1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "InstPrinter/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "MCTargetDesc/ARMMCExpr.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineJumpTableInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Mangler.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCAssembler.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCELFStreamer.h"
41 #include "llvm/MC/MCInst.h"
42 #include "llvm/MC/MCInstBuilder.h"
43 #include "llvm/MC/MCObjectStreamer.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/TargetParser.h"
51 #include "llvm/Support/TargetRegistry.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cctype>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "asm-printer"
58 
59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
60                              std::unique_ptr<MCStreamer> Streamer)
61     : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
62       InConstantPool(false), OptimizationGoals(-1) {}
63 
64 void ARMAsmPrinter::EmitFunctionBodyEnd() {
65   // Make sure to terminate any constant pools that were at the end
66   // of the function.
67   if (!InConstantPool)
68     return;
69   InConstantPool = false;
70   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
71 }
72 
73 void ARMAsmPrinter::EmitFunctionEntryLabel() {
74   if (AFI->isThumbFunction()) {
75     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
76     OutStreamer->EmitThumbFunc(CurrentFnSym);
77   } else {
78     OutStreamer->EmitAssemblerFlag(MCAF_Code32);
79   }
80   OutStreamer->EmitLabel(CurrentFnSym);
81 }
82 
83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
84   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
85   assert(Size && "C++ constructor pointer had zero size!");
86 
87   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
88   assert(GV && "C++ constructor pointer was not a GlobalValue!");
89 
90   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
91                                                            ARMII::MO_NO_FLAG),
92                                             (Subtarget->isTargetELF()
93                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
94                                              : MCSymbolRefExpr::VK_None),
95                                             OutContext);
96 
97   OutStreamer->EmitValue(E, Size);
98 }
99 
100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
101   if (PromotedGlobals.count(GV))
102     // The global was promoted into a constant pool. It should not be emitted.
103     return;
104   AsmPrinter::EmitGlobalVariable(GV);
105 }
106 
107 /// runOnMachineFunction - This uses the EmitInstruction()
108 /// method to print assembly for each instruction.
109 ///
110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
111   AFI = MF.getInfo<ARMFunctionInfo>();
112   MCP = MF.getConstantPool();
113   Subtarget = &MF.getSubtarget<ARMSubtarget>();
114 
115   SetupMachineFunction(MF);
116   const Function* F = MF.getFunction();
117   const TargetMachine& TM = MF.getTarget();
118 
119   // Collect all globals that had their storage promoted to a constant pool.
120   // Functions are emitted before variables, so this accumulates promoted
121   // globals from all functions in PromotedGlobals.
122   for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
123     PromotedGlobals.insert(GV);
124 
125   // Calculate this function's optimization goal.
126   unsigned OptimizationGoal;
127   if (F->hasFnAttribute(Attribute::OptimizeNone))
128     // For best debugging illusion, speed and small size sacrificed
129     OptimizationGoal = 6;
130   else if (F->optForMinSize())
131     // Aggressively for small size, speed and debug illusion sacrificed
132     OptimizationGoal = 4;
133   else if (F->optForSize())
134     // For small size, but speed and debugging illusion preserved
135     OptimizationGoal = 3;
136   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
137     // Aggressively for speed, small size and debug illusion sacrificed
138     OptimizationGoal = 2;
139   else if (TM.getOptLevel() > CodeGenOpt::None)
140     // For speed, but small size and good debug illusion preserved
141     OptimizationGoal = 1;
142   else // TM.getOptLevel() == CodeGenOpt::None
143     // For good debugging, but speed and small size preserved
144     OptimizationGoal = 5;
145 
146   // Combine a new optimization goal with existing ones.
147   if (OptimizationGoals == -1) // uninitialized goals
148     OptimizationGoals = OptimizationGoal;
149   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
150     OptimizationGoals = 0;
151 
152   if (Subtarget->isTargetCOFF()) {
153     bool Internal = F->hasInternalLinkage();
154     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
155                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
156     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
157 
158     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
159     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
160     OutStreamer->EmitCOFFSymbolType(Type);
161     OutStreamer->EndCOFFSymbolDef();
162   }
163 
164   // Emit the rest of the function body.
165   EmitFunctionBody();
166 
167   // Emit the XRay table for this function.
168   emitXRayTable();
169 
170   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
171   // These are created per function, rather than per TU, since it's
172   // relatively easy to exceed the thumb branch range within a TU.
173   if (! ThumbIndirectPads.empty()) {
174     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
175     EmitAlignment(1);
176     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
177       OutStreamer->EmitLabel(TIP.second);
178       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
179         .addReg(TIP.first)
180         // Add predicate operands.
181         .addImm(ARMCC::AL)
182         .addReg(0));
183     }
184     ThumbIndirectPads.clear();
185   }
186 
187   // We didn't modify anything.
188   return false;
189 }
190 
191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
192                                  raw_ostream &O) {
193   const MachineOperand &MO = MI->getOperand(OpNum);
194   unsigned TF = MO.getTargetFlags();
195 
196   switch (MO.getType()) {
197   default: llvm_unreachable("<unknown operand type>");
198   case MachineOperand::MO_Register: {
199     unsigned Reg = MO.getReg();
200     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
201     assert(!MO.getSubReg() && "Subregs should be eliminated!");
202     if(ARM::GPRPairRegClass.contains(Reg)) {
203       const MachineFunction &MF = *MI->getParent()->getParent();
204       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
205       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
206     }
207     O << ARMInstPrinter::getRegisterName(Reg);
208     break;
209   }
210   case MachineOperand::MO_Immediate: {
211     int64_t Imm = MO.getImm();
212     O << '#';
213     if (TF == ARMII::MO_LO16)
214       O << ":lower16:";
215     else if (TF == ARMII::MO_HI16)
216       O << ":upper16:";
217     O << Imm;
218     break;
219   }
220   case MachineOperand::MO_MachineBasicBlock:
221     MO.getMBB()->getSymbol()->print(O, MAI);
222     return;
223   case MachineOperand::MO_GlobalAddress: {
224     const GlobalValue *GV = MO.getGlobal();
225     if (TF & ARMII::MO_LO16)
226       O << ":lower16:";
227     else if (TF & ARMII::MO_HI16)
228       O << ":upper16:";
229     GetARMGVSymbol(GV, TF)->print(O, MAI);
230 
231     printOffset(MO.getOffset(), O);
232     break;
233   }
234   case MachineOperand::MO_ConstantPoolIndex:
235     if (Subtarget->genExecuteOnly())
236       llvm_unreachable("execute-only should not generate constant pools");
237     GetCPISymbol(MO.getIndex())->print(O, MAI);
238     break;
239   }
240 }
241 
242 //===--------------------------------------------------------------------===//
243 
244 MCSymbol *ARMAsmPrinter::
245 GetARMJTIPICJumpTableLabel(unsigned uid) const {
246   const DataLayout &DL = getDataLayout();
247   SmallString<60> Name;
248   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
249                             << getFunctionNumber() << '_' << uid;
250   return OutContext.getOrCreateSymbol(Name);
251 }
252 
253 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
254                                     unsigned AsmVariant, const char *ExtraCode,
255                                     raw_ostream &O) {
256   // Does this asm operand have a single letter operand modifier?
257   if (ExtraCode && ExtraCode[0]) {
258     if (ExtraCode[1] != 0) return true; // Unknown modifier.
259 
260     switch (ExtraCode[0]) {
261     default:
262       // See if this is a generic print operand
263       return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
264     case 'a': // Print as a memory address.
265       if (MI->getOperand(OpNum).isReg()) {
266         O << "["
267           << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
268           << "]";
269         return false;
270       }
271       LLVM_FALLTHROUGH;
272     case 'c': // Don't print "#" before an immediate operand.
273       if (!MI->getOperand(OpNum).isImm())
274         return true;
275       O << MI->getOperand(OpNum).getImm();
276       return false;
277     case 'P': // Print a VFP double precision register.
278     case 'q': // Print a NEON quad precision register.
279       printOperand(MI, OpNum, O);
280       return false;
281     case 'y': // Print a VFP single precision register as indexed double.
282       if (MI->getOperand(OpNum).isReg()) {
283         unsigned Reg = MI->getOperand(OpNum).getReg();
284         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
285         // Find the 'd' register that has this 's' register as a sub-register,
286         // and determine the lane number.
287         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
288           if (!ARM::DPRRegClass.contains(*SR))
289             continue;
290           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
291           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
292           return false;
293         }
294       }
295       return true;
296     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
297       if (!MI->getOperand(OpNum).isImm())
298         return true;
299       O << ~(MI->getOperand(OpNum).getImm());
300       return false;
301     case 'L': // The low 16 bits of an immediate constant.
302       if (!MI->getOperand(OpNum).isImm())
303         return true;
304       O << (MI->getOperand(OpNum).getImm() & 0xffff);
305       return false;
306     case 'M': { // A register range suitable for LDM/STM.
307       if (!MI->getOperand(OpNum).isReg())
308         return true;
309       const MachineOperand &MO = MI->getOperand(OpNum);
310       unsigned RegBegin = MO.getReg();
311       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
312       // already got the operands in registers that are operands to the
313       // inline asm statement.
314       O << "{";
315       if (ARM::GPRPairRegClass.contains(RegBegin)) {
316         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
317         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
318         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
319         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
320       }
321       O << ARMInstPrinter::getRegisterName(RegBegin);
322 
323       // FIXME: The register allocator not only may not have given us the
324       // registers in sequence, but may not be in ascending registers. This
325       // will require changes in the register allocator that'll need to be
326       // propagated down here if the operands change.
327       unsigned RegOps = OpNum + 1;
328       while (MI->getOperand(RegOps).isReg()) {
329         O << ", "
330           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
331         RegOps++;
332       }
333 
334       O << "}";
335 
336       return false;
337     }
338     case 'R': // The most significant register of a pair.
339     case 'Q': { // The least significant register of a pair.
340       if (OpNum == 0)
341         return true;
342       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
343       if (!FlagsOP.isImm())
344         return true;
345       unsigned Flags = FlagsOP.getImm();
346 
347       // This operand may not be the one that actually provides the register. If
348       // it's tied to a previous one then we should refer instead to that one
349       // for registers and their classes.
350       unsigned TiedIdx;
351       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
352         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
353           unsigned OpFlags = MI->getOperand(OpNum).getImm();
354           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
355         }
356         Flags = MI->getOperand(OpNum).getImm();
357 
358         // Later code expects OpNum to be pointing at the register rather than
359         // the flags.
360         OpNum += 1;
361       }
362 
363       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
364       unsigned RC;
365       InlineAsm::hasRegClassConstraint(Flags, RC);
366       if (RC == ARM::GPRPairRegClassID) {
367         if (NumVals != 1)
368           return true;
369         const MachineOperand &MO = MI->getOperand(OpNum);
370         if (!MO.isReg())
371           return true;
372         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
373         unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
374             ARM::gsub_0 : ARM::gsub_1);
375         O << ARMInstPrinter::getRegisterName(Reg);
376         return false;
377       }
378       if (NumVals != 2)
379         return true;
380       unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
381       if (RegOp >= MI->getNumOperands())
382         return true;
383       const MachineOperand &MO = MI->getOperand(RegOp);
384       if (!MO.isReg())
385         return true;
386       unsigned Reg = MO.getReg();
387       O << ARMInstPrinter::getRegisterName(Reg);
388       return false;
389     }
390 
391     case 'e': // The low doubleword register of a NEON quad register.
392     case 'f': { // The high doubleword register of a NEON quad register.
393       if (!MI->getOperand(OpNum).isReg())
394         return true;
395       unsigned Reg = MI->getOperand(OpNum).getReg();
396       if (!ARM::QPRRegClass.contains(Reg))
397         return true;
398       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
399       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
400                                        ARM::dsub_0 : ARM::dsub_1);
401       O << ARMInstPrinter::getRegisterName(SubReg);
402       return false;
403     }
404 
405     // This modifier is not yet supported.
406     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
407       return true;
408     case 'H': { // The highest-numbered register of a pair.
409       const MachineOperand &MO = MI->getOperand(OpNum);
410       if (!MO.isReg())
411         return true;
412       const MachineFunction &MF = *MI->getParent()->getParent();
413       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
414       unsigned Reg = MO.getReg();
415       if(!ARM::GPRPairRegClass.contains(Reg))
416         return false;
417       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
418       O << ARMInstPrinter::getRegisterName(Reg);
419       return false;
420     }
421     }
422   }
423 
424   printOperand(MI, OpNum, O);
425   return false;
426 }
427 
428 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
429                                           unsigned OpNum, unsigned AsmVariant,
430                                           const char *ExtraCode,
431                                           raw_ostream &O) {
432   // Does this asm operand have a single letter operand modifier?
433   if (ExtraCode && ExtraCode[0]) {
434     if (ExtraCode[1] != 0) return true; // Unknown modifier.
435 
436     switch (ExtraCode[0]) {
437       case 'A': // A memory operand for a VLD1/VST1 instruction.
438       default: return true;  // Unknown modifier.
439       case 'm': // The base register of a memory operand.
440         if (!MI->getOperand(OpNum).isReg())
441           return true;
442         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
443         return false;
444     }
445   }
446 
447   const MachineOperand &MO = MI->getOperand(OpNum);
448   assert(MO.isReg() && "unexpected inline asm memory operand");
449   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
450   return false;
451 }
452 
453 static bool isThumb(const MCSubtargetInfo& STI) {
454   return STI.getFeatureBits()[ARM::ModeThumb];
455 }
456 
457 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
458                                      const MCSubtargetInfo *EndInfo) const {
459   // If either end mode is unknown (EndInfo == NULL) or different than
460   // the start mode, then restore the start mode.
461   const bool WasThumb = isThumb(StartInfo);
462   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
463     OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
464   }
465 }
466 
467 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
468   const Triple &TT = TM.getTargetTriple();
469   // Use unified assembler syntax.
470   OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
471 
472   // Emit ARM Build Attributes
473   if (TT.isOSBinFormatELF())
474     emitAttributes();
475 
476   // Use the triple's architecture and subarchitecture to determine
477   // if we're thumb for the purposes of the top level code16 assembler
478   // flag.
479   if (!M.getModuleInlineAsm().empty() && TT.isThumb())
480     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
481 }
482 
483 static void
484 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
485                          MachineModuleInfoImpl::StubValueTy &MCSym) {
486   // L_foo$stub:
487   OutStreamer.EmitLabel(StubLabel);
488   //   .indirect_symbol _foo
489   OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
490 
491   if (MCSym.getInt())
492     // External to current translation unit.
493     OutStreamer.EmitIntValue(0, 4/*size*/);
494   else
495     // Internal to current translation unit.
496     //
497     // When we place the LSDA into the TEXT section, the type info
498     // pointers need to be indirect and pc-rel. We accomplish this by
499     // using NLPs; however, sometimes the types are local to the file.
500     // We need to fill in the value for the NLP in those cases.
501     OutStreamer.EmitValue(
502         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
503         4 /*size*/);
504 }
505 
506 
507 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
508   const Triple &TT = TM.getTargetTriple();
509   if (TT.isOSBinFormatMachO()) {
510     // All darwin targets use mach-o.
511     const TargetLoweringObjectFileMachO &TLOFMacho =
512       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
513     MachineModuleInfoMachO &MMIMacho =
514       MMI->getObjFileInfo<MachineModuleInfoMachO>();
515 
516     // Output non-lazy-pointers for external and common global variables.
517     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
518 
519     if (!Stubs.empty()) {
520       // Switch with ".non_lazy_symbol_pointer" directive.
521       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
522       EmitAlignment(2);
523 
524       for (auto &Stub : Stubs)
525         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
526 
527       Stubs.clear();
528       OutStreamer->AddBlankLine();
529     }
530 
531     Stubs = MMIMacho.GetThreadLocalGVStubList();
532     if (!Stubs.empty()) {
533       // Switch with ".non_lazy_symbol_pointer" directive.
534       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
535       EmitAlignment(2);
536 
537       for (auto &Stub : Stubs)
538         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
539 
540       Stubs.clear();
541       OutStreamer->AddBlankLine();
542     }
543 
544     // Funny Darwin hack: This flag tells the linker that no global symbols
545     // contain code that falls through to other global symbols (e.g. the obvious
546     // implementation of multiple entry points).  If this doesn't occur, the
547     // linker can safely perform dead code stripping.  Since LLVM never
548     // generates code that does this, it is always safe to set.
549     OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
550   }
551 
552   if (TT.isOSBinFormatCOFF()) {
553     const auto &TLOF =
554         static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering());
555 
556     std::string Flags;
557     raw_string_ostream OS(Flags);
558 
559     for (const auto &Function : M)
560       TLOF.emitLinkerFlagsForGlobal(OS, &Function);
561     for (const auto &Global : M.globals())
562       TLOF.emitLinkerFlagsForGlobal(OS, &Global);
563     for (const auto &Alias : M.aliases())
564       TLOF.emitLinkerFlagsForGlobal(OS, &Alias);
565 
566     OS.flush();
567 
568     // Output collected flags
569     if (!Flags.empty()) {
570       OutStreamer->SwitchSection(TLOF.getDrectveSection());
571       OutStreamer->EmitBytes(Flags);
572     }
573   }
574 
575   // The last attribute to be emitted is ABI_optimization_goals
576   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
577   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
578 
579   if (OptimizationGoals > 0 &&
580       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
581        Subtarget->isTargetMuslAEABI()))
582     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
583   OptimizationGoals = -1;
584 
585   ATS.finishAttributeSection();
586 }
587 
588 //===----------------------------------------------------------------------===//
589 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
590 // FIXME:
591 // The following seem like one-off assembler flags, but they actually need
592 // to appear in the .ARM.attributes section in ELF.
593 // Instead of subclassing the MCELFStreamer, we do the work here.
594 
595 // Returns true if all functions have the same function attribute value.
596 // It also returns true when the module has no functions.
597 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
598                                                StringRef Value) {
599   return !any_of(M, [&](const Function &F) {
600     return F.getFnAttribute(Attr).getValueAsString() != Value;
601   });
602 }
603 
604 void ARMAsmPrinter::emitAttributes() {
605   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
606   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
607 
608   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
609 
610   ATS.switchVendor("aeabi");
611 
612   // Compute ARM ELF Attributes based on the default subtarget that
613   // we'd have constructed. The existing ARM behavior isn't LTO clean
614   // anyhow.
615   // FIXME: For ifunc related functions we could iterate over and look
616   // for a feature string that doesn't match the default one.
617   const Triple &TT = TM.getTargetTriple();
618   StringRef CPU = TM.getTargetCPU();
619   StringRef FS = TM.getTargetFeatureString();
620   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
621   if (!FS.empty()) {
622     if (!ArchFS.empty())
623       ArchFS = (Twine(ArchFS) + "," + FS).str();
624     else
625       ArchFS = FS;
626   }
627   const ARMBaseTargetMachine &ATM =
628       static_cast<const ARMBaseTargetMachine &>(TM);
629   const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
630 
631   // Emit build attributes for the available hardware.
632   ATS.emitTargetAttributes(STI);
633 
634   // RW data addressing.
635   if (isPositionIndependent()) {
636     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
637                       ARMBuildAttrs::AddressRWPCRel);
638   } else if (STI.isRWPI()) {
639     // RWPI specific attributes.
640     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
641                       ARMBuildAttrs::AddressRWSBRel);
642   }
643 
644   // RO data addressing.
645   if (isPositionIndependent() || STI.isROPI()) {
646     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
647                       ARMBuildAttrs::AddressROPCRel);
648   }
649 
650   // GOT use.
651   if (isPositionIndependent()) {
652     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
653                       ARMBuildAttrs::AddressGOT);
654   } else {
655     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
656                       ARMBuildAttrs::AddressDirect);
657   }
658 
659   // Set FP Denormals.
660   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
661                                          "denormal-fp-math",
662                                          "preserve-sign") ||
663       TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
664     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
665                       ARMBuildAttrs::PreserveFPSign);
666   else if (checkFunctionsAttributeConsistency(*MMI->getModule(),
667                                               "denormal-fp-math",
668                                               "positive-zero") ||
669            TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
670     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
671                       ARMBuildAttrs::PositiveZero);
672   else if (!TM.Options.UnsafeFPMath)
673     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
674                       ARMBuildAttrs::IEEEDenormals);
675   else {
676     if (!STI.hasVFP2()) {
677       // When the target doesn't have an FPU (by design or
678       // intention), the assumptions made on the software support
679       // mirror that of the equivalent hardware support *if it
680       // existed*. For v7 and better we indicate that denormals are
681       // flushed preserving sign, and for V6 we indicate that
682       // denormals are flushed to positive zero.
683       if (STI.hasV7Ops())
684         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
685                           ARMBuildAttrs::PreserveFPSign);
686     } else if (STI.hasVFP3()) {
687       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
688       // the sign bit of the zero matches the sign bit of the input or
689       // result that is being flushed to zero.
690       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
691                         ARMBuildAttrs::PreserveFPSign);
692     }
693     // For VFPv2 implementations it is implementation defined as
694     // to whether denormals are flushed to positive zero or to
695     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
696     // LLVM has chosen to flush this to positive zero (most likely for
697     // GCC compatibility), so that's the chosen value here (the
698     // absence of its emission implies zero).
699   }
700 
701   // Set FP exceptions and rounding
702   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
703                                          "no-trapping-math", "true") ||
704       TM.Options.NoTrappingFPMath)
705     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
706                       ARMBuildAttrs::Not_Allowed);
707   else if (!TM.Options.UnsafeFPMath) {
708     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
709 
710     // If the user has permitted this code to choose the IEEE 754
711     // rounding at run-time, emit the rounding attribute.
712     if (TM.Options.HonorSignDependentRoundingFPMathOption)
713       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
714   }
715 
716   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
717   // equivalent of GCC's -ffinite-math-only flag.
718   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
719     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
720                       ARMBuildAttrs::Allowed);
721   else
722     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
723                       ARMBuildAttrs::AllowIEEE754);
724 
725   // FIXME: add more flags to ARMBuildAttributes.h
726   // 8-bytes alignment stuff.
727   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
728   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
729 
730   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
731   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
732     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
733 
734   // FIXME: To support emitting this build attribute as GCC does, the
735   // -mfp16-format option and associated plumbing must be
736   // supported. For now the __fp16 type is exposed by default, so this
737   // attribute should be emitted with value 1.
738   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
739                     ARMBuildAttrs::FP16FormatIEEE);
740 
741   if (MMI) {
742     if (const Module *SourceModule = MMI->getModule()) {
743       // ABI_PCS_wchar_t to indicate wchar_t width
744       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
745       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
746               SourceModule->getModuleFlag("wchar_size"))) {
747         int WCharWidth = WCharWidthValue->getZExtValue();
748         assert((WCharWidth == 2 || WCharWidth == 4) &&
749                "wchar_t width must be 2 or 4 bytes");
750         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
751       }
752 
753       // ABI_enum_size to indicate enum width
754       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
755       //        (all enums contain a value needing 32 bits to encode).
756       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
757               SourceModule->getModuleFlag("min_enum_size"))) {
758         int EnumWidth = EnumWidthValue->getZExtValue();
759         assert((EnumWidth == 1 || EnumWidth == 4) &&
760                "Minimum enum width must be 1 or 4 bytes");
761         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
762         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
763       }
764     }
765   }
766 
767   // We currently do not support using R9 as the TLS pointer.
768   if (STI.isRWPI())
769     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
770                       ARMBuildAttrs::R9IsSB);
771   else if (STI.isR9Reserved())
772     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
773                       ARMBuildAttrs::R9Reserved);
774   else
775     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
776                       ARMBuildAttrs::R9IsGPR);
777 }
778 
779 //===----------------------------------------------------------------------===//
780 
781 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
782                              unsigned LabelId, MCContext &Ctx) {
783 
784   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
785                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
786   return Label;
787 }
788 
789 static MCSymbolRefExpr::VariantKind
790 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
791   switch (Modifier) {
792   case ARMCP::no_modifier:
793     return MCSymbolRefExpr::VK_None;
794   case ARMCP::TLSGD:
795     return MCSymbolRefExpr::VK_TLSGD;
796   case ARMCP::TPOFF:
797     return MCSymbolRefExpr::VK_TPOFF;
798   case ARMCP::GOTTPOFF:
799     return MCSymbolRefExpr::VK_GOTTPOFF;
800   case ARMCP::SBREL:
801     return MCSymbolRefExpr::VK_ARM_SBREL;
802   case ARMCP::GOT_PREL:
803     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
804   case ARMCP::SECREL:
805     return MCSymbolRefExpr::VK_SECREL;
806   }
807   llvm_unreachable("Invalid ARMCPModifier!");
808 }
809 
810 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
811                                         unsigned char TargetFlags) {
812   if (Subtarget->isTargetMachO()) {
813     bool IsIndirect =
814         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
815 
816     if (!IsIndirect)
817       return getSymbol(GV);
818 
819     // FIXME: Remove this when Darwin transition to @GOT like syntax.
820     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
821     MachineModuleInfoMachO &MMIMachO =
822       MMI->getObjFileInfo<MachineModuleInfoMachO>();
823     MachineModuleInfoImpl::StubValueTy &StubSym =
824         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
825                             : MMIMachO.getGVStubEntry(MCSym);
826 
827     if (!StubSym.getPointer())
828       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
829                                                    !GV->hasInternalLinkage());
830     return MCSym;
831   } else if (Subtarget->isTargetCOFF()) {
832     assert(Subtarget->isTargetWindows() &&
833            "Windows is the only supported COFF target");
834 
835     bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
836     if (!IsIndirect)
837       return getSymbol(GV);
838 
839     SmallString<128> Name;
840     Name = "__imp_";
841     getNameWithPrefix(Name, GV);
842 
843     return OutContext.getOrCreateSymbol(Name);
844   } else if (Subtarget->isTargetELF()) {
845     return getSymbol(GV);
846   }
847   llvm_unreachable("unexpected target");
848 }
849 
850 void ARMAsmPrinter::
851 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
852   const DataLayout &DL = getDataLayout();
853   int Size = DL.getTypeAllocSize(MCPV->getType());
854 
855   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
856 
857   if (ACPV->isPromotedGlobal()) {
858     // This constant pool entry is actually a global whose storage has been
859     // promoted into the constant pool. This global may be referenced still
860     // by debug information, and due to the way AsmPrinter is set up, the debug
861     // info is immutable by the time we decide to promote globals to constant
862     // pools. Because of this, we need to ensure we emit a symbol for the global
863     // with private linkage (the default) so debug info can refer to it.
864     //
865     // However, if this global is promoted into several functions we must ensure
866     // we don't try and emit duplicate symbols!
867     auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
868     for (const auto *GV : ACPC->promotedGlobals()) {
869       if (!EmittedPromotedGlobalLabels.count(GV)) {
870         MCSymbol *GVSym = getSymbol(GV);
871         OutStreamer->EmitLabel(GVSym);
872         EmittedPromotedGlobalLabels.insert(GV);
873       }
874     }
875     return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
876   }
877 
878   MCSymbol *MCSym;
879   if (ACPV->isLSDA()) {
880     MCSym = getCurExceptionSym();
881   } else if (ACPV->isBlockAddress()) {
882     const BlockAddress *BA =
883       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
884     MCSym = GetBlockAddressSymbol(BA);
885   } else if (ACPV->isGlobalValue()) {
886     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
887 
888     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
889     // flag the global as MO_NONLAZY.
890     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
891     MCSym = GetARMGVSymbol(GV, TF);
892   } else if (ACPV->isMachineBasicBlock()) {
893     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
894     MCSym = MBB->getSymbol();
895   } else {
896     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
897     auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
898     MCSym = GetExternalSymbolSymbol(Sym);
899   }
900 
901   // Create an MCSymbol for the reference.
902   const MCExpr *Expr =
903     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
904                             OutContext);
905 
906   if (ACPV->getPCAdjustment()) {
907     MCSymbol *PCLabel =
908         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
909                     ACPV->getLabelId(), OutContext);
910     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
911     PCRelExpr =
912       MCBinaryExpr::createAdd(PCRelExpr,
913                               MCConstantExpr::create(ACPV->getPCAdjustment(),
914                                                      OutContext),
915                               OutContext);
916     if (ACPV->mustAddCurrentAddress()) {
917       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
918       // label, so just emit a local label end reference that instead.
919       MCSymbol *DotSym = OutContext.createTempSymbol();
920       OutStreamer->EmitLabel(DotSym);
921       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
922       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
923     }
924     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
925   }
926   OutStreamer->EmitValue(Expr, Size);
927 }
928 
929 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
930   const MachineOperand &MO1 = MI->getOperand(1);
931   unsigned JTI = MO1.getIndex();
932 
933   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
934   // ARM mode tables.
935   EmitAlignment(2);
936 
937   // Emit a label for the jump table.
938   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
939   OutStreamer->EmitLabel(JTISymbol);
940 
941   // Mark the jump table as data-in-code.
942   OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
943 
944   // Emit each entry of the table.
945   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
946   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
947   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
948 
949   for (MachineBasicBlock *MBB : JTBBs) {
950     // Construct an MCExpr for the entry. We want a value of the form:
951     // (BasicBlockAddr - TableBeginAddr)
952     //
953     // For example, a table with entries jumping to basic blocks BB0 and BB1
954     // would look like:
955     // LJTI_0_0:
956     //    .word (LBB0 - LJTI_0_0)
957     //    .word (LBB1 - LJTI_0_0)
958     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
959 
960     if (isPositionIndependent() || Subtarget->isROPI())
961       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
962                                                                    OutContext),
963                                      OutContext);
964     // If we're generating a table of Thumb addresses in static relocation
965     // model, we need to add one to keep interworking correctly.
966     else if (AFI->isThumbFunction())
967       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
968                                      OutContext);
969     OutStreamer->EmitValue(Expr, 4);
970   }
971   // Mark the end of jump table data-in-code region.
972   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
973 }
974 
975 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
976   const MachineOperand &MO1 = MI->getOperand(1);
977   unsigned JTI = MO1.getIndex();
978 
979   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
980   // ARM mode tables.
981   EmitAlignment(2);
982 
983   // Emit a label for the jump table.
984   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
985   OutStreamer->EmitLabel(JTISymbol);
986 
987   // Emit each entry of the table.
988   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
989   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
990   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
991 
992   for (MachineBasicBlock *MBB : JTBBs) {
993     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
994                                                           OutContext);
995     // If this isn't a TBB or TBH, the entries are direct branch instructions.
996     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
997         .addExpr(MBBSymbolExpr)
998         .addImm(ARMCC::AL)
999         .addReg(0));
1000   }
1001 }
1002 
1003 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1004                                         unsigned OffsetWidth) {
1005   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1006   const MachineOperand &MO1 = MI->getOperand(1);
1007   unsigned JTI = MO1.getIndex();
1008 
1009   if (Subtarget->isThumb1Only())
1010     EmitAlignment(2);
1011 
1012   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1013   OutStreamer->EmitLabel(JTISymbol);
1014 
1015   // Emit each entry of the table.
1016   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1017   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1018   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1019 
1020   // Mark the jump table as data-in-code.
1021   OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1022                                                : MCDR_DataRegionJT16);
1023 
1024   for (auto MBB : JTBBs) {
1025     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1026                                                           OutContext);
1027     // Otherwise it's an offset from the dispatch instruction. Construct an
1028     // MCExpr for the entry. We want a value of the form:
1029     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1030     //
1031     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1032     // would look like:
1033     // LJTI_0_0:
1034     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1035     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1036     // where LCPI0_0 is a label defined just before the TBB instruction using
1037     // this table.
1038     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1039     const MCExpr *Expr = MCBinaryExpr::createAdd(
1040         MCSymbolRefExpr::create(TBInstPC, OutContext),
1041         MCConstantExpr::create(4, OutContext), OutContext);
1042     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1043     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1044                                    OutContext);
1045     OutStreamer->EmitValue(Expr, OffsetWidth);
1046   }
1047   // Mark the end of jump table data-in-code region. 32-bit offsets use
1048   // actual branch instructions here, so we don't mark those as a data-region
1049   // at all.
1050   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1051 
1052   // Make sure the next instruction is 2-byte aligned.
1053   EmitAlignment(1);
1054 }
1055 
1056 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1057   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1058       "Only instruction which are involved into frame setup code are allowed");
1059 
1060   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1061   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1062   const MachineFunction &MF = *MI->getParent()->getParent();
1063   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1064   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1065 
1066   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1067   unsigned Opc = MI->getOpcode();
1068   unsigned SrcReg, DstReg;
1069 
1070   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1071     // Two special cases:
1072     // 1) tPUSH does not have src/dst regs.
1073     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1074     // load. Yes, this is pretty fragile, but for now I don't see better
1075     // way... :(
1076     SrcReg = DstReg = ARM::SP;
1077   } else {
1078     SrcReg = MI->getOperand(1).getReg();
1079     DstReg = MI->getOperand(0).getReg();
1080   }
1081 
1082   // Try to figure out the unwinding opcode out of src / dst regs.
1083   if (MI->mayStore()) {
1084     // Register saves.
1085     assert(DstReg == ARM::SP &&
1086            "Only stack pointer as a destination reg is supported");
1087 
1088     SmallVector<unsigned, 4> RegList;
1089     // Skip src & dst reg, and pred ops.
1090     unsigned StartOp = 2 + 2;
1091     // Use all the operands.
1092     unsigned NumOffset = 0;
1093 
1094     switch (Opc) {
1095     default:
1096       MI->print(errs());
1097       llvm_unreachable("Unsupported opcode for unwinding information");
1098     case ARM::tPUSH:
1099       // Special case here: no src & dst reg, but two extra imp ops.
1100       StartOp = 2; NumOffset = 2;
1101       LLVM_FALLTHROUGH;
1102     case ARM::STMDB_UPD:
1103     case ARM::t2STMDB_UPD:
1104     case ARM::VSTMDDB_UPD:
1105       assert(SrcReg == ARM::SP &&
1106              "Only stack pointer as a source reg is supported");
1107       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1108            i != NumOps; ++i) {
1109         const MachineOperand &MO = MI->getOperand(i);
1110         // Actually, there should never be any impdef stuff here. Skip it
1111         // temporary to workaround PR11902.
1112         if (MO.isImplicit())
1113           continue;
1114         RegList.push_back(MO.getReg());
1115       }
1116       break;
1117     case ARM::STR_PRE_IMM:
1118     case ARM::STR_PRE_REG:
1119     case ARM::t2STR_PRE:
1120       assert(MI->getOperand(2).getReg() == ARM::SP &&
1121              "Only stack pointer as a source reg is supported");
1122       RegList.push_back(SrcReg);
1123       break;
1124     }
1125     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1126       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1127   } else {
1128     // Changes of stack / frame pointer.
1129     if (SrcReg == ARM::SP) {
1130       int64_t Offset = 0;
1131       switch (Opc) {
1132       default:
1133         MI->print(errs());
1134         llvm_unreachable("Unsupported opcode for unwinding information");
1135       case ARM::MOVr:
1136       case ARM::tMOVr:
1137         Offset = 0;
1138         break;
1139       case ARM::ADDri:
1140       case ARM::t2ADDri:
1141         Offset = -MI->getOperand(2).getImm();
1142         break;
1143       case ARM::SUBri:
1144       case ARM::t2SUBri:
1145         Offset = MI->getOperand(2).getImm();
1146         break;
1147       case ARM::tSUBspi:
1148         Offset = MI->getOperand(2).getImm()*4;
1149         break;
1150       case ARM::tADDspi:
1151       case ARM::tADDrSPi:
1152         Offset = -MI->getOperand(2).getImm()*4;
1153         break;
1154       case ARM::tLDRpci: {
1155         // Grab the constpool index and check, whether it corresponds to
1156         // original or cloned constpool entry.
1157         unsigned CPI = MI->getOperand(1).getIndex();
1158         const MachineConstantPool *MCP = MF.getConstantPool();
1159         if (CPI >= MCP->getConstants().size())
1160           CPI = AFI.getOriginalCPIdx(CPI);
1161         assert(CPI != -1U && "Invalid constpool index");
1162 
1163         // Derive the actual offset.
1164         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1165         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1166         // FIXME: Check for user, it should be "add" instruction!
1167         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1168         break;
1169       }
1170       }
1171 
1172       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1173         if (DstReg == FramePtr && FramePtr != ARM::SP)
1174           // Set-up of the frame pointer. Positive values correspond to "add"
1175           // instruction.
1176           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1177         else if (DstReg == ARM::SP) {
1178           // Change of SP by an offset. Positive values correspond to "sub"
1179           // instruction.
1180           ATS.emitPad(Offset);
1181         } else {
1182           // Move of SP to a register.  Positive values correspond to an "add"
1183           // instruction.
1184           ATS.emitMovSP(DstReg, -Offset);
1185         }
1186       }
1187     } else if (DstReg == ARM::SP) {
1188       MI->print(errs());
1189       llvm_unreachable("Unsupported opcode for unwinding information");
1190     }
1191     else {
1192       MI->print(errs());
1193       llvm_unreachable("Unsupported opcode for unwinding information");
1194     }
1195   }
1196 }
1197 
1198 // Simple pseudo-instructions have their lowering (with expansion to real
1199 // instructions) auto-generated.
1200 #include "ARMGenMCPseudoLowering.inc"
1201 
1202 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1203   const DataLayout &DL = getDataLayout();
1204   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1205   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1206 
1207   const MachineFunction &MF = *MI->getParent()->getParent();
1208   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
1209   unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
1210 
1211   // If we just ended a constant pool, mark it as such.
1212   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1213     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1214     InConstantPool = false;
1215   }
1216 
1217   // Emit unwinding stuff for frame-related instructions
1218   if (Subtarget->isTargetEHABICompatible() &&
1219        MI->getFlag(MachineInstr::FrameSetup))
1220     EmitUnwindingInstruction(MI);
1221 
1222   // Do any auto-generated pseudo lowerings.
1223   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1224     return;
1225 
1226   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1227          "Pseudo flag setting opcode should be expanded early");
1228 
1229   // Check for manual lowerings.
1230   unsigned Opc = MI->getOpcode();
1231   switch (Opc) {
1232   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1233   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1234   case ARM::LEApcrel:
1235   case ARM::tLEApcrel:
1236   case ARM::t2LEApcrel: {
1237     // FIXME: Need to also handle globals and externals
1238     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1239     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1240                                                ARM::t2LEApcrel ? ARM::t2ADR
1241                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1242                      : ARM::ADR))
1243       .addReg(MI->getOperand(0).getReg())
1244       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1245       // Add predicate operands.
1246       .addImm(MI->getOperand(2).getImm())
1247       .addReg(MI->getOperand(3).getReg()));
1248     return;
1249   }
1250   case ARM::LEApcrelJT:
1251   case ARM::tLEApcrelJT:
1252   case ARM::t2LEApcrelJT: {
1253     MCSymbol *JTIPICSymbol =
1254       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1255     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1256                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1257                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1258                      : ARM::ADR))
1259       .addReg(MI->getOperand(0).getReg())
1260       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1261       // Add predicate operands.
1262       .addImm(MI->getOperand(2).getImm())
1263       .addReg(MI->getOperand(3).getReg()));
1264     return;
1265   }
1266   // Darwin call instructions are just normal call instructions with different
1267   // clobber semantics (they clobber R9).
1268   case ARM::BX_CALL: {
1269     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1270       .addReg(ARM::LR)
1271       .addReg(ARM::PC)
1272       // Add predicate operands.
1273       .addImm(ARMCC::AL)
1274       .addReg(0)
1275       // Add 's' bit operand (always reg0 for this)
1276       .addReg(0));
1277 
1278     assert(Subtarget->hasV4TOps());
1279     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1280       .addReg(MI->getOperand(0).getReg()));
1281     return;
1282   }
1283   case ARM::tBX_CALL: {
1284     if (Subtarget->hasV5TOps())
1285       llvm_unreachable("Expected BLX to be selected for v5t+");
1286 
1287     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1288     // that the saved lr has its LSB set correctly (the arch doesn't
1289     // have blx).
1290     // So here we generate a bl to a small jump pad that does bx rN.
1291     // The jump pads are emitted after the function body.
1292 
1293     unsigned TReg = MI->getOperand(0).getReg();
1294     MCSymbol *TRegSym = nullptr;
1295     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
1296       if (TIP.first == TReg) {
1297         TRegSym = TIP.second;
1298         break;
1299       }
1300     }
1301 
1302     if (!TRegSym) {
1303       TRegSym = OutContext.createTempSymbol();
1304       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1305     }
1306 
1307     // Create a link-saving branch to the Reg Indirect Jump Pad.
1308     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1309         // Predicate comes first here.
1310         .addImm(ARMCC::AL).addReg(0)
1311         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1312     return;
1313   }
1314   case ARM::BMOVPCRX_CALL: {
1315     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1316       .addReg(ARM::LR)
1317       .addReg(ARM::PC)
1318       // Add predicate operands.
1319       .addImm(ARMCC::AL)
1320       .addReg(0)
1321       // Add 's' bit operand (always reg0 for this)
1322       .addReg(0));
1323 
1324     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1325       .addReg(ARM::PC)
1326       .addReg(MI->getOperand(0).getReg())
1327       // Add predicate operands.
1328       .addImm(ARMCC::AL)
1329       .addReg(0)
1330       // Add 's' bit operand (always reg0 for this)
1331       .addReg(0));
1332     return;
1333   }
1334   case ARM::BMOVPCB_CALL: {
1335     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1336       .addReg(ARM::LR)
1337       .addReg(ARM::PC)
1338       // Add predicate operands.
1339       .addImm(ARMCC::AL)
1340       .addReg(0)
1341       // Add 's' bit operand (always reg0 for this)
1342       .addReg(0));
1343 
1344     const MachineOperand &Op = MI->getOperand(0);
1345     const GlobalValue *GV = Op.getGlobal();
1346     const unsigned TF = Op.getTargetFlags();
1347     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1348     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1349     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1350       .addExpr(GVSymExpr)
1351       // Add predicate operands.
1352       .addImm(ARMCC::AL)
1353       .addReg(0));
1354     return;
1355   }
1356   case ARM::MOVi16_ga_pcrel:
1357   case ARM::t2MOVi16_ga_pcrel: {
1358     MCInst TmpInst;
1359     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1360     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1361 
1362     unsigned TF = MI->getOperand(1).getTargetFlags();
1363     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1364     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1365     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1366 
1367     MCSymbol *LabelSym =
1368         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1369                     MI->getOperand(2).getImm(), OutContext);
1370     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1371     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1372     const MCExpr *PCRelExpr =
1373       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1374                                       MCBinaryExpr::createAdd(LabelSymExpr,
1375                                       MCConstantExpr::create(PCAdj, OutContext),
1376                                       OutContext), OutContext), OutContext);
1377       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1378 
1379     // Add predicate operands.
1380     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1381     TmpInst.addOperand(MCOperand::createReg(0));
1382     // Add 's' bit operand (always reg0 for this)
1383     TmpInst.addOperand(MCOperand::createReg(0));
1384     EmitToStreamer(*OutStreamer, TmpInst);
1385     return;
1386   }
1387   case ARM::MOVTi16_ga_pcrel:
1388   case ARM::t2MOVTi16_ga_pcrel: {
1389     MCInst TmpInst;
1390     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1391                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1392     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1393     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1394 
1395     unsigned TF = MI->getOperand(2).getTargetFlags();
1396     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1397     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1398     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1399 
1400     MCSymbol *LabelSym =
1401         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1402                     MI->getOperand(3).getImm(), OutContext);
1403     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1404     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1405     const MCExpr *PCRelExpr =
1406         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1407                                    MCBinaryExpr::createAdd(LabelSymExpr,
1408                                       MCConstantExpr::create(PCAdj, OutContext),
1409                                           OutContext), OutContext), OutContext);
1410       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1411     // Add predicate operands.
1412     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1413     TmpInst.addOperand(MCOperand::createReg(0));
1414     // Add 's' bit operand (always reg0 for this)
1415     TmpInst.addOperand(MCOperand::createReg(0));
1416     EmitToStreamer(*OutStreamer, TmpInst);
1417     return;
1418   }
1419   case ARM::tPICADD: {
1420     // This is a pseudo op for a label + instruction sequence, which looks like:
1421     // LPC0:
1422     //     add r0, pc
1423     // This adds the address of LPC0 to r0.
1424 
1425     // Emit the label.
1426     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1427                                        getFunctionNumber(),
1428                                        MI->getOperand(2).getImm(), OutContext));
1429 
1430     // Form and emit the add.
1431     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1432       .addReg(MI->getOperand(0).getReg())
1433       .addReg(MI->getOperand(0).getReg())
1434       .addReg(ARM::PC)
1435       // Add predicate operands.
1436       .addImm(ARMCC::AL)
1437       .addReg(0));
1438     return;
1439   }
1440   case ARM::PICADD: {
1441     // This is a pseudo op for a label + instruction sequence, which looks like:
1442     // LPC0:
1443     //     add r0, pc, r0
1444     // This adds the address of LPC0 to r0.
1445 
1446     // Emit the label.
1447     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1448                                        getFunctionNumber(),
1449                                        MI->getOperand(2).getImm(), OutContext));
1450 
1451     // Form and emit the add.
1452     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1453       .addReg(MI->getOperand(0).getReg())
1454       .addReg(ARM::PC)
1455       .addReg(MI->getOperand(1).getReg())
1456       // Add predicate operands.
1457       .addImm(MI->getOperand(3).getImm())
1458       .addReg(MI->getOperand(4).getReg())
1459       // Add 's' bit operand (always reg0 for this)
1460       .addReg(0));
1461     return;
1462   }
1463   case ARM::PICSTR:
1464   case ARM::PICSTRB:
1465   case ARM::PICSTRH:
1466   case ARM::PICLDR:
1467   case ARM::PICLDRB:
1468   case ARM::PICLDRH:
1469   case ARM::PICLDRSB:
1470   case ARM::PICLDRSH: {
1471     // This is a pseudo op for a label + instruction sequence, which looks like:
1472     // LPC0:
1473     //     OP r0, [pc, r0]
1474     // The LCP0 label is referenced by a constant pool entry in order to get
1475     // a PC-relative address at the ldr instruction.
1476 
1477     // Emit the label.
1478     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1479                                        getFunctionNumber(),
1480                                        MI->getOperand(2).getImm(), OutContext));
1481 
1482     // Form and emit the load
1483     unsigned Opcode;
1484     switch (MI->getOpcode()) {
1485     default:
1486       llvm_unreachable("Unexpected opcode!");
1487     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1488     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1489     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1490     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1491     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1492     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1493     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1494     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1495     }
1496     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1497       .addReg(MI->getOperand(0).getReg())
1498       .addReg(ARM::PC)
1499       .addReg(MI->getOperand(1).getReg())
1500       .addImm(0)
1501       // Add predicate operands.
1502       .addImm(MI->getOperand(3).getImm())
1503       .addReg(MI->getOperand(4).getReg()));
1504 
1505     return;
1506   }
1507   case ARM::CONSTPOOL_ENTRY: {
1508     if (Subtarget->genExecuteOnly())
1509       llvm_unreachable("execute-only should not generate constant pools");
1510 
1511     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1512     /// in the function.  The first operand is the ID# for this instruction, the
1513     /// second is the index into the MachineConstantPool that this is, the third
1514     /// is the size in bytes of this constant pool entry.
1515     /// The required alignment is specified on the basic block holding this MI.
1516     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1517     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1518 
1519     // If this is the first entry of the pool, mark it.
1520     if (!InConstantPool) {
1521       OutStreamer->EmitDataRegion(MCDR_DataRegion);
1522       InConstantPool = true;
1523     }
1524 
1525     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1526 
1527     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1528     if (MCPE.isMachineConstantPoolEntry())
1529       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1530     else
1531       EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1532     return;
1533   }
1534   case ARM::JUMPTABLE_ADDRS:
1535     EmitJumpTableAddrs(MI);
1536     return;
1537   case ARM::JUMPTABLE_INSTS:
1538     EmitJumpTableInsts(MI);
1539     return;
1540   case ARM::JUMPTABLE_TBB:
1541   case ARM::JUMPTABLE_TBH:
1542     EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1543     return;
1544   case ARM::t2BR_JT: {
1545     // Lower and emit the instruction itself, then the jump table following it.
1546     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1547       .addReg(ARM::PC)
1548       .addReg(MI->getOperand(0).getReg())
1549       // Add predicate operands.
1550       .addImm(ARMCC::AL)
1551       .addReg(0));
1552     return;
1553   }
1554   case ARM::t2TBB_JT:
1555   case ARM::t2TBH_JT: {
1556     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1557     // Lower and emit the PC label, then the instruction itself.
1558     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1559     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1560                                      .addReg(MI->getOperand(0).getReg())
1561                                      .addReg(MI->getOperand(1).getReg())
1562                                      // Add predicate operands.
1563                                      .addImm(ARMCC::AL)
1564                                      .addReg(0));
1565     return;
1566   }
1567   case ARM::tTBB_JT:
1568   case ARM::tTBH_JT: {
1569 
1570     bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1571     unsigned Base = MI->getOperand(0).getReg();
1572     unsigned Idx = MI->getOperand(1).getReg();
1573     assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1574 
1575     // Multiply up idx if necessary.
1576     if (!Is8Bit)
1577       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1578                                        .addReg(Idx)
1579                                        .addReg(ARM::CPSR)
1580                                        .addReg(Idx)
1581                                        .addImm(1)
1582                                        // Add predicate operands.
1583                                        .addImm(ARMCC::AL)
1584                                        .addReg(0));
1585 
1586     if (Base == ARM::PC) {
1587       // TBB [base, idx] =
1588       //    ADDS idx, idx, base
1589       //    LDRB idx, [idx, #4] ; or LDRH if TBH
1590       //    LSLS idx, #1
1591       //    ADDS pc, pc, idx
1592 
1593       // When using PC as the base, it's important that there is no padding
1594       // between the last ADDS and the start of the jump table. The jump table
1595       // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1596       //
1597       // FIXME: Ideally we could vary the LDRB index based on the padding
1598       // between the sequence and jump table, however that relies on MCExprs
1599       // for load indexes which are currently not supported.
1600       OutStreamer->EmitCodeAlignment(4);
1601       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1602                                        .addReg(Idx)
1603                                        .addReg(Idx)
1604                                        .addReg(Base)
1605                                        // Add predicate operands.
1606                                        .addImm(ARMCC::AL)
1607                                        .addReg(0));
1608 
1609       unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1610       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1611                                        .addReg(Idx)
1612                                        .addReg(Idx)
1613                                        .addImm(Is8Bit ? 4 : 2)
1614                                        // Add predicate operands.
1615                                        .addImm(ARMCC::AL)
1616                                        .addReg(0));
1617     } else {
1618       // TBB [base, idx] =
1619       //    LDRB idx, [base, idx] ; or LDRH if TBH
1620       //    LSLS idx, #1
1621       //    ADDS pc, pc, idx
1622 
1623       unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1624       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1625                                        .addReg(Idx)
1626                                        .addReg(Base)
1627                                        .addReg(Idx)
1628                                        // Add predicate operands.
1629                                        .addImm(ARMCC::AL)
1630                                        .addReg(0));
1631     }
1632 
1633     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1634                                      .addReg(Idx)
1635                                      .addReg(ARM::CPSR)
1636                                      .addReg(Idx)
1637                                      .addImm(1)
1638                                      // Add predicate operands.
1639                                      .addImm(ARMCC::AL)
1640                                      .addReg(0));
1641 
1642     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1643     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1644                                      .addReg(ARM::PC)
1645                                      .addReg(ARM::PC)
1646                                      .addReg(Idx)
1647                                      // Add predicate operands.
1648                                      .addImm(ARMCC::AL)
1649                                      .addReg(0));
1650     return;
1651   }
1652   case ARM::tBR_JTr:
1653   case ARM::BR_JTr: {
1654     // Lower and emit the instruction itself, then the jump table following it.
1655     // mov pc, target
1656     MCInst TmpInst;
1657     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1658       ARM::MOVr : ARM::tMOVr;
1659     TmpInst.setOpcode(Opc);
1660     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1661     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1662     // Add predicate operands.
1663     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1664     TmpInst.addOperand(MCOperand::createReg(0));
1665     // Add 's' bit operand (always reg0 for this)
1666     if (Opc == ARM::MOVr)
1667       TmpInst.addOperand(MCOperand::createReg(0));
1668     EmitToStreamer(*OutStreamer, TmpInst);
1669     return;
1670   }
1671   case ARM::BR_JTm: {
1672     // Lower and emit the instruction itself, then the jump table following it.
1673     // ldr pc, target
1674     MCInst TmpInst;
1675     if (MI->getOperand(1).getReg() == 0) {
1676       // literal offset
1677       TmpInst.setOpcode(ARM::LDRi12);
1678       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1679       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1680       TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1681     } else {
1682       TmpInst.setOpcode(ARM::LDRrs);
1683       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1684       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1685       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1686       TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1687     }
1688     // Add predicate operands.
1689     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1690     TmpInst.addOperand(MCOperand::createReg(0));
1691     EmitToStreamer(*OutStreamer, TmpInst);
1692     return;
1693   }
1694   case ARM::BR_JTadd: {
1695     // Lower and emit the instruction itself, then the jump table following it.
1696     // add pc, target, idx
1697     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1698       .addReg(ARM::PC)
1699       .addReg(MI->getOperand(0).getReg())
1700       .addReg(MI->getOperand(1).getReg())
1701       // Add predicate operands.
1702       .addImm(ARMCC::AL)
1703       .addReg(0)
1704       // Add 's' bit operand (always reg0 for this)
1705       .addReg(0));
1706     return;
1707   }
1708   case ARM::SPACE:
1709     OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1710     return;
1711   case ARM::TRAP: {
1712     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1713     // FIXME: Remove this special case when they do.
1714     if (!Subtarget->isTargetMachO()) {
1715       uint32_t Val = 0xe7ffdefeUL;
1716       OutStreamer->AddComment("trap");
1717       ATS.emitInst(Val);
1718       return;
1719     }
1720     break;
1721   }
1722   case ARM::TRAPNaCl: {
1723     uint32_t Val = 0xe7fedef0UL;
1724     OutStreamer->AddComment("trap");
1725     ATS.emitInst(Val);
1726     return;
1727   }
1728   case ARM::tTRAP: {
1729     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1730     // FIXME: Remove this special case when they do.
1731     if (!Subtarget->isTargetMachO()) {
1732       uint16_t Val = 0xdefe;
1733       OutStreamer->AddComment("trap");
1734       ATS.emitInst(Val, 'n');
1735       return;
1736     }
1737     break;
1738   }
1739   case ARM::t2Int_eh_sjlj_setjmp:
1740   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1741   case ARM::tInt_eh_sjlj_setjmp: {
1742     // Two incoming args: GPR:$src, GPR:$val
1743     // mov $val, pc
1744     // adds $val, #7
1745     // str $val, [$src, #4]
1746     // movs r0, #0
1747     // b LSJLJEH
1748     // movs r0, #1
1749     // LSJLJEH:
1750     unsigned SrcReg = MI->getOperand(0).getReg();
1751     unsigned ValReg = MI->getOperand(1).getReg();
1752     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1753     OutStreamer->AddComment("eh_setjmp begin");
1754     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1755       .addReg(ValReg)
1756       .addReg(ARM::PC)
1757       // Predicate.
1758       .addImm(ARMCC::AL)
1759       .addReg(0));
1760 
1761     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1762       .addReg(ValReg)
1763       // 's' bit operand
1764       .addReg(ARM::CPSR)
1765       .addReg(ValReg)
1766       .addImm(7)
1767       // Predicate.
1768       .addImm(ARMCC::AL)
1769       .addReg(0));
1770 
1771     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1772       .addReg(ValReg)
1773       .addReg(SrcReg)
1774       // The offset immediate is #4. The operand value is scaled by 4 for the
1775       // tSTR instruction.
1776       .addImm(1)
1777       // Predicate.
1778       .addImm(ARMCC::AL)
1779       .addReg(0));
1780 
1781     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1782       .addReg(ARM::R0)
1783       .addReg(ARM::CPSR)
1784       .addImm(0)
1785       // Predicate.
1786       .addImm(ARMCC::AL)
1787       .addReg(0));
1788 
1789     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1790     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1791       .addExpr(SymbolExpr)
1792       .addImm(ARMCC::AL)
1793       .addReg(0));
1794 
1795     OutStreamer->AddComment("eh_setjmp end");
1796     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1797       .addReg(ARM::R0)
1798       .addReg(ARM::CPSR)
1799       .addImm(1)
1800       // Predicate.
1801       .addImm(ARMCC::AL)
1802       .addReg(0));
1803 
1804     OutStreamer->EmitLabel(Label);
1805     return;
1806   }
1807 
1808   case ARM::Int_eh_sjlj_setjmp_nofp:
1809   case ARM::Int_eh_sjlj_setjmp: {
1810     // Two incoming args: GPR:$src, GPR:$val
1811     // add $val, pc, #8
1812     // str $val, [$src, #+4]
1813     // mov r0, #0
1814     // add pc, pc, #0
1815     // mov r0, #1
1816     unsigned SrcReg = MI->getOperand(0).getReg();
1817     unsigned ValReg = MI->getOperand(1).getReg();
1818 
1819     OutStreamer->AddComment("eh_setjmp begin");
1820     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1821       .addReg(ValReg)
1822       .addReg(ARM::PC)
1823       .addImm(8)
1824       // Predicate.
1825       .addImm(ARMCC::AL)
1826       .addReg(0)
1827       // 's' bit operand (always reg0 for this).
1828       .addReg(0));
1829 
1830     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1831       .addReg(ValReg)
1832       .addReg(SrcReg)
1833       .addImm(4)
1834       // Predicate.
1835       .addImm(ARMCC::AL)
1836       .addReg(0));
1837 
1838     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1839       .addReg(ARM::R0)
1840       .addImm(0)
1841       // Predicate.
1842       .addImm(ARMCC::AL)
1843       .addReg(0)
1844       // 's' bit operand (always reg0 for this).
1845       .addReg(0));
1846 
1847     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1848       .addReg(ARM::PC)
1849       .addReg(ARM::PC)
1850       .addImm(0)
1851       // Predicate.
1852       .addImm(ARMCC::AL)
1853       .addReg(0)
1854       // 's' bit operand (always reg0 for this).
1855       .addReg(0));
1856 
1857     OutStreamer->AddComment("eh_setjmp end");
1858     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1859       .addReg(ARM::R0)
1860       .addImm(1)
1861       // Predicate.
1862       .addImm(ARMCC::AL)
1863       .addReg(0)
1864       // 's' bit operand (always reg0 for this).
1865       .addReg(0));
1866     return;
1867   }
1868   case ARM::Int_eh_sjlj_longjmp: {
1869     // ldr sp, [$src, #8]
1870     // ldr $scratch, [$src, #4]
1871     // ldr r7, [$src]
1872     // bx $scratch
1873     unsigned SrcReg = MI->getOperand(0).getReg();
1874     unsigned ScratchReg = MI->getOperand(1).getReg();
1875     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1876       .addReg(ARM::SP)
1877       .addReg(SrcReg)
1878       .addImm(8)
1879       // Predicate.
1880       .addImm(ARMCC::AL)
1881       .addReg(0));
1882 
1883     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1884       .addReg(ScratchReg)
1885       .addReg(SrcReg)
1886       .addImm(4)
1887       // Predicate.
1888       .addImm(ARMCC::AL)
1889       .addReg(0));
1890 
1891     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
1892       // These platforms always use the same frame register
1893       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1894         .addReg(FramePtr)
1895         .addReg(SrcReg)
1896         .addImm(0)
1897         // Predicate.
1898         .addImm(ARMCC::AL)
1899         .addReg(0));
1900     } else {
1901       // If the calling code might use either R7 or R11 as
1902       // frame pointer register, restore it into both.
1903       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1904         .addReg(ARM::R7)
1905         .addReg(SrcReg)
1906         .addImm(0)
1907         // Predicate.
1908         .addImm(ARMCC::AL)
1909         .addReg(0));
1910       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1911         .addReg(ARM::R11)
1912         .addReg(SrcReg)
1913         .addImm(0)
1914         // Predicate.
1915         .addImm(ARMCC::AL)
1916         .addReg(0));
1917     }
1918 
1919     assert(Subtarget->hasV4TOps());
1920     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1921       .addReg(ScratchReg)
1922       // Predicate.
1923       .addImm(ARMCC::AL)
1924       .addReg(0));
1925     return;
1926   }
1927   case ARM::tInt_eh_sjlj_longjmp: {
1928     // ldr $scratch, [$src, #8]
1929     // mov sp, $scratch
1930     // ldr $scratch, [$src, #4]
1931     // ldr r7, [$src]
1932     // bx $scratch
1933     unsigned SrcReg = MI->getOperand(0).getReg();
1934     unsigned ScratchReg = MI->getOperand(1).getReg();
1935 
1936     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1937       .addReg(ScratchReg)
1938       .addReg(SrcReg)
1939       // The offset immediate is #8. The operand value is scaled by 4 for the
1940       // tLDR instruction.
1941       .addImm(2)
1942       // Predicate.
1943       .addImm(ARMCC::AL)
1944       .addReg(0));
1945 
1946     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1947       .addReg(ARM::SP)
1948       .addReg(ScratchReg)
1949       // Predicate.
1950       .addImm(ARMCC::AL)
1951       .addReg(0));
1952 
1953     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1954       .addReg(ScratchReg)
1955       .addReg(SrcReg)
1956       .addImm(1)
1957       // Predicate.
1958       .addImm(ARMCC::AL)
1959       .addReg(0));
1960 
1961     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
1962       // These platforms always use the same frame register
1963       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1964         .addReg(FramePtr)
1965         .addReg(SrcReg)
1966         .addImm(0)
1967         // Predicate.
1968         .addImm(ARMCC::AL)
1969         .addReg(0));
1970     } else {
1971       // If the calling code might use either R7 or R11 as
1972       // frame pointer register, restore it into both.
1973       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1974         .addReg(ARM::R7)
1975         .addReg(SrcReg)
1976         .addImm(0)
1977         // Predicate.
1978         .addImm(ARMCC::AL)
1979         .addReg(0));
1980       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1981         .addReg(ARM::R11)
1982         .addReg(SrcReg)
1983         .addImm(0)
1984         // Predicate.
1985         .addImm(ARMCC::AL)
1986         .addReg(0));
1987     }
1988 
1989     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
1990       .addReg(ScratchReg)
1991       // Predicate.
1992       .addImm(ARMCC::AL)
1993       .addReg(0));
1994     return;
1995   }
1996   case ARM::tInt_WIN_eh_sjlj_longjmp: {
1997     // ldr.w r11, [$src, #0]
1998     // ldr.w  sp, [$src, #8]
1999     // ldr.w  pc, [$src, #4]
2000 
2001     unsigned SrcReg = MI->getOperand(0).getReg();
2002 
2003     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2004                                      .addReg(ARM::R11)
2005                                      .addReg(SrcReg)
2006                                      .addImm(0)
2007                                      // Predicate
2008                                      .addImm(ARMCC::AL)
2009                                      .addReg(0));
2010     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2011                                      .addReg(ARM::SP)
2012                                      .addReg(SrcReg)
2013                                      .addImm(8)
2014                                      // Predicate
2015                                      .addImm(ARMCC::AL)
2016                                      .addReg(0));
2017     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2018                                      .addReg(ARM::PC)
2019                                      .addReg(SrcReg)
2020                                      .addImm(4)
2021                                      // Predicate
2022                                      .addImm(ARMCC::AL)
2023                                      .addReg(0));
2024     return;
2025   }
2026   case ARM::PATCHABLE_FUNCTION_ENTER:
2027     LowerPATCHABLE_FUNCTION_ENTER(*MI);
2028     return;
2029   case ARM::PATCHABLE_FUNCTION_EXIT:
2030     LowerPATCHABLE_FUNCTION_EXIT(*MI);
2031     return;
2032   case ARM::PATCHABLE_TAIL_CALL:
2033     LowerPATCHABLE_TAIL_CALL(*MI);
2034     return;
2035   }
2036 
2037   MCInst TmpInst;
2038   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2039 
2040   EmitToStreamer(*OutStreamer, TmpInst);
2041 }
2042 
2043 //===----------------------------------------------------------------------===//
2044 // Target Registry Stuff
2045 //===----------------------------------------------------------------------===//
2046 
2047 // Force static initialization.
2048 extern "C" void LLVMInitializeARMAsmPrinter() {
2049   RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2050   RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2051   RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2052   RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
2053 }
2054