1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 58 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::emitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::emitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->emitAssemblerFlag(MCAF_Code16); 72 OutStreamer->emitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->emitAssemblerFlag(MCAF_Code32); 75 } 76 OutStreamer->emitLabel(CurrentFnSym); 77 } 78 79 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { 80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 81 assert(Size && "C++ constructor pointer had zero size!"); 82 83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 84 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 85 86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 87 ARMII::MO_NO_FLAG), 88 (Subtarget->isTargetELF() 89 ? MCSymbolRefExpr::VK_ARM_TARGET1 90 : MCSymbolRefExpr::VK_None), 91 OutContext); 92 93 OutStreamer->emitValue(E, Size); 94 } 95 96 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 97 if (PromotedGlobals.count(GV)) 98 // The global was promoted into a constant pool. It should not be emitted. 99 return; 100 AsmPrinter::emitGlobalVariable(GV); 101 } 102 103 /// runOnMachineFunction - This uses the emitInstruction() 104 /// method to print assembly for each instruction. 105 /// 106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 107 AFI = MF.getInfo<ARMFunctionInfo>(); 108 MCP = MF.getConstantPool(); 109 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 110 111 SetupMachineFunction(MF); 112 const Function &F = MF.getFunction(); 113 const TargetMachine& TM = MF.getTarget(); 114 115 // Collect all globals that had their storage promoted to a constant pool. 116 // Functions are emitted before variables, so this accumulates promoted 117 // globals from all functions in PromotedGlobals. 118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 119 PromotedGlobals.insert(GV); 120 121 // Calculate this function's optimization goal. 122 unsigned OptimizationGoal; 123 if (F.hasOptNone()) 124 // For best debugging illusion, speed and small size sacrificed 125 OptimizationGoal = 6; 126 else if (F.hasMinSize()) 127 // Aggressively for small size, speed and debug illusion sacrificed 128 OptimizationGoal = 4; 129 else if (F.hasOptSize()) 130 // For small size, but speed and debugging illusion preserved 131 OptimizationGoal = 3; 132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 133 // Aggressively for speed, small size and debug illusion sacrificed 134 OptimizationGoal = 2; 135 else if (TM.getOptLevel() > CodeGenOpt::None) 136 // For speed, but small size and good debug illusion preserved 137 OptimizationGoal = 1; 138 else // TM.getOptLevel() == CodeGenOpt::None 139 // For good debugging, but speed and small size preserved 140 OptimizationGoal = 5; 141 142 // Combine a new optimization goal with existing ones. 143 if (OptimizationGoals == -1) // uninitialized goals 144 OptimizationGoals = OptimizationGoal; 145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 146 OptimizationGoals = 0; 147 148 if (Subtarget->isTargetCOFF()) { 149 bool Internal = F.hasInternalLinkage(); 150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 151 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 153 154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 155 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 156 OutStreamer->EmitCOFFSymbolType(Type); 157 OutStreamer->EndCOFFSymbolDef(); 158 } 159 160 // Emit the rest of the function body. 161 emitFunctionBody(); 162 163 // Emit the XRay table for this function. 164 emitXRayTable(); 165 166 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 167 // These are created per function, rather than per TU, since it's 168 // relatively easy to exceed the thumb branch range within a TU. 169 if (! ThumbIndirectPads.empty()) { 170 OutStreamer->emitAssemblerFlag(MCAF_Code16); 171 emitAlignment(Align(2)); 172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 173 OutStreamer->emitLabel(TIP.second); 174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 175 .addReg(TIP.first) 176 // Add predicate operands. 177 .addImm(ARMCC::AL) 178 .addReg(0)); 179 } 180 ThumbIndirectPads.clear(); 181 } 182 183 // We didn't modify anything. 184 return false; 185 } 186 187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 188 raw_ostream &O) { 189 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 190 unsigned TF = MO.getTargetFlags(); 191 if (TF & ARMII::MO_LO16) 192 O << ":lower16:"; 193 else if (TF & ARMII::MO_HI16) 194 O << ":upper16:"; 195 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 196 printOffset(MO.getOffset(), O); 197 } 198 199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 200 raw_ostream &O) { 201 const MachineOperand &MO = MI->getOperand(OpNum); 202 203 switch (MO.getType()) { 204 default: llvm_unreachable("<unknown operand type>"); 205 case MachineOperand::MO_Register: { 206 Register Reg = MO.getReg(); 207 assert(Register::isPhysicalRegister(Reg)); 208 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 209 if(ARM::GPRPairRegClass.contains(Reg)) { 210 const MachineFunction &MF = *MI->getParent()->getParent(); 211 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 212 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 213 } 214 O << ARMInstPrinter::getRegisterName(Reg); 215 break; 216 } 217 case MachineOperand::MO_Immediate: { 218 O << '#'; 219 unsigned TF = MO.getTargetFlags(); 220 if (TF == ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF == ARMII::MO_HI16) 223 O << ":upper16:"; 224 O << MO.getImm(); 225 break; 226 } 227 case MachineOperand::MO_MachineBasicBlock: 228 MO.getMBB()->getSymbol()->print(O, MAI); 229 return; 230 case MachineOperand::MO_GlobalAddress: { 231 PrintSymbolOperand(MO, O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 243 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 244 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 245 const DataLayout &DL = getDataLayout(); 246 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 247 "CPI" + Twine(getFunctionNumber()) + "_" + 248 Twine(CPID)); 249 } 250 251 //===--------------------------------------------------------------------===// 252 253 MCSymbol *ARMAsmPrinter:: 254 GetARMJTIPICJumpTableLabel(unsigned uid) const { 255 const DataLayout &DL = getDataLayout(); 256 SmallString<60> Name; 257 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 258 << getFunctionNumber() << '_' << uid; 259 return OutContext.getOrCreateSymbol(Name); 260 } 261 262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 263 const char *ExtraCode, raw_ostream &O) { 264 // Does this asm operand have a single letter operand modifier? 265 if (ExtraCode && ExtraCode[0]) { 266 if (ExtraCode[1] != 0) return true; // Unknown modifier. 267 268 switch (ExtraCode[0]) { 269 default: 270 // See if this is a generic print operand 271 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 272 case 'P': // Print a VFP double precision register. 273 case 'q': // Print a NEON quad precision register. 274 printOperand(MI, OpNum, O); 275 return false; 276 case 'y': // Print a VFP single precision register as indexed double. 277 if (MI->getOperand(OpNum).isReg()) { 278 Register Reg = MI->getOperand(OpNum).getReg(); 279 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 280 // Find the 'd' register that has this 's' register as a sub-register, 281 // and determine the lane number. 282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 283 if (!ARM::DPRRegClass.contains(*SR)) 284 continue; 285 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 286 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 287 return false; 288 } 289 } 290 return true; 291 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 292 if (!MI->getOperand(OpNum).isImm()) 293 return true; 294 O << ~(MI->getOperand(OpNum).getImm()); 295 return false; 296 case 'L': // The low 16 bits of an immediate constant. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << (MI->getOperand(OpNum).getImm() & 0xffff); 300 return false; 301 case 'M': { // A register range suitable for LDM/STM. 302 if (!MI->getOperand(OpNum).isReg()) 303 return true; 304 const MachineOperand &MO = MI->getOperand(OpNum); 305 Register RegBegin = MO.getReg(); 306 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 307 // already got the operands in registers that are operands to the 308 // inline asm statement. 309 O << "{"; 310 if (ARM::GPRPairRegClass.contains(RegBegin)) { 311 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 312 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 313 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 314 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 315 } 316 O << ARMInstPrinter::getRegisterName(RegBegin); 317 318 // FIXME: The register allocator not only may not have given us the 319 // registers in sequence, but may not be in ascending registers. This 320 // will require changes in the register allocator that'll need to be 321 // propagated down here if the operands change. 322 unsigned RegOps = OpNum + 1; 323 while (MI->getOperand(RegOps).isReg()) { 324 O << ", " 325 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 326 RegOps++; 327 } 328 329 O << "}"; 330 331 return false; 332 } 333 case 'R': // The most significant register of a pair. 334 case 'Q': { // The least significant register of a pair. 335 if (OpNum == 0) 336 return true; 337 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 338 if (!FlagsOP.isImm()) 339 return true; 340 unsigned Flags = FlagsOP.getImm(); 341 342 // This operand may not be the one that actually provides the register. If 343 // it's tied to a previous one then we should refer instead to that one 344 // for registers and their classes. 345 unsigned TiedIdx; 346 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 347 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 348 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 349 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 350 } 351 Flags = MI->getOperand(OpNum).getImm(); 352 353 // Later code expects OpNum to be pointing at the register rather than 354 // the flags. 355 OpNum += 1; 356 } 357 358 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 359 unsigned RC; 360 bool FirstHalf; 361 const ARMBaseTargetMachine &ATM = 362 static_cast<const ARMBaseTargetMachine &>(TM); 363 364 // 'Q' should correspond to the low order register and 'R' to the high 365 // order register. Whether this corresponds to the upper or lower half 366 // depends on the endianess mode. 367 if (ExtraCode[0] == 'Q') 368 FirstHalf = ATM.isLittleEndian(); 369 else 370 // ExtraCode[0] == 'R'. 371 FirstHalf = !ATM.isLittleEndian(); 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 374 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 375 if (NumVals != 1) 376 return true; 377 const MachineOperand &MO = MI->getOperand(OpNum); 378 if (!MO.isReg()) 379 return true; 380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 381 Register Reg = 382 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 383 O << ARMInstPrinter::getRegisterName(Reg); 384 return false; 385 } 386 if (NumVals != 2) 387 return true; 388 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 389 if (RegOp >= MI->getNumOperands()) 390 return true; 391 const MachineOperand &MO = MI->getOperand(RegOp); 392 if (!MO.isReg()) 393 return true; 394 Register Reg = MO.getReg(); 395 O << ARMInstPrinter::getRegisterName(Reg); 396 return false; 397 } 398 399 case 'e': // The low doubleword register of a NEON quad register. 400 case 'f': { // The high doubleword register of a NEON quad register. 401 if (!MI->getOperand(OpNum).isReg()) 402 return true; 403 Register Reg = MI->getOperand(OpNum).getReg(); 404 if (!ARM::QPRRegClass.contains(Reg)) 405 return true; 406 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 407 Register SubReg = 408 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 409 O << ARMInstPrinter::getRegisterName(SubReg); 410 return false; 411 } 412 413 // This modifier is not yet supported. 414 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 415 return true; 416 case 'H': { // The highest-numbered register of a pair. 417 const MachineOperand &MO = MI->getOperand(OpNum); 418 if (!MO.isReg()) 419 return true; 420 const MachineFunction &MF = *MI->getParent()->getParent(); 421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 422 Register Reg = MO.getReg(); 423 if(!ARM::GPRPairRegClass.contains(Reg)) 424 return false; 425 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 426 O << ARMInstPrinter::getRegisterName(Reg); 427 return false; 428 } 429 } 430 } 431 432 printOperand(MI, OpNum, O); 433 return false; 434 } 435 436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 437 unsigned OpNum, const char *ExtraCode, 438 raw_ostream &O) { 439 // Does this asm operand have a single letter operand modifier? 440 if (ExtraCode && ExtraCode[0]) { 441 if (ExtraCode[1] != 0) return true; // Unknown modifier. 442 443 switch (ExtraCode[0]) { 444 case 'A': // A memory operand for a VLD1/VST1 instruction. 445 default: return true; // Unknown modifier. 446 case 'm': // The base register of a memory operand. 447 if (!MI->getOperand(OpNum).isReg()) 448 return true; 449 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 450 return false; 451 } 452 } 453 454 const MachineOperand &MO = MI->getOperand(OpNum); 455 assert(MO.isReg() && "unexpected inline asm memory operand"); 456 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 457 return false; 458 } 459 460 static bool isThumb(const MCSubtargetInfo& STI) { 461 return STI.getFeatureBits()[ARM::ModeThumb]; 462 } 463 464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 465 const MCSubtargetInfo *EndInfo) const { 466 // If either end mode is unknown (EndInfo == NULL) or different than 467 // the start mode, then restore the start mode. 468 const bool WasThumb = isThumb(StartInfo); 469 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 470 OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 471 } 472 } 473 474 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { 475 const Triple &TT = TM.getTargetTriple(); 476 // Use unified assembler syntax. 477 OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); 478 479 // Emit ARM Build Attributes 480 if (TT.isOSBinFormatELF()) 481 emitAttributes(); 482 483 // Use the triple's architecture and subarchitecture to determine 484 // if we're thumb for the purposes of the top level code16 assembler 485 // flag. 486 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 487 OutStreamer->emitAssemblerFlag(MCAF_Code16); 488 } 489 490 static void 491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 492 MachineModuleInfoImpl::StubValueTy &MCSym) { 493 // L_foo$stub: 494 OutStreamer.emitLabel(StubLabel); 495 // .indirect_symbol _foo 496 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 497 498 if (MCSym.getInt()) 499 // External to current translation unit. 500 OutStreamer.emitIntValue(0, 4/*size*/); 501 else 502 // Internal to current translation unit. 503 // 504 // When we place the LSDA into the TEXT section, the type info 505 // pointers need to be indirect and pc-rel. We accomplish this by 506 // using NLPs; however, sometimes the types are local to the file. 507 // We need to fill in the value for the NLP in those cases. 508 OutStreamer.emitValue( 509 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 510 4 /*size*/); 511 } 512 513 514 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { 515 const Triple &TT = TM.getTargetTriple(); 516 if (TT.isOSBinFormatMachO()) { 517 // All darwin targets use mach-o. 518 const TargetLoweringObjectFileMachO &TLOFMacho = 519 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 520 MachineModuleInfoMachO &MMIMacho = 521 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 522 523 // Output non-lazy-pointers for external and common global variables. 524 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 525 526 if (!Stubs.empty()) { 527 // Switch with ".non_lazy_symbol_pointer" directive. 528 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 529 emitAlignment(Align(4)); 530 531 for (auto &Stub : Stubs) 532 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 533 534 Stubs.clear(); 535 OutStreamer->AddBlankLine(); 536 } 537 538 Stubs = MMIMacho.GetThreadLocalGVStubList(); 539 if (!Stubs.empty()) { 540 // Switch with ".non_lazy_symbol_pointer" directive. 541 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 542 emitAlignment(Align(4)); 543 544 for (auto &Stub : Stubs) 545 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 546 547 Stubs.clear(); 548 OutStreamer->AddBlankLine(); 549 } 550 551 // Funny Darwin hack: This flag tells the linker that no global symbols 552 // contain code that falls through to other global symbols (e.g. the obvious 553 // implementation of multiple entry points). If this doesn't occur, the 554 // linker can safely perform dead code stripping. Since LLVM never 555 // generates code that does this, it is always safe to set. 556 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 557 } 558 559 // The last attribute to be emitted is ABI_optimization_goals 560 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 561 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 562 563 if (OptimizationGoals > 0 && 564 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 565 Subtarget->isTargetMuslAEABI())) 566 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 567 OptimizationGoals = -1; 568 569 ATS.finishAttributeSection(); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() 574 // FIXME: 575 // The following seem like one-off assembler flags, but they actually need 576 // to appear in the .ARM.attributes section in ELF. 577 // Instead of subclassing the MCELFStreamer, we do the work here. 578 579 // Returns true if all functions have the same function attribute value. 580 // It also returns true when the module has no functions. 581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 582 StringRef Value) { 583 return !any_of(M, [&](const Function &F) { 584 return F.getFnAttribute(Attr).getValueAsString() != Value; 585 }); 586 } 587 588 void ARMAsmPrinter::emitAttributes() { 589 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 590 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 591 592 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 593 594 ATS.switchVendor("aeabi"); 595 596 // Compute ARM ELF Attributes based on the default subtarget that 597 // we'd have constructed. The existing ARM behavior isn't LTO clean 598 // anyhow. 599 // FIXME: For ifunc related functions we could iterate over and look 600 // for a feature string that doesn't match the default one. 601 const Triple &TT = TM.getTargetTriple(); 602 StringRef CPU = TM.getTargetCPU(); 603 StringRef FS = TM.getTargetFeatureString(); 604 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 605 if (!FS.empty()) { 606 if (!ArchFS.empty()) 607 ArchFS = (Twine(ArchFS) + "," + FS).str(); 608 else 609 ArchFS = std::string(FS); 610 } 611 const ARMBaseTargetMachine &ATM = 612 static_cast<const ARMBaseTargetMachine &>(TM); 613 const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, 614 ATM.isLittleEndian()); 615 616 // Emit build attributes for the available hardware. 617 ATS.emitTargetAttributes(STI); 618 619 // RW data addressing. 620 if (isPositionIndependent()) { 621 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 622 ARMBuildAttrs::AddressRWPCRel); 623 } else if (STI.isRWPI()) { 624 // RWPI specific attributes. 625 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 626 ARMBuildAttrs::AddressRWSBRel); 627 } 628 629 // RO data addressing. 630 if (isPositionIndependent() || STI.isROPI()) { 631 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 632 ARMBuildAttrs::AddressROPCRel); 633 } 634 635 // GOT use. 636 if (isPositionIndependent()) { 637 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 638 ARMBuildAttrs::AddressGOT); 639 } else { 640 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 641 ARMBuildAttrs::AddressDirect); 642 } 643 644 // Set FP Denormals. 645 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 646 "denormal-fp-math", 647 "preserve-sign") || 648 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 649 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 650 ARMBuildAttrs::PreserveFPSign); 651 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 652 "denormal-fp-math", 653 "positive-zero") || 654 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 655 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 656 ARMBuildAttrs::PositiveZero); 657 else if (!TM.Options.UnsafeFPMath) 658 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 659 ARMBuildAttrs::IEEEDenormals); 660 else { 661 if (!STI.hasVFP2Base()) { 662 // When the target doesn't have an FPU (by design or 663 // intention), the assumptions made on the software support 664 // mirror that of the equivalent hardware support *if it 665 // existed*. For v7 and better we indicate that denormals are 666 // flushed preserving sign, and for V6 we indicate that 667 // denormals are flushed to positive zero. 668 if (STI.hasV7Ops()) 669 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 670 ARMBuildAttrs::PreserveFPSign); 671 } else if (STI.hasVFP3Base()) { 672 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 673 // the sign bit of the zero matches the sign bit of the input or 674 // result that is being flushed to zero. 675 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 676 ARMBuildAttrs::PreserveFPSign); 677 } 678 // For VFPv2 implementations it is implementation defined as 679 // to whether denormals are flushed to positive zero or to 680 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 681 // LLVM has chosen to flush this to positive zero (most likely for 682 // GCC compatibility), so that's the chosen value here (the 683 // absence of its emission implies zero). 684 } 685 686 // Set FP exceptions and rounding 687 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 688 "no-trapping-math", "true") || 689 TM.Options.NoTrappingFPMath) 690 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 691 ARMBuildAttrs::Not_Allowed); 692 else if (!TM.Options.UnsafeFPMath) { 693 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 694 695 // If the user has permitted this code to choose the IEEE 754 696 // rounding at run-time, emit the rounding attribute. 697 if (TM.Options.HonorSignDependentRoundingFPMathOption) 698 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 699 } 700 701 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 702 // equivalent of GCC's -ffinite-math-only flag. 703 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 704 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 705 ARMBuildAttrs::Allowed); 706 else 707 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 708 ARMBuildAttrs::AllowIEEE754); 709 710 // FIXME: add more flags to ARMBuildAttributes.h 711 // 8-bytes alignment stuff. 712 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 713 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 714 715 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 716 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 717 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 718 719 // FIXME: To support emitting this build attribute as GCC does, the 720 // -mfp16-format option and associated plumbing must be 721 // supported. For now the __fp16 type is exposed by default, so this 722 // attribute should be emitted with value 1. 723 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 724 ARMBuildAttrs::FP16FormatIEEE); 725 726 if (MMI) { 727 if (const Module *SourceModule = MMI->getModule()) { 728 // ABI_PCS_wchar_t to indicate wchar_t width 729 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 730 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 731 SourceModule->getModuleFlag("wchar_size"))) { 732 int WCharWidth = WCharWidthValue->getZExtValue(); 733 assert((WCharWidth == 2 || WCharWidth == 4) && 734 "wchar_t width must be 2 or 4 bytes"); 735 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 736 } 737 738 // ABI_enum_size to indicate enum width 739 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 740 // (all enums contain a value needing 32 bits to encode). 741 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 742 SourceModule->getModuleFlag("min_enum_size"))) { 743 int EnumWidth = EnumWidthValue->getZExtValue(); 744 assert((EnumWidth == 1 || EnumWidth == 4) && 745 "Minimum enum width must be 1 or 4 bytes"); 746 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 747 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 748 } 749 } 750 } 751 752 // We currently do not support using R9 as the TLS pointer. 753 if (STI.isRWPI()) 754 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 755 ARMBuildAttrs::R9IsSB); 756 else if (STI.isR9Reserved()) 757 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 758 ARMBuildAttrs::R9Reserved); 759 else 760 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 761 ARMBuildAttrs::R9IsGPR); 762 } 763 764 //===----------------------------------------------------------------------===// 765 766 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 767 unsigned LabelId, MCContext &Ctx) { 768 769 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 770 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 771 return Label; 772 } 773 774 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 775 unsigned LabelId, MCContext &Ctx) { 776 777 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 778 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 779 return Label; 780 } 781 782 static MCSymbolRefExpr::VariantKind 783 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 784 switch (Modifier) { 785 case ARMCP::no_modifier: 786 return MCSymbolRefExpr::VK_None; 787 case ARMCP::TLSGD: 788 return MCSymbolRefExpr::VK_TLSGD; 789 case ARMCP::TPOFF: 790 return MCSymbolRefExpr::VK_TPOFF; 791 case ARMCP::GOTTPOFF: 792 return MCSymbolRefExpr::VK_GOTTPOFF; 793 case ARMCP::SBREL: 794 return MCSymbolRefExpr::VK_ARM_SBREL; 795 case ARMCP::GOT_PREL: 796 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 797 case ARMCP::SECREL: 798 return MCSymbolRefExpr::VK_SECREL; 799 } 800 llvm_unreachable("Invalid ARMCPModifier!"); 801 } 802 803 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 804 unsigned char TargetFlags) { 805 if (Subtarget->isTargetMachO()) { 806 bool IsIndirect = 807 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 808 809 if (!IsIndirect) 810 return getSymbol(GV); 811 812 // FIXME: Remove this when Darwin transition to @GOT like syntax. 813 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 814 MachineModuleInfoMachO &MMIMachO = 815 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 816 MachineModuleInfoImpl::StubValueTy &StubSym = 817 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 818 : MMIMachO.getGVStubEntry(MCSym); 819 820 if (!StubSym.getPointer()) 821 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 822 !GV->hasInternalLinkage()); 823 return MCSym; 824 } else if (Subtarget->isTargetCOFF()) { 825 assert(Subtarget->isTargetWindows() && 826 "Windows is the only supported COFF target"); 827 828 bool IsIndirect = 829 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 830 if (!IsIndirect) 831 return getSymbol(GV); 832 833 SmallString<128> Name; 834 if (TargetFlags & ARMII::MO_DLLIMPORT) 835 Name = "__imp_"; 836 else if (TargetFlags & ARMII::MO_COFFSTUB) 837 Name = ".refptr."; 838 getNameWithPrefix(Name, GV); 839 840 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 841 842 if (TargetFlags & ARMII::MO_COFFSTUB) { 843 MachineModuleInfoCOFF &MMICOFF = 844 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 845 MachineModuleInfoImpl::StubValueTy &StubSym = 846 MMICOFF.getGVStubEntry(MCSym); 847 848 if (!StubSym.getPointer()) 849 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 850 } 851 852 return MCSym; 853 } else if (Subtarget->isTargetELF()) { 854 return getSymbol(GV); 855 } 856 llvm_unreachable("unexpected target"); 857 } 858 859 void ARMAsmPrinter::emitMachineConstantPoolValue( 860 MachineConstantPoolValue *MCPV) { 861 const DataLayout &DL = getDataLayout(); 862 int Size = DL.getTypeAllocSize(MCPV->getType()); 863 864 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 865 866 if (ACPV->isPromotedGlobal()) { 867 // This constant pool entry is actually a global whose storage has been 868 // promoted into the constant pool. This global may be referenced still 869 // by debug information, and due to the way AsmPrinter is set up, the debug 870 // info is immutable by the time we decide to promote globals to constant 871 // pools. Because of this, we need to ensure we emit a symbol for the global 872 // with private linkage (the default) so debug info can refer to it. 873 // 874 // However, if this global is promoted into several functions we must ensure 875 // we don't try and emit duplicate symbols! 876 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 877 for (const auto *GV : ACPC->promotedGlobals()) { 878 if (!EmittedPromotedGlobalLabels.count(GV)) { 879 MCSymbol *GVSym = getSymbol(GV); 880 OutStreamer->emitLabel(GVSym); 881 EmittedPromotedGlobalLabels.insert(GV); 882 } 883 } 884 return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 885 } 886 887 MCSymbol *MCSym; 888 if (ACPV->isLSDA()) { 889 MCSym = getCurExceptionSym(); 890 } else if (ACPV->isBlockAddress()) { 891 const BlockAddress *BA = 892 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 893 MCSym = GetBlockAddressSymbol(BA); 894 } else if (ACPV->isGlobalValue()) { 895 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 896 897 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 898 // flag the global as MO_NONLAZY. 899 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 900 MCSym = GetARMGVSymbol(GV, TF); 901 } else if (ACPV->isMachineBasicBlock()) { 902 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 903 MCSym = MBB->getSymbol(); 904 } else { 905 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 906 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 907 MCSym = GetExternalSymbolSymbol(Sym); 908 } 909 910 // Create an MCSymbol for the reference. 911 const MCExpr *Expr = 912 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 913 OutContext); 914 915 if (ACPV->getPCAdjustment()) { 916 MCSymbol *PCLabel = 917 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 918 ACPV->getLabelId(), OutContext); 919 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 920 PCRelExpr = 921 MCBinaryExpr::createAdd(PCRelExpr, 922 MCConstantExpr::create(ACPV->getPCAdjustment(), 923 OutContext), 924 OutContext); 925 if (ACPV->mustAddCurrentAddress()) { 926 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 927 // label, so just emit a local label end reference that instead. 928 MCSymbol *DotSym = OutContext.createTempSymbol(); 929 OutStreamer->emitLabel(DotSym); 930 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 931 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 932 } 933 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 934 } 935 OutStreamer->emitValue(Expr, Size); 936 } 937 938 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { 939 const MachineOperand &MO1 = MI->getOperand(1); 940 unsigned JTI = MO1.getIndex(); 941 942 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 943 // ARM mode tables. 944 emitAlignment(Align(4)); 945 946 // Emit a label for the jump table. 947 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 948 OutStreamer->emitLabel(JTISymbol); 949 950 // Mark the jump table as data-in-code. 951 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 952 953 // Emit each entry of the table. 954 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 955 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 956 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 957 958 for (MachineBasicBlock *MBB : JTBBs) { 959 // Construct an MCExpr for the entry. We want a value of the form: 960 // (BasicBlockAddr - TableBeginAddr) 961 // 962 // For example, a table with entries jumping to basic blocks BB0 and BB1 963 // would look like: 964 // LJTI_0_0: 965 // .word (LBB0 - LJTI_0_0) 966 // .word (LBB1 - LJTI_0_0) 967 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 968 969 if (isPositionIndependent() || Subtarget->isROPI()) 970 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 971 OutContext), 972 OutContext); 973 // If we're generating a table of Thumb addresses in static relocation 974 // model, we need to add one to keep interworking correctly. 975 else if (AFI->isThumbFunction()) 976 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 977 OutContext); 978 OutStreamer->emitValue(Expr, 4); 979 } 980 // Mark the end of jump table data-in-code region. 981 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 982 } 983 984 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { 985 const MachineOperand &MO1 = MI->getOperand(1); 986 unsigned JTI = MO1.getIndex(); 987 988 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 989 // ARM mode tables. 990 emitAlignment(Align(4)); 991 992 // Emit a label for the jump table. 993 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 994 OutStreamer->emitLabel(JTISymbol); 995 996 // Emit each entry of the table. 997 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 998 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 999 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1000 1001 for (MachineBasicBlock *MBB : JTBBs) { 1002 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1003 OutContext); 1004 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1005 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1006 .addExpr(MBBSymbolExpr) 1007 .addImm(ARMCC::AL) 1008 .addReg(0)); 1009 } 1010 } 1011 1012 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, 1013 unsigned OffsetWidth) { 1014 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1015 const MachineOperand &MO1 = MI->getOperand(1); 1016 unsigned JTI = MO1.getIndex(); 1017 1018 if (Subtarget->isThumb1Only()) 1019 emitAlignment(Align(4)); 1020 1021 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1022 OutStreamer->emitLabel(JTISymbol); 1023 1024 // Emit each entry of the table. 1025 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1026 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1027 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1028 1029 // Mark the jump table as data-in-code. 1030 OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1031 : MCDR_DataRegionJT16); 1032 1033 for (auto MBB : JTBBs) { 1034 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1035 OutContext); 1036 // Otherwise it's an offset from the dispatch instruction. Construct an 1037 // MCExpr for the entry. We want a value of the form: 1038 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1039 // 1040 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1041 // would look like: 1042 // LJTI_0_0: 1043 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1044 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1045 // where LCPI0_0 is a label defined just before the TBB instruction using 1046 // this table. 1047 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1048 const MCExpr *Expr = MCBinaryExpr::createAdd( 1049 MCSymbolRefExpr::create(TBInstPC, OutContext), 1050 MCConstantExpr::create(4, OutContext), OutContext); 1051 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1052 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1053 OutContext); 1054 OutStreamer->emitValue(Expr, OffsetWidth); 1055 } 1056 // Mark the end of jump table data-in-code region. 32-bit offsets use 1057 // actual branch instructions here, so we don't mark those as a data-region 1058 // at all. 1059 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1060 1061 // Make sure the next instruction is 2-byte aligned. 1062 emitAlignment(Align(2)); 1063 } 1064 1065 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1066 assert(MI->getFlag(MachineInstr::FrameSetup) && 1067 "Only instruction which are involved into frame setup code are allowed"); 1068 1069 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1070 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1071 const MachineFunction &MF = *MI->getParent()->getParent(); 1072 const TargetRegisterInfo *TargetRegInfo = 1073 MF.getSubtarget().getRegisterInfo(); 1074 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1075 1076 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1077 unsigned Opc = MI->getOpcode(); 1078 unsigned SrcReg, DstReg; 1079 1080 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1081 // Two special cases: 1082 // 1) tPUSH does not have src/dst regs. 1083 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1084 // load. Yes, this is pretty fragile, but for now I don't see better 1085 // way... :( 1086 SrcReg = DstReg = ARM::SP; 1087 } else { 1088 SrcReg = MI->getOperand(1).getReg(); 1089 DstReg = MI->getOperand(0).getReg(); 1090 } 1091 1092 // Try to figure out the unwinding opcode out of src / dst regs. 1093 if (MI->mayStore()) { 1094 // Register saves. 1095 assert(DstReg == ARM::SP && 1096 "Only stack pointer as a destination reg is supported"); 1097 1098 SmallVector<unsigned, 4> RegList; 1099 // Skip src & dst reg, and pred ops. 1100 unsigned StartOp = 2 + 2; 1101 // Use all the operands. 1102 unsigned NumOffset = 0; 1103 // Amount of SP adjustment folded into a push. 1104 unsigned Pad = 0; 1105 1106 switch (Opc) { 1107 default: 1108 MI->print(errs()); 1109 llvm_unreachable("Unsupported opcode for unwinding information"); 1110 case ARM::tPUSH: 1111 // Special case here: no src & dst reg, but two extra imp ops. 1112 StartOp = 2; NumOffset = 2; 1113 LLVM_FALLTHROUGH; 1114 case ARM::STMDB_UPD: 1115 case ARM::t2STMDB_UPD: 1116 case ARM::VSTMDDB_UPD: 1117 assert(SrcReg == ARM::SP && 1118 "Only stack pointer as a source reg is supported"); 1119 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1120 i != NumOps; ++i) { 1121 const MachineOperand &MO = MI->getOperand(i); 1122 // Actually, there should never be any impdef stuff here. Skip it 1123 // temporary to workaround PR11902. 1124 if (MO.isImplicit()) 1125 continue; 1126 // Registers, pushed as a part of folding an SP update into the 1127 // push instruction are marked as undef and should not be 1128 // restored when unwinding, because the function can modify the 1129 // corresponding stack slots. 1130 if (MO.isUndef()) { 1131 assert(RegList.empty() && 1132 "Pad registers must come before restored ones"); 1133 unsigned Width = 1134 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1135 Pad += Width; 1136 continue; 1137 } 1138 // Check for registers that are remapped (for a Thumb1 prologue that 1139 // saves high registers). 1140 Register Reg = MO.getReg(); 1141 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1142 Reg = RemappedReg; 1143 RegList.push_back(Reg); 1144 } 1145 break; 1146 case ARM::STR_PRE_IMM: 1147 case ARM::STR_PRE_REG: 1148 case ARM::t2STR_PRE: 1149 assert(MI->getOperand(2).getReg() == ARM::SP && 1150 "Only stack pointer as a source reg is supported"); 1151 RegList.push_back(SrcReg); 1152 break; 1153 } 1154 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1155 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1156 // Account for the SP adjustment, folded into the push. 1157 if (Pad) 1158 ATS.emitPad(Pad); 1159 } 1160 } else { 1161 // Changes of stack / frame pointer. 1162 if (SrcReg == ARM::SP) { 1163 int64_t Offset = 0; 1164 switch (Opc) { 1165 default: 1166 MI->print(errs()); 1167 llvm_unreachable("Unsupported opcode for unwinding information"); 1168 case ARM::MOVr: 1169 case ARM::tMOVr: 1170 Offset = 0; 1171 break; 1172 case ARM::ADDri: 1173 case ARM::t2ADDri: 1174 case ARM::t2ADDri12: 1175 case ARM::t2ADDspImm: 1176 case ARM::t2ADDspImm12: 1177 Offset = -MI->getOperand(2).getImm(); 1178 break; 1179 case ARM::SUBri: 1180 case ARM::t2SUBri: 1181 case ARM::t2SUBri12: 1182 case ARM::t2SUBspImm: 1183 case ARM::t2SUBspImm12: 1184 Offset = MI->getOperand(2).getImm(); 1185 break; 1186 case ARM::tSUBspi: 1187 Offset = MI->getOperand(2).getImm()*4; 1188 break; 1189 case ARM::tADDspi: 1190 case ARM::tADDrSPi: 1191 Offset = -MI->getOperand(2).getImm()*4; 1192 break; 1193 case ARM::tLDRpci: { 1194 // Grab the constpool index and check, whether it corresponds to 1195 // original or cloned constpool entry. 1196 unsigned CPI = MI->getOperand(1).getIndex(); 1197 const MachineConstantPool *MCP = MF.getConstantPool(); 1198 if (CPI >= MCP->getConstants().size()) 1199 CPI = AFI->getOriginalCPIdx(CPI); 1200 assert(CPI != -1U && "Invalid constpool index"); 1201 1202 // Derive the actual offset. 1203 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1204 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1205 // FIXME: Check for user, it should be "add" instruction! 1206 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1207 break; 1208 } 1209 } 1210 1211 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1212 if (DstReg == FramePtr && FramePtr != ARM::SP) 1213 // Set-up of the frame pointer. Positive values correspond to "add" 1214 // instruction. 1215 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1216 else if (DstReg == ARM::SP) { 1217 // Change of SP by an offset. Positive values correspond to "sub" 1218 // instruction. 1219 ATS.emitPad(Offset); 1220 } else { 1221 // Move of SP to a register. Positive values correspond to an "add" 1222 // instruction. 1223 ATS.emitMovSP(DstReg, -Offset); 1224 } 1225 } 1226 } else if (DstReg == ARM::SP) { 1227 MI->print(errs()); 1228 llvm_unreachable("Unsupported opcode for unwinding information"); 1229 } else if (Opc == ARM::tMOVr) { 1230 // If a Thumb1 function spills r8-r11, we copy the values to low 1231 // registers before pushing them. Record the copy so we can emit the 1232 // correct ".save" later. 1233 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1234 } else { 1235 MI->print(errs()); 1236 llvm_unreachable("Unsupported opcode for unwinding information"); 1237 } 1238 } 1239 } 1240 1241 // Simple pseudo-instructions have their lowering (with expansion to real 1242 // instructions) auto-generated. 1243 #include "ARMGenMCPseudoLowering.inc" 1244 1245 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { 1246 const DataLayout &DL = getDataLayout(); 1247 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1248 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1249 1250 const MachineFunction &MF = *MI->getParent()->getParent(); 1251 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1252 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1253 1254 // If we just ended a constant pool, mark it as such. 1255 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1256 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1257 InConstantPool = false; 1258 } 1259 1260 // Emit unwinding stuff for frame-related instructions 1261 if (Subtarget->isTargetEHABICompatible() && 1262 MI->getFlag(MachineInstr::FrameSetup)) 1263 EmitUnwindingInstruction(MI); 1264 1265 // Do any auto-generated pseudo lowerings. 1266 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1267 return; 1268 1269 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1270 "Pseudo flag setting opcode should be expanded early"); 1271 1272 // Check for manual lowerings. 1273 unsigned Opc = MI->getOpcode(); 1274 switch (Opc) { 1275 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1276 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1277 case ARM::LEApcrel: 1278 case ARM::tLEApcrel: 1279 case ARM::t2LEApcrel: { 1280 // FIXME: Need to also handle globals and externals 1281 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1282 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1283 ARM::t2LEApcrel ? ARM::t2ADR 1284 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1285 : ARM::ADR)) 1286 .addReg(MI->getOperand(0).getReg()) 1287 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1288 // Add predicate operands. 1289 .addImm(MI->getOperand(2).getImm()) 1290 .addReg(MI->getOperand(3).getReg())); 1291 return; 1292 } 1293 case ARM::LEApcrelJT: 1294 case ARM::tLEApcrelJT: 1295 case ARM::t2LEApcrelJT: { 1296 MCSymbol *JTIPICSymbol = 1297 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1298 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1299 ARM::t2LEApcrelJT ? ARM::t2ADR 1300 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1301 : ARM::ADR)) 1302 .addReg(MI->getOperand(0).getReg()) 1303 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1304 // Add predicate operands. 1305 .addImm(MI->getOperand(2).getImm()) 1306 .addReg(MI->getOperand(3).getReg())); 1307 return; 1308 } 1309 // Darwin call instructions are just normal call instructions with different 1310 // clobber semantics (they clobber R9). 1311 case ARM::BX_CALL: { 1312 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1313 .addReg(ARM::LR) 1314 .addReg(ARM::PC) 1315 // Add predicate operands. 1316 .addImm(ARMCC::AL) 1317 .addReg(0) 1318 // Add 's' bit operand (always reg0 for this) 1319 .addReg(0)); 1320 1321 assert(Subtarget->hasV4TOps()); 1322 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1323 .addReg(MI->getOperand(0).getReg())); 1324 return; 1325 } 1326 case ARM::tBX_CALL: { 1327 if (Subtarget->hasV5TOps()) 1328 llvm_unreachable("Expected BLX to be selected for v5t+"); 1329 1330 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1331 // that the saved lr has its LSB set correctly (the arch doesn't 1332 // have blx). 1333 // So here we generate a bl to a small jump pad that does bx rN. 1334 // The jump pads are emitted after the function body. 1335 1336 Register TReg = MI->getOperand(0).getReg(); 1337 MCSymbol *TRegSym = nullptr; 1338 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1339 if (TIP.first == TReg) { 1340 TRegSym = TIP.second; 1341 break; 1342 } 1343 } 1344 1345 if (!TRegSym) { 1346 TRegSym = OutContext.createTempSymbol(); 1347 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1348 } 1349 1350 // Create a link-saving branch to the Reg Indirect Jump Pad. 1351 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1352 // Predicate comes first here. 1353 .addImm(ARMCC::AL).addReg(0) 1354 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1355 return; 1356 } 1357 case ARM::BMOVPCRX_CALL: { 1358 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1359 .addReg(ARM::LR) 1360 .addReg(ARM::PC) 1361 // Add predicate operands. 1362 .addImm(ARMCC::AL) 1363 .addReg(0) 1364 // Add 's' bit operand (always reg0 for this) 1365 .addReg(0)); 1366 1367 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1368 .addReg(ARM::PC) 1369 .addReg(MI->getOperand(0).getReg()) 1370 // Add predicate operands. 1371 .addImm(ARMCC::AL) 1372 .addReg(0) 1373 // Add 's' bit operand (always reg0 for this) 1374 .addReg(0)); 1375 return; 1376 } 1377 case ARM::BMOVPCB_CALL: { 1378 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1379 .addReg(ARM::LR) 1380 .addReg(ARM::PC) 1381 // Add predicate operands. 1382 .addImm(ARMCC::AL) 1383 .addReg(0) 1384 // Add 's' bit operand (always reg0 for this) 1385 .addReg(0)); 1386 1387 const MachineOperand &Op = MI->getOperand(0); 1388 const GlobalValue *GV = Op.getGlobal(); 1389 const unsigned TF = Op.getTargetFlags(); 1390 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1391 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1392 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1393 .addExpr(GVSymExpr) 1394 // Add predicate operands. 1395 .addImm(ARMCC::AL) 1396 .addReg(0)); 1397 return; 1398 } 1399 case ARM::MOVi16_ga_pcrel: 1400 case ARM::t2MOVi16_ga_pcrel: { 1401 MCInst TmpInst; 1402 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1403 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1404 1405 unsigned TF = MI->getOperand(1).getTargetFlags(); 1406 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1407 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1408 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1409 1410 MCSymbol *LabelSym = 1411 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1412 MI->getOperand(2).getImm(), OutContext); 1413 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1414 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1415 const MCExpr *PCRelExpr = 1416 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1417 MCBinaryExpr::createAdd(LabelSymExpr, 1418 MCConstantExpr::create(PCAdj, OutContext), 1419 OutContext), OutContext), OutContext); 1420 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1421 1422 // Add predicate operands. 1423 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1424 TmpInst.addOperand(MCOperand::createReg(0)); 1425 // Add 's' bit operand (always reg0 for this) 1426 TmpInst.addOperand(MCOperand::createReg(0)); 1427 EmitToStreamer(*OutStreamer, TmpInst); 1428 return; 1429 } 1430 case ARM::MOVTi16_ga_pcrel: 1431 case ARM::t2MOVTi16_ga_pcrel: { 1432 MCInst TmpInst; 1433 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1434 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1435 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1436 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1437 1438 unsigned TF = MI->getOperand(2).getTargetFlags(); 1439 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1440 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1441 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1442 1443 MCSymbol *LabelSym = 1444 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1445 MI->getOperand(3).getImm(), OutContext); 1446 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1447 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1448 const MCExpr *PCRelExpr = 1449 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1450 MCBinaryExpr::createAdd(LabelSymExpr, 1451 MCConstantExpr::create(PCAdj, OutContext), 1452 OutContext), OutContext), OutContext); 1453 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1454 // Add predicate operands. 1455 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1456 TmpInst.addOperand(MCOperand::createReg(0)); 1457 // Add 's' bit operand (always reg0 for this) 1458 TmpInst.addOperand(MCOperand::createReg(0)); 1459 EmitToStreamer(*OutStreamer, TmpInst); 1460 return; 1461 } 1462 case ARM::t2BFi: 1463 case ARM::t2BFic: 1464 case ARM::t2BFLi: 1465 case ARM::t2BFr: 1466 case ARM::t2BFLr: { 1467 // This is a Branch Future instruction. 1468 1469 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1470 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1471 MI->getOperand(0).getIndex(), OutContext), 1472 OutContext); 1473 1474 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1475 if (MI->getOperand(1).isReg()) { 1476 // For BFr/BFLr 1477 MCInst.addReg(MI->getOperand(1).getReg()); 1478 } else { 1479 // For BFi/BFLi/BFic 1480 const MCExpr *BranchTarget; 1481 if (MI->getOperand(1).isMBB()) 1482 BranchTarget = MCSymbolRefExpr::create( 1483 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1484 else if (MI->getOperand(1).isGlobal()) { 1485 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1486 BranchTarget = MCSymbolRefExpr::create( 1487 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1488 } else if (MI->getOperand(1).isSymbol()) { 1489 BranchTarget = MCSymbolRefExpr::create( 1490 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1491 OutContext); 1492 } else 1493 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1494 1495 MCInst.addExpr(BranchTarget); 1496 } 1497 1498 if (Opc == ARM::t2BFic) { 1499 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1500 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1501 MI->getOperand(2).getIndex(), OutContext), 1502 OutContext); 1503 MCInst.addExpr(ElseLabel); 1504 MCInst.addImm(MI->getOperand(3).getImm()); 1505 } else { 1506 MCInst.addImm(MI->getOperand(2).getImm()) 1507 .addReg(MI->getOperand(3).getReg()); 1508 } 1509 1510 EmitToStreamer(*OutStreamer, MCInst); 1511 return; 1512 } 1513 case ARM::t2BF_LabelPseudo: { 1514 // This is a pseudo op for a label used by a branch future instruction 1515 1516 // Emit the label. 1517 OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1518 getFunctionNumber(), 1519 MI->getOperand(0).getIndex(), OutContext)); 1520 return; 1521 } 1522 case ARM::tPICADD: { 1523 // This is a pseudo op for a label + instruction sequence, which looks like: 1524 // LPC0: 1525 // add r0, pc 1526 // This adds the address of LPC0 to r0. 1527 1528 // Emit the label. 1529 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1530 getFunctionNumber(), 1531 MI->getOperand(2).getImm(), OutContext)); 1532 1533 // Form and emit the add. 1534 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1535 .addReg(MI->getOperand(0).getReg()) 1536 .addReg(MI->getOperand(0).getReg()) 1537 .addReg(ARM::PC) 1538 // Add predicate operands. 1539 .addImm(ARMCC::AL) 1540 .addReg(0)); 1541 return; 1542 } 1543 case ARM::PICADD: { 1544 // This is a pseudo op for a label + instruction sequence, which looks like: 1545 // LPC0: 1546 // add r0, pc, r0 1547 // This adds the address of LPC0 to r0. 1548 1549 // Emit the label. 1550 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1551 getFunctionNumber(), 1552 MI->getOperand(2).getImm(), OutContext)); 1553 1554 // Form and emit the add. 1555 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1556 .addReg(MI->getOperand(0).getReg()) 1557 .addReg(ARM::PC) 1558 .addReg(MI->getOperand(1).getReg()) 1559 // Add predicate operands. 1560 .addImm(MI->getOperand(3).getImm()) 1561 .addReg(MI->getOperand(4).getReg()) 1562 // Add 's' bit operand (always reg0 for this) 1563 .addReg(0)); 1564 return; 1565 } 1566 case ARM::PICSTR: 1567 case ARM::PICSTRB: 1568 case ARM::PICSTRH: 1569 case ARM::PICLDR: 1570 case ARM::PICLDRB: 1571 case ARM::PICLDRH: 1572 case ARM::PICLDRSB: 1573 case ARM::PICLDRSH: { 1574 // This is a pseudo op for a label + instruction sequence, which looks like: 1575 // LPC0: 1576 // OP r0, [pc, r0] 1577 // The LCP0 label is referenced by a constant pool entry in order to get 1578 // a PC-relative address at the ldr instruction. 1579 1580 // Emit the label. 1581 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1582 getFunctionNumber(), 1583 MI->getOperand(2).getImm(), OutContext)); 1584 1585 // Form and emit the load 1586 unsigned Opcode; 1587 switch (MI->getOpcode()) { 1588 default: 1589 llvm_unreachable("Unexpected opcode!"); 1590 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1591 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1592 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1593 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1594 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1595 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1596 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1597 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1598 } 1599 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1600 .addReg(MI->getOperand(0).getReg()) 1601 .addReg(ARM::PC) 1602 .addReg(MI->getOperand(1).getReg()) 1603 .addImm(0) 1604 // Add predicate operands. 1605 .addImm(MI->getOperand(3).getImm()) 1606 .addReg(MI->getOperand(4).getReg())); 1607 1608 return; 1609 } 1610 case ARM::CONSTPOOL_ENTRY: { 1611 if (Subtarget->genExecuteOnly()) 1612 llvm_unreachable("execute-only should not generate constant pools"); 1613 1614 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1615 /// in the function. The first operand is the ID# for this instruction, the 1616 /// second is the index into the MachineConstantPool that this is, the third 1617 /// is the size in bytes of this constant pool entry. 1618 /// The required alignment is specified on the basic block holding this MI. 1619 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1620 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1621 1622 // If this is the first entry of the pool, mark it. 1623 if (!InConstantPool) { 1624 OutStreamer->emitDataRegion(MCDR_DataRegion); 1625 InConstantPool = true; 1626 } 1627 1628 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 1629 1630 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1631 if (MCPE.isMachineConstantPoolEntry()) 1632 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1633 else 1634 emitGlobalConstant(DL, MCPE.Val.ConstVal); 1635 return; 1636 } 1637 case ARM::JUMPTABLE_ADDRS: 1638 emitJumpTableAddrs(MI); 1639 return; 1640 case ARM::JUMPTABLE_INSTS: 1641 emitJumpTableInsts(MI); 1642 return; 1643 case ARM::JUMPTABLE_TBB: 1644 case ARM::JUMPTABLE_TBH: 1645 emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1646 return; 1647 case ARM::t2BR_JT: { 1648 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1649 .addReg(ARM::PC) 1650 .addReg(MI->getOperand(0).getReg()) 1651 // Add predicate operands. 1652 .addImm(ARMCC::AL) 1653 .addReg(0)); 1654 return; 1655 } 1656 case ARM::t2TBB_JT: 1657 case ARM::t2TBH_JT: { 1658 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1659 // Lower and emit the PC label, then the instruction itself. 1660 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1661 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1662 .addReg(MI->getOperand(0).getReg()) 1663 .addReg(MI->getOperand(1).getReg()) 1664 // Add predicate operands. 1665 .addImm(ARMCC::AL) 1666 .addReg(0)); 1667 return; 1668 } 1669 case ARM::tTBB_JT: 1670 case ARM::tTBH_JT: { 1671 1672 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1673 Register Base = MI->getOperand(0).getReg(); 1674 Register Idx = MI->getOperand(1).getReg(); 1675 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1676 1677 // Multiply up idx if necessary. 1678 if (!Is8Bit) 1679 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1680 .addReg(Idx) 1681 .addReg(ARM::CPSR) 1682 .addReg(Idx) 1683 .addImm(1) 1684 // Add predicate operands. 1685 .addImm(ARMCC::AL) 1686 .addReg(0)); 1687 1688 if (Base == ARM::PC) { 1689 // TBB [base, idx] = 1690 // ADDS idx, idx, base 1691 // LDRB idx, [idx, #4] ; or LDRH if TBH 1692 // LSLS idx, #1 1693 // ADDS pc, pc, idx 1694 1695 // When using PC as the base, it's important that there is no padding 1696 // between the last ADDS and the start of the jump table. The jump table 1697 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1698 // 1699 // FIXME: Ideally we could vary the LDRB index based on the padding 1700 // between the sequence and jump table, however that relies on MCExprs 1701 // for load indexes which are currently not supported. 1702 OutStreamer->emitCodeAlignment(4); 1703 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1704 .addReg(Idx) 1705 .addReg(Idx) 1706 .addReg(Base) 1707 // Add predicate operands. 1708 .addImm(ARMCC::AL) 1709 .addReg(0)); 1710 1711 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1712 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1713 .addReg(Idx) 1714 .addReg(Idx) 1715 .addImm(Is8Bit ? 4 : 2) 1716 // Add predicate operands. 1717 .addImm(ARMCC::AL) 1718 .addReg(0)); 1719 } else { 1720 // TBB [base, idx] = 1721 // LDRB idx, [base, idx] ; or LDRH if TBH 1722 // LSLS idx, #1 1723 // ADDS pc, pc, idx 1724 1725 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1726 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1727 .addReg(Idx) 1728 .addReg(Base) 1729 .addReg(Idx) 1730 // Add predicate operands. 1731 .addImm(ARMCC::AL) 1732 .addReg(0)); 1733 } 1734 1735 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1736 .addReg(Idx) 1737 .addReg(ARM::CPSR) 1738 .addReg(Idx) 1739 .addImm(1) 1740 // Add predicate operands. 1741 .addImm(ARMCC::AL) 1742 .addReg(0)); 1743 1744 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1745 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1746 .addReg(ARM::PC) 1747 .addReg(ARM::PC) 1748 .addReg(Idx) 1749 // Add predicate operands. 1750 .addImm(ARMCC::AL) 1751 .addReg(0)); 1752 return; 1753 } 1754 case ARM::tBR_JTr: 1755 case ARM::BR_JTr: { 1756 // mov pc, target 1757 MCInst TmpInst; 1758 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1759 ARM::MOVr : ARM::tMOVr; 1760 TmpInst.setOpcode(Opc); 1761 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1762 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1763 // Add predicate operands. 1764 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1765 TmpInst.addOperand(MCOperand::createReg(0)); 1766 // Add 's' bit operand (always reg0 for this) 1767 if (Opc == ARM::MOVr) 1768 TmpInst.addOperand(MCOperand::createReg(0)); 1769 EmitToStreamer(*OutStreamer, TmpInst); 1770 return; 1771 } 1772 case ARM::BR_JTm_i12: { 1773 // ldr pc, target 1774 MCInst TmpInst; 1775 TmpInst.setOpcode(ARM::LDRi12); 1776 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1777 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1778 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1779 // Add predicate operands. 1780 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1781 TmpInst.addOperand(MCOperand::createReg(0)); 1782 EmitToStreamer(*OutStreamer, TmpInst); 1783 return; 1784 } 1785 case ARM::BR_JTm_rs: { 1786 // ldr pc, target 1787 MCInst TmpInst; 1788 TmpInst.setOpcode(ARM::LDRrs); 1789 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1790 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1791 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1792 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1793 // Add predicate operands. 1794 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1795 TmpInst.addOperand(MCOperand::createReg(0)); 1796 EmitToStreamer(*OutStreamer, TmpInst); 1797 return; 1798 } 1799 case ARM::BR_JTadd: { 1800 // add pc, target, idx 1801 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1802 .addReg(ARM::PC) 1803 .addReg(MI->getOperand(0).getReg()) 1804 .addReg(MI->getOperand(1).getReg()) 1805 // Add predicate operands. 1806 .addImm(ARMCC::AL) 1807 .addReg(0) 1808 // Add 's' bit operand (always reg0 for this) 1809 .addReg(0)); 1810 return; 1811 } 1812 case ARM::SPACE: 1813 OutStreamer->emitZeros(MI->getOperand(1).getImm()); 1814 return; 1815 case ARM::TRAP: { 1816 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1817 // FIXME: Remove this special case when they do. 1818 if (!Subtarget->isTargetMachO()) { 1819 uint32_t Val = 0xe7ffdefeUL; 1820 OutStreamer->AddComment("trap"); 1821 ATS.emitInst(Val); 1822 return; 1823 } 1824 break; 1825 } 1826 case ARM::TRAPNaCl: { 1827 uint32_t Val = 0xe7fedef0UL; 1828 OutStreamer->AddComment("trap"); 1829 ATS.emitInst(Val); 1830 return; 1831 } 1832 case ARM::tTRAP: { 1833 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1834 // FIXME: Remove this special case when they do. 1835 if (!Subtarget->isTargetMachO()) { 1836 uint16_t Val = 0xdefe; 1837 OutStreamer->AddComment("trap"); 1838 ATS.emitInst(Val, 'n'); 1839 return; 1840 } 1841 break; 1842 } 1843 case ARM::t2Int_eh_sjlj_setjmp: 1844 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1845 case ARM::tInt_eh_sjlj_setjmp: { 1846 // Two incoming args: GPR:$src, GPR:$val 1847 // mov $val, pc 1848 // adds $val, #7 1849 // str $val, [$src, #4] 1850 // movs r0, #0 1851 // b LSJLJEH 1852 // movs r0, #1 1853 // LSJLJEH: 1854 Register SrcReg = MI->getOperand(0).getReg(); 1855 Register ValReg = MI->getOperand(1).getReg(); 1856 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1857 OutStreamer->AddComment("eh_setjmp begin"); 1858 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1859 .addReg(ValReg) 1860 .addReg(ARM::PC) 1861 // Predicate. 1862 .addImm(ARMCC::AL) 1863 .addReg(0)); 1864 1865 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1866 .addReg(ValReg) 1867 // 's' bit operand 1868 .addReg(ARM::CPSR) 1869 .addReg(ValReg) 1870 .addImm(7) 1871 // Predicate. 1872 .addImm(ARMCC::AL) 1873 .addReg(0)); 1874 1875 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1876 .addReg(ValReg) 1877 .addReg(SrcReg) 1878 // The offset immediate is #4. The operand value is scaled by 4 for the 1879 // tSTR instruction. 1880 .addImm(1) 1881 // Predicate. 1882 .addImm(ARMCC::AL) 1883 .addReg(0)); 1884 1885 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1886 .addReg(ARM::R0) 1887 .addReg(ARM::CPSR) 1888 .addImm(0) 1889 // Predicate. 1890 .addImm(ARMCC::AL) 1891 .addReg(0)); 1892 1893 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1894 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1895 .addExpr(SymbolExpr) 1896 .addImm(ARMCC::AL) 1897 .addReg(0)); 1898 1899 OutStreamer->AddComment("eh_setjmp end"); 1900 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1901 .addReg(ARM::R0) 1902 .addReg(ARM::CPSR) 1903 .addImm(1) 1904 // Predicate. 1905 .addImm(ARMCC::AL) 1906 .addReg(0)); 1907 1908 OutStreamer->emitLabel(Label); 1909 return; 1910 } 1911 1912 case ARM::Int_eh_sjlj_setjmp_nofp: 1913 case ARM::Int_eh_sjlj_setjmp: { 1914 // Two incoming args: GPR:$src, GPR:$val 1915 // add $val, pc, #8 1916 // str $val, [$src, #+4] 1917 // mov r0, #0 1918 // add pc, pc, #0 1919 // mov r0, #1 1920 Register SrcReg = MI->getOperand(0).getReg(); 1921 Register ValReg = MI->getOperand(1).getReg(); 1922 1923 OutStreamer->AddComment("eh_setjmp begin"); 1924 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1925 .addReg(ValReg) 1926 .addReg(ARM::PC) 1927 .addImm(8) 1928 // Predicate. 1929 .addImm(ARMCC::AL) 1930 .addReg(0) 1931 // 's' bit operand (always reg0 for this). 1932 .addReg(0)); 1933 1934 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1935 .addReg(ValReg) 1936 .addReg(SrcReg) 1937 .addImm(4) 1938 // Predicate. 1939 .addImm(ARMCC::AL) 1940 .addReg(0)); 1941 1942 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1943 .addReg(ARM::R0) 1944 .addImm(0) 1945 // Predicate. 1946 .addImm(ARMCC::AL) 1947 .addReg(0) 1948 // 's' bit operand (always reg0 for this). 1949 .addReg(0)); 1950 1951 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1952 .addReg(ARM::PC) 1953 .addReg(ARM::PC) 1954 .addImm(0) 1955 // Predicate. 1956 .addImm(ARMCC::AL) 1957 .addReg(0) 1958 // 's' bit operand (always reg0 for this). 1959 .addReg(0)); 1960 1961 OutStreamer->AddComment("eh_setjmp end"); 1962 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1963 .addReg(ARM::R0) 1964 .addImm(1) 1965 // Predicate. 1966 .addImm(ARMCC::AL) 1967 .addReg(0) 1968 // 's' bit operand (always reg0 for this). 1969 .addReg(0)); 1970 return; 1971 } 1972 case ARM::Int_eh_sjlj_longjmp: { 1973 // ldr sp, [$src, #8] 1974 // ldr $scratch, [$src, #4] 1975 // ldr r7, [$src] 1976 // bx $scratch 1977 Register SrcReg = MI->getOperand(0).getReg(); 1978 Register ScratchReg = MI->getOperand(1).getReg(); 1979 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1980 .addReg(ARM::SP) 1981 .addReg(SrcReg) 1982 .addImm(8) 1983 // Predicate. 1984 .addImm(ARMCC::AL) 1985 .addReg(0)); 1986 1987 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1988 .addReg(ScratchReg) 1989 .addReg(SrcReg) 1990 .addImm(4) 1991 // Predicate. 1992 .addImm(ARMCC::AL) 1993 .addReg(0)); 1994 1995 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1996 // These platforms always use the same frame register 1997 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1998 .addReg(FramePtr) 1999 .addReg(SrcReg) 2000 .addImm(0) 2001 // Predicate. 2002 .addImm(ARMCC::AL) 2003 .addReg(0)); 2004 } else { 2005 // If the calling code might use either R7 or R11 as 2006 // frame pointer register, restore it into both. 2007 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2008 .addReg(ARM::R7) 2009 .addReg(SrcReg) 2010 .addImm(0) 2011 // Predicate. 2012 .addImm(ARMCC::AL) 2013 .addReg(0)); 2014 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2015 .addReg(ARM::R11) 2016 .addReg(SrcReg) 2017 .addImm(0) 2018 // Predicate. 2019 .addImm(ARMCC::AL) 2020 .addReg(0)); 2021 } 2022 2023 assert(Subtarget->hasV4TOps()); 2024 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2025 .addReg(ScratchReg) 2026 // Predicate. 2027 .addImm(ARMCC::AL) 2028 .addReg(0)); 2029 return; 2030 } 2031 case ARM::tInt_eh_sjlj_longjmp: { 2032 // ldr $scratch, [$src, #8] 2033 // mov sp, $scratch 2034 // ldr $scratch, [$src, #4] 2035 // ldr r7, [$src] 2036 // bx $scratch 2037 Register SrcReg = MI->getOperand(0).getReg(); 2038 Register ScratchReg = MI->getOperand(1).getReg(); 2039 2040 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2041 .addReg(ScratchReg) 2042 .addReg(SrcReg) 2043 // The offset immediate is #8. The operand value is scaled by 4 for the 2044 // tLDR instruction. 2045 .addImm(2) 2046 // Predicate. 2047 .addImm(ARMCC::AL) 2048 .addReg(0)); 2049 2050 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2051 .addReg(ARM::SP) 2052 .addReg(ScratchReg) 2053 // Predicate. 2054 .addImm(ARMCC::AL) 2055 .addReg(0)); 2056 2057 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2058 .addReg(ScratchReg) 2059 .addReg(SrcReg) 2060 .addImm(1) 2061 // Predicate. 2062 .addImm(ARMCC::AL) 2063 .addReg(0)); 2064 2065 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2066 // These platforms always use the same frame register 2067 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2068 .addReg(FramePtr) 2069 .addReg(SrcReg) 2070 .addImm(0) 2071 // Predicate. 2072 .addImm(ARMCC::AL) 2073 .addReg(0)); 2074 } else { 2075 // If the calling code might use either R7 or R11 as 2076 // frame pointer register, restore it into both. 2077 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2078 .addReg(ARM::R7) 2079 .addReg(SrcReg) 2080 .addImm(0) 2081 // Predicate. 2082 .addImm(ARMCC::AL) 2083 .addReg(0)); 2084 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2085 .addReg(ARM::R11) 2086 .addReg(SrcReg) 2087 .addImm(0) 2088 // Predicate. 2089 .addImm(ARMCC::AL) 2090 .addReg(0)); 2091 } 2092 2093 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2094 .addReg(ScratchReg) 2095 // Predicate. 2096 .addImm(ARMCC::AL) 2097 .addReg(0)); 2098 return; 2099 } 2100 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2101 // ldr.w r11, [$src, #0] 2102 // ldr.w sp, [$src, #8] 2103 // ldr.w pc, [$src, #4] 2104 2105 Register SrcReg = MI->getOperand(0).getReg(); 2106 2107 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2108 .addReg(ARM::R11) 2109 .addReg(SrcReg) 2110 .addImm(0) 2111 // Predicate 2112 .addImm(ARMCC::AL) 2113 .addReg(0)); 2114 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2115 .addReg(ARM::SP) 2116 .addReg(SrcReg) 2117 .addImm(8) 2118 // Predicate 2119 .addImm(ARMCC::AL) 2120 .addReg(0)); 2121 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2122 .addReg(ARM::PC) 2123 .addReg(SrcReg) 2124 .addImm(4) 2125 // Predicate 2126 .addImm(ARMCC::AL) 2127 .addReg(0)); 2128 return; 2129 } 2130 case ARM::PATCHABLE_FUNCTION_ENTER: 2131 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2132 return; 2133 case ARM::PATCHABLE_FUNCTION_EXIT: 2134 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2135 return; 2136 case ARM::PATCHABLE_TAIL_CALL: 2137 LowerPATCHABLE_TAIL_CALL(*MI); 2138 return; 2139 } 2140 2141 MCInst TmpInst; 2142 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2143 2144 EmitToStreamer(*OutStreamer, TmpInst); 2145 } 2146 2147 //===----------------------------------------------------------------------===// 2148 // Target Registry Stuff 2149 //===----------------------------------------------------------------------===// 2150 2151 // Force static initialization. 2152 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { 2153 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2154 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2155 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2156 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2157 } 2158