1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/COFF.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ELF.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/TargetParser.h" 51 #include "llvm/Support/TargetRegistry.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cctype> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 60 std::unique_ptr<MCStreamer> Streamer) 61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 62 InConstantPool(false), OptimizationGoals(-1) {} 63 64 void ARMAsmPrinter::EmitFunctionBodyEnd() { 65 // Make sure to terminate any constant pools that were at the end 66 // of the function. 67 if (!InConstantPool) 68 return; 69 InConstantPool = false; 70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 71 } 72 73 void ARMAsmPrinter::EmitFunctionEntryLabel() { 74 if (AFI->isThumbFunction()) { 75 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 76 OutStreamer->EmitThumbFunc(CurrentFnSym); 77 } else { 78 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 79 } 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 101 if (PromotedGlobals.count(GV)) 102 // The global was promoted into a constant pool. It should not be emitted. 103 return; 104 AsmPrinter::EmitGlobalVariable(GV); 105 } 106 107 /// runOnMachineFunction - This uses the EmitInstruction() 108 /// method to print assembly for each instruction. 109 /// 110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 111 AFI = MF.getInfo<ARMFunctionInfo>(); 112 MCP = MF.getConstantPool(); 113 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 114 115 SetupMachineFunction(MF); 116 const Function* F = MF.getFunction(); 117 const TargetMachine& TM = MF.getTarget(); 118 119 // Collect all globals that had their storage promoted to a constant pool. 120 // Functions are emitted before variables, so this accumulates promoted 121 // globals from all functions in PromotedGlobals. 122 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 123 PromotedGlobals.insert(GV); 124 125 // Calculate this function's optimization goal. 126 unsigned OptimizationGoal; 127 if (F->hasFnAttribute(Attribute::OptimizeNone)) 128 // For best debugging illusion, speed and small size sacrificed 129 OptimizationGoal = 6; 130 else if (F->optForMinSize()) 131 // Aggressively for small size, speed and debug illusion sacrificed 132 OptimizationGoal = 4; 133 else if (F->optForSize()) 134 // For small size, but speed and debugging illusion preserved 135 OptimizationGoal = 3; 136 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 137 // Aggressively for speed, small size and debug illusion sacrificed 138 OptimizationGoal = 2; 139 else if (TM.getOptLevel() > CodeGenOpt::None) 140 // For speed, but small size and good debug illusion preserved 141 OptimizationGoal = 1; 142 else // TM.getOptLevel() == CodeGenOpt::None 143 // For good debugging, but speed and small size preserved 144 OptimizationGoal = 5; 145 146 // Combine a new optimization goal with existing ones. 147 if (OptimizationGoals == -1) // uninitialized goals 148 OptimizationGoals = OptimizationGoal; 149 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 150 OptimizationGoals = 0; 151 152 if (Subtarget->isTargetCOFF()) { 153 bool Internal = F->hasInternalLinkage(); 154 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 155 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 156 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 157 158 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 159 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 160 OutStreamer->EmitCOFFSymbolType(Type); 161 OutStreamer->EndCOFFSymbolDef(); 162 } 163 164 // Emit the rest of the function body. 165 EmitFunctionBody(); 166 167 // Emit the XRay table for this function. 168 emitXRayTable(); 169 170 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 171 // These are created per function, rather than per TU, since it's 172 // relatively easy to exceed the thumb branch range within a TU. 173 if (! ThumbIndirectPads.empty()) { 174 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 175 EmitAlignment(1); 176 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 177 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 178 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 179 .addReg(ThumbIndirectPads[i].first) 180 // Add predicate operands. 181 .addImm(ARMCC::AL) 182 .addReg(0)); 183 } 184 ThumbIndirectPads.clear(); 185 } 186 187 // We didn't modify anything. 188 return false; 189 } 190 191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 192 raw_ostream &O) { 193 const MachineOperand &MO = MI->getOperand(OpNum); 194 unsigned TF = MO.getTargetFlags(); 195 196 switch (MO.getType()) { 197 default: llvm_unreachable("<unknown operand type>"); 198 case MachineOperand::MO_Register: { 199 unsigned Reg = MO.getReg(); 200 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 201 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 202 if(ARM::GPRPairRegClass.contains(Reg)) { 203 const MachineFunction &MF = *MI->getParent()->getParent(); 204 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 205 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 206 } 207 O << ARMInstPrinter::getRegisterName(Reg); 208 break; 209 } 210 case MachineOperand::MO_Immediate: { 211 int64_t Imm = MO.getImm(); 212 O << '#'; 213 if (TF == ARMII::MO_LO16) 214 O << ":lower16:"; 215 else if (TF == ARMII::MO_HI16) 216 O << ":upper16:"; 217 O << Imm; 218 break; 219 } 220 case MachineOperand::MO_MachineBasicBlock: 221 MO.getMBB()->getSymbol()->print(O, MAI); 222 return; 223 case MachineOperand::MO_GlobalAddress: { 224 const GlobalValue *GV = MO.getGlobal(); 225 if (TF & ARMII::MO_LO16) 226 O << ":lower16:"; 227 else if (TF & ARMII::MO_HI16) 228 O << ":upper16:"; 229 GetARMGVSymbol(GV, TF)->print(O, MAI); 230 231 printOffset(MO.getOffset(), O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 //===--------------------------------------------------------------------===// 243 244 MCSymbol *ARMAsmPrinter:: 245 GetARMJTIPICJumpTableLabel(unsigned uid) const { 246 const DataLayout &DL = getDataLayout(); 247 SmallString<60> Name; 248 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 249 << getFunctionNumber() << '_' << uid; 250 return OutContext.getOrCreateSymbol(Name); 251 } 252 253 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 254 unsigned AsmVariant, const char *ExtraCode, 255 raw_ostream &O) { 256 // Does this asm operand have a single letter operand modifier? 257 if (ExtraCode && ExtraCode[0]) { 258 if (ExtraCode[1] != 0) return true; // Unknown modifier. 259 260 switch (ExtraCode[0]) { 261 default: 262 // See if this is a generic print operand 263 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 264 case 'a': // Print as a memory address. 265 if (MI->getOperand(OpNum).isReg()) { 266 O << "[" 267 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 268 << "]"; 269 return false; 270 } 271 LLVM_FALLTHROUGH; 272 case 'c': // Don't print "#" before an immediate operand. 273 if (!MI->getOperand(OpNum).isImm()) 274 return true; 275 O << MI->getOperand(OpNum).getImm(); 276 return false; 277 case 'P': // Print a VFP double precision register. 278 case 'q': // Print a NEON quad precision register. 279 printOperand(MI, OpNum, O); 280 return false; 281 case 'y': // Print a VFP single precision register as indexed double. 282 if (MI->getOperand(OpNum).isReg()) { 283 unsigned Reg = MI->getOperand(OpNum).getReg(); 284 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 285 // Find the 'd' register that has this 's' register as a sub-register, 286 // and determine the lane number. 287 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 288 if (!ARM::DPRRegClass.contains(*SR)) 289 continue; 290 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 291 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 292 return false; 293 } 294 } 295 return true; 296 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << ~(MI->getOperand(OpNum).getImm()); 300 return false; 301 case 'L': // The low 16 bits of an immediate constant. 302 if (!MI->getOperand(OpNum).isImm()) 303 return true; 304 O << (MI->getOperand(OpNum).getImm() & 0xffff); 305 return false; 306 case 'M': { // A register range suitable for LDM/STM. 307 if (!MI->getOperand(OpNum).isReg()) 308 return true; 309 const MachineOperand &MO = MI->getOperand(OpNum); 310 unsigned RegBegin = MO.getReg(); 311 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 312 // already got the operands in registers that are operands to the 313 // inline asm statement. 314 O << "{"; 315 if (ARM::GPRPairRegClass.contains(RegBegin)) { 316 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 317 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 318 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 319 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 320 } 321 O << ARMInstPrinter::getRegisterName(RegBegin); 322 323 // FIXME: The register allocator not only may not have given us the 324 // registers in sequence, but may not be in ascending registers. This 325 // will require changes in the register allocator that'll need to be 326 // propagated down here if the operands change. 327 unsigned RegOps = OpNum + 1; 328 while (MI->getOperand(RegOps).isReg()) { 329 O << ", " 330 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 331 RegOps++; 332 } 333 334 O << "}"; 335 336 return false; 337 } 338 case 'R': // The most significant register of a pair. 339 case 'Q': { // The least significant register of a pair. 340 if (OpNum == 0) 341 return true; 342 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 343 if (!FlagsOP.isImm()) 344 return true; 345 unsigned Flags = FlagsOP.getImm(); 346 347 // This operand may not be the one that actually provides the register. If 348 // it's tied to a previous one then we should refer instead to that one 349 // for registers and their classes. 350 unsigned TiedIdx; 351 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 352 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 353 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 354 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 355 } 356 Flags = MI->getOperand(OpNum).getImm(); 357 358 // Later code expects OpNum to be pointing at the register rather than 359 // the flags. 360 OpNum += 1; 361 } 362 363 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 364 unsigned RC; 365 InlineAsm::hasRegClassConstraint(Flags, RC); 366 if (RC == ARM::GPRPairRegClassID) { 367 if (NumVals != 1) 368 return true; 369 const MachineOperand &MO = MI->getOperand(OpNum); 370 if (!MO.isReg()) 371 return true; 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 374 ARM::gsub_0 : ARM::gsub_1); 375 O << ARMInstPrinter::getRegisterName(Reg); 376 return false; 377 } 378 if (NumVals != 2) 379 return true; 380 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 381 if (RegOp >= MI->getNumOperands()) 382 return true; 383 const MachineOperand &MO = MI->getOperand(RegOp); 384 if (!MO.isReg()) 385 return true; 386 unsigned Reg = MO.getReg(); 387 O << ARMInstPrinter::getRegisterName(Reg); 388 return false; 389 } 390 391 case 'e': // The low doubleword register of a NEON quad register. 392 case 'f': { // The high doubleword register of a NEON quad register. 393 if (!MI->getOperand(OpNum).isReg()) 394 return true; 395 unsigned Reg = MI->getOperand(OpNum).getReg(); 396 if (!ARM::QPRRegClass.contains(Reg)) 397 return true; 398 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 399 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 400 ARM::dsub_0 : ARM::dsub_1); 401 O << ARMInstPrinter::getRegisterName(SubReg); 402 return false; 403 } 404 405 // This modifier is not yet supported. 406 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 407 return true; 408 case 'H': { // The highest-numbered register of a pair. 409 const MachineOperand &MO = MI->getOperand(OpNum); 410 if (!MO.isReg()) 411 return true; 412 const MachineFunction &MF = *MI->getParent()->getParent(); 413 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 414 unsigned Reg = MO.getReg(); 415 if(!ARM::GPRPairRegClass.contains(Reg)) 416 return false; 417 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 418 O << ARMInstPrinter::getRegisterName(Reg); 419 return false; 420 } 421 } 422 } 423 424 printOperand(MI, OpNum, O); 425 return false; 426 } 427 428 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 429 unsigned OpNum, unsigned AsmVariant, 430 const char *ExtraCode, 431 raw_ostream &O) { 432 // Does this asm operand have a single letter operand modifier? 433 if (ExtraCode && ExtraCode[0]) { 434 if (ExtraCode[1] != 0) return true; // Unknown modifier. 435 436 switch (ExtraCode[0]) { 437 case 'A': // A memory operand for a VLD1/VST1 instruction. 438 default: return true; // Unknown modifier. 439 case 'm': // The base register of a memory operand. 440 if (!MI->getOperand(OpNum).isReg()) 441 return true; 442 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 443 return false; 444 } 445 } 446 447 const MachineOperand &MO = MI->getOperand(OpNum); 448 assert(MO.isReg() && "unexpected inline asm memory operand"); 449 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 450 return false; 451 } 452 453 static bool isThumb(const MCSubtargetInfo& STI) { 454 return STI.getFeatureBits()[ARM::ModeThumb]; 455 } 456 457 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 458 const MCSubtargetInfo *EndInfo) const { 459 // If either end mode is unknown (EndInfo == NULL) or different than 460 // the start mode, then restore the start mode. 461 const bool WasThumb = isThumb(StartInfo); 462 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 463 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 464 } 465 } 466 467 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 468 const Triple &TT = TM.getTargetTriple(); 469 // Use unified assembler syntax. 470 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 471 472 // Emit ARM Build Attributes 473 if (TT.isOSBinFormatELF()) 474 emitAttributes(); 475 476 // Use the triple's architecture and subarchitecture to determine 477 // if we're thumb for the purposes of the top level code16 assembler 478 // flag. 479 bool isThumb = TT.getArch() == Triple::thumb || 480 TT.getArch() == Triple::thumbeb || 481 TT.getSubArch() == Triple::ARMSubArch_v7m || 482 TT.getSubArch() == Triple::ARMSubArch_v6m; 483 if (!M.getModuleInlineAsm().empty() && isThumb) 484 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 485 } 486 487 static void 488 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 489 MachineModuleInfoImpl::StubValueTy &MCSym) { 490 // L_foo$stub: 491 OutStreamer.EmitLabel(StubLabel); 492 // .indirect_symbol _foo 493 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 494 495 if (MCSym.getInt()) 496 // External to current translation unit. 497 OutStreamer.EmitIntValue(0, 4/*size*/); 498 else 499 // Internal to current translation unit. 500 // 501 // When we place the LSDA into the TEXT section, the type info 502 // pointers need to be indirect and pc-rel. We accomplish this by 503 // using NLPs; however, sometimes the types are local to the file. 504 // We need to fill in the value for the NLP in those cases. 505 OutStreamer.EmitValue( 506 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 507 4 /*size*/); 508 } 509 510 511 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 512 const Triple &TT = TM.getTargetTriple(); 513 if (TT.isOSBinFormatMachO()) { 514 // All darwin targets use mach-o. 515 const TargetLoweringObjectFileMachO &TLOFMacho = 516 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 517 MachineModuleInfoMachO &MMIMacho = 518 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 519 520 // Output non-lazy-pointers for external and common global variables. 521 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 522 523 if (!Stubs.empty()) { 524 // Switch with ".non_lazy_symbol_pointer" directive. 525 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 526 EmitAlignment(2); 527 528 for (auto &Stub : Stubs) 529 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 530 531 Stubs.clear(); 532 OutStreamer->AddBlankLine(); 533 } 534 535 Stubs = MMIMacho.GetThreadLocalGVStubList(); 536 if (!Stubs.empty()) { 537 // Switch with ".non_lazy_symbol_pointer" directive. 538 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 539 EmitAlignment(2); 540 541 for (auto &Stub : Stubs) 542 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 543 544 Stubs.clear(); 545 OutStreamer->AddBlankLine(); 546 } 547 548 // Funny Darwin hack: This flag tells the linker that no global symbols 549 // contain code that falls through to other global symbols (e.g. the obvious 550 // implementation of multiple entry points). If this doesn't occur, the 551 // linker can safely perform dead code stripping. Since LLVM never 552 // generates code that does this, it is always safe to set. 553 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 554 } 555 556 if (TT.isOSBinFormatCOFF()) { 557 const auto &TLOF = 558 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering()); 559 560 std::string Flags; 561 raw_string_ostream OS(Flags); 562 563 for (const auto &Function : M) 564 TLOF.emitLinkerFlagsForGlobal(OS, &Function); 565 for (const auto &Global : M.globals()) 566 TLOF.emitLinkerFlagsForGlobal(OS, &Global); 567 for (const auto &Alias : M.aliases()) 568 TLOF.emitLinkerFlagsForGlobal(OS, &Alias); 569 570 OS.flush(); 571 572 // Output collected flags 573 if (!Flags.empty()) { 574 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 575 OutStreamer->EmitBytes(Flags); 576 } 577 } 578 579 // The last attribute to be emitted is ABI_optimization_goals 580 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 581 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 582 583 if (OptimizationGoals > 0 && 584 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 585 Subtarget->isTargetMuslAEABI())) 586 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 587 OptimizationGoals = -1; 588 589 ATS.finishAttributeSection(); 590 } 591 592 static bool isV8M(const ARMSubtarget *Subtarget) { 593 // Note that v8M Baseline is a subset of v6T2! 594 return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) || 595 Subtarget->hasV8MMainlineOps(); 596 } 597 598 //===----------------------------------------------------------------------===// 599 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 600 // FIXME: 601 // The following seem like one-off assembler flags, but they actually need 602 // to appear in the .ARM.attributes section in ELF. 603 // Instead of subclassing the MCELFStreamer, we do the work here. 604 605 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 606 const ARMSubtarget *Subtarget) { 607 if (CPU == "xscale") 608 return ARMBuildAttrs::v5TEJ; 609 610 if (Subtarget->hasV8Ops()) { 611 if (Subtarget->isRClass()) 612 return ARMBuildAttrs::v8_R; 613 return ARMBuildAttrs::v8_A; 614 } else if (Subtarget->hasV8MMainlineOps()) 615 return ARMBuildAttrs::v8_M_Main; 616 else if (Subtarget->hasV7Ops()) { 617 if (Subtarget->isMClass() && Subtarget->hasDSP()) 618 return ARMBuildAttrs::v7E_M; 619 return ARMBuildAttrs::v7; 620 } else if (Subtarget->hasV6T2Ops()) 621 return ARMBuildAttrs::v6T2; 622 else if (Subtarget->hasV8MBaselineOps()) 623 return ARMBuildAttrs::v8_M_Base; 624 else if (Subtarget->hasV6MOps()) 625 return ARMBuildAttrs::v6S_M; 626 else if (Subtarget->hasV6Ops()) 627 return ARMBuildAttrs::v6; 628 else if (Subtarget->hasV5TEOps()) 629 return ARMBuildAttrs::v5TE; 630 else if (Subtarget->hasV5TOps()) 631 return ARMBuildAttrs::v5T; 632 else if (Subtarget->hasV4TOps()) 633 return ARMBuildAttrs::v4T; 634 else 635 return ARMBuildAttrs::v4; 636 } 637 638 // Returns true if all functions have the same function attribute value. 639 // It also returns true when the module has no functions. 640 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 641 StringRef Value) { 642 return !any_of(M, [&](const Function &F) { 643 return F.getFnAttribute(Attr).getValueAsString() != Value; 644 }); 645 } 646 647 void ARMAsmPrinter::emitAttributes() { 648 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 649 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 650 651 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 652 653 ATS.switchVendor("aeabi"); 654 655 // Compute ARM ELF Attributes based on the default subtarget that 656 // we'd have constructed. The existing ARM behavior isn't LTO clean 657 // anyhow. 658 // FIXME: For ifunc related functions we could iterate over and look 659 // for a feature string that doesn't match the default one. 660 const Triple &TT = TM.getTargetTriple(); 661 StringRef CPU = TM.getTargetCPU(); 662 StringRef FS = TM.getTargetFeatureString(); 663 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 664 if (!FS.empty()) { 665 if (!ArchFS.empty()) 666 ArchFS = (Twine(ArchFS) + "," + FS).str(); 667 else 668 ArchFS = FS; 669 } 670 const ARMBaseTargetMachine &ATM = 671 static_cast<const ARMBaseTargetMachine &>(TM); 672 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 673 674 const std::string &CPUString = STI.getCPUString(); 675 676 if (!StringRef(CPUString).startswith("generic")) { 677 // FIXME: remove krait check when GNU tools support krait cpu 678 if (STI.isKrait()) { 679 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 680 // We consider krait as a "cortex-a9" + hwdiv CPU 681 // Enable hwdiv through ".arch_extension idiv" 682 if (STI.hasDivide() || STI.hasDivideInARMMode()) 683 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM); 684 } else 685 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 686 } 687 688 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 689 690 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 691 // profile is not applicable (e.g. pre v7, or cross-profile code)". 692 if (STI.hasV7Ops() || isV8M(&STI)) { 693 if (STI.isAClass()) { 694 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 695 ARMBuildAttrs::ApplicationProfile); 696 } else if (STI.isRClass()) { 697 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 698 ARMBuildAttrs::RealTimeProfile); 699 } else if (STI.isMClass()) { 700 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 701 ARMBuildAttrs::MicroControllerProfile); 702 } 703 } 704 705 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 706 STI.hasARMOps() ? ARMBuildAttrs::Allowed 707 : ARMBuildAttrs::Not_Allowed); 708 if (isV8M(&STI)) { 709 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 710 ARMBuildAttrs::AllowThumbDerived); 711 } else if (STI.isThumb1Only()) { 712 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 713 } else if (STI.hasThumb2()) { 714 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 715 ARMBuildAttrs::AllowThumb32); 716 } 717 718 if (STI.hasNEON()) { 719 /* NEON is not exactly a VFP architecture, but GAS emit one of 720 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 721 if (STI.hasFPARMv8()) { 722 if (STI.hasCrypto()) 723 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 724 else 725 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 726 } else if (STI.hasVFP4()) 727 ATS.emitFPU(ARM::FK_NEON_VFPV4); 728 else 729 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 730 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 731 if (STI.hasV8Ops()) 732 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 733 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 734 ARMBuildAttrs::AllowNeonARMv8); 735 } else { 736 if (STI.hasFPARMv8()) 737 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 738 // FPU, but there are two different names for it depending on the CPU. 739 ATS.emitFPU(STI.hasD16() 740 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 741 : ARM::FK_FP_ARMV8); 742 else if (STI.hasVFP4()) 743 ATS.emitFPU(STI.hasD16() 744 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 745 : ARM::FK_VFPV4); 746 else if (STI.hasVFP3()) 747 ATS.emitFPU(STI.hasD16() 748 // +d16 749 ? (STI.isFPOnlySP() 750 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 751 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 752 // -d16 753 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 754 else if (STI.hasVFP2()) 755 ATS.emitFPU(ARM::FK_VFPV2); 756 } 757 758 // RW data addressing. 759 if (isPositionIndependent()) { 760 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 761 ARMBuildAttrs::AddressRWPCRel); 762 } else if (STI.isRWPI()) { 763 // RWPI specific attributes. 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 765 ARMBuildAttrs::AddressRWSBRel); 766 } 767 768 // RO data addressing. 769 if (isPositionIndependent() || STI.isROPI()) { 770 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 771 ARMBuildAttrs::AddressROPCRel); 772 } 773 774 // GOT use. 775 if (isPositionIndependent()) { 776 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 777 ARMBuildAttrs::AddressGOT); 778 } else { 779 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 780 ARMBuildAttrs::AddressDirect); 781 } 782 783 // Set FP Denormals. 784 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 785 "denormal-fp-math", 786 "preserve-sign") || 787 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 788 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 789 ARMBuildAttrs::PreserveFPSign); 790 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 791 "denormal-fp-math", 792 "positive-zero") || 793 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 794 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 795 ARMBuildAttrs::PositiveZero); 796 else if (!TM.Options.UnsafeFPMath) 797 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 798 ARMBuildAttrs::IEEEDenormals); 799 else { 800 if (!STI.hasVFP2()) { 801 // When the target doesn't have an FPU (by design or 802 // intention), the assumptions made on the software support 803 // mirror that of the equivalent hardware support *if it 804 // existed*. For v7 and better we indicate that denormals are 805 // flushed preserving sign, and for V6 we indicate that 806 // denormals are flushed to positive zero. 807 if (STI.hasV7Ops()) 808 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 809 ARMBuildAttrs::PreserveFPSign); 810 } else if (STI.hasVFP3()) { 811 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 812 // the sign bit of the zero matches the sign bit of the input or 813 // result that is being flushed to zero. 814 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 815 ARMBuildAttrs::PreserveFPSign); 816 } 817 // For VFPv2 implementations it is implementation defined as 818 // to whether denormals are flushed to positive zero or to 819 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 820 // LLVM has chosen to flush this to positive zero (most likely for 821 // GCC compatibility), so that's the chosen value here (the 822 // absence of its emission implies zero). 823 } 824 825 // Set FP exceptions and rounding 826 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 827 "no-trapping-math", "true") || 828 TM.Options.NoTrappingFPMath) 829 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 830 ARMBuildAttrs::Not_Allowed); 831 else if (!TM.Options.UnsafeFPMath) { 832 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 833 834 // If the user has permitted this code to choose the IEEE 754 835 // rounding at run-time, emit the rounding attribute. 836 if (TM.Options.HonorSignDependentRoundingFPMathOption) 837 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 838 } 839 840 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 841 // equivalent of GCC's -ffinite-math-only flag. 842 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 843 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 844 ARMBuildAttrs::Allowed); 845 else 846 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 847 ARMBuildAttrs::AllowIEEE754); 848 849 if (STI.allowsUnalignedMem()) 850 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 851 ARMBuildAttrs::Allowed); 852 else 853 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 854 ARMBuildAttrs::Not_Allowed); 855 856 // FIXME: add more flags to ARMBuildAttributes.h 857 // 8-bytes alignment stuff. 858 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 859 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 860 861 // ABI_HardFP_use attribute to indicate single precision FP. 862 if (STI.isFPOnlySP()) 863 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 864 ARMBuildAttrs::HardFPSinglePrecision); 865 866 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 867 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 868 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 869 870 // FIXME: Should we signal R9 usage? 871 872 if (STI.hasFP16()) 873 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 874 875 // FIXME: To support emitting this build attribute as GCC does, the 876 // -mfp16-format option and associated plumbing must be 877 // supported. For now the __fp16 type is exposed by default, so this 878 // attribute should be emitted with value 1. 879 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 880 ARMBuildAttrs::FP16FormatIEEE); 881 882 if (STI.hasMPExtension()) 883 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 884 885 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 886 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 887 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 888 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 889 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 890 // otherwise, the default value (AllowDIVIfExists) applies. 891 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 892 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 893 894 if (STI.hasDSP() && isV8M(&STI)) 895 ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); 896 897 if (MMI) { 898 if (const Module *SourceModule = MMI->getModule()) { 899 // ABI_PCS_wchar_t to indicate wchar_t width 900 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 901 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 902 SourceModule->getModuleFlag("wchar_size"))) { 903 int WCharWidth = WCharWidthValue->getZExtValue(); 904 assert((WCharWidth == 2 || WCharWidth == 4) && 905 "wchar_t width must be 2 or 4 bytes"); 906 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 907 } 908 909 // ABI_enum_size to indicate enum width 910 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 911 // (all enums contain a value needing 32 bits to encode). 912 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 913 SourceModule->getModuleFlag("min_enum_size"))) { 914 int EnumWidth = EnumWidthValue->getZExtValue(); 915 assert((EnumWidth == 1 || EnumWidth == 4) && 916 "Minimum enum width must be 1 or 4 bytes"); 917 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 918 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 919 } 920 } 921 } 922 923 // We currently do not support using R9 as the TLS pointer. 924 if (STI.isRWPI()) 925 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 926 ARMBuildAttrs::R9IsSB); 927 else if (STI.isR9Reserved()) 928 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 929 ARMBuildAttrs::R9Reserved); 930 else 931 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 932 ARMBuildAttrs::R9IsGPR); 933 934 if (STI.hasTrustZone() && STI.hasVirtualization()) 935 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 936 ARMBuildAttrs::AllowTZVirtualization); 937 else if (STI.hasTrustZone()) 938 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 939 ARMBuildAttrs::AllowTZ); 940 else if (STI.hasVirtualization()) 941 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 942 ARMBuildAttrs::AllowVirtualization); 943 } 944 945 //===----------------------------------------------------------------------===// 946 947 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 948 unsigned LabelId, MCContext &Ctx) { 949 950 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 951 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 952 return Label; 953 } 954 955 static MCSymbolRefExpr::VariantKind 956 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 957 switch (Modifier) { 958 case ARMCP::no_modifier: 959 return MCSymbolRefExpr::VK_None; 960 case ARMCP::TLSGD: 961 return MCSymbolRefExpr::VK_TLSGD; 962 case ARMCP::TPOFF: 963 return MCSymbolRefExpr::VK_TPOFF; 964 case ARMCP::GOTTPOFF: 965 return MCSymbolRefExpr::VK_GOTTPOFF; 966 case ARMCP::SBREL: 967 return MCSymbolRefExpr::VK_ARM_SBREL; 968 case ARMCP::GOT_PREL: 969 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 970 case ARMCP::SECREL: 971 return MCSymbolRefExpr::VK_SECREL; 972 } 973 llvm_unreachable("Invalid ARMCPModifier!"); 974 } 975 976 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 977 unsigned char TargetFlags) { 978 if (Subtarget->isTargetMachO()) { 979 bool IsIndirect = 980 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 981 982 if (!IsIndirect) 983 return getSymbol(GV); 984 985 // FIXME: Remove this when Darwin transition to @GOT like syntax. 986 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 987 MachineModuleInfoMachO &MMIMachO = 988 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 989 MachineModuleInfoImpl::StubValueTy &StubSym = 990 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 991 : MMIMachO.getGVStubEntry(MCSym); 992 993 if (!StubSym.getPointer()) 994 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 995 !GV->hasInternalLinkage()); 996 return MCSym; 997 } else if (Subtarget->isTargetCOFF()) { 998 assert(Subtarget->isTargetWindows() && 999 "Windows is the only supported COFF target"); 1000 1001 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 1002 if (!IsIndirect) 1003 return getSymbol(GV); 1004 1005 SmallString<128> Name; 1006 Name = "__imp_"; 1007 getNameWithPrefix(Name, GV); 1008 1009 return OutContext.getOrCreateSymbol(Name); 1010 } else if (Subtarget->isTargetELF()) { 1011 return getSymbol(GV); 1012 } 1013 llvm_unreachable("unexpected target"); 1014 } 1015 1016 void ARMAsmPrinter:: 1017 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1018 const DataLayout &DL = getDataLayout(); 1019 int Size = DL.getTypeAllocSize(MCPV->getType()); 1020 1021 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 1022 1023 if (ACPV->isPromotedGlobal()) { 1024 // This constant pool entry is actually a global whose storage has been 1025 // promoted into the constant pool. This global may be referenced still 1026 // by debug information, and due to the way AsmPrinter is set up, the debug 1027 // info is immutable by the time we decide to promote globals to constant 1028 // pools. Because of this, we need to ensure we emit a symbol for the global 1029 // with private linkage (the default) so debug info can refer to it. 1030 // 1031 // However, if this global is promoted into several functions we must ensure 1032 // we don't try and emit duplicate symbols! 1033 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 1034 auto *GV = ACPC->getPromotedGlobal(); 1035 if (!EmittedPromotedGlobalLabels.count(GV)) { 1036 MCSymbol *GVSym = getSymbol(GV); 1037 OutStreamer->EmitLabel(GVSym); 1038 EmittedPromotedGlobalLabels.insert(GV); 1039 } 1040 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 1041 } 1042 1043 MCSymbol *MCSym; 1044 if (ACPV->isLSDA()) { 1045 MCSym = getCurExceptionSym(); 1046 } else if (ACPV->isBlockAddress()) { 1047 const BlockAddress *BA = 1048 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 1049 MCSym = GetBlockAddressSymbol(BA); 1050 } else if (ACPV->isGlobalValue()) { 1051 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 1052 1053 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 1054 // flag the global as MO_NONLAZY. 1055 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 1056 MCSym = GetARMGVSymbol(GV, TF); 1057 } else if (ACPV->isMachineBasicBlock()) { 1058 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 1059 MCSym = MBB->getSymbol(); 1060 } else { 1061 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 1062 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 1063 MCSym = GetExternalSymbolSymbol(Sym); 1064 } 1065 1066 // Create an MCSymbol for the reference. 1067 const MCExpr *Expr = 1068 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 1069 OutContext); 1070 1071 if (ACPV->getPCAdjustment()) { 1072 MCSymbol *PCLabel = 1073 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1074 ACPV->getLabelId(), OutContext); 1075 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 1076 PCRelExpr = 1077 MCBinaryExpr::createAdd(PCRelExpr, 1078 MCConstantExpr::create(ACPV->getPCAdjustment(), 1079 OutContext), 1080 OutContext); 1081 if (ACPV->mustAddCurrentAddress()) { 1082 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 1083 // label, so just emit a local label end reference that instead. 1084 MCSymbol *DotSym = OutContext.createTempSymbol(); 1085 OutStreamer->EmitLabel(DotSym); 1086 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 1087 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 1088 } 1089 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 1090 } 1091 OutStreamer->EmitValue(Expr, Size); 1092 } 1093 1094 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 1095 const MachineOperand &MO1 = MI->getOperand(1); 1096 unsigned JTI = MO1.getIndex(); 1097 1098 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1099 // ARM mode tables. 1100 EmitAlignment(2); 1101 1102 // Emit a label for the jump table. 1103 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1104 OutStreamer->EmitLabel(JTISymbol); 1105 1106 // Mark the jump table as data-in-code. 1107 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1108 1109 // Emit each entry of the table. 1110 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1111 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1112 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1113 1114 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1115 MachineBasicBlock *MBB = JTBBs[i]; 1116 // Construct an MCExpr for the entry. We want a value of the form: 1117 // (BasicBlockAddr - TableBeginAddr) 1118 // 1119 // For example, a table with entries jumping to basic blocks BB0 and BB1 1120 // would look like: 1121 // LJTI_0_0: 1122 // .word (LBB0 - LJTI_0_0) 1123 // .word (LBB1 - LJTI_0_0) 1124 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1125 1126 if (isPositionIndependent() || Subtarget->isROPI()) 1127 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1128 OutContext), 1129 OutContext); 1130 // If we're generating a table of Thumb addresses in static relocation 1131 // model, we need to add one to keep interworking correctly. 1132 else if (AFI->isThumbFunction()) 1133 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1134 OutContext); 1135 OutStreamer->EmitValue(Expr, 4); 1136 } 1137 // Mark the end of jump table data-in-code region. 1138 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1139 } 1140 1141 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 1142 const MachineOperand &MO1 = MI->getOperand(1); 1143 unsigned JTI = MO1.getIndex(); 1144 1145 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1146 OutStreamer->EmitLabel(JTISymbol); 1147 1148 // Emit each entry of the table. 1149 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1150 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1151 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1152 1153 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1154 MachineBasicBlock *MBB = JTBBs[i]; 1155 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1156 OutContext); 1157 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1158 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1159 .addExpr(MBBSymbolExpr) 1160 .addImm(ARMCC::AL) 1161 .addReg(0)); 1162 } 1163 } 1164 1165 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1166 unsigned OffsetWidth) { 1167 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1168 const MachineOperand &MO1 = MI->getOperand(1); 1169 unsigned JTI = MO1.getIndex(); 1170 1171 if (Subtarget->isThumb1Only()) 1172 EmitAlignment(2); 1173 1174 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1175 OutStreamer->EmitLabel(JTISymbol); 1176 1177 // Emit each entry of the table. 1178 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1179 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1180 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1181 1182 // Mark the jump table as data-in-code. 1183 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1184 : MCDR_DataRegionJT16); 1185 1186 for (auto MBB : JTBBs) { 1187 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1188 OutContext); 1189 // Otherwise it's an offset from the dispatch instruction. Construct an 1190 // MCExpr for the entry. We want a value of the form: 1191 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1192 // 1193 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1194 // would look like: 1195 // LJTI_0_0: 1196 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1197 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1198 // where LCPI0_0 is a label defined just before the TBB instruction using 1199 // this table. 1200 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1201 const MCExpr *Expr = MCBinaryExpr::createAdd( 1202 MCSymbolRefExpr::create(TBInstPC, OutContext), 1203 MCConstantExpr::create(4, OutContext), OutContext); 1204 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1205 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1206 OutContext); 1207 OutStreamer->EmitValue(Expr, OffsetWidth); 1208 } 1209 // Mark the end of jump table data-in-code region. 32-bit offsets use 1210 // actual branch instructions here, so we don't mark those as a data-region 1211 // at all. 1212 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1213 1214 // Make sure the next instruction is 2-byte aligned. 1215 EmitAlignment(1); 1216 } 1217 1218 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1219 assert(MI->getFlag(MachineInstr::FrameSetup) && 1220 "Only instruction which are involved into frame setup code are allowed"); 1221 1222 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1223 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1224 const MachineFunction &MF = *MI->getParent()->getParent(); 1225 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1226 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1227 1228 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1229 unsigned Opc = MI->getOpcode(); 1230 unsigned SrcReg, DstReg; 1231 1232 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1233 // Two special cases: 1234 // 1) tPUSH does not have src/dst regs. 1235 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1236 // load. Yes, this is pretty fragile, but for now I don't see better 1237 // way... :( 1238 SrcReg = DstReg = ARM::SP; 1239 } else { 1240 SrcReg = MI->getOperand(1).getReg(); 1241 DstReg = MI->getOperand(0).getReg(); 1242 } 1243 1244 // Try to figure out the unwinding opcode out of src / dst regs. 1245 if (MI->mayStore()) { 1246 // Register saves. 1247 assert(DstReg == ARM::SP && 1248 "Only stack pointer as a destination reg is supported"); 1249 1250 SmallVector<unsigned, 4> RegList; 1251 // Skip src & dst reg, and pred ops. 1252 unsigned StartOp = 2 + 2; 1253 // Use all the operands. 1254 unsigned NumOffset = 0; 1255 1256 switch (Opc) { 1257 default: 1258 MI->print(errs()); 1259 llvm_unreachable("Unsupported opcode for unwinding information"); 1260 case ARM::tPUSH: 1261 // Special case here: no src & dst reg, but two extra imp ops. 1262 StartOp = 2; NumOffset = 2; 1263 case ARM::STMDB_UPD: 1264 case ARM::t2STMDB_UPD: 1265 case ARM::VSTMDDB_UPD: 1266 assert(SrcReg == ARM::SP && 1267 "Only stack pointer as a source reg is supported"); 1268 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1269 i != NumOps; ++i) { 1270 const MachineOperand &MO = MI->getOperand(i); 1271 // Actually, there should never be any impdef stuff here. Skip it 1272 // temporary to workaround PR11902. 1273 if (MO.isImplicit()) 1274 continue; 1275 RegList.push_back(MO.getReg()); 1276 } 1277 break; 1278 case ARM::STR_PRE_IMM: 1279 case ARM::STR_PRE_REG: 1280 case ARM::t2STR_PRE: 1281 assert(MI->getOperand(2).getReg() == ARM::SP && 1282 "Only stack pointer as a source reg is supported"); 1283 RegList.push_back(SrcReg); 1284 break; 1285 } 1286 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1287 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1288 } else { 1289 // Changes of stack / frame pointer. 1290 if (SrcReg == ARM::SP) { 1291 int64_t Offset = 0; 1292 switch (Opc) { 1293 default: 1294 MI->print(errs()); 1295 llvm_unreachable("Unsupported opcode for unwinding information"); 1296 case ARM::MOVr: 1297 case ARM::tMOVr: 1298 Offset = 0; 1299 break; 1300 case ARM::ADDri: 1301 case ARM::t2ADDri: 1302 Offset = -MI->getOperand(2).getImm(); 1303 break; 1304 case ARM::SUBri: 1305 case ARM::t2SUBri: 1306 Offset = MI->getOperand(2).getImm(); 1307 break; 1308 case ARM::tSUBspi: 1309 Offset = MI->getOperand(2).getImm()*4; 1310 break; 1311 case ARM::tADDspi: 1312 case ARM::tADDrSPi: 1313 Offset = -MI->getOperand(2).getImm()*4; 1314 break; 1315 case ARM::tLDRpci: { 1316 // Grab the constpool index and check, whether it corresponds to 1317 // original or cloned constpool entry. 1318 unsigned CPI = MI->getOperand(1).getIndex(); 1319 const MachineConstantPool *MCP = MF.getConstantPool(); 1320 if (CPI >= MCP->getConstants().size()) 1321 CPI = AFI.getOriginalCPIdx(CPI); 1322 assert(CPI != -1U && "Invalid constpool index"); 1323 1324 // Derive the actual offset. 1325 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1326 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1327 // FIXME: Check for user, it should be "add" instruction! 1328 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1329 break; 1330 } 1331 } 1332 1333 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1334 if (DstReg == FramePtr && FramePtr != ARM::SP) 1335 // Set-up of the frame pointer. Positive values correspond to "add" 1336 // instruction. 1337 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1338 else if (DstReg == ARM::SP) { 1339 // Change of SP by an offset. Positive values correspond to "sub" 1340 // instruction. 1341 ATS.emitPad(Offset); 1342 } else { 1343 // Move of SP to a register. Positive values correspond to an "add" 1344 // instruction. 1345 ATS.emitMovSP(DstReg, -Offset); 1346 } 1347 } 1348 } else if (DstReg == ARM::SP) { 1349 MI->print(errs()); 1350 llvm_unreachable("Unsupported opcode for unwinding information"); 1351 } 1352 else { 1353 MI->print(errs()); 1354 llvm_unreachable("Unsupported opcode for unwinding information"); 1355 } 1356 } 1357 } 1358 1359 // Simple pseudo-instructions have their lowering (with expansion to real 1360 // instructions) auto-generated. 1361 #include "ARMGenMCPseudoLowering.inc" 1362 1363 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1364 const DataLayout &DL = getDataLayout(); 1365 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1366 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1367 1368 // If we just ended a constant pool, mark it as such. 1369 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1370 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1371 InConstantPool = false; 1372 } 1373 1374 // Emit unwinding stuff for frame-related instructions 1375 if (Subtarget->isTargetEHABICompatible() && 1376 MI->getFlag(MachineInstr::FrameSetup)) 1377 EmitUnwindingInstruction(MI); 1378 1379 // Do any auto-generated pseudo lowerings. 1380 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1381 return; 1382 1383 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1384 "Pseudo flag setting opcode should be expanded early"); 1385 1386 // Check for manual lowerings. 1387 unsigned Opc = MI->getOpcode(); 1388 switch (Opc) { 1389 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1390 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1391 case ARM::LEApcrel: 1392 case ARM::tLEApcrel: 1393 case ARM::t2LEApcrel: { 1394 // FIXME: Need to also handle globals and externals 1395 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1396 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1397 ARM::t2LEApcrel ? ARM::t2ADR 1398 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1399 : ARM::ADR)) 1400 .addReg(MI->getOperand(0).getReg()) 1401 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1402 // Add predicate operands. 1403 .addImm(MI->getOperand(2).getImm()) 1404 .addReg(MI->getOperand(3).getReg())); 1405 return; 1406 } 1407 case ARM::LEApcrelJT: 1408 case ARM::tLEApcrelJT: 1409 case ARM::t2LEApcrelJT: { 1410 MCSymbol *JTIPICSymbol = 1411 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1412 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1413 ARM::t2LEApcrelJT ? ARM::t2ADR 1414 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1415 : ARM::ADR)) 1416 .addReg(MI->getOperand(0).getReg()) 1417 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1418 // Add predicate operands. 1419 .addImm(MI->getOperand(2).getImm()) 1420 .addReg(MI->getOperand(3).getReg())); 1421 return; 1422 } 1423 // Darwin call instructions are just normal call instructions with different 1424 // clobber semantics (they clobber R9). 1425 case ARM::BX_CALL: { 1426 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1427 .addReg(ARM::LR) 1428 .addReg(ARM::PC) 1429 // Add predicate operands. 1430 .addImm(ARMCC::AL) 1431 .addReg(0) 1432 // Add 's' bit operand (always reg0 for this) 1433 .addReg(0)); 1434 1435 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1436 .addReg(MI->getOperand(0).getReg())); 1437 return; 1438 } 1439 case ARM::tBX_CALL: { 1440 if (Subtarget->hasV5TOps()) 1441 llvm_unreachable("Expected BLX to be selected for v5t+"); 1442 1443 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1444 // that the saved lr has its LSB set correctly (the arch doesn't 1445 // have blx). 1446 // So here we generate a bl to a small jump pad that does bx rN. 1447 // The jump pads are emitted after the function body. 1448 1449 unsigned TReg = MI->getOperand(0).getReg(); 1450 MCSymbol *TRegSym = nullptr; 1451 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1452 if (ThumbIndirectPads[i].first == TReg) { 1453 TRegSym = ThumbIndirectPads[i].second; 1454 break; 1455 } 1456 } 1457 1458 if (!TRegSym) { 1459 TRegSym = OutContext.createTempSymbol(); 1460 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1461 } 1462 1463 // Create a link-saving branch to the Reg Indirect Jump Pad. 1464 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1465 // Predicate comes first here. 1466 .addImm(ARMCC::AL).addReg(0) 1467 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1468 return; 1469 } 1470 case ARM::BMOVPCRX_CALL: { 1471 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1472 .addReg(ARM::LR) 1473 .addReg(ARM::PC) 1474 // Add predicate operands. 1475 .addImm(ARMCC::AL) 1476 .addReg(0) 1477 // Add 's' bit operand (always reg0 for this) 1478 .addReg(0)); 1479 1480 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1481 .addReg(ARM::PC) 1482 .addReg(MI->getOperand(0).getReg()) 1483 // Add predicate operands. 1484 .addImm(ARMCC::AL) 1485 .addReg(0) 1486 // Add 's' bit operand (always reg0 for this) 1487 .addReg(0)); 1488 return; 1489 } 1490 case ARM::BMOVPCB_CALL: { 1491 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1492 .addReg(ARM::LR) 1493 .addReg(ARM::PC) 1494 // Add predicate operands. 1495 .addImm(ARMCC::AL) 1496 .addReg(0) 1497 // Add 's' bit operand (always reg0 for this) 1498 .addReg(0)); 1499 1500 const MachineOperand &Op = MI->getOperand(0); 1501 const GlobalValue *GV = Op.getGlobal(); 1502 const unsigned TF = Op.getTargetFlags(); 1503 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1504 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1505 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1506 .addExpr(GVSymExpr) 1507 // Add predicate operands. 1508 .addImm(ARMCC::AL) 1509 .addReg(0)); 1510 return; 1511 } 1512 case ARM::MOVi16_ga_pcrel: 1513 case ARM::t2MOVi16_ga_pcrel: { 1514 MCInst TmpInst; 1515 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1516 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1517 1518 unsigned TF = MI->getOperand(1).getTargetFlags(); 1519 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1520 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1521 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1522 1523 MCSymbol *LabelSym = 1524 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1525 MI->getOperand(2).getImm(), OutContext); 1526 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1527 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1528 const MCExpr *PCRelExpr = 1529 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1530 MCBinaryExpr::createAdd(LabelSymExpr, 1531 MCConstantExpr::create(PCAdj, OutContext), 1532 OutContext), OutContext), OutContext); 1533 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1534 1535 // Add predicate operands. 1536 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1537 TmpInst.addOperand(MCOperand::createReg(0)); 1538 // Add 's' bit operand (always reg0 for this) 1539 TmpInst.addOperand(MCOperand::createReg(0)); 1540 EmitToStreamer(*OutStreamer, TmpInst); 1541 return; 1542 } 1543 case ARM::MOVTi16_ga_pcrel: 1544 case ARM::t2MOVTi16_ga_pcrel: { 1545 MCInst TmpInst; 1546 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1547 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1548 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1549 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1550 1551 unsigned TF = MI->getOperand(2).getTargetFlags(); 1552 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1553 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1554 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1555 1556 MCSymbol *LabelSym = 1557 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1558 MI->getOperand(3).getImm(), OutContext); 1559 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1560 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1561 const MCExpr *PCRelExpr = 1562 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1563 MCBinaryExpr::createAdd(LabelSymExpr, 1564 MCConstantExpr::create(PCAdj, OutContext), 1565 OutContext), OutContext), OutContext); 1566 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1567 // Add predicate operands. 1568 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1569 TmpInst.addOperand(MCOperand::createReg(0)); 1570 // Add 's' bit operand (always reg0 for this) 1571 TmpInst.addOperand(MCOperand::createReg(0)); 1572 EmitToStreamer(*OutStreamer, TmpInst); 1573 return; 1574 } 1575 case ARM::tPICADD: { 1576 // This is a pseudo op for a label + instruction sequence, which looks like: 1577 // LPC0: 1578 // add r0, pc 1579 // This adds the address of LPC0 to r0. 1580 1581 // Emit the label. 1582 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1583 getFunctionNumber(), 1584 MI->getOperand(2).getImm(), OutContext)); 1585 1586 // Form and emit the add. 1587 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1588 .addReg(MI->getOperand(0).getReg()) 1589 .addReg(MI->getOperand(0).getReg()) 1590 .addReg(ARM::PC) 1591 // Add predicate operands. 1592 .addImm(ARMCC::AL) 1593 .addReg(0)); 1594 return; 1595 } 1596 case ARM::PICADD: { 1597 // This is a pseudo op for a label + instruction sequence, which looks like: 1598 // LPC0: 1599 // add r0, pc, r0 1600 // This adds the address of LPC0 to r0. 1601 1602 // Emit the label. 1603 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1604 getFunctionNumber(), 1605 MI->getOperand(2).getImm(), OutContext)); 1606 1607 // Form and emit the add. 1608 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1609 .addReg(MI->getOperand(0).getReg()) 1610 .addReg(ARM::PC) 1611 .addReg(MI->getOperand(1).getReg()) 1612 // Add predicate operands. 1613 .addImm(MI->getOperand(3).getImm()) 1614 .addReg(MI->getOperand(4).getReg()) 1615 // Add 's' bit operand (always reg0 for this) 1616 .addReg(0)); 1617 return; 1618 } 1619 case ARM::PICSTR: 1620 case ARM::PICSTRB: 1621 case ARM::PICSTRH: 1622 case ARM::PICLDR: 1623 case ARM::PICLDRB: 1624 case ARM::PICLDRH: 1625 case ARM::PICLDRSB: 1626 case ARM::PICLDRSH: { 1627 // This is a pseudo op for a label + instruction sequence, which looks like: 1628 // LPC0: 1629 // OP r0, [pc, r0] 1630 // The LCP0 label is referenced by a constant pool entry in order to get 1631 // a PC-relative address at the ldr instruction. 1632 1633 // Emit the label. 1634 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1635 getFunctionNumber(), 1636 MI->getOperand(2).getImm(), OutContext)); 1637 1638 // Form and emit the load 1639 unsigned Opcode; 1640 switch (MI->getOpcode()) { 1641 default: 1642 llvm_unreachable("Unexpected opcode!"); 1643 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1644 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1645 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1646 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1647 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1648 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1649 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1650 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1651 } 1652 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1653 .addReg(MI->getOperand(0).getReg()) 1654 .addReg(ARM::PC) 1655 .addReg(MI->getOperand(1).getReg()) 1656 .addImm(0) 1657 // Add predicate operands. 1658 .addImm(MI->getOperand(3).getImm()) 1659 .addReg(MI->getOperand(4).getReg())); 1660 1661 return; 1662 } 1663 case ARM::CONSTPOOL_ENTRY: { 1664 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1665 /// in the function. The first operand is the ID# for this instruction, the 1666 /// second is the index into the MachineConstantPool that this is, the third 1667 /// is the size in bytes of this constant pool entry. 1668 /// The required alignment is specified on the basic block holding this MI. 1669 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1670 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1671 1672 // If this is the first entry of the pool, mark it. 1673 if (!InConstantPool) { 1674 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1675 InConstantPool = true; 1676 } 1677 1678 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1679 1680 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1681 if (MCPE.isMachineConstantPoolEntry()) 1682 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1683 else 1684 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1685 return; 1686 } 1687 case ARM::JUMPTABLE_ADDRS: 1688 EmitJumpTableAddrs(MI); 1689 return; 1690 case ARM::JUMPTABLE_INSTS: 1691 EmitJumpTableInsts(MI); 1692 return; 1693 case ARM::JUMPTABLE_TBB: 1694 case ARM::JUMPTABLE_TBH: 1695 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1696 return; 1697 case ARM::t2BR_JT: { 1698 // Lower and emit the instruction itself, then the jump table following it. 1699 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1700 .addReg(ARM::PC) 1701 .addReg(MI->getOperand(0).getReg()) 1702 // Add predicate operands. 1703 .addImm(ARMCC::AL) 1704 .addReg(0)); 1705 return; 1706 } 1707 case ARM::t2TBB_JT: 1708 case ARM::t2TBH_JT: { 1709 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1710 // Lower and emit the PC label, then the instruction itself. 1711 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1712 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1713 .addReg(MI->getOperand(0).getReg()) 1714 .addReg(MI->getOperand(1).getReg()) 1715 // Add predicate operands. 1716 .addImm(ARMCC::AL) 1717 .addReg(0)); 1718 return; 1719 } 1720 case ARM::tTBB_JT: 1721 case ARM::tTBH_JT: { 1722 1723 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1724 unsigned Base = MI->getOperand(0).getReg(); 1725 unsigned Idx = MI->getOperand(1).getReg(); 1726 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1727 1728 // Multiply up idx if necessary. 1729 if (!Is8Bit) 1730 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1731 .addReg(Idx) 1732 .addReg(ARM::CPSR) 1733 .addReg(Idx) 1734 .addImm(1) 1735 // Add predicate operands. 1736 .addImm(ARMCC::AL) 1737 .addReg(0)); 1738 1739 if (Base == ARM::PC) { 1740 // TBB [base, idx] = 1741 // ADDS idx, idx, base 1742 // LDRB idx, [idx, #4] ; or LDRH if TBH 1743 // LSLS idx, #1 1744 // ADDS pc, pc, idx 1745 1746 // When using PC as the base, it's important that there is no padding 1747 // between the last ADDS and the start of the jump table. The jump table 1748 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1749 // 1750 // FIXME: Ideally we could vary the LDRB index based on the padding 1751 // between the sequence and jump table, however that relies on MCExprs 1752 // for load indexes which are currently not supported. 1753 OutStreamer->EmitCodeAlignment(4); 1754 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1755 .addReg(Idx) 1756 .addReg(Idx) 1757 .addReg(Base) 1758 // Add predicate operands. 1759 .addImm(ARMCC::AL) 1760 .addReg(0)); 1761 1762 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1763 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1764 .addReg(Idx) 1765 .addReg(Idx) 1766 .addImm(Is8Bit ? 4 : 2) 1767 // Add predicate operands. 1768 .addImm(ARMCC::AL) 1769 .addReg(0)); 1770 } else { 1771 // TBB [base, idx] = 1772 // LDRB idx, [base, idx] ; or LDRH if TBH 1773 // LSLS idx, #1 1774 // ADDS pc, pc, idx 1775 1776 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1777 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1778 .addReg(Idx) 1779 .addReg(Base) 1780 .addReg(Idx) 1781 // Add predicate operands. 1782 .addImm(ARMCC::AL) 1783 .addReg(0)); 1784 } 1785 1786 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1787 .addReg(Idx) 1788 .addReg(ARM::CPSR) 1789 .addReg(Idx) 1790 .addImm(1) 1791 // Add predicate operands. 1792 .addImm(ARMCC::AL) 1793 .addReg(0)); 1794 1795 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1796 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1797 .addReg(ARM::PC) 1798 .addReg(ARM::PC) 1799 .addReg(Idx) 1800 // Add predicate operands. 1801 .addImm(ARMCC::AL) 1802 .addReg(0)); 1803 return; 1804 } 1805 case ARM::tBR_JTr: 1806 case ARM::BR_JTr: { 1807 // Lower and emit the instruction itself, then the jump table following it. 1808 // mov pc, target 1809 MCInst TmpInst; 1810 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1811 ARM::MOVr : ARM::tMOVr; 1812 TmpInst.setOpcode(Opc); 1813 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1814 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1815 // Add predicate operands. 1816 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1817 TmpInst.addOperand(MCOperand::createReg(0)); 1818 // Add 's' bit operand (always reg0 for this) 1819 if (Opc == ARM::MOVr) 1820 TmpInst.addOperand(MCOperand::createReg(0)); 1821 EmitToStreamer(*OutStreamer, TmpInst); 1822 return; 1823 } 1824 case ARM::BR_JTm: { 1825 // Lower and emit the instruction itself, then the jump table following it. 1826 // ldr pc, target 1827 MCInst TmpInst; 1828 if (MI->getOperand(1).getReg() == 0) { 1829 // literal offset 1830 TmpInst.setOpcode(ARM::LDRi12); 1831 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1832 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1833 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1834 } else { 1835 TmpInst.setOpcode(ARM::LDRrs); 1836 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1837 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1838 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1839 TmpInst.addOperand(MCOperand::createImm(0)); 1840 } 1841 // Add predicate operands. 1842 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1843 TmpInst.addOperand(MCOperand::createReg(0)); 1844 EmitToStreamer(*OutStreamer, TmpInst); 1845 return; 1846 } 1847 case ARM::BR_JTadd: { 1848 // Lower and emit the instruction itself, then the jump table following it. 1849 // add pc, target, idx 1850 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1851 .addReg(ARM::PC) 1852 .addReg(MI->getOperand(0).getReg()) 1853 .addReg(MI->getOperand(1).getReg()) 1854 // Add predicate operands. 1855 .addImm(ARMCC::AL) 1856 .addReg(0) 1857 // Add 's' bit operand (always reg0 for this) 1858 .addReg(0)); 1859 return; 1860 } 1861 case ARM::SPACE: 1862 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1863 return; 1864 case ARM::TRAP: { 1865 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1866 // FIXME: Remove this special case when they do. 1867 if (!Subtarget->isTargetMachO()) { 1868 uint32_t Val = 0xe7ffdefeUL; 1869 OutStreamer->AddComment("trap"); 1870 ATS.emitInst(Val); 1871 return; 1872 } 1873 break; 1874 } 1875 case ARM::TRAPNaCl: { 1876 uint32_t Val = 0xe7fedef0UL; 1877 OutStreamer->AddComment("trap"); 1878 ATS.emitInst(Val); 1879 return; 1880 } 1881 case ARM::tTRAP: { 1882 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1883 // FIXME: Remove this special case when they do. 1884 if (!Subtarget->isTargetMachO()) { 1885 uint16_t Val = 0xdefe; 1886 OutStreamer->AddComment("trap"); 1887 ATS.emitInst(Val, 'n'); 1888 return; 1889 } 1890 break; 1891 } 1892 case ARM::t2Int_eh_sjlj_setjmp: 1893 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1894 case ARM::tInt_eh_sjlj_setjmp: { 1895 // Two incoming args: GPR:$src, GPR:$val 1896 // mov $val, pc 1897 // adds $val, #7 1898 // str $val, [$src, #4] 1899 // movs r0, #0 1900 // b LSJLJEH 1901 // movs r0, #1 1902 // LSJLJEH: 1903 unsigned SrcReg = MI->getOperand(0).getReg(); 1904 unsigned ValReg = MI->getOperand(1).getReg(); 1905 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1906 OutStreamer->AddComment("eh_setjmp begin"); 1907 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1908 .addReg(ValReg) 1909 .addReg(ARM::PC) 1910 // Predicate. 1911 .addImm(ARMCC::AL) 1912 .addReg(0)); 1913 1914 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1915 .addReg(ValReg) 1916 // 's' bit operand 1917 .addReg(ARM::CPSR) 1918 .addReg(ValReg) 1919 .addImm(7) 1920 // Predicate. 1921 .addImm(ARMCC::AL) 1922 .addReg(0)); 1923 1924 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1925 .addReg(ValReg) 1926 .addReg(SrcReg) 1927 // The offset immediate is #4. The operand value is scaled by 4 for the 1928 // tSTR instruction. 1929 .addImm(1) 1930 // Predicate. 1931 .addImm(ARMCC::AL) 1932 .addReg(0)); 1933 1934 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1935 .addReg(ARM::R0) 1936 .addReg(ARM::CPSR) 1937 .addImm(0) 1938 // Predicate. 1939 .addImm(ARMCC::AL) 1940 .addReg(0)); 1941 1942 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1943 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1944 .addExpr(SymbolExpr) 1945 .addImm(ARMCC::AL) 1946 .addReg(0)); 1947 1948 OutStreamer->AddComment("eh_setjmp end"); 1949 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1950 .addReg(ARM::R0) 1951 .addReg(ARM::CPSR) 1952 .addImm(1) 1953 // Predicate. 1954 .addImm(ARMCC::AL) 1955 .addReg(0)); 1956 1957 OutStreamer->EmitLabel(Label); 1958 return; 1959 } 1960 1961 case ARM::Int_eh_sjlj_setjmp_nofp: 1962 case ARM::Int_eh_sjlj_setjmp: { 1963 // Two incoming args: GPR:$src, GPR:$val 1964 // add $val, pc, #8 1965 // str $val, [$src, #+4] 1966 // mov r0, #0 1967 // add pc, pc, #0 1968 // mov r0, #1 1969 unsigned SrcReg = MI->getOperand(0).getReg(); 1970 unsigned ValReg = MI->getOperand(1).getReg(); 1971 1972 OutStreamer->AddComment("eh_setjmp begin"); 1973 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1974 .addReg(ValReg) 1975 .addReg(ARM::PC) 1976 .addImm(8) 1977 // Predicate. 1978 .addImm(ARMCC::AL) 1979 .addReg(0) 1980 // 's' bit operand (always reg0 for this). 1981 .addReg(0)); 1982 1983 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1984 .addReg(ValReg) 1985 .addReg(SrcReg) 1986 .addImm(4) 1987 // Predicate. 1988 .addImm(ARMCC::AL) 1989 .addReg(0)); 1990 1991 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1992 .addReg(ARM::R0) 1993 .addImm(0) 1994 // Predicate. 1995 .addImm(ARMCC::AL) 1996 .addReg(0) 1997 // 's' bit operand (always reg0 for this). 1998 .addReg(0)); 1999 2000 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 2001 .addReg(ARM::PC) 2002 .addReg(ARM::PC) 2003 .addImm(0) 2004 // Predicate. 2005 .addImm(ARMCC::AL) 2006 .addReg(0) 2007 // 's' bit operand (always reg0 for this). 2008 .addReg(0)); 2009 2010 OutStreamer->AddComment("eh_setjmp end"); 2011 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2012 .addReg(ARM::R0) 2013 .addImm(1) 2014 // Predicate. 2015 .addImm(ARMCC::AL) 2016 .addReg(0) 2017 // 's' bit operand (always reg0 for this). 2018 .addReg(0)); 2019 return; 2020 } 2021 case ARM::Int_eh_sjlj_longjmp: { 2022 // ldr sp, [$src, #8] 2023 // ldr $scratch, [$src, #4] 2024 // ldr r7, [$src] 2025 // bx $scratch 2026 unsigned SrcReg = MI->getOperand(0).getReg(); 2027 unsigned ScratchReg = MI->getOperand(1).getReg(); 2028 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2029 .addReg(ARM::SP) 2030 .addReg(SrcReg) 2031 .addImm(8) 2032 // Predicate. 2033 .addImm(ARMCC::AL) 2034 .addReg(0)); 2035 2036 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2037 .addReg(ScratchReg) 2038 .addReg(SrcReg) 2039 .addImm(4) 2040 // Predicate. 2041 .addImm(ARMCC::AL) 2042 .addReg(0)); 2043 2044 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2045 .addReg(ARM::R7) 2046 .addReg(SrcReg) 2047 .addImm(0) 2048 // Predicate. 2049 .addImm(ARMCC::AL) 2050 .addReg(0)); 2051 2052 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2053 .addReg(ScratchReg) 2054 // Predicate. 2055 .addImm(ARMCC::AL) 2056 .addReg(0)); 2057 return; 2058 } 2059 case ARM::tInt_eh_sjlj_longjmp: { 2060 // ldr $scratch, [$src, #8] 2061 // mov sp, $scratch 2062 // ldr $scratch, [$src, #4] 2063 // ldr r7, [$src] 2064 // bx $scratch 2065 unsigned SrcReg = MI->getOperand(0).getReg(); 2066 unsigned ScratchReg = MI->getOperand(1).getReg(); 2067 2068 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2069 .addReg(ScratchReg) 2070 .addReg(SrcReg) 2071 // The offset immediate is #8. The operand value is scaled by 4 for the 2072 // tLDR instruction. 2073 .addImm(2) 2074 // Predicate. 2075 .addImm(ARMCC::AL) 2076 .addReg(0)); 2077 2078 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2079 .addReg(ARM::SP) 2080 .addReg(ScratchReg) 2081 // Predicate. 2082 .addImm(ARMCC::AL) 2083 .addReg(0)); 2084 2085 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2086 .addReg(ScratchReg) 2087 .addReg(SrcReg) 2088 .addImm(1) 2089 // Predicate. 2090 .addImm(ARMCC::AL) 2091 .addReg(0)); 2092 2093 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2094 .addReg(ARM::R7) 2095 .addReg(SrcReg) 2096 .addImm(0) 2097 // Predicate. 2098 .addImm(ARMCC::AL) 2099 .addReg(0)); 2100 2101 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2102 .addReg(ScratchReg) 2103 // Predicate. 2104 .addImm(ARMCC::AL) 2105 .addReg(0)); 2106 return; 2107 } 2108 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2109 // ldr.w r11, [$src, #0] 2110 // ldr.w sp, [$src, #8] 2111 // ldr.w pc, [$src, #4] 2112 2113 unsigned SrcReg = MI->getOperand(0).getReg(); 2114 2115 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2116 .addReg(ARM::R11) 2117 .addReg(SrcReg) 2118 .addImm(0) 2119 // Predicate 2120 .addImm(ARMCC::AL) 2121 .addReg(0)); 2122 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2123 .addReg(ARM::SP) 2124 .addReg(SrcReg) 2125 .addImm(8) 2126 // Predicate 2127 .addImm(ARMCC::AL) 2128 .addReg(0)); 2129 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2130 .addReg(ARM::PC) 2131 .addReg(SrcReg) 2132 .addImm(4) 2133 // Predicate 2134 .addImm(ARMCC::AL) 2135 .addReg(0)); 2136 return; 2137 } 2138 case ARM::PATCHABLE_FUNCTION_ENTER: 2139 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2140 return; 2141 case ARM::PATCHABLE_FUNCTION_EXIT: 2142 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2143 return; 2144 case ARM::PATCHABLE_TAIL_CALL: 2145 LowerPATCHABLE_TAIL_CALL(*MI); 2146 return; 2147 } 2148 2149 MCInst TmpInst; 2150 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2151 2152 EmitToStreamer(*OutStreamer, TmpInst); 2153 } 2154 2155 //===----------------------------------------------------------------------===// 2156 // Target Registry Stuff 2157 //===----------------------------------------------------------------------===// 2158 2159 // Force static initialization. 2160 extern "C" void LLVMInitializeARMAsmPrinter() { 2161 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2162 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2163 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2164 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2165 } 2166