1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 58 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::EmitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::EmitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 72 OutStreamer->EmitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 75 } 76 OutStreamer->EmitLabel(CurrentFnSym); 77 } 78 79 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 80 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 81 assert(Size && "C++ constructor pointer had zero size!"); 82 83 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 84 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 85 86 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 87 ARMII::MO_NO_FLAG), 88 (Subtarget->isTargetELF() 89 ? MCSymbolRefExpr::VK_ARM_TARGET1 90 : MCSymbolRefExpr::VK_None), 91 OutContext); 92 93 OutStreamer->EmitValue(E, Size); 94 } 95 96 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 97 if (PromotedGlobals.count(GV)) 98 // The global was promoted into a constant pool. It should not be emitted. 99 return; 100 AsmPrinter::EmitGlobalVariable(GV); 101 } 102 103 /// runOnMachineFunction - This uses the EmitInstruction() 104 /// method to print assembly for each instruction. 105 /// 106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 107 AFI = MF.getInfo<ARMFunctionInfo>(); 108 MCP = MF.getConstantPool(); 109 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 110 111 SetupMachineFunction(MF); 112 const Function &F = MF.getFunction(); 113 const TargetMachine& TM = MF.getTarget(); 114 115 // Collect all globals that had their storage promoted to a constant pool. 116 // Functions are emitted before variables, so this accumulates promoted 117 // globals from all functions in PromotedGlobals. 118 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 119 PromotedGlobals.insert(GV); 120 121 // Calculate this function's optimization goal. 122 unsigned OptimizationGoal; 123 if (F.hasOptNone()) 124 // For best debugging illusion, speed and small size sacrificed 125 OptimizationGoal = 6; 126 else if (F.hasMinSize()) 127 // Aggressively for small size, speed and debug illusion sacrificed 128 OptimizationGoal = 4; 129 else if (F.hasOptSize()) 130 // For small size, but speed and debugging illusion preserved 131 OptimizationGoal = 3; 132 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 133 // Aggressively for speed, small size and debug illusion sacrificed 134 OptimizationGoal = 2; 135 else if (TM.getOptLevel() > CodeGenOpt::None) 136 // For speed, but small size and good debug illusion preserved 137 OptimizationGoal = 1; 138 else // TM.getOptLevel() == CodeGenOpt::None 139 // For good debugging, but speed and small size preserved 140 OptimizationGoal = 5; 141 142 // Combine a new optimization goal with existing ones. 143 if (OptimizationGoals == -1) // uninitialized goals 144 OptimizationGoals = OptimizationGoal; 145 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 146 OptimizationGoals = 0; 147 148 if (Subtarget->isTargetCOFF()) { 149 bool Internal = F.hasInternalLinkage(); 150 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 151 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 152 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 153 154 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 155 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 156 OutStreamer->EmitCOFFSymbolType(Type); 157 OutStreamer->EndCOFFSymbolDef(); 158 } 159 160 // Emit the rest of the function body. 161 EmitFunctionBody(); 162 163 // Emit the XRay table for this function. 164 emitXRayTable(); 165 166 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 167 // These are created per function, rather than per TU, since it's 168 // relatively easy to exceed the thumb branch range within a TU. 169 if (! ThumbIndirectPads.empty()) { 170 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 171 EmitAlignment(Align(2)); 172 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 173 OutStreamer->EmitLabel(TIP.second); 174 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 175 .addReg(TIP.first) 176 // Add predicate operands. 177 .addImm(ARMCC::AL) 178 .addReg(0)); 179 } 180 ThumbIndirectPads.clear(); 181 } 182 183 // We didn't modify anything. 184 return false; 185 } 186 187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 188 raw_ostream &O) { 189 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 190 unsigned TF = MO.getTargetFlags(); 191 if (TF & ARMII::MO_LO16) 192 O << ":lower16:"; 193 else if (TF & ARMII::MO_HI16) 194 O << ":upper16:"; 195 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 196 printOffset(MO.getOffset(), O); 197 } 198 199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 200 raw_ostream &O) { 201 const MachineOperand &MO = MI->getOperand(OpNum); 202 203 switch (MO.getType()) { 204 default: llvm_unreachable("<unknown operand type>"); 205 case MachineOperand::MO_Register: { 206 Register Reg = MO.getReg(); 207 assert(Register::isPhysicalRegister(Reg)); 208 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 209 if(ARM::GPRPairRegClass.contains(Reg)) { 210 const MachineFunction &MF = *MI->getParent()->getParent(); 211 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 212 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 213 } 214 O << ARMInstPrinter::getRegisterName(Reg); 215 break; 216 } 217 case MachineOperand::MO_Immediate: { 218 O << '#'; 219 unsigned TF = MO.getTargetFlags(); 220 if (TF == ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF == ARMII::MO_HI16) 223 O << ":upper16:"; 224 O << MO.getImm(); 225 break; 226 } 227 case MachineOperand::MO_MachineBasicBlock: 228 MO.getMBB()->getSymbol()->print(O, MAI); 229 return; 230 case MachineOperand::MO_GlobalAddress: { 231 PrintSymbolOperand(MO, O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 243 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 244 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 245 const DataLayout &DL = getDataLayout(); 246 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 247 "CPI" + Twine(getFunctionNumber()) + "_" + 248 Twine(CPID)); 249 } 250 251 //===--------------------------------------------------------------------===// 252 253 MCSymbol *ARMAsmPrinter:: 254 GetARMJTIPICJumpTableLabel(unsigned uid) const { 255 const DataLayout &DL = getDataLayout(); 256 SmallString<60> Name; 257 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 258 << getFunctionNumber() << '_' << uid; 259 return OutContext.getOrCreateSymbol(Name); 260 } 261 262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 263 const char *ExtraCode, raw_ostream &O) { 264 // Does this asm operand have a single letter operand modifier? 265 if (ExtraCode && ExtraCode[0]) { 266 if (ExtraCode[1] != 0) return true; // Unknown modifier. 267 268 switch (ExtraCode[0]) { 269 default: 270 // See if this is a generic print operand 271 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 272 case 'P': // Print a VFP double precision register. 273 case 'q': // Print a NEON quad precision register. 274 printOperand(MI, OpNum, O); 275 return false; 276 case 'y': // Print a VFP single precision register as indexed double. 277 if (MI->getOperand(OpNum).isReg()) { 278 Register Reg = MI->getOperand(OpNum).getReg(); 279 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 280 // Find the 'd' register that has this 's' register as a sub-register, 281 // and determine the lane number. 282 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 283 if (!ARM::DPRRegClass.contains(*SR)) 284 continue; 285 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 286 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 287 return false; 288 } 289 } 290 return true; 291 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 292 if (!MI->getOperand(OpNum).isImm()) 293 return true; 294 O << ~(MI->getOperand(OpNum).getImm()); 295 return false; 296 case 'L': // The low 16 bits of an immediate constant. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << (MI->getOperand(OpNum).getImm() & 0xffff); 300 return false; 301 case 'M': { // A register range suitable for LDM/STM. 302 if (!MI->getOperand(OpNum).isReg()) 303 return true; 304 const MachineOperand &MO = MI->getOperand(OpNum); 305 Register RegBegin = MO.getReg(); 306 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 307 // already got the operands in registers that are operands to the 308 // inline asm statement. 309 O << "{"; 310 if (ARM::GPRPairRegClass.contains(RegBegin)) { 311 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 312 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 313 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 314 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 315 } 316 O << ARMInstPrinter::getRegisterName(RegBegin); 317 318 // FIXME: The register allocator not only may not have given us the 319 // registers in sequence, but may not be in ascending registers. This 320 // will require changes in the register allocator that'll need to be 321 // propagated down here if the operands change. 322 unsigned RegOps = OpNum + 1; 323 while (MI->getOperand(RegOps).isReg()) { 324 O << ", " 325 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 326 RegOps++; 327 } 328 329 O << "}"; 330 331 return false; 332 } 333 case 'R': // The most significant register of a pair. 334 case 'Q': { // The least significant register of a pair. 335 if (OpNum == 0) 336 return true; 337 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 338 if (!FlagsOP.isImm()) 339 return true; 340 unsigned Flags = FlagsOP.getImm(); 341 342 // This operand may not be the one that actually provides the register. If 343 // it's tied to a previous one then we should refer instead to that one 344 // for registers and their classes. 345 unsigned TiedIdx; 346 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 347 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 348 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 349 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 350 } 351 Flags = MI->getOperand(OpNum).getImm(); 352 353 // Later code expects OpNum to be pointing at the register rather than 354 // the flags. 355 OpNum += 1; 356 } 357 358 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 359 unsigned RC; 360 bool FirstHalf; 361 const ARMBaseTargetMachine &ATM = 362 static_cast<const ARMBaseTargetMachine &>(TM); 363 364 // 'Q' should correspond to the low order register and 'R' to the high 365 // order register. Whether this corresponds to the upper or lower half 366 // depends on the endianess mode. 367 if (ExtraCode[0] == 'Q') 368 FirstHalf = ATM.isLittleEndian(); 369 else 370 // ExtraCode[0] == 'R'. 371 FirstHalf = !ATM.isLittleEndian(); 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 374 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 375 if (NumVals != 1) 376 return true; 377 const MachineOperand &MO = MI->getOperand(OpNum); 378 if (!MO.isReg()) 379 return true; 380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 381 Register Reg = 382 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 383 O << ARMInstPrinter::getRegisterName(Reg); 384 return false; 385 } 386 if (NumVals != 2) 387 return true; 388 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 389 if (RegOp >= MI->getNumOperands()) 390 return true; 391 const MachineOperand &MO = MI->getOperand(RegOp); 392 if (!MO.isReg()) 393 return true; 394 Register Reg = MO.getReg(); 395 O << ARMInstPrinter::getRegisterName(Reg); 396 return false; 397 } 398 399 case 'e': // The low doubleword register of a NEON quad register. 400 case 'f': { // The high doubleword register of a NEON quad register. 401 if (!MI->getOperand(OpNum).isReg()) 402 return true; 403 Register Reg = MI->getOperand(OpNum).getReg(); 404 if (!ARM::QPRRegClass.contains(Reg)) 405 return true; 406 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 407 Register SubReg = 408 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 409 O << ARMInstPrinter::getRegisterName(SubReg); 410 return false; 411 } 412 413 // This modifier is not yet supported. 414 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 415 return true; 416 case 'H': { // The highest-numbered register of a pair. 417 const MachineOperand &MO = MI->getOperand(OpNum); 418 if (!MO.isReg()) 419 return true; 420 const MachineFunction &MF = *MI->getParent()->getParent(); 421 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 422 Register Reg = MO.getReg(); 423 if(!ARM::GPRPairRegClass.contains(Reg)) 424 return false; 425 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 426 O << ARMInstPrinter::getRegisterName(Reg); 427 return false; 428 } 429 } 430 } 431 432 printOperand(MI, OpNum, O); 433 return false; 434 } 435 436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 437 unsigned OpNum, const char *ExtraCode, 438 raw_ostream &O) { 439 // Does this asm operand have a single letter operand modifier? 440 if (ExtraCode && ExtraCode[0]) { 441 if (ExtraCode[1] != 0) return true; // Unknown modifier. 442 443 switch (ExtraCode[0]) { 444 case 'A': // A memory operand for a VLD1/VST1 instruction. 445 default: return true; // Unknown modifier. 446 case 'm': // The base register of a memory operand. 447 if (!MI->getOperand(OpNum).isReg()) 448 return true; 449 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 450 return false; 451 } 452 } 453 454 const MachineOperand &MO = MI->getOperand(OpNum); 455 assert(MO.isReg() && "unexpected inline asm memory operand"); 456 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 457 return false; 458 } 459 460 static bool isThumb(const MCSubtargetInfo& STI) { 461 return STI.getFeatureBits()[ARM::ModeThumb]; 462 } 463 464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 465 const MCSubtargetInfo *EndInfo) const { 466 // If either end mode is unknown (EndInfo == NULL) or different than 467 // the start mode, then restore the start mode. 468 const bool WasThumb = isThumb(StartInfo); 469 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 470 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 471 } 472 } 473 474 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 475 const Triple &TT = TM.getTargetTriple(); 476 // Use unified assembler syntax. 477 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 478 479 // Emit ARM Build Attributes 480 if (TT.isOSBinFormatELF()) 481 emitAttributes(); 482 483 // Use the triple's architecture and subarchitecture to determine 484 // if we're thumb for the purposes of the top level code16 assembler 485 // flag. 486 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 487 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 488 } 489 490 static void 491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 492 MachineModuleInfoImpl::StubValueTy &MCSym) { 493 // L_foo$stub: 494 OutStreamer.EmitLabel(StubLabel); 495 // .indirect_symbol _foo 496 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 497 498 if (MCSym.getInt()) 499 // External to current translation unit. 500 OutStreamer.EmitIntValue(0, 4/*size*/); 501 else 502 // Internal to current translation unit. 503 // 504 // When we place the LSDA into the TEXT section, the type info 505 // pointers need to be indirect and pc-rel. We accomplish this by 506 // using NLPs; however, sometimes the types are local to the file. 507 // We need to fill in the value for the NLP in those cases. 508 OutStreamer.EmitValue( 509 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 510 4 /*size*/); 511 } 512 513 514 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 515 const Triple &TT = TM.getTargetTriple(); 516 if (TT.isOSBinFormatMachO()) { 517 // All darwin targets use mach-o. 518 const TargetLoweringObjectFileMachO &TLOFMacho = 519 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 520 MachineModuleInfoMachO &MMIMacho = 521 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 522 523 // Output non-lazy-pointers for external and common global variables. 524 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 525 526 if (!Stubs.empty()) { 527 // Switch with ".non_lazy_symbol_pointer" directive. 528 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 529 EmitAlignment(Align(4)); 530 531 for (auto &Stub : Stubs) 532 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 533 534 Stubs.clear(); 535 OutStreamer->AddBlankLine(); 536 } 537 538 Stubs = MMIMacho.GetThreadLocalGVStubList(); 539 if (!Stubs.empty()) { 540 // Switch with ".non_lazy_symbol_pointer" directive. 541 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 542 EmitAlignment(Align(4)); 543 544 for (auto &Stub : Stubs) 545 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 546 547 Stubs.clear(); 548 OutStreamer->AddBlankLine(); 549 } 550 551 // Funny Darwin hack: This flag tells the linker that no global symbols 552 // contain code that falls through to other global symbols (e.g. the obvious 553 // implementation of multiple entry points). If this doesn't occur, the 554 // linker can safely perform dead code stripping. Since LLVM never 555 // generates code that does this, it is always safe to set. 556 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 557 } 558 559 // The last attribute to be emitted is ABI_optimization_goals 560 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 561 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 562 563 if (OptimizationGoals > 0 && 564 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 565 Subtarget->isTargetMuslAEABI())) 566 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 567 OptimizationGoals = -1; 568 569 ATS.finishAttributeSection(); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 574 // FIXME: 575 // The following seem like one-off assembler flags, but they actually need 576 // to appear in the .ARM.attributes section in ELF. 577 // Instead of subclassing the MCELFStreamer, we do the work here. 578 579 // Returns true if all functions have the same function attribute value. 580 // It also returns true when the module has no functions. 581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 582 StringRef Value) { 583 return !any_of(M, [&](const Function &F) { 584 return F.getFnAttribute(Attr).getValueAsString() != Value; 585 }); 586 } 587 588 void ARMAsmPrinter::emitAttributes() { 589 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 590 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 591 592 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 593 594 ATS.switchVendor("aeabi"); 595 596 // Compute ARM ELF Attributes based on the default subtarget that 597 // we'd have constructed. The existing ARM behavior isn't LTO clean 598 // anyhow. 599 // FIXME: For ifunc related functions we could iterate over and look 600 // for a feature string that doesn't match the default one. 601 const Triple &TT = TM.getTargetTriple(); 602 StringRef CPU = TM.getTargetCPU(); 603 StringRef FS = TM.getTargetFeatureString(); 604 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 605 if (!FS.empty()) { 606 if (!ArchFS.empty()) 607 ArchFS = (Twine(ArchFS) + "," + FS).str(); 608 else 609 ArchFS = FS; 610 } 611 const ARMBaseTargetMachine &ATM = 612 static_cast<const ARMBaseTargetMachine &>(TM); 613 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 614 615 // Emit build attributes for the available hardware. 616 ATS.emitTargetAttributes(STI); 617 618 // RW data addressing. 619 if (isPositionIndependent()) { 620 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 621 ARMBuildAttrs::AddressRWPCRel); 622 } else if (STI.isRWPI()) { 623 // RWPI specific attributes. 624 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 625 ARMBuildAttrs::AddressRWSBRel); 626 } 627 628 // RO data addressing. 629 if (isPositionIndependent() || STI.isROPI()) { 630 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 631 ARMBuildAttrs::AddressROPCRel); 632 } 633 634 // GOT use. 635 if (isPositionIndependent()) { 636 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 637 ARMBuildAttrs::AddressGOT); 638 } else { 639 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 640 ARMBuildAttrs::AddressDirect); 641 } 642 643 // Set FP Denormals. 644 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 645 "denormal-fp-math", 646 "preserve-sign") || 647 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 648 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 649 ARMBuildAttrs::PreserveFPSign); 650 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 651 "denormal-fp-math", 652 "positive-zero") || 653 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 654 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 655 ARMBuildAttrs::PositiveZero); 656 else if (!TM.Options.UnsafeFPMath) 657 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 658 ARMBuildAttrs::IEEEDenormals); 659 else { 660 if (!STI.hasVFP2Base()) { 661 // When the target doesn't have an FPU (by design or 662 // intention), the assumptions made on the software support 663 // mirror that of the equivalent hardware support *if it 664 // existed*. For v7 and better we indicate that denormals are 665 // flushed preserving sign, and for V6 we indicate that 666 // denormals are flushed to positive zero. 667 if (STI.hasV7Ops()) 668 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 669 ARMBuildAttrs::PreserveFPSign); 670 } else if (STI.hasVFP3Base()) { 671 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 672 // the sign bit of the zero matches the sign bit of the input or 673 // result that is being flushed to zero. 674 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 675 ARMBuildAttrs::PreserveFPSign); 676 } 677 // For VFPv2 implementations it is implementation defined as 678 // to whether denormals are flushed to positive zero or to 679 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 680 // LLVM has chosen to flush this to positive zero (most likely for 681 // GCC compatibility), so that's the chosen value here (the 682 // absence of its emission implies zero). 683 } 684 685 // Set FP exceptions and rounding 686 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 687 "no-trapping-math", "true") || 688 TM.Options.NoTrappingFPMath) 689 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 690 ARMBuildAttrs::Not_Allowed); 691 else if (!TM.Options.UnsafeFPMath) { 692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 693 694 // If the user has permitted this code to choose the IEEE 754 695 // rounding at run-time, emit the rounding attribute. 696 if (TM.Options.HonorSignDependentRoundingFPMathOption) 697 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 698 } 699 700 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 701 // equivalent of GCC's -ffinite-math-only flag. 702 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 703 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 704 ARMBuildAttrs::Allowed); 705 else 706 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 707 ARMBuildAttrs::AllowIEEE754); 708 709 // FIXME: add more flags to ARMBuildAttributes.h 710 // 8-bytes alignment stuff. 711 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 712 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 713 714 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 715 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 716 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 717 718 // FIXME: To support emitting this build attribute as GCC does, the 719 // -mfp16-format option and associated plumbing must be 720 // supported. For now the __fp16 type is exposed by default, so this 721 // attribute should be emitted with value 1. 722 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 723 ARMBuildAttrs::FP16FormatIEEE); 724 725 if (MMI) { 726 if (const Module *SourceModule = MMI->getModule()) { 727 // ABI_PCS_wchar_t to indicate wchar_t width 728 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 729 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 730 SourceModule->getModuleFlag("wchar_size"))) { 731 int WCharWidth = WCharWidthValue->getZExtValue(); 732 assert((WCharWidth == 2 || WCharWidth == 4) && 733 "wchar_t width must be 2 or 4 bytes"); 734 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 735 } 736 737 // ABI_enum_size to indicate enum width 738 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 739 // (all enums contain a value needing 32 bits to encode). 740 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 741 SourceModule->getModuleFlag("min_enum_size"))) { 742 int EnumWidth = EnumWidthValue->getZExtValue(); 743 assert((EnumWidth == 1 || EnumWidth == 4) && 744 "Minimum enum width must be 1 or 4 bytes"); 745 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 746 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 747 } 748 } 749 } 750 751 // We currently do not support using R9 as the TLS pointer. 752 if (STI.isRWPI()) 753 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 754 ARMBuildAttrs::R9IsSB); 755 else if (STI.isR9Reserved()) 756 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 757 ARMBuildAttrs::R9Reserved); 758 else 759 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 760 ARMBuildAttrs::R9IsGPR); 761 } 762 763 //===----------------------------------------------------------------------===// 764 765 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 766 unsigned LabelId, MCContext &Ctx) { 767 768 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 769 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 770 return Label; 771 } 772 773 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 774 unsigned LabelId, MCContext &Ctx) { 775 776 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 777 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 778 return Label; 779 } 780 781 static MCSymbolRefExpr::VariantKind 782 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 783 switch (Modifier) { 784 case ARMCP::no_modifier: 785 return MCSymbolRefExpr::VK_None; 786 case ARMCP::TLSGD: 787 return MCSymbolRefExpr::VK_TLSGD; 788 case ARMCP::TPOFF: 789 return MCSymbolRefExpr::VK_TPOFF; 790 case ARMCP::GOTTPOFF: 791 return MCSymbolRefExpr::VK_GOTTPOFF; 792 case ARMCP::SBREL: 793 return MCSymbolRefExpr::VK_ARM_SBREL; 794 case ARMCP::GOT_PREL: 795 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 796 case ARMCP::SECREL: 797 return MCSymbolRefExpr::VK_SECREL; 798 } 799 llvm_unreachable("Invalid ARMCPModifier!"); 800 } 801 802 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 803 unsigned char TargetFlags) { 804 if (Subtarget->isTargetMachO()) { 805 bool IsIndirect = 806 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 807 808 if (!IsIndirect) 809 return getSymbol(GV); 810 811 // FIXME: Remove this when Darwin transition to @GOT like syntax. 812 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 813 MachineModuleInfoMachO &MMIMachO = 814 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 815 MachineModuleInfoImpl::StubValueTy &StubSym = 816 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 817 : MMIMachO.getGVStubEntry(MCSym); 818 819 if (!StubSym.getPointer()) 820 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 821 !GV->hasInternalLinkage()); 822 return MCSym; 823 } else if (Subtarget->isTargetCOFF()) { 824 assert(Subtarget->isTargetWindows() && 825 "Windows is the only supported COFF target"); 826 827 bool IsIndirect = 828 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 829 if (!IsIndirect) 830 return getSymbol(GV); 831 832 SmallString<128> Name; 833 if (TargetFlags & ARMII::MO_DLLIMPORT) 834 Name = "__imp_"; 835 else if (TargetFlags & ARMII::MO_COFFSTUB) 836 Name = ".refptr."; 837 getNameWithPrefix(Name, GV); 838 839 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 840 841 if (TargetFlags & ARMII::MO_COFFSTUB) { 842 MachineModuleInfoCOFF &MMICOFF = 843 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 844 MachineModuleInfoImpl::StubValueTy &StubSym = 845 MMICOFF.getGVStubEntry(MCSym); 846 847 if (!StubSym.getPointer()) 848 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 849 } 850 851 return MCSym; 852 } else if (Subtarget->isTargetELF()) { 853 return getSymbol(GV); 854 } 855 llvm_unreachable("unexpected target"); 856 } 857 858 void ARMAsmPrinter:: 859 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 860 const DataLayout &DL = getDataLayout(); 861 int Size = DL.getTypeAllocSize(MCPV->getType()); 862 863 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 864 865 if (ACPV->isPromotedGlobal()) { 866 // This constant pool entry is actually a global whose storage has been 867 // promoted into the constant pool. This global may be referenced still 868 // by debug information, and due to the way AsmPrinter is set up, the debug 869 // info is immutable by the time we decide to promote globals to constant 870 // pools. Because of this, we need to ensure we emit a symbol for the global 871 // with private linkage (the default) so debug info can refer to it. 872 // 873 // However, if this global is promoted into several functions we must ensure 874 // we don't try and emit duplicate symbols! 875 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 876 for (const auto *GV : ACPC->promotedGlobals()) { 877 if (!EmittedPromotedGlobalLabels.count(GV)) { 878 MCSymbol *GVSym = getSymbol(GV); 879 OutStreamer->EmitLabel(GVSym); 880 EmittedPromotedGlobalLabels.insert(GV); 881 } 882 } 883 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 884 } 885 886 MCSymbol *MCSym; 887 if (ACPV->isLSDA()) { 888 MCSym = getCurExceptionSym(); 889 } else if (ACPV->isBlockAddress()) { 890 const BlockAddress *BA = 891 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 892 MCSym = GetBlockAddressSymbol(BA); 893 } else if (ACPV->isGlobalValue()) { 894 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 895 896 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 897 // flag the global as MO_NONLAZY. 898 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 899 MCSym = GetARMGVSymbol(GV, TF); 900 } else if (ACPV->isMachineBasicBlock()) { 901 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 902 MCSym = MBB->getSymbol(); 903 } else { 904 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 905 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 906 MCSym = GetExternalSymbolSymbol(Sym); 907 } 908 909 // Create an MCSymbol for the reference. 910 const MCExpr *Expr = 911 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 912 OutContext); 913 914 if (ACPV->getPCAdjustment()) { 915 MCSymbol *PCLabel = 916 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 917 ACPV->getLabelId(), OutContext); 918 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 919 PCRelExpr = 920 MCBinaryExpr::createAdd(PCRelExpr, 921 MCConstantExpr::create(ACPV->getPCAdjustment(), 922 OutContext), 923 OutContext); 924 if (ACPV->mustAddCurrentAddress()) { 925 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 926 // label, so just emit a local label end reference that instead. 927 MCSymbol *DotSym = OutContext.createTempSymbol(); 928 OutStreamer->EmitLabel(DotSym); 929 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 930 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 931 } 932 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 933 } 934 OutStreamer->EmitValue(Expr, Size); 935 } 936 937 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 938 const MachineOperand &MO1 = MI->getOperand(1); 939 unsigned JTI = MO1.getIndex(); 940 941 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 942 // ARM mode tables. 943 EmitAlignment(Align(4)); 944 945 // Emit a label for the jump table. 946 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 947 OutStreamer->EmitLabel(JTISymbol); 948 949 // Mark the jump table as data-in-code. 950 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 951 952 // Emit each entry of the table. 953 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 954 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 955 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 956 957 for (MachineBasicBlock *MBB : JTBBs) { 958 // Construct an MCExpr for the entry. We want a value of the form: 959 // (BasicBlockAddr - TableBeginAddr) 960 // 961 // For example, a table with entries jumping to basic blocks BB0 and BB1 962 // would look like: 963 // LJTI_0_0: 964 // .word (LBB0 - LJTI_0_0) 965 // .word (LBB1 - LJTI_0_0) 966 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 967 968 if (isPositionIndependent() || Subtarget->isROPI()) 969 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 970 OutContext), 971 OutContext); 972 // If we're generating a table of Thumb addresses in static relocation 973 // model, we need to add one to keep interworking correctly. 974 else if (AFI->isThumbFunction()) 975 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 976 OutContext); 977 OutStreamer->EmitValue(Expr, 4); 978 } 979 // Mark the end of jump table data-in-code region. 980 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 981 } 982 983 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 984 const MachineOperand &MO1 = MI->getOperand(1); 985 unsigned JTI = MO1.getIndex(); 986 987 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 988 // ARM mode tables. 989 EmitAlignment(Align(4)); 990 991 // Emit a label for the jump table. 992 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 993 OutStreamer->EmitLabel(JTISymbol); 994 995 // Emit each entry of the table. 996 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 997 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 998 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 999 1000 for (MachineBasicBlock *MBB : JTBBs) { 1001 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1002 OutContext); 1003 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1004 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1005 .addExpr(MBBSymbolExpr) 1006 .addImm(ARMCC::AL) 1007 .addReg(0)); 1008 } 1009 } 1010 1011 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1012 unsigned OffsetWidth) { 1013 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1014 const MachineOperand &MO1 = MI->getOperand(1); 1015 unsigned JTI = MO1.getIndex(); 1016 1017 if (Subtarget->isThumb1Only()) 1018 EmitAlignment(Align(4)); 1019 1020 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1021 OutStreamer->EmitLabel(JTISymbol); 1022 1023 // Emit each entry of the table. 1024 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1025 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1026 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1027 1028 // Mark the jump table as data-in-code. 1029 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1030 : MCDR_DataRegionJT16); 1031 1032 for (auto MBB : JTBBs) { 1033 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1034 OutContext); 1035 // Otherwise it's an offset from the dispatch instruction. Construct an 1036 // MCExpr for the entry. We want a value of the form: 1037 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1038 // 1039 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1040 // would look like: 1041 // LJTI_0_0: 1042 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1043 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1044 // where LCPI0_0 is a label defined just before the TBB instruction using 1045 // this table. 1046 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1047 const MCExpr *Expr = MCBinaryExpr::createAdd( 1048 MCSymbolRefExpr::create(TBInstPC, OutContext), 1049 MCConstantExpr::create(4, OutContext), OutContext); 1050 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1051 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1052 OutContext); 1053 OutStreamer->EmitValue(Expr, OffsetWidth); 1054 } 1055 // Mark the end of jump table data-in-code region. 32-bit offsets use 1056 // actual branch instructions here, so we don't mark those as a data-region 1057 // at all. 1058 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1059 1060 // Make sure the next instruction is 2-byte aligned. 1061 EmitAlignment(Align(2)); 1062 } 1063 1064 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1065 assert(MI->getFlag(MachineInstr::FrameSetup) && 1066 "Only instruction which are involved into frame setup code are allowed"); 1067 1068 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1069 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1070 const MachineFunction &MF = *MI->getParent()->getParent(); 1071 const TargetRegisterInfo *TargetRegInfo = 1072 MF.getSubtarget().getRegisterInfo(); 1073 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1074 1075 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1076 unsigned Opc = MI->getOpcode(); 1077 unsigned SrcReg, DstReg; 1078 1079 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1080 // Two special cases: 1081 // 1) tPUSH does not have src/dst regs. 1082 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1083 // load. Yes, this is pretty fragile, but for now I don't see better 1084 // way... :( 1085 SrcReg = DstReg = ARM::SP; 1086 } else { 1087 SrcReg = MI->getOperand(1).getReg(); 1088 DstReg = MI->getOperand(0).getReg(); 1089 } 1090 1091 // Try to figure out the unwinding opcode out of src / dst regs. 1092 if (MI->mayStore()) { 1093 // Register saves. 1094 assert(DstReg == ARM::SP && 1095 "Only stack pointer as a destination reg is supported"); 1096 1097 SmallVector<unsigned, 4> RegList; 1098 // Skip src & dst reg, and pred ops. 1099 unsigned StartOp = 2 + 2; 1100 // Use all the operands. 1101 unsigned NumOffset = 0; 1102 // Amount of SP adjustment folded into a push. 1103 unsigned Pad = 0; 1104 1105 switch (Opc) { 1106 default: 1107 MI->print(errs()); 1108 llvm_unreachable("Unsupported opcode for unwinding information"); 1109 case ARM::tPUSH: 1110 // Special case here: no src & dst reg, but two extra imp ops. 1111 StartOp = 2; NumOffset = 2; 1112 LLVM_FALLTHROUGH; 1113 case ARM::STMDB_UPD: 1114 case ARM::t2STMDB_UPD: 1115 case ARM::VSTMDDB_UPD: 1116 assert(SrcReg == ARM::SP && 1117 "Only stack pointer as a source reg is supported"); 1118 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1119 i != NumOps; ++i) { 1120 const MachineOperand &MO = MI->getOperand(i); 1121 // Actually, there should never be any impdef stuff here. Skip it 1122 // temporary to workaround PR11902. 1123 if (MO.isImplicit()) 1124 continue; 1125 // Registers, pushed as a part of folding an SP update into the 1126 // push instruction are marked as undef and should not be 1127 // restored when unwinding, because the function can modify the 1128 // corresponding stack slots. 1129 if (MO.isUndef()) { 1130 assert(RegList.empty() && 1131 "Pad registers must come before restored ones"); 1132 unsigned Width = 1133 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1134 Pad += Width; 1135 continue; 1136 } 1137 // Check for registers that are remapped (for a Thumb1 prologue that 1138 // saves high registers). 1139 Register Reg = MO.getReg(); 1140 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1141 Reg = RemappedReg; 1142 RegList.push_back(Reg); 1143 } 1144 break; 1145 case ARM::STR_PRE_IMM: 1146 case ARM::STR_PRE_REG: 1147 case ARM::t2STR_PRE: 1148 assert(MI->getOperand(2).getReg() == ARM::SP && 1149 "Only stack pointer as a source reg is supported"); 1150 RegList.push_back(SrcReg); 1151 break; 1152 } 1153 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1154 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1155 // Account for the SP adjustment, folded into the push. 1156 if (Pad) 1157 ATS.emitPad(Pad); 1158 } 1159 } else { 1160 // Changes of stack / frame pointer. 1161 if (SrcReg == ARM::SP) { 1162 int64_t Offset = 0; 1163 switch (Opc) { 1164 default: 1165 MI->print(errs()); 1166 llvm_unreachable("Unsupported opcode for unwinding information"); 1167 case ARM::MOVr: 1168 case ARM::tMOVr: 1169 Offset = 0; 1170 break; 1171 case ARM::ADDri: 1172 case ARM::t2ADDri: 1173 case ARM::t2ADDri12: 1174 Offset = -MI->getOperand(2).getImm(); 1175 break; 1176 case ARM::SUBri: 1177 case ARM::t2SUBri: 1178 case ARM::t2SUBri12: 1179 Offset = MI->getOperand(2).getImm(); 1180 break; 1181 case ARM::tSUBspi: 1182 Offset = MI->getOperand(2).getImm()*4; 1183 break; 1184 case ARM::tADDspi: 1185 case ARM::tADDrSPi: 1186 Offset = -MI->getOperand(2).getImm()*4; 1187 break; 1188 case ARM::tLDRpci: { 1189 // Grab the constpool index and check, whether it corresponds to 1190 // original or cloned constpool entry. 1191 unsigned CPI = MI->getOperand(1).getIndex(); 1192 const MachineConstantPool *MCP = MF.getConstantPool(); 1193 if (CPI >= MCP->getConstants().size()) 1194 CPI = AFI->getOriginalCPIdx(CPI); 1195 assert(CPI != -1U && "Invalid constpool index"); 1196 1197 // Derive the actual offset. 1198 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1199 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1200 // FIXME: Check for user, it should be "add" instruction! 1201 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1202 break; 1203 } 1204 } 1205 1206 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1207 if (DstReg == FramePtr && FramePtr != ARM::SP) 1208 // Set-up of the frame pointer. Positive values correspond to "add" 1209 // instruction. 1210 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1211 else if (DstReg == ARM::SP) { 1212 // Change of SP by an offset. Positive values correspond to "sub" 1213 // instruction. 1214 ATS.emitPad(Offset); 1215 } else { 1216 // Move of SP to a register. Positive values correspond to an "add" 1217 // instruction. 1218 ATS.emitMovSP(DstReg, -Offset); 1219 } 1220 } 1221 } else if (DstReg == ARM::SP) { 1222 MI->print(errs()); 1223 llvm_unreachable("Unsupported opcode for unwinding information"); 1224 } else if (Opc == ARM::tMOVr) { 1225 // If a Thumb1 function spills r8-r11, we copy the values to low 1226 // registers before pushing them. Record the copy so we can emit the 1227 // correct ".save" later. 1228 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1229 } else { 1230 MI->print(errs()); 1231 llvm_unreachable("Unsupported opcode for unwinding information"); 1232 } 1233 } 1234 } 1235 1236 // Simple pseudo-instructions have their lowering (with expansion to real 1237 // instructions) auto-generated. 1238 #include "ARMGenMCPseudoLowering.inc" 1239 1240 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1241 const DataLayout &DL = getDataLayout(); 1242 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1243 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1244 1245 const MachineFunction &MF = *MI->getParent()->getParent(); 1246 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1247 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1248 1249 // If we just ended a constant pool, mark it as such. 1250 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1251 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1252 InConstantPool = false; 1253 } 1254 1255 // Emit unwinding stuff for frame-related instructions 1256 if (Subtarget->isTargetEHABICompatible() && 1257 MI->getFlag(MachineInstr::FrameSetup)) 1258 EmitUnwindingInstruction(MI); 1259 1260 // Do any auto-generated pseudo lowerings. 1261 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1262 return; 1263 1264 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1265 "Pseudo flag setting opcode should be expanded early"); 1266 1267 // Check for manual lowerings. 1268 unsigned Opc = MI->getOpcode(); 1269 switch (Opc) { 1270 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1271 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1272 case ARM::LEApcrel: 1273 case ARM::tLEApcrel: 1274 case ARM::t2LEApcrel: { 1275 // FIXME: Need to also handle globals and externals 1276 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1277 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1278 ARM::t2LEApcrel ? ARM::t2ADR 1279 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1280 : ARM::ADR)) 1281 .addReg(MI->getOperand(0).getReg()) 1282 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1283 // Add predicate operands. 1284 .addImm(MI->getOperand(2).getImm()) 1285 .addReg(MI->getOperand(3).getReg())); 1286 return; 1287 } 1288 case ARM::LEApcrelJT: 1289 case ARM::tLEApcrelJT: 1290 case ARM::t2LEApcrelJT: { 1291 MCSymbol *JTIPICSymbol = 1292 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1293 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1294 ARM::t2LEApcrelJT ? ARM::t2ADR 1295 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1296 : ARM::ADR)) 1297 .addReg(MI->getOperand(0).getReg()) 1298 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1299 // Add predicate operands. 1300 .addImm(MI->getOperand(2).getImm()) 1301 .addReg(MI->getOperand(3).getReg())); 1302 return; 1303 } 1304 // Darwin call instructions are just normal call instructions with different 1305 // clobber semantics (they clobber R9). 1306 case ARM::BX_CALL: { 1307 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1308 .addReg(ARM::LR) 1309 .addReg(ARM::PC) 1310 // Add predicate operands. 1311 .addImm(ARMCC::AL) 1312 .addReg(0) 1313 // Add 's' bit operand (always reg0 for this) 1314 .addReg(0)); 1315 1316 assert(Subtarget->hasV4TOps()); 1317 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1318 .addReg(MI->getOperand(0).getReg())); 1319 return; 1320 } 1321 case ARM::tBX_CALL: { 1322 if (Subtarget->hasV5TOps()) 1323 llvm_unreachable("Expected BLX to be selected for v5t+"); 1324 1325 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1326 // that the saved lr has its LSB set correctly (the arch doesn't 1327 // have blx). 1328 // So here we generate a bl to a small jump pad that does bx rN. 1329 // The jump pads are emitted after the function body. 1330 1331 Register TReg = MI->getOperand(0).getReg(); 1332 MCSymbol *TRegSym = nullptr; 1333 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1334 if (TIP.first == TReg) { 1335 TRegSym = TIP.second; 1336 break; 1337 } 1338 } 1339 1340 if (!TRegSym) { 1341 TRegSym = OutContext.createTempSymbol(); 1342 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1343 } 1344 1345 // Create a link-saving branch to the Reg Indirect Jump Pad. 1346 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1347 // Predicate comes first here. 1348 .addImm(ARMCC::AL).addReg(0) 1349 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1350 return; 1351 } 1352 case ARM::BMOVPCRX_CALL: { 1353 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1354 .addReg(ARM::LR) 1355 .addReg(ARM::PC) 1356 // Add predicate operands. 1357 .addImm(ARMCC::AL) 1358 .addReg(0) 1359 // Add 's' bit operand (always reg0 for this) 1360 .addReg(0)); 1361 1362 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1363 .addReg(ARM::PC) 1364 .addReg(MI->getOperand(0).getReg()) 1365 // Add predicate operands. 1366 .addImm(ARMCC::AL) 1367 .addReg(0) 1368 // Add 's' bit operand (always reg0 for this) 1369 .addReg(0)); 1370 return; 1371 } 1372 case ARM::BMOVPCB_CALL: { 1373 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1374 .addReg(ARM::LR) 1375 .addReg(ARM::PC) 1376 // Add predicate operands. 1377 .addImm(ARMCC::AL) 1378 .addReg(0) 1379 // Add 's' bit operand (always reg0 for this) 1380 .addReg(0)); 1381 1382 const MachineOperand &Op = MI->getOperand(0); 1383 const GlobalValue *GV = Op.getGlobal(); 1384 const unsigned TF = Op.getTargetFlags(); 1385 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1386 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1387 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1388 .addExpr(GVSymExpr) 1389 // Add predicate operands. 1390 .addImm(ARMCC::AL) 1391 .addReg(0)); 1392 return; 1393 } 1394 case ARM::MOVi16_ga_pcrel: 1395 case ARM::t2MOVi16_ga_pcrel: { 1396 MCInst TmpInst; 1397 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1398 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1399 1400 unsigned TF = MI->getOperand(1).getTargetFlags(); 1401 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1402 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1403 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1404 1405 MCSymbol *LabelSym = 1406 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1407 MI->getOperand(2).getImm(), OutContext); 1408 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1409 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1410 const MCExpr *PCRelExpr = 1411 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1412 MCBinaryExpr::createAdd(LabelSymExpr, 1413 MCConstantExpr::create(PCAdj, OutContext), 1414 OutContext), OutContext), OutContext); 1415 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1416 1417 // Add predicate operands. 1418 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1419 TmpInst.addOperand(MCOperand::createReg(0)); 1420 // Add 's' bit operand (always reg0 for this) 1421 TmpInst.addOperand(MCOperand::createReg(0)); 1422 EmitToStreamer(*OutStreamer, TmpInst); 1423 return; 1424 } 1425 case ARM::MOVTi16_ga_pcrel: 1426 case ARM::t2MOVTi16_ga_pcrel: { 1427 MCInst TmpInst; 1428 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1429 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1430 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1431 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1432 1433 unsigned TF = MI->getOperand(2).getTargetFlags(); 1434 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1435 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1436 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1437 1438 MCSymbol *LabelSym = 1439 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1440 MI->getOperand(3).getImm(), OutContext); 1441 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1442 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1443 const MCExpr *PCRelExpr = 1444 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1445 MCBinaryExpr::createAdd(LabelSymExpr, 1446 MCConstantExpr::create(PCAdj, OutContext), 1447 OutContext), OutContext), OutContext); 1448 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1449 // Add predicate operands. 1450 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1451 TmpInst.addOperand(MCOperand::createReg(0)); 1452 // Add 's' bit operand (always reg0 for this) 1453 TmpInst.addOperand(MCOperand::createReg(0)); 1454 EmitToStreamer(*OutStreamer, TmpInst); 1455 return; 1456 } 1457 case ARM::t2BFi: 1458 case ARM::t2BFic: 1459 case ARM::t2BFLi: 1460 case ARM::t2BFr: 1461 case ARM::t2BFLr: { 1462 // This is a Branch Future instruction. 1463 1464 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1465 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1466 MI->getOperand(0).getIndex(), OutContext), 1467 OutContext); 1468 1469 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1470 if (MI->getOperand(1).isReg()) { 1471 // For BFr/BFLr 1472 MCInst.addReg(MI->getOperand(1).getReg()); 1473 } else { 1474 // For BFi/BFLi/BFic 1475 const MCExpr *BranchTarget; 1476 if (MI->getOperand(1).isMBB()) 1477 BranchTarget = MCSymbolRefExpr::create( 1478 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1479 else if (MI->getOperand(1).isGlobal()) { 1480 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1481 BranchTarget = MCSymbolRefExpr::create( 1482 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1483 } else if (MI->getOperand(1).isSymbol()) { 1484 BranchTarget = MCSymbolRefExpr::create( 1485 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1486 OutContext); 1487 } else 1488 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1489 1490 MCInst.addExpr(BranchTarget); 1491 } 1492 1493 if (Opc == ARM::t2BFic) { 1494 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1495 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1496 MI->getOperand(2).getIndex(), OutContext), 1497 OutContext); 1498 MCInst.addExpr(ElseLabel); 1499 MCInst.addImm(MI->getOperand(3).getImm()); 1500 } else { 1501 MCInst.addImm(MI->getOperand(2).getImm()) 1502 .addReg(MI->getOperand(3).getReg()); 1503 } 1504 1505 EmitToStreamer(*OutStreamer, MCInst); 1506 return; 1507 } 1508 case ARM::t2BF_LabelPseudo: { 1509 // This is a pseudo op for a label used by a branch future instruction 1510 1511 // Emit the label. 1512 OutStreamer->EmitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1513 getFunctionNumber(), 1514 MI->getOperand(0).getIndex(), OutContext)); 1515 return; 1516 } 1517 case ARM::tPICADD: { 1518 // This is a pseudo op for a label + instruction sequence, which looks like: 1519 // LPC0: 1520 // add r0, pc 1521 // This adds the address of LPC0 to r0. 1522 1523 // Emit the label. 1524 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1525 getFunctionNumber(), 1526 MI->getOperand(2).getImm(), OutContext)); 1527 1528 // Form and emit the add. 1529 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1530 .addReg(MI->getOperand(0).getReg()) 1531 .addReg(MI->getOperand(0).getReg()) 1532 .addReg(ARM::PC) 1533 // Add predicate operands. 1534 .addImm(ARMCC::AL) 1535 .addReg(0)); 1536 return; 1537 } 1538 case ARM::PICADD: { 1539 // This is a pseudo op for a label + instruction sequence, which looks like: 1540 // LPC0: 1541 // add r0, pc, r0 1542 // This adds the address of LPC0 to r0. 1543 1544 // Emit the label. 1545 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1546 getFunctionNumber(), 1547 MI->getOperand(2).getImm(), OutContext)); 1548 1549 // Form and emit the add. 1550 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1551 .addReg(MI->getOperand(0).getReg()) 1552 .addReg(ARM::PC) 1553 .addReg(MI->getOperand(1).getReg()) 1554 // Add predicate operands. 1555 .addImm(MI->getOperand(3).getImm()) 1556 .addReg(MI->getOperand(4).getReg()) 1557 // Add 's' bit operand (always reg0 for this) 1558 .addReg(0)); 1559 return; 1560 } 1561 case ARM::PICSTR: 1562 case ARM::PICSTRB: 1563 case ARM::PICSTRH: 1564 case ARM::PICLDR: 1565 case ARM::PICLDRB: 1566 case ARM::PICLDRH: 1567 case ARM::PICLDRSB: 1568 case ARM::PICLDRSH: { 1569 // This is a pseudo op for a label + instruction sequence, which looks like: 1570 // LPC0: 1571 // OP r0, [pc, r0] 1572 // The LCP0 label is referenced by a constant pool entry in order to get 1573 // a PC-relative address at the ldr instruction. 1574 1575 // Emit the label. 1576 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1577 getFunctionNumber(), 1578 MI->getOperand(2).getImm(), OutContext)); 1579 1580 // Form and emit the load 1581 unsigned Opcode; 1582 switch (MI->getOpcode()) { 1583 default: 1584 llvm_unreachable("Unexpected opcode!"); 1585 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1586 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1587 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1588 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1589 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1590 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1591 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1592 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1593 } 1594 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1595 .addReg(MI->getOperand(0).getReg()) 1596 .addReg(ARM::PC) 1597 .addReg(MI->getOperand(1).getReg()) 1598 .addImm(0) 1599 // Add predicate operands. 1600 .addImm(MI->getOperand(3).getImm()) 1601 .addReg(MI->getOperand(4).getReg())); 1602 1603 return; 1604 } 1605 case ARM::CONSTPOOL_ENTRY: { 1606 if (Subtarget->genExecuteOnly()) 1607 llvm_unreachable("execute-only should not generate constant pools"); 1608 1609 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1610 /// in the function. The first operand is the ID# for this instruction, the 1611 /// second is the index into the MachineConstantPool that this is, the third 1612 /// is the size in bytes of this constant pool entry. 1613 /// The required alignment is specified on the basic block holding this MI. 1614 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1615 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1616 1617 // If this is the first entry of the pool, mark it. 1618 if (!InConstantPool) { 1619 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1620 InConstantPool = true; 1621 } 1622 1623 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1624 1625 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1626 if (MCPE.isMachineConstantPoolEntry()) 1627 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1628 else 1629 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1630 return; 1631 } 1632 case ARM::JUMPTABLE_ADDRS: 1633 EmitJumpTableAddrs(MI); 1634 return; 1635 case ARM::JUMPTABLE_INSTS: 1636 EmitJumpTableInsts(MI); 1637 return; 1638 case ARM::JUMPTABLE_TBB: 1639 case ARM::JUMPTABLE_TBH: 1640 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1641 return; 1642 case ARM::t2BR_JT: { 1643 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1644 .addReg(ARM::PC) 1645 .addReg(MI->getOperand(0).getReg()) 1646 // Add predicate operands. 1647 .addImm(ARMCC::AL) 1648 .addReg(0)); 1649 return; 1650 } 1651 case ARM::t2TBB_JT: 1652 case ARM::t2TBH_JT: { 1653 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1654 // Lower and emit the PC label, then the instruction itself. 1655 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1656 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1657 .addReg(MI->getOperand(0).getReg()) 1658 .addReg(MI->getOperand(1).getReg()) 1659 // Add predicate operands. 1660 .addImm(ARMCC::AL) 1661 .addReg(0)); 1662 return; 1663 } 1664 case ARM::tTBB_JT: 1665 case ARM::tTBH_JT: { 1666 1667 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1668 Register Base = MI->getOperand(0).getReg(); 1669 Register Idx = MI->getOperand(1).getReg(); 1670 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1671 1672 // Multiply up idx if necessary. 1673 if (!Is8Bit) 1674 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1675 .addReg(Idx) 1676 .addReg(ARM::CPSR) 1677 .addReg(Idx) 1678 .addImm(1) 1679 // Add predicate operands. 1680 .addImm(ARMCC::AL) 1681 .addReg(0)); 1682 1683 if (Base == ARM::PC) { 1684 // TBB [base, idx] = 1685 // ADDS idx, idx, base 1686 // LDRB idx, [idx, #4] ; or LDRH if TBH 1687 // LSLS idx, #1 1688 // ADDS pc, pc, idx 1689 1690 // When using PC as the base, it's important that there is no padding 1691 // between the last ADDS and the start of the jump table. The jump table 1692 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1693 // 1694 // FIXME: Ideally we could vary the LDRB index based on the padding 1695 // between the sequence and jump table, however that relies on MCExprs 1696 // for load indexes which are currently not supported. 1697 OutStreamer->EmitCodeAlignment(4); 1698 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1699 .addReg(Idx) 1700 .addReg(Idx) 1701 .addReg(Base) 1702 // Add predicate operands. 1703 .addImm(ARMCC::AL) 1704 .addReg(0)); 1705 1706 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1707 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1708 .addReg(Idx) 1709 .addReg(Idx) 1710 .addImm(Is8Bit ? 4 : 2) 1711 // Add predicate operands. 1712 .addImm(ARMCC::AL) 1713 .addReg(0)); 1714 } else { 1715 // TBB [base, idx] = 1716 // LDRB idx, [base, idx] ; or LDRH if TBH 1717 // LSLS idx, #1 1718 // ADDS pc, pc, idx 1719 1720 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1721 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1722 .addReg(Idx) 1723 .addReg(Base) 1724 .addReg(Idx) 1725 // Add predicate operands. 1726 .addImm(ARMCC::AL) 1727 .addReg(0)); 1728 } 1729 1730 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1731 .addReg(Idx) 1732 .addReg(ARM::CPSR) 1733 .addReg(Idx) 1734 .addImm(1) 1735 // Add predicate operands. 1736 .addImm(ARMCC::AL) 1737 .addReg(0)); 1738 1739 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1740 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1741 .addReg(ARM::PC) 1742 .addReg(ARM::PC) 1743 .addReg(Idx) 1744 // Add predicate operands. 1745 .addImm(ARMCC::AL) 1746 .addReg(0)); 1747 return; 1748 } 1749 case ARM::tBR_JTr: 1750 case ARM::BR_JTr: { 1751 // mov pc, target 1752 MCInst TmpInst; 1753 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1754 ARM::MOVr : ARM::tMOVr; 1755 TmpInst.setOpcode(Opc); 1756 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1757 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1758 // Add predicate operands. 1759 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1760 TmpInst.addOperand(MCOperand::createReg(0)); 1761 // Add 's' bit operand (always reg0 for this) 1762 if (Opc == ARM::MOVr) 1763 TmpInst.addOperand(MCOperand::createReg(0)); 1764 EmitToStreamer(*OutStreamer, TmpInst); 1765 return; 1766 } 1767 case ARM::BR_JTm_i12: { 1768 // ldr pc, target 1769 MCInst TmpInst; 1770 TmpInst.setOpcode(ARM::LDRi12); 1771 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1772 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1773 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1774 // Add predicate operands. 1775 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1776 TmpInst.addOperand(MCOperand::createReg(0)); 1777 EmitToStreamer(*OutStreamer, TmpInst); 1778 return; 1779 } 1780 case ARM::BR_JTm_rs: { 1781 // ldr pc, target 1782 MCInst TmpInst; 1783 TmpInst.setOpcode(ARM::LDRrs); 1784 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1785 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1786 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1787 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1788 // Add predicate operands. 1789 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1790 TmpInst.addOperand(MCOperand::createReg(0)); 1791 EmitToStreamer(*OutStreamer, TmpInst); 1792 return; 1793 } 1794 case ARM::BR_JTadd: { 1795 // add pc, target, idx 1796 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1797 .addReg(ARM::PC) 1798 .addReg(MI->getOperand(0).getReg()) 1799 .addReg(MI->getOperand(1).getReg()) 1800 // Add predicate operands. 1801 .addImm(ARMCC::AL) 1802 .addReg(0) 1803 // Add 's' bit operand (always reg0 for this) 1804 .addReg(0)); 1805 return; 1806 } 1807 case ARM::SPACE: 1808 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1809 return; 1810 case ARM::TRAP: { 1811 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1812 // FIXME: Remove this special case when they do. 1813 if (!Subtarget->isTargetMachO()) { 1814 uint32_t Val = 0xe7ffdefeUL; 1815 OutStreamer->AddComment("trap"); 1816 ATS.emitInst(Val); 1817 return; 1818 } 1819 break; 1820 } 1821 case ARM::TRAPNaCl: { 1822 uint32_t Val = 0xe7fedef0UL; 1823 OutStreamer->AddComment("trap"); 1824 ATS.emitInst(Val); 1825 return; 1826 } 1827 case ARM::tTRAP: { 1828 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1829 // FIXME: Remove this special case when they do. 1830 if (!Subtarget->isTargetMachO()) { 1831 uint16_t Val = 0xdefe; 1832 OutStreamer->AddComment("trap"); 1833 ATS.emitInst(Val, 'n'); 1834 return; 1835 } 1836 break; 1837 } 1838 case ARM::t2Int_eh_sjlj_setjmp: 1839 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1840 case ARM::tInt_eh_sjlj_setjmp: { 1841 // Two incoming args: GPR:$src, GPR:$val 1842 // mov $val, pc 1843 // adds $val, #7 1844 // str $val, [$src, #4] 1845 // movs r0, #0 1846 // b LSJLJEH 1847 // movs r0, #1 1848 // LSJLJEH: 1849 Register SrcReg = MI->getOperand(0).getReg(); 1850 Register ValReg = MI->getOperand(1).getReg(); 1851 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1852 OutStreamer->AddComment("eh_setjmp begin"); 1853 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1854 .addReg(ValReg) 1855 .addReg(ARM::PC) 1856 // Predicate. 1857 .addImm(ARMCC::AL) 1858 .addReg(0)); 1859 1860 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1861 .addReg(ValReg) 1862 // 's' bit operand 1863 .addReg(ARM::CPSR) 1864 .addReg(ValReg) 1865 .addImm(7) 1866 // Predicate. 1867 .addImm(ARMCC::AL) 1868 .addReg(0)); 1869 1870 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1871 .addReg(ValReg) 1872 .addReg(SrcReg) 1873 // The offset immediate is #4. The operand value is scaled by 4 for the 1874 // tSTR instruction. 1875 .addImm(1) 1876 // Predicate. 1877 .addImm(ARMCC::AL) 1878 .addReg(0)); 1879 1880 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1881 .addReg(ARM::R0) 1882 .addReg(ARM::CPSR) 1883 .addImm(0) 1884 // Predicate. 1885 .addImm(ARMCC::AL) 1886 .addReg(0)); 1887 1888 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1889 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1890 .addExpr(SymbolExpr) 1891 .addImm(ARMCC::AL) 1892 .addReg(0)); 1893 1894 OutStreamer->AddComment("eh_setjmp end"); 1895 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1896 .addReg(ARM::R0) 1897 .addReg(ARM::CPSR) 1898 .addImm(1) 1899 // Predicate. 1900 .addImm(ARMCC::AL) 1901 .addReg(0)); 1902 1903 OutStreamer->EmitLabel(Label); 1904 return; 1905 } 1906 1907 case ARM::Int_eh_sjlj_setjmp_nofp: 1908 case ARM::Int_eh_sjlj_setjmp: { 1909 // Two incoming args: GPR:$src, GPR:$val 1910 // add $val, pc, #8 1911 // str $val, [$src, #+4] 1912 // mov r0, #0 1913 // add pc, pc, #0 1914 // mov r0, #1 1915 Register SrcReg = MI->getOperand(0).getReg(); 1916 Register ValReg = MI->getOperand(1).getReg(); 1917 1918 OutStreamer->AddComment("eh_setjmp begin"); 1919 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1920 .addReg(ValReg) 1921 .addReg(ARM::PC) 1922 .addImm(8) 1923 // Predicate. 1924 .addImm(ARMCC::AL) 1925 .addReg(0) 1926 // 's' bit operand (always reg0 for this). 1927 .addReg(0)); 1928 1929 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1930 .addReg(ValReg) 1931 .addReg(SrcReg) 1932 .addImm(4) 1933 // Predicate. 1934 .addImm(ARMCC::AL) 1935 .addReg(0)); 1936 1937 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1938 .addReg(ARM::R0) 1939 .addImm(0) 1940 // Predicate. 1941 .addImm(ARMCC::AL) 1942 .addReg(0) 1943 // 's' bit operand (always reg0 for this). 1944 .addReg(0)); 1945 1946 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1947 .addReg(ARM::PC) 1948 .addReg(ARM::PC) 1949 .addImm(0) 1950 // Predicate. 1951 .addImm(ARMCC::AL) 1952 .addReg(0) 1953 // 's' bit operand (always reg0 for this). 1954 .addReg(0)); 1955 1956 OutStreamer->AddComment("eh_setjmp end"); 1957 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1958 .addReg(ARM::R0) 1959 .addImm(1) 1960 // Predicate. 1961 .addImm(ARMCC::AL) 1962 .addReg(0) 1963 // 's' bit operand (always reg0 for this). 1964 .addReg(0)); 1965 return; 1966 } 1967 case ARM::Int_eh_sjlj_longjmp: { 1968 // ldr sp, [$src, #8] 1969 // ldr $scratch, [$src, #4] 1970 // ldr r7, [$src] 1971 // bx $scratch 1972 Register SrcReg = MI->getOperand(0).getReg(); 1973 Register ScratchReg = MI->getOperand(1).getReg(); 1974 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1975 .addReg(ARM::SP) 1976 .addReg(SrcReg) 1977 .addImm(8) 1978 // Predicate. 1979 .addImm(ARMCC::AL) 1980 .addReg(0)); 1981 1982 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1983 .addReg(ScratchReg) 1984 .addReg(SrcReg) 1985 .addImm(4) 1986 // Predicate. 1987 .addImm(ARMCC::AL) 1988 .addReg(0)); 1989 1990 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1991 // These platforms always use the same frame register 1992 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1993 .addReg(FramePtr) 1994 .addReg(SrcReg) 1995 .addImm(0) 1996 // Predicate. 1997 .addImm(ARMCC::AL) 1998 .addReg(0)); 1999 } else { 2000 // If the calling code might use either R7 or R11 as 2001 // frame pointer register, restore it into both. 2002 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2003 .addReg(ARM::R7) 2004 .addReg(SrcReg) 2005 .addImm(0) 2006 // Predicate. 2007 .addImm(ARMCC::AL) 2008 .addReg(0)); 2009 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2010 .addReg(ARM::R11) 2011 .addReg(SrcReg) 2012 .addImm(0) 2013 // Predicate. 2014 .addImm(ARMCC::AL) 2015 .addReg(0)); 2016 } 2017 2018 assert(Subtarget->hasV4TOps()); 2019 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2020 .addReg(ScratchReg) 2021 // Predicate. 2022 .addImm(ARMCC::AL) 2023 .addReg(0)); 2024 return; 2025 } 2026 case ARM::tInt_eh_sjlj_longjmp: { 2027 // ldr $scratch, [$src, #8] 2028 // mov sp, $scratch 2029 // ldr $scratch, [$src, #4] 2030 // ldr r7, [$src] 2031 // bx $scratch 2032 Register SrcReg = MI->getOperand(0).getReg(); 2033 Register ScratchReg = MI->getOperand(1).getReg(); 2034 2035 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2036 .addReg(ScratchReg) 2037 .addReg(SrcReg) 2038 // The offset immediate is #8. The operand value is scaled by 4 for the 2039 // tLDR instruction. 2040 .addImm(2) 2041 // Predicate. 2042 .addImm(ARMCC::AL) 2043 .addReg(0)); 2044 2045 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2046 .addReg(ARM::SP) 2047 .addReg(ScratchReg) 2048 // Predicate. 2049 .addImm(ARMCC::AL) 2050 .addReg(0)); 2051 2052 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2053 .addReg(ScratchReg) 2054 .addReg(SrcReg) 2055 .addImm(1) 2056 // Predicate. 2057 .addImm(ARMCC::AL) 2058 .addReg(0)); 2059 2060 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2061 // These platforms always use the same frame register 2062 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2063 .addReg(FramePtr) 2064 .addReg(SrcReg) 2065 .addImm(0) 2066 // Predicate. 2067 .addImm(ARMCC::AL) 2068 .addReg(0)); 2069 } else { 2070 // If the calling code might use either R7 or R11 as 2071 // frame pointer register, restore it into both. 2072 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2073 .addReg(ARM::R7) 2074 .addReg(SrcReg) 2075 .addImm(0) 2076 // Predicate. 2077 .addImm(ARMCC::AL) 2078 .addReg(0)); 2079 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2080 .addReg(ARM::R11) 2081 .addReg(SrcReg) 2082 .addImm(0) 2083 // Predicate. 2084 .addImm(ARMCC::AL) 2085 .addReg(0)); 2086 } 2087 2088 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2089 .addReg(ScratchReg) 2090 // Predicate. 2091 .addImm(ARMCC::AL) 2092 .addReg(0)); 2093 return; 2094 } 2095 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2096 // ldr.w r11, [$src, #0] 2097 // ldr.w sp, [$src, #8] 2098 // ldr.w pc, [$src, #4] 2099 2100 Register SrcReg = MI->getOperand(0).getReg(); 2101 2102 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2103 .addReg(ARM::R11) 2104 .addReg(SrcReg) 2105 .addImm(0) 2106 // Predicate 2107 .addImm(ARMCC::AL) 2108 .addReg(0)); 2109 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2110 .addReg(ARM::SP) 2111 .addReg(SrcReg) 2112 .addImm(8) 2113 // Predicate 2114 .addImm(ARMCC::AL) 2115 .addReg(0)); 2116 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2117 .addReg(ARM::PC) 2118 .addReg(SrcReg) 2119 .addImm(4) 2120 // Predicate 2121 .addImm(ARMCC::AL) 2122 .addReg(0)); 2123 return; 2124 } 2125 case ARM::PATCHABLE_FUNCTION_ENTER: 2126 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2127 return; 2128 case ARM::PATCHABLE_FUNCTION_EXIT: 2129 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2130 return; 2131 case ARM::PATCHABLE_TAIL_CALL: 2132 LowerPATCHABLE_TAIL_CALL(*MI); 2133 return; 2134 } 2135 2136 MCInst TmpInst; 2137 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2138 2139 EmitToStreamer(*OutStreamer, TmpInst); 2140 } 2141 2142 //===----------------------------------------------------------------------===// 2143 // Target Registry Stuff 2144 //===----------------------------------------------------------------------===// 2145 2146 // Force static initialization. 2147 extern "C" void LLVMInitializeARMAsmPrinter() { 2148 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2149 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2150 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2151 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2152 } 2153