1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAssembler.h" 39 #include "llvm/MC/MCContext.h" 40 #include "llvm/MC/MCELFStreamer.h" 41 #include "llvm/MC/MCInst.h" 42 #include "llvm/MC/MCInstBuilder.h" 43 #include "llvm/MC/MCObjectStreamer.h" 44 #include "llvm/MC/MCSectionMachO.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/TargetParser.h" 51 #include "llvm/Support/TargetRegistry.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cctype> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 60 std::unique_ptr<MCStreamer> Streamer) 61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 62 InConstantPool(false), OptimizationGoals(-1) {} 63 64 void ARMAsmPrinter::EmitFunctionBodyEnd() { 65 // Make sure to terminate any constant pools that were at the end 66 // of the function. 67 if (!InConstantPool) 68 return; 69 InConstantPool = false; 70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 71 } 72 73 void ARMAsmPrinter::EmitFunctionEntryLabel() { 74 if (AFI->isThumbFunction()) { 75 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 76 OutStreamer->EmitThumbFunc(CurrentFnSym); 77 } else { 78 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 79 } 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 101 if (PromotedGlobals.count(GV)) 102 // The global was promoted into a constant pool. It should not be emitted. 103 return; 104 AsmPrinter::EmitGlobalVariable(GV); 105 } 106 107 /// runOnMachineFunction - This uses the EmitInstruction() 108 /// method to print assembly for each instruction. 109 /// 110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 111 AFI = MF.getInfo<ARMFunctionInfo>(); 112 MCP = MF.getConstantPool(); 113 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 114 115 SetupMachineFunction(MF); 116 const Function* F = MF.getFunction(); 117 const TargetMachine& TM = MF.getTarget(); 118 119 // Collect all globals that had their storage promoted to a constant pool. 120 // Functions are emitted before variables, so this accumulates promoted 121 // globals from all functions in PromotedGlobals. 122 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 123 PromotedGlobals.insert(GV); 124 125 // Calculate this function's optimization goal. 126 unsigned OptimizationGoal; 127 if (F->hasFnAttribute(Attribute::OptimizeNone)) 128 // For best debugging illusion, speed and small size sacrificed 129 OptimizationGoal = 6; 130 else if (F->optForMinSize()) 131 // Aggressively for small size, speed and debug illusion sacrificed 132 OptimizationGoal = 4; 133 else if (F->optForSize()) 134 // For small size, but speed and debugging illusion preserved 135 OptimizationGoal = 3; 136 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 137 // Aggressively for speed, small size and debug illusion sacrificed 138 OptimizationGoal = 2; 139 else if (TM.getOptLevel() > CodeGenOpt::None) 140 // For speed, but small size and good debug illusion preserved 141 OptimizationGoal = 1; 142 else // TM.getOptLevel() == CodeGenOpt::None 143 // For good debugging, but speed and small size preserved 144 OptimizationGoal = 5; 145 146 // Combine a new optimization goal with existing ones. 147 if (OptimizationGoals == -1) // uninitialized goals 148 OptimizationGoals = OptimizationGoal; 149 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 150 OptimizationGoals = 0; 151 152 if (Subtarget->isTargetCOFF()) { 153 bool Internal = F->hasInternalLinkage(); 154 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 155 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 156 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 157 158 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 159 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 160 OutStreamer->EmitCOFFSymbolType(Type); 161 OutStreamer->EndCOFFSymbolDef(); 162 } 163 164 // Emit the rest of the function body. 165 EmitFunctionBody(); 166 167 // Emit the XRay table for this function. 168 emitXRayTable(); 169 170 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 171 // These are created per function, rather than per TU, since it's 172 // relatively easy to exceed the thumb branch range within a TU. 173 if (! ThumbIndirectPads.empty()) { 174 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 175 EmitAlignment(1); 176 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 177 OutStreamer->EmitLabel(TIP.second); 178 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 179 .addReg(TIP.first) 180 // Add predicate operands. 181 .addImm(ARMCC::AL) 182 .addReg(0)); 183 } 184 ThumbIndirectPads.clear(); 185 } 186 187 // We didn't modify anything. 188 return false; 189 } 190 191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 192 raw_ostream &O) { 193 const MachineOperand &MO = MI->getOperand(OpNum); 194 unsigned TF = MO.getTargetFlags(); 195 196 switch (MO.getType()) { 197 default: llvm_unreachable("<unknown operand type>"); 198 case MachineOperand::MO_Register: { 199 unsigned Reg = MO.getReg(); 200 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 201 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 202 if(ARM::GPRPairRegClass.contains(Reg)) { 203 const MachineFunction &MF = *MI->getParent()->getParent(); 204 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 205 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 206 } 207 O << ARMInstPrinter::getRegisterName(Reg); 208 break; 209 } 210 case MachineOperand::MO_Immediate: { 211 int64_t Imm = MO.getImm(); 212 O << '#'; 213 if (TF == ARMII::MO_LO16) 214 O << ":lower16:"; 215 else if (TF == ARMII::MO_HI16) 216 O << ":upper16:"; 217 O << Imm; 218 break; 219 } 220 case MachineOperand::MO_MachineBasicBlock: 221 MO.getMBB()->getSymbol()->print(O, MAI); 222 return; 223 case MachineOperand::MO_GlobalAddress: { 224 const GlobalValue *GV = MO.getGlobal(); 225 if (TF & ARMII::MO_LO16) 226 O << ":lower16:"; 227 else if (TF & ARMII::MO_HI16) 228 O << ":upper16:"; 229 GetARMGVSymbol(GV, TF)->print(O, MAI); 230 231 printOffset(MO.getOffset(), O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 //===--------------------------------------------------------------------===// 243 244 MCSymbol *ARMAsmPrinter:: 245 GetARMJTIPICJumpTableLabel(unsigned uid) const { 246 const DataLayout &DL = getDataLayout(); 247 SmallString<60> Name; 248 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 249 << getFunctionNumber() << '_' << uid; 250 return OutContext.getOrCreateSymbol(Name); 251 } 252 253 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 254 unsigned AsmVariant, const char *ExtraCode, 255 raw_ostream &O) { 256 // Does this asm operand have a single letter operand modifier? 257 if (ExtraCode && ExtraCode[0]) { 258 if (ExtraCode[1] != 0) return true; // Unknown modifier. 259 260 switch (ExtraCode[0]) { 261 default: 262 // See if this is a generic print operand 263 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 264 case 'a': // Print as a memory address. 265 if (MI->getOperand(OpNum).isReg()) { 266 O << "[" 267 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 268 << "]"; 269 return false; 270 } 271 LLVM_FALLTHROUGH; 272 case 'c': // Don't print "#" before an immediate operand. 273 if (!MI->getOperand(OpNum).isImm()) 274 return true; 275 O << MI->getOperand(OpNum).getImm(); 276 return false; 277 case 'P': // Print a VFP double precision register. 278 case 'q': // Print a NEON quad precision register. 279 printOperand(MI, OpNum, O); 280 return false; 281 case 'y': // Print a VFP single precision register as indexed double. 282 if (MI->getOperand(OpNum).isReg()) { 283 unsigned Reg = MI->getOperand(OpNum).getReg(); 284 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 285 // Find the 'd' register that has this 's' register as a sub-register, 286 // and determine the lane number. 287 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 288 if (!ARM::DPRRegClass.contains(*SR)) 289 continue; 290 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 291 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 292 return false; 293 } 294 } 295 return true; 296 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << ~(MI->getOperand(OpNum).getImm()); 300 return false; 301 case 'L': // The low 16 bits of an immediate constant. 302 if (!MI->getOperand(OpNum).isImm()) 303 return true; 304 O << (MI->getOperand(OpNum).getImm() & 0xffff); 305 return false; 306 case 'M': { // A register range suitable for LDM/STM. 307 if (!MI->getOperand(OpNum).isReg()) 308 return true; 309 const MachineOperand &MO = MI->getOperand(OpNum); 310 unsigned RegBegin = MO.getReg(); 311 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 312 // already got the operands in registers that are operands to the 313 // inline asm statement. 314 O << "{"; 315 if (ARM::GPRPairRegClass.contains(RegBegin)) { 316 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 317 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 318 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 319 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 320 } 321 O << ARMInstPrinter::getRegisterName(RegBegin); 322 323 // FIXME: The register allocator not only may not have given us the 324 // registers in sequence, but may not be in ascending registers. This 325 // will require changes in the register allocator that'll need to be 326 // propagated down here if the operands change. 327 unsigned RegOps = OpNum + 1; 328 while (MI->getOperand(RegOps).isReg()) { 329 O << ", " 330 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 331 RegOps++; 332 } 333 334 O << "}"; 335 336 return false; 337 } 338 case 'R': // The most significant register of a pair. 339 case 'Q': { // The least significant register of a pair. 340 if (OpNum == 0) 341 return true; 342 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 343 if (!FlagsOP.isImm()) 344 return true; 345 unsigned Flags = FlagsOP.getImm(); 346 347 // This operand may not be the one that actually provides the register. If 348 // it's tied to a previous one then we should refer instead to that one 349 // for registers and their classes. 350 unsigned TiedIdx; 351 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 352 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 353 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 354 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 355 } 356 Flags = MI->getOperand(OpNum).getImm(); 357 358 // Later code expects OpNum to be pointing at the register rather than 359 // the flags. 360 OpNum += 1; 361 } 362 363 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 364 unsigned RC; 365 InlineAsm::hasRegClassConstraint(Flags, RC); 366 if (RC == ARM::GPRPairRegClassID) { 367 if (NumVals != 1) 368 return true; 369 const MachineOperand &MO = MI->getOperand(OpNum); 370 if (!MO.isReg()) 371 return true; 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 374 ARM::gsub_0 : ARM::gsub_1); 375 O << ARMInstPrinter::getRegisterName(Reg); 376 return false; 377 } 378 if (NumVals != 2) 379 return true; 380 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 381 if (RegOp >= MI->getNumOperands()) 382 return true; 383 const MachineOperand &MO = MI->getOperand(RegOp); 384 if (!MO.isReg()) 385 return true; 386 unsigned Reg = MO.getReg(); 387 O << ARMInstPrinter::getRegisterName(Reg); 388 return false; 389 } 390 391 case 'e': // The low doubleword register of a NEON quad register. 392 case 'f': { // The high doubleword register of a NEON quad register. 393 if (!MI->getOperand(OpNum).isReg()) 394 return true; 395 unsigned Reg = MI->getOperand(OpNum).getReg(); 396 if (!ARM::QPRRegClass.contains(Reg)) 397 return true; 398 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 399 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 400 ARM::dsub_0 : ARM::dsub_1); 401 O << ARMInstPrinter::getRegisterName(SubReg); 402 return false; 403 } 404 405 // This modifier is not yet supported. 406 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 407 return true; 408 case 'H': { // The highest-numbered register of a pair. 409 const MachineOperand &MO = MI->getOperand(OpNum); 410 if (!MO.isReg()) 411 return true; 412 const MachineFunction &MF = *MI->getParent()->getParent(); 413 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 414 unsigned Reg = MO.getReg(); 415 if(!ARM::GPRPairRegClass.contains(Reg)) 416 return false; 417 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 418 O << ARMInstPrinter::getRegisterName(Reg); 419 return false; 420 } 421 } 422 } 423 424 printOperand(MI, OpNum, O); 425 return false; 426 } 427 428 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 429 unsigned OpNum, unsigned AsmVariant, 430 const char *ExtraCode, 431 raw_ostream &O) { 432 // Does this asm operand have a single letter operand modifier? 433 if (ExtraCode && ExtraCode[0]) { 434 if (ExtraCode[1] != 0) return true; // Unknown modifier. 435 436 switch (ExtraCode[0]) { 437 case 'A': // A memory operand for a VLD1/VST1 instruction. 438 default: return true; // Unknown modifier. 439 case 'm': // The base register of a memory operand. 440 if (!MI->getOperand(OpNum).isReg()) 441 return true; 442 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 443 return false; 444 } 445 } 446 447 const MachineOperand &MO = MI->getOperand(OpNum); 448 assert(MO.isReg() && "unexpected inline asm memory operand"); 449 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 450 return false; 451 } 452 453 static bool isThumb(const MCSubtargetInfo& STI) { 454 return STI.getFeatureBits()[ARM::ModeThumb]; 455 } 456 457 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 458 const MCSubtargetInfo *EndInfo) const { 459 // If either end mode is unknown (EndInfo == NULL) or different than 460 // the start mode, then restore the start mode. 461 const bool WasThumb = isThumb(StartInfo); 462 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 463 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 464 } 465 } 466 467 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 468 const Triple &TT = TM.getTargetTriple(); 469 // Use unified assembler syntax. 470 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 471 472 // Emit ARM Build Attributes 473 if (TT.isOSBinFormatELF()) 474 emitAttributes(); 475 476 // Use the triple's architecture and subarchitecture to determine 477 // if we're thumb for the purposes of the top level code16 assembler 478 // flag. 479 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 480 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 481 } 482 483 static void 484 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 485 MachineModuleInfoImpl::StubValueTy &MCSym) { 486 // L_foo$stub: 487 OutStreamer.EmitLabel(StubLabel); 488 // .indirect_symbol _foo 489 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 490 491 if (MCSym.getInt()) 492 // External to current translation unit. 493 OutStreamer.EmitIntValue(0, 4/*size*/); 494 else 495 // Internal to current translation unit. 496 // 497 // When we place the LSDA into the TEXT section, the type info 498 // pointers need to be indirect and pc-rel. We accomplish this by 499 // using NLPs; however, sometimes the types are local to the file. 500 // We need to fill in the value for the NLP in those cases. 501 OutStreamer.EmitValue( 502 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 503 4 /*size*/); 504 } 505 506 507 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 508 const Triple &TT = TM.getTargetTriple(); 509 if (TT.isOSBinFormatMachO()) { 510 // All darwin targets use mach-o. 511 const TargetLoweringObjectFileMachO &TLOFMacho = 512 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 513 MachineModuleInfoMachO &MMIMacho = 514 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 515 516 // Output non-lazy-pointers for external and common global variables. 517 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 518 519 if (!Stubs.empty()) { 520 // Switch with ".non_lazy_symbol_pointer" directive. 521 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 522 EmitAlignment(2); 523 524 for (auto &Stub : Stubs) 525 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 526 527 Stubs.clear(); 528 OutStreamer->AddBlankLine(); 529 } 530 531 Stubs = MMIMacho.GetThreadLocalGVStubList(); 532 if (!Stubs.empty()) { 533 // Switch with ".non_lazy_symbol_pointer" directive. 534 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 535 EmitAlignment(2); 536 537 for (auto &Stub : Stubs) 538 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 539 540 Stubs.clear(); 541 OutStreamer->AddBlankLine(); 542 } 543 544 // Funny Darwin hack: This flag tells the linker that no global symbols 545 // contain code that falls through to other global symbols (e.g. the obvious 546 // implementation of multiple entry points). If this doesn't occur, the 547 // linker can safely perform dead code stripping. Since LLVM never 548 // generates code that does this, it is always safe to set. 549 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 550 } 551 552 if (TT.isOSBinFormatCOFF()) { 553 const auto &TLOF = 554 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering()); 555 556 std::string Flags; 557 raw_string_ostream OS(Flags); 558 559 for (const auto &Function : M) 560 TLOF.emitLinkerFlagsForGlobal(OS, &Function); 561 for (const auto &Global : M.globals()) 562 TLOF.emitLinkerFlagsForGlobal(OS, &Global); 563 for (const auto &Alias : M.aliases()) 564 TLOF.emitLinkerFlagsForGlobal(OS, &Alias); 565 566 OS.flush(); 567 568 // Output collected flags 569 if (!Flags.empty()) { 570 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 571 OutStreamer->EmitBytes(Flags); 572 } 573 } 574 575 // The last attribute to be emitted is ABI_optimization_goals 576 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 577 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 578 579 if (OptimizationGoals > 0 && 580 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 581 Subtarget->isTargetMuslAEABI())) 582 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 583 OptimizationGoals = -1; 584 585 ATS.finishAttributeSection(); 586 } 587 588 //===----------------------------------------------------------------------===// 589 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 590 // FIXME: 591 // The following seem like one-off assembler flags, but they actually need 592 // to appear in the .ARM.attributes section in ELF. 593 // Instead of subclassing the MCELFStreamer, we do the work here. 594 595 // Returns true if all functions have the same function attribute value. 596 // It also returns true when the module has no functions. 597 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 598 StringRef Value) { 599 return !any_of(M, [&](const Function &F) { 600 return F.getFnAttribute(Attr).getValueAsString() != Value; 601 }); 602 } 603 604 void ARMAsmPrinter::emitAttributes() { 605 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 606 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 607 608 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 609 610 ATS.switchVendor("aeabi"); 611 612 // Compute ARM ELF Attributes based on the default subtarget that 613 // we'd have constructed. The existing ARM behavior isn't LTO clean 614 // anyhow. 615 // FIXME: For ifunc related functions we could iterate over and look 616 // for a feature string that doesn't match the default one. 617 const Triple &TT = TM.getTargetTriple(); 618 StringRef CPU = TM.getTargetCPU(); 619 StringRef FS = TM.getTargetFeatureString(); 620 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 621 if (!FS.empty()) { 622 if (!ArchFS.empty()) 623 ArchFS = (Twine(ArchFS) + "," + FS).str(); 624 else 625 ArchFS = FS; 626 } 627 const ARMBaseTargetMachine &ATM = 628 static_cast<const ARMBaseTargetMachine &>(TM); 629 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 630 631 // Emit build attributes for the available hardware. 632 ATS.emitTargetAttributes(STI); 633 634 // RW data addressing. 635 if (isPositionIndependent()) { 636 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 637 ARMBuildAttrs::AddressRWPCRel); 638 } else if (STI.isRWPI()) { 639 // RWPI specific attributes. 640 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 641 ARMBuildAttrs::AddressRWSBRel); 642 } 643 644 // RO data addressing. 645 if (isPositionIndependent() || STI.isROPI()) { 646 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 647 ARMBuildAttrs::AddressROPCRel); 648 } 649 650 // GOT use. 651 if (isPositionIndependent()) { 652 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 653 ARMBuildAttrs::AddressGOT); 654 } else { 655 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 656 ARMBuildAttrs::AddressDirect); 657 } 658 659 // Set FP Denormals. 660 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 661 "denormal-fp-math", 662 "preserve-sign") || 663 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 664 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 665 ARMBuildAttrs::PreserveFPSign); 666 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 667 "denormal-fp-math", 668 "positive-zero") || 669 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 670 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 671 ARMBuildAttrs::PositiveZero); 672 else if (!TM.Options.UnsafeFPMath) 673 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 674 ARMBuildAttrs::IEEEDenormals); 675 else { 676 if (!STI.hasVFP2()) { 677 // When the target doesn't have an FPU (by design or 678 // intention), the assumptions made on the software support 679 // mirror that of the equivalent hardware support *if it 680 // existed*. For v7 and better we indicate that denormals are 681 // flushed preserving sign, and for V6 we indicate that 682 // denormals are flushed to positive zero. 683 if (STI.hasV7Ops()) 684 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 685 ARMBuildAttrs::PreserveFPSign); 686 } else if (STI.hasVFP3()) { 687 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 688 // the sign bit of the zero matches the sign bit of the input or 689 // result that is being flushed to zero. 690 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 691 ARMBuildAttrs::PreserveFPSign); 692 } 693 // For VFPv2 implementations it is implementation defined as 694 // to whether denormals are flushed to positive zero or to 695 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 696 // LLVM has chosen to flush this to positive zero (most likely for 697 // GCC compatibility), so that's the chosen value here (the 698 // absence of its emission implies zero). 699 } 700 701 // Set FP exceptions and rounding 702 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 703 "no-trapping-math", "true") || 704 TM.Options.NoTrappingFPMath) 705 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 706 ARMBuildAttrs::Not_Allowed); 707 else if (!TM.Options.UnsafeFPMath) { 708 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 709 710 // If the user has permitted this code to choose the IEEE 754 711 // rounding at run-time, emit the rounding attribute. 712 if (TM.Options.HonorSignDependentRoundingFPMathOption) 713 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 714 } 715 716 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 717 // equivalent of GCC's -ffinite-math-only flag. 718 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 719 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 720 ARMBuildAttrs::Allowed); 721 else 722 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 723 ARMBuildAttrs::AllowIEEE754); 724 725 // FIXME: add more flags to ARMBuildAttributes.h 726 // 8-bytes alignment stuff. 727 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 728 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 729 730 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 731 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 732 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 733 734 // FIXME: To support emitting this build attribute as GCC does, the 735 // -mfp16-format option and associated plumbing must be 736 // supported. For now the __fp16 type is exposed by default, so this 737 // attribute should be emitted with value 1. 738 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 739 ARMBuildAttrs::FP16FormatIEEE); 740 741 if (MMI) { 742 if (const Module *SourceModule = MMI->getModule()) { 743 // ABI_PCS_wchar_t to indicate wchar_t width 744 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 745 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 746 SourceModule->getModuleFlag("wchar_size"))) { 747 int WCharWidth = WCharWidthValue->getZExtValue(); 748 assert((WCharWidth == 2 || WCharWidth == 4) && 749 "wchar_t width must be 2 or 4 bytes"); 750 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 751 } 752 753 // ABI_enum_size to indicate enum width 754 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 755 // (all enums contain a value needing 32 bits to encode). 756 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 757 SourceModule->getModuleFlag("min_enum_size"))) { 758 int EnumWidth = EnumWidthValue->getZExtValue(); 759 assert((EnumWidth == 1 || EnumWidth == 4) && 760 "Minimum enum width must be 1 or 4 bytes"); 761 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 762 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 763 } 764 } 765 } 766 767 // We currently do not support using R9 as the TLS pointer. 768 if (STI.isRWPI()) 769 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 770 ARMBuildAttrs::R9IsSB); 771 else if (STI.isR9Reserved()) 772 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 773 ARMBuildAttrs::R9Reserved); 774 else 775 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 776 ARMBuildAttrs::R9IsGPR); 777 } 778 779 //===----------------------------------------------------------------------===// 780 781 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 782 unsigned LabelId, MCContext &Ctx) { 783 784 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 785 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 786 return Label; 787 } 788 789 static MCSymbolRefExpr::VariantKind 790 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 791 switch (Modifier) { 792 case ARMCP::no_modifier: 793 return MCSymbolRefExpr::VK_None; 794 case ARMCP::TLSGD: 795 return MCSymbolRefExpr::VK_TLSGD; 796 case ARMCP::TPOFF: 797 return MCSymbolRefExpr::VK_TPOFF; 798 case ARMCP::GOTTPOFF: 799 return MCSymbolRefExpr::VK_GOTTPOFF; 800 case ARMCP::SBREL: 801 return MCSymbolRefExpr::VK_ARM_SBREL; 802 case ARMCP::GOT_PREL: 803 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 804 case ARMCP::SECREL: 805 return MCSymbolRefExpr::VK_SECREL; 806 } 807 llvm_unreachable("Invalid ARMCPModifier!"); 808 } 809 810 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 811 unsigned char TargetFlags) { 812 if (Subtarget->isTargetMachO()) { 813 bool IsIndirect = 814 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 815 816 if (!IsIndirect) 817 return getSymbol(GV); 818 819 // FIXME: Remove this when Darwin transition to @GOT like syntax. 820 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 821 MachineModuleInfoMachO &MMIMachO = 822 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 823 MachineModuleInfoImpl::StubValueTy &StubSym = 824 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 825 : MMIMachO.getGVStubEntry(MCSym); 826 827 if (!StubSym.getPointer()) 828 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 829 !GV->hasInternalLinkage()); 830 return MCSym; 831 } else if (Subtarget->isTargetCOFF()) { 832 assert(Subtarget->isTargetWindows() && 833 "Windows is the only supported COFF target"); 834 835 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 836 if (!IsIndirect) 837 return getSymbol(GV); 838 839 SmallString<128> Name; 840 Name = "__imp_"; 841 getNameWithPrefix(Name, GV); 842 843 return OutContext.getOrCreateSymbol(Name); 844 } else if (Subtarget->isTargetELF()) { 845 return getSymbol(GV); 846 } 847 llvm_unreachable("unexpected target"); 848 } 849 850 void ARMAsmPrinter:: 851 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 852 const DataLayout &DL = getDataLayout(); 853 int Size = DL.getTypeAllocSize(MCPV->getType()); 854 855 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 856 857 if (ACPV->isPromotedGlobal()) { 858 // This constant pool entry is actually a global whose storage has been 859 // promoted into the constant pool. This global may be referenced still 860 // by debug information, and due to the way AsmPrinter is set up, the debug 861 // info is immutable by the time we decide to promote globals to constant 862 // pools. Because of this, we need to ensure we emit a symbol for the global 863 // with private linkage (the default) so debug info can refer to it. 864 // 865 // However, if this global is promoted into several functions we must ensure 866 // we don't try and emit duplicate symbols! 867 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 868 for (const auto *GV : ACPC->promotedGlobals()) { 869 if (!EmittedPromotedGlobalLabels.count(GV)) { 870 MCSymbol *GVSym = getSymbol(GV); 871 OutStreamer->EmitLabel(GVSym); 872 EmittedPromotedGlobalLabels.insert(GV); 873 } 874 } 875 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 876 } 877 878 MCSymbol *MCSym; 879 if (ACPV->isLSDA()) { 880 MCSym = getCurExceptionSym(); 881 } else if (ACPV->isBlockAddress()) { 882 const BlockAddress *BA = 883 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 884 MCSym = GetBlockAddressSymbol(BA); 885 } else if (ACPV->isGlobalValue()) { 886 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 887 888 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 889 // flag the global as MO_NONLAZY. 890 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 891 MCSym = GetARMGVSymbol(GV, TF); 892 } else if (ACPV->isMachineBasicBlock()) { 893 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 894 MCSym = MBB->getSymbol(); 895 } else { 896 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 897 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 898 MCSym = GetExternalSymbolSymbol(Sym); 899 } 900 901 // Create an MCSymbol for the reference. 902 const MCExpr *Expr = 903 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 904 OutContext); 905 906 if (ACPV->getPCAdjustment()) { 907 MCSymbol *PCLabel = 908 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 909 ACPV->getLabelId(), OutContext); 910 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 911 PCRelExpr = 912 MCBinaryExpr::createAdd(PCRelExpr, 913 MCConstantExpr::create(ACPV->getPCAdjustment(), 914 OutContext), 915 OutContext); 916 if (ACPV->mustAddCurrentAddress()) { 917 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 918 // label, so just emit a local label end reference that instead. 919 MCSymbol *DotSym = OutContext.createTempSymbol(); 920 OutStreamer->EmitLabel(DotSym); 921 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 922 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 923 } 924 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 925 } 926 OutStreamer->EmitValue(Expr, Size); 927 } 928 929 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 930 const MachineOperand &MO1 = MI->getOperand(1); 931 unsigned JTI = MO1.getIndex(); 932 933 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 934 // ARM mode tables. 935 EmitAlignment(2); 936 937 // Emit a label for the jump table. 938 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 939 OutStreamer->EmitLabel(JTISymbol); 940 941 // Mark the jump table as data-in-code. 942 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 943 944 // Emit each entry of the table. 945 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 946 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 947 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 948 949 for (MachineBasicBlock *MBB : JTBBs) { 950 // Construct an MCExpr for the entry. We want a value of the form: 951 // (BasicBlockAddr - TableBeginAddr) 952 // 953 // For example, a table with entries jumping to basic blocks BB0 and BB1 954 // would look like: 955 // LJTI_0_0: 956 // .word (LBB0 - LJTI_0_0) 957 // .word (LBB1 - LJTI_0_0) 958 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 959 960 if (isPositionIndependent() || Subtarget->isROPI()) 961 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 962 OutContext), 963 OutContext); 964 // If we're generating a table of Thumb addresses in static relocation 965 // model, we need to add one to keep interworking correctly. 966 else if (AFI->isThumbFunction()) 967 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 968 OutContext); 969 OutStreamer->EmitValue(Expr, 4); 970 } 971 // Mark the end of jump table data-in-code region. 972 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 973 } 974 975 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 976 const MachineOperand &MO1 = MI->getOperand(1); 977 unsigned JTI = MO1.getIndex(); 978 979 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 980 // ARM mode tables. 981 EmitAlignment(2); 982 983 // Emit a label for the jump table. 984 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 985 OutStreamer->EmitLabel(JTISymbol); 986 987 // Emit each entry of the table. 988 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 989 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 990 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 991 992 for (MachineBasicBlock *MBB : JTBBs) { 993 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 994 OutContext); 995 // If this isn't a TBB or TBH, the entries are direct branch instructions. 996 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 997 .addExpr(MBBSymbolExpr) 998 .addImm(ARMCC::AL) 999 .addReg(0)); 1000 } 1001 } 1002 1003 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1004 unsigned OffsetWidth) { 1005 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1006 const MachineOperand &MO1 = MI->getOperand(1); 1007 unsigned JTI = MO1.getIndex(); 1008 1009 if (Subtarget->isThumb1Only()) 1010 EmitAlignment(2); 1011 1012 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1013 OutStreamer->EmitLabel(JTISymbol); 1014 1015 // Emit each entry of the table. 1016 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1017 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1018 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1019 1020 // Mark the jump table as data-in-code. 1021 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1022 : MCDR_DataRegionJT16); 1023 1024 for (auto MBB : JTBBs) { 1025 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1026 OutContext); 1027 // Otherwise it's an offset from the dispatch instruction. Construct an 1028 // MCExpr for the entry. We want a value of the form: 1029 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1030 // 1031 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1032 // would look like: 1033 // LJTI_0_0: 1034 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1035 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1036 // where LCPI0_0 is a label defined just before the TBB instruction using 1037 // this table. 1038 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1039 const MCExpr *Expr = MCBinaryExpr::createAdd( 1040 MCSymbolRefExpr::create(TBInstPC, OutContext), 1041 MCConstantExpr::create(4, OutContext), OutContext); 1042 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1043 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1044 OutContext); 1045 OutStreamer->EmitValue(Expr, OffsetWidth); 1046 } 1047 // Mark the end of jump table data-in-code region. 32-bit offsets use 1048 // actual branch instructions here, so we don't mark those as a data-region 1049 // at all. 1050 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1051 1052 // Make sure the next instruction is 2-byte aligned. 1053 EmitAlignment(1); 1054 } 1055 1056 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1057 assert(MI->getFlag(MachineInstr::FrameSetup) && 1058 "Only instruction which are involved into frame setup code are allowed"); 1059 1060 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1061 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1062 const MachineFunction &MF = *MI->getParent()->getParent(); 1063 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1064 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1065 1066 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1067 unsigned Opc = MI->getOpcode(); 1068 unsigned SrcReg, DstReg; 1069 1070 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1071 // Two special cases: 1072 // 1) tPUSH does not have src/dst regs. 1073 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1074 // load. Yes, this is pretty fragile, but for now I don't see better 1075 // way... :( 1076 SrcReg = DstReg = ARM::SP; 1077 } else { 1078 SrcReg = MI->getOperand(1).getReg(); 1079 DstReg = MI->getOperand(0).getReg(); 1080 } 1081 1082 // Try to figure out the unwinding opcode out of src / dst regs. 1083 if (MI->mayStore()) { 1084 // Register saves. 1085 assert(DstReg == ARM::SP && 1086 "Only stack pointer as a destination reg is supported"); 1087 1088 SmallVector<unsigned, 4> RegList; 1089 // Skip src & dst reg, and pred ops. 1090 unsigned StartOp = 2 + 2; 1091 // Use all the operands. 1092 unsigned NumOffset = 0; 1093 1094 switch (Opc) { 1095 default: 1096 MI->print(errs()); 1097 llvm_unreachable("Unsupported opcode for unwinding information"); 1098 case ARM::tPUSH: 1099 // Special case here: no src & dst reg, but two extra imp ops. 1100 StartOp = 2; NumOffset = 2; 1101 LLVM_FALLTHROUGH; 1102 case ARM::STMDB_UPD: 1103 case ARM::t2STMDB_UPD: 1104 case ARM::VSTMDDB_UPD: 1105 assert(SrcReg == ARM::SP && 1106 "Only stack pointer as a source reg is supported"); 1107 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1108 i != NumOps; ++i) { 1109 const MachineOperand &MO = MI->getOperand(i); 1110 // Actually, there should never be any impdef stuff here. Skip it 1111 // temporary to workaround PR11902. 1112 if (MO.isImplicit()) 1113 continue; 1114 RegList.push_back(MO.getReg()); 1115 } 1116 break; 1117 case ARM::STR_PRE_IMM: 1118 case ARM::STR_PRE_REG: 1119 case ARM::t2STR_PRE: 1120 assert(MI->getOperand(2).getReg() == ARM::SP && 1121 "Only stack pointer as a source reg is supported"); 1122 RegList.push_back(SrcReg); 1123 break; 1124 } 1125 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1126 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1127 } else { 1128 // Changes of stack / frame pointer. 1129 if (SrcReg == ARM::SP) { 1130 int64_t Offset = 0; 1131 switch (Opc) { 1132 default: 1133 MI->print(errs()); 1134 llvm_unreachable("Unsupported opcode for unwinding information"); 1135 case ARM::MOVr: 1136 case ARM::tMOVr: 1137 Offset = 0; 1138 break; 1139 case ARM::ADDri: 1140 case ARM::t2ADDri: 1141 Offset = -MI->getOperand(2).getImm(); 1142 break; 1143 case ARM::SUBri: 1144 case ARM::t2SUBri: 1145 Offset = MI->getOperand(2).getImm(); 1146 break; 1147 case ARM::tSUBspi: 1148 Offset = MI->getOperand(2).getImm()*4; 1149 break; 1150 case ARM::tADDspi: 1151 case ARM::tADDrSPi: 1152 Offset = -MI->getOperand(2).getImm()*4; 1153 break; 1154 case ARM::tLDRpci: { 1155 // Grab the constpool index and check, whether it corresponds to 1156 // original or cloned constpool entry. 1157 unsigned CPI = MI->getOperand(1).getIndex(); 1158 const MachineConstantPool *MCP = MF.getConstantPool(); 1159 if (CPI >= MCP->getConstants().size()) 1160 CPI = AFI.getOriginalCPIdx(CPI); 1161 assert(CPI != -1U && "Invalid constpool index"); 1162 1163 // Derive the actual offset. 1164 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1165 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1166 // FIXME: Check for user, it should be "add" instruction! 1167 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1168 break; 1169 } 1170 } 1171 1172 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1173 if (DstReg == FramePtr && FramePtr != ARM::SP) 1174 // Set-up of the frame pointer. Positive values correspond to "add" 1175 // instruction. 1176 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1177 else if (DstReg == ARM::SP) { 1178 // Change of SP by an offset. Positive values correspond to "sub" 1179 // instruction. 1180 ATS.emitPad(Offset); 1181 } else { 1182 // Move of SP to a register. Positive values correspond to an "add" 1183 // instruction. 1184 ATS.emitMovSP(DstReg, -Offset); 1185 } 1186 } 1187 } else if (DstReg == ARM::SP) { 1188 MI->print(errs()); 1189 llvm_unreachable("Unsupported opcode for unwinding information"); 1190 } 1191 else { 1192 MI->print(errs()); 1193 llvm_unreachable("Unsupported opcode for unwinding information"); 1194 } 1195 } 1196 } 1197 1198 // Simple pseudo-instructions have their lowering (with expansion to real 1199 // instructions) auto-generated. 1200 #include "ARMGenMCPseudoLowering.inc" 1201 1202 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1203 const DataLayout &DL = getDataLayout(); 1204 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1205 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1206 1207 const MachineFunction &MF = *MI->getParent()->getParent(); 1208 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1209 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1210 1211 // If we just ended a constant pool, mark it as such. 1212 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1213 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1214 InConstantPool = false; 1215 } 1216 1217 // Emit unwinding stuff for frame-related instructions 1218 if (Subtarget->isTargetEHABICompatible() && 1219 MI->getFlag(MachineInstr::FrameSetup)) 1220 EmitUnwindingInstruction(MI); 1221 1222 // Do any auto-generated pseudo lowerings. 1223 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1224 return; 1225 1226 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1227 "Pseudo flag setting opcode should be expanded early"); 1228 1229 // Check for manual lowerings. 1230 unsigned Opc = MI->getOpcode(); 1231 switch (Opc) { 1232 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1233 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1234 case ARM::LEApcrel: 1235 case ARM::tLEApcrel: 1236 case ARM::t2LEApcrel: { 1237 // FIXME: Need to also handle globals and externals 1238 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1239 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1240 ARM::t2LEApcrel ? ARM::t2ADR 1241 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1242 : ARM::ADR)) 1243 .addReg(MI->getOperand(0).getReg()) 1244 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1245 // Add predicate operands. 1246 .addImm(MI->getOperand(2).getImm()) 1247 .addReg(MI->getOperand(3).getReg())); 1248 return; 1249 } 1250 case ARM::LEApcrelJT: 1251 case ARM::tLEApcrelJT: 1252 case ARM::t2LEApcrelJT: { 1253 MCSymbol *JTIPICSymbol = 1254 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1255 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1256 ARM::t2LEApcrelJT ? ARM::t2ADR 1257 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1258 : ARM::ADR)) 1259 .addReg(MI->getOperand(0).getReg()) 1260 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1261 // Add predicate operands. 1262 .addImm(MI->getOperand(2).getImm()) 1263 .addReg(MI->getOperand(3).getReg())); 1264 return; 1265 } 1266 // Darwin call instructions are just normal call instructions with different 1267 // clobber semantics (they clobber R9). 1268 case ARM::BX_CALL: { 1269 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1270 .addReg(ARM::LR) 1271 .addReg(ARM::PC) 1272 // Add predicate operands. 1273 .addImm(ARMCC::AL) 1274 .addReg(0) 1275 // Add 's' bit operand (always reg0 for this) 1276 .addReg(0)); 1277 1278 assert(Subtarget->hasV4TOps()); 1279 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1280 .addReg(MI->getOperand(0).getReg())); 1281 return; 1282 } 1283 case ARM::tBX_CALL: { 1284 if (Subtarget->hasV5TOps()) 1285 llvm_unreachable("Expected BLX to be selected for v5t+"); 1286 1287 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1288 // that the saved lr has its LSB set correctly (the arch doesn't 1289 // have blx). 1290 // So here we generate a bl to a small jump pad that does bx rN. 1291 // The jump pads are emitted after the function body. 1292 1293 unsigned TReg = MI->getOperand(0).getReg(); 1294 MCSymbol *TRegSym = nullptr; 1295 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1296 if (TIP.first == TReg) { 1297 TRegSym = TIP.second; 1298 break; 1299 } 1300 } 1301 1302 if (!TRegSym) { 1303 TRegSym = OutContext.createTempSymbol(); 1304 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1305 } 1306 1307 // Create a link-saving branch to the Reg Indirect Jump Pad. 1308 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1309 // Predicate comes first here. 1310 .addImm(ARMCC::AL).addReg(0) 1311 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1312 return; 1313 } 1314 case ARM::BMOVPCRX_CALL: { 1315 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1316 .addReg(ARM::LR) 1317 .addReg(ARM::PC) 1318 // Add predicate operands. 1319 .addImm(ARMCC::AL) 1320 .addReg(0) 1321 // Add 's' bit operand (always reg0 for this) 1322 .addReg(0)); 1323 1324 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1325 .addReg(ARM::PC) 1326 .addReg(MI->getOperand(0).getReg()) 1327 // Add predicate operands. 1328 .addImm(ARMCC::AL) 1329 .addReg(0) 1330 // Add 's' bit operand (always reg0 for this) 1331 .addReg(0)); 1332 return; 1333 } 1334 case ARM::BMOVPCB_CALL: { 1335 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1336 .addReg(ARM::LR) 1337 .addReg(ARM::PC) 1338 // Add predicate operands. 1339 .addImm(ARMCC::AL) 1340 .addReg(0) 1341 // Add 's' bit operand (always reg0 for this) 1342 .addReg(0)); 1343 1344 const MachineOperand &Op = MI->getOperand(0); 1345 const GlobalValue *GV = Op.getGlobal(); 1346 const unsigned TF = Op.getTargetFlags(); 1347 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1348 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1349 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1350 .addExpr(GVSymExpr) 1351 // Add predicate operands. 1352 .addImm(ARMCC::AL) 1353 .addReg(0)); 1354 return; 1355 } 1356 case ARM::MOVi16_ga_pcrel: 1357 case ARM::t2MOVi16_ga_pcrel: { 1358 MCInst TmpInst; 1359 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1360 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1361 1362 unsigned TF = MI->getOperand(1).getTargetFlags(); 1363 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1364 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1365 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1366 1367 MCSymbol *LabelSym = 1368 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1369 MI->getOperand(2).getImm(), OutContext); 1370 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1371 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1372 const MCExpr *PCRelExpr = 1373 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1374 MCBinaryExpr::createAdd(LabelSymExpr, 1375 MCConstantExpr::create(PCAdj, OutContext), 1376 OutContext), OutContext), OutContext); 1377 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1378 1379 // Add predicate operands. 1380 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1381 TmpInst.addOperand(MCOperand::createReg(0)); 1382 // Add 's' bit operand (always reg0 for this) 1383 TmpInst.addOperand(MCOperand::createReg(0)); 1384 EmitToStreamer(*OutStreamer, TmpInst); 1385 return; 1386 } 1387 case ARM::MOVTi16_ga_pcrel: 1388 case ARM::t2MOVTi16_ga_pcrel: { 1389 MCInst TmpInst; 1390 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1391 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1392 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1393 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1394 1395 unsigned TF = MI->getOperand(2).getTargetFlags(); 1396 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1397 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1398 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1399 1400 MCSymbol *LabelSym = 1401 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1402 MI->getOperand(3).getImm(), OutContext); 1403 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1404 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1405 const MCExpr *PCRelExpr = 1406 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1407 MCBinaryExpr::createAdd(LabelSymExpr, 1408 MCConstantExpr::create(PCAdj, OutContext), 1409 OutContext), OutContext), OutContext); 1410 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1411 // Add predicate operands. 1412 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1413 TmpInst.addOperand(MCOperand::createReg(0)); 1414 // Add 's' bit operand (always reg0 for this) 1415 TmpInst.addOperand(MCOperand::createReg(0)); 1416 EmitToStreamer(*OutStreamer, TmpInst); 1417 return; 1418 } 1419 case ARM::tPICADD: { 1420 // This is a pseudo op for a label + instruction sequence, which looks like: 1421 // LPC0: 1422 // add r0, pc 1423 // This adds the address of LPC0 to r0. 1424 1425 // Emit the label. 1426 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1427 getFunctionNumber(), 1428 MI->getOperand(2).getImm(), OutContext)); 1429 1430 // Form and emit the add. 1431 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1432 .addReg(MI->getOperand(0).getReg()) 1433 .addReg(MI->getOperand(0).getReg()) 1434 .addReg(ARM::PC) 1435 // Add predicate operands. 1436 .addImm(ARMCC::AL) 1437 .addReg(0)); 1438 return; 1439 } 1440 case ARM::PICADD: { 1441 // This is a pseudo op for a label + instruction sequence, which looks like: 1442 // LPC0: 1443 // add r0, pc, r0 1444 // This adds the address of LPC0 to r0. 1445 1446 // Emit the label. 1447 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1448 getFunctionNumber(), 1449 MI->getOperand(2).getImm(), OutContext)); 1450 1451 // Form and emit the add. 1452 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1453 .addReg(MI->getOperand(0).getReg()) 1454 .addReg(ARM::PC) 1455 .addReg(MI->getOperand(1).getReg()) 1456 // Add predicate operands. 1457 .addImm(MI->getOperand(3).getImm()) 1458 .addReg(MI->getOperand(4).getReg()) 1459 // Add 's' bit operand (always reg0 for this) 1460 .addReg(0)); 1461 return; 1462 } 1463 case ARM::PICSTR: 1464 case ARM::PICSTRB: 1465 case ARM::PICSTRH: 1466 case ARM::PICLDR: 1467 case ARM::PICLDRB: 1468 case ARM::PICLDRH: 1469 case ARM::PICLDRSB: 1470 case ARM::PICLDRSH: { 1471 // This is a pseudo op for a label + instruction sequence, which looks like: 1472 // LPC0: 1473 // OP r0, [pc, r0] 1474 // The LCP0 label is referenced by a constant pool entry in order to get 1475 // a PC-relative address at the ldr instruction. 1476 1477 // Emit the label. 1478 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1479 getFunctionNumber(), 1480 MI->getOperand(2).getImm(), OutContext)); 1481 1482 // Form and emit the load 1483 unsigned Opcode; 1484 switch (MI->getOpcode()) { 1485 default: 1486 llvm_unreachable("Unexpected opcode!"); 1487 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1488 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1489 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1490 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1491 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1492 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1493 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1494 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1495 } 1496 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1497 .addReg(MI->getOperand(0).getReg()) 1498 .addReg(ARM::PC) 1499 .addReg(MI->getOperand(1).getReg()) 1500 .addImm(0) 1501 // Add predicate operands. 1502 .addImm(MI->getOperand(3).getImm()) 1503 .addReg(MI->getOperand(4).getReg())); 1504 1505 return; 1506 } 1507 case ARM::CONSTPOOL_ENTRY: { 1508 if (Subtarget->genExecuteOnly()) 1509 llvm_unreachable("execute-only should not generate constant pools"); 1510 1511 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1512 /// in the function. The first operand is the ID# for this instruction, the 1513 /// second is the index into the MachineConstantPool that this is, the third 1514 /// is the size in bytes of this constant pool entry. 1515 /// The required alignment is specified on the basic block holding this MI. 1516 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1517 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1518 1519 // If this is the first entry of the pool, mark it. 1520 if (!InConstantPool) { 1521 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1522 InConstantPool = true; 1523 } 1524 1525 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1526 1527 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1528 if (MCPE.isMachineConstantPoolEntry()) 1529 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1530 else 1531 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1532 return; 1533 } 1534 case ARM::JUMPTABLE_ADDRS: 1535 EmitJumpTableAddrs(MI); 1536 return; 1537 case ARM::JUMPTABLE_INSTS: 1538 EmitJumpTableInsts(MI); 1539 return; 1540 case ARM::JUMPTABLE_TBB: 1541 case ARM::JUMPTABLE_TBH: 1542 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1543 return; 1544 case ARM::t2BR_JT: { 1545 // Lower and emit the instruction itself, then the jump table following it. 1546 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1547 .addReg(ARM::PC) 1548 .addReg(MI->getOperand(0).getReg()) 1549 // Add predicate operands. 1550 .addImm(ARMCC::AL) 1551 .addReg(0)); 1552 return; 1553 } 1554 case ARM::t2TBB_JT: 1555 case ARM::t2TBH_JT: { 1556 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1557 // Lower and emit the PC label, then the instruction itself. 1558 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1559 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1560 .addReg(MI->getOperand(0).getReg()) 1561 .addReg(MI->getOperand(1).getReg()) 1562 // Add predicate operands. 1563 .addImm(ARMCC::AL) 1564 .addReg(0)); 1565 return; 1566 } 1567 case ARM::tTBB_JT: 1568 case ARM::tTBH_JT: { 1569 1570 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1571 unsigned Base = MI->getOperand(0).getReg(); 1572 unsigned Idx = MI->getOperand(1).getReg(); 1573 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1574 1575 // Multiply up idx if necessary. 1576 if (!Is8Bit) 1577 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1578 .addReg(Idx) 1579 .addReg(ARM::CPSR) 1580 .addReg(Idx) 1581 .addImm(1) 1582 // Add predicate operands. 1583 .addImm(ARMCC::AL) 1584 .addReg(0)); 1585 1586 if (Base == ARM::PC) { 1587 // TBB [base, idx] = 1588 // ADDS idx, idx, base 1589 // LDRB idx, [idx, #4] ; or LDRH if TBH 1590 // LSLS idx, #1 1591 // ADDS pc, pc, idx 1592 1593 // When using PC as the base, it's important that there is no padding 1594 // between the last ADDS and the start of the jump table. The jump table 1595 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1596 // 1597 // FIXME: Ideally we could vary the LDRB index based on the padding 1598 // between the sequence and jump table, however that relies on MCExprs 1599 // for load indexes which are currently not supported. 1600 OutStreamer->EmitCodeAlignment(4); 1601 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1602 .addReg(Idx) 1603 .addReg(Idx) 1604 .addReg(Base) 1605 // Add predicate operands. 1606 .addImm(ARMCC::AL) 1607 .addReg(0)); 1608 1609 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1610 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1611 .addReg(Idx) 1612 .addReg(Idx) 1613 .addImm(Is8Bit ? 4 : 2) 1614 // Add predicate operands. 1615 .addImm(ARMCC::AL) 1616 .addReg(0)); 1617 } else { 1618 // TBB [base, idx] = 1619 // LDRB idx, [base, idx] ; or LDRH if TBH 1620 // LSLS idx, #1 1621 // ADDS pc, pc, idx 1622 1623 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1624 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1625 .addReg(Idx) 1626 .addReg(Base) 1627 .addReg(Idx) 1628 // Add predicate operands. 1629 .addImm(ARMCC::AL) 1630 .addReg(0)); 1631 } 1632 1633 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1634 .addReg(Idx) 1635 .addReg(ARM::CPSR) 1636 .addReg(Idx) 1637 .addImm(1) 1638 // Add predicate operands. 1639 .addImm(ARMCC::AL) 1640 .addReg(0)); 1641 1642 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1643 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1644 .addReg(ARM::PC) 1645 .addReg(ARM::PC) 1646 .addReg(Idx) 1647 // Add predicate operands. 1648 .addImm(ARMCC::AL) 1649 .addReg(0)); 1650 return; 1651 } 1652 case ARM::tBR_JTr: 1653 case ARM::BR_JTr: { 1654 // Lower and emit the instruction itself, then the jump table following it. 1655 // mov pc, target 1656 MCInst TmpInst; 1657 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1658 ARM::MOVr : ARM::tMOVr; 1659 TmpInst.setOpcode(Opc); 1660 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1661 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1662 // Add predicate operands. 1663 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1664 TmpInst.addOperand(MCOperand::createReg(0)); 1665 // Add 's' bit operand (always reg0 for this) 1666 if (Opc == ARM::MOVr) 1667 TmpInst.addOperand(MCOperand::createReg(0)); 1668 EmitToStreamer(*OutStreamer, TmpInst); 1669 return; 1670 } 1671 case ARM::BR_JTm: { 1672 // Lower and emit the instruction itself, then the jump table following it. 1673 // ldr pc, target 1674 MCInst TmpInst; 1675 if (MI->getOperand(1).getReg() == 0) { 1676 // literal offset 1677 TmpInst.setOpcode(ARM::LDRi12); 1678 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1679 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1680 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1681 } else { 1682 TmpInst.setOpcode(ARM::LDRrs); 1683 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1684 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1685 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1686 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1687 } 1688 // Add predicate operands. 1689 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1690 TmpInst.addOperand(MCOperand::createReg(0)); 1691 EmitToStreamer(*OutStreamer, TmpInst); 1692 return; 1693 } 1694 case ARM::BR_JTadd: { 1695 // Lower and emit the instruction itself, then the jump table following it. 1696 // add pc, target, idx 1697 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1698 .addReg(ARM::PC) 1699 .addReg(MI->getOperand(0).getReg()) 1700 .addReg(MI->getOperand(1).getReg()) 1701 // Add predicate operands. 1702 .addImm(ARMCC::AL) 1703 .addReg(0) 1704 // Add 's' bit operand (always reg0 for this) 1705 .addReg(0)); 1706 return; 1707 } 1708 case ARM::SPACE: 1709 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1710 return; 1711 case ARM::TRAP: { 1712 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1713 // FIXME: Remove this special case when they do. 1714 if (!Subtarget->isTargetMachO()) { 1715 uint32_t Val = 0xe7ffdefeUL; 1716 OutStreamer->AddComment("trap"); 1717 ATS.emitInst(Val); 1718 return; 1719 } 1720 break; 1721 } 1722 case ARM::TRAPNaCl: { 1723 uint32_t Val = 0xe7fedef0UL; 1724 OutStreamer->AddComment("trap"); 1725 ATS.emitInst(Val); 1726 return; 1727 } 1728 case ARM::tTRAP: { 1729 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1730 // FIXME: Remove this special case when they do. 1731 if (!Subtarget->isTargetMachO()) { 1732 uint16_t Val = 0xdefe; 1733 OutStreamer->AddComment("trap"); 1734 ATS.emitInst(Val, 'n'); 1735 return; 1736 } 1737 break; 1738 } 1739 case ARM::t2Int_eh_sjlj_setjmp: 1740 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1741 case ARM::tInt_eh_sjlj_setjmp: { 1742 // Two incoming args: GPR:$src, GPR:$val 1743 // mov $val, pc 1744 // adds $val, #7 1745 // str $val, [$src, #4] 1746 // movs r0, #0 1747 // b LSJLJEH 1748 // movs r0, #1 1749 // LSJLJEH: 1750 unsigned SrcReg = MI->getOperand(0).getReg(); 1751 unsigned ValReg = MI->getOperand(1).getReg(); 1752 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1753 OutStreamer->AddComment("eh_setjmp begin"); 1754 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1755 .addReg(ValReg) 1756 .addReg(ARM::PC) 1757 // Predicate. 1758 .addImm(ARMCC::AL) 1759 .addReg(0)); 1760 1761 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1762 .addReg(ValReg) 1763 // 's' bit operand 1764 .addReg(ARM::CPSR) 1765 .addReg(ValReg) 1766 .addImm(7) 1767 // Predicate. 1768 .addImm(ARMCC::AL) 1769 .addReg(0)); 1770 1771 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1772 .addReg(ValReg) 1773 .addReg(SrcReg) 1774 // The offset immediate is #4. The operand value is scaled by 4 for the 1775 // tSTR instruction. 1776 .addImm(1) 1777 // Predicate. 1778 .addImm(ARMCC::AL) 1779 .addReg(0)); 1780 1781 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1782 .addReg(ARM::R0) 1783 .addReg(ARM::CPSR) 1784 .addImm(0) 1785 // Predicate. 1786 .addImm(ARMCC::AL) 1787 .addReg(0)); 1788 1789 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1790 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1791 .addExpr(SymbolExpr) 1792 .addImm(ARMCC::AL) 1793 .addReg(0)); 1794 1795 OutStreamer->AddComment("eh_setjmp end"); 1796 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1797 .addReg(ARM::R0) 1798 .addReg(ARM::CPSR) 1799 .addImm(1) 1800 // Predicate. 1801 .addImm(ARMCC::AL) 1802 .addReg(0)); 1803 1804 OutStreamer->EmitLabel(Label); 1805 return; 1806 } 1807 1808 case ARM::Int_eh_sjlj_setjmp_nofp: 1809 case ARM::Int_eh_sjlj_setjmp: { 1810 // Two incoming args: GPR:$src, GPR:$val 1811 // add $val, pc, #8 1812 // str $val, [$src, #+4] 1813 // mov r0, #0 1814 // add pc, pc, #0 1815 // mov r0, #1 1816 unsigned SrcReg = MI->getOperand(0).getReg(); 1817 unsigned ValReg = MI->getOperand(1).getReg(); 1818 1819 OutStreamer->AddComment("eh_setjmp begin"); 1820 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1821 .addReg(ValReg) 1822 .addReg(ARM::PC) 1823 .addImm(8) 1824 // Predicate. 1825 .addImm(ARMCC::AL) 1826 .addReg(0) 1827 // 's' bit operand (always reg0 for this). 1828 .addReg(0)); 1829 1830 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1831 .addReg(ValReg) 1832 .addReg(SrcReg) 1833 .addImm(4) 1834 // Predicate. 1835 .addImm(ARMCC::AL) 1836 .addReg(0)); 1837 1838 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1839 .addReg(ARM::R0) 1840 .addImm(0) 1841 // Predicate. 1842 .addImm(ARMCC::AL) 1843 .addReg(0) 1844 // 's' bit operand (always reg0 for this). 1845 .addReg(0)); 1846 1847 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1848 .addReg(ARM::PC) 1849 .addReg(ARM::PC) 1850 .addImm(0) 1851 // Predicate. 1852 .addImm(ARMCC::AL) 1853 .addReg(0) 1854 // 's' bit operand (always reg0 for this). 1855 .addReg(0)); 1856 1857 OutStreamer->AddComment("eh_setjmp end"); 1858 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1859 .addReg(ARM::R0) 1860 .addImm(1) 1861 // Predicate. 1862 .addImm(ARMCC::AL) 1863 .addReg(0) 1864 // 's' bit operand (always reg0 for this). 1865 .addReg(0)); 1866 return; 1867 } 1868 case ARM::Int_eh_sjlj_longjmp: { 1869 // ldr sp, [$src, #8] 1870 // ldr $scratch, [$src, #4] 1871 // ldr r7, [$src] 1872 // bx $scratch 1873 unsigned SrcReg = MI->getOperand(0).getReg(); 1874 unsigned ScratchReg = MI->getOperand(1).getReg(); 1875 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1876 .addReg(ARM::SP) 1877 .addReg(SrcReg) 1878 .addImm(8) 1879 // Predicate. 1880 .addImm(ARMCC::AL) 1881 .addReg(0)); 1882 1883 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1884 .addReg(ScratchReg) 1885 .addReg(SrcReg) 1886 .addImm(4) 1887 // Predicate. 1888 .addImm(ARMCC::AL) 1889 .addReg(0)); 1890 1891 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1892 // These platforms always use the same frame register 1893 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1894 .addReg(FramePtr) 1895 .addReg(SrcReg) 1896 .addImm(0) 1897 // Predicate. 1898 .addImm(ARMCC::AL) 1899 .addReg(0)); 1900 } else { 1901 // If the calling code might use either R7 or R11 as 1902 // frame pointer register, restore it into both. 1903 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1904 .addReg(ARM::R7) 1905 .addReg(SrcReg) 1906 .addImm(0) 1907 // Predicate. 1908 .addImm(ARMCC::AL) 1909 .addReg(0)); 1910 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1911 .addReg(ARM::R11) 1912 .addReg(SrcReg) 1913 .addImm(0) 1914 // Predicate. 1915 .addImm(ARMCC::AL) 1916 .addReg(0)); 1917 } 1918 1919 assert(Subtarget->hasV4TOps()); 1920 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1921 .addReg(ScratchReg) 1922 // Predicate. 1923 .addImm(ARMCC::AL) 1924 .addReg(0)); 1925 return; 1926 } 1927 case ARM::tInt_eh_sjlj_longjmp: { 1928 // ldr $scratch, [$src, #8] 1929 // mov sp, $scratch 1930 // ldr $scratch, [$src, #4] 1931 // ldr r7, [$src] 1932 // bx $scratch 1933 unsigned SrcReg = MI->getOperand(0).getReg(); 1934 unsigned ScratchReg = MI->getOperand(1).getReg(); 1935 1936 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1937 .addReg(ScratchReg) 1938 .addReg(SrcReg) 1939 // The offset immediate is #8. The operand value is scaled by 4 for the 1940 // tLDR instruction. 1941 .addImm(2) 1942 // Predicate. 1943 .addImm(ARMCC::AL) 1944 .addReg(0)); 1945 1946 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1947 .addReg(ARM::SP) 1948 .addReg(ScratchReg) 1949 // Predicate. 1950 .addImm(ARMCC::AL) 1951 .addReg(0)); 1952 1953 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1954 .addReg(ScratchReg) 1955 .addReg(SrcReg) 1956 .addImm(1) 1957 // Predicate. 1958 .addImm(ARMCC::AL) 1959 .addReg(0)); 1960 1961 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1962 // These platforms always use the same frame register 1963 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1964 .addReg(FramePtr) 1965 .addReg(SrcReg) 1966 .addImm(0) 1967 // Predicate. 1968 .addImm(ARMCC::AL) 1969 .addReg(0)); 1970 } else { 1971 // If the calling code might use either R7 or R11 as 1972 // frame pointer register, restore it into both. 1973 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1974 .addReg(ARM::R7) 1975 .addReg(SrcReg) 1976 .addImm(0) 1977 // Predicate. 1978 .addImm(ARMCC::AL) 1979 .addReg(0)); 1980 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1981 .addReg(ARM::R11) 1982 .addReg(SrcReg) 1983 .addImm(0) 1984 // Predicate. 1985 .addImm(ARMCC::AL) 1986 .addReg(0)); 1987 } 1988 1989 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 1990 .addReg(ScratchReg) 1991 // Predicate. 1992 .addImm(ARMCC::AL) 1993 .addReg(0)); 1994 return; 1995 } 1996 case ARM::tInt_WIN_eh_sjlj_longjmp: { 1997 // ldr.w r11, [$src, #0] 1998 // ldr.w sp, [$src, #8] 1999 // ldr.w pc, [$src, #4] 2000 2001 unsigned SrcReg = MI->getOperand(0).getReg(); 2002 2003 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2004 .addReg(ARM::R11) 2005 .addReg(SrcReg) 2006 .addImm(0) 2007 // Predicate 2008 .addImm(ARMCC::AL) 2009 .addReg(0)); 2010 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2011 .addReg(ARM::SP) 2012 .addReg(SrcReg) 2013 .addImm(8) 2014 // Predicate 2015 .addImm(ARMCC::AL) 2016 .addReg(0)); 2017 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2018 .addReg(ARM::PC) 2019 .addReg(SrcReg) 2020 .addImm(4) 2021 // Predicate 2022 .addImm(ARMCC::AL) 2023 .addReg(0)); 2024 return; 2025 } 2026 case ARM::PATCHABLE_FUNCTION_ENTER: 2027 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2028 return; 2029 case ARM::PATCHABLE_FUNCTION_EXIT: 2030 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2031 return; 2032 case ARM::PATCHABLE_TAIL_CALL: 2033 LowerPATCHABLE_TAIL_CALL(*MI); 2034 return; 2035 } 2036 2037 MCInst TmpInst; 2038 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2039 2040 EmitToStreamer(*OutStreamer, TmpInst); 2041 } 2042 2043 //===----------------------------------------------------------------------===// 2044 // Target Registry Stuff 2045 //===----------------------------------------------------------------------===// 2046 2047 // Force static initialization. 2048 extern "C" void LLVMInitializeARMAsmPrinter() { 2049 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2050 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2051 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2052 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2053 } 2054