1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 58 InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::EmitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::EmitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 72 OutStreamer->EmitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 75 } 76 OutStreamer->EmitLabel(CurrentFnSym); 77 } 78 79 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 81 assert(Size && "C++ constructor pointer had zero size!"); 82 83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 84 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 85 86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 87 ARMII::MO_NO_FLAG), 88 (Subtarget->isTargetELF() 89 ? MCSymbolRefExpr::VK_ARM_TARGET1 90 : MCSymbolRefExpr::VK_None), 91 OutContext); 92 93 OutStreamer->EmitValue(E, Size); 94 } 95 96 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 97 if (PromotedGlobals.count(GV)) 98 // The global was promoted into a constant pool. It should not be emitted. 99 return; 100 AsmPrinter::EmitGlobalVariable(GV); 101 } 102 103 /// runOnMachineFunction - This uses the EmitInstruction() 104 /// method to print assembly for each instruction. 105 /// 106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 107 AFI = MF.getInfo<ARMFunctionInfo>(); 108 MCP = MF.getConstantPool(); 109 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 110 111 SetupMachineFunction(MF); 112 const Function &F = MF.getFunction(); 113 const TargetMachine& TM = MF.getTarget(); 114 115 // Collect all globals that had their storage promoted to a constant pool. 116 // Functions are emitted before variables, so this accumulates promoted 117 // globals from all functions in PromotedGlobals. 118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 119 PromotedGlobals.insert(GV); 120 121 // Calculate this function's optimization goal. 122 unsigned OptimizationGoal; 123 if (F.hasOptNone()) 124 // For best debugging illusion, speed and small size sacrificed 125 OptimizationGoal = 6; 126 else if (F.hasMinSize()) 127 // Aggressively for small size, speed and debug illusion sacrificed 128 OptimizationGoal = 4; 129 else if (F.hasOptSize()) 130 // For small size, but speed and debugging illusion preserved 131 OptimizationGoal = 3; 132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 133 // Aggressively for speed, small size and debug illusion sacrificed 134 OptimizationGoal = 2; 135 else if (TM.getOptLevel() > CodeGenOpt::None) 136 // For speed, but small size and good debug illusion preserved 137 OptimizationGoal = 1; 138 else // TM.getOptLevel() == CodeGenOpt::None 139 // For good debugging, but speed and small size preserved 140 OptimizationGoal = 5; 141 142 // Combine a new optimization goal with existing ones. 143 if (OptimizationGoals == -1) // uninitialized goals 144 OptimizationGoals = OptimizationGoal; 145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 146 OptimizationGoals = 0; 147 148 if (Subtarget->isTargetCOFF()) { 149 bool Internal = F.hasInternalLinkage(); 150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 151 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 153 154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 155 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 156 OutStreamer->EmitCOFFSymbolType(Type); 157 OutStreamer->EndCOFFSymbolDef(); 158 } 159 160 // Emit the rest of the function body. 161 EmitFunctionBody(); 162 163 // Emit the XRay table for this function. 164 emitXRayTable(); 165 166 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 167 // These are created per function, rather than per TU, since it's 168 // relatively easy to exceed the thumb branch range within a TU. 169 if (! ThumbIndirectPads.empty()) { 170 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 171 EmitAlignment(1); 172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 173 OutStreamer->EmitLabel(TIP.second); 174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 175 .addReg(TIP.first) 176 // Add predicate operands. 177 .addImm(ARMCC::AL) 178 .addReg(0)); 179 } 180 ThumbIndirectPads.clear(); 181 } 182 183 // We didn't modify anything. 184 return false; 185 } 186 187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 188 raw_ostream &O) { 189 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 190 unsigned TF = MO.getTargetFlags(); 191 if (TF & ARMII::MO_LO16) 192 O << ":lower16:"; 193 else if (TF & ARMII::MO_HI16) 194 O << ":upper16:"; 195 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 196 printOffset(MO.getOffset(), O); 197 } 198 199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 200 raw_ostream &O) { 201 const MachineOperand &MO = MI->getOperand(OpNum); 202 203 switch (MO.getType()) { 204 default: llvm_unreachable("<unknown operand type>"); 205 case MachineOperand::MO_Register: { 206 unsigned Reg = MO.getReg(); 207 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 208 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 209 if(ARM::GPRPairRegClass.contains(Reg)) { 210 const MachineFunction &MF = *MI->getParent()->getParent(); 211 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 212 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 213 } 214 O << ARMInstPrinter::getRegisterName(Reg); 215 break; 216 } 217 case MachineOperand::MO_Immediate: { 218 O << '#'; 219 unsigned TF = MO.getTargetFlags(); 220 if (TF == ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF == ARMII::MO_HI16) 223 O << ":upper16:"; 224 O << MO.getImm(); 225 break; 226 } 227 case MachineOperand::MO_MachineBasicBlock: 228 MO.getMBB()->getSymbol()->print(O, MAI); 229 return; 230 case MachineOperand::MO_GlobalAddress: { 231 PrintSymbolOperand(MO, O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 243 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 244 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 245 const DataLayout &DL = getDataLayout(); 246 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 247 "CPI" + Twine(getFunctionNumber()) + "_" + 248 Twine(CPID)); 249 } 250 251 //===--------------------------------------------------------------------===// 252 253 MCSymbol *ARMAsmPrinter:: 254 GetARMJTIPICJumpTableLabel(unsigned uid) const { 255 const DataLayout &DL = getDataLayout(); 256 SmallString<60> Name; 257 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 258 << getFunctionNumber() << '_' << uid; 259 return OutContext.getOrCreateSymbol(Name); 260 } 261 262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 263 const char *ExtraCode, raw_ostream &O) { 264 // Does this asm operand have a single letter operand modifier? 265 if (ExtraCode && ExtraCode[0]) { 266 if (ExtraCode[1] != 0) return true; // Unknown modifier. 267 268 switch (ExtraCode[0]) { 269 default: 270 // See if this is a generic print operand 271 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 272 case 'P': // Print a VFP double precision register. 273 case 'q': // Print a NEON quad precision register. 274 printOperand(MI, OpNum, O); 275 return false; 276 case 'y': // Print a VFP single precision register as indexed double. 277 if (MI->getOperand(OpNum).isReg()) { 278 unsigned Reg = MI->getOperand(OpNum).getReg(); 279 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 280 // Find the 'd' register that has this 's' register as a sub-register, 281 // and determine the lane number. 282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 283 if (!ARM::DPRRegClass.contains(*SR)) 284 continue; 285 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 286 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 287 return false; 288 } 289 } 290 return true; 291 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 292 if (!MI->getOperand(OpNum).isImm()) 293 return true; 294 O << ~(MI->getOperand(OpNum).getImm()); 295 return false; 296 case 'L': // The low 16 bits of an immediate constant. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << (MI->getOperand(OpNum).getImm() & 0xffff); 300 return false; 301 case 'M': { // A register range suitable for LDM/STM. 302 if (!MI->getOperand(OpNum).isReg()) 303 return true; 304 const MachineOperand &MO = MI->getOperand(OpNum); 305 unsigned RegBegin = MO.getReg(); 306 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 307 // already got the operands in registers that are operands to the 308 // inline asm statement. 309 O << "{"; 310 if (ARM::GPRPairRegClass.contains(RegBegin)) { 311 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 312 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 313 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 314 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 315 } 316 O << ARMInstPrinter::getRegisterName(RegBegin); 317 318 // FIXME: The register allocator not only may not have given us the 319 // registers in sequence, but may not be in ascending registers. This 320 // will require changes in the register allocator that'll need to be 321 // propagated down here if the operands change. 322 unsigned RegOps = OpNum + 1; 323 while (MI->getOperand(RegOps).isReg()) { 324 O << ", " 325 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 326 RegOps++; 327 } 328 329 O << "}"; 330 331 return false; 332 } 333 case 'R': // The most significant register of a pair. 334 case 'Q': { // The least significant register of a pair. 335 if (OpNum == 0) 336 return true; 337 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 338 if (!FlagsOP.isImm()) 339 return true; 340 unsigned Flags = FlagsOP.getImm(); 341 342 // This operand may not be the one that actually provides the register. If 343 // it's tied to a previous one then we should refer instead to that one 344 // for registers and their classes. 345 unsigned TiedIdx; 346 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 347 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 348 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 349 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 350 } 351 Flags = MI->getOperand(OpNum).getImm(); 352 353 // Later code expects OpNum to be pointing at the register rather than 354 // the flags. 355 OpNum += 1; 356 } 357 358 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 359 unsigned RC; 360 bool FirstHalf; 361 const ARMBaseTargetMachine &ATM = 362 static_cast<const ARMBaseTargetMachine &>(TM); 363 364 // 'Q' should correspond to the low order register and 'R' to the high 365 // order register. Whether this corresponds to the upper or lower half 366 // depends on the endianess mode. 367 if (ExtraCode[0] == 'Q') 368 FirstHalf = ATM.isLittleEndian(); 369 else 370 // ExtraCode[0] == 'R'. 371 FirstHalf = !ATM.isLittleEndian(); 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 374 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 375 if (NumVals != 1) 376 return true; 377 const MachineOperand &MO = MI->getOperand(OpNum); 378 if (!MO.isReg()) 379 return true; 380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 381 unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ? 382 ARM::gsub_0 : ARM::gsub_1); 383 O << ARMInstPrinter::getRegisterName(Reg); 384 return false; 385 } 386 if (NumVals != 2) 387 return true; 388 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 389 if (RegOp >= MI->getNumOperands()) 390 return true; 391 const MachineOperand &MO = MI->getOperand(RegOp); 392 if (!MO.isReg()) 393 return true; 394 unsigned Reg = MO.getReg(); 395 O << ARMInstPrinter::getRegisterName(Reg); 396 return false; 397 } 398 399 case 'e': // The low doubleword register of a NEON quad register. 400 case 'f': { // The high doubleword register of a NEON quad register. 401 if (!MI->getOperand(OpNum).isReg()) 402 return true; 403 unsigned Reg = MI->getOperand(OpNum).getReg(); 404 if (!ARM::QPRRegClass.contains(Reg)) 405 return true; 406 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 407 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 408 ARM::dsub_0 : ARM::dsub_1); 409 O << ARMInstPrinter::getRegisterName(SubReg); 410 return false; 411 } 412 413 // This modifier is not yet supported. 414 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 415 return true; 416 case 'H': { // The highest-numbered register of a pair. 417 const MachineOperand &MO = MI->getOperand(OpNum); 418 if (!MO.isReg()) 419 return true; 420 const MachineFunction &MF = *MI->getParent()->getParent(); 421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 422 unsigned Reg = MO.getReg(); 423 if(!ARM::GPRPairRegClass.contains(Reg)) 424 return false; 425 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 426 O << ARMInstPrinter::getRegisterName(Reg); 427 return false; 428 } 429 } 430 } 431 432 printOperand(MI, OpNum, O); 433 return false; 434 } 435 436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 437 unsigned OpNum, const char *ExtraCode, 438 raw_ostream &O) { 439 // Does this asm operand have a single letter operand modifier? 440 if (ExtraCode && ExtraCode[0]) { 441 if (ExtraCode[1] != 0) return true; // Unknown modifier. 442 443 switch (ExtraCode[0]) { 444 case 'A': // A memory operand for a VLD1/VST1 instruction. 445 default: return true; // Unknown modifier. 446 case 'm': // The base register of a memory operand. 447 if (!MI->getOperand(OpNum).isReg()) 448 return true; 449 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 450 return false; 451 } 452 } 453 454 const MachineOperand &MO = MI->getOperand(OpNum); 455 assert(MO.isReg() && "unexpected inline asm memory operand"); 456 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 457 return false; 458 } 459 460 static bool isThumb(const MCSubtargetInfo& STI) { 461 return STI.getFeatureBits()[ARM::ModeThumb]; 462 } 463 464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 465 const MCSubtargetInfo *EndInfo) const { 466 // If either end mode is unknown (EndInfo == NULL) or different than 467 // the start mode, then restore the start mode. 468 const bool WasThumb = isThumb(StartInfo); 469 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 470 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 471 } 472 } 473 474 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 475 const Triple &TT = TM.getTargetTriple(); 476 // Use unified assembler syntax. 477 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 478 479 // Emit ARM Build Attributes 480 if (TT.isOSBinFormatELF()) 481 emitAttributes(); 482 483 // Use the triple's architecture and subarchitecture to determine 484 // if we're thumb for the purposes of the top level code16 assembler 485 // flag. 486 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 487 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 488 } 489 490 static void 491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 492 MachineModuleInfoImpl::StubValueTy &MCSym) { 493 // L_foo$stub: 494 OutStreamer.EmitLabel(StubLabel); 495 // .indirect_symbol _foo 496 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 497 498 if (MCSym.getInt()) 499 // External to current translation unit. 500 OutStreamer.EmitIntValue(0, 4/*size*/); 501 else 502 // Internal to current translation unit. 503 // 504 // When we place the LSDA into the TEXT section, the type info 505 // pointers need to be indirect and pc-rel. We accomplish this by 506 // using NLPs; however, sometimes the types are local to the file. 507 // We need to fill in the value for the NLP in those cases. 508 OutStreamer.EmitValue( 509 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 510 4 /*size*/); 511 } 512 513 514 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 515 const Triple &TT = TM.getTargetTriple(); 516 if (TT.isOSBinFormatMachO()) { 517 // All darwin targets use mach-o. 518 const TargetLoweringObjectFileMachO &TLOFMacho = 519 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 520 MachineModuleInfoMachO &MMIMacho = 521 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 522 523 // Output non-lazy-pointers for external and common global variables. 524 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 525 526 if (!Stubs.empty()) { 527 // Switch with ".non_lazy_symbol_pointer" directive. 528 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 529 EmitAlignment(2); 530 531 for (auto &Stub : Stubs) 532 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 533 534 Stubs.clear(); 535 OutStreamer->AddBlankLine(); 536 } 537 538 Stubs = MMIMacho.GetThreadLocalGVStubList(); 539 if (!Stubs.empty()) { 540 // Switch with ".non_lazy_symbol_pointer" directive. 541 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 542 EmitAlignment(2); 543 544 for (auto &Stub : Stubs) 545 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 546 547 Stubs.clear(); 548 OutStreamer->AddBlankLine(); 549 } 550 551 // Funny Darwin hack: This flag tells the linker that no global symbols 552 // contain code that falls through to other global symbols (e.g. the obvious 553 // implementation of multiple entry points). If this doesn't occur, the 554 // linker can safely perform dead code stripping. Since LLVM never 555 // generates code that does this, it is always safe to set. 556 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 557 } 558 559 // The last attribute to be emitted is ABI_optimization_goals 560 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 561 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 562 563 if (OptimizationGoals > 0 && 564 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 565 Subtarget->isTargetMuslAEABI())) 566 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 567 OptimizationGoals = -1; 568 569 ATS.finishAttributeSection(); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 574 // FIXME: 575 // The following seem like one-off assembler flags, but they actually need 576 // to appear in the .ARM.attributes section in ELF. 577 // Instead of subclassing the MCELFStreamer, we do the work here. 578 579 // Returns true if all functions have the same function attribute value. 580 // It also returns true when the module has no functions. 581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 582 StringRef Value) { 583 return !any_of(M, [&](const Function &F) { 584 return F.getFnAttribute(Attr).getValueAsString() != Value; 585 }); 586 } 587 588 void ARMAsmPrinter::emitAttributes() { 589 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 590 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 591 592 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 593 594 ATS.switchVendor("aeabi"); 595 596 // Compute ARM ELF Attributes based on the default subtarget that 597 // we'd have constructed. The existing ARM behavior isn't LTO clean 598 // anyhow. 599 // FIXME: For ifunc related functions we could iterate over and look 600 // for a feature string that doesn't match the default one. 601 const Triple &TT = TM.getTargetTriple(); 602 StringRef CPU = TM.getTargetCPU(); 603 StringRef FS = TM.getTargetFeatureString(); 604 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 605 if (!FS.empty()) { 606 if (!ArchFS.empty()) 607 ArchFS = (Twine(ArchFS) + "," + FS).str(); 608 else 609 ArchFS = FS; 610 } 611 const ARMBaseTargetMachine &ATM = 612 static_cast<const ARMBaseTargetMachine &>(TM); 613 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 614 615 // Emit build attributes for the available hardware. 616 ATS.emitTargetAttributes(STI); 617 618 // RW data addressing. 619 if (isPositionIndependent()) { 620 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 621 ARMBuildAttrs::AddressRWPCRel); 622 } else if (STI.isRWPI()) { 623 // RWPI specific attributes. 624 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 625 ARMBuildAttrs::AddressRWSBRel); 626 } 627 628 // RO data addressing. 629 if (isPositionIndependent() || STI.isROPI()) { 630 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 631 ARMBuildAttrs::AddressROPCRel); 632 } 633 634 // GOT use. 635 if (isPositionIndependent()) { 636 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 637 ARMBuildAttrs::AddressGOT); 638 } else { 639 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 640 ARMBuildAttrs::AddressDirect); 641 } 642 643 // Set FP Denormals. 644 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 645 "denormal-fp-math", 646 "preserve-sign") || 647 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 648 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 649 ARMBuildAttrs::PreserveFPSign); 650 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 651 "denormal-fp-math", 652 "positive-zero") || 653 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 654 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 655 ARMBuildAttrs::PositiveZero); 656 else if (!TM.Options.UnsafeFPMath) 657 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 658 ARMBuildAttrs::IEEEDenormals); 659 else { 660 if (!STI.hasVFP2Base()) { 661 // When the target doesn't have an FPU (by design or 662 // intention), the assumptions made on the software support 663 // mirror that of the equivalent hardware support *if it 664 // existed*. For v7 and better we indicate that denormals are 665 // flushed preserving sign, and for V6 we indicate that 666 // denormals are flushed to positive zero. 667 if (STI.hasV7Ops()) 668 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 669 ARMBuildAttrs::PreserveFPSign); 670 } else if (STI.hasVFP3Base()) { 671 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 672 // the sign bit of the zero matches the sign bit of the input or 673 // result that is being flushed to zero. 674 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 675 ARMBuildAttrs::PreserveFPSign); 676 } 677 // For VFPv2 implementations it is implementation defined as 678 // to whether denormals are flushed to positive zero or to 679 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 680 // LLVM has chosen to flush this to positive zero (most likely for 681 // GCC compatibility), so that's the chosen value here (the 682 // absence of its emission implies zero). 683 } 684 685 // Set FP exceptions and rounding 686 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 687 "no-trapping-math", "true") || 688 TM.Options.NoTrappingFPMath) 689 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 690 ARMBuildAttrs::Not_Allowed); 691 else if (!TM.Options.UnsafeFPMath) { 692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 693 694 // If the user has permitted this code to choose the IEEE 754 695 // rounding at run-time, emit the rounding attribute. 696 if (TM.Options.HonorSignDependentRoundingFPMathOption) 697 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 698 } 699 700 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 701 // equivalent of GCC's -ffinite-math-only flag. 702 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 703 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 704 ARMBuildAttrs::Allowed); 705 else 706 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 707 ARMBuildAttrs::AllowIEEE754); 708 709 // FIXME: add more flags to ARMBuildAttributes.h 710 // 8-bytes alignment stuff. 711 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 712 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 713 714 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 715 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 716 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 717 718 // FIXME: To support emitting this build attribute as GCC does, the 719 // -mfp16-format option and associated plumbing must be 720 // supported. For now the __fp16 type is exposed by default, so this 721 // attribute should be emitted with value 1. 722 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 723 ARMBuildAttrs::FP16FormatIEEE); 724 725 if (MMI) { 726 if (const Module *SourceModule = MMI->getModule()) { 727 // ABI_PCS_wchar_t to indicate wchar_t width 728 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 729 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 730 SourceModule->getModuleFlag("wchar_size"))) { 731 int WCharWidth = WCharWidthValue->getZExtValue(); 732 assert((WCharWidth == 2 || WCharWidth == 4) && 733 "wchar_t width must be 2 or 4 bytes"); 734 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 735 } 736 737 // ABI_enum_size to indicate enum width 738 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 739 // (all enums contain a value needing 32 bits to encode). 740 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 741 SourceModule->getModuleFlag("min_enum_size"))) { 742 int EnumWidth = EnumWidthValue->getZExtValue(); 743 assert((EnumWidth == 1 || EnumWidth == 4) && 744 "Minimum enum width must be 1 or 4 bytes"); 745 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 746 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 747 } 748 } 749 } 750 751 // We currently do not support using R9 as the TLS pointer. 752 if (STI.isRWPI()) 753 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 754 ARMBuildAttrs::R9IsSB); 755 else if (STI.isR9Reserved()) 756 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 757 ARMBuildAttrs::R9Reserved); 758 else 759 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 760 ARMBuildAttrs::R9IsGPR); 761 } 762 763 //===----------------------------------------------------------------------===// 764 765 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 766 unsigned LabelId, MCContext &Ctx) { 767 768 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 769 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 770 return Label; 771 } 772 773 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 774 unsigned LabelId, MCContext &Ctx) { 775 776 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 777 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 778 return Label; 779 } 780 781 static MCSymbolRefExpr::VariantKind 782 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 783 switch (Modifier) { 784 case ARMCP::no_modifier: 785 return MCSymbolRefExpr::VK_None; 786 case ARMCP::TLSGD: 787 return MCSymbolRefExpr::VK_TLSGD; 788 case ARMCP::TPOFF: 789 return MCSymbolRefExpr::VK_TPOFF; 790 case ARMCP::GOTTPOFF: 791 return MCSymbolRefExpr::VK_GOTTPOFF; 792 case ARMCP::SBREL: 793 return MCSymbolRefExpr::VK_ARM_SBREL; 794 case ARMCP::GOT_PREL: 795 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 796 case ARMCP::SECREL: 797 return MCSymbolRefExpr::VK_SECREL; 798 } 799 llvm_unreachable("Invalid ARMCPModifier!"); 800 } 801 802 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 803 unsigned char TargetFlags) { 804 if (Subtarget->isTargetMachO()) { 805 bool IsIndirect = 806 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 807 808 if (!IsIndirect) 809 return getSymbol(GV); 810 811 // FIXME: Remove this when Darwin transition to @GOT like syntax. 812 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 813 MachineModuleInfoMachO &MMIMachO = 814 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 815 MachineModuleInfoImpl::StubValueTy &StubSym = 816 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 817 : MMIMachO.getGVStubEntry(MCSym); 818 819 if (!StubSym.getPointer()) 820 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 821 !GV->hasInternalLinkage()); 822 return MCSym; 823 } else if (Subtarget->isTargetCOFF()) { 824 assert(Subtarget->isTargetWindows() && 825 "Windows is the only supported COFF target"); 826 827 bool IsIndirect = 828 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 829 if (!IsIndirect) 830 return getSymbol(GV); 831 832 SmallString<128> Name; 833 if (TargetFlags & ARMII::MO_DLLIMPORT) 834 Name = "__imp_"; 835 else if (TargetFlags & ARMII::MO_COFFSTUB) 836 Name = ".refptr."; 837 getNameWithPrefix(Name, GV); 838 839 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 840 841 if (TargetFlags & ARMII::MO_COFFSTUB) { 842 MachineModuleInfoCOFF &MMICOFF = 843 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 844 MachineModuleInfoImpl::StubValueTy &StubSym = 845 MMICOFF.getGVStubEntry(MCSym); 846 847 if (!StubSym.getPointer()) 848 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 849 } 850 851 return MCSym; 852 } else if (Subtarget->isTargetELF()) { 853 return getSymbol(GV); 854 } 855 llvm_unreachable("unexpected target"); 856 } 857 858 void ARMAsmPrinter:: 859 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 860 const DataLayout &DL = getDataLayout(); 861 int Size = DL.getTypeAllocSize(MCPV->getType()); 862 863 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 864 865 if (ACPV->isPromotedGlobal()) { 866 // This constant pool entry is actually a global whose storage has been 867 // promoted into the constant pool. This global may be referenced still 868 // by debug information, and due to the way AsmPrinter is set up, the debug 869 // info is immutable by the time we decide to promote globals to constant 870 // pools. Because of this, we need to ensure we emit a symbol for the global 871 // with private linkage (the default) so debug info can refer to it. 872 // 873 // However, if this global is promoted into several functions we must ensure 874 // we don't try and emit duplicate symbols! 875 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 876 for (const auto *GV : ACPC->promotedGlobals()) { 877 if (!EmittedPromotedGlobalLabels.count(GV)) { 878 MCSymbol *GVSym = getSymbol(GV); 879 OutStreamer->EmitLabel(GVSym); 880 EmittedPromotedGlobalLabels.insert(GV); 881 } 882 } 883 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 884 } 885 886 MCSymbol *MCSym; 887 if (ACPV->isLSDA()) { 888 MCSym = getCurExceptionSym(); 889 } else if (ACPV->isBlockAddress()) { 890 const BlockAddress *BA = 891 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 892 MCSym = GetBlockAddressSymbol(BA); 893 } else if (ACPV->isGlobalValue()) { 894 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 895 896 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 897 // flag the global as MO_NONLAZY. 898 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 899 MCSym = GetARMGVSymbol(GV, TF); 900 } else if (ACPV->isMachineBasicBlock()) { 901 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 902 MCSym = MBB->getSymbol(); 903 } else { 904 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 905 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 906 MCSym = GetExternalSymbolSymbol(Sym); 907 } 908 909 // Create an MCSymbol for the reference. 910 const MCExpr *Expr = 911 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 912 OutContext); 913 914 if (ACPV->getPCAdjustment()) { 915 MCSymbol *PCLabel = 916 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 917 ACPV->getLabelId(), OutContext); 918 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 919 PCRelExpr = 920 MCBinaryExpr::createAdd(PCRelExpr, 921 MCConstantExpr::create(ACPV->getPCAdjustment(), 922 OutContext), 923 OutContext); 924 if (ACPV->mustAddCurrentAddress()) { 925 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 926 // label, so just emit a local label end reference that instead. 927 MCSymbol *DotSym = OutContext.createTempSymbol(); 928 OutStreamer->EmitLabel(DotSym); 929 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 930 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 931 } 932 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 933 } 934 OutStreamer->EmitValue(Expr, Size); 935 } 936 937 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 938 const MachineOperand &MO1 = MI->getOperand(1); 939 unsigned JTI = MO1.getIndex(); 940 941 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 942 // ARM mode tables. 943 EmitAlignment(2); 944 945 // Emit a label for the jump table. 946 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 947 OutStreamer->EmitLabel(JTISymbol); 948 949 // Mark the jump table as data-in-code. 950 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 951 952 // Emit each entry of the table. 953 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 954 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 955 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 956 957 for (MachineBasicBlock *MBB : JTBBs) { 958 // Construct an MCExpr for the entry. We want a value of the form: 959 // (BasicBlockAddr - TableBeginAddr) 960 // 961 // For example, a table with entries jumping to basic blocks BB0 and BB1 962 // would look like: 963 // LJTI_0_0: 964 // .word (LBB0 - LJTI_0_0) 965 // .word (LBB1 - LJTI_0_0) 966 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 967 968 if (isPositionIndependent() || Subtarget->isROPI()) 969 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 970 OutContext), 971 OutContext); 972 // If we're generating a table of Thumb addresses in static relocation 973 // model, we need to add one to keep interworking correctly. 974 else if (AFI->isThumbFunction()) 975 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 976 OutContext); 977 OutStreamer->EmitValue(Expr, 4); 978 } 979 // Mark the end of jump table data-in-code region. 980 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 981 } 982 983 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 984 const MachineOperand &MO1 = MI->getOperand(1); 985 unsigned JTI = MO1.getIndex(); 986 987 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 988 // ARM mode tables. 989 EmitAlignment(2); 990 991 // Emit a label for the jump table. 992 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 993 OutStreamer->EmitLabel(JTISymbol); 994 995 // Emit each entry of the table. 996 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 997 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 998 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 999 1000 for (MachineBasicBlock *MBB : JTBBs) { 1001 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1002 OutContext); 1003 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1004 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1005 .addExpr(MBBSymbolExpr) 1006 .addImm(ARMCC::AL) 1007 .addReg(0)); 1008 } 1009 } 1010 1011 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1012 unsigned OffsetWidth) { 1013 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1014 const MachineOperand &MO1 = MI->getOperand(1); 1015 unsigned JTI = MO1.getIndex(); 1016 1017 if (Subtarget->isThumb1Only()) 1018 EmitAlignment(2); 1019 1020 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1021 OutStreamer->EmitLabel(JTISymbol); 1022 1023 // Emit each entry of the table. 1024 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1025 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1026 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1027 1028 // Mark the jump table as data-in-code. 1029 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1030 : MCDR_DataRegionJT16); 1031 1032 for (auto MBB : JTBBs) { 1033 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1034 OutContext); 1035 // Otherwise it's an offset from the dispatch instruction. Construct an 1036 // MCExpr for the entry. We want a value of the form: 1037 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1038 // 1039 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1040 // would look like: 1041 // LJTI_0_0: 1042 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1043 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1044 // where LCPI0_0 is a label defined just before the TBB instruction using 1045 // this table. 1046 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1047 const MCExpr *Expr = MCBinaryExpr::createAdd( 1048 MCSymbolRefExpr::create(TBInstPC, OutContext), 1049 MCConstantExpr::create(4, OutContext), OutContext); 1050 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1051 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1052 OutContext); 1053 OutStreamer->EmitValue(Expr, OffsetWidth); 1054 } 1055 // Mark the end of jump table data-in-code region. 32-bit offsets use 1056 // actual branch instructions here, so we don't mark those as a data-region 1057 // at all. 1058 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1059 1060 // Make sure the next instruction is 2-byte aligned. 1061 EmitAlignment(1); 1062 } 1063 1064 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1065 assert(MI->getFlag(MachineInstr::FrameSetup) && 1066 "Only instruction which are involved into frame setup code are allowed"); 1067 1068 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1069 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1070 const MachineFunction &MF = *MI->getParent()->getParent(); 1071 const TargetRegisterInfo *TargetRegInfo = 1072 MF.getSubtarget().getRegisterInfo(); 1073 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1074 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1075 1076 unsigned FramePtr = TargetRegInfo->getFrameRegister(MF); 1077 unsigned Opc = MI->getOpcode(); 1078 unsigned SrcReg, DstReg; 1079 1080 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1081 // Two special cases: 1082 // 1) tPUSH does not have src/dst regs. 1083 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1084 // load. Yes, this is pretty fragile, but for now I don't see better 1085 // way... :( 1086 SrcReg = DstReg = ARM::SP; 1087 } else { 1088 SrcReg = MI->getOperand(1).getReg(); 1089 DstReg = MI->getOperand(0).getReg(); 1090 } 1091 1092 // Try to figure out the unwinding opcode out of src / dst regs. 1093 if (MI->mayStore()) { 1094 // Register saves. 1095 assert(DstReg == ARM::SP && 1096 "Only stack pointer as a destination reg is supported"); 1097 1098 SmallVector<unsigned, 4> RegList; 1099 // Skip src & dst reg, and pred ops. 1100 unsigned StartOp = 2 + 2; 1101 // Use all the operands. 1102 unsigned NumOffset = 0; 1103 // Amount of SP adjustment folded into a push. 1104 unsigned Pad = 0; 1105 1106 switch (Opc) { 1107 default: 1108 MI->print(errs()); 1109 llvm_unreachable("Unsupported opcode for unwinding information"); 1110 case ARM::tPUSH: 1111 // Special case here: no src & dst reg, but two extra imp ops. 1112 StartOp = 2; NumOffset = 2; 1113 LLVM_FALLTHROUGH; 1114 case ARM::STMDB_UPD: 1115 case ARM::t2STMDB_UPD: 1116 case ARM::VSTMDDB_UPD: 1117 assert(SrcReg == ARM::SP && 1118 "Only stack pointer as a source reg is supported"); 1119 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1120 i != NumOps; ++i) { 1121 const MachineOperand &MO = MI->getOperand(i); 1122 // Actually, there should never be any impdef stuff here. Skip it 1123 // temporary to workaround PR11902. 1124 if (MO.isImplicit()) 1125 continue; 1126 // Registers, pushed as a part of folding an SP update into the 1127 // push instruction are marked as undef and should not be 1128 // restored when unwinding, because the function can modify the 1129 // corresponding stack slots. 1130 if (MO.isUndef()) { 1131 assert(RegList.empty() && 1132 "Pad registers must come before restored ones"); 1133 unsigned Width = 1134 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1135 Pad += Width; 1136 continue; 1137 } 1138 RegList.push_back(MO.getReg()); 1139 } 1140 break; 1141 case ARM::STR_PRE_IMM: 1142 case ARM::STR_PRE_REG: 1143 case ARM::t2STR_PRE: 1144 assert(MI->getOperand(2).getReg() == ARM::SP && 1145 "Only stack pointer as a source reg is supported"); 1146 RegList.push_back(SrcReg); 1147 break; 1148 } 1149 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1150 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1151 // Account for the SP adjustment, folded into the push. 1152 if (Pad) 1153 ATS.emitPad(Pad); 1154 } 1155 } else { 1156 // Changes of stack / frame pointer. 1157 if (SrcReg == ARM::SP) { 1158 int64_t Offset = 0; 1159 switch (Opc) { 1160 default: 1161 MI->print(errs()); 1162 llvm_unreachable("Unsupported opcode for unwinding information"); 1163 case ARM::MOVr: 1164 case ARM::tMOVr: 1165 Offset = 0; 1166 break; 1167 case ARM::ADDri: 1168 case ARM::t2ADDri: 1169 Offset = -MI->getOperand(2).getImm(); 1170 break; 1171 case ARM::SUBri: 1172 case ARM::t2SUBri: 1173 Offset = MI->getOperand(2).getImm(); 1174 break; 1175 case ARM::tSUBspi: 1176 Offset = MI->getOperand(2).getImm()*4; 1177 break; 1178 case ARM::tADDspi: 1179 case ARM::tADDrSPi: 1180 Offset = -MI->getOperand(2).getImm()*4; 1181 break; 1182 case ARM::tLDRpci: { 1183 // Grab the constpool index and check, whether it corresponds to 1184 // original or cloned constpool entry. 1185 unsigned CPI = MI->getOperand(1).getIndex(); 1186 const MachineConstantPool *MCP = MF.getConstantPool(); 1187 if (CPI >= MCP->getConstants().size()) 1188 CPI = AFI.getOriginalCPIdx(CPI); 1189 assert(CPI != -1U && "Invalid constpool index"); 1190 1191 // Derive the actual offset. 1192 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1193 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1194 // FIXME: Check for user, it should be "add" instruction! 1195 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1196 break; 1197 } 1198 } 1199 1200 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1201 if (DstReg == FramePtr && FramePtr != ARM::SP) 1202 // Set-up of the frame pointer. Positive values correspond to "add" 1203 // instruction. 1204 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1205 else if (DstReg == ARM::SP) { 1206 // Change of SP by an offset. Positive values correspond to "sub" 1207 // instruction. 1208 ATS.emitPad(Offset); 1209 } else { 1210 // Move of SP to a register. Positive values correspond to an "add" 1211 // instruction. 1212 ATS.emitMovSP(DstReg, -Offset); 1213 } 1214 } 1215 } else if (DstReg == ARM::SP) { 1216 MI->print(errs()); 1217 llvm_unreachable("Unsupported opcode for unwinding information"); 1218 } 1219 else { 1220 MI->print(errs()); 1221 llvm_unreachable("Unsupported opcode for unwinding information"); 1222 } 1223 } 1224 } 1225 1226 // Simple pseudo-instructions have their lowering (with expansion to real 1227 // instructions) auto-generated. 1228 #include "ARMGenMCPseudoLowering.inc" 1229 1230 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1231 const DataLayout &DL = getDataLayout(); 1232 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1233 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1234 1235 const MachineFunction &MF = *MI->getParent()->getParent(); 1236 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1237 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1238 1239 // If we just ended a constant pool, mark it as such. 1240 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1241 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1242 InConstantPool = false; 1243 } 1244 1245 // Emit unwinding stuff for frame-related instructions 1246 if (Subtarget->isTargetEHABICompatible() && 1247 MI->getFlag(MachineInstr::FrameSetup)) 1248 EmitUnwindingInstruction(MI); 1249 1250 // Do any auto-generated pseudo lowerings. 1251 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1252 return; 1253 1254 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1255 "Pseudo flag setting opcode should be expanded early"); 1256 1257 // Check for manual lowerings. 1258 unsigned Opc = MI->getOpcode(); 1259 switch (Opc) { 1260 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1261 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1262 case ARM::LEApcrel: 1263 case ARM::tLEApcrel: 1264 case ARM::t2LEApcrel: { 1265 // FIXME: Need to also handle globals and externals 1266 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1267 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1268 ARM::t2LEApcrel ? ARM::t2ADR 1269 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1270 : ARM::ADR)) 1271 .addReg(MI->getOperand(0).getReg()) 1272 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1273 // Add predicate operands. 1274 .addImm(MI->getOperand(2).getImm()) 1275 .addReg(MI->getOperand(3).getReg())); 1276 return; 1277 } 1278 case ARM::LEApcrelJT: 1279 case ARM::tLEApcrelJT: 1280 case ARM::t2LEApcrelJT: { 1281 MCSymbol *JTIPICSymbol = 1282 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1283 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1284 ARM::t2LEApcrelJT ? ARM::t2ADR 1285 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1286 : ARM::ADR)) 1287 .addReg(MI->getOperand(0).getReg()) 1288 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1289 // Add predicate operands. 1290 .addImm(MI->getOperand(2).getImm()) 1291 .addReg(MI->getOperand(3).getReg())); 1292 return; 1293 } 1294 // Darwin call instructions are just normal call instructions with different 1295 // clobber semantics (they clobber R9). 1296 case ARM::BX_CALL: { 1297 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1298 .addReg(ARM::LR) 1299 .addReg(ARM::PC) 1300 // Add predicate operands. 1301 .addImm(ARMCC::AL) 1302 .addReg(0) 1303 // Add 's' bit operand (always reg0 for this) 1304 .addReg(0)); 1305 1306 assert(Subtarget->hasV4TOps()); 1307 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1308 .addReg(MI->getOperand(0).getReg())); 1309 return; 1310 } 1311 case ARM::tBX_CALL: { 1312 if (Subtarget->hasV5TOps()) 1313 llvm_unreachable("Expected BLX to be selected for v5t+"); 1314 1315 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1316 // that the saved lr has its LSB set correctly (the arch doesn't 1317 // have blx). 1318 // So here we generate a bl to a small jump pad that does bx rN. 1319 // The jump pads are emitted after the function body. 1320 1321 unsigned TReg = MI->getOperand(0).getReg(); 1322 MCSymbol *TRegSym = nullptr; 1323 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1324 if (TIP.first == TReg) { 1325 TRegSym = TIP.second; 1326 break; 1327 } 1328 } 1329 1330 if (!TRegSym) { 1331 TRegSym = OutContext.createTempSymbol(); 1332 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1333 } 1334 1335 // Create a link-saving branch to the Reg Indirect Jump Pad. 1336 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1337 // Predicate comes first here. 1338 .addImm(ARMCC::AL).addReg(0) 1339 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1340 return; 1341 } 1342 case ARM::BMOVPCRX_CALL: { 1343 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1344 .addReg(ARM::LR) 1345 .addReg(ARM::PC) 1346 // Add predicate operands. 1347 .addImm(ARMCC::AL) 1348 .addReg(0) 1349 // Add 's' bit operand (always reg0 for this) 1350 .addReg(0)); 1351 1352 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1353 .addReg(ARM::PC) 1354 .addReg(MI->getOperand(0).getReg()) 1355 // Add predicate operands. 1356 .addImm(ARMCC::AL) 1357 .addReg(0) 1358 // Add 's' bit operand (always reg0 for this) 1359 .addReg(0)); 1360 return; 1361 } 1362 case ARM::BMOVPCB_CALL: { 1363 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1364 .addReg(ARM::LR) 1365 .addReg(ARM::PC) 1366 // Add predicate operands. 1367 .addImm(ARMCC::AL) 1368 .addReg(0) 1369 // Add 's' bit operand (always reg0 for this) 1370 .addReg(0)); 1371 1372 const MachineOperand &Op = MI->getOperand(0); 1373 const GlobalValue *GV = Op.getGlobal(); 1374 const unsigned TF = Op.getTargetFlags(); 1375 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1376 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1377 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1378 .addExpr(GVSymExpr) 1379 // Add predicate operands. 1380 .addImm(ARMCC::AL) 1381 .addReg(0)); 1382 return; 1383 } 1384 case ARM::MOVi16_ga_pcrel: 1385 case ARM::t2MOVi16_ga_pcrel: { 1386 MCInst TmpInst; 1387 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1388 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1389 1390 unsigned TF = MI->getOperand(1).getTargetFlags(); 1391 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1392 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1393 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1394 1395 MCSymbol *LabelSym = 1396 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1397 MI->getOperand(2).getImm(), OutContext); 1398 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1399 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1400 const MCExpr *PCRelExpr = 1401 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1402 MCBinaryExpr::createAdd(LabelSymExpr, 1403 MCConstantExpr::create(PCAdj, OutContext), 1404 OutContext), OutContext), OutContext); 1405 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1406 1407 // Add predicate operands. 1408 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1409 TmpInst.addOperand(MCOperand::createReg(0)); 1410 // Add 's' bit operand (always reg0 for this) 1411 TmpInst.addOperand(MCOperand::createReg(0)); 1412 EmitToStreamer(*OutStreamer, TmpInst); 1413 return; 1414 } 1415 case ARM::MOVTi16_ga_pcrel: 1416 case ARM::t2MOVTi16_ga_pcrel: { 1417 MCInst TmpInst; 1418 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1419 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1420 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1421 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1422 1423 unsigned TF = MI->getOperand(2).getTargetFlags(); 1424 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1425 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1426 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1427 1428 MCSymbol *LabelSym = 1429 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1430 MI->getOperand(3).getImm(), OutContext); 1431 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1432 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1433 const MCExpr *PCRelExpr = 1434 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1435 MCBinaryExpr::createAdd(LabelSymExpr, 1436 MCConstantExpr::create(PCAdj, OutContext), 1437 OutContext), OutContext), OutContext); 1438 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1439 // Add predicate operands. 1440 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1441 TmpInst.addOperand(MCOperand::createReg(0)); 1442 // Add 's' bit operand (always reg0 for this) 1443 TmpInst.addOperand(MCOperand::createReg(0)); 1444 EmitToStreamer(*OutStreamer, TmpInst); 1445 return; 1446 } 1447 case ARM::t2BFi: 1448 case ARM::t2BFic: 1449 case ARM::t2BFLi: 1450 case ARM::t2BFr: 1451 case ARM::t2BFLr: { 1452 // This is a Branch Future instruction. 1453 1454 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1455 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1456 MI->getOperand(0).getIndex(), OutContext), 1457 OutContext); 1458 1459 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1460 if (MI->getOperand(1).isReg()) { 1461 // For BFr/BFLr 1462 MCInst.addReg(MI->getOperand(1).getReg()); 1463 } else { 1464 // For BFi/BFLi/BFic 1465 const MCExpr *BranchTarget; 1466 if (MI->getOperand(1).isMBB()) 1467 BranchTarget = MCSymbolRefExpr::create( 1468 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1469 else if (MI->getOperand(1).isGlobal()) { 1470 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1471 BranchTarget = MCSymbolRefExpr::create( 1472 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1473 } else if (MI->getOperand(1).isSymbol()) { 1474 BranchTarget = MCSymbolRefExpr::create( 1475 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1476 OutContext); 1477 } else 1478 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1479 1480 MCInst.addExpr(BranchTarget); 1481 } 1482 1483 if (Opc == ARM::t2BFic) { 1484 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1485 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1486 MI->getOperand(2).getIndex(), OutContext), 1487 OutContext); 1488 MCInst.addExpr(ElseLabel); 1489 MCInst.addImm(MI->getOperand(3).getImm()); 1490 } else { 1491 MCInst.addImm(MI->getOperand(2).getImm()) 1492 .addReg(MI->getOperand(3).getReg()); 1493 } 1494 1495 EmitToStreamer(*OutStreamer, MCInst); 1496 return; 1497 } 1498 case ARM::t2BF_LabelPseudo: { 1499 // This is a pseudo op for a label used by a branch future instruction 1500 1501 // Emit the label. 1502 OutStreamer->EmitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1503 getFunctionNumber(), 1504 MI->getOperand(0).getIndex(), OutContext)); 1505 return; 1506 } 1507 case ARM::tPICADD: { 1508 // This is a pseudo op for a label + instruction sequence, which looks like: 1509 // LPC0: 1510 // add r0, pc 1511 // This adds the address of LPC0 to r0. 1512 1513 // Emit the label. 1514 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1515 getFunctionNumber(), 1516 MI->getOperand(2).getImm(), OutContext)); 1517 1518 // Form and emit the add. 1519 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1520 .addReg(MI->getOperand(0).getReg()) 1521 .addReg(MI->getOperand(0).getReg()) 1522 .addReg(ARM::PC) 1523 // Add predicate operands. 1524 .addImm(ARMCC::AL) 1525 .addReg(0)); 1526 return; 1527 } 1528 case ARM::PICADD: { 1529 // This is a pseudo op for a label + instruction sequence, which looks like: 1530 // LPC0: 1531 // add r0, pc, r0 1532 // This adds the address of LPC0 to r0. 1533 1534 // Emit the label. 1535 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1536 getFunctionNumber(), 1537 MI->getOperand(2).getImm(), OutContext)); 1538 1539 // Form and emit the add. 1540 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1541 .addReg(MI->getOperand(0).getReg()) 1542 .addReg(ARM::PC) 1543 .addReg(MI->getOperand(1).getReg()) 1544 // Add predicate operands. 1545 .addImm(MI->getOperand(3).getImm()) 1546 .addReg(MI->getOperand(4).getReg()) 1547 // Add 's' bit operand (always reg0 for this) 1548 .addReg(0)); 1549 return; 1550 } 1551 case ARM::PICSTR: 1552 case ARM::PICSTRB: 1553 case ARM::PICSTRH: 1554 case ARM::PICLDR: 1555 case ARM::PICLDRB: 1556 case ARM::PICLDRH: 1557 case ARM::PICLDRSB: 1558 case ARM::PICLDRSH: { 1559 // This is a pseudo op for a label + instruction sequence, which looks like: 1560 // LPC0: 1561 // OP r0, [pc, r0] 1562 // The LCP0 label is referenced by a constant pool entry in order to get 1563 // a PC-relative address at the ldr instruction. 1564 1565 // Emit the label. 1566 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1567 getFunctionNumber(), 1568 MI->getOperand(2).getImm(), OutContext)); 1569 1570 // Form and emit the load 1571 unsigned Opcode; 1572 switch (MI->getOpcode()) { 1573 default: 1574 llvm_unreachable("Unexpected opcode!"); 1575 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1576 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1577 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1578 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1579 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1580 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1581 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1582 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1583 } 1584 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1585 .addReg(MI->getOperand(0).getReg()) 1586 .addReg(ARM::PC) 1587 .addReg(MI->getOperand(1).getReg()) 1588 .addImm(0) 1589 // Add predicate operands. 1590 .addImm(MI->getOperand(3).getImm()) 1591 .addReg(MI->getOperand(4).getReg())); 1592 1593 return; 1594 } 1595 case ARM::CONSTPOOL_ENTRY: { 1596 if (Subtarget->genExecuteOnly()) 1597 llvm_unreachable("execute-only should not generate constant pools"); 1598 1599 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1600 /// in the function. The first operand is the ID# for this instruction, the 1601 /// second is the index into the MachineConstantPool that this is, the third 1602 /// is the size in bytes of this constant pool entry. 1603 /// The required alignment is specified on the basic block holding this MI. 1604 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1605 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1606 1607 // If this is the first entry of the pool, mark it. 1608 if (!InConstantPool) { 1609 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1610 InConstantPool = true; 1611 } 1612 1613 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1614 1615 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1616 if (MCPE.isMachineConstantPoolEntry()) 1617 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1618 else 1619 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1620 return; 1621 } 1622 case ARM::JUMPTABLE_ADDRS: 1623 EmitJumpTableAddrs(MI); 1624 return; 1625 case ARM::JUMPTABLE_INSTS: 1626 EmitJumpTableInsts(MI); 1627 return; 1628 case ARM::JUMPTABLE_TBB: 1629 case ARM::JUMPTABLE_TBH: 1630 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1631 return; 1632 case ARM::t2BR_JT: { 1633 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1634 .addReg(ARM::PC) 1635 .addReg(MI->getOperand(0).getReg()) 1636 // Add predicate operands. 1637 .addImm(ARMCC::AL) 1638 .addReg(0)); 1639 return; 1640 } 1641 case ARM::t2TBB_JT: 1642 case ARM::t2TBH_JT: { 1643 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1644 // Lower and emit the PC label, then the instruction itself. 1645 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1646 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1647 .addReg(MI->getOperand(0).getReg()) 1648 .addReg(MI->getOperand(1).getReg()) 1649 // Add predicate operands. 1650 .addImm(ARMCC::AL) 1651 .addReg(0)); 1652 return; 1653 } 1654 case ARM::tTBB_JT: 1655 case ARM::tTBH_JT: { 1656 1657 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1658 unsigned Base = MI->getOperand(0).getReg(); 1659 unsigned Idx = MI->getOperand(1).getReg(); 1660 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1661 1662 // Multiply up idx if necessary. 1663 if (!Is8Bit) 1664 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1665 .addReg(Idx) 1666 .addReg(ARM::CPSR) 1667 .addReg(Idx) 1668 .addImm(1) 1669 // Add predicate operands. 1670 .addImm(ARMCC::AL) 1671 .addReg(0)); 1672 1673 if (Base == ARM::PC) { 1674 // TBB [base, idx] = 1675 // ADDS idx, idx, base 1676 // LDRB idx, [idx, #4] ; or LDRH if TBH 1677 // LSLS idx, #1 1678 // ADDS pc, pc, idx 1679 1680 // When using PC as the base, it's important that there is no padding 1681 // between the last ADDS and the start of the jump table. The jump table 1682 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1683 // 1684 // FIXME: Ideally we could vary the LDRB index based on the padding 1685 // between the sequence and jump table, however that relies on MCExprs 1686 // for load indexes which are currently not supported. 1687 OutStreamer->EmitCodeAlignment(4); 1688 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1689 .addReg(Idx) 1690 .addReg(Idx) 1691 .addReg(Base) 1692 // Add predicate operands. 1693 .addImm(ARMCC::AL) 1694 .addReg(0)); 1695 1696 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1697 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1698 .addReg(Idx) 1699 .addReg(Idx) 1700 .addImm(Is8Bit ? 4 : 2) 1701 // Add predicate operands. 1702 .addImm(ARMCC::AL) 1703 .addReg(0)); 1704 } else { 1705 // TBB [base, idx] = 1706 // LDRB idx, [base, idx] ; or LDRH if TBH 1707 // LSLS idx, #1 1708 // ADDS pc, pc, idx 1709 1710 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1711 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1712 .addReg(Idx) 1713 .addReg(Base) 1714 .addReg(Idx) 1715 // Add predicate operands. 1716 .addImm(ARMCC::AL) 1717 .addReg(0)); 1718 } 1719 1720 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1721 .addReg(Idx) 1722 .addReg(ARM::CPSR) 1723 .addReg(Idx) 1724 .addImm(1) 1725 // Add predicate operands. 1726 .addImm(ARMCC::AL) 1727 .addReg(0)); 1728 1729 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1730 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1731 .addReg(ARM::PC) 1732 .addReg(ARM::PC) 1733 .addReg(Idx) 1734 // Add predicate operands. 1735 .addImm(ARMCC::AL) 1736 .addReg(0)); 1737 return; 1738 } 1739 case ARM::tBR_JTr: 1740 case ARM::BR_JTr: { 1741 // mov pc, target 1742 MCInst TmpInst; 1743 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1744 ARM::MOVr : ARM::tMOVr; 1745 TmpInst.setOpcode(Opc); 1746 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1747 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1748 // Add predicate operands. 1749 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1750 TmpInst.addOperand(MCOperand::createReg(0)); 1751 // Add 's' bit operand (always reg0 for this) 1752 if (Opc == ARM::MOVr) 1753 TmpInst.addOperand(MCOperand::createReg(0)); 1754 EmitToStreamer(*OutStreamer, TmpInst); 1755 return; 1756 } 1757 case ARM::BR_JTm_i12: { 1758 // ldr pc, target 1759 MCInst TmpInst; 1760 TmpInst.setOpcode(ARM::LDRi12); 1761 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1762 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1763 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1764 // Add predicate operands. 1765 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1766 TmpInst.addOperand(MCOperand::createReg(0)); 1767 EmitToStreamer(*OutStreamer, TmpInst); 1768 return; 1769 } 1770 case ARM::BR_JTm_rs: { 1771 // ldr pc, target 1772 MCInst TmpInst; 1773 TmpInst.setOpcode(ARM::LDRrs); 1774 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1775 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1776 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1777 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1778 // Add predicate operands. 1779 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1780 TmpInst.addOperand(MCOperand::createReg(0)); 1781 EmitToStreamer(*OutStreamer, TmpInst); 1782 return; 1783 } 1784 case ARM::BR_JTadd: { 1785 // add pc, target, idx 1786 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1787 .addReg(ARM::PC) 1788 .addReg(MI->getOperand(0).getReg()) 1789 .addReg(MI->getOperand(1).getReg()) 1790 // Add predicate operands. 1791 .addImm(ARMCC::AL) 1792 .addReg(0) 1793 // Add 's' bit operand (always reg0 for this) 1794 .addReg(0)); 1795 return; 1796 } 1797 case ARM::SPACE: 1798 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1799 return; 1800 case ARM::TRAP: { 1801 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1802 // FIXME: Remove this special case when they do. 1803 if (!Subtarget->isTargetMachO()) { 1804 uint32_t Val = 0xe7ffdefeUL; 1805 OutStreamer->AddComment("trap"); 1806 ATS.emitInst(Val); 1807 return; 1808 } 1809 break; 1810 } 1811 case ARM::TRAPNaCl: { 1812 uint32_t Val = 0xe7fedef0UL; 1813 OutStreamer->AddComment("trap"); 1814 ATS.emitInst(Val); 1815 return; 1816 } 1817 case ARM::tTRAP: { 1818 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1819 // FIXME: Remove this special case when they do. 1820 if (!Subtarget->isTargetMachO()) { 1821 uint16_t Val = 0xdefe; 1822 OutStreamer->AddComment("trap"); 1823 ATS.emitInst(Val, 'n'); 1824 return; 1825 } 1826 break; 1827 } 1828 case ARM::t2Int_eh_sjlj_setjmp: 1829 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1830 case ARM::tInt_eh_sjlj_setjmp: { 1831 // Two incoming args: GPR:$src, GPR:$val 1832 // mov $val, pc 1833 // adds $val, #7 1834 // str $val, [$src, #4] 1835 // movs r0, #0 1836 // b LSJLJEH 1837 // movs r0, #1 1838 // LSJLJEH: 1839 unsigned SrcReg = MI->getOperand(0).getReg(); 1840 unsigned ValReg = MI->getOperand(1).getReg(); 1841 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1842 OutStreamer->AddComment("eh_setjmp begin"); 1843 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1844 .addReg(ValReg) 1845 .addReg(ARM::PC) 1846 // Predicate. 1847 .addImm(ARMCC::AL) 1848 .addReg(0)); 1849 1850 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1851 .addReg(ValReg) 1852 // 's' bit operand 1853 .addReg(ARM::CPSR) 1854 .addReg(ValReg) 1855 .addImm(7) 1856 // Predicate. 1857 .addImm(ARMCC::AL) 1858 .addReg(0)); 1859 1860 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1861 .addReg(ValReg) 1862 .addReg(SrcReg) 1863 // The offset immediate is #4. The operand value is scaled by 4 for the 1864 // tSTR instruction. 1865 .addImm(1) 1866 // Predicate. 1867 .addImm(ARMCC::AL) 1868 .addReg(0)); 1869 1870 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1871 .addReg(ARM::R0) 1872 .addReg(ARM::CPSR) 1873 .addImm(0) 1874 // Predicate. 1875 .addImm(ARMCC::AL) 1876 .addReg(0)); 1877 1878 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1879 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1880 .addExpr(SymbolExpr) 1881 .addImm(ARMCC::AL) 1882 .addReg(0)); 1883 1884 OutStreamer->AddComment("eh_setjmp end"); 1885 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1886 .addReg(ARM::R0) 1887 .addReg(ARM::CPSR) 1888 .addImm(1) 1889 // Predicate. 1890 .addImm(ARMCC::AL) 1891 .addReg(0)); 1892 1893 OutStreamer->EmitLabel(Label); 1894 return; 1895 } 1896 1897 case ARM::Int_eh_sjlj_setjmp_nofp: 1898 case ARM::Int_eh_sjlj_setjmp: { 1899 // Two incoming args: GPR:$src, GPR:$val 1900 // add $val, pc, #8 1901 // str $val, [$src, #+4] 1902 // mov r0, #0 1903 // add pc, pc, #0 1904 // mov r0, #1 1905 unsigned SrcReg = MI->getOperand(0).getReg(); 1906 unsigned ValReg = MI->getOperand(1).getReg(); 1907 1908 OutStreamer->AddComment("eh_setjmp begin"); 1909 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1910 .addReg(ValReg) 1911 .addReg(ARM::PC) 1912 .addImm(8) 1913 // Predicate. 1914 .addImm(ARMCC::AL) 1915 .addReg(0) 1916 // 's' bit operand (always reg0 for this). 1917 .addReg(0)); 1918 1919 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1920 .addReg(ValReg) 1921 .addReg(SrcReg) 1922 .addImm(4) 1923 // Predicate. 1924 .addImm(ARMCC::AL) 1925 .addReg(0)); 1926 1927 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1928 .addReg(ARM::R0) 1929 .addImm(0) 1930 // Predicate. 1931 .addImm(ARMCC::AL) 1932 .addReg(0) 1933 // 's' bit operand (always reg0 for this). 1934 .addReg(0)); 1935 1936 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1937 .addReg(ARM::PC) 1938 .addReg(ARM::PC) 1939 .addImm(0) 1940 // Predicate. 1941 .addImm(ARMCC::AL) 1942 .addReg(0) 1943 // 's' bit operand (always reg0 for this). 1944 .addReg(0)); 1945 1946 OutStreamer->AddComment("eh_setjmp end"); 1947 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1948 .addReg(ARM::R0) 1949 .addImm(1) 1950 // Predicate. 1951 .addImm(ARMCC::AL) 1952 .addReg(0) 1953 // 's' bit operand (always reg0 for this). 1954 .addReg(0)); 1955 return; 1956 } 1957 case ARM::Int_eh_sjlj_longjmp: { 1958 // ldr sp, [$src, #8] 1959 // ldr $scratch, [$src, #4] 1960 // ldr r7, [$src] 1961 // bx $scratch 1962 unsigned SrcReg = MI->getOperand(0).getReg(); 1963 unsigned ScratchReg = MI->getOperand(1).getReg(); 1964 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1965 .addReg(ARM::SP) 1966 .addReg(SrcReg) 1967 .addImm(8) 1968 // Predicate. 1969 .addImm(ARMCC::AL) 1970 .addReg(0)); 1971 1972 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1973 .addReg(ScratchReg) 1974 .addReg(SrcReg) 1975 .addImm(4) 1976 // Predicate. 1977 .addImm(ARMCC::AL) 1978 .addReg(0)); 1979 1980 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1981 // These platforms always use the same frame register 1982 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1983 .addReg(FramePtr) 1984 .addReg(SrcReg) 1985 .addImm(0) 1986 // Predicate. 1987 .addImm(ARMCC::AL) 1988 .addReg(0)); 1989 } else { 1990 // If the calling code might use either R7 or R11 as 1991 // frame pointer register, restore it into both. 1992 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1993 .addReg(ARM::R7) 1994 .addReg(SrcReg) 1995 .addImm(0) 1996 // Predicate. 1997 .addImm(ARMCC::AL) 1998 .addReg(0)); 1999 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2000 .addReg(ARM::R11) 2001 .addReg(SrcReg) 2002 .addImm(0) 2003 // Predicate. 2004 .addImm(ARMCC::AL) 2005 .addReg(0)); 2006 } 2007 2008 assert(Subtarget->hasV4TOps()); 2009 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2010 .addReg(ScratchReg) 2011 // Predicate. 2012 .addImm(ARMCC::AL) 2013 .addReg(0)); 2014 return; 2015 } 2016 case ARM::tInt_eh_sjlj_longjmp: { 2017 // ldr $scratch, [$src, #8] 2018 // mov sp, $scratch 2019 // ldr $scratch, [$src, #4] 2020 // ldr r7, [$src] 2021 // bx $scratch 2022 unsigned SrcReg = MI->getOperand(0).getReg(); 2023 unsigned ScratchReg = MI->getOperand(1).getReg(); 2024 2025 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2026 .addReg(ScratchReg) 2027 .addReg(SrcReg) 2028 // The offset immediate is #8. The operand value is scaled by 4 for the 2029 // tLDR instruction. 2030 .addImm(2) 2031 // Predicate. 2032 .addImm(ARMCC::AL) 2033 .addReg(0)); 2034 2035 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2036 .addReg(ARM::SP) 2037 .addReg(ScratchReg) 2038 // Predicate. 2039 .addImm(ARMCC::AL) 2040 .addReg(0)); 2041 2042 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2043 .addReg(ScratchReg) 2044 .addReg(SrcReg) 2045 .addImm(1) 2046 // Predicate. 2047 .addImm(ARMCC::AL) 2048 .addReg(0)); 2049 2050 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2051 // These platforms always use the same frame register 2052 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2053 .addReg(FramePtr) 2054 .addReg(SrcReg) 2055 .addImm(0) 2056 // Predicate. 2057 .addImm(ARMCC::AL) 2058 .addReg(0)); 2059 } else { 2060 // If the calling code might use either R7 or R11 as 2061 // frame pointer register, restore it into both. 2062 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2063 .addReg(ARM::R7) 2064 .addReg(SrcReg) 2065 .addImm(0) 2066 // Predicate. 2067 .addImm(ARMCC::AL) 2068 .addReg(0)); 2069 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2070 .addReg(ARM::R11) 2071 .addReg(SrcReg) 2072 .addImm(0) 2073 // Predicate. 2074 .addImm(ARMCC::AL) 2075 .addReg(0)); 2076 } 2077 2078 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2079 .addReg(ScratchReg) 2080 // Predicate. 2081 .addImm(ARMCC::AL) 2082 .addReg(0)); 2083 return; 2084 } 2085 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2086 // ldr.w r11, [$src, #0] 2087 // ldr.w sp, [$src, #8] 2088 // ldr.w pc, [$src, #4] 2089 2090 unsigned SrcReg = MI->getOperand(0).getReg(); 2091 2092 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2093 .addReg(ARM::R11) 2094 .addReg(SrcReg) 2095 .addImm(0) 2096 // Predicate 2097 .addImm(ARMCC::AL) 2098 .addReg(0)); 2099 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2100 .addReg(ARM::SP) 2101 .addReg(SrcReg) 2102 .addImm(8) 2103 // Predicate 2104 .addImm(ARMCC::AL) 2105 .addReg(0)); 2106 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2107 .addReg(ARM::PC) 2108 .addReg(SrcReg) 2109 .addImm(4) 2110 // Predicate 2111 .addImm(ARMCC::AL) 2112 .addReg(0)); 2113 return; 2114 } 2115 case ARM::PATCHABLE_FUNCTION_ENTER: 2116 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2117 return; 2118 case ARM::PATCHABLE_FUNCTION_EXIT: 2119 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2120 return; 2121 case ARM::PATCHABLE_TAIL_CALL: 2122 LowerPATCHABLE_TAIL_CALL(*MI); 2123 return; 2124 } 2125 2126 MCInst TmpInst; 2127 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2128 2129 EmitToStreamer(*OutStreamer, TmpInst); 2130 } 2131 2132 //===----------------------------------------------------------------------===// 2133 // Target Registry Stuff 2134 //===----------------------------------------------------------------------===// 2135 2136 // Force static initialization. 2137 extern "C" void LLVMInitializeARMAsmPrinter() { 2138 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2139 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2140 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2141 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2142 } 2143