1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 58 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::emitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::emitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->emitAssemblerFlag(MCAF_Code16); 72 OutStreamer->emitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->emitAssemblerFlag(MCAF_Code32); 75 } 76 OutStreamer->emitLabel(CurrentFnSym); 77 } 78 79 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { 80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 81 assert(Size && "C++ constructor pointer had zero size!"); 82 83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 84 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 85 86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 87 ARMII::MO_NO_FLAG), 88 (Subtarget->isTargetELF() 89 ? MCSymbolRefExpr::VK_ARM_TARGET1 90 : MCSymbolRefExpr::VK_None), 91 OutContext); 92 93 OutStreamer->emitValue(E, Size); 94 } 95 96 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 97 if (PromotedGlobals.count(GV)) 98 // The global was promoted into a constant pool. It should not be emitted. 99 return; 100 AsmPrinter::emitGlobalVariable(GV); 101 } 102 103 /// runOnMachineFunction - This uses the emitInstruction() 104 /// method to print assembly for each instruction. 105 /// 106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 107 AFI = MF.getInfo<ARMFunctionInfo>(); 108 MCP = MF.getConstantPool(); 109 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 110 111 SetupMachineFunction(MF); 112 const Function &F = MF.getFunction(); 113 const TargetMachine& TM = MF.getTarget(); 114 115 // Collect all globals that had their storage promoted to a constant pool. 116 // Functions are emitted before variables, so this accumulates promoted 117 // globals from all functions in PromotedGlobals. 118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 119 PromotedGlobals.insert(GV); 120 121 // Calculate this function's optimization goal. 122 unsigned OptimizationGoal; 123 if (F.hasOptNone()) 124 // For best debugging illusion, speed and small size sacrificed 125 OptimizationGoal = 6; 126 else if (F.hasMinSize()) 127 // Aggressively for small size, speed and debug illusion sacrificed 128 OptimizationGoal = 4; 129 else if (F.hasOptSize()) 130 // For small size, but speed and debugging illusion preserved 131 OptimizationGoal = 3; 132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 133 // Aggressively for speed, small size and debug illusion sacrificed 134 OptimizationGoal = 2; 135 else if (TM.getOptLevel() > CodeGenOpt::None) 136 // For speed, but small size and good debug illusion preserved 137 OptimizationGoal = 1; 138 else // TM.getOptLevel() == CodeGenOpt::None 139 // For good debugging, but speed and small size preserved 140 OptimizationGoal = 5; 141 142 // Combine a new optimization goal with existing ones. 143 if (OptimizationGoals == -1) // uninitialized goals 144 OptimizationGoals = OptimizationGoal; 145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 146 OptimizationGoals = 0; 147 148 if (Subtarget->isTargetCOFF()) { 149 bool Internal = F.hasInternalLinkage(); 150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 151 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 153 154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 155 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 156 OutStreamer->EmitCOFFSymbolType(Type); 157 OutStreamer->EndCOFFSymbolDef(); 158 } 159 160 // Emit the rest of the function body. 161 emitFunctionBody(); 162 163 // Emit the XRay table for this function. 164 emitXRayTable(); 165 166 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 167 // These are created per function, rather than per TU, since it's 168 // relatively easy to exceed the thumb branch range within a TU. 169 if (! ThumbIndirectPads.empty()) { 170 OutStreamer->emitAssemblerFlag(MCAF_Code16); 171 emitAlignment(Align(2)); 172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 173 OutStreamer->emitLabel(TIP.second); 174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 175 .addReg(TIP.first) 176 // Add predicate operands. 177 .addImm(ARMCC::AL) 178 .addReg(0)); 179 } 180 ThumbIndirectPads.clear(); 181 } 182 183 // We didn't modify anything. 184 return false; 185 } 186 187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 188 raw_ostream &O) { 189 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 190 unsigned TF = MO.getTargetFlags(); 191 if (TF & ARMII::MO_LO16) 192 O << ":lower16:"; 193 else if (TF & ARMII::MO_HI16) 194 O << ":upper16:"; 195 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 196 printOffset(MO.getOffset(), O); 197 } 198 199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 200 raw_ostream &O) { 201 const MachineOperand &MO = MI->getOperand(OpNum); 202 203 switch (MO.getType()) { 204 default: llvm_unreachable("<unknown operand type>"); 205 case MachineOperand::MO_Register: { 206 Register Reg = MO.getReg(); 207 assert(Register::isPhysicalRegister(Reg)); 208 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 209 if(ARM::GPRPairRegClass.contains(Reg)) { 210 const MachineFunction &MF = *MI->getParent()->getParent(); 211 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 212 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 213 } 214 O << ARMInstPrinter::getRegisterName(Reg); 215 break; 216 } 217 case MachineOperand::MO_Immediate: { 218 O << '#'; 219 unsigned TF = MO.getTargetFlags(); 220 if (TF == ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF == ARMII::MO_HI16) 223 O << ":upper16:"; 224 O << MO.getImm(); 225 break; 226 } 227 case MachineOperand::MO_MachineBasicBlock: 228 MO.getMBB()->getSymbol()->print(O, MAI); 229 return; 230 case MachineOperand::MO_GlobalAddress: { 231 PrintSymbolOperand(MO, O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 243 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 244 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 245 const DataLayout &DL = getDataLayout(); 246 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 247 "CPI" + Twine(getFunctionNumber()) + "_" + 248 Twine(CPID)); 249 } 250 251 //===--------------------------------------------------------------------===// 252 253 MCSymbol *ARMAsmPrinter:: 254 GetARMJTIPICJumpTableLabel(unsigned uid) const { 255 const DataLayout &DL = getDataLayout(); 256 SmallString<60> Name; 257 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 258 << getFunctionNumber() << '_' << uid; 259 return OutContext.getOrCreateSymbol(Name); 260 } 261 262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 263 const char *ExtraCode, raw_ostream &O) { 264 // Does this asm operand have a single letter operand modifier? 265 if (ExtraCode && ExtraCode[0]) { 266 if (ExtraCode[1] != 0) return true; // Unknown modifier. 267 268 switch (ExtraCode[0]) { 269 default: 270 // See if this is a generic print operand 271 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 272 case 'P': // Print a VFP double precision register. 273 case 'q': // Print a NEON quad precision register. 274 printOperand(MI, OpNum, O); 275 return false; 276 case 'y': // Print a VFP single precision register as indexed double. 277 if (MI->getOperand(OpNum).isReg()) { 278 Register Reg = MI->getOperand(OpNum).getReg(); 279 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 280 // Find the 'd' register that has this 's' register as a sub-register, 281 // and determine the lane number. 282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 283 if (!ARM::DPRRegClass.contains(*SR)) 284 continue; 285 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 286 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 287 return false; 288 } 289 } 290 return true; 291 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 292 if (!MI->getOperand(OpNum).isImm()) 293 return true; 294 O << ~(MI->getOperand(OpNum).getImm()); 295 return false; 296 case 'L': // The low 16 bits of an immediate constant. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << (MI->getOperand(OpNum).getImm() & 0xffff); 300 return false; 301 case 'M': { // A register range suitable for LDM/STM. 302 if (!MI->getOperand(OpNum).isReg()) 303 return true; 304 const MachineOperand &MO = MI->getOperand(OpNum); 305 Register RegBegin = MO.getReg(); 306 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 307 // already got the operands in registers that are operands to the 308 // inline asm statement. 309 O << "{"; 310 if (ARM::GPRPairRegClass.contains(RegBegin)) { 311 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 312 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 313 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 314 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 315 } 316 O << ARMInstPrinter::getRegisterName(RegBegin); 317 318 // FIXME: The register allocator not only may not have given us the 319 // registers in sequence, but may not be in ascending registers. This 320 // will require changes in the register allocator that'll need to be 321 // propagated down here if the operands change. 322 unsigned RegOps = OpNum + 1; 323 while (MI->getOperand(RegOps).isReg()) { 324 O << ", " 325 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 326 RegOps++; 327 } 328 329 O << "}"; 330 331 return false; 332 } 333 case 'R': // The most significant register of a pair. 334 case 'Q': { // The least significant register of a pair. 335 if (OpNum == 0) 336 return true; 337 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 338 if (!FlagsOP.isImm()) 339 return true; 340 unsigned Flags = FlagsOP.getImm(); 341 342 // This operand may not be the one that actually provides the register. If 343 // it's tied to a previous one then we should refer instead to that one 344 // for registers and their classes. 345 unsigned TiedIdx; 346 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 347 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 348 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 349 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 350 } 351 Flags = MI->getOperand(OpNum).getImm(); 352 353 // Later code expects OpNum to be pointing at the register rather than 354 // the flags. 355 OpNum += 1; 356 } 357 358 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 359 unsigned RC; 360 bool FirstHalf; 361 const ARMBaseTargetMachine &ATM = 362 static_cast<const ARMBaseTargetMachine &>(TM); 363 364 // 'Q' should correspond to the low order register and 'R' to the high 365 // order register. Whether this corresponds to the upper or lower half 366 // depends on the endianess mode. 367 if (ExtraCode[0] == 'Q') 368 FirstHalf = ATM.isLittleEndian(); 369 else 370 // ExtraCode[0] == 'R'. 371 FirstHalf = !ATM.isLittleEndian(); 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 374 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 375 if (NumVals != 1) 376 return true; 377 const MachineOperand &MO = MI->getOperand(OpNum); 378 if (!MO.isReg()) 379 return true; 380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 381 Register Reg = 382 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 383 O << ARMInstPrinter::getRegisterName(Reg); 384 return false; 385 } 386 if (NumVals != 2) 387 return true; 388 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 389 if (RegOp >= MI->getNumOperands()) 390 return true; 391 const MachineOperand &MO = MI->getOperand(RegOp); 392 if (!MO.isReg()) 393 return true; 394 Register Reg = MO.getReg(); 395 O << ARMInstPrinter::getRegisterName(Reg); 396 return false; 397 } 398 399 case 'e': // The low doubleword register of a NEON quad register. 400 case 'f': { // The high doubleword register of a NEON quad register. 401 if (!MI->getOperand(OpNum).isReg()) 402 return true; 403 Register Reg = MI->getOperand(OpNum).getReg(); 404 if (!ARM::QPRRegClass.contains(Reg)) 405 return true; 406 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 407 Register SubReg = 408 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 409 O << ARMInstPrinter::getRegisterName(SubReg); 410 return false; 411 } 412 413 // This modifier is not yet supported. 414 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 415 return true; 416 case 'H': { // The highest-numbered register of a pair. 417 const MachineOperand &MO = MI->getOperand(OpNum); 418 if (!MO.isReg()) 419 return true; 420 const MachineFunction &MF = *MI->getParent()->getParent(); 421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 422 Register Reg = MO.getReg(); 423 if(!ARM::GPRPairRegClass.contains(Reg)) 424 return false; 425 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 426 O << ARMInstPrinter::getRegisterName(Reg); 427 return false; 428 } 429 } 430 } 431 432 printOperand(MI, OpNum, O); 433 return false; 434 } 435 436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 437 unsigned OpNum, const char *ExtraCode, 438 raw_ostream &O) { 439 // Does this asm operand have a single letter operand modifier? 440 if (ExtraCode && ExtraCode[0]) { 441 if (ExtraCode[1] != 0) return true; // Unknown modifier. 442 443 switch (ExtraCode[0]) { 444 case 'A': // A memory operand for a VLD1/VST1 instruction. 445 default: return true; // Unknown modifier. 446 case 'm': // The base register of a memory operand. 447 if (!MI->getOperand(OpNum).isReg()) 448 return true; 449 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 450 return false; 451 } 452 } 453 454 const MachineOperand &MO = MI->getOperand(OpNum); 455 assert(MO.isReg() && "unexpected inline asm memory operand"); 456 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 457 return false; 458 } 459 460 static bool isThumb(const MCSubtargetInfo& STI) { 461 return STI.getFeatureBits()[ARM::ModeThumb]; 462 } 463 464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 465 const MCSubtargetInfo *EndInfo) const { 466 // If either end mode is unknown (EndInfo == NULL) or different than 467 // the start mode, then restore the start mode. 468 const bool WasThumb = isThumb(StartInfo); 469 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 470 OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 471 } 472 } 473 474 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { 475 const Triple &TT = TM.getTargetTriple(); 476 // Use unified assembler syntax. 477 OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); 478 479 // Emit ARM Build Attributes 480 if (TT.isOSBinFormatELF()) 481 emitAttributes(); 482 483 // Use the triple's architecture and subarchitecture to determine 484 // if we're thumb for the purposes of the top level code16 assembler 485 // flag. 486 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 487 OutStreamer->emitAssemblerFlag(MCAF_Code16); 488 } 489 490 static void 491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 492 MachineModuleInfoImpl::StubValueTy &MCSym) { 493 // L_foo$stub: 494 OutStreamer.emitLabel(StubLabel); 495 // .indirect_symbol _foo 496 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 497 498 if (MCSym.getInt()) 499 // External to current translation unit. 500 OutStreamer.emitIntValue(0, 4/*size*/); 501 else 502 // Internal to current translation unit. 503 // 504 // When we place the LSDA into the TEXT section, the type info 505 // pointers need to be indirect and pc-rel. We accomplish this by 506 // using NLPs; however, sometimes the types are local to the file. 507 // We need to fill in the value for the NLP in those cases. 508 OutStreamer.emitValue( 509 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 510 4 /*size*/); 511 } 512 513 514 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { 515 const Triple &TT = TM.getTargetTriple(); 516 if (TT.isOSBinFormatMachO()) { 517 // All darwin targets use mach-o. 518 const TargetLoweringObjectFileMachO &TLOFMacho = 519 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 520 MachineModuleInfoMachO &MMIMacho = 521 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 522 523 // Output non-lazy-pointers for external and common global variables. 524 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 525 526 if (!Stubs.empty()) { 527 // Switch with ".non_lazy_symbol_pointer" directive. 528 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 529 emitAlignment(Align(4)); 530 531 for (auto &Stub : Stubs) 532 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 533 534 Stubs.clear(); 535 OutStreamer->AddBlankLine(); 536 } 537 538 Stubs = MMIMacho.GetThreadLocalGVStubList(); 539 if (!Stubs.empty()) { 540 // Switch with ".non_lazy_symbol_pointer" directive. 541 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 542 emitAlignment(Align(4)); 543 544 for (auto &Stub : Stubs) 545 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 546 547 Stubs.clear(); 548 OutStreamer->AddBlankLine(); 549 } 550 551 // Funny Darwin hack: This flag tells the linker that no global symbols 552 // contain code that falls through to other global symbols (e.g. the obvious 553 // implementation of multiple entry points). If this doesn't occur, the 554 // linker can safely perform dead code stripping. Since LLVM never 555 // generates code that does this, it is always safe to set. 556 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 557 } 558 559 // The last attribute to be emitted is ABI_optimization_goals 560 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 561 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 562 563 if (OptimizationGoals > 0 && 564 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 565 Subtarget->isTargetMuslAEABI())) 566 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 567 OptimizationGoals = -1; 568 569 ATS.finishAttributeSection(); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() 574 // FIXME: 575 // The following seem like one-off assembler flags, but they actually need 576 // to appear in the .ARM.attributes section in ELF. 577 // Instead of subclassing the MCELFStreamer, we do the work here. 578 579 // Returns true if all functions have the same function attribute value. 580 // It also returns true when the module has no functions. 581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 582 StringRef Value) { 583 return !any_of(M, [&](const Function &F) { 584 return F.getFnAttribute(Attr).getValueAsString() != Value; 585 }); 586 } 587 // Returns true if all functions have the same denormal mode. 588 // It also returns true when the module has no functions. 589 static bool checkDenormalAttributeConsistency(const Module &M, 590 StringRef Attr, 591 DenormalMode Value) { 592 return !any_of(M, [&](const Function &F) { 593 StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); 594 return parseDenormalFPAttribute(AttrVal) != Value; 595 }); 596 } 597 598 void ARMAsmPrinter::emitAttributes() { 599 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 600 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 601 602 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 603 604 ATS.switchVendor("aeabi"); 605 606 // Compute ARM ELF Attributes based on the default subtarget that 607 // we'd have constructed. The existing ARM behavior isn't LTO clean 608 // anyhow. 609 // FIXME: For ifunc related functions we could iterate over and look 610 // for a feature string that doesn't match the default one. 611 const Triple &TT = TM.getTargetTriple(); 612 StringRef CPU = TM.getTargetCPU(); 613 StringRef FS = TM.getTargetFeatureString(); 614 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 615 if (!FS.empty()) { 616 if (!ArchFS.empty()) 617 ArchFS = (Twine(ArchFS) + "," + FS).str(); 618 else 619 ArchFS = std::string(FS); 620 } 621 const ARMBaseTargetMachine &ATM = 622 static_cast<const ARMBaseTargetMachine &>(TM); 623 const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, 624 ATM.isLittleEndian()); 625 626 // Emit build attributes for the available hardware. 627 ATS.emitTargetAttributes(STI); 628 629 // RW data addressing. 630 if (isPositionIndependent()) { 631 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 632 ARMBuildAttrs::AddressRWPCRel); 633 } else if (STI.isRWPI()) { 634 // RWPI specific attributes. 635 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 636 ARMBuildAttrs::AddressRWSBRel); 637 } 638 639 // RO data addressing. 640 if (isPositionIndependent() || STI.isROPI()) { 641 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 642 ARMBuildAttrs::AddressROPCRel); 643 } 644 645 // GOT use. 646 if (isPositionIndependent()) { 647 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 648 ARMBuildAttrs::AddressGOT); 649 } else { 650 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 651 ARMBuildAttrs::AddressDirect); 652 } 653 654 // Set FP Denormals. 655 if (checkDenormalAttributeConsistency(*MMI->getModule(), 656 "denormal-fp-math", 657 DenormalMode::getPreserveSign()) || 658 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 659 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 660 ARMBuildAttrs::PreserveFPSign); 661 else if (checkDenormalAttributeConsistency(*MMI->getModule(), 662 "denormal-fp-math", 663 DenormalMode::getPositiveZero()) || 664 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 665 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 666 ARMBuildAttrs::PositiveZero); 667 else if (!TM.Options.UnsafeFPMath) 668 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 669 ARMBuildAttrs::IEEEDenormals); 670 else { 671 if (!STI.hasVFP2Base()) { 672 // When the target doesn't have an FPU (by design or 673 // intention), the assumptions made on the software support 674 // mirror that of the equivalent hardware support *if it 675 // existed*. For v7 and better we indicate that denormals are 676 // flushed preserving sign, and for V6 we indicate that 677 // denormals are flushed to positive zero. 678 if (STI.hasV7Ops()) 679 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 680 ARMBuildAttrs::PreserveFPSign); 681 } else if (STI.hasVFP3Base()) { 682 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 683 // the sign bit of the zero matches the sign bit of the input or 684 // result that is being flushed to zero. 685 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 686 ARMBuildAttrs::PreserveFPSign); 687 } 688 // For VFPv2 implementations it is implementation defined as 689 // to whether denormals are flushed to positive zero or to 690 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 691 // LLVM has chosen to flush this to positive zero (most likely for 692 // GCC compatibility), so that's the chosen value here (the 693 // absence of its emission implies zero). 694 } 695 696 // Set FP exceptions and rounding 697 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 698 "no-trapping-math", "true") || 699 TM.Options.NoTrappingFPMath) 700 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 701 ARMBuildAttrs::Not_Allowed); 702 else if (!TM.Options.UnsafeFPMath) { 703 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 704 705 // If the user has permitted this code to choose the IEEE 754 706 // rounding at run-time, emit the rounding attribute. 707 if (TM.Options.HonorSignDependentRoundingFPMathOption) 708 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 709 } 710 711 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 712 // equivalent of GCC's -ffinite-math-only flag. 713 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 714 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 715 ARMBuildAttrs::Allowed); 716 else 717 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 718 ARMBuildAttrs::AllowIEEE754); 719 720 // FIXME: add more flags to ARMBuildAttributes.h 721 // 8-bytes alignment stuff. 722 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 723 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 724 725 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 726 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 727 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 728 729 // FIXME: To support emitting this build attribute as GCC does, the 730 // -mfp16-format option and associated plumbing must be 731 // supported. For now the __fp16 type is exposed by default, so this 732 // attribute should be emitted with value 1. 733 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 734 ARMBuildAttrs::FP16FormatIEEE); 735 736 if (MMI) { 737 if (const Module *SourceModule = MMI->getModule()) { 738 // ABI_PCS_wchar_t to indicate wchar_t width 739 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 740 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 741 SourceModule->getModuleFlag("wchar_size"))) { 742 int WCharWidth = WCharWidthValue->getZExtValue(); 743 assert((WCharWidth == 2 || WCharWidth == 4) && 744 "wchar_t width must be 2 or 4 bytes"); 745 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 746 } 747 748 // ABI_enum_size to indicate enum width 749 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 750 // (all enums contain a value needing 32 bits to encode). 751 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 752 SourceModule->getModuleFlag("min_enum_size"))) { 753 int EnumWidth = EnumWidthValue->getZExtValue(); 754 assert((EnumWidth == 1 || EnumWidth == 4) && 755 "Minimum enum width must be 1 or 4 bytes"); 756 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 757 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 758 } 759 } 760 } 761 762 // We currently do not support using R9 as the TLS pointer. 763 if (STI.isRWPI()) 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 765 ARMBuildAttrs::R9IsSB); 766 else if (STI.isR9Reserved()) 767 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 768 ARMBuildAttrs::R9Reserved); 769 else 770 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 771 ARMBuildAttrs::R9IsGPR); 772 } 773 774 //===----------------------------------------------------------------------===// 775 776 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 777 unsigned LabelId, MCContext &Ctx) { 778 779 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 780 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 781 return Label; 782 } 783 784 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 785 unsigned LabelId, MCContext &Ctx) { 786 787 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 788 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 789 return Label; 790 } 791 792 static MCSymbolRefExpr::VariantKind 793 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 794 switch (Modifier) { 795 case ARMCP::no_modifier: 796 return MCSymbolRefExpr::VK_None; 797 case ARMCP::TLSGD: 798 return MCSymbolRefExpr::VK_TLSGD; 799 case ARMCP::TPOFF: 800 return MCSymbolRefExpr::VK_TPOFF; 801 case ARMCP::GOTTPOFF: 802 return MCSymbolRefExpr::VK_GOTTPOFF; 803 case ARMCP::SBREL: 804 return MCSymbolRefExpr::VK_ARM_SBREL; 805 case ARMCP::GOT_PREL: 806 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 807 case ARMCP::SECREL: 808 return MCSymbolRefExpr::VK_SECREL; 809 } 810 llvm_unreachable("Invalid ARMCPModifier!"); 811 } 812 813 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 814 unsigned char TargetFlags) { 815 if (Subtarget->isTargetMachO()) { 816 bool IsIndirect = 817 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 818 819 if (!IsIndirect) 820 return getSymbol(GV); 821 822 // FIXME: Remove this when Darwin transition to @GOT like syntax. 823 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 824 MachineModuleInfoMachO &MMIMachO = 825 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 826 MachineModuleInfoImpl::StubValueTy &StubSym = 827 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 828 : MMIMachO.getGVStubEntry(MCSym); 829 830 if (!StubSym.getPointer()) 831 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 832 !GV->hasInternalLinkage()); 833 return MCSym; 834 } else if (Subtarget->isTargetCOFF()) { 835 assert(Subtarget->isTargetWindows() && 836 "Windows is the only supported COFF target"); 837 838 bool IsIndirect = 839 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 840 if (!IsIndirect) 841 return getSymbol(GV); 842 843 SmallString<128> Name; 844 if (TargetFlags & ARMII::MO_DLLIMPORT) 845 Name = "__imp_"; 846 else if (TargetFlags & ARMII::MO_COFFSTUB) 847 Name = ".refptr."; 848 getNameWithPrefix(Name, GV); 849 850 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 851 852 if (TargetFlags & ARMII::MO_COFFSTUB) { 853 MachineModuleInfoCOFF &MMICOFF = 854 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 855 MachineModuleInfoImpl::StubValueTy &StubSym = 856 MMICOFF.getGVStubEntry(MCSym); 857 858 if (!StubSym.getPointer()) 859 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 860 } 861 862 return MCSym; 863 } else if (Subtarget->isTargetELF()) { 864 return getSymbol(GV); 865 } 866 llvm_unreachable("unexpected target"); 867 } 868 869 void ARMAsmPrinter::emitMachineConstantPoolValue( 870 MachineConstantPoolValue *MCPV) { 871 const DataLayout &DL = getDataLayout(); 872 int Size = DL.getTypeAllocSize(MCPV->getType()); 873 874 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 875 876 if (ACPV->isPromotedGlobal()) { 877 // This constant pool entry is actually a global whose storage has been 878 // promoted into the constant pool. This global may be referenced still 879 // by debug information, and due to the way AsmPrinter is set up, the debug 880 // info is immutable by the time we decide to promote globals to constant 881 // pools. Because of this, we need to ensure we emit a symbol for the global 882 // with private linkage (the default) so debug info can refer to it. 883 // 884 // However, if this global is promoted into several functions we must ensure 885 // we don't try and emit duplicate symbols! 886 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 887 for (const auto *GV : ACPC->promotedGlobals()) { 888 if (!EmittedPromotedGlobalLabels.count(GV)) { 889 MCSymbol *GVSym = getSymbol(GV); 890 OutStreamer->emitLabel(GVSym); 891 EmittedPromotedGlobalLabels.insert(GV); 892 } 893 } 894 return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 895 } 896 897 MCSymbol *MCSym; 898 if (ACPV->isLSDA()) { 899 MCSym = getCurExceptionSym(); 900 } else if (ACPV->isBlockAddress()) { 901 const BlockAddress *BA = 902 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 903 MCSym = GetBlockAddressSymbol(BA); 904 } else if (ACPV->isGlobalValue()) { 905 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 906 907 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 908 // flag the global as MO_NONLAZY. 909 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 910 MCSym = GetARMGVSymbol(GV, TF); 911 } else if (ACPV->isMachineBasicBlock()) { 912 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 913 MCSym = MBB->getSymbol(); 914 } else { 915 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 916 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 917 MCSym = GetExternalSymbolSymbol(Sym); 918 } 919 920 // Create an MCSymbol for the reference. 921 const MCExpr *Expr = 922 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 923 OutContext); 924 925 if (ACPV->getPCAdjustment()) { 926 MCSymbol *PCLabel = 927 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 928 ACPV->getLabelId(), OutContext); 929 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 930 PCRelExpr = 931 MCBinaryExpr::createAdd(PCRelExpr, 932 MCConstantExpr::create(ACPV->getPCAdjustment(), 933 OutContext), 934 OutContext); 935 if (ACPV->mustAddCurrentAddress()) { 936 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 937 // label, so just emit a local label end reference that instead. 938 MCSymbol *DotSym = OutContext.createTempSymbol(); 939 OutStreamer->emitLabel(DotSym); 940 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 941 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 942 } 943 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 944 } 945 OutStreamer->emitValue(Expr, Size); 946 } 947 948 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { 949 const MachineOperand &MO1 = MI->getOperand(1); 950 unsigned JTI = MO1.getIndex(); 951 952 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 953 // ARM mode tables. 954 emitAlignment(Align(4)); 955 956 // Emit a label for the jump table. 957 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 958 OutStreamer->emitLabel(JTISymbol); 959 960 // Mark the jump table as data-in-code. 961 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 962 963 // Emit each entry of the table. 964 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 965 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 966 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 967 968 for (MachineBasicBlock *MBB : JTBBs) { 969 // Construct an MCExpr for the entry. We want a value of the form: 970 // (BasicBlockAddr - TableBeginAddr) 971 // 972 // For example, a table with entries jumping to basic blocks BB0 and BB1 973 // would look like: 974 // LJTI_0_0: 975 // .word (LBB0 - LJTI_0_0) 976 // .word (LBB1 - LJTI_0_0) 977 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 978 979 if (isPositionIndependent() || Subtarget->isROPI()) 980 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 981 OutContext), 982 OutContext); 983 // If we're generating a table of Thumb addresses in static relocation 984 // model, we need to add one to keep interworking correctly. 985 else if (AFI->isThumbFunction()) 986 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 987 OutContext); 988 OutStreamer->emitValue(Expr, 4); 989 } 990 // Mark the end of jump table data-in-code region. 991 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 992 } 993 994 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { 995 const MachineOperand &MO1 = MI->getOperand(1); 996 unsigned JTI = MO1.getIndex(); 997 998 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 999 // ARM mode tables. 1000 emitAlignment(Align(4)); 1001 1002 // Emit a label for the jump table. 1003 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1004 OutStreamer->emitLabel(JTISymbol); 1005 1006 // Emit each entry of the table. 1007 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1008 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1009 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1010 1011 for (MachineBasicBlock *MBB : JTBBs) { 1012 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1013 OutContext); 1014 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1015 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1016 .addExpr(MBBSymbolExpr) 1017 .addImm(ARMCC::AL) 1018 .addReg(0)); 1019 } 1020 } 1021 1022 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, 1023 unsigned OffsetWidth) { 1024 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1025 const MachineOperand &MO1 = MI->getOperand(1); 1026 unsigned JTI = MO1.getIndex(); 1027 1028 if (Subtarget->isThumb1Only()) 1029 emitAlignment(Align(4)); 1030 1031 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1032 OutStreamer->emitLabel(JTISymbol); 1033 1034 // Emit each entry of the table. 1035 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1036 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1037 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1038 1039 // Mark the jump table as data-in-code. 1040 OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1041 : MCDR_DataRegionJT16); 1042 1043 for (auto MBB : JTBBs) { 1044 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1045 OutContext); 1046 // Otherwise it's an offset from the dispatch instruction. Construct an 1047 // MCExpr for the entry. We want a value of the form: 1048 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1049 // 1050 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1051 // would look like: 1052 // LJTI_0_0: 1053 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1054 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1055 // where LCPI0_0 is a label defined just before the TBB instruction using 1056 // this table. 1057 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1058 const MCExpr *Expr = MCBinaryExpr::createAdd( 1059 MCSymbolRefExpr::create(TBInstPC, OutContext), 1060 MCConstantExpr::create(4, OutContext), OutContext); 1061 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1062 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1063 OutContext); 1064 OutStreamer->emitValue(Expr, OffsetWidth); 1065 } 1066 // Mark the end of jump table data-in-code region. 32-bit offsets use 1067 // actual branch instructions here, so we don't mark those as a data-region 1068 // at all. 1069 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1070 1071 // Make sure the next instruction is 2-byte aligned. 1072 emitAlignment(Align(2)); 1073 } 1074 1075 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1076 assert(MI->getFlag(MachineInstr::FrameSetup) && 1077 "Only instruction which are involved into frame setup code are allowed"); 1078 1079 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1080 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1081 const MachineFunction &MF = *MI->getParent()->getParent(); 1082 const TargetRegisterInfo *TargetRegInfo = 1083 MF.getSubtarget().getRegisterInfo(); 1084 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1085 1086 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1087 unsigned Opc = MI->getOpcode(); 1088 unsigned SrcReg, DstReg; 1089 1090 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1091 // Two special cases: 1092 // 1) tPUSH does not have src/dst regs. 1093 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1094 // load. Yes, this is pretty fragile, but for now I don't see better 1095 // way... :( 1096 SrcReg = DstReg = ARM::SP; 1097 } else { 1098 SrcReg = MI->getOperand(1).getReg(); 1099 DstReg = MI->getOperand(0).getReg(); 1100 } 1101 1102 // Try to figure out the unwinding opcode out of src / dst regs. 1103 if (MI->mayStore()) { 1104 // Register saves. 1105 assert(DstReg == ARM::SP && 1106 "Only stack pointer as a destination reg is supported"); 1107 1108 SmallVector<unsigned, 4> RegList; 1109 // Skip src & dst reg, and pred ops. 1110 unsigned StartOp = 2 + 2; 1111 // Use all the operands. 1112 unsigned NumOffset = 0; 1113 // Amount of SP adjustment folded into a push. 1114 unsigned Pad = 0; 1115 1116 switch (Opc) { 1117 default: 1118 MI->print(errs()); 1119 llvm_unreachable("Unsupported opcode for unwinding information"); 1120 case ARM::tPUSH: 1121 // Special case here: no src & dst reg, but two extra imp ops. 1122 StartOp = 2; NumOffset = 2; 1123 LLVM_FALLTHROUGH; 1124 case ARM::STMDB_UPD: 1125 case ARM::t2STMDB_UPD: 1126 case ARM::VSTMDDB_UPD: 1127 assert(SrcReg == ARM::SP && 1128 "Only stack pointer as a source reg is supported"); 1129 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1130 i != NumOps; ++i) { 1131 const MachineOperand &MO = MI->getOperand(i); 1132 // Actually, there should never be any impdef stuff here. Skip it 1133 // temporary to workaround PR11902. 1134 if (MO.isImplicit()) 1135 continue; 1136 // Registers, pushed as a part of folding an SP update into the 1137 // push instruction are marked as undef and should not be 1138 // restored when unwinding, because the function can modify the 1139 // corresponding stack slots. 1140 if (MO.isUndef()) { 1141 assert(RegList.empty() && 1142 "Pad registers must come before restored ones"); 1143 unsigned Width = 1144 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1145 Pad += Width; 1146 continue; 1147 } 1148 // Check for registers that are remapped (for a Thumb1 prologue that 1149 // saves high registers). 1150 Register Reg = MO.getReg(); 1151 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1152 Reg = RemappedReg; 1153 RegList.push_back(Reg); 1154 } 1155 break; 1156 case ARM::STR_PRE_IMM: 1157 case ARM::STR_PRE_REG: 1158 case ARM::t2STR_PRE: 1159 assert(MI->getOperand(2).getReg() == ARM::SP && 1160 "Only stack pointer as a source reg is supported"); 1161 RegList.push_back(SrcReg); 1162 break; 1163 } 1164 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1165 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1166 // Account for the SP adjustment, folded into the push. 1167 if (Pad) 1168 ATS.emitPad(Pad); 1169 } 1170 } else { 1171 // Changes of stack / frame pointer. 1172 if (SrcReg == ARM::SP) { 1173 int64_t Offset = 0; 1174 switch (Opc) { 1175 default: 1176 MI->print(errs()); 1177 llvm_unreachable("Unsupported opcode for unwinding information"); 1178 case ARM::MOVr: 1179 case ARM::tMOVr: 1180 Offset = 0; 1181 break; 1182 case ARM::ADDri: 1183 case ARM::t2ADDri: 1184 case ARM::t2ADDri12: 1185 case ARM::t2ADDspImm: 1186 case ARM::t2ADDspImm12: 1187 Offset = -MI->getOperand(2).getImm(); 1188 break; 1189 case ARM::SUBri: 1190 case ARM::t2SUBri: 1191 case ARM::t2SUBri12: 1192 case ARM::t2SUBspImm: 1193 case ARM::t2SUBspImm12: 1194 Offset = MI->getOperand(2).getImm(); 1195 break; 1196 case ARM::tSUBspi: 1197 Offset = MI->getOperand(2).getImm()*4; 1198 break; 1199 case ARM::tADDspi: 1200 case ARM::tADDrSPi: 1201 Offset = -MI->getOperand(2).getImm()*4; 1202 break; 1203 case ARM::tLDRpci: { 1204 // Grab the constpool index and check, whether it corresponds to 1205 // original or cloned constpool entry. 1206 unsigned CPI = MI->getOperand(1).getIndex(); 1207 const MachineConstantPool *MCP = MF.getConstantPool(); 1208 if (CPI >= MCP->getConstants().size()) 1209 CPI = AFI->getOriginalCPIdx(CPI); 1210 assert(CPI != -1U && "Invalid constpool index"); 1211 1212 // Derive the actual offset. 1213 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1214 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1215 // FIXME: Check for user, it should be "add" instruction! 1216 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1217 break; 1218 } 1219 } 1220 1221 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1222 if (DstReg == FramePtr && FramePtr != ARM::SP) 1223 // Set-up of the frame pointer. Positive values correspond to "add" 1224 // instruction. 1225 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1226 else if (DstReg == ARM::SP) { 1227 // Change of SP by an offset. Positive values correspond to "sub" 1228 // instruction. 1229 ATS.emitPad(Offset); 1230 } else { 1231 // Move of SP to a register. Positive values correspond to an "add" 1232 // instruction. 1233 ATS.emitMovSP(DstReg, -Offset); 1234 } 1235 } 1236 } else if (DstReg == ARM::SP) { 1237 MI->print(errs()); 1238 llvm_unreachable("Unsupported opcode for unwinding information"); 1239 } else if (Opc == ARM::tMOVr) { 1240 // If a Thumb1 function spills r8-r11, we copy the values to low 1241 // registers before pushing them. Record the copy so we can emit the 1242 // correct ".save" later. 1243 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1244 } else { 1245 MI->print(errs()); 1246 llvm_unreachable("Unsupported opcode for unwinding information"); 1247 } 1248 } 1249 } 1250 1251 // Simple pseudo-instructions have their lowering (with expansion to real 1252 // instructions) auto-generated. 1253 #include "ARMGenMCPseudoLowering.inc" 1254 1255 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { 1256 const DataLayout &DL = getDataLayout(); 1257 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1258 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1259 1260 const MachineFunction &MF = *MI->getParent()->getParent(); 1261 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1262 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1263 1264 // If we just ended a constant pool, mark it as such. 1265 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1266 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1267 InConstantPool = false; 1268 } 1269 1270 // Emit unwinding stuff for frame-related instructions 1271 if (Subtarget->isTargetEHABICompatible() && 1272 MI->getFlag(MachineInstr::FrameSetup)) 1273 EmitUnwindingInstruction(MI); 1274 1275 // Do any auto-generated pseudo lowerings. 1276 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1277 return; 1278 1279 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1280 "Pseudo flag setting opcode should be expanded early"); 1281 1282 // Check for manual lowerings. 1283 unsigned Opc = MI->getOpcode(); 1284 switch (Opc) { 1285 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1286 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1287 case ARM::LEApcrel: 1288 case ARM::tLEApcrel: 1289 case ARM::t2LEApcrel: { 1290 // FIXME: Need to also handle globals and externals 1291 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1292 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1293 ARM::t2LEApcrel ? ARM::t2ADR 1294 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1295 : ARM::ADR)) 1296 .addReg(MI->getOperand(0).getReg()) 1297 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1298 // Add predicate operands. 1299 .addImm(MI->getOperand(2).getImm()) 1300 .addReg(MI->getOperand(3).getReg())); 1301 return; 1302 } 1303 case ARM::LEApcrelJT: 1304 case ARM::tLEApcrelJT: 1305 case ARM::t2LEApcrelJT: { 1306 MCSymbol *JTIPICSymbol = 1307 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1308 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1309 ARM::t2LEApcrelJT ? ARM::t2ADR 1310 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1311 : ARM::ADR)) 1312 .addReg(MI->getOperand(0).getReg()) 1313 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1314 // Add predicate operands. 1315 .addImm(MI->getOperand(2).getImm()) 1316 .addReg(MI->getOperand(3).getReg())); 1317 return; 1318 } 1319 // Darwin call instructions are just normal call instructions with different 1320 // clobber semantics (they clobber R9). 1321 case ARM::BX_CALL: { 1322 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1323 .addReg(ARM::LR) 1324 .addReg(ARM::PC) 1325 // Add predicate operands. 1326 .addImm(ARMCC::AL) 1327 .addReg(0) 1328 // Add 's' bit operand (always reg0 for this) 1329 .addReg(0)); 1330 1331 assert(Subtarget->hasV4TOps()); 1332 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1333 .addReg(MI->getOperand(0).getReg())); 1334 return; 1335 } 1336 case ARM::tBX_CALL: { 1337 if (Subtarget->hasV5TOps()) 1338 llvm_unreachable("Expected BLX to be selected for v5t+"); 1339 1340 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1341 // that the saved lr has its LSB set correctly (the arch doesn't 1342 // have blx). 1343 // So here we generate a bl to a small jump pad that does bx rN. 1344 // The jump pads are emitted after the function body. 1345 1346 Register TReg = MI->getOperand(0).getReg(); 1347 MCSymbol *TRegSym = nullptr; 1348 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1349 if (TIP.first == TReg) { 1350 TRegSym = TIP.second; 1351 break; 1352 } 1353 } 1354 1355 if (!TRegSym) { 1356 TRegSym = OutContext.createTempSymbol(); 1357 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1358 } 1359 1360 // Create a link-saving branch to the Reg Indirect Jump Pad. 1361 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1362 // Predicate comes first here. 1363 .addImm(ARMCC::AL).addReg(0) 1364 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1365 return; 1366 } 1367 case ARM::BMOVPCRX_CALL: { 1368 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1369 .addReg(ARM::LR) 1370 .addReg(ARM::PC) 1371 // Add predicate operands. 1372 .addImm(ARMCC::AL) 1373 .addReg(0) 1374 // Add 's' bit operand (always reg0 for this) 1375 .addReg(0)); 1376 1377 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1378 .addReg(ARM::PC) 1379 .addReg(MI->getOperand(0).getReg()) 1380 // Add predicate operands. 1381 .addImm(ARMCC::AL) 1382 .addReg(0) 1383 // Add 's' bit operand (always reg0 for this) 1384 .addReg(0)); 1385 return; 1386 } 1387 case ARM::BMOVPCB_CALL: { 1388 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1389 .addReg(ARM::LR) 1390 .addReg(ARM::PC) 1391 // Add predicate operands. 1392 .addImm(ARMCC::AL) 1393 .addReg(0) 1394 // Add 's' bit operand (always reg0 for this) 1395 .addReg(0)); 1396 1397 const MachineOperand &Op = MI->getOperand(0); 1398 const GlobalValue *GV = Op.getGlobal(); 1399 const unsigned TF = Op.getTargetFlags(); 1400 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1401 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1402 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1403 .addExpr(GVSymExpr) 1404 // Add predicate operands. 1405 .addImm(ARMCC::AL) 1406 .addReg(0)); 1407 return; 1408 } 1409 case ARM::MOVi16_ga_pcrel: 1410 case ARM::t2MOVi16_ga_pcrel: { 1411 MCInst TmpInst; 1412 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1413 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1414 1415 unsigned TF = MI->getOperand(1).getTargetFlags(); 1416 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1417 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1418 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1419 1420 MCSymbol *LabelSym = 1421 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1422 MI->getOperand(2).getImm(), OutContext); 1423 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1424 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1425 const MCExpr *PCRelExpr = 1426 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1427 MCBinaryExpr::createAdd(LabelSymExpr, 1428 MCConstantExpr::create(PCAdj, OutContext), 1429 OutContext), OutContext), OutContext); 1430 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1431 1432 // Add predicate operands. 1433 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1434 TmpInst.addOperand(MCOperand::createReg(0)); 1435 // Add 's' bit operand (always reg0 for this) 1436 TmpInst.addOperand(MCOperand::createReg(0)); 1437 EmitToStreamer(*OutStreamer, TmpInst); 1438 return; 1439 } 1440 case ARM::MOVTi16_ga_pcrel: 1441 case ARM::t2MOVTi16_ga_pcrel: { 1442 MCInst TmpInst; 1443 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1444 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1445 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1446 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1447 1448 unsigned TF = MI->getOperand(2).getTargetFlags(); 1449 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1450 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1451 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1452 1453 MCSymbol *LabelSym = 1454 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1455 MI->getOperand(3).getImm(), OutContext); 1456 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1457 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1458 const MCExpr *PCRelExpr = 1459 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1460 MCBinaryExpr::createAdd(LabelSymExpr, 1461 MCConstantExpr::create(PCAdj, OutContext), 1462 OutContext), OutContext), OutContext); 1463 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1464 // Add predicate operands. 1465 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1466 TmpInst.addOperand(MCOperand::createReg(0)); 1467 // Add 's' bit operand (always reg0 for this) 1468 TmpInst.addOperand(MCOperand::createReg(0)); 1469 EmitToStreamer(*OutStreamer, TmpInst); 1470 return; 1471 } 1472 case ARM::t2BFi: 1473 case ARM::t2BFic: 1474 case ARM::t2BFLi: 1475 case ARM::t2BFr: 1476 case ARM::t2BFLr: { 1477 // This is a Branch Future instruction. 1478 1479 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1480 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1481 MI->getOperand(0).getIndex(), OutContext), 1482 OutContext); 1483 1484 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1485 if (MI->getOperand(1).isReg()) { 1486 // For BFr/BFLr 1487 MCInst.addReg(MI->getOperand(1).getReg()); 1488 } else { 1489 // For BFi/BFLi/BFic 1490 const MCExpr *BranchTarget; 1491 if (MI->getOperand(1).isMBB()) 1492 BranchTarget = MCSymbolRefExpr::create( 1493 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1494 else if (MI->getOperand(1).isGlobal()) { 1495 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1496 BranchTarget = MCSymbolRefExpr::create( 1497 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1498 } else if (MI->getOperand(1).isSymbol()) { 1499 BranchTarget = MCSymbolRefExpr::create( 1500 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1501 OutContext); 1502 } else 1503 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1504 1505 MCInst.addExpr(BranchTarget); 1506 } 1507 1508 if (Opc == ARM::t2BFic) { 1509 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1510 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1511 MI->getOperand(2).getIndex(), OutContext), 1512 OutContext); 1513 MCInst.addExpr(ElseLabel); 1514 MCInst.addImm(MI->getOperand(3).getImm()); 1515 } else { 1516 MCInst.addImm(MI->getOperand(2).getImm()) 1517 .addReg(MI->getOperand(3).getReg()); 1518 } 1519 1520 EmitToStreamer(*OutStreamer, MCInst); 1521 return; 1522 } 1523 case ARM::t2BF_LabelPseudo: { 1524 // This is a pseudo op for a label used by a branch future instruction 1525 1526 // Emit the label. 1527 OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1528 getFunctionNumber(), 1529 MI->getOperand(0).getIndex(), OutContext)); 1530 return; 1531 } 1532 case ARM::tPICADD: { 1533 // This is a pseudo op for a label + instruction sequence, which looks like: 1534 // LPC0: 1535 // add r0, pc 1536 // This adds the address of LPC0 to r0. 1537 1538 // Emit the label. 1539 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1540 getFunctionNumber(), 1541 MI->getOperand(2).getImm(), OutContext)); 1542 1543 // Form and emit the add. 1544 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1545 .addReg(MI->getOperand(0).getReg()) 1546 .addReg(MI->getOperand(0).getReg()) 1547 .addReg(ARM::PC) 1548 // Add predicate operands. 1549 .addImm(ARMCC::AL) 1550 .addReg(0)); 1551 return; 1552 } 1553 case ARM::PICADD: { 1554 // This is a pseudo op for a label + instruction sequence, which looks like: 1555 // LPC0: 1556 // add r0, pc, r0 1557 // This adds the address of LPC0 to r0. 1558 1559 // Emit the label. 1560 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1561 getFunctionNumber(), 1562 MI->getOperand(2).getImm(), OutContext)); 1563 1564 // Form and emit the add. 1565 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1566 .addReg(MI->getOperand(0).getReg()) 1567 .addReg(ARM::PC) 1568 .addReg(MI->getOperand(1).getReg()) 1569 // Add predicate operands. 1570 .addImm(MI->getOperand(3).getImm()) 1571 .addReg(MI->getOperand(4).getReg()) 1572 // Add 's' bit operand (always reg0 for this) 1573 .addReg(0)); 1574 return; 1575 } 1576 case ARM::PICSTR: 1577 case ARM::PICSTRB: 1578 case ARM::PICSTRH: 1579 case ARM::PICLDR: 1580 case ARM::PICLDRB: 1581 case ARM::PICLDRH: 1582 case ARM::PICLDRSB: 1583 case ARM::PICLDRSH: { 1584 // This is a pseudo op for a label + instruction sequence, which looks like: 1585 // LPC0: 1586 // OP r0, [pc, r0] 1587 // The LCP0 label is referenced by a constant pool entry in order to get 1588 // a PC-relative address at the ldr instruction. 1589 1590 // Emit the label. 1591 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1592 getFunctionNumber(), 1593 MI->getOperand(2).getImm(), OutContext)); 1594 1595 // Form and emit the load 1596 unsigned Opcode; 1597 switch (MI->getOpcode()) { 1598 default: 1599 llvm_unreachable("Unexpected opcode!"); 1600 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1601 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1602 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1603 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1604 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1605 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1606 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1607 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1608 } 1609 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1610 .addReg(MI->getOperand(0).getReg()) 1611 .addReg(ARM::PC) 1612 .addReg(MI->getOperand(1).getReg()) 1613 .addImm(0) 1614 // Add predicate operands. 1615 .addImm(MI->getOperand(3).getImm()) 1616 .addReg(MI->getOperand(4).getReg())); 1617 1618 return; 1619 } 1620 case ARM::CONSTPOOL_ENTRY: { 1621 if (Subtarget->genExecuteOnly()) 1622 llvm_unreachable("execute-only should not generate constant pools"); 1623 1624 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1625 /// in the function. The first operand is the ID# for this instruction, the 1626 /// second is the index into the MachineConstantPool that this is, the third 1627 /// is the size in bytes of this constant pool entry. 1628 /// The required alignment is specified on the basic block holding this MI. 1629 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1630 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1631 1632 // If this is the first entry of the pool, mark it. 1633 if (!InConstantPool) { 1634 OutStreamer->emitDataRegion(MCDR_DataRegion); 1635 InConstantPool = true; 1636 } 1637 1638 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 1639 1640 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1641 if (MCPE.isMachineConstantPoolEntry()) 1642 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1643 else 1644 emitGlobalConstant(DL, MCPE.Val.ConstVal); 1645 return; 1646 } 1647 case ARM::JUMPTABLE_ADDRS: 1648 emitJumpTableAddrs(MI); 1649 return; 1650 case ARM::JUMPTABLE_INSTS: 1651 emitJumpTableInsts(MI); 1652 return; 1653 case ARM::JUMPTABLE_TBB: 1654 case ARM::JUMPTABLE_TBH: 1655 emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1656 return; 1657 case ARM::t2BR_JT: { 1658 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1659 .addReg(ARM::PC) 1660 .addReg(MI->getOperand(0).getReg()) 1661 // Add predicate operands. 1662 .addImm(ARMCC::AL) 1663 .addReg(0)); 1664 return; 1665 } 1666 case ARM::t2TBB_JT: 1667 case ARM::t2TBH_JT: { 1668 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1669 // Lower and emit the PC label, then the instruction itself. 1670 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1671 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1672 .addReg(MI->getOperand(0).getReg()) 1673 .addReg(MI->getOperand(1).getReg()) 1674 // Add predicate operands. 1675 .addImm(ARMCC::AL) 1676 .addReg(0)); 1677 return; 1678 } 1679 case ARM::tTBB_JT: 1680 case ARM::tTBH_JT: { 1681 1682 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1683 Register Base = MI->getOperand(0).getReg(); 1684 Register Idx = MI->getOperand(1).getReg(); 1685 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1686 1687 // Multiply up idx if necessary. 1688 if (!Is8Bit) 1689 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1690 .addReg(Idx) 1691 .addReg(ARM::CPSR) 1692 .addReg(Idx) 1693 .addImm(1) 1694 // Add predicate operands. 1695 .addImm(ARMCC::AL) 1696 .addReg(0)); 1697 1698 if (Base == ARM::PC) { 1699 // TBB [base, idx] = 1700 // ADDS idx, idx, base 1701 // LDRB idx, [idx, #4] ; or LDRH if TBH 1702 // LSLS idx, #1 1703 // ADDS pc, pc, idx 1704 1705 // When using PC as the base, it's important that there is no padding 1706 // between the last ADDS and the start of the jump table. The jump table 1707 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1708 // 1709 // FIXME: Ideally we could vary the LDRB index based on the padding 1710 // between the sequence and jump table, however that relies on MCExprs 1711 // for load indexes which are currently not supported. 1712 OutStreamer->emitCodeAlignment(4); 1713 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1714 .addReg(Idx) 1715 .addReg(Idx) 1716 .addReg(Base) 1717 // Add predicate operands. 1718 .addImm(ARMCC::AL) 1719 .addReg(0)); 1720 1721 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1722 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1723 .addReg(Idx) 1724 .addReg(Idx) 1725 .addImm(Is8Bit ? 4 : 2) 1726 // Add predicate operands. 1727 .addImm(ARMCC::AL) 1728 .addReg(0)); 1729 } else { 1730 // TBB [base, idx] = 1731 // LDRB idx, [base, idx] ; or LDRH if TBH 1732 // LSLS idx, #1 1733 // ADDS pc, pc, idx 1734 1735 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1736 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1737 .addReg(Idx) 1738 .addReg(Base) 1739 .addReg(Idx) 1740 // Add predicate operands. 1741 .addImm(ARMCC::AL) 1742 .addReg(0)); 1743 } 1744 1745 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1746 .addReg(Idx) 1747 .addReg(ARM::CPSR) 1748 .addReg(Idx) 1749 .addImm(1) 1750 // Add predicate operands. 1751 .addImm(ARMCC::AL) 1752 .addReg(0)); 1753 1754 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1755 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1756 .addReg(ARM::PC) 1757 .addReg(ARM::PC) 1758 .addReg(Idx) 1759 // Add predicate operands. 1760 .addImm(ARMCC::AL) 1761 .addReg(0)); 1762 return; 1763 } 1764 case ARM::tBR_JTr: 1765 case ARM::BR_JTr: { 1766 // mov pc, target 1767 MCInst TmpInst; 1768 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1769 ARM::MOVr : ARM::tMOVr; 1770 TmpInst.setOpcode(Opc); 1771 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1772 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1773 // Add predicate operands. 1774 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1775 TmpInst.addOperand(MCOperand::createReg(0)); 1776 // Add 's' bit operand (always reg0 for this) 1777 if (Opc == ARM::MOVr) 1778 TmpInst.addOperand(MCOperand::createReg(0)); 1779 EmitToStreamer(*OutStreamer, TmpInst); 1780 return; 1781 } 1782 case ARM::BR_JTm_i12: { 1783 // ldr pc, target 1784 MCInst TmpInst; 1785 TmpInst.setOpcode(ARM::LDRi12); 1786 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1787 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1788 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1789 // Add predicate operands. 1790 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1791 TmpInst.addOperand(MCOperand::createReg(0)); 1792 EmitToStreamer(*OutStreamer, TmpInst); 1793 return; 1794 } 1795 case ARM::BR_JTm_rs: { 1796 // ldr pc, target 1797 MCInst TmpInst; 1798 TmpInst.setOpcode(ARM::LDRrs); 1799 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1800 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1801 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1802 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1803 // Add predicate operands. 1804 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1805 TmpInst.addOperand(MCOperand::createReg(0)); 1806 EmitToStreamer(*OutStreamer, TmpInst); 1807 return; 1808 } 1809 case ARM::BR_JTadd: { 1810 // add pc, target, idx 1811 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1812 .addReg(ARM::PC) 1813 .addReg(MI->getOperand(0).getReg()) 1814 .addReg(MI->getOperand(1).getReg()) 1815 // Add predicate operands. 1816 .addImm(ARMCC::AL) 1817 .addReg(0) 1818 // Add 's' bit operand (always reg0 for this) 1819 .addReg(0)); 1820 return; 1821 } 1822 case ARM::SPACE: 1823 OutStreamer->emitZeros(MI->getOperand(1).getImm()); 1824 return; 1825 case ARM::TRAP: { 1826 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1827 // FIXME: Remove this special case when they do. 1828 if (!Subtarget->isTargetMachO()) { 1829 uint32_t Val = 0xe7ffdefeUL; 1830 OutStreamer->AddComment("trap"); 1831 ATS.emitInst(Val); 1832 return; 1833 } 1834 break; 1835 } 1836 case ARM::TRAPNaCl: { 1837 uint32_t Val = 0xe7fedef0UL; 1838 OutStreamer->AddComment("trap"); 1839 ATS.emitInst(Val); 1840 return; 1841 } 1842 case ARM::tTRAP: { 1843 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1844 // FIXME: Remove this special case when they do. 1845 if (!Subtarget->isTargetMachO()) { 1846 uint16_t Val = 0xdefe; 1847 OutStreamer->AddComment("trap"); 1848 ATS.emitInst(Val, 'n'); 1849 return; 1850 } 1851 break; 1852 } 1853 case ARM::t2Int_eh_sjlj_setjmp: 1854 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1855 case ARM::tInt_eh_sjlj_setjmp: { 1856 // Two incoming args: GPR:$src, GPR:$val 1857 // mov $val, pc 1858 // adds $val, #7 1859 // str $val, [$src, #4] 1860 // movs r0, #0 1861 // b LSJLJEH 1862 // movs r0, #1 1863 // LSJLJEH: 1864 Register SrcReg = MI->getOperand(0).getReg(); 1865 Register ValReg = MI->getOperand(1).getReg(); 1866 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1867 OutStreamer->AddComment("eh_setjmp begin"); 1868 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1869 .addReg(ValReg) 1870 .addReg(ARM::PC) 1871 // Predicate. 1872 .addImm(ARMCC::AL) 1873 .addReg(0)); 1874 1875 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1876 .addReg(ValReg) 1877 // 's' bit operand 1878 .addReg(ARM::CPSR) 1879 .addReg(ValReg) 1880 .addImm(7) 1881 // Predicate. 1882 .addImm(ARMCC::AL) 1883 .addReg(0)); 1884 1885 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1886 .addReg(ValReg) 1887 .addReg(SrcReg) 1888 // The offset immediate is #4. The operand value is scaled by 4 for the 1889 // tSTR instruction. 1890 .addImm(1) 1891 // Predicate. 1892 .addImm(ARMCC::AL) 1893 .addReg(0)); 1894 1895 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1896 .addReg(ARM::R0) 1897 .addReg(ARM::CPSR) 1898 .addImm(0) 1899 // Predicate. 1900 .addImm(ARMCC::AL) 1901 .addReg(0)); 1902 1903 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1904 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1905 .addExpr(SymbolExpr) 1906 .addImm(ARMCC::AL) 1907 .addReg(0)); 1908 1909 OutStreamer->AddComment("eh_setjmp end"); 1910 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1911 .addReg(ARM::R0) 1912 .addReg(ARM::CPSR) 1913 .addImm(1) 1914 // Predicate. 1915 .addImm(ARMCC::AL) 1916 .addReg(0)); 1917 1918 OutStreamer->emitLabel(Label); 1919 return; 1920 } 1921 1922 case ARM::Int_eh_sjlj_setjmp_nofp: 1923 case ARM::Int_eh_sjlj_setjmp: { 1924 // Two incoming args: GPR:$src, GPR:$val 1925 // add $val, pc, #8 1926 // str $val, [$src, #+4] 1927 // mov r0, #0 1928 // add pc, pc, #0 1929 // mov r0, #1 1930 Register SrcReg = MI->getOperand(0).getReg(); 1931 Register ValReg = MI->getOperand(1).getReg(); 1932 1933 OutStreamer->AddComment("eh_setjmp begin"); 1934 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1935 .addReg(ValReg) 1936 .addReg(ARM::PC) 1937 .addImm(8) 1938 // Predicate. 1939 .addImm(ARMCC::AL) 1940 .addReg(0) 1941 // 's' bit operand (always reg0 for this). 1942 .addReg(0)); 1943 1944 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1945 .addReg(ValReg) 1946 .addReg(SrcReg) 1947 .addImm(4) 1948 // Predicate. 1949 .addImm(ARMCC::AL) 1950 .addReg(0)); 1951 1952 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1953 .addReg(ARM::R0) 1954 .addImm(0) 1955 // Predicate. 1956 .addImm(ARMCC::AL) 1957 .addReg(0) 1958 // 's' bit operand (always reg0 for this). 1959 .addReg(0)); 1960 1961 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1962 .addReg(ARM::PC) 1963 .addReg(ARM::PC) 1964 .addImm(0) 1965 // Predicate. 1966 .addImm(ARMCC::AL) 1967 .addReg(0) 1968 // 's' bit operand (always reg0 for this). 1969 .addReg(0)); 1970 1971 OutStreamer->AddComment("eh_setjmp end"); 1972 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1973 .addReg(ARM::R0) 1974 .addImm(1) 1975 // Predicate. 1976 .addImm(ARMCC::AL) 1977 .addReg(0) 1978 // 's' bit operand (always reg0 for this). 1979 .addReg(0)); 1980 return; 1981 } 1982 case ARM::Int_eh_sjlj_longjmp: { 1983 // ldr sp, [$src, #8] 1984 // ldr $scratch, [$src, #4] 1985 // ldr r7, [$src] 1986 // bx $scratch 1987 Register SrcReg = MI->getOperand(0).getReg(); 1988 Register ScratchReg = MI->getOperand(1).getReg(); 1989 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1990 .addReg(ARM::SP) 1991 .addReg(SrcReg) 1992 .addImm(8) 1993 // Predicate. 1994 .addImm(ARMCC::AL) 1995 .addReg(0)); 1996 1997 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1998 .addReg(ScratchReg) 1999 .addReg(SrcReg) 2000 .addImm(4) 2001 // Predicate. 2002 .addImm(ARMCC::AL) 2003 .addReg(0)); 2004 2005 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2006 // These platforms always use the same frame register 2007 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2008 .addReg(FramePtr) 2009 .addReg(SrcReg) 2010 .addImm(0) 2011 // Predicate. 2012 .addImm(ARMCC::AL) 2013 .addReg(0)); 2014 } else { 2015 // If the calling code might use either R7 or R11 as 2016 // frame pointer register, restore it into both. 2017 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2018 .addReg(ARM::R7) 2019 .addReg(SrcReg) 2020 .addImm(0) 2021 // Predicate. 2022 .addImm(ARMCC::AL) 2023 .addReg(0)); 2024 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2025 .addReg(ARM::R11) 2026 .addReg(SrcReg) 2027 .addImm(0) 2028 // Predicate. 2029 .addImm(ARMCC::AL) 2030 .addReg(0)); 2031 } 2032 2033 assert(Subtarget->hasV4TOps()); 2034 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2035 .addReg(ScratchReg) 2036 // Predicate. 2037 .addImm(ARMCC::AL) 2038 .addReg(0)); 2039 return; 2040 } 2041 case ARM::tInt_eh_sjlj_longjmp: { 2042 // ldr $scratch, [$src, #8] 2043 // mov sp, $scratch 2044 // ldr $scratch, [$src, #4] 2045 // ldr r7, [$src] 2046 // bx $scratch 2047 Register SrcReg = MI->getOperand(0).getReg(); 2048 Register ScratchReg = MI->getOperand(1).getReg(); 2049 2050 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2051 .addReg(ScratchReg) 2052 .addReg(SrcReg) 2053 // The offset immediate is #8. The operand value is scaled by 4 for the 2054 // tLDR instruction. 2055 .addImm(2) 2056 // Predicate. 2057 .addImm(ARMCC::AL) 2058 .addReg(0)); 2059 2060 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2061 .addReg(ARM::SP) 2062 .addReg(ScratchReg) 2063 // Predicate. 2064 .addImm(ARMCC::AL) 2065 .addReg(0)); 2066 2067 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2068 .addReg(ScratchReg) 2069 .addReg(SrcReg) 2070 .addImm(1) 2071 // Predicate. 2072 .addImm(ARMCC::AL) 2073 .addReg(0)); 2074 2075 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2076 // These platforms always use the same frame register 2077 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2078 .addReg(FramePtr) 2079 .addReg(SrcReg) 2080 .addImm(0) 2081 // Predicate. 2082 .addImm(ARMCC::AL) 2083 .addReg(0)); 2084 } else { 2085 // If the calling code might use either R7 or R11 as 2086 // frame pointer register, restore it into both. 2087 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2088 .addReg(ARM::R7) 2089 .addReg(SrcReg) 2090 .addImm(0) 2091 // Predicate. 2092 .addImm(ARMCC::AL) 2093 .addReg(0)); 2094 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2095 .addReg(ARM::R11) 2096 .addReg(SrcReg) 2097 .addImm(0) 2098 // Predicate. 2099 .addImm(ARMCC::AL) 2100 .addReg(0)); 2101 } 2102 2103 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2104 .addReg(ScratchReg) 2105 // Predicate. 2106 .addImm(ARMCC::AL) 2107 .addReg(0)); 2108 return; 2109 } 2110 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2111 // ldr.w r11, [$src, #0] 2112 // ldr.w sp, [$src, #8] 2113 // ldr.w pc, [$src, #4] 2114 2115 Register SrcReg = MI->getOperand(0).getReg(); 2116 2117 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2118 .addReg(ARM::R11) 2119 .addReg(SrcReg) 2120 .addImm(0) 2121 // Predicate 2122 .addImm(ARMCC::AL) 2123 .addReg(0)); 2124 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2125 .addReg(ARM::SP) 2126 .addReg(SrcReg) 2127 .addImm(8) 2128 // Predicate 2129 .addImm(ARMCC::AL) 2130 .addReg(0)); 2131 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2132 .addReg(ARM::PC) 2133 .addReg(SrcReg) 2134 .addImm(4) 2135 // Predicate 2136 .addImm(ARMCC::AL) 2137 .addReg(0)); 2138 return; 2139 } 2140 case ARM::PATCHABLE_FUNCTION_ENTER: 2141 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2142 return; 2143 case ARM::PATCHABLE_FUNCTION_EXIT: 2144 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2145 return; 2146 case ARM::PATCHABLE_TAIL_CALL: 2147 LowerPATCHABLE_TAIL_CALL(*MI); 2148 return; 2149 } 2150 2151 MCInst TmpInst; 2152 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2153 2154 EmitToStreamer(*OutStreamer, TmpInst); 2155 } 2156 2157 //===----------------------------------------------------------------------===// 2158 // Target Registry Stuff 2159 //===----------------------------------------------------------------------===// 2160 2161 // Force static initialization. 2162 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { 2163 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2164 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2165 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2166 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2167 } 2168