1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "asm-printer" 16 #include "ARMAsmPrinter.h" 17 #include "ARM.h" 18 #include "ARMConstantPoolValue.h" 19 #include "ARMFPUName.h" 20 #include "ARMMachineFunctionInfo.h" 21 #include "ARMTargetMachine.h" 22 #include "ARMTargetObjectFile.h" 23 #include "InstPrinter/ARMInstPrinter.h" 24 #include "MCTargetDesc/ARMAddressingModes.h" 25 #include "MCTargetDesc/ARMMCExpr.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAssembler.h" 39 #include "llvm/MC/MCContext.h" 40 #include "llvm/MC/MCELFStreamer.h" 41 #include "llvm/MC/MCInst.h" 42 #include "llvm/MC/MCInstBuilder.h" 43 #include "llvm/MC/MCObjectStreamer.h" 44 #include "llvm/MC/MCSectionMachO.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ELF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/TargetRegistry.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <cctype> 56 using namespace llvm; 57 58 void ARMAsmPrinter::EmitFunctionBodyEnd() { 59 // Make sure to terminate any constant pools that were at the end 60 // of the function. 61 if (!InConstantPool) 62 return; 63 InConstantPool = false; 64 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 65 } 66 67 void ARMAsmPrinter::EmitFunctionEntryLabel() { 68 if (AFI->isThumbFunction()) { 69 OutStreamer.EmitAssemblerFlag(MCAF_Code16); 70 OutStreamer.EmitThumbFunc(CurrentFnSym); 71 } 72 73 OutStreamer.EmitLabel(CurrentFnSym); 74 } 75 76 void ARMAsmPrinter::EmitXXStructor(const Constant *CV) { 77 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 78 assert(Size && "C++ constructor pointer had zero size!"); 79 80 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 81 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 82 83 const MCExpr *E = MCSymbolRefExpr::Create(getSymbol(GV), 84 (Subtarget->isTargetELF() 85 ? MCSymbolRefExpr::VK_ARM_TARGET1 86 : MCSymbolRefExpr::VK_None), 87 OutContext); 88 89 OutStreamer.EmitValue(E, Size); 90 } 91 92 /// runOnMachineFunction - This uses the EmitInstruction() 93 /// method to print assembly for each instruction. 94 /// 95 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 96 AFI = MF.getInfo<ARMFunctionInfo>(); 97 MCP = MF.getConstantPool(); 98 99 return AsmPrinter::runOnMachineFunction(MF); 100 } 101 102 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 103 raw_ostream &O, const char *Modifier) { 104 const MachineOperand &MO = MI->getOperand(OpNum); 105 unsigned TF = MO.getTargetFlags(); 106 107 switch (MO.getType()) { 108 default: llvm_unreachable("<unknown operand type>"); 109 case MachineOperand::MO_Register: { 110 unsigned Reg = MO.getReg(); 111 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 112 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 113 if(ARM::GPRPairRegClass.contains(Reg)) { 114 const MachineFunction &MF = *MI->getParent()->getParent(); 115 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); 116 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 117 } 118 O << ARMInstPrinter::getRegisterName(Reg); 119 break; 120 } 121 case MachineOperand::MO_Immediate: { 122 int64_t Imm = MO.getImm(); 123 O << '#'; 124 if ((Modifier && strcmp(Modifier, "lo16") == 0) || 125 (TF == ARMII::MO_LO16)) 126 O << ":lower16:"; 127 else if ((Modifier && strcmp(Modifier, "hi16") == 0) || 128 (TF == ARMII::MO_HI16)) 129 O << ":upper16:"; 130 O << Imm; 131 break; 132 } 133 case MachineOperand::MO_MachineBasicBlock: 134 O << *MO.getMBB()->getSymbol(); 135 return; 136 case MachineOperand::MO_GlobalAddress: { 137 const GlobalValue *GV = MO.getGlobal(); 138 if ((Modifier && strcmp(Modifier, "lo16") == 0) || 139 (TF & ARMII::MO_LO16)) 140 O << ":lower16:"; 141 else if ((Modifier && strcmp(Modifier, "hi16") == 0) || 142 (TF & ARMII::MO_HI16)) 143 O << ":upper16:"; 144 O << *getSymbol(GV); 145 146 printOffset(MO.getOffset(), O); 147 if (TF == ARMII::MO_PLT) 148 O << "(PLT)"; 149 break; 150 } 151 case MachineOperand::MO_ConstantPoolIndex: 152 O << *GetCPISymbol(MO.getIndex()); 153 break; 154 } 155 } 156 157 //===--------------------------------------------------------------------===// 158 159 MCSymbol *ARMAsmPrinter:: 160 GetARMJTIPICJumpTableLabel2(unsigned uid, unsigned uid2) const { 161 const DataLayout *DL = TM.getDataLayout(); 162 SmallString<60> Name; 163 raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI" 164 << getFunctionNumber() << '_' << uid << '_' << uid2; 165 return OutContext.GetOrCreateSymbol(Name.str()); 166 } 167 168 169 MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const { 170 const DataLayout *DL = TM.getDataLayout(); 171 SmallString<60> Name; 172 raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH" 173 << getFunctionNumber(); 174 return OutContext.GetOrCreateSymbol(Name.str()); 175 } 176 177 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 178 unsigned AsmVariant, const char *ExtraCode, 179 raw_ostream &O) { 180 // Does this asm operand have a single letter operand modifier? 181 if (ExtraCode && ExtraCode[0]) { 182 if (ExtraCode[1] != 0) return true; // Unknown modifier. 183 184 switch (ExtraCode[0]) { 185 default: 186 // See if this is a generic print operand 187 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 188 case 'a': // Print as a memory address. 189 if (MI->getOperand(OpNum).isReg()) { 190 O << "[" 191 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 192 << "]"; 193 return false; 194 } 195 // Fallthrough 196 case 'c': // Don't print "#" before an immediate operand. 197 if (!MI->getOperand(OpNum).isImm()) 198 return true; 199 O << MI->getOperand(OpNum).getImm(); 200 return false; 201 case 'P': // Print a VFP double precision register. 202 case 'q': // Print a NEON quad precision register. 203 printOperand(MI, OpNum, O); 204 return false; 205 case 'y': // Print a VFP single precision register as indexed double. 206 if (MI->getOperand(OpNum).isReg()) { 207 unsigned Reg = MI->getOperand(OpNum).getReg(); 208 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); 209 // Find the 'd' register that has this 's' register as a sub-register, 210 // and determine the lane number. 211 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 212 if (!ARM::DPRRegClass.contains(*SR)) 213 continue; 214 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 215 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 216 return false; 217 } 218 } 219 return true; 220 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 221 if (!MI->getOperand(OpNum).isImm()) 222 return true; 223 O << ~(MI->getOperand(OpNum).getImm()); 224 return false; 225 case 'L': // The low 16 bits of an immediate constant. 226 if (!MI->getOperand(OpNum).isImm()) 227 return true; 228 O << (MI->getOperand(OpNum).getImm() & 0xffff); 229 return false; 230 case 'M': { // A register range suitable for LDM/STM. 231 if (!MI->getOperand(OpNum).isReg()) 232 return true; 233 const MachineOperand &MO = MI->getOperand(OpNum); 234 unsigned RegBegin = MO.getReg(); 235 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 236 // already got the operands in registers that are operands to the 237 // inline asm statement. 238 O << "{"; 239 if (ARM::GPRPairRegClass.contains(RegBegin)) { 240 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); 241 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 242 O << ARMInstPrinter::getRegisterName(Reg0) << ", ";; 243 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 244 } 245 O << ARMInstPrinter::getRegisterName(RegBegin); 246 247 // FIXME: The register allocator not only may not have given us the 248 // registers in sequence, but may not be in ascending registers. This 249 // will require changes in the register allocator that'll need to be 250 // propagated down here if the operands change. 251 unsigned RegOps = OpNum + 1; 252 while (MI->getOperand(RegOps).isReg()) { 253 O << ", " 254 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 255 RegOps++; 256 } 257 258 O << "}"; 259 260 return false; 261 } 262 case 'R': // The most significant register of a pair. 263 case 'Q': { // The least significant register of a pair. 264 if (OpNum == 0) 265 return true; 266 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 267 if (!FlagsOP.isImm()) 268 return true; 269 unsigned Flags = FlagsOP.getImm(); 270 271 // This operand may not be the one that actually provides the register. If 272 // it's tied to a previous one then we should refer instead to that one 273 // for registers and their classes. 274 unsigned TiedIdx; 275 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 276 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 277 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 278 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 279 } 280 Flags = MI->getOperand(OpNum).getImm(); 281 282 // Later code expects OpNum to be pointing at the register rather than 283 // the flags. 284 OpNum += 1; 285 } 286 287 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 288 unsigned RC; 289 InlineAsm::hasRegClassConstraint(Flags, RC); 290 if (RC == ARM::GPRPairRegClassID) { 291 if (NumVals != 1) 292 return true; 293 const MachineOperand &MO = MI->getOperand(OpNum); 294 if (!MO.isReg()) 295 return true; 296 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); 297 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 298 ARM::gsub_0 : ARM::gsub_1); 299 O << ARMInstPrinter::getRegisterName(Reg); 300 return false; 301 } 302 if (NumVals != 2) 303 return true; 304 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 305 if (RegOp >= MI->getNumOperands()) 306 return true; 307 const MachineOperand &MO = MI->getOperand(RegOp); 308 if (!MO.isReg()) 309 return true; 310 unsigned Reg = MO.getReg(); 311 O << ARMInstPrinter::getRegisterName(Reg); 312 return false; 313 } 314 315 case 'e': // The low doubleword register of a NEON quad register. 316 case 'f': { // The high doubleword register of a NEON quad register. 317 if (!MI->getOperand(OpNum).isReg()) 318 return true; 319 unsigned Reg = MI->getOperand(OpNum).getReg(); 320 if (!ARM::QPRRegClass.contains(Reg)) 321 return true; 322 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); 323 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 324 ARM::dsub_0 : ARM::dsub_1); 325 O << ARMInstPrinter::getRegisterName(SubReg); 326 return false; 327 } 328 329 // This modifier is not yet supported. 330 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 331 return true; 332 case 'H': { // The highest-numbered register of a pair. 333 const MachineOperand &MO = MI->getOperand(OpNum); 334 if (!MO.isReg()) 335 return true; 336 const MachineFunction &MF = *MI->getParent()->getParent(); 337 const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); 338 unsigned Reg = MO.getReg(); 339 if(!ARM::GPRPairRegClass.contains(Reg)) 340 return false; 341 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 342 O << ARMInstPrinter::getRegisterName(Reg); 343 return false; 344 } 345 } 346 } 347 348 printOperand(MI, OpNum, O); 349 return false; 350 } 351 352 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 353 unsigned OpNum, unsigned AsmVariant, 354 const char *ExtraCode, 355 raw_ostream &O) { 356 // Does this asm operand have a single letter operand modifier? 357 if (ExtraCode && ExtraCode[0]) { 358 if (ExtraCode[1] != 0) return true; // Unknown modifier. 359 360 switch (ExtraCode[0]) { 361 case 'A': // A memory operand for a VLD1/VST1 instruction. 362 default: return true; // Unknown modifier. 363 case 'm': // The base register of a memory operand. 364 if (!MI->getOperand(OpNum).isReg()) 365 return true; 366 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 367 return false; 368 } 369 } 370 371 const MachineOperand &MO = MI->getOperand(OpNum); 372 assert(MO.isReg() && "unexpected inline asm memory operand"); 373 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 374 return false; 375 } 376 377 static bool isThumb(const MCSubtargetInfo& STI) { 378 return (STI.getFeatureBits() & ARM::ModeThumb) != 0; 379 } 380 381 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 382 const MCSubtargetInfo *EndInfo) const { 383 // If either end mode is unknown (EndInfo == NULL) or different than 384 // the start mode, then restore the start mode. 385 const bool WasThumb = isThumb(StartInfo); 386 if (EndInfo == NULL || WasThumb != isThumb(*EndInfo)) { 387 OutStreamer.EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 388 } 389 } 390 391 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 392 if (Subtarget->isTargetMachO()) { 393 Reloc::Model RelocM = TM.getRelocationModel(); 394 if (RelocM == Reloc::PIC_ || RelocM == Reloc::DynamicNoPIC) { 395 // Declare all the text sections up front (before the DWARF sections 396 // emitted by AsmPrinter::doInitialization) so the assembler will keep 397 // them together at the beginning of the object file. This helps 398 // avoid out-of-range branches that are due a fundamental limitation of 399 // the way symbol offsets are encoded with the current Darwin ARM 400 // relocations. 401 const TargetLoweringObjectFileMachO &TLOFMacho = 402 static_cast<const TargetLoweringObjectFileMachO &>( 403 getObjFileLowering()); 404 405 // Collect the set of sections our functions will go into. 406 SetVector<const MCSection *, SmallVector<const MCSection *, 8>, 407 SmallPtrSet<const MCSection *, 8> > TextSections; 408 // Default text section comes first. 409 TextSections.insert(TLOFMacho.getTextSection()); 410 // Now any user defined text sections from function attributes. 411 for (Module::iterator F = M.begin(), e = M.end(); F != e; ++F) 412 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) 413 TextSections.insert(TLOFMacho.SectionForGlobal(F, *Mang, TM)); 414 // Now the coalescable sections. 415 TextSections.insert(TLOFMacho.getTextCoalSection()); 416 TextSections.insert(TLOFMacho.getConstTextCoalSection()); 417 418 // Emit the sections in the .s file header to fix the order. 419 for (unsigned i = 0, e = TextSections.size(); i != e; ++i) 420 OutStreamer.SwitchSection(TextSections[i]); 421 422 if (RelocM == Reloc::DynamicNoPIC) { 423 const MCSection *sect = 424 OutContext.getMachOSection("__TEXT", "__symbol_stub4", 425 MachO::S_SYMBOL_STUBS, 426 12, SectionKind::getText()); 427 OutStreamer.SwitchSection(sect); 428 } else { 429 const MCSection *sect = 430 OutContext.getMachOSection("__TEXT", "__picsymbolstub4", 431 MachO::S_SYMBOL_STUBS, 432 16, SectionKind::getText()); 433 OutStreamer.SwitchSection(sect); 434 } 435 const MCSection *StaticInitSect = 436 OutContext.getMachOSection("__TEXT", "__StaticInit", 437 MachO::S_REGULAR | 438 MachO::S_ATTR_PURE_INSTRUCTIONS, 439 SectionKind::getText()); 440 OutStreamer.SwitchSection(StaticInitSect); 441 } 442 443 // Compiling with debug info should not affect the code 444 // generation. Ensure the cstring section comes before the 445 // optional __DWARF secion. Otherwise, PC-relative loads would 446 // have to use different instruction sequences at "-g" in order to 447 // reach global data in the same object file. 448 OutStreamer.SwitchSection(getObjFileLowering().getCStringSection()); 449 } 450 451 // Use unified assembler syntax. 452 OutStreamer.EmitAssemblerFlag(MCAF_SyntaxUnified); 453 454 // Emit ARM Build Attributes 455 if (Subtarget->isTargetELF()) 456 emitAttributes(); 457 } 458 459 460 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 461 if (Subtarget->isTargetMachO()) { 462 // All darwin targets use mach-o. 463 const TargetLoweringObjectFileMachO &TLOFMacho = 464 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 465 MachineModuleInfoMachO &MMIMacho = 466 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 467 468 // Output non-lazy-pointers for external and common global variables. 469 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 470 471 if (!Stubs.empty()) { 472 // Switch with ".non_lazy_symbol_pointer" directive. 473 OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 474 EmitAlignment(2); 475 for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { 476 // L_foo$stub: 477 OutStreamer.EmitLabel(Stubs[i].first); 478 // .indirect_symbol _foo 479 MachineModuleInfoImpl::StubValueTy &MCSym = Stubs[i].second; 480 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(),MCSA_IndirectSymbol); 481 482 if (MCSym.getInt()) 483 // External to current translation unit. 484 OutStreamer.EmitIntValue(0, 4/*size*/); 485 else 486 // Internal to current translation unit. 487 // 488 // When we place the LSDA into the TEXT section, the type info 489 // pointers need to be indirect and pc-rel. We accomplish this by 490 // using NLPs; however, sometimes the types are local to the file. 491 // We need to fill in the value for the NLP in those cases. 492 OutStreamer.EmitValue(MCSymbolRefExpr::Create(MCSym.getPointer(), 493 OutContext), 494 4/*size*/); 495 } 496 497 Stubs.clear(); 498 OutStreamer.AddBlankLine(); 499 } 500 501 Stubs = MMIMacho.GetHiddenGVStubList(); 502 if (!Stubs.empty()) { 503 OutStreamer.SwitchSection(getObjFileLowering().getDataSection()); 504 EmitAlignment(2); 505 for (unsigned i = 0, e = Stubs.size(); i != e; ++i) { 506 // L_foo$stub: 507 OutStreamer.EmitLabel(Stubs[i].first); 508 // .long _foo 509 OutStreamer.EmitValue(MCSymbolRefExpr:: 510 Create(Stubs[i].second.getPointer(), 511 OutContext), 512 4/*size*/); 513 } 514 515 Stubs.clear(); 516 OutStreamer.AddBlankLine(); 517 } 518 519 // Funny Darwin hack: This flag tells the linker that no global symbols 520 // contain code that falls through to other global symbols (e.g. the obvious 521 // implementation of multiple entry points). If this doesn't occur, the 522 // linker can safely perform dead code stripping. Since LLVM never 523 // generates code that does this, it is always safe to set. 524 OutStreamer.EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 525 } 526 } 527 528 //===----------------------------------------------------------------------===// 529 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 530 // FIXME: 531 // The following seem like one-off assembler flags, but they actually need 532 // to appear in the .ARM.attributes section in ELF. 533 // Instead of subclassing the MCELFStreamer, we do the work here. 534 535 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 536 const ARMSubtarget *Subtarget) { 537 if (CPU == "xscale") 538 return ARMBuildAttrs::v5TEJ; 539 540 if (Subtarget->hasV8Ops()) 541 return ARMBuildAttrs::v8; 542 else if (Subtarget->hasV7Ops()) { 543 if (Subtarget->isMClass() && Subtarget->hasThumb2DSP()) 544 return ARMBuildAttrs::v7E_M; 545 return ARMBuildAttrs::v7; 546 } else if (Subtarget->hasV6T2Ops()) 547 return ARMBuildAttrs::v6T2; 548 else if (Subtarget->hasV6MOps()) 549 return ARMBuildAttrs::v6S_M; 550 else if (Subtarget->hasV6Ops()) 551 return ARMBuildAttrs::v6; 552 else if (Subtarget->hasV5TEOps()) 553 return ARMBuildAttrs::v5TE; 554 else if (Subtarget->hasV5TOps()) 555 return ARMBuildAttrs::v5T; 556 else if (Subtarget->hasV4TOps()) 557 return ARMBuildAttrs::v4T; 558 else 559 return ARMBuildAttrs::v4; 560 } 561 562 void ARMAsmPrinter::emitAttributes() { 563 MCTargetStreamer &TS = *OutStreamer.getTargetStreamer(); 564 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 565 566 ATS.switchVendor("aeabi"); 567 568 std::string CPUString = Subtarget->getCPUString(); 569 570 // FIXME: remove krait check when GNU tools support krait cpu 571 if (CPUString != "generic" && CPUString != "krait") 572 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 573 574 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, 575 getArchForCPU(CPUString, Subtarget)); 576 577 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 578 // profile is not applicable (e.g. pre v7, or cross-profile code)". 579 if (Subtarget->hasV7Ops()) { 580 if (Subtarget->isAClass()) { 581 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 582 ARMBuildAttrs::ApplicationProfile); 583 } else if (Subtarget->isRClass()) { 584 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 585 ARMBuildAttrs::RealTimeProfile); 586 } else if (Subtarget->isMClass()) { 587 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 588 ARMBuildAttrs::MicroControllerProfile); 589 } 590 } 591 592 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, Subtarget->hasARMOps() ? 593 ARMBuildAttrs::Allowed : ARMBuildAttrs::Not_Allowed); 594 if (Subtarget->isThumb1Only()) { 595 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 596 ARMBuildAttrs::Allowed); 597 } else if (Subtarget->hasThumb2()) { 598 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 599 ARMBuildAttrs::AllowThumb32); 600 } 601 602 if (Subtarget->hasNEON()) { 603 /* NEON is not exactly a VFP architecture, but GAS emit one of 604 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 605 if (Subtarget->hasFPARMv8()) { 606 if (Subtarget->hasCrypto()) 607 ATS.emitFPU(ARM::CRYPTO_NEON_FP_ARMV8); 608 else 609 ATS.emitFPU(ARM::NEON_FP_ARMV8); 610 } 611 else if (Subtarget->hasVFP4()) 612 ATS.emitFPU(ARM::NEON_VFPV4); 613 else 614 ATS.emitFPU(ARM::NEON); 615 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 616 if (Subtarget->hasV8Ops()) 617 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 618 ARMBuildAttrs::AllowNeonARMv8); 619 } else { 620 if (Subtarget->hasFPARMv8()) 621 ATS.emitFPU(ARM::FP_ARMV8); 622 else if (Subtarget->hasVFP4()) 623 ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV4_D16 : ARM::VFPV4); 624 else if (Subtarget->hasVFP3()) 625 ATS.emitFPU(Subtarget->hasD16() ? ARM::VFPV3_D16 : ARM::VFPV3); 626 else if (Subtarget->hasVFP2()) 627 ATS.emitFPU(ARM::VFPV2); 628 } 629 630 // Signal various FP modes. 631 if (!TM.Options.UnsafeFPMath) { 632 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, ARMBuildAttrs::Allowed); 633 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 634 ARMBuildAttrs::Allowed); 635 } 636 637 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 638 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 639 ARMBuildAttrs::Allowed); 640 else 641 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 642 ARMBuildAttrs::AllowIEE754); 643 644 // FIXME: add more flags to ARMBuildAttributes.h 645 // 8-bytes alignment stuff. 646 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 647 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 648 649 // ABI_HardFP_use attribute to indicate single precision FP. 650 if (Subtarget->isFPOnlySP()) 651 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 652 ARMBuildAttrs::HardFPSinglePrecision); 653 654 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 655 if (Subtarget->isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 656 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 657 658 // FIXME: Should we signal R9 usage? 659 660 if (Subtarget->hasFP16()) 661 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 662 663 if (Subtarget->hasMPExtension()) 664 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 665 666 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 667 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 668 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 669 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 670 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 671 // otherwise, the default value (AllowDIVIfExists) applies. 672 if (Subtarget->hasDivideInARMMode() && !Subtarget->hasV8Ops()) 673 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 674 675 if (Subtarget->hasTrustZone() && Subtarget->hasVirtualization()) 676 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 677 ARMBuildAttrs::AllowTZVirtualization); 678 else if (Subtarget->hasTrustZone()) 679 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 680 ARMBuildAttrs::AllowTZ); 681 else if (Subtarget->hasVirtualization()) 682 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 683 ARMBuildAttrs::AllowVirtualization); 684 685 ATS.finishAttributeSection(); 686 } 687 688 //===----------------------------------------------------------------------===// 689 690 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, 691 unsigned LabelId, MCContext &Ctx) { 692 693 MCSymbol *Label = Ctx.GetOrCreateSymbol(Twine(Prefix) 694 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 695 return Label; 696 } 697 698 static MCSymbolRefExpr::VariantKind 699 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 700 switch (Modifier) { 701 case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None; 702 case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD; 703 case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF; 704 case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF; 705 case ARMCP::GOT: return MCSymbolRefExpr::VK_GOT; 706 case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_GOTOFF; 707 } 708 llvm_unreachable("Invalid ARMCPModifier!"); 709 } 710 711 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 712 unsigned char TargetFlags) { 713 bool isIndirect = Subtarget->isTargetMachO() && 714 (TargetFlags & ARMII::MO_NONLAZY) && 715 Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); 716 if (!isIndirect) 717 return getSymbol(GV); 718 719 // FIXME: Remove this when Darwin transition to @GOT like syntax. 720 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 721 MachineModuleInfoMachO &MMIMachO = 722 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 723 MachineModuleInfoImpl::StubValueTy &StubSym = 724 GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) : 725 MMIMachO.getGVStubEntry(MCSym); 726 if (StubSym.getPointer() == 0) 727 StubSym = MachineModuleInfoImpl:: 728 StubValueTy(getSymbol(GV), !GV->hasInternalLinkage()); 729 return MCSym; 730 } 731 732 void ARMAsmPrinter:: 733 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 734 const DataLayout *DL = TM.getDataLayout(); 735 int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType()); 736 737 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 738 739 MCSymbol *MCSym; 740 if (ACPV->isLSDA()) { 741 SmallString<128> Str; 742 raw_svector_ostream OS(Str); 743 OS << DL->getPrivateGlobalPrefix() << "_LSDA_" << getFunctionNumber(); 744 MCSym = OutContext.GetOrCreateSymbol(OS.str()); 745 } else if (ACPV->isBlockAddress()) { 746 const BlockAddress *BA = 747 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 748 MCSym = GetBlockAddressSymbol(BA); 749 } else if (ACPV->isGlobalValue()) { 750 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 751 752 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 753 // flag the global as MO_NONLAZY. 754 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 755 MCSym = GetARMGVSymbol(GV, TF); 756 } else if (ACPV->isMachineBasicBlock()) { 757 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 758 MCSym = MBB->getSymbol(); 759 } else { 760 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 761 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 762 MCSym = GetExternalSymbolSymbol(Sym); 763 } 764 765 // Create an MCSymbol for the reference. 766 const MCExpr *Expr = 767 MCSymbolRefExpr::Create(MCSym, getModifierVariantKind(ACPV->getModifier()), 768 OutContext); 769 770 if (ACPV->getPCAdjustment()) { 771 MCSymbol *PCLabel = getPICLabel(DL->getPrivateGlobalPrefix(), 772 getFunctionNumber(), 773 ACPV->getLabelId(), 774 OutContext); 775 const MCExpr *PCRelExpr = MCSymbolRefExpr::Create(PCLabel, OutContext); 776 PCRelExpr = 777 MCBinaryExpr::CreateAdd(PCRelExpr, 778 MCConstantExpr::Create(ACPV->getPCAdjustment(), 779 OutContext), 780 OutContext); 781 if (ACPV->mustAddCurrentAddress()) { 782 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 783 // label, so just emit a local label end reference that instead. 784 MCSymbol *DotSym = OutContext.CreateTempSymbol(); 785 OutStreamer.EmitLabel(DotSym); 786 const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext); 787 PCRelExpr = MCBinaryExpr::CreateSub(PCRelExpr, DotExpr, OutContext); 788 } 789 Expr = MCBinaryExpr::CreateSub(Expr, PCRelExpr, OutContext); 790 } 791 OutStreamer.EmitValue(Expr, Size); 792 } 793 794 void ARMAsmPrinter::EmitJumpTable(const MachineInstr *MI) { 795 unsigned Opcode = MI->getOpcode(); 796 int OpNum = 1; 797 if (Opcode == ARM::BR_JTadd) 798 OpNum = 2; 799 else if (Opcode == ARM::BR_JTm) 800 OpNum = 3; 801 802 const MachineOperand &MO1 = MI->getOperand(OpNum); 803 const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id 804 unsigned JTI = MO1.getIndex(); 805 806 // Emit a label for the jump table. 807 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); 808 OutStreamer.EmitLabel(JTISymbol); 809 810 // Mark the jump table as data-in-code. 811 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 812 813 // Emit each entry of the table. 814 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 815 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 816 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 817 818 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 819 MachineBasicBlock *MBB = JTBBs[i]; 820 // Construct an MCExpr for the entry. We want a value of the form: 821 // (BasicBlockAddr - TableBeginAddr) 822 // 823 // For example, a table with entries jumping to basic blocks BB0 and BB1 824 // would look like: 825 // LJTI_0_0: 826 // .word (LBB0 - LJTI_0_0) 827 // .word (LBB1 - LJTI_0_0) 828 const MCExpr *Expr = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 829 830 if (TM.getRelocationModel() == Reloc::PIC_) 831 Expr = MCBinaryExpr::CreateSub(Expr, MCSymbolRefExpr::Create(JTISymbol, 832 OutContext), 833 OutContext); 834 // If we're generating a table of Thumb addresses in static relocation 835 // model, we need to add one to keep interworking correctly. 836 else if (AFI->isThumbFunction()) 837 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(1,OutContext), 838 OutContext); 839 OutStreamer.EmitValue(Expr, 4); 840 } 841 // Mark the end of jump table data-in-code region. 842 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 843 } 844 845 void ARMAsmPrinter::EmitJump2Table(const MachineInstr *MI) { 846 unsigned Opcode = MI->getOpcode(); 847 int OpNum = (Opcode == ARM::t2BR_JT) ? 2 : 1; 848 const MachineOperand &MO1 = MI->getOperand(OpNum); 849 const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id 850 unsigned JTI = MO1.getIndex(); 851 852 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel2(JTI, MO2.getImm()); 853 OutStreamer.EmitLabel(JTISymbol); 854 855 // Emit each entry of the table. 856 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 857 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 858 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 859 unsigned OffsetWidth = 4; 860 if (MI->getOpcode() == ARM::t2TBB_JT) { 861 OffsetWidth = 1; 862 // Mark the jump table as data-in-code. 863 OutStreamer.EmitDataRegion(MCDR_DataRegionJT8); 864 } else if (MI->getOpcode() == ARM::t2TBH_JT) { 865 OffsetWidth = 2; 866 // Mark the jump table as data-in-code. 867 OutStreamer.EmitDataRegion(MCDR_DataRegionJT16); 868 } 869 870 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 871 MachineBasicBlock *MBB = JTBBs[i]; 872 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::Create(MBB->getSymbol(), 873 OutContext); 874 // If this isn't a TBB or TBH, the entries are direct branch instructions. 875 if (OffsetWidth == 4) { 876 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2B) 877 .addExpr(MBBSymbolExpr) 878 .addImm(ARMCC::AL) 879 .addReg(0)); 880 continue; 881 } 882 // Otherwise it's an offset from the dispatch instruction. Construct an 883 // MCExpr for the entry. We want a value of the form: 884 // (BasicBlockAddr - TableBeginAddr) / 2 885 // 886 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 887 // would look like: 888 // LJTI_0_0: 889 // .byte (LBB0 - LJTI_0_0) / 2 890 // .byte (LBB1 - LJTI_0_0) / 2 891 const MCExpr *Expr = 892 MCBinaryExpr::CreateSub(MBBSymbolExpr, 893 MCSymbolRefExpr::Create(JTISymbol, OutContext), 894 OutContext); 895 Expr = MCBinaryExpr::CreateDiv(Expr, MCConstantExpr::Create(2, OutContext), 896 OutContext); 897 OutStreamer.EmitValue(Expr, OffsetWidth); 898 } 899 // Mark the end of jump table data-in-code region. 32-bit offsets use 900 // actual branch instructions here, so we don't mark those as a data-region 901 // at all. 902 if (OffsetWidth != 4) 903 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 904 } 905 906 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 907 assert(MI->getFlag(MachineInstr::FrameSetup) && 908 "Only instruction which are involved into frame setup code are allowed"); 909 910 MCTargetStreamer &TS = *OutStreamer.getTargetStreamer(); 911 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 912 const MachineFunction &MF = *MI->getParent()->getParent(); 913 const TargetRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); 914 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 915 916 unsigned FramePtr = RegInfo->getFrameRegister(MF); 917 unsigned Opc = MI->getOpcode(); 918 unsigned SrcReg, DstReg; 919 920 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 921 // Two special cases: 922 // 1) tPUSH does not have src/dst regs. 923 // 2) for Thumb1 code we sometimes materialize the constant via constpool 924 // load. Yes, this is pretty fragile, but for now I don't see better 925 // way... :( 926 SrcReg = DstReg = ARM::SP; 927 } else { 928 SrcReg = MI->getOperand(1).getReg(); 929 DstReg = MI->getOperand(0).getReg(); 930 } 931 932 // Try to figure out the unwinding opcode out of src / dst regs. 933 if (MI->mayStore()) { 934 // Register saves. 935 assert(DstReg == ARM::SP && 936 "Only stack pointer as a destination reg is supported"); 937 938 SmallVector<unsigned, 4> RegList; 939 // Skip src & dst reg, and pred ops. 940 unsigned StartOp = 2 + 2; 941 // Use all the operands. 942 unsigned NumOffset = 0; 943 944 switch (Opc) { 945 default: 946 MI->dump(); 947 llvm_unreachable("Unsupported opcode for unwinding information"); 948 case ARM::tPUSH: 949 // Special case here: no src & dst reg, but two extra imp ops. 950 StartOp = 2; NumOffset = 2; 951 case ARM::STMDB_UPD: 952 case ARM::t2STMDB_UPD: 953 case ARM::VSTMDDB_UPD: 954 assert(SrcReg == ARM::SP && 955 "Only stack pointer as a source reg is supported"); 956 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 957 i != NumOps; ++i) { 958 const MachineOperand &MO = MI->getOperand(i); 959 // Actually, there should never be any impdef stuff here. Skip it 960 // temporary to workaround PR11902. 961 if (MO.isImplicit()) 962 continue; 963 RegList.push_back(MO.getReg()); 964 } 965 break; 966 case ARM::STR_PRE_IMM: 967 case ARM::STR_PRE_REG: 968 case ARM::t2STR_PRE: 969 assert(MI->getOperand(2).getReg() == ARM::SP && 970 "Only stack pointer as a source reg is supported"); 971 RegList.push_back(SrcReg); 972 break; 973 } 974 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 975 } else { 976 // Changes of stack / frame pointer. 977 if (SrcReg == ARM::SP) { 978 int64_t Offset = 0; 979 switch (Opc) { 980 default: 981 MI->dump(); 982 llvm_unreachable("Unsupported opcode for unwinding information"); 983 case ARM::MOVr: 984 case ARM::tMOVr: 985 Offset = 0; 986 break; 987 case ARM::ADDri: 988 Offset = -MI->getOperand(2).getImm(); 989 break; 990 case ARM::SUBri: 991 case ARM::t2SUBri: 992 Offset = MI->getOperand(2).getImm(); 993 break; 994 case ARM::tSUBspi: 995 Offset = MI->getOperand(2).getImm()*4; 996 break; 997 case ARM::tADDspi: 998 case ARM::tADDrSPi: 999 Offset = -MI->getOperand(2).getImm()*4; 1000 break; 1001 case ARM::tLDRpci: { 1002 // Grab the constpool index and check, whether it corresponds to 1003 // original or cloned constpool entry. 1004 unsigned CPI = MI->getOperand(1).getIndex(); 1005 const MachineConstantPool *MCP = MF.getConstantPool(); 1006 if (CPI >= MCP->getConstants().size()) 1007 CPI = AFI.getOriginalCPIdx(CPI); 1008 assert(CPI != -1U && "Invalid constpool index"); 1009 1010 // Derive the actual offset. 1011 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1012 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1013 // FIXME: Check for user, it should be "add" instruction! 1014 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1015 break; 1016 } 1017 } 1018 1019 if (DstReg == FramePtr && FramePtr != ARM::SP) 1020 // Set-up of the frame pointer. Positive values correspond to "add" 1021 // instruction. 1022 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1023 else if (DstReg == ARM::SP) { 1024 // Change of SP by an offset. Positive values correspond to "sub" 1025 // instruction. 1026 ATS.emitPad(Offset); 1027 } else { 1028 // Move of SP to a register. Positive values correspond to an "add" 1029 // instruction. 1030 ATS.emitMovSP(DstReg, -Offset); 1031 } 1032 } else if (DstReg == ARM::SP) { 1033 MI->dump(); 1034 llvm_unreachable("Unsupported opcode for unwinding information"); 1035 } 1036 else { 1037 MI->dump(); 1038 llvm_unreachable("Unsupported opcode for unwinding information"); 1039 } 1040 } 1041 } 1042 1043 // Simple pseudo-instructions have their lowering (with expansion to real 1044 // instructions) auto-generated. 1045 #include "ARMGenMCPseudoLowering.inc" 1046 1047 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1048 const DataLayout *DL = TM.getDataLayout(); 1049 1050 // If we just ended a constant pool, mark it as such. 1051 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1052 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1053 InConstantPool = false; 1054 } 1055 1056 // Emit unwinding stuff for frame-related instructions 1057 if (Subtarget->isTargetEHABICompatible() && 1058 MI->getFlag(MachineInstr::FrameSetup)) 1059 EmitUnwindingInstruction(MI); 1060 1061 // Do any auto-generated pseudo lowerings. 1062 if (emitPseudoExpansionLowering(OutStreamer, MI)) 1063 return; 1064 1065 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1066 "Pseudo flag setting opcode should be expanded early"); 1067 1068 // Check for manual lowerings. 1069 unsigned Opc = MI->getOpcode(); 1070 switch (Opc) { 1071 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1072 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1073 case ARM::LEApcrel: 1074 case ARM::tLEApcrel: 1075 case ARM::t2LEApcrel: { 1076 // FIXME: Need to also handle globals and externals 1077 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1078 EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() == 1079 ARM::t2LEApcrel ? ARM::t2ADR 1080 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1081 : ARM::ADR)) 1082 .addReg(MI->getOperand(0).getReg()) 1083 .addExpr(MCSymbolRefExpr::Create(CPISymbol, OutContext)) 1084 // Add predicate operands. 1085 .addImm(MI->getOperand(2).getImm()) 1086 .addReg(MI->getOperand(3).getReg())); 1087 return; 1088 } 1089 case ARM::LEApcrelJT: 1090 case ARM::tLEApcrelJT: 1091 case ARM::t2LEApcrelJT: { 1092 MCSymbol *JTIPICSymbol = 1093 GetARMJTIPICJumpTableLabel2(MI->getOperand(1).getIndex(), 1094 MI->getOperand(2).getImm()); 1095 EmitToStreamer(OutStreamer, MCInstBuilder(MI->getOpcode() == 1096 ARM::t2LEApcrelJT ? ARM::t2ADR 1097 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1098 : ARM::ADR)) 1099 .addReg(MI->getOperand(0).getReg()) 1100 .addExpr(MCSymbolRefExpr::Create(JTIPICSymbol, OutContext)) 1101 // Add predicate operands. 1102 .addImm(MI->getOperand(3).getImm()) 1103 .addReg(MI->getOperand(4).getReg())); 1104 return; 1105 } 1106 // Darwin call instructions are just normal call instructions with different 1107 // clobber semantics (they clobber R9). 1108 case ARM::BX_CALL: { 1109 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) 1110 .addReg(ARM::LR) 1111 .addReg(ARM::PC) 1112 // Add predicate operands. 1113 .addImm(ARMCC::AL) 1114 .addReg(0) 1115 // Add 's' bit operand (always reg0 for this) 1116 .addReg(0)); 1117 1118 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX) 1119 .addReg(MI->getOperand(0).getReg())); 1120 return; 1121 } 1122 case ARM::tBX_CALL: { 1123 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) 1124 .addReg(ARM::LR) 1125 .addReg(ARM::PC) 1126 // Add predicate operands. 1127 .addImm(ARMCC::AL) 1128 .addReg(0)); 1129 1130 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX) 1131 .addReg(MI->getOperand(0).getReg()) 1132 // Add predicate operands. 1133 .addImm(ARMCC::AL) 1134 .addReg(0)); 1135 return; 1136 } 1137 case ARM::BMOVPCRX_CALL: { 1138 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) 1139 .addReg(ARM::LR) 1140 .addReg(ARM::PC) 1141 // Add predicate operands. 1142 .addImm(ARMCC::AL) 1143 .addReg(0) 1144 // Add 's' bit operand (always reg0 for this) 1145 .addReg(0)); 1146 1147 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) 1148 .addReg(ARM::PC) 1149 .addReg(MI->getOperand(0).getReg()) 1150 // Add predicate operands. 1151 .addImm(ARMCC::AL) 1152 .addReg(0) 1153 // Add 's' bit operand (always reg0 for this) 1154 .addReg(0)); 1155 return; 1156 } 1157 case ARM::BMOVPCB_CALL: { 1158 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVr) 1159 .addReg(ARM::LR) 1160 .addReg(ARM::PC) 1161 // Add predicate operands. 1162 .addImm(ARMCC::AL) 1163 .addReg(0) 1164 // Add 's' bit operand (always reg0 for this) 1165 .addReg(0)); 1166 1167 const GlobalValue *GV = MI->getOperand(0).getGlobal(); 1168 MCSymbol *GVSym = getSymbol(GV); 1169 const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); 1170 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::Bcc) 1171 .addExpr(GVSymExpr) 1172 // Add predicate operands. 1173 .addImm(ARMCC::AL) 1174 .addReg(0)); 1175 return; 1176 } 1177 case ARM::MOVi16_ga_pcrel: 1178 case ARM::t2MOVi16_ga_pcrel: { 1179 MCInst TmpInst; 1180 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1181 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); 1182 1183 unsigned TF = MI->getOperand(1).getTargetFlags(); 1184 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1185 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1186 const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); 1187 1188 MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(), 1189 getFunctionNumber(), 1190 MI->getOperand(2).getImm(), OutContext); 1191 const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext); 1192 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1193 const MCExpr *PCRelExpr = 1194 ARMMCExpr::CreateLower16(MCBinaryExpr::CreateSub(GVSymExpr, 1195 MCBinaryExpr::CreateAdd(LabelSymExpr, 1196 MCConstantExpr::Create(PCAdj, OutContext), 1197 OutContext), OutContext), OutContext); 1198 TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr)); 1199 1200 // Add predicate operands. 1201 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); 1202 TmpInst.addOperand(MCOperand::CreateReg(0)); 1203 // Add 's' bit operand (always reg0 for this) 1204 TmpInst.addOperand(MCOperand::CreateReg(0)); 1205 EmitToStreamer(OutStreamer, TmpInst); 1206 return; 1207 } 1208 case ARM::MOVTi16_ga_pcrel: 1209 case ARM::t2MOVTi16_ga_pcrel: { 1210 MCInst TmpInst; 1211 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1212 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1213 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); 1214 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); 1215 1216 unsigned TF = MI->getOperand(2).getTargetFlags(); 1217 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1218 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1219 const MCExpr *GVSymExpr = MCSymbolRefExpr::Create(GVSym, OutContext); 1220 1221 MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(), 1222 getFunctionNumber(), 1223 MI->getOperand(3).getImm(), OutContext); 1224 const MCExpr *LabelSymExpr= MCSymbolRefExpr::Create(LabelSym, OutContext); 1225 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1226 const MCExpr *PCRelExpr = 1227 ARMMCExpr::CreateUpper16(MCBinaryExpr::CreateSub(GVSymExpr, 1228 MCBinaryExpr::CreateAdd(LabelSymExpr, 1229 MCConstantExpr::Create(PCAdj, OutContext), 1230 OutContext), OutContext), OutContext); 1231 TmpInst.addOperand(MCOperand::CreateExpr(PCRelExpr)); 1232 // Add predicate operands. 1233 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); 1234 TmpInst.addOperand(MCOperand::CreateReg(0)); 1235 // Add 's' bit operand (always reg0 for this) 1236 TmpInst.addOperand(MCOperand::CreateReg(0)); 1237 EmitToStreamer(OutStreamer, TmpInst); 1238 return; 1239 } 1240 case ARM::tPICADD: { 1241 // This is a pseudo op for a label + instruction sequence, which looks like: 1242 // LPC0: 1243 // add r0, pc 1244 // This adds the address of LPC0 to r0. 1245 1246 // Emit the label. 1247 OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), 1248 getFunctionNumber(), MI->getOperand(2).getImm(), 1249 OutContext)); 1250 1251 // Form and emit the add. 1252 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDhirr) 1253 .addReg(MI->getOperand(0).getReg()) 1254 .addReg(MI->getOperand(0).getReg()) 1255 .addReg(ARM::PC) 1256 // Add predicate operands. 1257 .addImm(ARMCC::AL) 1258 .addReg(0)); 1259 return; 1260 } 1261 case ARM::PICADD: { 1262 // This is a pseudo op for a label + instruction sequence, which looks like: 1263 // LPC0: 1264 // add r0, pc, r0 1265 // This adds the address of LPC0 to r0. 1266 1267 // Emit the label. 1268 OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), 1269 getFunctionNumber(), MI->getOperand(2).getImm(), 1270 OutContext)); 1271 1272 // Form and emit the add. 1273 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr) 1274 .addReg(MI->getOperand(0).getReg()) 1275 .addReg(ARM::PC) 1276 .addReg(MI->getOperand(1).getReg()) 1277 // Add predicate operands. 1278 .addImm(MI->getOperand(3).getImm()) 1279 .addReg(MI->getOperand(4).getReg()) 1280 // Add 's' bit operand (always reg0 for this) 1281 .addReg(0)); 1282 return; 1283 } 1284 case ARM::PICSTR: 1285 case ARM::PICSTRB: 1286 case ARM::PICSTRH: 1287 case ARM::PICLDR: 1288 case ARM::PICLDRB: 1289 case ARM::PICLDRH: 1290 case ARM::PICLDRSB: 1291 case ARM::PICLDRSH: { 1292 // This is a pseudo op for a label + instruction sequence, which looks like: 1293 // LPC0: 1294 // OP r0, [pc, r0] 1295 // The LCP0 label is referenced by a constant pool entry in order to get 1296 // a PC-relative address at the ldr instruction. 1297 1298 // Emit the label. 1299 OutStreamer.EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), 1300 getFunctionNumber(), MI->getOperand(2).getImm(), 1301 OutContext)); 1302 1303 // Form and emit the load 1304 unsigned Opcode; 1305 switch (MI->getOpcode()) { 1306 default: 1307 llvm_unreachable("Unexpected opcode!"); 1308 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1309 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1310 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1311 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1312 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1313 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1314 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1315 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1316 } 1317 EmitToStreamer(OutStreamer, MCInstBuilder(Opcode) 1318 .addReg(MI->getOperand(0).getReg()) 1319 .addReg(ARM::PC) 1320 .addReg(MI->getOperand(1).getReg()) 1321 .addImm(0) 1322 // Add predicate operands. 1323 .addImm(MI->getOperand(3).getImm()) 1324 .addReg(MI->getOperand(4).getReg())); 1325 1326 return; 1327 } 1328 case ARM::CONSTPOOL_ENTRY: { 1329 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1330 /// in the function. The first operand is the ID# for this instruction, the 1331 /// second is the index into the MachineConstantPool that this is, the third 1332 /// is the size in bytes of this constant pool entry. 1333 /// The required alignment is specified on the basic block holding this MI. 1334 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1335 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1336 1337 // If this is the first entry of the pool, mark it. 1338 if (!InConstantPool) { 1339 OutStreamer.EmitDataRegion(MCDR_DataRegion); 1340 InConstantPool = true; 1341 } 1342 1343 OutStreamer.EmitLabel(GetCPISymbol(LabelId)); 1344 1345 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1346 if (MCPE.isMachineConstantPoolEntry()) 1347 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1348 else 1349 EmitGlobalConstant(MCPE.Val.ConstVal); 1350 return; 1351 } 1352 case ARM::t2BR_JT: { 1353 // Lower and emit the instruction itself, then the jump table following it. 1354 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) 1355 .addReg(ARM::PC) 1356 .addReg(MI->getOperand(0).getReg()) 1357 // Add predicate operands. 1358 .addImm(ARMCC::AL) 1359 .addReg(0)); 1360 1361 // Output the data for the jump table itself 1362 EmitJump2Table(MI); 1363 return; 1364 } 1365 case ARM::t2TBB_JT: { 1366 // Lower and emit the instruction itself, then the jump table following it. 1367 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBB) 1368 .addReg(ARM::PC) 1369 .addReg(MI->getOperand(0).getReg()) 1370 // Add predicate operands. 1371 .addImm(ARMCC::AL) 1372 .addReg(0)); 1373 1374 // Output the data for the jump table itself 1375 EmitJump2Table(MI); 1376 // Make sure the next instruction is 2-byte aligned. 1377 EmitAlignment(1); 1378 return; 1379 } 1380 case ARM::t2TBH_JT: { 1381 // Lower and emit the instruction itself, then the jump table following it. 1382 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::t2TBH) 1383 .addReg(ARM::PC) 1384 .addReg(MI->getOperand(0).getReg()) 1385 // Add predicate operands. 1386 .addImm(ARMCC::AL) 1387 .addReg(0)); 1388 1389 // Output the data for the jump table itself 1390 EmitJump2Table(MI); 1391 return; 1392 } 1393 case ARM::tBR_JTr: 1394 case ARM::BR_JTr: { 1395 // Lower and emit the instruction itself, then the jump table following it. 1396 // mov pc, target 1397 MCInst TmpInst; 1398 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1399 ARM::MOVr : ARM::tMOVr; 1400 TmpInst.setOpcode(Opc); 1401 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); 1402 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); 1403 // Add predicate operands. 1404 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); 1405 TmpInst.addOperand(MCOperand::CreateReg(0)); 1406 // Add 's' bit operand (always reg0 for this) 1407 if (Opc == ARM::MOVr) 1408 TmpInst.addOperand(MCOperand::CreateReg(0)); 1409 EmitToStreamer(OutStreamer, TmpInst); 1410 1411 // Make sure the Thumb jump table is 4-byte aligned. 1412 if (Opc == ARM::tMOVr) 1413 EmitAlignment(2); 1414 1415 // Output the data for the jump table itself 1416 EmitJumpTable(MI); 1417 return; 1418 } 1419 case ARM::BR_JTm: { 1420 // Lower and emit the instruction itself, then the jump table following it. 1421 // ldr pc, target 1422 MCInst TmpInst; 1423 if (MI->getOperand(1).getReg() == 0) { 1424 // literal offset 1425 TmpInst.setOpcode(ARM::LDRi12); 1426 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); 1427 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); 1428 TmpInst.addOperand(MCOperand::CreateImm(MI->getOperand(2).getImm())); 1429 } else { 1430 TmpInst.setOpcode(ARM::LDRrs); 1431 TmpInst.addOperand(MCOperand::CreateReg(ARM::PC)); 1432 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg())); 1433 TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg())); 1434 TmpInst.addOperand(MCOperand::CreateImm(0)); 1435 } 1436 // Add predicate operands. 1437 TmpInst.addOperand(MCOperand::CreateImm(ARMCC::AL)); 1438 TmpInst.addOperand(MCOperand::CreateReg(0)); 1439 EmitToStreamer(OutStreamer, TmpInst); 1440 1441 // Output the data for the jump table itself 1442 EmitJumpTable(MI); 1443 return; 1444 } 1445 case ARM::BR_JTadd: { 1446 // Lower and emit the instruction itself, then the jump table following it. 1447 // add pc, target, idx 1448 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDrr) 1449 .addReg(ARM::PC) 1450 .addReg(MI->getOperand(0).getReg()) 1451 .addReg(MI->getOperand(1).getReg()) 1452 // Add predicate operands. 1453 .addImm(ARMCC::AL) 1454 .addReg(0) 1455 // Add 's' bit operand (always reg0 for this) 1456 .addReg(0)); 1457 1458 // Output the data for the jump table itself 1459 EmitJumpTable(MI); 1460 return; 1461 } 1462 case ARM::TRAP: { 1463 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1464 // FIXME: Remove this special case when they do. 1465 if (!Subtarget->isTargetMachO()) { 1466 //.long 0xe7ffdefe @ trap 1467 uint32_t Val = 0xe7ffdefeUL; 1468 OutStreamer.AddComment("trap"); 1469 OutStreamer.EmitIntValue(Val, 4); 1470 return; 1471 } 1472 break; 1473 } 1474 case ARM::TRAPNaCl: { 1475 //.long 0xe7fedef0 @ trap 1476 uint32_t Val = 0xe7fedef0UL; 1477 OutStreamer.AddComment("trap"); 1478 OutStreamer.EmitIntValue(Val, 4); 1479 return; 1480 } 1481 case ARM::tTRAP: { 1482 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1483 // FIXME: Remove this special case when they do. 1484 if (!Subtarget->isTargetMachO()) { 1485 //.short 57086 @ trap 1486 uint16_t Val = 0xdefe; 1487 OutStreamer.AddComment("trap"); 1488 OutStreamer.EmitIntValue(Val, 2); 1489 return; 1490 } 1491 break; 1492 } 1493 case ARM::t2Int_eh_sjlj_setjmp: 1494 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1495 case ARM::tInt_eh_sjlj_setjmp: { 1496 // Two incoming args: GPR:$src, GPR:$val 1497 // mov $val, pc 1498 // adds $val, #7 1499 // str $val, [$src, #4] 1500 // movs r0, #0 1501 // b 1f 1502 // movs r0, #1 1503 // 1: 1504 unsigned SrcReg = MI->getOperand(0).getReg(); 1505 unsigned ValReg = MI->getOperand(1).getReg(); 1506 MCSymbol *Label = GetARMSJLJEHLabel(); 1507 OutStreamer.AddComment("eh_setjmp begin"); 1508 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) 1509 .addReg(ValReg) 1510 .addReg(ARM::PC) 1511 // Predicate. 1512 .addImm(ARMCC::AL) 1513 .addReg(0)); 1514 1515 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tADDi3) 1516 .addReg(ValReg) 1517 // 's' bit operand 1518 .addReg(ARM::CPSR) 1519 .addReg(ValReg) 1520 .addImm(7) 1521 // Predicate. 1522 .addImm(ARMCC::AL) 1523 .addReg(0)); 1524 1525 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tSTRi) 1526 .addReg(ValReg) 1527 .addReg(SrcReg) 1528 // The offset immediate is #4. The operand value is scaled by 4 for the 1529 // tSTR instruction. 1530 .addImm(1) 1531 // Predicate. 1532 .addImm(ARMCC::AL) 1533 .addReg(0)); 1534 1535 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8) 1536 .addReg(ARM::R0) 1537 .addReg(ARM::CPSR) 1538 .addImm(0) 1539 // Predicate. 1540 .addImm(ARMCC::AL) 1541 .addReg(0)); 1542 1543 const MCExpr *SymbolExpr = MCSymbolRefExpr::Create(Label, OutContext); 1544 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tB) 1545 .addExpr(SymbolExpr) 1546 .addImm(ARMCC::AL) 1547 .addReg(0)); 1548 1549 OutStreamer.AddComment("eh_setjmp end"); 1550 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVi8) 1551 .addReg(ARM::R0) 1552 .addReg(ARM::CPSR) 1553 .addImm(1) 1554 // Predicate. 1555 .addImm(ARMCC::AL) 1556 .addReg(0)); 1557 1558 OutStreamer.EmitLabel(Label); 1559 return; 1560 } 1561 1562 case ARM::Int_eh_sjlj_setjmp_nofp: 1563 case ARM::Int_eh_sjlj_setjmp: { 1564 // Two incoming args: GPR:$src, GPR:$val 1565 // add $val, pc, #8 1566 // str $val, [$src, #+4] 1567 // mov r0, #0 1568 // add pc, pc, #0 1569 // mov r0, #1 1570 unsigned SrcReg = MI->getOperand(0).getReg(); 1571 unsigned ValReg = MI->getOperand(1).getReg(); 1572 1573 OutStreamer.AddComment("eh_setjmp begin"); 1574 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri) 1575 .addReg(ValReg) 1576 .addReg(ARM::PC) 1577 .addImm(8) 1578 // Predicate. 1579 .addImm(ARMCC::AL) 1580 .addReg(0) 1581 // 's' bit operand (always reg0 for this). 1582 .addReg(0)); 1583 1584 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::STRi12) 1585 .addReg(ValReg) 1586 .addReg(SrcReg) 1587 .addImm(4) 1588 // Predicate. 1589 .addImm(ARMCC::AL) 1590 .addReg(0)); 1591 1592 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi) 1593 .addReg(ARM::R0) 1594 .addImm(0) 1595 // Predicate. 1596 .addImm(ARMCC::AL) 1597 .addReg(0) 1598 // 's' bit operand (always reg0 for this). 1599 .addReg(0)); 1600 1601 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::ADDri) 1602 .addReg(ARM::PC) 1603 .addReg(ARM::PC) 1604 .addImm(0) 1605 // Predicate. 1606 .addImm(ARMCC::AL) 1607 .addReg(0) 1608 // 's' bit operand (always reg0 for this). 1609 .addReg(0)); 1610 1611 OutStreamer.AddComment("eh_setjmp end"); 1612 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::MOVi) 1613 .addReg(ARM::R0) 1614 .addImm(1) 1615 // Predicate. 1616 .addImm(ARMCC::AL) 1617 .addReg(0) 1618 // 's' bit operand (always reg0 for this). 1619 .addReg(0)); 1620 return; 1621 } 1622 case ARM::Int_eh_sjlj_longjmp: { 1623 // ldr sp, [$src, #8] 1624 // ldr $scratch, [$src, #4] 1625 // ldr r7, [$src] 1626 // bx $scratch 1627 unsigned SrcReg = MI->getOperand(0).getReg(); 1628 unsigned ScratchReg = MI->getOperand(1).getReg(); 1629 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) 1630 .addReg(ARM::SP) 1631 .addReg(SrcReg) 1632 .addImm(8) 1633 // Predicate. 1634 .addImm(ARMCC::AL) 1635 .addReg(0)); 1636 1637 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) 1638 .addReg(ScratchReg) 1639 .addReg(SrcReg) 1640 .addImm(4) 1641 // Predicate. 1642 .addImm(ARMCC::AL) 1643 .addReg(0)); 1644 1645 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::LDRi12) 1646 .addReg(ARM::R7) 1647 .addReg(SrcReg) 1648 .addImm(0) 1649 // Predicate. 1650 .addImm(ARMCC::AL) 1651 .addReg(0)); 1652 1653 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::BX) 1654 .addReg(ScratchReg) 1655 // Predicate. 1656 .addImm(ARMCC::AL) 1657 .addReg(0)); 1658 return; 1659 } 1660 case ARM::tInt_eh_sjlj_longjmp: { 1661 // ldr $scratch, [$src, #8] 1662 // mov sp, $scratch 1663 // ldr $scratch, [$src, #4] 1664 // ldr r7, [$src] 1665 // bx $scratch 1666 unsigned SrcReg = MI->getOperand(0).getReg(); 1667 unsigned ScratchReg = MI->getOperand(1).getReg(); 1668 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) 1669 .addReg(ScratchReg) 1670 .addReg(SrcReg) 1671 // The offset immediate is #8. The operand value is scaled by 4 for the 1672 // tLDR instruction. 1673 .addImm(2) 1674 // Predicate. 1675 .addImm(ARMCC::AL) 1676 .addReg(0)); 1677 1678 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tMOVr) 1679 .addReg(ARM::SP) 1680 .addReg(ScratchReg) 1681 // Predicate. 1682 .addImm(ARMCC::AL) 1683 .addReg(0)); 1684 1685 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) 1686 .addReg(ScratchReg) 1687 .addReg(SrcReg) 1688 .addImm(1) 1689 // Predicate. 1690 .addImm(ARMCC::AL) 1691 .addReg(0)); 1692 1693 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tLDRi) 1694 .addReg(ARM::R7) 1695 .addReg(SrcReg) 1696 .addImm(0) 1697 // Predicate. 1698 .addImm(ARMCC::AL) 1699 .addReg(0)); 1700 1701 EmitToStreamer(OutStreamer, MCInstBuilder(ARM::tBX) 1702 .addReg(ScratchReg) 1703 // Predicate. 1704 .addImm(ARMCC::AL) 1705 .addReg(0)); 1706 return; 1707 } 1708 } 1709 1710 MCInst TmpInst; 1711 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 1712 1713 EmitToStreamer(OutStreamer, TmpInst); 1714 } 1715 1716 //===----------------------------------------------------------------------===// 1717 // Target Registry Stuff 1718 //===----------------------------------------------------------------------===// 1719 1720 // Force static initialization. 1721 extern "C" void LLVMInitializeARMAsmPrinter() { 1722 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget); 1723 RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget); 1724 } 1725