1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format ARM assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMAsmPrinter.h"
15 #include "ARM.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMTargetMachine.h"
19 #include "ARMTargetObjectFile.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMMCExpr.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/BinaryFormat/COFF.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Mangler.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCAssembler.h"
36 #include "llvm/MC/MCContext.h"
37 #include "llvm/MC/MCELFStreamer.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCInstBuilder.h"
40 #include "llvm/MC/MCObjectStreamer.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/Support/ARMBuildAttributes.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TargetParser.h"
47 #include "llvm/Support/TargetRegistry.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetMachine.h"
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "asm-printer"
53 
54 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
55                              std::unique_ptr<MCStreamer> Streamer)
56     : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
57       InConstantPool(false), OptimizationGoals(-1) {}
58 
59 void ARMAsmPrinter::EmitFunctionBodyEnd() {
60   // Make sure to terminate any constant pools that were at the end
61   // of the function.
62   if (!InConstantPool)
63     return;
64   InConstantPool = false;
65   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
66 }
67 
68 void ARMAsmPrinter::EmitFunctionEntryLabel() {
69   if (AFI->isThumbFunction()) {
70     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
71     OutStreamer->EmitThumbFunc(CurrentFnSym);
72   } else {
73     OutStreamer->EmitAssemblerFlag(MCAF_Code32);
74   }
75   OutStreamer->EmitLabel(CurrentFnSym);
76 }
77 
78 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
79   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
80   assert(Size && "C++ constructor pointer had zero size!");
81 
82   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
83   assert(GV && "C++ constructor pointer was not a GlobalValue!");
84 
85   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
86                                                            ARMII::MO_NO_FLAG),
87                                             (Subtarget->isTargetELF()
88                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
89                                              : MCSymbolRefExpr::VK_None),
90                                             OutContext);
91 
92   OutStreamer->EmitValue(E, Size);
93 }
94 
95 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
96   if (PromotedGlobals.count(GV))
97     // The global was promoted into a constant pool. It should not be emitted.
98     return;
99   AsmPrinter::EmitGlobalVariable(GV);
100 }
101 
102 /// runOnMachineFunction - This uses the EmitInstruction()
103 /// method to print assembly for each instruction.
104 ///
105 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
106   AFI = MF.getInfo<ARMFunctionInfo>();
107   MCP = MF.getConstantPool();
108   Subtarget = &MF.getSubtarget<ARMSubtarget>();
109 
110   SetupMachineFunction(MF);
111   const Function &F = MF.getFunction();
112   const TargetMachine& TM = MF.getTarget();
113 
114   // Collect all globals that had their storage promoted to a constant pool.
115   // Functions are emitted before variables, so this accumulates promoted
116   // globals from all functions in PromotedGlobals.
117   for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
118     PromotedGlobals.insert(GV);
119 
120   // Calculate this function's optimization goal.
121   unsigned OptimizationGoal;
122   if (F.hasOptNone())
123     // For best debugging illusion, speed and small size sacrificed
124     OptimizationGoal = 6;
125   else if (F.hasMinSize())
126     // Aggressively for small size, speed and debug illusion sacrificed
127     OptimizationGoal = 4;
128   else if (F.hasOptSize())
129     // For small size, but speed and debugging illusion preserved
130     OptimizationGoal = 3;
131   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
132     // Aggressively for speed, small size and debug illusion sacrificed
133     OptimizationGoal = 2;
134   else if (TM.getOptLevel() > CodeGenOpt::None)
135     // For speed, but small size and good debug illusion preserved
136     OptimizationGoal = 1;
137   else // TM.getOptLevel() == CodeGenOpt::None
138     // For good debugging, but speed and small size preserved
139     OptimizationGoal = 5;
140 
141   // Combine a new optimization goal with existing ones.
142   if (OptimizationGoals == -1) // uninitialized goals
143     OptimizationGoals = OptimizationGoal;
144   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
145     OptimizationGoals = 0;
146 
147   if (Subtarget->isTargetCOFF()) {
148     bool Internal = F.hasInternalLinkage();
149     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
150                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
151     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
152 
153     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
154     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
155     OutStreamer->EmitCOFFSymbolType(Type);
156     OutStreamer->EndCOFFSymbolDef();
157   }
158 
159   // Emit the rest of the function body.
160   EmitFunctionBody();
161 
162   // Emit the XRay table for this function.
163   emitXRayTable();
164 
165   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
166   // These are created per function, rather than per TU, since it's
167   // relatively easy to exceed the thumb branch range within a TU.
168   if (! ThumbIndirectPads.empty()) {
169     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
170     EmitAlignment(1);
171     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
172       OutStreamer->EmitLabel(TIP.second);
173       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
174         .addReg(TIP.first)
175         // Add predicate operands.
176         .addImm(ARMCC::AL)
177         .addReg(0));
178     }
179     ThumbIndirectPads.clear();
180   }
181 
182   // We didn't modify anything.
183   return false;
184 }
185 
186 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
187                                        raw_ostream &O) {
188   assert(MO.isGlobal() && "caller should check MO.isGlobal");
189   unsigned TF = MO.getTargetFlags();
190   if (TF & ARMII::MO_LO16)
191     O << ":lower16:";
192   else if (TF & ARMII::MO_HI16)
193     O << ":upper16:";
194   GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI);
195   printOffset(MO.getOffset(), O);
196 }
197 
198 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
199                                  raw_ostream &O) {
200   const MachineOperand &MO = MI->getOperand(OpNum);
201 
202   switch (MO.getType()) {
203   default: llvm_unreachable("<unknown operand type>");
204   case MachineOperand::MO_Register: {
205     unsigned Reg = MO.getReg();
206     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
207     assert(!MO.getSubReg() && "Subregs should be eliminated!");
208     if(ARM::GPRPairRegClass.contains(Reg)) {
209       const MachineFunction &MF = *MI->getParent()->getParent();
210       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
211       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
212     }
213     O << ARMInstPrinter::getRegisterName(Reg);
214     break;
215   }
216   case MachineOperand::MO_Immediate: {
217     O << '#';
218     unsigned TF = MO.getTargetFlags();
219     if (TF == ARMII::MO_LO16)
220       O << ":lower16:";
221     else if (TF == ARMII::MO_HI16)
222       O << ":upper16:";
223     O << MO.getImm();
224     break;
225   }
226   case MachineOperand::MO_MachineBasicBlock:
227     MO.getMBB()->getSymbol()->print(O, MAI);
228     return;
229   case MachineOperand::MO_GlobalAddress: {
230     PrintSymbolOperand(MO, O);
231     break;
232   }
233   case MachineOperand::MO_ConstantPoolIndex:
234     if (Subtarget->genExecuteOnly())
235       llvm_unreachable("execute-only should not generate constant pools");
236     GetCPISymbol(MO.getIndex())->print(O, MAI);
237     break;
238   }
239 }
240 
241 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
242   // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
243   // indexes in MachineConstantPool, which isn't in sync with indexes used here.
244   const DataLayout &DL = getDataLayout();
245   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
246                                       "CPI" + Twine(getFunctionNumber()) + "_" +
247                                       Twine(CPID));
248 }
249 
250 //===--------------------------------------------------------------------===//
251 
252 MCSymbol *ARMAsmPrinter::
253 GetARMJTIPICJumpTableLabel(unsigned uid) const {
254   const DataLayout &DL = getDataLayout();
255   SmallString<60> Name;
256   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
257                             << getFunctionNumber() << '_' << uid;
258   return OutContext.getOrCreateSymbol(Name);
259 }
260 
261 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
262                                     const char *ExtraCode, raw_ostream &O) {
263   // Does this asm operand have a single letter operand modifier?
264   if (ExtraCode && ExtraCode[0]) {
265     if (ExtraCode[1] != 0) return true; // Unknown modifier.
266 
267     switch (ExtraCode[0]) {
268     default:
269       // See if this is a generic print operand
270       return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
271     case 'P': // Print a VFP double precision register.
272     case 'q': // Print a NEON quad precision register.
273       printOperand(MI, OpNum, O);
274       return false;
275     case 'y': // Print a VFP single precision register as indexed double.
276       if (MI->getOperand(OpNum).isReg()) {
277         unsigned Reg = MI->getOperand(OpNum).getReg();
278         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
279         // Find the 'd' register that has this 's' register as a sub-register,
280         // and determine the lane number.
281         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
282           if (!ARM::DPRRegClass.contains(*SR))
283             continue;
284           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
285           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
286           return false;
287         }
288       }
289       return true;
290     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
291       if (!MI->getOperand(OpNum).isImm())
292         return true;
293       O << ~(MI->getOperand(OpNum).getImm());
294       return false;
295     case 'L': // The low 16 bits of an immediate constant.
296       if (!MI->getOperand(OpNum).isImm())
297         return true;
298       O << (MI->getOperand(OpNum).getImm() & 0xffff);
299       return false;
300     case 'M': { // A register range suitable for LDM/STM.
301       if (!MI->getOperand(OpNum).isReg())
302         return true;
303       const MachineOperand &MO = MI->getOperand(OpNum);
304       unsigned RegBegin = MO.getReg();
305       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
306       // already got the operands in registers that are operands to the
307       // inline asm statement.
308       O << "{";
309       if (ARM::GPRPairRegClass.contains(RegBegin)) {
310         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
311         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
312         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
313         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
314       }
315       O << ARMInstPrinter::getRegisterName(RegBegin);
316 
317       // FIXME: The register allocator not only may not have given us the
318       // registers in sequence, but may not be in ascending registers. This
319       // will require changes in the register allocator that'll need to be
320       // propagated down here if the operands change.
321       unsigned RegOps = OpNum + 1;
322       while (MI->getOperand(RegOps).isReg()) {
323         O << ", "
324           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
325         RegOps++;
326       }
327 
328       O << "}";
329 
330       return false;
331     }
332     case 'R': // The most significant register of a pair.
333     case 'Q': { // The least significant register of a pair.
334       if (OpNum == 0)
335         return true;
336       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
337       if (!FlagsOP.isImm())
338         return true;
339       unsigned Flags = FlagsOP.getImm();
340 
341       // This operand may not be the one that actually provides the register. If
342       // it's tied to a previous one then we should refer instead to that one
343       // for registers and their classes.
344       unsigned TiedIdx;
345       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
346         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
347           unsigned OpFlags = MI->getOperand(OpNum).getImm();
348           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
349         }
350         Flags = MI->getOperand(OpNum).getImm();
351 
352         // Later code expects OpNum to be pointing at the register rather than
353         // the flags.
354         OpNum += 1;
355       }
356 
357       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
358       unsigned RC;
359       bool FirstHalf;
360       const ARMBaseTargetMachine &ATM =
361         static_cast<const ARMBaseTargetMachine &>(TM);
362 
363       // 'Q' should correspond to the low order register and 'R' to the high
364       // order register.  Whether this corresponds to the upper or lower half
365       // depends on the endianess mode.
366       if (ExtraCode[0] == 'Q')
367         FirstHalf = ATM.isLittleEndian();
368       else
369         // ExtraCode[0] == 'R'.
370         FirstHalf = !ATM.isLittleEndian();
371       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
372       if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
373           ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
374         if (NumVals != 1)
375           return true;
376         const MachineOperand &MO = MI->getOperand(OpNum);
377         if (!MO.isReg())
378           return true;
379         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
380         unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ?
381             ARM::gsub_0 : ARM::gsub_1);
382         O << ARMInstPrinter::getRegisterName(Reg);
383         return false;
384       }
385       if (NumVals != 2)
386         return true;
387       unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
388       if (RegOp >= MI->getNumOperands())
389         return true;
390       const MachineOperand &MO = MI->getOperand(RegOp);
391       if (!MO.isReg())
392         return true;
393       unsigned Reg = MO.getReg();
394       O << ARMInstPrinter::getRegisterName(Reg);
395       return false;
396     }
397 
398     case 'e': // The low doubleword register of a NEON quad register.
399     case 'f': { // The high doubleword register of a NEON quad register.
400       if (!MI->getOperand(OpNum).isReg())
401         return true;
402       unsigned Reg = MI->getOperand(OpNum).getReg();
403       if (!ARM::QPRRegClass.contains(Reg))
404         return true;
405       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
406       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
407                                        ARM::dsub_0 : ARM::dsub_1);
408       O << ARMInstPrinter::getRegisterName(SubReg);
409       return false;
410     }
411 
412     // This modifier is not yet supported.
413     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
414       return true;
415     case 'H': { // The highest-numbered register of a pair.
416       const MachineOperand &MO = MI->getOperand(OpNum);
417       if (!MO.isReg())
418         return true;
419       const MachineFunction &MF = *MI->getParent()->getParent();
420       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
421       unsigned Reg = MO.getReg();
422       if(!ARM::GPRPairRegClass.contains(Reg))
423         return false;
424       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
425       O << ARMInstPrinter::getRegisterName(Reg);
426       return false;
427     }
428     }
429   }
430 
431   printOperand(MI, OpNum, O);
432   return false;
433 }
434 
435 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
436                                           unsigned OpNum, const char *ExtraCode,
437                                           raw_ostream &O) {
438   // Does this asm operand have a single letter operand modifier?
439   if (ExtraCode && ExtraCode[0]) {
440     if (ExtraCode[1] != 0) return true; // Unknown modifier.
441 
442     switch (ExtraCode[0]) {
443       case 'A': // A memory operand for a VLD1/VST1 instruction.
444       default: return true;  // Unknown modifier.
445       case 'm': // The base register of a memory operand.
446         if (!MI->getOperand(OpNum).isReg())
447           return true;
448         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
449         return false;
450     }
451   }
452 
453   const MachineOperand &MO = MI->getOperand(OpNum);
454   assert(MO.isReg() && "unexpected inline asm memory operand");
455   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
456   return false;
457 }
458 
459 static bool isThumb(const MCSubtargetInfo& STI) {
460   return STI.getFeatureBits()[ARM::ModeThumb];
461 }
462 
463 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
464                                      const MCSubtargetInfo *EndInfo) const {
465   // If either end mode is unknown (EndInfo == NULL) or different than
466   // the start mode, then restore the start mode.
467   const bool WasThumb = isThumb(StartInfo);
468   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
469     OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
470   }
471 }
472 
473 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
474   const Triple &TT = TM.getTargetTriple();
475   // Use unified assembler syntax.
476   OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
477 
478   // Emit ARM Build Attributes
479   if (TT.isOSBinFormatELF())
480     emitAttributes();
481 
482   // Use the triple's architecture and subarchitecture to determine
483   // if we're thumb for the purposes of the top level code16 assembler
484   // flag.
485   if (!M.getModuleInlineAsm().empty() && TT.isThumb())
486     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
487 }
488 
489 static void
490 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
491                          MachineModuleInfoImpl::StubValueTy &MCSym) {
492   // L_foo$stub:
493   OutStreamer.EmitLabel(StubLabel);
494   //   .indirect_symbol _foo
495   OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
496 
497   if (MCSym.getInt())
498     // External to current translation unit.
499     OutStreamer.EmitIntValue(0, 4/*size*/);
500   else
501     // Internal to current translation unit.
502     //
503     // When we place the LSDA into the TEXT section, the type info
504     // pointers need to be indirect and pc-rel. We accomplish this by
505     // using NLPs; however, sometimes the types are local to the file.
506     // We need to fill in the value for the NLP in those cases.
507     OutStreamer.EmitValue(
508         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
509         4 /*size*/);
510 }
511 
512 
513 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
514   const Triple &TT = TM.getTargetTriple();
515   if (TT.isOSBinFormatMachO()) {
516     // All darwin targets use mach-o.
517     const TargetLoweringObjectFileMachO &TLOFMacho =
518       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
519     MachineModuleInfoMachO &MMIMacho =
520       MMI->getObjFileInfo<MachineModuleInfoMachO>();
521 
522     // Output non-lazy-pointers for external and common global variables.
523     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
524 
525     if (!Stubs.empty()) {
526       // Switch with ".non_lazy_symbol_pointer" directive.
527       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
528       EmitAlignment(2);
529 
530       for (auto &Stub : Stubs)
531         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
532 
533       Stubs.clear();
534       OutStreamer->AddBlankLine();
535     }
536 
537     Stubs = MMIMacho.GetThreadLocalGVStubList();
538     if (!Stubs.empty()) {
539       // Switch with ".non_lazy_symbol_pointer" directive.
540       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
541       EmitAlignment(2);
542 
543       for (auto &Stub : Stubs)
544         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
545 
546       Stubs.clear();
547       OutStreamer->AddBlankLine();
548     }
549 
550     // Funny Darwin hack: This flag tells the linker that no global symbols
551     // contain code that falls through to other global symbols (e.g. the obvious
552     // implementation of multiple entry points).  If this doesn't occur, the
553     // linker can safely perform dead code stripping.  Since LLVM never
554     // generates code that does this, it is always safe to set.
555     OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
556   }
557 
558   // The last attribute to be emitted is ABI_optimization_goals
559   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
560   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
561 
562   if (OptimizationGoals > 0 &&
563       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
564        Subtarget->isTargetMuslAEABI()))
565     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
566   OptimizationGoals = -1;
567 
568   ATS.finishAttributeSection();
569 }
570 
571 //===----------------------------------------------------------------------===//
572 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
573 // FIXME:
574 // The following seem like one-off assembler flags, but they actually need
575 // to appear in the .ARM.attributes section in ELF.
576 // Instead of subclassing the MCELFStreamer, we do the work here.
577 
578 // Returns true if all functions have the same function attribute value.
579 // It also returns true when the module has no functions.
580 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
581                                                StringRef Value) {
582   return !any_of(M, [&](const Function &F) {
583     return F.getFnAttribute(Attr).getValueAsString() != Value;
584   });
585 }
586 
587 void ARMAsmPrinter::emitAttributes() {
588   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
589   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
590 
591   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
592 
593   ATS.switchVendor("aeabi");
594 
595   // Compute ARM ELF Attributes based on the default subtarget that
596   // we'd have constructed. The existing ARM behavior isn't LTO clean
597   // anyhow.
598   // FIXME: For ifunc related functions we could iterate over and look
599   // for a feature string that doesn't match the default one.
600   const Triple &TT = TM.getTargetTriple();
601   StringRef CPU = TM.getTargetCPU();
602   StringRef FS = TM.getTargetFeatureString();
603   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
604   if (!FS.empty()) {
605     if (!ArchFS.empty())
606       ArchFS = (Twine(ArchFS) + "," + FS).str();
607     else
608       ArchFS = FS;
609   }
610   const ARMBaseTargetMachine &ATM =
611       static_cast<const ARMBaseTargetMachine &>(TM);
612   const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
613 
614   // Emit build attributes for the available hardware.
615   ATS.emitTargetAttributes(STI);
616 
617   // RW data addressing.
618   if (isPositionIndependent()) {
619     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
620                       ARMBuildAttrs::AddressRWPCRel);
621   } else if (STI.isRWPI()) {
622     // RWPI specific attributes.
623     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
624                       ARMBuildAttrs::AddressRWSBRel);
625   }
626 
627   // RO data addressing.
628   if (isPositionIndependent() || STI.isROPI()) {
629     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
630                       ARMBuildAttrs::AddressROPCRel);
631   }
632 
633   // GOT use.
634   if (isPositionIndependent()) {
635     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
636                       ARMBuildAttrs::AddressGOT);
637   } else {
638     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
639                       ARMBuildAttrs::AddressDirect);
640   }
641 
642   // Set FP Denormals.
643   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
644                                          "denormal-fp-math",
645                                          "preserve-sign") ||
646       TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
647     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
648                       ARMBuildAttrs::PreserveFPSign);
649   else if (checkFunctionsAttributeConsistency(*MMI->getModule(),
650                                               "denormal-fp-math",
651                                               "positive-zero") ||
652            TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
653     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
654                       ARMBuildAttrs::PositiveZero);
655   else if (!TM.Options.UnsafeFPMath)
656     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
657                       ARMBuildAttrs::IEEEDenormals);
658   else {
659     if (!STI.hasVFP2()) {
660       // When the target doesn't have an FPU (by design or
661       // intention), the assumptions made on the software support
662       // mirror that of the equivalent hardware support *if it
663       // existed*. For v7 and better we indicate that denormals are
664       // flushed preserving sign, and for V6 we indicate that
665       // denormals are flushed to positive zero.
666       if (STI.hasV7Ops())
667         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
668                           ARMBuildAttrs::PreserveFPSign);
669     } else if (STI.hasVFP3()) {
670       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
671       // the sign bit of the zero matches the sign bit of the input or
672       // result that is being flushed to zero.
673       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
674                         ARMBuildAttrs::PreserveFPSign);
675     }
676     // For VFPv2 implementations it is implementation defined as
677     // to whether denormals are flushed to positive zero or to
678     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
679     // LLVM has chosen to flush this to positive zero (most likely for
680     // GCC compatibility), so that's the chosen value here (the
681     // absence of its emission implies zero).
682   }
683 
684   // Set FP exceptions and rounding
685   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
686                                          "no-trapping-math", "true") ||
687       TM.Options.NoTrappingFPMath)
688     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
689                       ARMBuildAttrs::Not_Allowed);
690   else if (!TM.Options.UnsafeFPMath) {
691     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
692 
693     // If the user has permitted this code to choose the IEEE 754
694     // rounding at run-time, emit the rounding attribute.
695     if (TM.Options.HonorSignDependentRoundingFPMathOption)
696       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
697   }
698 
699   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
700   // equivalent of GCC's -ffinite-math-only flag.
701   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
702     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
703                       ARMBuildAttrs::Allowed);
704   else
705     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
706                       ARMBuildAttrs::AllowIEEE754);
707 
708   // FIXME: add more flags to ARMBuildAttributes.h
709   // 8-bytes alignment stuff.
710   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
711   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
712 
713   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
714   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
715     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
716 
717   // FIXME: To support emitting this build attribute as GCC does, the
718   // -mfp16-format option and associated plumbing must be
719   // supported. For now the __fp16 type is exposed by default, so this
720   // attribute should be emitted with value 1.
721   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
722                     ARMBuildAttrs::FP16FormatIEEE);
723 
724   if (MMI) {
725     if (const Module *SourceModule = MMI->getModule()) {
726       // ABI_PCS_wchar_t to indicate wchar_t width
727       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
728       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
729               SourceModule->getModuleFlag("wchar_size"))) {
730         int WCharWidth = WCharWidthValue->getZExtValue();
731         assert((WCharWidth == 2 || WCharWidth == 4) &&
732                "wchar_t width must be 2 or 4 bytes");
733         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
734       }
735 
736       // ABI_enum_size to indicate enum width
737       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
738       //        (all enums contain a value needing 32 bits to encode).
739       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
740               SourceModule->getModuleFlag("min_enum_size"))) {
741         int EnumWidth = EnumWidthValue->getZExtValue();
742         assert((EnumWidth == 1 || EnumWidth == 4) &&
743                "Minimum enum width must be 1 or 4 bytes");
744         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
745         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
746       }
747     }
748   }
749 
750   // We currently do not support using R9 as the TLS pointer.
751   if (STI.isRWPI())
752     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
753                       ARMBuildAttrs::R9IsSB);
754   else if (STI.isR9Reserved())
755     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
756                       ARMBuildAttrs::R9Reserved);
757   else
758     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
759                       ARMBuildAttrs::R9IsGPR);
760 }
761 
762 //===----------------------------------------------------------------------===//
763 
764 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
765                              unsigned LabelId, MCContext &Ctx) {
766 
767   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
768                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
769   return Label;
770 }
771 
772 static MCSymbolRefExpr::VariantKind
773 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
774   switch (Modifier) {
775   case ARMCP::no_modifier:
776     return MCSymbolRefExpr::VK_None;
777   case ARMCP::TLSGD:
778     return MCSymbolRefExpr::VK_TLSGD;
779   case ARMCP::TPOFF:
780     return MCSymbolRefExpr::VK_TPOFF;
781   case ARMCP::GOTTPOFF:
782     return MCSymbolRefExpr::VK_GOTTPOFF;
783   case ARMCP::SBREL:
784     return MCSymbolRefExpr::VK_ARM_SBREL;
785   case ARMCP::GOT_PREL:
786     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
787   case ARMCP::SECREL:
788     return MCSymbolRefExpr::VK_SECREL;
789   }
790   llvm_unreachable("Invalid ARMCPModifier!");
791 }
792 
793 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
794                                         unsigned char TargetFlags) {
795   if (Subtarget->isTargetMachO()) {
796     bool IsIndirect =
797         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
798 
799     if (!IsIndirect)
800       return getSymbol(GV);
801 
802     // FIXME: Remove this when Darwin transition to @GOT like syntax.
803     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
804     MachineModuleInfoMachO &MMIMachO =
805       MMI->getObjFileInfo<MachineModuleInfoMachO>();
806     MachineModuleInfoImpl::StubValueTy &StubSym =
807         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
808                             : MMIMachO.getGVStubEntry(MCSym);
809 
810     if (!StubSym.getPointer())
811       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
812                                                    !GV->hasInternalLinkage());
813     return MCSym;
814   } else if (Subtarget->isTargetCOFF()) {
815     assert(Subtarget->isTargetWindows() &&
816            "Windows is the only supported COFF target");
817 
818     bool IsIndirect =
819         (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
820     if (!IsIndirect)
821       return getSymbol(GV);
822 
823     SmallString<128> Name;
824     if (TargetFlags & ARMII::MO_DLLIMPORT)
825       Name = "__imp_";
826     else if (TargetFlags & ARMII::MO_COFFSTUB)
827       Name = ".refptr.";
828     getNameWithPrefix(Name, GV);
829 
830     MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);
831 
832     if (TargetFlags & ARMII::MO_COFFSTUB) {
833       MachineModuleInfoCOFF &MMICOFF =
834           MMI->getObjFileInfo<MachineModuleInfoCOFF>();
835       MachineModuleInfoImpl::StubValueTy &StubSym =
836           MMICOFF.getGVStubEntry(MCSym);
837 
838       if (!StubSym.getPointer())
839         StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
840     }
841 
842     return MCSym;
843   } else if (Subtarget->isTargetELF()) {
844     return getSymbol(GV);
845   }
846   llvm_unreachable("unexpected target");
847 }
848 
849 void ARMAsmPrinter::
850 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
851   const DataLayout &DL = getDataLayout();
852   int Size = DL.getTypeAllocSize(MCPV->getType());
853 
854   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
855 
856   if (ACPV->isPromotedGlobal()) {
857     // This constant pool entry is actually a global whose storage has been
858     // promoted into the constant pool. This global may be referenced still
859     // by debug information, and due to the way AsmPrinter is set up, the debug
860     // info is immutable by the time we decide to promote globals to constant
861     // pools. Because of this, we need to ensure we emit a symbol for the global
862     // with private linkage (the default) so debug info can refer to it.
863     //
864     // However, if this global is promoted into several functions we must ensure
865     // we don't try and emit duplicate symbols!
866     auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
867     for (const auto *GV : ACPC->promotedGlobals()) {
868       if (!EmittedPromotedGlobalLabels.count(GV)) {
869         MCSymbol *GVSym = getSymbol(GV);
870         OutStreamer->EmitLabel(GVSym);
871         EmittedPromotedGlobalLabels.insert(GV);
872       }
873     }
874     return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
875   }
876 
877   MCSymbol *MCSym;
878   if (ACPV->isLSDA()) {
879     MCSym = getCurExceptionSym();
880   } else if (ACPV->isBlockAddress()) {
881     const BlockAddress *BA =
882       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
883     MCSym = GetBlockAddressSymbol(BA);
884   } else if (ACPV->isGlobalValue()) {
885     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
886 
887     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
888     // flag the global as MO_NONLAZY.
889     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
890     MCSym = GetARMGVSymbol(GV, TF);
891   } else if (ACPV->isMachineBasicBlock()) {
892     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
893     MCSym = MBB->getSymbol();
894   } else {
895     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
896     auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
897     MCSym = GetExternalSymbolSymbol(Sym);
898   }
899 
900   // Create an MCSymbol for the reference.
901   const MCExpr *Expr =
902     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
903                             OutContext);
904 
905   if (ACPV->getPCAdjustment()) {
906     MCSymbol *PCLabel =
907         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
908                     ACPV->getLabelId(), OutContext);
909     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
910     PCRelExpr =
911       MCBinaryExpr::createAdd(PCRelExpr,
912                               MCConstantExpr::create(ACPV->getPCAdjustment(),
913                                                      OutContext),
914                               OutContext);
915     if (ACPV->mustAddCurrentAddress()) {
916       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
917       // label, so just emit a local label end reference that instead.
918       MCSymbol *DotSym = OutContext.createTempSymbol();
919       OutStreamer->EmitLabel(DotSym);
920       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
921       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
922     }
923     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
924   }
925   OutStreamer->EmitValue(Expr, Size);
926 }
927 
928 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
929   const MachineOperand &MO1 = MI->getOperand(1);
930   unsigned JTI = MO1.getIndex();
931 
932   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
933   // ARM mode tables.
934   EmitAlignment(2);
935 
936   // Emit a label for the jump table.
937   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
938   OutStreamer->EmitLabel(JTISymbol);
939 
940   // Mark the jump table as data-in-code.
941   OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
942 
943   // Emit each entry of the table.
944   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
945   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
946   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
947 
948   for (MachineBasicBlock *MBB : JTBBs) {
949     // Construct an MCExpr for the entry. We want a value of the form:
950     // (BasicBlockAddr - TableBeginAddr)
951     //
952     // For example, a table with entries jumping to basic blocks BB0 and BB1
953     // would look like:
954     // LJTI_0_0:
955     //    .word (LBB0 - LJTI_0_0)
956     //    .word (LBB1 - LJTI_0_0)
957     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
958 
959     if (isPositionIndependent() || Subtarget->isROPI())
960       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
961                                                                    OutContext),
962                                      OutContext);
963     // If we're generating a table of Thumb addresses in static relocation
964     // model, we need to add one to keep interworking correctly.
965     else if (AFI->isThumbFunction())
966       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
967                                      OutContext);
968     OutStreamer->EmitValue(Expr, 4);
969   }
970   // Mark the end of jump table data-in-code region.
971   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
972 }
973 
974 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
975   const MachineOperand &MO1 = MI->getOperand(1);
976   unsigned JTI = MO1.getIndex();
977 
978   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
979   // ARM mode tables.
980   EmitAlignment(2);
981 
982   // Emit a label for the jump table.
983   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
984   OutStreamer->EmitLabel(JTISymbol);
985 
986   // Emit each entry of the table.
987   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
988   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
989   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
990 
991   for (MachineBasicBlock *MBB : JTBBs) {
992     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
993                                                           OutContext);
994     // If this isn't a TBB or TBH, the entries are direct branch instructions.
995     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
996         .addExpr(MBBSymbolExpr)
997         .addImm(ARMCC::AL)
998         .addReg(0));
999   }
1000 }
1001 
1002 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1003                                         unsigned OffsetWidth) {
1004   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1005   const MachineOperand &MO1 = MI->getOperand(1);
1006   unsigned JTI = MO1.getIndex();
1007 
1008   if (Subtarget->isThumb1Only())
1009     EmitAlignment(2);
1010 
1011   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1012   OutStreamer->EmitLabel(JTISymbol);
1013 
1014   // Emit each entry of the table.
1015   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1016   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1017   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1018 
1019   // Mark the jump table as data-in-code.
1020   OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1021                                                : MCDR_DataRegionJT16);
1022 
1023   for (auto MBB : JTBBs) {
1024     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1025                                                           OutContext);
1026     // Otherwise it's an offset from the dispatch instruction. Construct an
1027     // MCExpr for the entry. We want a value of the form:
1028     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1029     //
1030     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1031     // would look like:
1032     // LJTI_0_0:
1033     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1034     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1035     // where LCPI0_0 is a label defined just before the TBB instruction using
1036     // this table.
1037     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1038     const MCExpr *Expr = MCBinaryExpr::createAdd(
1039         MCSymbolRefExpr::create(TBInstPC, OutContext),
1040         MCConstantExpr::create(4, OutContext), OutContext);
1041     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1042     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1043                                    OutContext);
1044     OutStreamer->EmitValue(Expr, OffsetWidth);
1045   }
1046   // Mark the end of jump table data-in-code region. 32-bit offsets use
1047   // actual branch instructions here, so we don't mark those as a data-region
1048   // at all.
1049   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1050 
1051   // Make sure the next instruction is 2-byte aligned.
1052   EmitAlignment(1);
1053 }
1054 
1055 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1056   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1057       "Only instruction which are involved into frame setup code are allowed");
1058 
1059   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1060   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1061   const MachineFunction &MF = *MI->getParent()->getParent();
1062   const TargetRegisterInfo *TargetRegInfo =
1063     MF.getSubtarget().getRegisterInfo();
1064   const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();
1065   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1066 
1067   unsigned FramePtr = TargetRegInfo->getFrameRegister(MF);
1068   unsigned Opc = MI->getOpcode();
1069   unsigned SrcReg, DstReg;
1070 
1071   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1072     // Two special cases:
1073     // 1) tPUSH does not have src/dst regs.
1074     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1075     // load. Yes, this is pretty fragile, but for now I don't see better
1076     // way... :(
1077     SrcReg = DstReg = ARM::SP;
1078   } else {
1079     SrcReg = MI->getOperand(1).getReg();
1080     DstReg = MI->getOperand(0).getReg();
1081   }
1082 
1083   // Try to figure out the unwinding opcode out of src / dst regs.
1084   if (MI->mayStore()) {
1085     // Register saves.
1086     assert(DstReg == ARM::SP &&
1087            "Only stack pointer as a destination reg is supported");
1088 
1089     SmallVector<unsigned, 4> RegList;
1090     // Skip src & dst reg, and pred ops.
1091     unsigned StartOp = 2 + 2;
1092     // Use all the operands.
1093     unsigned NumOffset = 0;
1094     // Amount of SP adjustment folded into a push.
1095     unsigned Pad = 0;
1096 
1097     switch (Opc) {
1098     default:
1099       MI->print(errs());
1100       llvm_unreachable("Unsupported opcode for unwinding information");
1101     case ARM::tPUSH:
1102       // Special case here: no src & dst reg, but two extra imp ops.
1103       StartOp = 2; NumOffset = 2;
1104       LLVM_FALLTHROUGH;
1105     case ARM::STMDB_UPD:
1106     case ARM::t2STMDB_UPD:
1107     case ARM::VSTMDDB_UPD:
1108       assert(SrcReg == ARM::SP &&
1109              "Only stack pointer as a source reg is supported");
1110       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1111            i != NumOps; ++i) {
1112         const MachineOperand &MO = MI->getOperand(i);
1113         // Actually, there should never be any impdef stuff here. Skip it
1114         // temporary to workaround PR11902.
1115         if (MO.isImplicit())
1116           continue;
1117         // Registers, pushed as a part of folding an SP update into the
1118         // push instruction are marked as undef and should not be
1119         // restored when unwinding, because the function can modify the
1120         // corresponding stack slots.
1121         if (MO.isUndef()) {
1122           assert(RegList.empty() &&
1123                  "Pad registers must come before restored ones");
1124           unsigned Width =
1125             TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
1126           Pad += Width;
1127           continue;
1128         }
1129         RegList.push_back(MO.getReg());
1130       }
1131       break;
1132     case ARM::STR_PRE_IMM:
1133     case ARM::STR_PRE_REG:
1134     case ARM::t2STR_PRE:
1135       assert(MI->getOperand(2).getReg() == ARM::SP &&
1136              "Only stack pointer as a source reg is supported");
1137       RegList.push_back(SrcReg);
1138       break;
1139     }
1140     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1141       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1142       // Account for the SP adjustment, folded into the push.
1143       if (Pad)
1144         ATS.emitPad(Pad);
1145     }
1146   } else {
1147     // Changes of stack / frame pointer.
1148     if (SrcReg == ARM::SP) {
1149       int64_t Offset = 0;
1150       switch (Opc) {
1151       default:
1152         MI->print(errs());
1153         llvm_unreachable("Unsupported opcode for unwinding information");
1154       case ARM::MOVr:
1155       case ARM::tMOVr:
1156         Offset = 0;
1157         break;
1158       case ARM::ADDri:
1159       case ARM::t2ADDri:
1160         Offset = -MI->getOperand(2).getImm();
1161         break;
1162       case ARM::SUBri:
1163       case ARM::t2SUBri:
1164         Offset = MI->getOperand(2).getImm();
1165         break;
1166       case ARM::tSUBspi:
1167         Offset = MI->getOperand(2).getImm()*4;
1168         break;
1169       case ARM::tADDspi:
1170       case ARM::tADDrSPi:
1171         Offset = -MI->getOperand(2).getImm()*4;
1172         break;
1173       case ARM::tLDRpci: {
1174         // Grab the constpool index and check, whether it corresponds to
1175         // original or cloned constpool entry.
1176         unsigned CPI = MI->getOperand(1).getIndex();
1177         const MachineConstantPool *MCP = MF.getConstantPool();
1178         if (CPI >= MCP->getConstants().size())
1179           CPI = AFI.getOriginalCPIdx(CPI);
1180         assert(CPI != -1U && "Invalid constpool index");
1181 
1182         // Derive the actual offset.
1183         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1184         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1185         // FIXME: Check for user, it should be "add" instruction!
1186         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1187         break;
1188       }
1189       }
1190 
1191       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1192         if (DstReg == FramePtr && FramePtr != ARM::SP)
1193           // Set-up of the frame pointer. Positive values correspond to "add"
1194           // instruction.
1195           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1196         else if (DstReg == ARM::SP) {
1197           // Change of SP by an offset. Positive values correspond to "sub"
1198           // instruction.
1199           ATS.emitPad(Offset);
1200         } else {
1201           // Move of SP to a register.  Positive values correspond to an "add"
1202           // instruction.
1203           ATS.emitMovSP(DstReg, -Offset);
1204         }
1205       }
1206     } else if (DstReg == ARM::SP) {
1207       MI->print(errs());
1208       llvm_unreachable("Unsupported opcode for unwinding information");
1209     }
1210     else {
1211       MI->print(errs());
1212       llvm_unreachable("Unsupported opcode for unwinding information");
1213     }
1214   }
1215 }
1216 
1217 // Simple pseudo-instructions have their lowering (with expansion to real
1218 // instructions) auto-generated.
1219 #include "ARMGenMCPseudoLowering.inc"
1220 
1221 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1222   const DataLayout &DL = getDataLayout();
1223   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1224   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1225 
1226   const MachineFunction &MF = *MI->getParent()->getParent();
1227   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
1228   unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
1229 
1230   // If we just ended a constant pool, mark it as such.
1231   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1232     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1233     InConstantPool = false;
1234   }
1235 
1236   // Emit unwinding stuff for frame-related instructions
1237   if (Subtarget->isTargetEHABICompatible() &&
1238        MI->getFlag(MachineInstr::FrameSetup))
1239     EmitUnwindingInstruction(MI);
1240 
1241   // Do any auto-generated pseudo lowerings.
1242   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1243     return;
1244 
1245   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1246          "Pseudo flag setting opcode should be expanded early");
1247 
1248   // Check for manual lowerings.
1249   unsigned Opc = MI->getOpcode();
1250   switch (Opc) {
1251   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1252   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1253   case ARM::LEApcrel:
1254   case ARM::tLEApcrel:
1255   case ARM::t2LEApcrel: {
1256     // FIXME: Need to also handle globals and externals
1257     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1258     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1259                                                ARM::t2LEApcrel ? ARM::t2ADR
1260                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1261                      : ARM::ADR))
1262       .addReg(MI->getOperand(0).getReg())
1263       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1264       // Add predicate operands.
1265       .addImm(MI->getOperand(2).getImm())
1266       .addReg(MI->getOperand(3).getReg()));
1267     return;
1268   }
1269   case ARM::LEApcrelJT:
1270   case ARM::tLEApcrelJT:
1271   case ARM::t2LEApcrelJT: {
1272     MCSymbol *JTIPICSymbol =
1273       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1274     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1275                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1276                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1277                      : ARM::ADR))
1278       .addReg(MI->getOperand(0).getReg())
1279       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1280       // Add predicate operands.
1281       .addImm(MI->getOperand(2).getImm())
1282       .addReg(MI->getOperand(3).getReg()));
1283     return;
1284   }
1285   // Darwin call instructions are just normal call instructions with different
1286   // clobber semantics (they clobber R9).
1287   case ARM::BX_CALL: {
1288     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1289       .addReg(ARM::LR)
1290       .addReg(ARM::PC)
1291       // Add predicate operands.
1292       .addImm(ARMCC::AL)
1293       .addReg(0)
1294       // Add 's' bit operand (always reg0 for this)
1295       .addReg(0));
1296 
1297     assert(Subtarget->hasV4TOps());
1298     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1299       .addReg(MI->getOperand(0).getReg()));
1300     return;
1301   }
1302   case ARM::tBX_CALL: {
1303     if (Subtarget->hasV5TOps())
1304       llvm_unreachable("Expected BLX to be selected for v5t+");
1305 
1306     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1307     // that the saved lr has its LSB set correctly (the arch doesn't
1308     // have blx).
1309     // So here we generate a bl to a small jump pad that does bx rN.
1310     // The jump pads are emitted after the function body.
1311 
1312     unsigned TReg = MI->getOperand(0).getReg();
1313     MCSymbol *TRegSym = nullptr;
1314     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
1315       if (TIP.first == TReg) {
1316         TRegSym = TIP.second;
1317         break;
1318       }
1319     }
1320 
1321     if (!TRegSym) {
1322       TRegSym = OutContext.createTempSymbol();
1323       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1324     }
1325 
1326     // Create a link-saving branch to the Reg Indirect Jump Pad.
1327     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1328         // Predicate comes first here.
1329         .addImm(ARMCC::AL).addReg(0)
1330         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1331     return;
1332   }
1333   case ARM::BMOVPCRX_CALL: {
1334     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1335       .addReg(ARM::LR)
1336       .addReg(ARM::PC)
1337       // Add predicate operands.
1338       .addImm(ARMCC::AL)
1339       .addReg(0)
1340       // Add 's' bit operand (always reg0 for this)
1341       .addReg(0));
1342 
1343     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1344       .addReg(ARM::PC)
1345       .addReg(MI->getOperand(0).getReg())
1346       // Add predicate operands.
1347       .addImm(ARMCC::AL)
1348       .addReg(0)
1349       // Add 's' bit operand (always reg0 for this)
1350       .addReg(0));
1351     return;
1352   }
1353   case ARM::BMOVPCB_CALL: {
1354     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1355       .addReg(ARM::LR)
1356       .addReg(ARM::PC)
1357       // Add predicate operands.
1358       .addImm(ARMCC::AL)
1359       .addReg(0)
1360       // Add 's' bit operand (always reg0 for this)
1361       .addReg(0));
1362 
1363     const MachineOperand &Op = MI->getOperand(0);
1364     const GlobalValue *GV = Op.getGlobal();
1365     const unsigned TF = Op.getTargetFlags();
1366     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1367     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1368     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1369       .addExpr(GVSymExpr)
1370       // Add predicate operands.
1371       .addImm(ARMCC::AL)
1372       .addReg(0));
1373     return;
1374   }
1375   case ARM::MOVi16_ga_pcrel:
1376   case ARM::t2MOVi16_ga_pcrel: {
1377     MCInst TmpInst;
1378     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1379     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1380 
1381     unsigned TF = MI->getOperand(1).getTargetFlags();
1382     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1383     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1384     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1385 
1386     MCSymbol *LabelSym =
1387         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1388                     MI->getOperand(2).getImm(), OutContext);
1389     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1390     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1391     const MCExpr *PCRelExpr =
1392       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1393                                       MCBinaryExpr::createAdd(LabelSymExpr,
1394                                       MCConstantExpr::create(PCAdj, OutContext),
1395                                       OutContext), OutContext), OutContext);
1396       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1397 
1398     // Add predicate operands.
1399     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1400     TmpInst.addOperand(MCOperand::createReg(0));
1401     // Add 's' bit operand (always reg0 for this)
1402     TmpInst.addOperand(MCOperand::createReg(0));
1403     EmitToStreamer(*OutStreamer, TmpInst);
1404     return;
1405   }
1406   case ARM::MOVTi16_ga_pcrel:
1407   case ARM::t2MOVTi16_ga_pcrel: {
1408     MCInst TmpInst;
1409     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1410                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1411     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1412     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1413 
1414     unsigned TF = MI->getOperand(2).getTargetFlags();
1415     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1416     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1417     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1418 
1419     MCSymbol *LabelSym =
1420         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1421                     MI->getOperand(3).getImm(), OutContext);
1422     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1423     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1424     const MCExpr *PCRelExpr =
1425         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1426                                    MCBinaryExpr::createAdd(LabelSymExpr,
1427                                       MCConstantExpr::create(PCAdj, OutContext),
1428                                           OutContext), OutContext), OutContext);
1429       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1430     // Add predicate operands.
1431     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1432     TmpInst.addOperand(MCOperand::createReg(0));
1433     // Add 's' bit operand (always reg0 for this)
1434     TmpInst.addOperand(MCOperand::createReg(0));
1435     EmitToStreamer(*OutStreamer, TmpInst);
1436     return;
1437   }
1438   case ARM::tPICADD: {
1439     // This is a pseudo op for a label + instruction sequence, which looks like:
1440     // LPC0:
1441     //     add r0, pc
1442     // This adds the address of LPC0 to r0.
1443 
1444     // Emit the label.
1445     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1446                                        getFunctionNumber(),
1447                                        MI->getOperand(2).getImm(), OutContext));
1448 
1449     // Form and emit the add.
1450     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1451       .addReg(MI->getOperand(0).getReg())
1452       .addReg(MI->getOperand(0).getReg())
1453       .addReg(ARM::PC)
1454       // Add predicate operands.
1455       .addImm(ARMCC::AL)
1456       .addReg(0));
1457     return;
1458   }
1459   case ARM::PICADD: {
1460     // This is a pseudo op for a label + instruction sequence, which looks like:
1461     // LPC0:
1462     //     add r0, pc, r0
1463     // This adds the address of LPC0 to r0.
1464 
1465     // Emit the label.
1466     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1467                                        getFunctionNumber(),
1468                                        MI->getOperand(2).getImm(), OutContext));
1469 
1470     // Form and emit the add.
1471     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1472       .addReg(MI->getOperand(0).getReg())
1473       .addReg(ARM::PC)
1474       .addReg(MI->getOperand(1).getReg())
1475       // Add predicate operands.
1476       .addImm(MI->getOperand(3).getImm())
1477       .addReg(MI->getOperand(4).getReg())
1478       // Add 's' bit operand (always reg0 for this)
1479       .addReg(0));
1480     return;
1481   }
1482   case ARM::PICSTR:
1483   case ARM::PICSTRB:
1484   case ARM::PICSTRH:
1485   case ARM::PICLDR:
1486   case ARM::PICLDRB:
1487   case ARM::PICLDRH:
1488   case ARM::PICLDRSB:
1489   case ARM::PICLDRSH: {
1490     // This is a pseudo op for a label + instruction sequence, which looks like:
1491     // LPC0:
1492     //     OP r0, [pc, r0]
1493     // The LCP0 label is referenced by a constant pool entry in order to get
1494     // a PC-relative address at the ldr instruction.
1495 
1496     // Emit the label.
1497     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1498                                        getFunctionNumber(),
1499                                        MI->getOperand(2).getImm(), OutContext));
1500 
1501     // Form and emit the load
1502     unsigned Opcode;
1503     switch (MI->getOpcode()) {
1504     default:
1505       llvm_unreachable("Unexpected opcode!");
1506     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1507     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1508     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1509     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1510     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1511     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1512     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1513     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1514     }
1515     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1516       .addReg(MI->getOperand(0).getReg())
1517       .addReg(ARM::PC)
1518       .addReg(MI->getOperand(1).getReg())
1519       .addImm(0)
1520       // Add predicate operands.
1521       .addImm(MI->getOperand(3).getImm())
1522       .addReg(MI->getOperand(4).getReg()));
1523 
1524     return;
1525   }
1526   case ARM::CONSTPOOL_ENTRY: {
1527     if (Subtarget->genExecuteOnly())
1528       llvm_unreachable("execute-only should not generate constant pools");
1529 
1530     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1531     /// in the function.  The first operand is the ID# for this instruction, the
1532     /// second is the index into the MachineConstantPool that this is, the third
1533     /// is the size in bytes of this constant pool entry.
1534     /// The required alignment is specified on the basic block holding this MI.
1535     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1536     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1537 
1538     // If this is the first entry of the pool, mark it.
1539     if (!InConstantPool) {
1540       OutStreamer->EmitDataRegion(MCDR_DataRegion);
1541       InConstantPool = true;
1542     }
1543 
1544     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1545 
1546     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1547     if (MCPE.isMachineConstantPoolEntry())
1548       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1549     else
1550       EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1551     return;
1552   }
1553   case ARM::JUMPTABLE_ADDRS:
1554     EmitJumpTableAddrs(MI);
1555     return;
1556   case ARM::JUMPTABLE_INSTS:
1557     EmitJumpTableInsts(MI);
1558     return;
1559   case ARM::JUMPTABLE_TBB:
1560   case ARM::JUMPTABLE_TBH:
1561     EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1562     return;
1563   case ARM::t2BR_JT: {
1564     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1565       .addReg(ARM::PC)
1566       .addReg(MI->getOperand(0).getReg())
1567       // Add predicate operands.
1568       .addImm(ARMCC::AL)
1569       .addReg(0));
1570     return;
1571   }
1572   case ARM::t2TBB_JT:
1573   case ARM::t2TBH_JT: {
1574     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1575     // Lower and emit the PC label, then the instruction itself.
1576     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1577     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1578                                      .addReg(MI->getOperand(0).getReg())
1579                                      .addReg(MI->getOperand(1).getReg())
1580                                      // Add predicate operands.
1581                                      .addImm(ARMCC::AL)
1582                                      .addReg(0));
1583     return;
1584   }
1585   case ARM::tTBB_JT:
1586   case ARM::tTBH_JT: {
1587 
1588     bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1589     unsigned Base = MI->getOperand(0).getReg();
1590     unsigned Idx = MI->getOperand(1).getReg();
1591     assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1592 
1593     // Multiply up idx if necessary.
1594     if (!Is8Bit)
1595       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1596                                        .addReg(Idx)
1597                                        .addReg(ARM::CPSR)
1598                                        .addReg(Idx)
1599                                        .addImm(1)
1600                                        // Add predicate operands.
1601                                        .addImm(ARMCC::AL)
1602                                        .addReg(0));
1603 
1604     if (Base == ARM::PC) {
1605       // TBB [base, idx] =
1606       //    ADDS idx, idx, base
1607       //    LDRB idx, [idx, #4] ; or LDRH if TBH
1608       //    LSLS idx, #1
1609       //    ADDS pc, pc, idx
1610 
1611       // When using PC as the base, it's important that there is no padding
1612       // between the last ADDS and the start of the jump table. The jump table
1613       // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1614       //
1615       // FIXME: Ideally we could vary the LDRB index based on the padding
1616       // between the sequence and jump table, however that relies on MCExprs
1617       // for load indexes which are currently not supported.
1618       OutStreamer->EmitCodeAlignment(4);
1619       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1620                                        .addReg(Idx)
1621                                        .addReg(Idx)
1622                                        .addReg(Base)
1623                                        // Add predicate operands.
1624                                        .addImm(ARMCC::AL)
1625                                        .addReg(0));
1626 
1627       unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1628       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1629                                        .addReg(Idx)
1630                                        .addReg(Idx)
1631                                        .addImm(Is8Bit ? 4 : 2)
1632                                        // Add predicate operands.
1633                                        .addImm(ARMCC::AL)
1634                                        .addReg(0));
1635     } else {
1636       // TBB [base, idx] =
1637       //    LDRB idx, [base, idx] ; or LDRH if TBH
1638       //    LSLS idx, #1
1639       //    ADDS pc, pc, idx
1640 
1641       unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1642       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1643                                        .addReg(Idx)
1644                                        .addReg(Base)
1645                                        .addReg(Idx)
1646                                        // Add predicate operands.
1647                                        .addImm(ARMCC::AL)
1648                                        .addReg(0));
1649     }
1650 
1651     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1652                                      .addReg(Idx)
1653                                      .addReg(ARM::CPSR)
1654                                      .addReg(Idx)
1655                                      .addImm(1)
1656                                      // Add predicate operands.
1657                                      .addImm(ARMCC::AL)
1658                                      .addReg(0));
1659 
1660     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1661     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1662                                      .addReg(ARM::PC)
1663                                      .addReg(ARM::PC)
1664                                      .addReg(Idx)
1665                                      // Add predicate operands.
1666                                      .addImm(ARMCC::AL)
1667                                      .addReg(0));
1668     return;
1669   }
1670   case ARM::tBR_JTr:
1671   case ARM::BR_JTr: {
1672     // mov pc, target
1673     MCInst TmpInst;
1674     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1675       ARM::MOVr : ARM::tMOVr;
1676     TmpInst.setOpcode(Opc);
1677     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1678     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1679     // Add predicate operands.
1680     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1681     TmpInst.addOperand(MCOperand::createReg(0));
1682     // Add 's' bit operand (always reg0 for this)
1683     if (Opc == ARM::MOVr)
1684       TmpInst.addOperand(MCOperand::createReg(0));
1685     EmitToStreamer(*OutStreamer, TmpInst);
1686     return;
1687   }
1688   case ARM::BR_JTm_i12: {
1689     // ldr pc, target
1690     MCInst TmpInst;
1691     TmpInst.setOpcode(ARM::LDRi12);
1692     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1693     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1694     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1695     // Add predicate operands.
1696     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1697     TmpInst.addOperand(MCOperand::createReg(0));
1698     EmitToStreamer(*OutStreamer, TmpInst);
1699     return;
1700   }
1701   case ARM::BR_JTm_rs: {
1702     // ldr pc, target
1703     MCInst TmpInst;
1704     TmpInst.setOpcode(ARM::LDRrs);
1705     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1706     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1707     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1708     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1709     // Add predicate operands.
1710     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1711     TmpInst.addOperand(MCOperand::createReg(0));
1712     EmitToStreamer(*OutStreamer, TmpInst);
1713     return;
1714   }
1715   case ARM::BR_JTadd: {
1716     // add pc, target, idx
1717     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1718       .addReg(ARM::PC)
1719       .addReg(MI->getOperand(0).getReg())
1720       .addReg(MI->getOperand(1).getReg())
1721       // Add predicate operands.
1722       .addImm(ARMCC::AL)
1723       .addReg(0)
1724       // Add 's' bit operand (always reg0 for this)
1725       .addReg(0));
1726     return;
1727   }
1728   case ARM::SPACE:
1729     OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1730     return;
1731   case ARM::TRAP: {
1732     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1733     // FIXME: Remove this special case when they do.
1734     if (!Subtarget->isTargetMachO()) {
1735       uint32_t Val = 0xe7ffdefeUL;
1736       OutStreamer->AddComment("trap");
1737       ATS.emitInst(Val);
1738       return;
1739     }
1740     break;
1741   }
1742   case ARM::TRAPNaCl: {
1743     uint32_t Val = 0xe7fedef0UL;
1744     OutStreamer->AddComment("trap");
1745     ATS.emitInst(Val);
1746     return;
1747   }
1748   case ARM::tTRAP: {
1749     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1750     // FIXME: Remove this special case when they do.
1751     if (!Subtarget->isTargetMachO()) {
1752       uint16_t Val = 0xdefe;
1753       OutStreamer->AddComment("trap");
1754       ATS.emitInst(Val, 'n');
1755       return;
1756     }
1757     break;
1758   }
1759   case ARM::t2Int_eh_sjlj_setjmp:
1760   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1761   case ARM::tInt_eh_sjlj_setjmp: {
1762     // Two incoming args: GPR:$src, GPR:$val
1763     // mov $val, pc
1764     // adds $val, #7
1765     // str $val, [$src, #4]
1766     // movs r0, #0
1767     // b LSJLJEH
1768     // movs r0, #1
1769     // LSJLJEH:
1770     unsigned SrcReg = MI->getOperand(0).getReg();
1771     unsigned ValReg = MI->getOperand(1).getReg();
1772     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1773     OutStreamer->AddComment("eh_setjmp begin");
1774     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1775       .addReg(ValReg)
1776       .addReg(ARM::PC)
1777       // Predicate.
1778       .addImm(ARMCC::AL)
1779       .addReg(0));
1780 
1781     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1782       .addReg(ValReg)
1783       // 's' bit operand
1784       .addReg(ARM::CPSR)
1785       .addReg(ValReg)
1786       .addImm(7)
1787       // Predicate.
1788       .addImm(ARMCC::AL)
1789       .addReg(0));
1790 
1791     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1792       .addReg(ValReg)
1793       .addReg(SrcReg)
1794       // The offset immediate is #4. The operand value is scaled by 4 for the
1795       // tSTR instruction.
1796       .addImm(1)
1797       // Predicate.
1798       .addImm(ARMCC::AL)
1799       .addReg(0));
1800 
1801     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1802       .addReg(ARM::R0)
1803       .addReg(ARM::CPSR)
1804       .addImm(0)
1805       // Predicate.
1806       .addImm(ARMCC::AL)
1807       .addReg(0));
1808 
1809     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1810     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1811       .addExpr(SymbolExpr)
1812       .addImm(ARMCC::AL)
1813       .addReg(0));
1814 
1815     OutStreamer->AddComment("eh_setjmp end");
1816     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1817       .addReg(ARM::R0)
1818       .addReg(ARM::CPSR)
1819       .addImm(1)
1820       // Predicate.
1821       .addImm(ARMCC::AL)
1822       .addReg(0));
1823 
1824     OutStreamer->EmitLabel(Label);
1825     return;
1826   }
1827 
1828   case ARM::Int_eh_sjlj_setjmp_nofp:
1829   case ARM::Int_eh_sjlj_setjmp: {
1830     // Two incoming args: GPR:$src, GPR:$val
1831     // add $val, pc, #8
1832     // str $val, [$src, #+4]
1833     // mov r0, #0
1834     // add pc, pc, #0
1835     // mov r0, #1
1836     unsigned SrcReg = MI->getOperand(0).getReg();
1837     unsigned ValReg = MI->getOperand(1).getReg();
1838 
1839     OutStreamer->AddComment("eh_setjmp begin");
1840     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1841       .addReg(ValReg)
1842       .addReg(ARM::PC)
1843       .addImm(8)
1844       // Predicate.
1845       .addImm(ARMCC::AL)
1846       .addReg(0)
1847       // 's' bit operand (always reg0 for this).
1848       .addReg(0));
1849 
1850     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1851       .addReg(ValReg)
1852       .addReg(SrcReg)
1853       .addImm(4)
1854       // Predicate.
1855       .addImm(ARMCC::AL)
1856       .addReg(0));
1857 
1858     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1859       .addReg(ARM::R0)
1860       .addImm(0)
1861       // Predicate.
1862       .addImm(ARMCC::AL)
1863       .addReg(0)
1864       // 's' bit operand (always reg0 for this).
1865       .addReg(0));
1866 
1867     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1868       .addReg(ARM::PC)
1869       .addReg(ARM::PC)
1870       .addImm(0)
1871       // Predicate.
1872       .addImm(ARMCC::AL)
1873       .addReg(0)
1874       // 's' bit operand (always reg0 for this).
1875       .addReg(0));
1876 
1877     OutStreamer->AddComment("eh_setjmp end");
1878     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1879       .addReg(ARM::R0)
1880       .addImm(1)
1881       // Predicate.
1882       .addImm(ARMCC::AL)
1883       .addReg(0)
1884       // 's' bit operand (always reg0 for this).
1885       .addReg(0));
1886     return;
1887   }
1888   case ARM::Int_eh_sjlj_longjmp: {
1889     // ldr sp, [$src, #8]
1890     // ldr $scratch, [$src, #4]
1891     // ldr r7, [$src]
1892     // bx $scratch
1893     unsigned SrcReg = MI->getOperand(0).getReg();
1894     unsigned ScratchReg = MI->getOperand(1).getReg();
1895     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1896       .addReg(ARM::SP)
1897       .addReg(SrcReg)
1898       .addImm(8)
1899       // Predicate.
1900       .addImm(ARMCC::AL)
1901       .addReg(0));
1902 
1903     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1904       .addReg(ScratchReg)
1905       .addReg(SrcReg)
1906       .addImm(4)
1907       // Predicate.
1908       .addImm(ARMCC::AL)
1909       .addReg(0));
1910 
1911     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
1912       // These platforms always use the same frame register
1913       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1914         .addReg(FramePtr)
1915         .addReg(SrcReg)
1916         .addImm(0)
1917         // Predicate.
1918         .addImm(ARMCC::AL)
1919         .addReg(0));
1920     } else {
1921       // If the calling code might use either R7 or R11 as
1922       // frame pointer register, restore it into both.
1923       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1924         .addReg(ARM::R7)
1925         .addReg(SrcReg)
1926         .addImm(0)
1927         // Predicate.
1928         .addImm(ARMCC::AL)
1929         .addReg(0));
1930       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1931         .addReg(ARM::R11)
1932         .addReg(SrcReg)
1933         .addImm(0)
1934         // Predicate.
1935         .addImm(ARMCC::AL)
1936         .addReg(0));
1937     }
1938 
1939     assert(Subtarget->hasV4TOps());
1940     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1941       .addReg(ScratchReg)
1942       // Predicate.
1943       .addImm(ARMCC::AL)
1944       .addReg(0));
1945     return;
1946   }
1947   case ARM::tInt_eh_sjlj_longjmp: {
1948     // ldr $scratch, [$src, #8]
1949     // mov sp, $scratch
1950     // ldr $scratch, [$src, #4]
1951     // ldr r7, [$src]
1952     // bx $scratch
1953     unsigned SrcReg = MI->getOperand(0).getReg();
1954     unsigned ScratchReg = MI->getOperand(1).getReg();
1955 
1956     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1957       .addReg(ScratchReg)
1958       .addReg(SrcReg)
1959       // The offset immediate is #8. The operand value is scaled by 4 for the
1960       // tLDR instruction.
1961       .addImm(2)
1962       // Predicate.
1963       .addImm(ARMCC::AL)
1964       .addReg(0));
1965 
1966     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1967       .addReg(ARM::SP)
1968       .addReg(ScratchReg)
1969       // Predicate.
1970       .addImm(ARMCC::AL)
1971       .addReg(0));
1972 
1973     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1974       .addReg(ScratchReg)
1975       .addReg(SrcReg)
1976       .addImm(1)
1977       // Predicate.
1978       .addImm(ARMCC::AL)
1979       .addReg(0));
1980 
1981     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
1982       // These platforms always use the same frame register
1983       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1984         .addReg(FramePtr)
1985         .addReg(SrcReg)
1986         .addImm(0)
1987         // Predicate.
1988         .addImm(ARMCC::AL)
1989         .addReg(0));
1990     } else {
1991       // If the calling code might use either R7 or R11 as
1992       // frame pointer register, restore it into both.
1993       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1994         .addReg(ARM::R7)
1995         .addReg(SrcReg)
1996         .addImm(0)
1997         // Predicate.
1998         .addImm(ARMCC::AL)
1999         .addReg(0));
2000       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2001         .addReg(ARM::R11)
2002         .addReg(SrcReg)
2003         .addImm(0)
2004         // Predicate.
2005         .addImm(ARMCC::AL)
2006         .addReg(0));
2007     }
2008 
2009     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
2010       .addReg(ScratchReg)
2011       // Predicate.
2012       .addImm(ARMCC::AL)
2013       .addReg(0));
2014     return;
2015   }
2016   case ARM::tInt_WIN_eh_sjlj_longjmp: {
2017     // ldr.w r11, [$src, #0]
2018     // ldr.w  sp, [$src, #8]
2019     // ldr.w  pc, [$src, #4]
2020 
2021     unsigned SrcReg = MI->getOperand(0).getReg();
2022 
2023     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2024                                      .addReg(ARM::R11)
2025                                      .addReg(SrcReg)
2026                                      .addImm(0)
2027                                      // Predicate
2028                                      .addImm(ARMCC::AL)
2029                                      .addReg(0));
2030     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2031                                      .addReg(ARM::SP)
2032                                      .addReg(SrcReg)
2033                                      .addImm(8)
2034                                      // Predicate
2035                                      .addImm(ARMCC::AL)
2036                                      .addReg(0));
2037     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2038                                      .addReg(ARM::PC)
2039                                      .addReg(SrcReg)
2040                                      .addImm(4)
2041                                      // Predicate
2042                                      .addImm(ARMCC::AL)
2043                                      .addReg(0));
2044     return;
2045   }
2046   case ARM::PATCHABLE_FUNCTION_ENTER:
2047     LowerPATCHABLE_FUNCTION_ENTER(*MI);
2048     return;
2049   case ARM::PATCHABLE_FUNCTION_EXIT:
2050     LowerPATCHABLE_FUNCTION_EXIT(*MI);
2051     return;
2052   case ARM::PATCHABLE_TAIL_CALL:
2053     LowerPATCHABLE_TAIL_CALL(*MI);
2054     return;
2055   }
2056 
2057   MCInst TmpInst;
2058   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2059 
2060   EmitToStreamer(*OutStreamer, TmpInst);
2061 }
2062 
2063 //===----------------------------------------------------------------------===//
2064 // Target Registry Stuff
2065 //===----------------------------------------------------------------------===//
2066 
2067 // Force static initialization.
2068 extern "C" void LLVMInitializeARMAsmPrinter() {
2069   RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2070   RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2071   RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2072   RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
2073 }
2074