1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "InstPrinter/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "MCTargetDesc/ARMMCExpr.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCSectionMachO.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/COFF.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ELF.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/TargetParser.h"
51 #include "llvm/Support/TargetRegistry.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cctype>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "asm-printer"
58 
59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
60                              std::unique_ptr<MCStreamer> Streamer)
61     : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
62       InConstantPool(false), OptimizationGoals(-1) {}
63 
64 void ARMAsmPrinter::EmitFunctionBodyEnd() {
65   // Make sure to terminate any constant pools that were at the end
66   // of the function.
67   if (!InConstantPool)
68     return;
69   InConstantPool = false;
70   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
71 }
72 
73 void ARMAsmPrinter::EmitFunctionEntryLabel() {
74   if (AFI->isThumbFunction()) {
75     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
76     OutStreamer->EmitThumbFunc(CurrentFnSym);
77   } else {
78     OutStreamer->EmitAssemblerFlag(MCAF_Code32);
79   }
80   OutStreamer->EmitLabel(CurrentFnSym);
81 }
82 
83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
84   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
85   assert(Size && "C++ constructor pointer had zero size!");
86 
87   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
88   assert(GV && "C++ constructor pointer was not a GlobalValue!");
89 
90   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
91                                                            ARMII::MO_NO_FLAG),
92                                             (Subtarget->isTargetELF()
93                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
94                                              : MCSymbolRefExpr::VK_None),
95                                             OutContext);
96 
97   OutStreamer->EmitValue(E, Size);
98 }
99 
100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
101   if (PromotedGlobals.count(GV))
102     // The global was promoted into a constant pool. It should not be emitted.
103     return;
104   AsmPrinter::EmitGlobalVariable(GV);
105 }
106 
107 /// runOnMachineFunction - This uses the EmitInstruction()
108 /// method to print assembly for each instruction.
109 ///
110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
111   AFI = MF.getInfo<ARMFunctionInfo>();
112   MCP = MF.getConstantPool();
113   Subtarget = &MF.getSubtarget<ARMSubtarget>();
114 
115   SetupMachineFunction(MF);
116   const Function* F = MF.getFunction();
117   const TargetMachine& TM = MF.getTarget();
118 
119   // Collect all globals that had their storage promoted to a constant pool.
120   // Functions are emitted before variables, so this accumulates promoted
121   // globals from all functions in PromotedGlobals.
122   for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
123     PromotedGlobals.insert(GV);
124 
125   // Calculate this function's optimization goal.
126   unsigned OptimizationGoal;
127   if (F->hasFnAttribute(Attribute::OptimizeNone))
128     // For best debugging illusion, speed and small size sacrificed
129     OptimizationGoal = 6;
130   else if (F->optForMinSize())
131     // Aggressively for small size, speed and debug illusion sacrificed
132     OptimizationGoal = 4;
133   else if (F->optForSize())
134     // For small size, but speed and debugging illusion preserved
135     OptimizationGoal = 3;
136   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
137     // Aggressively for speed, small size and debug illusion sacrificed
138     OptimizationGoal = 2;
139   else if (TM.getOptLevel() > CodeGenOpt::None)
140     // For speed, but small size and good debug illusion preserved
141     OptimizationGoal = 1;
142   else // TM.getOptLevel() == CodeGenOpt::None
143     // For good debugging, but speed and small size preserved
144     OptimizationGoal = 5;
145 
146   // Combine a new optimization goal with existing ones.
147   if (OptimizationGoals == -1) // uninitialized goals
148     OptimizationGoals = OptimizationGoal;
149   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
150     OptimizationGoals = 0;
151 
152   if (Subtarget->isTargetCOFF()) {
153     bool Internal = F->hasInternalLinkage();
154     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
155                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
156     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
157 
158     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
159     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
160     OutStreamer->EmitCOFFSymbolType(Type);
161     OutStreamer->EndCOFFSymbolDef();
162   }
163 
164   // Emit the rest of the function body.
165   EmitFunctionBody();
166 
167   // Emit the XRay table for this function.
168   EmitXRayTable();
169 
170   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
171   // These are created per function, rather than per TU, since it's
172   // relatively easy to exceed the thumb branch range within a TU.
173   if (! ThumbIndirectPads.empty()) {
174     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
175     EmitAlignment(1);
176     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
177       OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
178       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
179         .addReg(ThumbIndirectPads[i].first)
180         // Add predicate operands.
181         .addImm(ARMCC::AL)
182         .addReg(0));
183     }
184     ThumbIndirectPads.clear();
185   }
186 
187   // We didn't modify anything.
188   return false;
189 }
190 
191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
192                                  raw_ostream &O) {
193   const MachineOperand &MO = MI->getOperand(OpNum);
194   unsigned TF = MO.getTargetFlags();
195 
196   switch (MO.getType()) {
197   default: llvm_unreachable("<unknown operand type>");
198   case MachineOperand::MO_Register: {
199     unsigned Reg = MO.getReg();
200     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
201     assert(!MO.getSubReg() && "Subregs should be eliminated!");
202     if(ARM::GPRPairRegClass.contains(Reg)) {
203       const MachineFunction &MF = *MI->getParent()->getParent();
204       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
205       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
206     }
207     O << ARMInstPrinter::getRegisterName(Reg);
208     break;
209   }
210   case MachineOperand::MO_Immediate: {
211     int64_t Imm = MO.getImm();
212     O << '#';
213     if (TF == ARMII::MO_LO16)
214       O << ":lower16:";
215     else if (TF == ARMII::MO_HI16)
216       O << ":upper16:";
217     O << Imm;
218     break;
219   }
220   case MachineOperand::MO_MachineBasicBlock:
221     MO.getMBB()->getSymbol()->print(O, MAI);
222     return;
223   case MachineOperand::MO_GlobalAddress: {
224     const GlobalValue *GV = MO.getGlobal();
225     if (TF & ARMII::MO_LO16)
226       O << ":lower16:";
227     else if (TF & ARMII::MO_HI16)
228       O << ":upper16:";
229     GetARMGVSymbol(GV, TF)->print(O, MAI);
230 
231     printOffset(MO.getOffset(), O);
232     break;
233   }
234   case MachineOperand::MO_ConstantPoolIndex:
235     GetCPISymbol(MO.getIndex())->print(O, MAI);
236     break;
237   }
238 }
239 
240 //===--------------------------------------------------------------------===//
241 
242 MCSymbol *ARMAsmPrinter::
243 GetARMJTIPICJumpTableLabel(unsigned uid) const {
244   const DataLayout &DL = getDataLayout();
245   SmallString<60> Name;
246   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
247                             << getFunctionNumber() << '_' << uid;
248   return OutContext.getOrCreateSymbol(Name);
249 }
250 
251 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
252                                     unsigned AsmVariant, const char *ExtraCode,
253                                     raw_ostream &O) {
254   // Does this asm operand have a single letter operand modifier?
255   if (ExtraCode && ExtraCode[0]) {
256     if (ExtraCode[1] != 0) return true; // Unknown modifier.
257 
258     switch (ExtraCode[0]) {
259     default:
260       // See if this is a generic print operand
261       return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
262     case 'a': // Print as a memory address.
263       if (MI->getOperand(OpNum).isReg()) {
264         O << "["
265           << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
266           << "]";
267         return false;
268       }
269       LLVM_FALLTHROUGH;
270     case 'c': // Don't print "#" before an immediate operand.
271       if (!MI->getOperand(OpNum).isImm())
272         return true;
273       O << MI->getOperand(OpNum).getImm();
274       return false;
275     case 'P': // Print a VFP double precision register.
276     case 'q': // Print a NEON quad precision register.
277       printOperand(MI, OpNum, O);
278       return false;
279     case 'y': // Print a VFP single precision register as indexed double.
280       if (MI->getOperand(OpNum).isReg()) {
281         unsigned Reg = MI->getOperand(OpNum).getReg();
282         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
283         // Find the 'd' register that has this 's' register as a sub-register,
284         // and determine the lane number.
285         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
286           if (!ARM::DPRRegClass.contains(*SR))
287             continue;
288           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
289           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
290           return false;
291         }
292       }
293       return true;
294     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
295       if (!MI->getOperand(OpNum).isImm())
296         return true;
297       O << ~(MI->getOperand(OpNum).getImm());
298       return false;
299     case 'L': // The low 16 bits of an immediate constant.
300       if (!MI->getOperand(OpNum).isImm())
301         return true;
302       O << (MI->getOperand(OpNum).getImm() & 0xffff);
303       return false;
304     case 'M': { // A register range suitable for LDM/STM.
305       if (!MI->getOperand(OpNum).isReg())
306         return true;
307       const MachineOperand &MO = MI->getOperand(OpNum);
308       unsigned RegBegin = MO.getReg();
309       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
310       // already got the operands in registers that are operands to the
311       // inline asm statement.
312       O << "{";
313       if (ARM::GPRPairRegClass.contains(RegBegin)) {
314         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
315         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
316         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
317         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
318       }
319       O << ARMInstPrinter::getRegisterName(RegBegin);
320 
321       // FIXME: The register allocator not only may not have given us the
322       // registers in sequence, but may not be in ascending registers. This
323       // will require changes in the register allocator that'll need to be
324       // propagated down here if the operands change.
325       unsigned RegOps = OpNum + 1;
326       while (MI->getOperand(RegOps).isReg()) {
327         O << ", "
328           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
329         RegOps++;
330       }
331 
332       O << "}";
333 
334       return false;
335     }
336     case 'R': // The most significant register of a pair.
337     case 'Q': { // The least significant register of a pair.
338       if (OpNum == 0)
339         return true;
340       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
341       if (!FlagsOP.isImm())
342         return true;
343       unsigned Flags = FlagsOP.getImm();
344 
345       // This operand may not be the one that actually provides the register. If
346       // it's tied to a previous one then we should refer instead to that one
347       // for registers and their classes.
348       unsigned TiedIdx;
349       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
350         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
351           unsigned OpFlags = MI->getOperand(OpNum).getImm();
352           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
353         }
354         Flags = MI->getOperand(OpNum).getImm();
355 
356         // Later code expects OpNum to be pointing at the register rather than
357         // the flags.
358         OpNum += 1;
359       }
360 
361       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
362       unsigned RC;
363       InlineAsm::hasRegClassConstraint(Flags, RC);
364       if (RC == ARM::GPRPairRegClassID) {
365         if (NumVals != 1)
366           return true;
367         const MachineOperand &MO = MI->getOperand(OpNum);
368         if (!MO.isReg())
369           return true;
370         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
371         unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
372             ARM::gsub_0 : ARM::gsub_1);
373         O << ARMInstPrinter::getRegisterName(Reg);
374         return false;
375       }
376       if (NumVals != 2)
377         return true;
378       unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
379       if (RegOp >= MI->getNumOperands())
380         return true;
381       const MachineOperand &MO = MI->getOperand(RegOp);
382       if (!MO.isReg())
383         return true;
384       unsigned Reg = MO.getReg();
385       O << ARMInstPrinter::getRegisterName(Reg);
386       return false;
387     }
388 
389     case 'e': // The low doubleword register of a NEON quad register.
390     case 'f': { // The high doubleword register of a NEON quad register.
391       if (!MI->getOperand(OpNum).isReg())
392         return true;
393       unsigned Reg = MI->getOperand(OpNum).getReg();
394       if (!ARM::QPRRegClass.contains(Reg))
395         return true;
396       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
397       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
398                                        ARM::dsub_0 : ARM::dsub_1);
399       O << ARMInstPrinter::getRegisterName(SubReg);
400       return false;
401     }
402 
403     // This modifier is not yet supported.
404     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
405       return true;
406     case 'H': { // The highest-numbered register of a pair.
407       const MachineOperand &MO = MI->getOperand(OpNum);
408       if (!MO.isReg())
409         return true;
410       const MachineFunction &MF = *MI->getParent()->getParent();
411       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
412       unsigned Reg = MO.getReg();
413       if(!ARM::GPRPairRegClass.contains(Reg))
414         return false;
415       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
416       O << ARMInstPrinter::getRegisterName(Reg);
417       return false;
418     }
419     }
420   }
421 
422   printOperand(MI, OpNum, O);
423   return false;
424 }
425 
426 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
427                                           unsigned OpNum, unsigned AsmVariant,
428                                           const char *ExtraCode,
429                                           raw_ostream &O) {
430   // Does this asm operand have a single letter operand modifier?
431   if (ExtraCode && ExtraCode[0]) {
432     if (ExtraCode[1] != 0) return true; // Unknown modifier.
433 
434     switch (ExtraCode[0]) {
435       case 'A': // A memory operand for a VLD1/VST1 instruction.
436       default: return true;  // Unknown modifier.
437       case 'm': // The base register of a memory operand.
438         if (!MI->getOperand(OpNum).isReg())
439           return true;
440         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
441         return false;
442     }
443   }
444 
445   const MachineOperand &MO = MI->getOperand(OpNum);
446   assert(MO.isReg() && "unexpected inline asm memory operand");
447   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
448   return false;
449 }
450 
451 static bool isThumb(const MCSubtargetInfo& STI) {
452   return STI.getFeatureBits()[ARM::ModeThumb];
453 }
454 
455 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
456                                      const MCSubtargetInfo *EndInfo) const {
457   // If either end mode is unknown (EndInfo == NULL) or different than
458   // the start mode, then restore the start mode.
459   const bool WasThumb = isThumb(StartInfo);
460   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
461     OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
462   }
463 }
464 
465 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
466   const Triple &TT = TM.getTargetTriple();
467   // Use unified assembler syntax.
468   OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
469 
470   // Emit ARM Build Attributes
471   if (TT.isOSBinFormatELF())
472     emitAttributes();
473 
474   // Use the triple's architecture and subarchitecture to determine
475   // if we're thumb for the purposes of the top level code16 assembler
476   // flag.
477   bool isThumb = TT.getArch() == Triple::thumb ||
478                  TT.getArch() == Triple::thumbeb ||
479                  TT.getSubArch() == Triple::ARMSubArch_v7m ||
480                  TT.getSubArch() == Triple::ARMSubArch_v6m;
481   if (!M.getModuleInlineAsm().empty() && isThumb)
482     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
483 }
484 
485 static void
486 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
487                          MachineModuleInfoImpl::StubValueTy &MCSym) {
488   // L_foo$stub:
489   OutStreamer.EmitLabel(StubLabel);
490   //   .indirect_symbol _foo
491   OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
492 
493   if (MCSym.getInt())
494     // External to current translation unit.
495     OutStreamer.EmitIntValue(0, 4/*size*/);
496   else
497     // Internal to current translation unit.
498     //
499     // When we place the LSDA into the TEXT section, the type info
500     // pointers need to be indirect and pc-rel. We accomplish this by
501     // using NLPs; however, sometimes the types are local to the file.
502     // We need to fill in the value for the NLP in those cases.
503     OutStreamer.EmitValue(
504         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
505         4 /*size*/);
506 }
507 
508 
509 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
510   const Triple &TT = TM.getTargetTriple();
511   if (TT.isOSBinFormatMachO()) {
512     // All darwin targets use mach-o.
513     const TargetLoweringObjectFileMachO &TLOFMacho =
514       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
515     MachineModuleInfoMachO &MMIMacho =
516       MMI->getObjFileInfo<MachineModuleInfoMachO>();
517 
518     // Output non-lazy-pointers for external and common global variables.
519     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
520 
521     if (!Stubs.empty()) {
522       // Switch with ".non_lazy_symbol_pointer" directive.
523       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
524       EmitAlignment(2);
525 
526       for (auto &Stub : Stubs)
527         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
528 
529       Stubs.clear();
530       OutStreamer->AddBlankLine();
531     }
532 
533     Stubs = MMIMacho.GetThreadLocalGVStubList();
534     if (!Stubs.empty()) {
535       // Switch with ".non_lazy_symbol_pointer" directive.
536       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
537       EmitAlignment(2);
538 
539       for (auto &Stub : Stubs)
540         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
541 
542       Stubs.clear();
543       OutStreamer->AddBlankLine();
544     }
545 
546     // Funny Darwin hack: This flag tells the linker that no global symbols
547     // contain code that falls through to other global symbols (e.g. the obvious
548     // implementation of multiple entry points).  If this doesn't occur, the
549     // linker can safely perform dead code stripping.  Since LLVM never
550     // generates code that does this, it is always safe to set.
551     OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
552   }
553 
554   if (TT.isOSBinFormatCOFF()) {
555     const auto &TLOF =
556         static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering());
557 
558     std::string Flags;
559     raw_string_ostream OS(Flags);
560 
561     for (const auto &Function : M)
562       TLOF.emitLinkerFlagsForGlobal(OS, &Function);
563     for (const auto &Global : M.globals())
564       TLOF.emitLinkerFlagsForGlobal(OS, &Global);
565     for (const auto &Alias : M.aliases())
566       TLOF.emitLinkerFlagsForGlobal(OS, &Alias);
567 
568     OS.flush();
569 
570     // Output collected flags
571     if (!Flags.empty()) {
572       OutStreamer->SwitchSection(TLOF.getDrectveSection());
573       OutStreamer->EmitBytes(Flags);
574     }
575   }
576 
577   // The last attribute to be emitted is ABI_optimization_goals
578   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
579   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
580 
581   if (OptimizationGoals > 0 &&
582       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
583        Subtarget->isTargetMuslAEABI()))
584     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
585   OptimizationGoals = -1;
586 
587   ATS.finishAttributeSection();
588 }
589 
590 static bool isV8M(const ARMSubtarget *Subtarget) {
591   // Note that v8M Baseline is a subset of v6T2!
592   return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) ||
593          Subtarget->hasV8MMainlineOps();
594 }
595 
596 //===----------------------------------------------------------------------===//
597 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
598 // FIXME:
599 // The following seem like one-off assembler flags, but they actually need
600 // to appear in the .ARM.attributes section in ELF.
601 // Instead of subclassing the MCELFStreamer, we do the work here.
602 
603 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
604                                             const ARMSubtarget *Subtarget) {
605   if (CPU == "xscale")
606     return ARMBuildAttrs::v5TEJ;
607 
608   if (Subtarget->hasV8Ops()) {
609     if (Subtarget->isRClass())
610       return ARMBuildAttrs::v8_R;
611     return ARMBuildAttrs::v8_A;
612   } else if (Subtarget->hasV8MMainlineOps())
613     return ARMBuildAttrs::v8_M_Main;
614   else if (Subtarget->hasV7Ops()) {
615     if (Subtarget->isMClass() && Subtarget->hasDSP())
616       return ARMBuildAttrs::v7E_M;
617     return ARMBuildAttrs::v7;
618   } else if (Subtarget->hasV6T2Ops())
619     return ARMBuildAttrs::v6T2;
620   else if (Subtarget->hasV8MBaselineOps())
621     return ARMBuildAttrs::v8_M_Base;
622   else if (Subtarget->hasV6MOps())
623     return ARMBuildAttrs::v6S_M;
624   else if (Subtarget->hasV6Ops())
625     return ARMBuildAttrs::v6;
626   else if (Subtarget->hasV5TEOps())
627     return ARMBuildAttrs::v5TE;
628   else if (Subtarget->hasV5TOps())
629     return ARMBuildAttrs::v5T;
630   else if (Subtarget->hasV4TOps())
631     return ARMBuildAttrs::v4T;
632   else
633     return ARMBuildAttrs::v4;
634 }
635 
636 // Returns true if all functions have the same function attribute value
637 static bool haveAllFunctionsAttribute(const Module &M, StringRef Attr,
638                                       StringRef Value) {
639   for (auto &F : M)
640     if (F.getFnAttribute(Attr).getValueAsString() != Value)
641       return false;
642 
643   return true;
644 }
645 
646 
647 void ARMAsmPrinter::emitAttributes() {
648   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
649   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
650 
651   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
652 
653   ATS.switchVendor("aeabi");
654 
655   // Compute ARM ELF Attributes based on the default subtarget that
656   // we'd have constructed. The existing ARM behavior isn't LTO clean
657   // anyhow.
658   // FIXME: For ifunc related functions we could iterate over and look
659   // for a feature string that doesn't match the default one.
660   const Triple &TT = TM.getTargetTriple();
661   StringRef CPU = TM.getTargetCPU();
662   StringRef FS = TM.getTargetFeatureString();
663   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
664   if (!FS.empty()) {
665     if (!ArchFS.empty())
666       ArchFS = (Twine(ArchFS) + "," + FS).str();
667     else
668       ArchFS = FS;
669   }
670   const ARMBaseTargetMachine &ATM =
671       static_cast<const ARMBaseTargetMachine &>(TM);
672   const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
673 
674   const std::string &CPUString = STI.getCPUString();
675 
676   if (!StringRef(CPUString).startswith("generic")) {
677     // FIXME: remove krait check when GNU tools support krait cpu
678     if (STI.isKrait()) {
679       ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
680       // We consider krait as a "cortex-a9" + hwdiv CPU
681       // Enable hwdiv through ".arch_extension idiv"
682       if (STI.hasDivide() || STI.hasDivideInARMMode())
683         ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM);
684     } else
685       ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
686   }
687 
688   ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
689 
690   // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
691   // profile is not applicable (e.g. pre v7, or cross-profile code)".
692   if (STI.hasV7Ops() || isV8M(&STI)) {
693     if (STI.isAClass()) {
694       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
695                         ARMBuildAttrs::ApplicationProfile);
696     } else if (STI.isRClass()) {
697       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
698                         ARMBuildAttrs::RealTimeProfile);
699     } else if (STI.isMClass()) {
700       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
701                         ARMBuildAttrs::MicroControllerProfile);
702     }
703   }
704 
705   ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
706                     STI.hasARMOps() ? ARMBuildAttrs::Allowed
707                                     : ARMBuildAttrs::Not_Allowed);
708   if (isV8M(&STI)) {
709     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
710                       ARMBuildAttrs::AllowThumbDerived);
711   } else if (STI.isThumb1Only()) {
712     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
713   } else if (STI.hasThumb2()) {
714     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
715                       ARMBuildAttrs::AllowThumb32);
716   }
717 
718   if (STI.hasNEON()) {
719     /* NEON is not exactly a VFP architecture, but GAS emit one of
720      * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
721     if (STI.hasFPARMv8()) {
722       if (STI.hasCrypto())
723         ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
724       else
725         ATS.emitFPU(ARM::FK_NEON_FP_ARMV8);
726     } else if (STI.hasVFP4())
727       ATS.emitFPU(ARM::FK_NEON_VFPV4);
728     else
729       ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON);
730     // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
731     if (STI.hasV8Ops())
732       ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
733                         STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a:
734                                             ARMBuildAttrs::AllowNeonARMv8);
735   } else {
736     if (STI.hasFPARMv8())
737       // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
738       // FPU, but there are two different names for it depending on the CPU.
739       ATS.emitFPU(STI.hasD16()
740                   ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16)
741                   : ARM::FK_FP_ARMV8);
742     else if (STI.hasVFP4())
743       ATS.emitFPU(STI.hasD16()
744                   ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16)
745                   : ARM::FK_VFPV4);
746     else if (STI.hasVFP3())
747       ATS.emitFPU(STI.hasD16()
748                   // +d16
749                   ? (STI.isFPOnlySP()
750                      ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD)
751                      : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16))
752                   // -d16
753                   : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3));
754     else if (STI.hasVFP2())
755       ATS.emitFPU(ARM::FK_VFPV2);
756   }
757 
758   // RW data addressing.
759   if (isPositionIndependent()) {
760     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
761                       ARMBuildAttrs::AddressRWPCRel);
762   } else if (STI.isRWPI()) {
763     // RWPI specific attributes.
764     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
765                       ARMBuildAttrs::AddressRWSBRel);
766   }
767 
768   // RO data addressing.
769   if (isPositionIndependent() || STI.isROPI()) {
770     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
771                       ARMBuildAttrs::AddressROPCRel);
772   }
773 
774   // GOT use.
775   if (isPositionIndependent()) {
776     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
777                       ARMBuildAttrs::AddressGOT);
778   } else {
779     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
780                       ARMBuildAttrs::AddressDirect);
781   }
782 
783   // Set FP Denormals.
784   if (haveAllFunctionsAttribute(*MMI->getModule(), "denormal-fp-math",
785                                 "preserve-sign") ||
786       TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
787     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
788                       ARMBuildAttrs::PreserveFPSign);
789   else if (haveAllFunctionsAttribute(*MMI->getModule(), "denormal-fp-math",
790                                      "positive-zero") ||
791            TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
792     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
793                       ARMBuildAttrs::PositiveZero);
794   else if (!TM.Options.UnsafeFPMath)
795     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
796                       ARMBuildAttrs::IEEEDenormals);
797   else {
798     if (!STI.hasVFP2()) {
799       // When the target doesn't have an FPU (by design or
800       // intention), the assumptions made on the software support
801       // mirror that of the equivalent hardware support *if it
802       // existed*. For v7 and better we indicate that denormals are
803       // flushed preserving sign, and for V6 we indicate that
804       // denormals are flushed to positive zero.
805       if (STI.hasV7Ops())
806         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
807                           ARMBuildAttrs::PreserveFPSign);
808     } else if (STI.hasVFP3()) {
809       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
810       // the sign bit of the zero matches the sign bit of the input or
811       // result that is being flushed to zero.
812       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
813                         ARMBuildAttrs::PreserveFPSign);
814     }
815     // For VFPv2 implementations it is implementation defined as
816     // to whether denormals are flushed to positive zero or to
817     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
818     // LLVM has chosen to flush this to positive zero (most likely for
819     // GCC compatibility), so that's the chosen value here (the
820     // absence of its emission implies zero).
821   }
822 
823   // Set FP exceptions and rounding
824   if (haveAllFunctionsAttribute(*MMI->getModule(), "no-trapping-math", "true") ||
825       TM.Options.NoTrappingFPMath)
826     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
827                       ARMBuildAttrs::Not_Allowed);
828   else if (!TM.Options.UnsafeFPMath) {
829     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
830 
831     // If the user has permitted this code to choose the IEEE 754
832     // rounding at run-time, emit the rounding attribute.
833     if (TM.Options.HonorSignDependentRoundingFPMathOption)
834       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
835   }
836 
837   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
838   // equivalent of GCC's -ffinite-math-only flag.
839   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
840     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
841                       ARMBuildAttrs::Allowed);
842   else
843     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
844                       ARMBuildAttrs::AllowIEE754);
845 
846   if (STI.allowsUnalignedMem())
847     ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
848                       ARMBuildAttrs::Allowed);
849   else
850     ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
851                       ARMBuildAttrs::Not_Allowed);
852 
853   // FIXME: add more flags to ARMBuildAttributes.h
854   // 8-bytes alignment stuff.
855   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
856   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
857 
858   // ABI_HardFP_use attribute to indicate single precision FP.
859   if (STI.isFPOnlySP())
860     ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
861                       ARMBuildAttrs::HardFPSinglePrecision);
862 
863   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
864   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
865     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
866 
867   // FIXME: Should we signal R9 usage?
868 
869   if (STI.hasFP16())
870     ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
871 
872   // FIXME: To support emitting this build attribute as GCC does, the
873   // -mfp16-format option and associated plumbing must be
874   // supported. For now the __fp16 type is exposed by default, so this
875   // attribute should be emitted with value 1.
876   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
877                     ARMBuildAttrs::FP16FormatIEEE);
878 
879   if (STI.hasMPExtension())
880     ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
881 
882   // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
883   // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
884   // It is not possible to produce DisallowDIV: if hwdiv is present in the base
885   // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
886   // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
887   // otherwise, the default value (AllowDIVIfExists) applies.
888   if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
889     ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
890 
891   if (STI.hasDSP() && isV8M(&STI))
892     ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
893 
894   if (MMI) {
895     if (const Module *SourceModule = MMI->getModule()) {
896       // ABI_PCS_wchar_t to indicate wchar_t width
897       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
898       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
899               SourceModule->getModuleFlag("wchar_size"))) {
900         int WCharWidth = WCharWidthValue->getZExtValue();
901         assert((WCharWidth == 2 || WCharWidth == 4) &&
902                "wchar_t width must be 2 or 4 bytes");
903         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
904       }
905 
906       // ABI_enum_size to indicate enum width
907       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
908       //        (all enums contain a value needing 32 bits to encode).
909       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
910               SourceModule->getModuleFlag("min_enum_size"))) {
911         int EnumWidth = EnumWidthValue->getZExtValue();
912         assert((EnumWidth == 1 || EnumWidth == 4) &&
913                "Minimum enum width must be 1 or 4 bytes");
914         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
915         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
916       }
917     }
918   }
919 
920   // We currently do not support using R9 as the TLS pointer.
921   if (STI.isRWPI())
922     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
923                       ARMBuildAttrs::R9IsSB);
924   else if (STI.isR9Reserved())
925     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
926                       ARMBuildAttrs::R9Reserved);
927   else
928     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
929                       ARMBuildAttrs::R9IsGPR);
930 
931   if (STI.hasTrustZone() && STI.hasVirtualization())
932     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
933                       ARMBuildAttrs::AllowTZVirtualization);
934   else if (STI.hasTrustZone())
935     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
936                       ARMBuildAttrs::AllowTZ);
937   else if (STI.hasVirtualization())
938     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
939                       ARMBuildAttrs::AllowVirtualization);
940 }
941 
942 //===----------------------------------------------------------------------===//
943 
944 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
945                              unsigned LabelId, MCContext &Ctx) {
946 
947   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
948                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
949   return Label;
950 }
951 
952 static MCSymbolRefExpr::VariantKind
953 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
954   switch (Modifier) {
955   case ARMCP::no_modifier:
956     return MCSymbolRefExpr::VK_None;
957   case ARMCP::TLSGD:
958     return MCSymbolRefExpr::VK_TLSGD;
959   case ARMCP::TPOFF:
960     return MCSymbolRefExpr::VK_TPOFF;
961   case ARMCP::GOTTPOFF:
962     return MCSymbolRefExpr::VK_GOTTPOFF;
963   case ARMCP::SBREL:
964     return MCSymbolRefExpr::VK_ARM_SBREL;
965   case ARMCP::GOT_PREL:
966     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
967   case ARMCP::SECREL:
968     return MCSymbolRefExpr::VK_SECREL;
969   }
970   llvm_unreachable("Invalid ARMCPModifier!");
971 }
972 
973 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
974                                         unsigned char TargetFlags) {
975   if (Subtarget->isTargetMachO()) {
976     bool IsIndirect =
977         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
978 
979     if (!IsIndirect)
980       return getSymbol(GV);
981 
982     // FIXME: Remove this when Darwin transition to @GOT like syntax.
983     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
984     MachineModuleInfoMachO &MMIMachO =
985       MMI->getObjFileInfo<MachineModuleInfoMachO>();
986     MachineModuleInfoImpl::StubValueTy &StubSym =
987         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
988                             : MMIMachO.getGVStubEntry(MCSym);
989 
990     if (!StubSym.getPointer())
991       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
992                                                    !GV->hasInternalLinkage());
993     return MCSym;
994   } else if (Subtarget->isTargetCOFF()) {
995     assert(Subtarget->isTargetWindows() &&
996            "Windows is the only supported COFF target");
997 
998     bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
999     if (!IsIndirect)
1000       return getSymbol(GV);
1001 
1002     SmallString<128> Name;
1003     Name = "__imp_";
1004     getNameWithPrefix(Name, GV);
1005 
1006     return OutContext.getOrCreateSymbol(Name);
1007   } else if (Subtarget->isTargetELF()) {
1008     return getSymbol(GV);
1009   }
1010   llvm_unreachable("unexpected target");
1011 }
1012 
1013 void ARMAsmPrinter::
1014 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1015   const DataLayout &DL = getDataLayout();
1016   int Size = DL.getTypeAllocSize(MCPV->getType());
1017 
1018   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
1019 
1020   if (ACPV->isPromotedGlobal()) {
1021     // This constant pool entry is actually a global whose storage has been
1022     // promoted into the constant pool. This global may be referenced still
1023     // by debug information, and due to the way AsmPrinter is set up, the debug
1024     // info is immutable by the time we decide to promote globals to constant
1025     // pools. Because of this, we need to ensure we emit a symbol for the global
1026     // with private linkage (the default) so debug info can refer to it.
1027     //
1028     // However, if this global is promoted into several functions we must ensure
1029     // we don't try and emit duplicate symbols!
1030     auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
1031     auto *GV = ACPC->getPromotedGlobal();
1032     if (!EmittedPromotedGlobalLabels.count(GV)) {
1033       MCSymbol *GVSym = getSymbol(GV);
1034       OutStreamer->EmitLabel(GVSym);
1035       EmittedPromotedGlobalLabels.insert(GV);
1036     }
1037     return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
1038   }
1039 
1040   MCSymbol *MCSym;
1041   if (ACPV->isLSDA()) {
1042     MCSym = getCurExceptionSym();
1043   } else if (ACPV->isBlockAddress()) {
1044     const BlockAddress *BA =
1045       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
1046     MCSym = GetBlockAddressSymbol(BA);
1047   } else if (ACPV->isGlobalValue()) {
1048     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
1049 
1050     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
1051     // flag the global as MO_NONLAZY.
1052     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
1053     MCSym = GetARMGVSymbol(GV, TF);
1054   } else if (ACPV->isMachineBasicBlock()) {
1055     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
1056     MCSym = MBB->getSymbol();
1057   } else {
1058     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
1059     auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
1060     MCSym = GetExternalSymbolSymbol(Sym);
1061   }
1062 
1063   // Create an MCSymbol for the reference.
1064   const MCExpr *Expr =
1065     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
1066                             OutContext);
1067 
1068   if (ACPV->getPCAdjustment()) {
1069     MCSymbol *PCLabel =
1070         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1071                     ACPV->getLabelId(), OutContext);
1072     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
1073     PCRelExpr =
1074       MCBinaryExpr::createAdd(PCRelExpr,
1075                               MCConstantExpr::create(ACPV->getPCAdjustment(),
1076                                                      OutContext),
1077                               OutContext);
1078     if (ACPV->mustAddCurrentAddress()) {
1079       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
1080       // label, so just emit a local label end reference that instead.
1081       MCSymbol *DotSym = OutContext.createTempSymbol();
1082       OutStreamer->EmitLabel(DotSym);
1083       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
1084       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
1085     }
1086     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
1087   }
1088   OutStreamer->EmitValue(Expr, Size);
1089 }
1090 
1091 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
1092   const MachineOperand &MO1 = MI->getOperand(1);
1093   unsigned JTI = MO1.getIndex();
1094 
1095   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
1096   // ARM mode tables.
1097   EmitAlignment(2);
1098 
1099   // Emit a label for the jump table.
1100   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1101   OutStreamer->EmitLabel(JTISymbol);
1102 
1103   // Mark the jump table as data-in-code.
1104   OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1105 
1106   // Emit each entry of the table.
1107   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1108   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1109   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1110 
1111   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1112     MachineBasicBlock *MBB = JTBBs[i];
1113     // Construct an MCExpr for the entry. We want a value of the form:
1114     // (BasicBlockAddr - TableBeginAddr)
1115     //
1116     // For example, a table with entries jumping to basic blocks BB0 and BB1
1117     // would look like:
1118     // LJTI_0_0:
1119     //    .word (LBB0 - LJTI_0_0)
1120     //    .word (LBB1 - LJTI_0_0)
1121     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1122 
1123     if (isPositionIndependent() || Subtarget->isROPI())
1124       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
1125                                                                    OutContext),
1126                                      OutContext);
1127     // If we're generating a table of Thumb addresses in static relocation
1128     // model, we need to add one to keep interworking correctly.
1129     else if (AFI->isThumbFunction())
1130       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
1131                                      OutContext);
1132     OutStreamer->EmitValue(Expr, 4);
1133   }
1134   // Mark the end of jump table data-in-code region.
1135   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1136 }
1137 
1138 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
1139   const MachineOperand &MO1 = MI->getOperand(1);
1140   unsigned JTI = MO1.getIndex();
1141 
1142   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1143   OutStreamer->EmitLabel(JTISymbol);
1144 
1145   // Emit each entry of the table.
1146   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1147   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1148   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1149 
1150   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1151     MachineBasicBlock *MBB = JTBBs[i];
1152     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1153                                                           OutContext);
1154     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1155     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1156         .addExpr(MBBSymbolExpr)
1157         .addImm(ARMCC::AL)
1158         .addReg(0));
1159   }
1160 }
1161 
1162 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1163                                         unsigned OffsetWidth) {
1164   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1165   const MachineOperand &MO1 = MI->getOperand(1);
1166   unsigned JTI = MO1.getIndex();
1167 
1168   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1169   OutStreamer->EmitLabel(JTISymbol);
1170 
1171   // Emit each entry of the table.
1172   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1173   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1174   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1175 
1176   // Mark the jump table as data-in-code.
1177   OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1178                                                : MCDR_DataRegionJT16);
1179 
1180   for (auto MBB : JTBBs) {
1181     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1182                                                           OutContext);
1183     // Otherwise it's an offset from the dispatch instruction. Construct an
1184     // MCExpr for the entry. We want a value of the form:
1185     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1186     //
1187     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1188     // would look like:
1189     // LJTI_0_0:
1190     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1191     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1192     // where LCPI0_0 is a label defined just before the TBB instruction using
1193     // this table.
1194     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1195     const MCExpr *Expr = MCBinaryExpr::createAdd(
1196         MCSymbolRefExpr::create(TBInstPC, OutContext),
1197         MCConstantExpr::create(4, OutContext), OutContext);
1198     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1199     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1200                                    OutContext);
1201     OutStreamer->EmitValue(Expr, OffsetWidth);
1202   }
1203   // Mark the end of jump table data-in-code region. 32-bit offsets use
1204   // actual branch instructions here, so we don't mark those as a data-region
1205   // at all.
1206   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1207 
1208   // Make sure the next instruction is 2-byte aligned.
1209   EmitAlignment(1);
1210 }
1211 
1212 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1213   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1214       "Only instruction which are involved into frame setup code are allowed");
1215 
1216   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1217   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1218   const MachineFunction &MF = *MI->getParent()->getParent();
1219   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1220   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1221 
1222   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1223   unsigned Opc = MI->getOpcode();
1224   unsigned SrcReg, DstReg;
1225 
1226   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1227     // Two special cases:
1228     // 1) tPUSH does not have src/dst regs.
1229     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1230     // load. Yes, this is pretty fragile, but for now I don't see better
1231     // way... :(
1232     SrcReg = DstReg = ARM::SP;
1233   } else {
1234     SrcReg = MI->getOperand(1).getReg();
1235     DstReg = MI->getOperand(0).getReg();
1236   }
1237 
1238   // Try to figure out the unwinding opcode out of src / dst regs.
1239   if (MI->mayStore()) {
1240     // Register saves.
1241     assert(DstReg == ARM::SP &&
1242            "Only stack pointer as a destination reg is supported");
1243 
1244     SmallVector<unsigned, 4> RegList;
1245     // Skip src & dst reg, and pred ops.
1246     unsigned StartOp = 2 + 2;
1247     // Use all the operands.
1248     unsigned NumOffset = 0;
1249 
1250     switch (Opc) {
1251     default:
1252       MI->dump();
1253       llvm_unreachable("Unsupported opcode for unwinding information");
1254     case ARM::tPUSH:
1255       // Special case here: no src & dst reg, but two extra imp ops.
1256       StartOp = 2; NumOffset = 2;
1257     case ARM::STMDB_UPD:
1258     case ARM::t2STMDB_UPD:
1259     case ARM::VSTMDDB_UPD:
1260       assert(SrcReg == ARM::SP &&
1261              "Only stack pointer as a source reg is supported");
1262       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1263            i != NumOps; ++i) {
1264         const MachineOperand &MO = MI->getOperand(i);
1265         // Actually, there should never be any impdef stuff here. Skip it
1266         // temporary to workaround PR11902.
1267         if (MO.isImplicit())
1268           continue;
1269         RegList.push_back(MO.getReg());
1270       }
1271       break;
1272     case ARM::STR_PRE_IMM:
1273     case ARM::STR_PRE_REG:
1274     case ARM::t2STR_PRE:
1275       assert(MI->getOperand(2).getReg() == ARM::SP &&
1276              "Only stack pointer as a source reg is supported");
1277       RegList.push_back(SrcReg);
1278       break;
1279     }
1280     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1281       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1282   } else {
1283     // Changes of stack / frame pointer.
1284     if (SrcReg == ARM::SP) {
1285       int64_t Offset = 0;
1286       switch (Opc) {
1287       default:
1288         MI->dump();
1289         llvm_unreachable("Unsupported opcode for unwinding information");
1290       case ARM::MOVr:
1291       case ARM::tMOVr:
1292         Offset = 0;
1293         break;
1294       case ARM::ADDri:
1295       case ARM::t2ADDri:
1296         Offset = -MI->getOperand(2).getImm();
1297         break;
1298       case ARM::SUBri:
1299       case ARM::t2SUBri:
1300         Offset = MI->getOperand(2).getImm();
1301         break;
1302       case ARM::tSUBspi:
1303         Offset = MI->getOperand(2).getImm()*4;
1304         break;
1305       case ARM::tADDspi:
1306       case ARM::tADDrSPi:
1307         Offset = -MI->getOperand(2).getImm()*4;
1308         break;
1309       case ARM::tLDRpci: {
1310         // Grab the constpool index and check, whether it corresponds to
1311         // original or cloned constpool entry.
1312         unsigned CPI = MI->getOperand(1).getIndex();
1313         const MachineConstantPool *MCP = MF.getConstantPool();
1314         if (CPI >= MCP->getConstants().size())
1315           CPI = AFI.getOriginalCPIdx(CPI);
1316         assert(CPI != -1U && "Invalid constpool index");
1317 
1318         // Derive the actual offset.
1319         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1320         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1321         // FIXME: Check for user, it should be "add" instruction!
1322         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1323         break;
1324       }
1325       }
1326 
1327       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1328         if (DstReg == FramePtr && FramePtr != ARM::SP)
1329           // Set-up of the frame pointer. Positive values correspond to "add"
1330           // instruction.
1331           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1332         else if (DstReg == ARM::SP) {
1333           // Change of SP by an offset. Positive values correspond to "sub"
1334           // instruction.
1335           ATS.emitPad(Offset);
1336         } else {
1337           // Move of SP to a register.  Positive values correspond to an "add"
1338           // instruction.
1339           ATS.emitMovSP(DstReg, -Offset);
1340         }
1341       }
1342     } else if (DstReg == ARM::SP) {
1343       MI->dump();
1344       llvm_unreachable("Unsupported opcode for unwinding information");
1345     }
1346     else {
1347       MI->dump();
1348       llvm_unreachable("Unsupported opcode for unwinding information");
1349     }
1350   }
1351 }
1352 
1353 // Simple pseudo-instructions have their lowering (with expansion to real
1354 // instructions) auto-generated.
1355 #include "ARMGenMCPseudoLowering.inc"
1356 
1357 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1358   const DataLayout &DL = getDataLayout();
1359   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1360   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1361 
1362   // If we just ended a constant pool, mark it as such.
1363   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1364     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1365     InConstantPool = false;
1366   }
1367 
1368   // Emit unwinding stuff for frame-related instructions
1369   if (Subtarget->isTargetEHABICompatible() &&
1370        MI->getFlag(MachineInstr::FrameSetup))
1371     EmitUnwindingInstruction(MI);
1372 
1373   // Do any auto-generated pseudo lowerings.
1374   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1375     return;
1376 
1377   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1378          "Pseudo flag setting opcode should be expanded early");
1379 
1380   // Check for manual lowerings.
1381   unsigned Opc = MI->getOpcode();
1382   switch (Opc) {
1383   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1384   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1385   case ARM::LEApcrel:
1386   case ARM::tLEApcrel:
1387   case ARM::t2LEApcrel: {
1388     // FIXME: Need to also handle globals and externals
1389     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1390     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1391                                                ARM::t2LEApcrel ? ARM::t2ADR
1392                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1393                      : ARM::ADR))
1394       .addReg(MI->getOperand(0).getReg())
1395       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1396       // Add predicate operands.
1397       .addImm(MI->getOperand(2).getImm())
1398       .addReg(MI->getOperand(3).getReg()));
1399     return;
1400   }
1401   case ARM::LEApcrelJT:
1402   case ARM::tLEApcrelJT:
1403   case ARM::t2LEApcrelJT: {
1404     MCSymbol *JTIPICSymbol =
1405       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1406     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1407                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1408                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1409                      : ARM::ADR))
1410       .addReg(MI->getOperand(0).getReg())
1411       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1412       // Add predicate operands.
1413       .addImm(MI->getOperand(2).getImm())
1414       .addReg(MI->getOperand(3).getReg()));
1415     return;
1416   }
1417   // Darwin call instructions are just normal call instructions with different
1418   // clobber semantics (they clobber R9).
1419   case ARM::BX_CALL: {
1420     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1421       .addReg(ARM::LR)
1422       .addReg(ARM::PC)
1423       // Add predicate operands.
1424       .addImm(ARMCC::AL)
1425       .addReg(0)
1426       // Add 's' bit operand (always reg0 for this)
1427       .addReg(0));
1428 
1429     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1430       .addReg(MI->getOperand(0).getReg()));
1431     return;
1432   }
1433   case ARM::tBX_CALL: {
1434     if (Subtarget->hasV5TOps())
1435       llvm_unreachable("Expected BLX to be selected for v5t+");
1436 
1437     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1438     // that the saved lr has its LSB set correctly (the arch doesn't
1439     // have blx).
1440     // So here we generate a bl to a small jump pad that does bx rN.
1441     // The jump pads are emitted after the function body.
1442 
1443     unsigned TReg = MI->getOperand(0).getReg();
1444     MCSymbol *TRegSym = nullptr;
1445     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
1446       if (ThumbIndirectPads[i].first == TReg) {
1447         TRegSym = ThumbIndirectPads[i].second;
1448         break;
1449       }
1450     }
1451 
1452     if (!TRegSym) {
1453       TRegSym = OutContext.createTempSymbol();
1454       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1455     }
1456 
1457     // Create a link-saving branch to the Reg Indirect Jump Pad.
1458     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1459         // Predicate comes first here.
1460         .addImm(ARMCC::AL).addReg(0)
1461         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1462     return;
1463   }
1464   case ARM::BMOVPCRX_CALL: {
1465     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1466       .addReg(ARM::LR)
1467       .addReg(ARM::PC)
1468       // Add predicate operands.
1469       .addImm(ARMCC::AL)
1470       .addReg(0)
1471       // Add 's' bit operand (always reg0 for this)
1472       .addReg(0));
1473 
1474     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1475       .addReg(ARM::PC)
1476       .addReg(MI->getOperand(0).getReg())
1477       // Add predicate operands.
1478       .addImm(ARMCC::AL)
1479       .addReg(0)
1480       // Add 's' bit operand (always reg0 for this)
1481       .addReg(0));
1482     return;
1483   }
1484   case ARM::BMOVPCB_CALL: {
1485     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1486       .addReg(ARM::LR)
1487       .addReg(ARM::PC)
1488       // Add predicate operands.
1489       .addImm(ARMCC::AL)
1490       .addReg(0)
1491       // Add 's' bit operand (always reg0 for this)
1492       .addReg(0));
1493 
1494     const MachineOperand &Op = MI->getOperand(0);
1495     const GlobalValue *GV = Op.getGlobal();
1496     const unsigned TF = Op.getTargetFlags();
1497     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1498     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1499     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1500       .addExpr(GVSymExpr)
1501       // Add predicate operands.
1502       .addImm(ARMCC::AL)
1503       .addReg(0));
1504     return;
1505   }
1506   case ARM::MOVi16_ga_pcrel:
1507   case ARM::t2MOVi16_ga_pcrel: {
1508     MCInst TmpInst;
1509     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1510     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1511 
1512     unsigned TF = MI->getOperand(1).getTargetFlags();
1513     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1514     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1515     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1516 
1517     MCSymbol *LabelSym =
1518         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1519                     MI->getOperand(2).getImm(), OutContext);
1520     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1521     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1522     const MCExpr *PCRelExpr =
1523       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1524                                       MCBinaryExpr::createAdd(LabelSymExpr,
1525                                       MCConstantExpr::create(PCAdj, OutContext),
1526                                       OutContext), OutContext), OutContext);
1527       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1528 
1529     // Add predicate operands.
1530     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1531     TmpInst.addOperand(MCOperand::createReg(0));
1532     // Add 's' bit operand (always reg0 for this)
1533     TmpInst.addOperand(MCOperand::createReg(0));
1534     EmitToStreamer(*OutStreamer, TmpInst);
1535     return;
1536   }
1537   case ARM::MOVTi16_ga_pcrel:
1538   case ARM::t2MOVTi16_ga_pcrel: {
1539     MCInst TmpInst;
1540     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1541                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1542     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1543     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1544 
1545     unsigned TF = MI->getOperand(2).getTargetFlags();
1546     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1547     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1548     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1549 
1550     MCSymbol *LabelSym =
1551         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1552                     MI->getOperand(3).getImm(), OutContext);
1553     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1554     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1555     const MCExpr *PCRelExpr =
1556         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1557                                    MCBinaryExpr::createAdd(LabelSymExpr,
1558                                       MCConstantExpr::create(PCAdj, OutContext),
1559                                           OutContext), OutContext), OutContext);
1560       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1561     // Add predicate operands.
1562     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1563     TmpInst.addOperand(MCOperand::createReg(0));
1564     // Add 's' bit operand (always reg0 for this)
1565     TmpInst.addOperand(MCOperand::createReg(0));
1566     EmitToStreamer(*OutStreamer, TmpInst);
1567     return;
1568   }
1569   case ARM::tPICADD: {
1570     // This is a pseudo op for a label + instruction sequence, which looks like:
1571     // LPC0:
1572     //     add r0, pc
1573     // This adds the address of LPC0 to r0.
1574 
1575     // Emit the label.
1576     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1577                                        getFunctionNumber(),
1578                                        MI->getOperand(2).getImm(), OutContext));
1579 
1580     // Form and emit the add.
1581     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1582       .addReg(MI->getOperand(0).getReg())
1583       .addReg(MI->getOperand(0).getReg())
1584       .addReg(ARM::PC)
1585       // Add predicate operands.
1586       .addImm(ARMCC::AL)
1587       .addReg(0));
1588     return;
1589   }
1590   case ARM::PICADD: {
1591     // This is a pseudo op for a label + instruction sequence, which looks like:
1592     // LPC0:
1593     //     add r0, pc, r0
1594     // This adds the address of LPC0 to r0.
1595 
1596     // Emit the label.
1597     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1598                                        getFunctionNumber(),
1599                                        MI->getOperand(2).getImm(), OutContext));
1600 
1601     // Form and emit the add.
1602     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1603       .addReg(MI->getOperand(0).getReg())
1604       .addReg(ARM::PC)
1605       .addReg(MI->getOperand(1).getReg())
1606       // Add predicate operands.
1607       .addImm(MI->getOperand(3).getImm())
1608       .addReg(MI->getOperand(4).getReg())
1609       // Add 's' bit operand (always reg0 for this)
1610       .addReg(0));
1611     return;
1612   }
1613   case ARM::PICSTR:
1614   case ARM::PICSTRB:
1615   case ARM::PICSTRH:
1616   case ARM::PICLDR:
1617   case ARM::PICLDRB:
1618   case ARM::PICLDRH:
1619   case ARM::PICLDRSB:
1620   case ARM::PICLDRSH: {
1621     // This is a pseudo op for a label + instruction sequence, which looks like:
1622     // LPC0:
1623     //     OP r0, [pc, r0]
1624     // The LCP0 label is referenced by a constant pool entry in order to get
1625     // a PC-relative address at the ldr instruction.
1626 
1627     // Emit the label.
1628     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1629                                        getFunctionNumber(),
1630                                        MI->getOperand(2).getImm(), OutContext));
1631 
1632     // Form and emit the load
1633     unsigned Opcode;
1634     switch (MI->getOpcode()) {
1635     default:
1636       llvm_unreachable("Unexpected opcode!");
1637     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1638     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1639     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1640     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1641     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1642     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1643     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1644     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1645     }
1646     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1647       .addReg(MI->getOperand(0).getReg())
1648       .addReg(ARM::PC)
1649       .addReg(MI->getOperand(1).getReg())
1650       .addImm(0)
1651       // Add predicate operands.
1652       .addImm(MI->getOperand(3).getImm())
1653       .addReg(MI->getOperand(4).getReg()));
1654 
1655     return;
1656   }
1657   case ARM::CONSTPOOL_ENTRY: {
1658     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1659     /// in the function.  The first operand is the ID# for this instruction, the
1660     /// second is the index into the MachineConstantPool that this is, the third
1661     /// is the size in bytes of this constant pool entry.
1662     /// The required alignment is specified on the basic block holding this MI.
1663     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1664     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1665 
1666     // If this is the first entry of the pool, mark it.
1667     if (!InConstantPool) {
1668       OutStreamer->EmitDataRegion(MCDR_DataRegion);
1669       InConstantPool = true;
1670     }
1671 
1672     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1673 
1674     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1675     if (MCPE.isMachineConstantPoolEntry())
1676       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1677     else
1678       EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1679     return;
1680   }
1681   case ARM::JUMPTABLE_ADDRS:
1682     EmitJumpTableAddrs(MI);
1683     return;
1684   case ARM::JUMPTABLE_INSTS:
1685     EmitJumpTableInsts(MI);
1686     return;
1687   case ARM::JUMPTABLE_TBB:
1688   case ARM::JUMPTABLE_TBH:
1689     EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1690     return;
1691   case ARM::t2BR_JT: {
1692     // Lower and emit the instruction itself, then the jump table following it.
1693     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1694       .addReg(ARM::PC)
1695       .addReg(MI->getOperand(0).getReg())
1696       // Add predicate operands.
1697       .addImm(ARMCC::AL)
1698       .addReg(0));
1699     return;
1700   }
1701   case ARM::t2TBB_JT:
1702   case ARM::t2TBH_JT: {
1703     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1704     // Lower and emit the PC label, then the instruction itself.
1705     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1706     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1707                                      .addReg(MI->getOperand(0).getReg())
1708                                      .addReg(MI->getOperand(1).getReg())
1709                                      // Add predicate operands.
1710                                      .addImm(ARMCC::AL)
1711                                      .addReg(0));
1712     return;
1713   }
1714   case ARM::tBR_JTr:
1715   case ARM::BR_JTr: {
1716     // Lower and emit the instruction itself, then the jump table following it.
1717     // mov pc, target
1718     MCInst TmpInst;
1719     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1720       ARM::MOVr : ARM::tMOVr;
1721     TmpInst.setOpcode(Opc);
1722     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1723     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1724     // Add predicate operands.
1725     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1726     TmpInst.addOperand(MCOperand::createReg(0));
1727     // Add 's' bit operand (always reg0 for this)
1728     if (Opc == ARM::MOVr)
1729       TmpInst.addOperand(MCOperand::createReg(0));
1730     EmitToStreamer(*OutStreamer, TmpInst);
1731     return;
1732   }
1733   case ARM::BR_JTm: {
1734     // Lower and emit the instruction itself, then the jump table following it.
1735     // ldr pc, target
1736     MCInst TmpInst;
1737     if (MI->getOperand(1).getReg() == 0) {
1738       // literal offset
1739       TmpInst.setOpcode(ARM::LDRi12);
1740       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1741       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1742       TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1743     } else {
1744       TmpInst.setOpcode(ARM::LDRrs);
1745       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1746       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1747       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1748       TmpInst.addOperand(MCOperand::createImm(0));
1749     }
1750     // Add predicate operands.
1751     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1752     TmpInst.addOperand(MCOperand::createReg(0));
1753     EmitToStreamer(*OutStreamer, TmpInst);
1754     return;
1755   }
1756   case ARM::BR_JTadd: {
1757     // Lower and emit the instruction itself, then the jump table following it.
1758     // add pc, target, idx
1759     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1760       .addReg(ARM::PC)
1761       .addReg(MI->getOperand(0).getReg())
1762       .addReg(MI->getOperand(1).getReg())
1763       // Add predicate operands.
1764       .addImm(ARMCC::AL)
1765       .addReg(0)
1766       // Add 's' bit operand (always reg0 for this)
1767       .addReg(0));
1768     return;
1769   }
1770   case ARM::SPACE:
1771     OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1772     return;
1773   case ARM::TRAP: {
1774     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1775     // FIXME: Remove this special case when they do.
1776     if (!Subtarget->isTargetMachO()) {
1777       uint32_t Val = 0xe7ffdefeUL;
1778       OutStreamer->AddComment("trap");
1779       ATS.emitInst(Val);
1780       return;
1781     }
1782     break;
1783   }
1784   case ARM::TRAPNaCl: {
1785     uint32_t Val = 0xe7fedef0UL;
1786     OutStreamer->AddComment("trap");
1787     ATS.emitInst(Val);
1788     return;
1789   }
1790   case ARM::tTRAP: {
1791     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1792     // FIXME: Remove this special case when they do.
1793     if (!Subtarget->isTargetMachO()) {
1794       uint16_t Val = 0xdefe;
1795       OutStreamer->AddComment("trap");
1796       ATS.emitInst(Val, 'n');
1797       return;
1798     }
1799     break;
1800   }
1801   case ARM::t2Int_eh_sjlj_setjmp:
1802   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1803   case ARM::tInt_eh_sjlj_setjmp: {
1804     // Two incoming args: GPR:$src, GPR:$val
1805     // mov $val, pc
1806     // adds $val, #7
1807     // str $val, [$src, #4]
1808     // movs r0, #0
1809     // b LSJLJEH
1810     // movs r0, #1
1811     // LSJLJEH:
1812     unsigned SrcReg = MI->getOperand(0).getReg();
1813     unsigned ValReg = MI->getOperand(1).getReg();
1814     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1815     OutStreamer->AddComment("eh_setjmp begin");
1816     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1817       .addReg(ValReg)
1818       .addReg(ARM::PC)
1819       // Predicate.
1820       .addImm(ARMCC::AL)
1821       .addReg(0));
1822 
1823     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1824       .addReg(ValReg)
1825       // 's' bit operand
1826       .addReg(ARM::CPSR)
1827       .addReg(ValReg)
1828       .addImm(7)
1829       // Predicate.
1830       .addImm(ARMCC::AL)
1831       .addReg(0));
1832 
1833     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1834       .addReg(ValReg)
1835       .addReg(SrcReg)
1836       // The offset immediate is #4. The operand value is scaled by 4 for the
1837       // tSTR instruction.
1838       .addImm(1)
1839       // Predicate.
1840       .addImm(ARMCC::AL)
1841       .addReg(0));
1842 
1843     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1844       .addReg(ARM::R0)
1845       .addReg(ARM::CPSR)
1846       .addImm(0)
1847       // Predicate.
1848       .addImm(ARMCC::AL)
1849       .addReg(0));
1850 
1851     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1852     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1853       .addExpr(SymbolExpr)
1854       .addImm(ARMCC::AL)
1855       .addReg(0));
1856 
1857     OutStreamer->AddComment("eh_setjmp end");
1858     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1859       .addReg(ARM::R0)
1860       .addReg(ARM::CPSR)
1861       .addImm(1)
1862       // Predicate.
1863       .addImm(ARMCC::AL)
1864       .addReg(0));
1865 
1866     OutStreamer->EmitLabel(Label);
1867     return;
1868   }
1869 
1870   case ARM::Int_eh_sjlj_setjmp_nofp:
1871   case ARM::Int_eh_sjlj_setjmp: {
1872     // Two incoming args: GPR:$src, GPR:$val
1873     // add $val, pc, #8
1874     // str $val, [$src, #+4]
1875     // mov r0, #0
1876     // add pc, pc, #0
1877     // mov r0, #1
1878     unsigned SrcReg = MI->getOperand(0).getReg();
1879     unsigned ValReg = MI->getOperand(1).getReg();
1880 
1881     OutStreamer->AddComment("eh_setjmp begin");
1882     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1883       .addReg(ValReg)
1884       .addReg(ARM::PC)
1885       .addImm(8)
1886       // Predicate.
1887       .addImm(ARMCC::AL)
1888       .addReg(0)
1889       // 's' bit operand (always reg0 for this).
1890       .addReg(0));
1891 
1892     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1893       .addReg(ValReg)
1894       .addReg(SrcReg)
1895       .addImm(4)
1896       // Predicate.
1897       .addImm(ARMCC::AL)
1898       .addReg(0));
1899 
1900     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1901       .addReg(ARM::R0)
1902       .addImm(0)
1903       // Predicate.
1904       .addImm(ARMCC::AL)
1905       .addReg(0)
1906       // 's' bit operand (always reg0 for this).
1907       .addReg(0));
1908 
1909     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1910       .addReg(ARM::PC)
1911       .addReg(ARM::PC)
1912       .addImm(0)
1913       // Predicate.
1914       .addImm(ARMCC::AL)
1915       .addReg(0)
1916       // 's' bit operand (always reg0 for this).
1917       .addReg(0));
1918 
1919     OutStreamer->AddComment("eh_setjmp end");
1920     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1921       .addReg(ARM::R0)
1922       .addImm(1)
1923       // Predicate.
1924       .addImm(ARMCC::AL)
1925       .addReg(0)
1926       // 's' bit operand (always reg0 for this).
1927       .addReg(0));
1928     return;
1929   }
1930   case ARM::Int_eh_sjlj_longjmp: {
1931     // ldr sp, [$src, #8]
1932     // ldr $scratch, [$src, #4]
1933     // ldr r7, [$src]
1934     // bx $scratch
1935     unsigned SrcReg = MI->getOperand(0).getReg();
1936     unsigned ScratchReg = MI->getOperand(1).getReg();
1937     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1938       .addReg(ARM::SP)
1939       .addReg(SrcReg)
1940       .addImm(8)
1941       // Predicate.
1942       .addImm(ARMCC::AL)
1943       .addReg(0));
1944 
1945     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1946       .addReg(ScratchReg)
1947       .addReg(SrcReg)
1948       .addImm(4)
1949       // Predicate.
1950       .addImm(ARMCC::AL)
1951       .addReg(0));
1952 
1953     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1954       .addReg(ARM::R7)
1955       .addReg(SrcReg)
1956       .addImm(0)
1957       // Predicate.
1958       .addImm(ARMCC::AL)
1959       .addReg(0));
1960 
1961     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1962       .addReg(ScratchReg)
1963       // Predicate.
1964       .addImm(ARMCC::AL)
1965       .addReg(0));
1966     return;
1967   }
1968   case ARM::tInt_eh_sjlj_longjmp: {
1969     // ldr $scratch, [$src, #8]
1970     // mov sp, $scratch
1971     // ldr $scratch, [$src, #4]
1972     // ldr r7, [$src]
1973     // bx $scratch
1974     unsigned SrcReg = MI->getOperand(0).getReg();
1975     unsigned ScratchReg = MI->getOperand(1).getReg();
1976 
1977     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1978       .addReg(ScratchReg)
1979       .addReg(SrcReg)
1980       // The offset immediate is #8. The operand value is scaled by 4 for the
1981       // tLDR instruction.
1982       .addImm(2)
1983       // Predicate.
1984       .addImm(ARMCC::AL)
1985       .addReg(0));
1986 
1987     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1988       .addReg(ARM::SP)
1989       .addReg(ScratchReg)
1990       // Predicate.
1991       .addImm(ARMCC::AL)
1992       .addReg(0));
1993 
1994     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1995       .addReg(ScratchReg)
1996       .addReg(SrcReg)
1997       .addImm(1)
1998       // Predicate.
1999       .addImm(ARMCC::AL)
2000       .addReg(0));
2001 
2002     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2003       .addReg(ARM::R7)
2004       .addReg(SrcReg)
2005       .addImm(0)
2006       // Predicate.
2007       .addImm(ARMCC::AL)
2008       .addReg(0));
2009 
2010     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
2011       .addReg(ScratchReg)
2012       // Predicate.
2013       .addImm(ARMCC::AL)
2014       .addReg(0));
2015     return;
2016   }
2017   case ARM::tInt_WIN_eh_sjlj_longjmp: {
2018     // ldr.w r11, [$src, #0]
2019     // ldr.w  sp, [$src, #8]
2020     // ldr.w  pc, [$src, #4]
2021 
2022     unsigned SrcReg = MI->getOperand(0).getReg();
2023 
2024     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2025                                      .addReg(ARM::R11)
2026                                      .addReg(SrcReg)
2027                                      .addImm(0)
2028                                      // Predicate
2029                                      .addImm(ARMCC::AL)
2030                                      .addReg(0));
2031     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2032                                      .addReg(ARM::SP)
2033                                      .addReg(SrcReg)
2034                                      .addImm(8)
2035                                      // Predicate
2036                                      .addImm(ARMCC::AL)
2037                                      .addReg(0));
2038     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2039                                      .addReg(ARM::PC)
2040                                      .addReg(SrcReg)
2041                                      .addImm(4)
2042                                      // Predicate
2043                                      .addImm(ARMCC::AL)
2044                                      .addReg(0));
2045     return;
2046   }
2047   case ARM::PATCHABLE_FUNCTION_ENTER:
2048     LowerPATCHABLE_FUNCTION_ENTER(*MI);
2049     return;
2050   case ARM::PATCHABLE_FUNCTION_EXIT:
2051     LowerPATCHABLE_FUNCTION_EXIT(*MI);
2052     return;
2053   }
2054 
2055   MCInst TmpInst;
2056   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2057 
2058   EmitToStreamer(*OutStreamer, TmpInst);
2059 }
2060 
2061 //===----------------------------------------------------------------------===//
2062 // Target Registry Stuff
2063 //===----------------------------------------------------------------------===//
2064 
2065 // Force static initialization.
2066 extern "C" void LLVMInitializeARMAsmPrinter() {
2067   RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2068   RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2069   RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2070   RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
2071 }
2072