS).str(); 615 else 616 ArchFS = FS; 617 } 618 const ARMBaseTargetMachine &ATM = 619 static_cast<const ARMBaseTargetMachine &>(TM); 620 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 621 622 std::string CPUString = STI.getCPUString(); 623 624 if (CPUString.find("generic") != 0) { //CPUString doesn't start with "generic" 625 // FIXME: remove krait check when GNU tools support krait cpu 626 if (STI.isKrait()) { 627 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 628 // We consider krait as a "cortex-a9" + hwdiv CPU 629 // Enable hwdiv through ".arch_extension idiv" 630 if (STI.hasDivide() || STI.hasDivideInARMMode()) 631 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM); 632 } else 633 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 634 } 635 636 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 637 638 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 639 // profile is not applicable (e.g. pre v7, or cross-profile code)". 640 if (STI.hasV7Ops() || isV8M(&STI)) { 641 if (STI.isAClass()) { 642 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 643 ARMBuildAttrs::ApplicationProfile); 644 } else if (STI.isRClass()) { 645 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 646 ARMBuildAttrs::RealTimeProfile); 647 } else if (STI.isMClass()) { 648 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 649 ARMBuildAttrs::MicroControllerProfile); 650 } 651 } 652 653 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 654 STI.hasARMOps() ? ARMBuildAttrs::Allowed 655 : ARMBuildAttrs::Not_Allowed); 656 if (isV8M(&STI)) { 657 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 658 ARMBuildAttrs::AllowThumbDerived); 659 } else if (STI.isThumb1Only()) { 660 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 661 } else if (STI.hasThumb2()) { 662 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 663 ARMBuildAttrs::AllowThumb32); 664 } 665 666 if (STI.hasNEON()) { 667 /* NEON is not exactly a VFP architecture, but GAS emit one of 668 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 669 if (STI.hasFPARMv8()) { 670 if (STI.hasCrypto()) 671 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 672 else 673 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 674 } else if (STI.hasVFP4()) 675 ATS.emitFPU(ARM::FK_NEON_VFPV4); 676 else 677 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 678 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 679 if (STI.hasV8Ops()) 680 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 681 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 682 ARMBuildAttrs::AllowNeonARMv8); 683 } else { 684 if (STI.hasFPARMv8()) 685 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 686 // FPU, but there are two different names for it depending on the CPU. 687 ATS.emitFPU(STI.hasD16() 688 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 689 : ARM::FK_FP_ARMV8); 690 else if (STI.hasVFP4()) 691 ATS.emitFPU(STI.hasD16() 692 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 693 : ARM::FK_VFPV4); 694 else if (STI.hasVFP3()) 695 ATS.emitFPU(STI.hasD16() 696 // +d16 697 ? (STI.isFPOnlySP() 698 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 699 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 700 // -d16 701 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 702 else if (STI.hasVFP2()) 703 ATS.emitFPU(ARM::FK_VFPV2); 704 } 705 706 if (TM.getRelocationModel() == Reloc::PIC_) { 707 // PIC specific attributes. 708 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 709 ARMBuildAttrs::AddressRWPCRel); 710 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 711 ARMBuildAttrs::AddressROPCRel); 712 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 713 ARMBuildAttrs::AddressGOT); 714 } else { 715 // Allow direct addressing of imported data for all other relocation models. 716 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 717 ARMBuildAttrs::AddressDirect); 718 } 719 720 // Signal various FP modes. 721 if (!TM.Options.UnsafeFPMath) { 722 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 723 ARMBuildAttrs::IEEEDenormals); 724 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 725 726 // If the user has permitted this code to choose the IEEE 754 727 // rounding at run-time, emit the rounding attribute. 728 if (TM.Options.HonorSignDependentRoundingFPMathOption) 729 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 730 } else { 731 if (!STI.hasVFP2()) { 732 // When the target doesn't have an FPU (by design or 733 // intention), the assumptions made on the software support 734 // mirror that of the equivalent hardware support *if it 735 // existed*. For v7 and better we indicate that denormals are 736 // flushed preserving sign, and for V6 we indicate that 737 // denormals are flushed to positive zero. 738 if (STI.hasV7Ops()) 739 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 740 ARMBuildAttrs::PreserveFPSign); 741 } else if (STI.hasVFP3()) { 742 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 743 // the sign bit of the zero matches the sign bit of the input or 744 // result that is being flushed to zero. 745 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 746 ARMBuildAttrs::PreserveFPSign); 747 } 748 // For VFPv2 implementations it is implementation defined as 749 // to whether denormals are flushed to positive zero or to 750 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 751 // LLVM has chosen to flush this to positive zero (most likely for 752 // GCC compatibility), so that's the chosen value here (the 753 // absence of its emission implies zero). 754 } 755 756 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 757 // equivalent of GCC's -ffinite-math-only flag. 758 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 759 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 760 ARMBuildAttrs::Allowed); 761 else 762 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 763 ARMBuildAttrs::AllowIEE754); 764 765 if (STI.allowsUnalignedMem()) 766 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 767 ARMBuildAttrs::Allowed); 768 else 769 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 770 ARMBuildAttrs::Not_Allowed); 771 772 // FIXME: add more flags to ARMBuildAttributes.h 773 // 8-bytes alignment stuff. 774 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 775 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 776 777 // ABI_HardFP_use attribute to indicate single precision FP. 778 if (STI.isFPOnlySP()) 779 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 780 ARMBuildAttrs::HardFPSinglePrecision); 781 782 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 783 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 784 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 785 786 // FIXME: Should we signal R9 usage? 787 788 if (STI.hasFP16()) 789 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 790 791 // FIXME: To support emitting this build attribute as GCC does, the 792 // -mfp16-format option and associated plumbing must be 793 // supported. For now the __fp16 type is exposed by default, so this 794 // attribute should be emitted with value 1. 795 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 796 ARMBuildAttrs::FP16FormatIEEE); 797 798 if (STI.hasMPExtension()) 799 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 800 801 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 802 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 803 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 804 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 805 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 806 // otherwise, the default value (AllowDIVIfExists) applies. 807 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 808 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 809 810 if (STI.hasDSP() && isV8M(&STI)) 811 ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); 812 813 if (MMI) { 814 if (const Module *SourceModule = MMI->getModule()) { 815 // ABI_PCS_wchar_t to indicate wchar_t width 816 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 817 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 818 SourceModule->getModuleFlag("wchar_size"))) { 819 int WCharWidth = WCharWidthValue->getZExtValue(); 820 assert((WCharWidth == 2 || WCharWidth == 4) && 821 "wchar_t width must be 2 or 4 bytes"); 822 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 823 } 824 825 // ABI_enum_size to indicate enum width 826 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 827 // (all enums contain a value needing 32 bits to encode). 828 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 829 SourceModule->getModuleFlag("min_enum_size"))) { 830 int EnumWidth = EnumWidthValue->getZExtValue(); 831 assert((EnumWidth == 1 || EnumWidth == 4) && 832 "Minimum enum width must be 1 or 4 bytes"); 833 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 834 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 835 } 836 } 837 } 838 839 // TODO: We currently only support either reserving the register, or treating 840 // it as another callee-saved register, but not as SB or a TLS pointer; It 841 // would instead be nicer to push this from the frontend as metadata, as we do 842 // for the wchar and enum size tags 843 if (STI.isR9Reserved()) 844 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved); 845 else 846 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR); 847 848 if (STI.hasTrustZone() && STI.hasVirtualization()) 849 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 850 ARMBuildAttrs::AllowTZVirtualization); 851 else if (STI.hasTrustZone()) 852 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 853 ARMBuildAttrs::AllowTZ); 854 else if (STI.hasVirtualization()) 855 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 856 ARMBuildAttrs::AllowVirtualization); 857 } 858 859 //===----------------------------------------------------------------------===// 860 861 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, 862 unsigned LabelId, MCContext &Ctx) { 863 864 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 865 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 866 return Label; 867 } 868 869 static MCSymbolRefExpr::VariantKind 870 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 871 switch (Modifier) { 872 case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None; 873 case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD; 874 case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF; 875 case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF; 876 case ARMCP::GOT_PREL: return MCSymbolRefExpr::VK_ARM_GOT_PREL; 877 } 878 llvm_unreachable("Invalid ARMCPModifier!"); 879 } 880 881 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 882 unsigned char TargetFlags) { 883 if (Subtarget->isTargetMachO()) { 884 bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) && 885 Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); 886 887 if (!IsIndirect) 888 return getSymbol(GV); 889 890 // FIXME: Remove this when Darwin transition to @GOT like syntax. 891 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 892 MachineModuleInfoMachO &MMIMachO = 893 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 894 MachineModuleInfoImpl::StubValueTy &StubSym = 895 GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) 896 : MMIMachO.getGVStubEntry(MCSym); 897 if (!StubSym.getPointer()) 898 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 899 !GV->hasInternalLinkage()); 900 return MCSym; 901 } else if (Subtarget->isTargetCOFF()) { 902 assert(Subtarget->isTargetWindows() && 903 "Windows is the only supported COFF target"); 904 905 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 906 if (!IsIndirect) 907 return getSymbol(GV); 908 909 SmallString<128> Name; 910 Name = "__imp_"; 911 getNameWithPrefix(Name, GV); 912 913 return OutContext.getOrCreateSymbol(Name); 914 } else if (Subtarget->isTargetELF()) { 915 return getSymbol(GV); 916 } 917 llvm_unreachable("unexpected target"); 918 } 919 920 void ARMAsmPrinter:: 921 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 922 const DataLayout &DL = getDataLayout(); 923 int Size = DL.getTypeAllocSize(MCPV->getType()); 924 925 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 926 927 MCSymbol *MCSym; 928 if (ACPV->isLSDA()) { 929 MCSym = getCurExceptionSym(); 930 } else if (ACPV->isBlockAddress()) { 931 const BlockAddress *BA = 932 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 933 MCSym = GetBlockAddressSymbol(BA); 934 } else if (ACPV->isGlobalValue()) { 935 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 936 937 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 938 // flag the global as MO_NONLAZY. 939 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 940 MCSym = GetARMGVSymbol(GV, TF); 941 } else if (ACPV->isMachineBasicBlock()) { 942 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 943 MCSym = MBB->getSymbol(); 944 } else { 945 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 946 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 947 MCSym = GetExternalSymbolSymbol(Sym); 948 } 949 950 // Create an MCSymbol for the reference. 951 const MCExpr *Expr = 952 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 953 OutContext); 954 955 if (ACPV->getPCAdjustment()) { 956 MCSymbol *PCLabel = 957 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 958 ACPV->getLabelId(), OutContext); 959 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 960 PCRelExpr = 961 MCBinaryExpr::createAdd(PCRelExpr, 962 MCConstantExpr::create(ACPV->getPCAdjustment(), 963 OutContext), 964 OutContext); 965 if (ACPV->mustAddCurrentAddress()) { 966 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 967 // label, so just emit a local label end reference that instead. 968 MCSymbol *DotSym = OutContext.createTempSymbol(); 969 OutStreamer->EmitLabel(DotSym); 970 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 971 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 972 } 973 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 974 } 975 OutStreamer->EmitValue(Expr, Size); 976 } 977 978 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 979 const MachineOperand &MO1 = MI->getOperand(1); 980 unsigned JTI = MO1.getIndex(); 981 982 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 983 // ARM mode tables. 984 EmitAlignment(2); 985 986 // Emit a label for the jump table. 987 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 988 OutStreamer->EmitLabel(JTISymbol); 989 990 // Mark the jump table as data-in-code. 991 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 992 993 // Emit each entry of the table. 994 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 995 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 996 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 997 998 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 999 MachineBasicBlock *MBB = JTBBs[i]; 1000 // Construct an MCExpr for the entry. We want a value of the form: 1001 // (BasicBlockAddr - TableBeginAddr) 1002 // 1003 // For example, a table with entries jumping to basic blocks BB0 and BB1 1004 // would look like: 1005 // LJTI_0_0: 1006 // .word (LBB0 - LJTI_0_0) 1007 // .word (LBB1 - LJTI_0_0) 1008 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1009 1010 if (TM.getRelocationModel() == Reloc::PIC_) 1011 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1012 OutContext), 1013 OutContext); 1014 // If we're generating a table of Thumb addresses in static relocation 1015 // model, we need to add one to keep interworking correctly. 1016 else if (AFI->isThumbFunction()) 1017 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1018 OutContext); 1019 OutStreamer->EmitValue(Expr, 4); 1020 } 1021 // Mark the end of jump table data-in-code region. 1022 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1023 } 1024 1025 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 1026 const MachineOperand &MO1 = MI->getOperand(1); 1027 unsigned JTI = MO1.getIndex(); 1028 1029 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1030 OutStreamer->EmitLabel(JTISymbol); 1031 1032 // Emit each entry of the table. 1033 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1034 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1035 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1036 1037 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1038 MachineBasicBlock *MBB = JTBBs[i]; 1039 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1040 OutContext); 1041 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1042 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1043 .addExpr(MBBSymbolExpr) 1044 .addImm(ARMCC::AL) 1045 .addReg(0)); 1046 } 1047 } 1048 1049 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1050 unsigned OffsetWidth) { 1051 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1052 const MachineOperand &MO1 = MI->getOperand(1); 1053 unsigned JTI = MO1.getIndex(); 1054 1055 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1056 OutStreamer->EmitLabel(JTISymbol); 1057 1058 // Emit each entry of the table. 1059 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1060 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1061 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1062 1063 // Mark the jump table as data-in-code. 1064 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1065 : MCDR_DataRegionJT16); 1066 1067 for (auto MBB : JTBBs) { 1068 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1069 OutContext); 1070 // Otherwise it's an offset from the dispatch instruction. Construct an 1071 // MCExpr for the entry. We want a value of the form: 1072 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1073 // 1074 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1075 // would look like: 1076 // LJTI_0_0: 1077 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1078 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1079 // where LCPI0_0 is a label defined just before the TBB instruction using 1080 // this table. 1081 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1082 const MCExpr *Expr = MCBinaryExpr::createAdd( 1083 MCSymbolRefExpr::create(TBInstPC, OutContext), 1084 MCConstantExpr::create(4, OutContext), OutContext); 1085 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1086 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1087 OutContext); 1088 OutStreamer->EmitValue(Expr, OffsetWidth); 1089 } 1090 // Mark the end of jump table data-in-code region. 32-bit offsets use 1091 // actual branch instructions here, so we don't mark those as a data-region 1092 // at all. 1093 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1094 1095 // Make sure the next instruction is 2-byte aligned. 1096 EmitAlignment(1); 1097 } 1098 1099 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1100 assert(MI->getFlag(MachineInstr::FrameSetup) && 1101 "Only instruction which are involved into frame setup code are allowed"); 1102 1103 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1104 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1105 const MachineFunction &MF = *MI->getParent()->getParent(); 1106 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1107 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1108 1109 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1110 unsigned Opc = MI->getOpcode(); 1111 unsigned SrcReg, DstReg; 1112 1113 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1114 // Two special cases: 1115 // 1) tPUSH does not have src/dst regs. 1116 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1117 // load. Yes, this is pretty fragile, but for now I don't see better 1118 // way... :( 1119 SrcReg = DstReg = ARM::SP; 1120 } else { 1121 SrcReg = MI->getOperand(1).getReg(); 1122 DstReg = MI->getOperand(0).getReg(); 1123 } 1124 1125 // Try to figure out the unwinding opcode out of src / dst regs. 1126 if (MI->mayStore()) { 1127 // Register saves. 1128 assert(DstReg == ARM::SP && 1129 "Only stack pointer as a destination reg is supported"); 1130 1131 SmallVector<unsigned, 4> RegList; 1132 // Skip src & dst reg, and pred ops. 1133 unsigned StartOp = 2 + 2; 1134 // Use all the operands. 1135 unsigned NumOffset = 0; 1136 1137 switch (Opc) { 1138 default: 1139 MI->dump(); 1140 llvm_unreachable("Unsupported opcode for unwinding information"); 1141 case ARM::tPUSH: 1142 // Special case here: no src & dst reg, but two extra imp ops. 1143 StartOp = 2; NumOffset = 2; 1144 case ARM::STMDB_UPD: 1145 case ARM::t2STMDB_UPD: 1146 case ARM::VSTMDDB_UPD: 1147 assert(SrcReg == ARM::SP && 1148 "Only stack pointer as a source reg is supported"); 1149 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1150 i != NumOps; ++i) { 1151 const MachineOperand &MO = MI->getOperand(i); 1152 // Actually, there should never be any impdef stuff here. Skip it 1153 // temporary to workaround PR11902. 1154 if (MO.isImplicit()) 1155 continue; 1156 RegList.push_back(MO.getReg()); 1157 } 1158 break; 1159 case ARM::STR_PRE_IMM: 1160 case ARM::STR_PRE_REG: 1161 case ARM::t2STR_PRE: 1162 assert(MI->getOperand(2).getReg() == ARM::SP && 1163 "Only stack pointer as a source reg is supported"); 1164 RegList.push_back(SrcReg); 1165 break; 1166 } 1167 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1168 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1169 } else { 1170 // Changes of stack / frame pointer. 1171 if (SrcReg == ARM::SP) { 1172 int64_t Offset = 0; 1173 switch (Opc) { 1174 default: 1175 MI->dump(); 1176 llvm_unreachable("Unsupported opcode for unwinding information"); 1177 case ARM::MOVr: 1178 case ARM::tMOVr: 1179 Offset = 0; 1180 break; 1181 case ARM::ADDri: 1182 case ARM::t2ADDri: 1183 Offset = -MI->getOperand(2).getImm(); 1184 break; 1185 case ARM::SUBri: 1186 case ARM::t2SUBri: 1187 Offset = MI->getOperand(2).getImm(); 1188 break; 1189 case ARM::tSUBspi: 1190 Offset = MI->getOperand(2).getImm()*4; 1191 break; 1192 case ARM::tADDspi: 1193 case ARM::tADDrSPi: 1194 Offset = -MI->getOperand(2).getImm()*4; 1195 break; 1196 case ARM::tLDRpci: { 1197 // Grab the constpool index and check, whether it corresponds to 1198 // original or cloned constpool entry. 1199 unsigned CPI = MI->getOperand(1).getIndex(); 1200 const MachineConstantPool *MCP = MF.getConstantPool(); 1201 if (CPI >= MCP->getConstants().size()) 1202 CPI = AFI.getOriginalCPIdx(CPI); 1203 assert(CPI != -1U && "Invalid constpool index"); 1204 1205 // Derive the actual offset. 1206 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1207 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1208 // FIXME: Check for user, it should be "add" instruction! 1209 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1210 break; 1211 } 1212 } 1213 1214 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1215 if (DstReg == FramePtr && FramePtr != ARM::SP) 1216 // Set-up of the frame pointer. Positive values correspond to "add" 1217 // instruction. 1218 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1219 else if (DstReg == ARM::SP) { 1220 // Change of SP by an offset. Positive values correspond to "sub" 1221 // instruction. 1222 ATS.emitPad(Offset); 1223 } else { 1224 // Move of SP to a register. Positive values correspond to an "add" 1225 // instruction. 1226 ATS.emitMovSP(DstReg, -Offset); 1227 } 1228 } 1229 } else if (DstReg == ARM::SP) { 1230 MI->dump(); 1231 llvm_unreachable("Unsupported opcode for unwinding information"); 1232 } 1233 else { 1234 MI->dump(); 1235 llvm_unreachable("Unsupported opcode for unwinding information"); 1236 } 1237 } 1238 } 1239 1240 // Simple pseudo-instructions have their lowering (with expansion to real 1241 // instructions) auto-generated. 1242 #include "ARMGenMCPseudoLowering.inc" 1243 1244 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1245 const DataLayout &DL = getDataLayout(); 1246 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1247 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1248 1249 // If we just ended a constant pool, mark it as such. 1250 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1251 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1252 InConstantPool = false; 1253 } 1254 1255 // Emit unwinding stuff for frame-related instructions 1256 if (Subtarget->isTargetEHABICompatible() && 1257 MI->getFlag(MachineInstr::FrameSetup)) 1258 EmitUnwindingInstruction(MI); 1259 1260 // Do any auto-generated pseudo lowerings. 1261 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1262 return; 1263 1264 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1265 "Pseudo flag setting opcode should be expanded early"); 1266 1267 // Check for manual lowerings. 1268 unsigned Opc = MI->getOpcode(); 1269 switch (Opc) { 1270 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1271 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1272 case ARM::LEApcrel: 1273 case ARM::tLEApcrel: 1274 case ARM::t2LEApcrel: { 1275 // FIXME: Need to also handle globals and externals 1276 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1277 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1278 ARM::t2LEApcrel ? ARM::t2ADR 1279 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1280 : ARM::ADR)) 1281 .addReg(MI->getOperand(0).getReg()) 1282 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1283 // Add predicate operands. 1284 .addImm(MI->getOperand(2).getImm()) 1285 .addReg(MI->getOperand(3).getReg())); 1286 return; 1287 } 1288 case ARM::LEApcrelJT: 1289 case ARM::tLEApcrelJT: 1290 case ARM::t2LEApcrelJT: { 1291 MCSymbol *JTIPICSymbol = 1292 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1293 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1294 ARM::t2LEApcrelJT ? ARM::t2ADR 1295 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1296 : ARM::ADR)) 1297 .addReg(MI->getOperand(0).getReg()) 1298 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1299 // Add predicate operands. 1300 .addImm(MI->getOperand(2).getImm()) 1301 .addReg(MI->getOperand(3).getReg())); 1302 return; 1303 } 1304 // Darwin call instructions are just normal call instructions with different 1305 // clobber semantics (they clobber R9). 1306 case ARM::BX_CALL: { 1307 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1308 .addReg(ARM::LR) 1309 .addReg(ARM::PC) 1310 // Add predicate operands. 1311 .addImm(ARMCC::AL) 1312 .addReg(0) 1313 // Add 's' bit operand (always reg0 for this) 1314 .addReg(0)); 1315 1316 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1317 .addReg(MI->getOperand(0).getReg())); 1318 return; 1319 } 1320 case ARM::tBX_CALL: { 1321 if (Subtarget->hasV5TOps()) 1322 llvm_unreachable("Expected BLX to be selected for v5t+"); 1323 1324 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1325 // that the saved lr has its LSB set correctly (the arch doesn't 1326 // have blx). 1327 // So here we generate a bl to a small jump pad that does bx rN. 1328 // The jump pads are emitted after the function body. 1329 1330 unsigned TReg = MI->getOperand(0).getReg(); 1331 MCSymbol *TRegSym = nullptr; 1332 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1333 if (ThumbIndirectPads[i].first == TReg) { 1334 TRegSym = ThumbIndirectPads[i].second; 1335 break; 1336 } 1337 } 1338 1339 if (!TRegSym) { 1340 TRegSym = OutContext.createTempSymbol(); 1341 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1342 } 1343 1344 // Create a link-saving branch to the Reg Indirect Jump Pad. 1345 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1346 // Predicate comes first here. 1347 .addImm(ARMCC::AL).addReg(0) 1348 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1349 return; 1350 } 1351 case ARM::BMOVPCRX_CALL: { 1352 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1353 .addReg(ARM::LR) 1354 .addReg(ARM::PC) 1355 // Add predicate operands. 1356 .addImm(ARMCC::AL) 1357 .addReg(0) 1358 // Add 's' bit operand (always reg0 for this) 1359 .addReg(0)); 1360 1361 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1362 .addReg(ARM::PC) 1363 .addReg(MI->getOperand(0).getReg()) 1364 // Add predicate operands. 1365 .addImm(ARMCC::AL) 1366 .addReg(0) 1367 // Add 's' bit operand (always reg0 for this) 1368 .addReg(0)); 1369 return; 1370 } 1371 case ARM::BMOVPCB_CALL: { 1372 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1373 .addReg(ARM::LR) 1374 .addReg(ARM::PC) 1375 // Add predicate operands. 1376 .addImm(ARMCC::AL) 1377 .addReg(0) 1378 // Add 's' bit operand (always reg0 for this) 1379 .addReg(0)); 1380 1381 const MachineOperand &Op = MI->getOperand(0); 1382 const GlobalValue *GV = Op.getGlobal(); 1383 const unsigned TF = Op.getTargetFlags(); 1384 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1385 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1386 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1387 .addExpr(GVSymExpr) 1388 // Add predicate operands. 1389 .addImm(ARMCC::AL) 1390 .addReg(0)); 1391 return; 1392 } 1393 case ARM::MOVi16_ga_pcrel: 1394 case ARM::t2MOVi16_ga_pcrel: { 1395 MCInst TmpInst; 1396 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1397 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1398 1399 unsigned TF = MI->getOperand(1).getTargetFlags(); 1400 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1401 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1402 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1403 1404 MCSymbol *LabelSym = 1405 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1406 MI->getOperand(2).getImm(), OutContext); 1407 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1408 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1409 const MCExpr *PCRelExpr = 1410 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1411 MCBinaryExpr::createAdd(LabelSymExpr, 1412 MCConstantExpr::create(PCAdj, OutContext), 1413 OutContext), OutContext), OutContext); 1414 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1415 1416 // Add predicate operands. 1417 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1418 TmpInst.addOperand(MCOperand::createReg(0)); 1419 // Add 's' bit operand (always reg0 for this) 1420 TmpInst.addOperand(MCOperand::createReg(0)); 1421 EmitToStreamer(*OutStreamer, TmpInst); 1422 return; 1423 } 1424 case ARM::MOVTi16_ga_pcrel: 1425 case ARM::t2MOVTi16_ga_pcrel: { 1426 MCInst TmpInst; 1427 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1428 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1429 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1430 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1431 1432 unsigned TF = MI->getOperand(2).getTargetFlags(); 1433 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1434 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1435 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1436 1437 MCSymbol *LabelSym = 1438 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1439 MI->getOperand(3).getImm(), OutContext); 1440 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1441 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1442 const MCExpr *PCRelExpr = 1443 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1444 MCBinaryExpr::createAdd(LabelSymExpr, 1445 MCConstantExpr::create(PCAdj, OutContext), 1446 OutContext), OutContext), OutContext); 1447 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1448 // Add predicate operands. 1449 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1450 TmpInst.addOperand(MCOperand::createReg(0)); 1451 // Add 's' bit operand (always reg0 for this) 1452 TmpInst.addOperand(MCOperand::createReg(0)); 1453 EmitToStreamer(*OutStreamer, TmpInst); 1454 return; 1455 } 1456 case ARM::tPICADD: { 1457 // This is a pseudo op for a label + instruction sequence, which looks like: 1458 // LPC0: 1459 // add r0, pc 1460 // This adds the address of LPC0 to r0. 1461 1462 // Emit the label. 1463 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1464 getFunctionNumber(), 1465 MI->getOperand(2).getImm(), OutContext)); 1466 1467 // Form and emit the add. 1468 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1469 .addReg(MI->getOperand(0).getReg()) 1470 .addReg(MI->getOperand(0).getReg()) 1471 .addReg(ARM::PC) 1472 // Add predicate operands. 1473 .addImm(ARMCC::AL) 1474 .addReg(0)); 1475 return; 1476 } 1477 case ARM::PICADD: { 1478 // This is a pseudo op for a label + instruction sequence, which looks like: 1479 // LPC0: 1480 // add r0, pc, r0 1481 // This adds the address of LPC0 to r0. 1482 1483 // Emit the label. 1484 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1485 getFunctionNumber(), 1486 MI->getOperand(2).getImm(), OutContext)); 1487 1488 // Form and emit the add. 1489 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1490 .addReg(MI->getOperand(0).getReg()) 1491 .addReg(ARM::PC) 1492 .addReg(MI->getOperand(1).getReg()) 1493 // Add predicate operands. 1494 .addImm(MI->getOperand(3).getImm()) 1495 .addReg(MI->getOperand(4).getReg()) 1496 // Add 's' bit operand (always reg0 for this) 1497 .addReg(0)); 1498 return; 1499 } 1500 case ARM::PICSTR: 1501 case ARM::PICSTRB: 1502 case ARM::PICSTRH: 1503 case ARM::PICLDR: 1504 case ARM::PICLDRB: 1505 case ARM::PICLDRH: 1506 case ARM::PICLDRSB: 1507 case ARM::PICLDRSH: { 1508 // This is a pseudo op for a label + instruction sequence, which looks like: 1509 // LPC0: 1510 // OP r0, [pc, r0] 1511 // The LCP0 label is referenced by a constant pool entry in order to get 1512 // a PC-relative address at the ldr instruction. 1513 1514 // Emit the label. 1515 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1516 getFunctionNumber(), 1517 MI->getOperand(2).getImm(), OutContext)); 1518 1519 // Form and emit the load 1520 unsigned Opcode; 1521 switch (MI->getOpcode()) { 1522 default: 1523 llvm_unreachable("Unexpected opcode!"); 1524 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1525 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1526 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1527 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1528 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1529 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1530 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1531 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1532 } 1533 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1534 .addReg(MI->getOperand(0).getReg()) 1535 .addReg(ARM::PC) 1536 .addReg(MI->getOperand(1).getReg()) 1537 .addImm(0) 1538 // Add predicate operands. 1539 .addImm(MI->getOperand(3).getImm()) 1540 .addReg(MI->getOperand(4).getReg())); 1541 1542 return; 1543 } 1544 case ARM::CONSTPOOL_ENTRY: { 1545 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1546 /// in the function. The first operand is the ID# for this instruction, the 1547 /// second is the index into the MachineConstantPool that this is, the third 1548 /// is the size in bytes of this constant pool entry. 1549 /// The required alignment is specified on the basic block holding this MI. 1550 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1551 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1552 1553 // If this is the first entry of the pool, mark it. 1554 if (!InConstantPool) { 1555 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1556 InConstantPool = true; 1557 } 1558 1559 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1560 1561 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1562 if (MCPE.isMachineConstantPoolEntry()) 1563 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1564 else 1565 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1566 return; 1567 } 1568 case ARM::JUMPTABLE_ADDRS: 1569 EmitJumpTableAddrs(MI); 1570 return; 1571 case ARM::JUMPTABLE_INSTS: 1572 EmitJumpTableInsts(MI); 1573 return; 1574 case ARM::JUMPTABLE_TBB: 1575 case ARM::JUMPTABLE_TBH: 1576 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1577 return; 1578 case ARM::t2BR_JT: { 1579 // Lower and emit the instruction itself, then the jump table following it. 1580 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1581 .addReg(ARM::PC) 1582 .addReg(MI->getOperand(0).getReg()) 1583 // Add predicate operands. 1584 .addImm(ARMCC::AL) 1585 .addReg(0)); 1586 return; 1587 } 1588 case ARM::t2TBB_JT: 1589 case ARM::t2TBH_JT: { 1590 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1591 // Lower and emit the PC label, then the instruction itself. 1592 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1593 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1594 .addReg(MI->getOperand(0).getReg()) 1595 .addReg(MI->getOperand(1).getReg()) 1596 // Add predicate operands. 1597 .addImm(ARMCC::AL) 1598 .addReg(0)); 1599 return; 1600 } 1601 case ARM::tBR_JTr: 1602 case ARM::BR_JTr: { 1603 // Lower and emit the instruction itself, then the jump table following it. 1604 // mov pc, target 1605 MCInst TmpInst; 1606 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1607 ARM::MOVr : ARM::tMOVr; 1608 TmpInst.setOpcode(Opc); 1609 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1610 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1611 // Add predicate operands. 1612 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1613 TmpInst.addOperand(MCOperand::createReg(0)); 1614 // Add 's' bit operand (always reg0 for this) 1615 if (Opc == ARM::MOVr) 1616 TmpInst.addOperand(MCOperand::createReg(0)); 1617 EmitToStreamer(*OutStreamer, TmpInst); 1618 return; 1619 } 1620 case ARM::BR_JTm: { 1621 // Lower and emit the instruction itself, then the jump table following it. 1622 // ldr pc, target 1623 MCInst TmpInst; 1624 if (MI->getOperand(1).getReg() == 0) { 1625 // literal offset 1626 TmpInst.setOpcode(ARM::LDRi12); 1627 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1628 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1629 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1630 } else { 1631 TmpInst.setOpcode(ARM::LDRrs); 1632 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1633 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1634 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1635 TmpInst.addOperand(MCOperand::createImm(0)); 1636 } 1637 // Add predicate operands. 1638 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1639 TmpInst.addOperand(MCOperand::createReg(0)); 1640 EmitToStreamer(*OutStreamer, TmpInst); 1641 return; 1642 } 1643 case ARM::BR_JTadd: { 1644 // Lower and emit the instruction itself, then the jump table following it. 1645 // add pc, target, idx 1646 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1647 .addReg(ARM::PC) 1648 .addReg(MI->getOperand(0).getReg()) 1649 .addReg(MI->getOperand(1).getReg()) 1650 // Add predicate operands. 1651 .addImm(ARMCC::AL) 1652 .addReg(0) 1653 // Add 's' bit operand (always reg0 for this) 1654 .addReg(0)); 1655 return; 1656 } 1657 case ARM::SPACE: 1658 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1659 return; 1660 case ARM::TRAP: { 1661 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1662 // FIXME: Remove this special case when they do. 1663 if (!Subtarget->isTargetMachO()) { 1664 uint32_t Val = 0xe7ffdefeUL; 1665 OutStreamer->AddComment("trap"); 1666 ATS.emitInst(Val); 1667 return; 1668 } 1669 break; 1670 } 1671 case ARM::TRAPNaCl: { 1672 uint32_t Val = 0xe7fedef0UL; 1673 OutStreamer->AddComment("trap"); 1674 ATS.emitInst(Val); 1675 return; 1676 } 1677 case ARM::tTRAP: { 1678 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1679 // FIXME: Remove this special case when they do. 1680 if (!Subtarget->isTargetMachO()) { 1681 uint16_t Val = 0xdefe; 1682 OutStreamer->AddComment("trap"); 1683 ATS.emitInst(Val, 'n'); 1684 return; 1685 } 1686 break; 1687 } 1688 case ARM::t2Int_eh_sjlj_setjmp: 1689 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1690 case ARM::tInt_eh_sjlj_setjmp: { 1691 // Two incoming args: GPR:$src, GPR:$val 1692 // mov $val, pc 1693 // adds $val, #7 1694 // str $val, [$src, #4] 1695 // movs r0, #0 1696 // b LSJLJEH 1697 // movs r0, #1 1698 // LSJLJEH: 1699 unsigned SrcReg = MI->getOperand(0).getReg(); 1700 unsigned ValReg = MI->getOperand(1).getReg(); 1701 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1702 OutStreamer->AddComment("eh_setjmp begin"); 1703 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1704 .addReg(ValReg) 1705 .addReg(ARM::PC) 1706 // Predicate. 1707 .addImm(ARMCC::AL) 1708 .addReg(0)); 1709 1710 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1711 .addReg(ValReg) 1712 // 's' bit operand 1713 .addReg(ARM::CPSR) 1714 .addReg(ValReg) 1715 .addImm(7) 1716 // Predicate. 1717 .addImm(ARMCC::AL) 1718 .addReg(0)); 1719 1720 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1721 .addReg(ValReg) 1722 .addReg(SrcReg) 1723 // The offset immediate is #4. The operand value is scaled by 4 for the 1724 // tSTR instruction. 1725 .addImm(1) 1726 // Predicate. 1727 .addImm(ARMCC::AL) 1728 .addReg(0)); 1729 1730 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1731 .addReg(ARM::R0) 1732 .addReg(ARM::CPSR) 1733 .addImm(0) 1734 // Predicate. 1735 .addImm(ARMCC::AL) 1736 .addReg(0)); 1737 1738 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1739 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1740 .addExpr(SymbolExpr) 1741 .addImm(ARMCC::AL) 1742 .addReg(0)); 1743 1744 OutStreamer->AddComment("eh_setjmp end"); 1745 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1746 .addReg(ARM::R0) 1747 .addReg(ARM::CPSR) 1748 .addImm(1) 1749 // Predicate. 1750 .addImm(ARMCC::AL) 1751 .addReg(0)); 1752 1753 OutStreamer->EmitLabel(Label); 1754 return; 1755 } 1756 1757 case ARM::Int_eh_sjlj_setjmp_nofp: 1758 case ARM::Int_eh_sjlj_setjmp: { 1759 // Two incoming args: GPR:$src, GPR:$val 1760 // add $val, pc, #8 1761 // str $val, [$src, #+4] 1762 // mov r0, #0 1763 // add pc, pc, #0 1764 // mov r0, #1 1765 unsigned SrcReg = MI->getOperand(0).getReg(); 1766 unsigned ValReg = MI->getOperand(1).getReg(); 1767 1768 OutStreamer->AddComment("eh_setjmp begin"); 1769 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1770 .addReg(ValReg) 1771 .addReg(ARM::PC) 1772 .addImm(8) 1773 // Predicate. 1774 .addImm(ARMCC::AL) 1775 .addReg(0) 1776 // 's' bit operand (always reg0 for this). 1777 .addReg(0)); 1778 1779 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1780 .addReg(ValReg) 1781 .addReg(SrcReg) 1782 .addImm(4) 1783 // Predicate. 1784 .addImm(ARMCC::AL) 1785 .addReg(0)); 1786 1787 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1788 .addReg(ARM::R0) 1789 .addImm(0) 1790 // Predicate. 1791 .addImm(ARMCC::AL) 1792 .addReg(0) 1793 // 's' bit operand (always reg0 for this). 1794 .addReg(0)); 1795 1796 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1797 .addReg(ARM::PC) 1798 .addReg(ARM::PC) 1799 .addImm(0) 1800 // Predicate. 1801 .addImm(ARMCC::AL) 1802 .addReg(0) 1803 // 's' bit operand (always reg0 for this). 1804 .addReg(0)); 1805 1806 OutStreamer->AddComment("eh_setjmp end"); 1807 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1808 .addReg(ARM::R0) 1809 .addImm(1) 1810 // Predicate. 1811 .addImm(ARMCC::AL) 1812 .addReg(0) 1813 // 's' bit operand (always reg0 for this). 1814 .addReg(0)); 1815 return; 1816 } 1817 case ARM::Int_eh_sjlj_longjmp: { 1818 // ldr sp, [$src, #8] 1819 // ldr $scratch, [$src, #4] 1820 // ldr r7, [$src] 1821 // bx $scratch 1822 unsigned SrcReg = MI->getOperand(0).getReg(); 1823 unsigned ScratchReg = MI->getOperand(1).getReg(); 1824 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1825 .addReg(ARM::SP) 1826 .addReg(SrcReg) 1827 .addImm(8) 1828 // Predicate. 1829 .addImm(ARMCC::AL) 1830 .addReg(0)); 1831 1832 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1833 .addReg(ScratchReg) 1834 .addReg(SrcReg) 1835 .addImm(4) 1836 // Predicate. 1837 .addImm(ARMCC::AL) 1838 .addReg(0)); 1839 1840 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1841 .addReg(ARM::R7) 1842 .addReg(SrcReg) 1843 .addImm(0) 1844 // Predicate. 1845 .addImm(ARMCC::AL) 1846 .addReg(0)); 1847 1848 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1849 .addReg(ScratchReg) 1850 // Predicate. 1851 .addImm(ARMCC::AL) 1852 .addReg(0)); 1853 return; 1854 } 1855 case ARM::tInt_eh_sjlj_longjmp: 1856 case ARM::tInt_WIN_eh_sjlj_longjmp: { 1857 // ldr $scratch, [$src, #8] 1858 // mov sp, $scratch 1859 // ldr $scratch, [$src, #4] 1860 // ldr r7, [$src] 1861 // bx $scratch 1862 unsigned SrcReg = MI->getOperand(0).getReg(); 1863 unsigned ScratchReg = MI->getOperand(1).getReg(); 1864 1865 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1866 .addReg(ScratchReg) 1867 .addReg(SrcReg) 1868 // The offset immediate is #8. The operand value is scaled by 4 for the 1869 // tLDR instruction. 1870 .addImm(2) 1871 // Predicate. 1872 .addImm(ARMCC::AL) 1873 .addReg(0)); 1874 1875 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1876 .addReg(ARM::SP) 1877 .addReg(ScratchReg) 1878 // Predicate. 1879 .addImm(ARMCC::AL) 1880 .addReg(0)); 1881 1882 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1883 .addReg(ScratchReg) 1884 .addReg(SrcReg) 1885 .addImm(1) 1886 // Predicate. 1887 .addImm(ARMCC::AL) 1888 .addReg(0)); 1889 1890 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1891 .addReg(Opc == ARM::tInt_WIN_eh_sjlj_longjmp ? ARM::R11 : ARM::R7) 1892 .addReg(SrcReg) 1893 .addImm(0) 1894 // Predicate. 1895 .addImm(ARMCC::AL) 1896 .addReg(0)); 1897 1898 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 1899 .addReg(ScratchReg) 1900 // Predicate. 1901 .addImm(ARMCC::AL) 1902 .addReg(0)); 1903 return; 1904 } 1905 } 1906 1907 MCInst TmpInst; 1908 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 1909 1910 EmitToStreamer(*OutStreamer, TmpInst); 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // Target Registry Stuff 1915 //===----------------------------------------------------------------------===// 1916 1917 // Force static initialization. 1918 extern "C" void LLVMInitializeARMAsmPrinter() { 1919 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget); 1920 RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget); 1921 RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget); 1922 RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget); 1923 } 1924