1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCAssembler.h" 39 #include "llvm/MC/MCContext.h" 40 #include "llvm/MC/MCELFStreamer.h" 41 #include "llvm/MC/MCInst.h" 42 #include "llvm/MC/MCInstBuilder.h" 43 #include "llvm/MC/MCObjectStreamer.h" 44 #include "llvm/MC/MCSectionMachO.h" 45 #include "llvm/MC/MCStreamer.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/TargetParser.h" 51 #include "llvm/Support/TargetRegistry.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cctype> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 60 std::unique_ptr<MCStreamer> Streamer) 61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 62 InConstantPool(false), OptimizationGoals(-1) {} 63 64 void ARMAsmPrinter::EmitFunctionBodyEnd() { 65 // Make sure to terminate any constant pools that were at the end 66 // of the function. 67 if (!InConstantPool) 68 return; 69 InConstantPool = false; 70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 71 } 72 73 void ARMAsmPrinter::EmitFunctionEntryLabel() { 74 if (AFI->isThumbFunction()) { 75 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 76 OutStreamer->EmitThumbFunc(CurrentFnSym); 77 } else { 78 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 79 } 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 101 if (PromotedGlobals.count(GV)) 102 // The global was promoted into a constant pool. It should not be emitted. 103 return; 104 AsmPrinter::EmitGlobalVariable(GV); 105 } 106 107 /// runOnMachineFunction - This uses the EmitInstruction() 108 /// method to print assembly for each instruction. 109 /// 110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 111 AFI = MF.getInfo<ARMFunctionInfo>(); 112 MCP = MF.getConstantPool(); 113 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 114 115 SetupMachineFunction(MF); 116 const Function* F = MF.getFunction(); 117 const TargetMachine& TM = MF.getTarget(); 118 119 // Collect all globals that had their storage promoted to a constant pool. 120 // Functions are emitted before variables, so this accumulates promoted 121 // globals from all functions in PromotedGlobals. 122 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 123 PromotedGlobals.insert(GV); 124 125 // Calculate this function's optimization goal. 126 unsigned OptimizationGoal; 127 if (F->hasFnAttribute(Attribute::OptimizeNone)) 128 // For best debugging illusion, speed and small size sacrificed 129 OptimizationGoal = 6; 130 else if (F->optForMinSize()) 131 // Aggressively for small size, speed and debug illusion sacrificed 132 OptimizationGoal = 4; 133 else if (F->optForSize()) 134 // For small size, but speed and debugging illusion preserved 135 OptimizationGoal = 3; 136 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 137 // Aggressively for speed, small size and debug illusion sacrificed 138 OptimizationGoal = 2; 139 else if (TM.getOptLevel() > CodeGenOpt::None) 140 // For speed, but small size and good debug illusion preserved 141 OptimizationGoal = 1; 142 else // TM.getOptLevel() == CodeGenOpt::None 143 // For good debugging, but speed and small size preserved 144 OptimizationGoal = 5; 145 146 // Combine a new optimization goal with existing ones. 147 if (OptimizationGoals == -1) // uninitialized goals 148 OptimizationGoals = OptimizationGoal; 149 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 150 OptimizationGoals = 0; 151 152 if (Subtarget->isTargetCOFF()) { 153 bool Internal = F->hasInternalLinkage(); 154 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 155 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 156 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 157 158 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 159 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 160 OutStreamer->EmitCOFFSymbolType(Type); 161 OutStreamer->EndCOFFSymbolDef(); 162 } 163 164 // Emit the rest of the function body. 165 EmitFunctionBody(); 166 167 // Emit the XRay table for this function. 168 emitXRayTable(); 169 170 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 171 // These are created per function, rather than per TU, since it's 172 // relatively easy to exceed the thumb branch range within a TU. 173 if (! ThumbIndirectPads.empty()) { 174 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 175 EmitAlignment(1); 176 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 177 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 178 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 179 .addReg(ThumbIndirectPads[i].first) 180 // Add predicate operands. 181 .addImm(ARMCC::AL) 182 .addReg(0)); 183 } 184 ThumbIndirectPads.clear(); 185 } 186 187 // We didn't modify anything. 188 return false; 189 } 190 191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 192 raw_ostream &O) { 193 const MachineOperand &MO = MI->getOperand(OpNum); 194 unsigned TF = MO.getTargetFlags(); 195 196 switch (MO.getType()) { 197 default: llvm_unreachable("<unknown operand type>"); 198 case MachineOperand::MO_Register: { 199 unsigned Reg = MO.getReg(); 200 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 201 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 202 if(ARM::GPRPairRegClass.contains(Reg)) { 203 const MachineFunction &MF = *MI->getParent()->getParent(); 204 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 205 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 206 } 207 O << ARMInstPrinter::getRegisterName(Reg); 208 break; 209 } 210 case MachineOperand::MO_Immediate: { 211 int64_t Imm = MO.getImm(); 212 O << '#'; 213 if (TF == ARMII::MO_LO16) 214 O << ":lower16:"; 215 else if (TF == ARMII::MO_HI16) 216 O << ":upper16:"; 217 O << Imm; 218 break; 219 } 220 case MachineOperand::MO_MachineBasicBlock: 221 MO.getMBB()->getSymbol()->print(O, MAI); 222 return; 223 case MachineOperand::MO_GlobalAddress: { 224 const GlobalValue *GV = MO.getGlobal(); 225 if (TF & ARMII::MO_LO16) 226 O << ":lower16:"; 227 else if (TF & ARMII::MO_HI16) 228 O << ":upper16:"; 229 GetARMGVSymbol(GV, TF)->print(O, MAI); 230 231 printOffset(MO.getOffset(), O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 if (Subtarget->genExecuteOnly()) 236 llvm_unreachable("execute-only should not generate constant pools"); 237 GetCPISymbol(MO.getIndex())->print(O, MAI); 238 break; 239 } 240 } 241 242 //===--------------------------------------------------------------------===// 243 244 MCSymbol *ARMAsmPrinter:: 245 GetARMJTIPICJumpTableLabel(unsigned uid) const { 246 const DataLayout &DL = getDataLayout(); 247 SmallString<60> Name; 248 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 249 << getFunctionNumber() << '_' << uid; 250 return OutContext.getOrCreateSymbol(Name); 251 } 252 253 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 254 unsigned AsmVariant, const char *ExtraCode, 255 raw_ostream &O) { 256 // Does this asm operand have a single letter operand modifier? 257 if (ExtraCode && ExtraCode[0]) { 258 if (ExtraCode[1] != 0) return true; // Unknown modifier. 259 260 switch (ExtraCode[0]) { 261 default: 262 // See if this is a generic print operand 263 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 264 case 'a': // Print as a memory address. 265 if (MI->getOperand(OpNum).isReg()) { 266 O << "[" 267 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 268 << "]"; 269 return false; 270 } 271 LLVM_FALLTHROUGH; 272 case 'c': // Don't print "#" before an immediate operand. 273 if (!MI->getOperand(OpNum).isImm()) 274 return true; 275 O << MI->getOperand(OpNum).getImm(); 276 return false; 277 case 'P': // Print a VFP double precision register. 278 case 'q': // Print a NEON quad precision register. 279 printOperand(MI, OpNum, O); 280 return false; 281 case 'y': // Print a VFP single precision register as indexed double. 282 if (MI->getOperand(OpNum).isReg()) { 283 unsigned Reg = MI->getOperand(OpNum).getReg(); 284 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 285 // Find the 'd' register that has this 's' register as a sub-register, 286 // and determine the lane number. 287 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 288 if (!ARM::DPRRegClass.contains(*SR)) 289 continue; 290 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 291 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 292 return false; 293 } 294 } 295 return true; 296 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 297 if (!MI->getOperand(OpNum).isImm()) 298 return true; 299 O << ~(MI->getOperand(OpNum).getImm()); 300 return false; 301 case 'L': // The low 16 bits of an immediate constant. 302 if (!MI->getOperand(OpNum).isImm()) 303 return true; 304 O << (MI->getOperand(OpNum).getImm() & 0xffff); 305 return false; 306 case 'M': { // A register range suitable for LDM/STM. 307 if (!MI->getOperand(OpNum).isReg()) 308 return true; 309 const MachineOperand &MO = MI->getOperand(OpNum); 310 unsigned RegBegin = MO.getReg(); 311 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 312 // already got the operands in registers that are operands to the 313 // inline asm statement. 314 O << "{"; 315 if (ARM::GPRPairRegClass.contains(RegBegin)) { 316 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 317 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 318 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 319 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 320 } 321 O << ARMInstPrinter::getRegisterName(RegBegin); 322 323 // FIXME: The register allocator not only may not have given us the 324 // registers in sequence, but may not be in ascending registers. This 325 // will require changes in the register allocator that'll need to be 326 // propagated down here if the operands change. 327 unsigned RegOps = OpNum + 1; 328 while (MI->getOperand(RegOps).isReg()) { 329 O << ", " 330 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 331 RegOps++; 332 } 333 334 O << "}"; 335 336 return false; 337 } 338 case 'R': // The most significant register of a pair. 339 case 'Q': { // The least significant register of a pair. 340 if (OpNum == 0) 341 return true; 342 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 343 if (!FlagsOP.isImm()) 344 return true; 345 unsigned Flags = FlagsOP.getImm(); 346 347 // This operand may not be the one that actually provides the register. If 348 // it's tied to a previous one then we should refer instead to that one 349 // for registers and their classes. 350 unsigned TiedIdx; 351 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 352 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 353 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 354 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 355 } 356 Flags = MI->getOperand(OpNum).getImm(); 357 358 // Later code expects OpNum to be pointing at the register rather than 359 // the flags. 360 OpNum += 1; 361 } 362 363 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 364 unsigned RC; 365 InlineAsm::hasRegClassConstraint(Flags, RC); 366 if (RC == ARM::GPRPairRegClassID) { 367 if (NumVals != 1) 368 return true; 369 const MachineOperand &MO = MI->getOperand(OpNum); 370 if (!MO.isReg()) 371 return true; 372 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 373 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 374 ARM::gsub_0 : ARM::gsub_1); 375 O << ARMInstPrinter::getRegisterName(Reg); 376 return false; 377 } 378 if (NumVals != 2) 379 return true; 380 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 381 if (RegOp >= MI->getNumOperands()) 382 return true; 383 const MachineOperand &MO = MI->getOperand(RegOp); 384 if (!MO.isReg()) 385 return true; 386 unsigned Reg = MO.getReg(); 387 O << ARMInstPrinter::getRegisterName(Reg); 388 return false; 389 } 390 391 case 'e': // The low doubleword register of a NEON quad register. 392 case 'f': { // The high doubleword register of a NEON quad register. 393 if (!MI->getOperand(OpNum).isReg()) 394 return true; 395 unsigned Reg = MI->getOperand(OpNum).getReg(); 396 if (!ARM::QPRRegClass.contains(Reg)) 397 return true; 398 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 399 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 400 ARM::dsub_0 : ARM::dsub_1); 401 O << ARMInstPrinter::getRegisterName(SubReg); 402 return false; 403 } 404 405 // This modifier is not yet supported. 406 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 407 return true; 408 case 'H': { // The highest-numbered register of a pair. 409 const MachineOperand &MO = MI->getOperand(OpNum); 410 if (!MO.isReg()) 411 return true; 412 const MachineFunction &MF = *MI->getParent()->getParent(); 413 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 414 unsigned Reg = MO.getReg(); 415 if(!ARM::GPRPairRegClass.contains(Reg)) 416 return false; 417 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 418 O << ARMInstPrinter::getRegisterName(Reg); 419 return false; 420 } 421 } 422 } 423 424 printOperand(MI, OpNum, O); 425 return false; 426 } 427 428 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 429 unsigned OpNum, unsigned AsmVariant, 430 const char *ExtraCode, 431 raw_ostream &O) { 432 // Does this asm operand have a single letter operand modifier? 433 if (ExtraCode && ExtraCode[0]) { 434 if (ExtraCode[1] != 0) return true; // Unknown modifier. 435 436 switch (ExtraCode[0]) { 437 case 'A': // A memory operand for a VLD1/VST1 instruction. 438 default: return true; // Unknown modifier. 439 case 'm': // The base register of a memory operand. 440 if (!MI->getOperand(OpNum).isReg()) 441 return true; 442 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 443 return false; 444 } 445 } 446 447 const MachineOperand &MO = MI->getOperand(OpNum); 448 assert(MO.isReg() && "unexpected inline asm memory operand"); 449 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 450 return false; 451 } 452 453 static bool isThumb(const MCSubtargetInfo& STI) { 454 return STI.getFeatureBits()[ARM::ModeThumb]; 455 } 456 457 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 458 const MCSubtargetInfo *EndInfo) const { 459 // If either end mode is unknown (EndInfo == NULL) or different than 460 // the start mode, then restore the start mode. 461 const bool WasThumb = isThumb(StartInfo); 462 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 463 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 464 } 465 } 466 467 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 468 const Triple &TT = TM.getTargetTriple(); 469 // Use unified assembler syntax. 470 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 471 472 // Emit ARM Build Attributes 473 if (TT.isOSBinFormatELF()) 474 emitAttributes(); 475 476 // Use the triple's architecture and subarchitecture to determine 477 // if we're thumb for the purposes of the top level code16 assembler 478 // flag. 479 bool isThumb = TT.getArch() == Triple::thumb || 480 TT.getArch() == Triple::thumbeb || 481 TT.getSubArch() == Triple::ARMSubArch_v7m || 482 TT.getSubArch() == Triple::ARMSubArch_v6m; 483 if (!M.getModuleInlineAsm().empty() && isThumb) 484 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 485 } 486 487 static void 488 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 489 MachineModuleInfoImpl::StubValueTy &MCSym) { 490 // L_foo$stub: 491 OutStreamer.EmitLabel(StubLabel); 492 // .indirect_symbol _foo 493 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 494 495 if (MCSym.getInt()) 496 // External to current translation unit. 497 OutStreamer.EmitIntValue(0, 4/*size*/); 498 else 499 // Internal to current translation unit. 500 // 501 // When we place the LSDA into the TEXT section, the type info 502 // pointers need to be indirect and pc-rel. We accomplish this by 503 // using NLPs; however, sometimes the types are local to the file. 504 // We need to fill in the value for the NLP in those cases. 505 OutStreamer.EmitValue( 506 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 507 4 /*size*/); 508 } 509 510 511 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 512 const Triple &TT = TM.getTargetTriple(); 513 if (TT.isOSBinFormatMachO()) { 514 // All darwin targets use mach-o. 515 const TargetLoweringObjectFileMachO &TLOFMacho = 516 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 517 MachineModuleInfoMachO &MMIMacho = 518 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 519 520 // Output non-lazy-pointers for external and common global variables. 521 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 522 523 if (!Stubs.empty()) { 524 // Switch with ".non_lazy_symbol_pointer" directive. 525 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 526 EmitAlignment(2); 527 528 for (auto &Stub : Stubs) 529 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 530 531 Stubs.clear(); 532 OutStreamer->AddBlankLine(); 533 } 534 535 Stubs = MMIMacho.GetThreadLocalGVStubList(); 536 if (!Stubs.empty()) { 537 // Switch with ".non_lazy_symbol_pointer" directive. 538 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 539 EmitAlignment(2); 540 541 for (auto &Stub : Stubs) 542 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 543 544 Stubs.clear(); 545 OutStreamer->AddBlankLine(); 546 } 547 548 // Funny Darwin hack: This flag tells the linker that no global symbols 549 // contain code that falls through to other global symbols (e.g. the obvious 550 // implementation of multiple entry points). If this doesn't occur, the 551 // linker can safely perform dead code stripping. Since LLVM never 552 // generates code that does this, it is always safe to set. 553 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 554 } 555 556 if (TT.isOSBinFormatCOFF()) { 557 const auto &TLOF = 558 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering()); 559 560 std::string Flags; 561 raw_string_ostream OS(Flags); 562 563 for (const auto &Function : M) 564 TLOF.emitLinkerFlagsForGlobal(OS, &Function); 565 for (const auto &Global : M.globals()) 566 TLOF.emitLinkerFlagsForGlobal(OS, &Global); 567 for (const auto &Alias : M.aliases()) 568 TLOF.emitLinkerFlagsForGlobal(OS, &Alias); 569 570 OS.flush(); 571 572 // Output collected flags 573 if (!Flags.empty()) { 574 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 575 OutStreamer->EmitBytes(Flags); 576 } 577 } 578 579 // The last attribute to be emitted is ABI_optimization_goals 580 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 581 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 582 583 if (OptimizationGoals > 0 && 584 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 585 Subtarget->isTargetMuslAEABI())) 586 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 587 OptimizationGoals = -1; 588 589 ATS.finishAttributeSection(); 590 } 591 592 //===----------------------------------------------------------------------===// 593 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 594 // FIXME: 595 // The following seem like one-off assembler flags, but they actually need 596 // to appear in the .ARM.attributes section in ELF. 597 // Instead of subclassing the MCELFStreamer, we do the work here. 598 599 // Returns true if all functions have the same function attribute value. 600 // It also returns true when the module has no functions. 601 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 602 StringRef Value) { 603 return !any_of(M, [&](const Function &F) { 604 return F.getFnAttribute(Attr).getValueAsString() != Value; 605 }); 606 } 607 608 void ARMAsmPrinter::emitAttributes() { 609 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 610 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 611 612 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 613 614 ATS.switchVendor("aeabi"); 615 616 // Compute ARM ELF Attributes based on the default subtarget that 617 // we'd have constructed. The existing ARM behavior isn't LTO clean 618 // anyhow. 619 // FIXME: For ifunc related functions we could iterate over and look 620 // for a feature string that doesn't match the default one. 621 const Triple &TT = TM.getTargetTriple(); 622 StringRef CPU = TM.getTargetCPU(); 623 StringRef FS = TM.getTargetFeatureString(); 624 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 625 if (!FS.empty()) { 626 if (!ArchFS.empty()) 627 ArchFS = (Twine(ArchFS) + "," + FS).str(); 628 else 629 ArchFS = FS; 630 } 631 const ARMBaseTargetMachine &ATM = 632 static_cast<const ARMBaseTargetMachine &>(TM); 633 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 634 635 // Emit build attributes for the available hardware. 636 ATS.emitTargetAttributes(STI); 637 638 // RW data addressing. 639 if (isPositionIndependent()) { 640 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 641 ARMBuildAttrs::AddressRWPCRel); 642 } else if (STI.isRWPI()) { 643 // RWPI specific attributes. 644 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 645 ARMBuildAttrs::AddressRWSBRel); 646 } 647 648 // RO data addressing. 649 if (isPositionIndependent() || STI.isROPI()) { 650 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 651 ARMBuildAttrs::AddressROPCRel); 652 } 653 654 // GOT use. 655 if (isPositionIndependent()) { 656 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 657 ARMBuildAttrs::AddressGOT); 658 } else { 659 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 660 ARMBuildAttrs::AddressDirect); 661 } 662 663 // Set FP Denormals. 664 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 665 "denormal-fp-math", 666 "preserve-sign") || 667 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 668 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 669 ARMBuildAttrs::PreserveFPSign); 670 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 671 "denormal-fp-math", 672 "positive-zero") || 673 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 674 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 675 ARMBuildAttrs::PositiveZero); 676 else if (!TM.Options.UnsafeFPMath) 677 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 678 ARMBuildAttrs::IEEEDenormals); 679 else { 680 if (!STI.hasVFP2()) { 681 // When the target doesn't have an FPU (by design or 682 // intention), the assumptions made on the software support 683 // mirror that of the equivalent hardware support *if it 684 // existed*. For v7 and better we indicate that denormals are 685 // flushed preserving sign, and for V6 we indicate that 686 // denormals are flushed to positive zero. 687 if (STI.hasV7Ops()) 688 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 689 ARMBuildAttrs::PreserveFPSign); 690 } else if (STI.hasVFP3()) { 691 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 692 // the sign bit of the zero matches the sign bit of the input or 693 // result that is being flushed to zero. 694 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 695 ARMBuildAttrs::PreserveFPSign); 696 } 697 // For VFPv2 implementations it is implementation defined as 698 // to whether denormals are flushed to positive zero or to 699 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 700 // LLVM has chosen to flush this to positive zero (most likely for 701 // GCC compatibility), so that's the chosen value here (the 702 // absence of its emission implies zero). 703 } 704 705 // Set FP exceptions and rounding 706 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 707 "no-trapping-math", "true") || 708 TM.Options.NoTrappingFPMath) 709 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 710 ARMBuildAttrs::Not_Allowed); 711 else if (!TM.Options.UnsafeFPMath) { 712 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 713 714 // If the user has permitted this code to choose the IEEE 754 715 // rounding at run-time, emit the rounding attribute. 716 if (TM.Options.HonorSignDependentRoundingFPMathOption) 717 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 718 } 719 720 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 721 // equivalent of GCC's -ffinite-math-only flag. 722 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 723 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 724 ARMBuildAttrs::Allowed); 725 else 726 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 727 ARMBuildAttrs::AllowIEEE754); 728 729 // FIXME: add more flags to ARMBuildAttributes.h 730 // 8-bytes alignment stuff. 731 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 732 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 733 734 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 735 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 736 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 737 738 // FIXME: To support emitting this build attribute as GCC does, the 739 // -mfp16-format option and associated plumbing must be 740 // supported. For now the __fp16 type is exposed by default, so this 741 // attribute should be emitted with value 1. 742 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 743 ARMBuildAttrs::FP16FormatIEEE); 744 745 if (MMI) { 746 if (const Module *SourceModule = MMI->getModule()) { 747 // ABI_PCS_wchar_t to indicate wchar_t width 748 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 749 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 750 SourceModule->getModuleFlag("wchar_size"))) { 751 int WCharWidth = WCharWidthValue->getZExtValue(); 752 assert((WCharWidth == 2 || WCharWidth == 4) && 753 "wchar_t width must be 2 or 4 bytes"); 754 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 755 } 756 757 // ABI_enum_size to indicate enum width 758 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 759 // (all enums contain a value needing 32 bits to encode). 760 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 761 SourceModule->getModuleFlag("min_enum_size"))) { 762 int EnumWidth = EnumWidthValue->getZExtValue(); 763 assert((EnumWidth == 1 || EnumWidth == 4) && 764 "Minimum enum width must be 1 or 4 bytes"); 765 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 766 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 767 } 768 } 769 } 770 771 // We currently do not support using R9 as the TLS pointer. 772 if (STI.isRWPI()) 773 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 774 ARMBuildAttrs::R9IsSB); 775 else if (STI.isR9Reserved()) 776 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 777 ARMBuildAttrs::R9Reserved); 778 else 779 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 780 ARMBuildAttrs::R9IsGPR); 781 } 782 783 //===----------------------------------------------------------------------===// 784 785 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 786 unsigned LabelId, MCContext &Ctx) { 787 788 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 789 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 790 return Label; 791 } 792 793 static MCSymbolRefExpr::VariantKind 794 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 795 switch (Modifier) { 796 case ARMCP::no_modifier: 797 return MCSymbolRefExpr::VK_None; 798 case ARMCP::TLSGD: 799 return MCSymbolRefExpr::VK_TLSGD; 800 case ARMCP::TPOFF: 801 return MCSymbolRefExpr::VK_TPOFF; 802 case ARMCP::GOTTPOFF: 803 return MCSymbolRefExpr::VK_GOTTPOFF; 804 case ARMCP::SBREL: 805 return MCSymbolRefExpr::VK_ARM_SBREL; 806 case ARMCP::GOT_PREL: 807 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 808 case ARMCP::SECREL: 809 return MCSymbolRefExpr::VK_SECREL; 810 } 811 llvm_unreachable("Invalid ARMCPModifier!"); 812 } 813 814 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 815 unsigned char TargetFlags) { 816 if (Subtarget->isTargetMachO()) { 817 bool IsIndirect = 818 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 819 820 if (!IsIndirect) 821 return getSymbol(GV); 822 823 // FIXME: Remove this when Darwin transition to @GOT like syntax. 824 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 825 MachineModuleInfoMachO &MMIMachO = 826 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 827 MachineModuleInfoImpl::StubValueTy &StubSym = 828 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 829 : MMIMachO.getGVStubEntry(MCSym); 830 831 if (!StubSym.getPointer()) 832 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 833 !GV->hasInternalLinkage()); 834 return MCSym; 835 } else if (Subtarget->isTargetCOFF()) { 836 assert(Subtarget->isTargetWindows() && 837 "Windows is the only supported COFF target"); 838 839 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 840 if (!IsIndirect) 841 return getSymbol(GV); 842 843 SmallString<128> Name; 844 Name = "__imp_"; 845 getNameWithPrefix(Name, GV); 846 847 return OutContext.getOrCreateSymbol(Name); 848 } else if (Subtarget->isTargetELF()) { 849 return getSymbol(GV); 850 } 851 llvm_unreachable("unexpected target"); 852 } 853 854 void ARMAsmPrinter:: 855 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 856 const DataLayout &DL = getDataLayout(); 857 int Size = DL.getTypeAllocSize(MCPV->getType()); 858 859 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 860 861 if (ACPV->isPromotedGlobal()) { 862 // This constant pool entry is actually a global whose storage has been 863 // promoted into the constant pool. This global may be referenced still 864 // by debug information, and due to the way AsmPrinter is set up, the debug 865 // info is immutable by the time we decide to promote globals to constant 866 // pools. Because of this, we need to ensure we emit a symbol for the global 867 // with private linkage (the default) so debug info can refer to it. 868 // 869 // However, if this global is promoted into several functions we must ensure 870 // we don't try and emit duplicate symbols! 871 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 872 auto *GV = ACPC->getPromotedGlobal(); 873 if (!EmittedPromotedGlobalLabels.count(GV)) { 874 MCSymbol *GVSym = getSymbol(GV); 875 OutStreamer->EmitLabel(GVSym); 876 EmittedPromotedGlobalLabels.insert(GV); 877 } 878 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 879 } 880 881 MCSymbol *MCSym; 882 if (ACPV->isLSDA()) { 883 MCSym = getCurExceptionSym(); 884 } else if (ACPV->isBlockAddress()) { 885 const BlockAddress *BA = 886 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 887 MCSym = GetBlockAddressSymbol(BA); 888 } else if (ACPV->isGlobalValue()) { 889 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 890 891 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 892 // flag the global as MO_NONLAZY. 893 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 894 MCSym = GetARMGVSymbol(GV, TF); 895 } else if (ACPV->isMachineBasicBlock()) { 896 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 897 MCSym = MBB->getSymbol(); 898 } else { 899 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 900 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 901 MCSym = GetExternalSymbolSymbol(Sym); 902 } 903 904 // Create an MCSymbol for the reference. 905 const MCExpr *Expr = 906 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 907 OutContext); 908 909 if (ACPV->getPCAdjustment()) { 910 MCSymbol *PCLabel = 911 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 912 ACPV->getLabelId(), OutContext); 913 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 914 PCRelExpr = 915 MCBinaryExpr::createAdd(PCRelExpr, 916 MCConstantExpr::create(ACPV->getPCAdjustment(), 917 OutContext), 918 OutContext); 919 if (ACPV->mustAddCurrentAddress()) { 920 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 921 // label, so just emit a local label end reference that instead. 922 MCSymbol *DotSym = OutContext.createTempSymbol(); 923 OutStreamer->EmitLabel(DotSym); 924 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 925 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 926 } 927 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 928 } 929 OutStreamer->EmitValue(Expr, Size); 930 } 931 932 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 933 const MachineOperand &MO1 = MI->getOperand(1); 934 unsigned JTI = MO1.getIndex(); 935 936 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 937 // ARM mode tables. 938 EmitAlignment(2); 939 940 // Emit a label for the jump table. 941 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 942 OutStreamer->EmitLabel(JTISymbol); 943 944 // Mark the jump table as data-in-code. 945 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 946 947 // Emit each entry of the table. 948 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 949 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 950 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 951 952 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 953 MachineBasicBlock *MBB = JTBBs[i]; 954 // Construct an MCExpr for the entry. We want a value of the form: 955 // (BasicBlockAddr - TableBeginAddr) 956 // 957 // For example, a table with entries jumping to basic blocks BB0 and BB1 958 // would look like: 959 // LJTI_0_0: 960 // .word (LBB0 - LJTI_0_0) 961 // .word (LBB1 - LJTI_0_0) 962 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 963 964 if (isPositionIndependent() || Subtarget->isROPI()) 965 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 966 OutContext), 967 OutContext); 968 // If we're generating a table of Thumb addresses in static relocation 969 // model, we need to add one to keep interworking correctly. 970 else if (AFI->isThumbFunction()) 971 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 972 OutContext); 973 OutStreamer->EmitValue(Expr, 4); 974 } 975 // Mark the end of jump table data-in-code region. 976 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 977 } 978 979 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 980 const MachineOperand &MO1 = MI->getOperand(1); 981 unsigned JTI = MO1.getIndex(); 982 983 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 984 // ARM mode tables. 985 EmitAlignment(2); 986 987 // Emit a label for the jump table. 988 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 989 OutStreamer->EmitLabel(JTISymbol); 990 991 // Emit each entry of the table. 992 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 993 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 994 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 995 996 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 997 MachineBasicBlock *MBB = JTBBs[i]; 998 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 999 OutContext); 1000 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1001 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1002 .addExpr(MBBSymbolExpr) 1003 .addImm(ARMCC::AL) 1004 .addReg(0)); 1005 } 1006 } 1007 1008 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1009 unsigned OffsetWidth) { 1010 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1011 const MachineOperand &MO1 = MI->getOperand(1); 1012 unsigned JTI = MO1.getIndex(); 1013 1014 if (Subtarget->isThumb1Only()) 1015 EmitAlignment(2); 1016 1017 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1018 OutStreamer->EmitLabel(JTISymbol); 1019 1020 // Emit each entry of the table. 1021 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1022 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1023 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1024 1025 // Mark the jump table as data-in-code. 1026 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1027 : MCDR_DataRegionJT16); 1028 1029 for (auto MBB : JTBBs) { 1030 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1031 OutContext); 1032 // Otherwise it's an offset from the dispatch instruction. Construct an 1033 // MCExpr for the entry. We want a value of the form: 1034 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1035 // 1036 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1037 // would look like: 1038 // LJTI_0_0: 1039 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1040 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1041 // where LCPI0_0 is a label defined just before the TBB instruction using 1042 // this table. 1043 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1044 const MCExpr *Expr = MCBinaryExpr::createAdd( 1045 MCSymbolRefExpr::create(TBInstPC, OutContext), 1046 MCConstantExpr::create(4, OutContext), OutContext); 1047 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1048 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1049 OutContext); 1050 OutStreamer->EmitValue(Expr, OffsetWidth); 1051 } 1052 // Mark the end of jump table data-in-code region. 32-bit offsets use 1053 // actual branch instructions here, so we don't mark those as a data-region 1054 // at all. 1055 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1056 1057 // Make sure the next instruction is 2-byte aligned. 1058 EmitAlignment(1); 1059 } 1060 1061 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1062 assert(MI->getFlag(MachineInstr::FrameSetup) && 1063 "Only instruction which are involved into frame setup code are allowed"); 1064 1065 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1066 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1067 const MachineFunction &MF = *MI->getParent()->getParent(); 1068 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1069 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1070 1071 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1072 unsigned Opc = MI->getOpcode(); 1073 unsigned SrcReg, DstReg; 1074 1075 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1076 // Two special cases: 1077 // 1) tPUSH does not have src/dst regs. 1078 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1079 // load. Yes, this is pretty fragile, but for now I don't see better 1080 // way... :( 1081 SrcReg = DstReg = ARM::SP; 1082 } else { 1083 SrcReg = MI->getOperand(1).getReg(); 1084 DstReg = MI->getOperand(0).getReg(); 1085 } 1086 1087 // Try to figure out the unwinding opcode out of src / dst regs. 1088 if (MI->mayStore()) { 1089 // Register saves. 1090 assert(DstReg == ARM::SP && 1091 "Only stack pointer as a destination reg is supported"); 1092 1093 SmallVector<unsigned, 4> RegList; 1094 // Skip src & dst reg, and pred ops. 1095 unsigned StartOp = 2 + 2; 1096 // Use all the operands. 1097 unsigned NumOffset = 0; 1098 1099 switch (Opc) { 1100 default: 1101 MI->print(errs()); 1102 llvm_unreachable("Unsupported opcode for unwinding information"); 1103 case ARM::tPUSH: 1104 // Special case here: no src & dst reg, but two extra imp ops. 1105 StartOp = 2; NumOffset = 2; 1106 LLVM_FALLTHROUGH; 1107 case ARM::STMDB_UPD: 1108 case ARM::t2STMDB_UPD: 1109 case ARM::VSTMDDB_UPD: 1110 assert(SrcReg == ARM::SP && 1111 "Only stack pointer as a source reg is supported"); 1112 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1113 i != NumOps; ++i) { 1114 const MachineOperand &MO = MI->getOperand(i); 1115 // Actually, there should never be any impdef stuff here. Skip it 1116 // temporary to workaround PR11902. 1117 if (MO.isImplicit()) 1118 continue; 1119 RegList.push_back(MO.getReg()); 1120 } 1121 break; 1122 case ARM::STR_PRE_IMM: 1123 case ARM::STR_PRE_REG: 1124 case ARM::t2STR_PRE: 1125 assert(MI->getOperand(2).getReg() == ARM::SP && 1126 "Only stack pointer as a source reg is supported"); 1127 RegList.push_back(SrcReg); 1128 break; 1129 } 1130 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1131 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1132 } else { 1133 // Changes of stack / frame pointer. 1134 if (SrcReg == ARM::SP) { 1135 int64_t Offset = 0; 1136 switch (Opc) { 1137 default: 1138 MI->print(errs()); 1139 llvm_unreachable("Unsupported opcode for unwinding information"); 1140 case ARM::MOVr: 1141 case ARM::tMOVr: 1142 Offset = 0; 1143 break; 1144 case ARM::ADDri: 1145 case ARM::t2ADDri: 1146 Offset = -MI->getOperand(2).getImm(); 1147 break; 1148 case ARM::SUBri: 1149 case ARM::t2SUBri: 1150 Offset = MI->getOperand(2).getImm(); 1151 break; 1152 case ARM::tSUBspi: 1153 Offset = MI->getOperand(2).getImm()*4; 1154 break; 1155 case ARM::tADDspi: 1156 case ARM::tADDrSPi: 1157 Offset = -MI->getOperand(2).getImm()*4; 1158 break; 1159 case ARM::tLDRpci: { 1160 // Grab the constpool index and check, whether it corresponds to 1161 // original or cloned constpool entry. 1162 unsigned CPI = MI->getOperand(1).getIndex(); 1163 const MachineConstantPool *MCP = MF.getConstantPool(); 1164 if (CPI >= MCP->getConstants().size()) 1165 CPI = AFI.getOriginalCPIdx(CPI); 1166 assert(CPI != -1U && "Invalid constpool index"); 1167 1168 // Derive the actual offset. 1169 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1170 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1171 // FIXME: Check for user, it should be "add" instruction! 1172 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1173 break; 1174 } 1175 } 1176 1177 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1178 if (DstReg == FramePtr && FramePtr != ARM::SP) 1179 // Set-up of the frame pointer. Positive values correspond to "add" 1180 // instruction. 1181 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1182 else if (DstReg == ARM::SP) { 1183 // Change of SP by an offset. Positive values correspond to "sub" 1184 // instruction. 1185 ATS.emitPad(Offset); 1186 } else { 1187 // Move of SP to a register. Positive values correspond to an "add" 1188 // instruction. 1189 ATS.emitMovSP(DstReg, -Offset); 1190 } 1191 } 1192 } else if (DstReg == ARM::SP) { 1193 MI->print(errs()); 1194 llvm_unreachable("Unsupported opcode for unwinding information"); 1195 } 1196 else { 1197 MI->print(errs()); 1198 llvm_unreachable("Unsupported opcode for unwinding information"); 1199 } 1200 } 1201 } 1202 1203 // Simple pseudo-instructions have their lowering (with expansion to real 1204 // instructions) auto-generated. 1205 #include "ARMGenMCPseudoLowering.inc" 1206 1207 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1208 const DataLayout &DL = getDataLayout(); 1209 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1210 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1211 1212 // If we just ended a constant pool, mark it as such. 1213 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1214 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1215 InConstantPool = false; 1216 } 1217 1218 // Emit unwinding stuff for frame-related instructions 1219 if (Subtarget->isTargetEHABICompatible() && 1220 MI->getFlag(MachineInstr::FrameSetup)) 1221 EmitUnwindingInstruction(MI); 1222 1223 // Do any auto-generated pseudo lowerings. 1224 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1225 return; 1226 1227 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1228 "Pseudo flag setting opcode should be expanded early"); 1229 1230 // Check for manual lowerings. 1231 unsigned Opc = MI->getOpcode(); 1232 switch (Opc) { 1233 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1234 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1235 case ARM::LEApcrel: 1236 case ARM::tLEApcrel: 1237 case ARM::t2LEApcrel: { 1238 // FIXME: Need to also handle globals and externals 1239 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1240 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1241 ARM::t2LEApcrel ? ARM::t2ADR 1242 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1243 : ARM::ADR)) 1244 .addReg(MI->getOperand(0).getReg()) 1245 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1246 // Add predicate operands. 1247 .addImm(MI->getOperand(2).getImm()) 1248 .addReg(MI->getOperand(3).getReg())); 1249 return; 1250 } 1251 case ARM::LEApcrelJT: 1252 case ARM::tLEApcrelJT: 1253 case ARM::t2LEApcrelJT: { 1254 MCSymbol *JTIPICSymbol = 1255 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1256 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1257 ARM::t2LEApcrelJT ? ARM::t2ADR 1258 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1259 : ARM::ADR)) 1260 .addReg(MI->getOperand(0).getReg()) 1261 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1262 // Add predicate operands. 1263 .addImm(MI->getOperand(2).getImm()) 1264 .addReg(MI->getOperand(3).getReg())); 1265 return; 1266 } 1267 // Darwin call instructions are just normal call instructions with different 1268 // clobber semantics (they clobber R9). 1269 case ARM::BX_CALL: { 1270 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1271 .addReg(ARM::LR) 1272 .addReg(ARM::PC) 1273 // Add predicate operands. 1274 .addImm(ARMCC::AL) 1275 .addReg(0) 1276 // Add 's' bit operand (always reg0 for this) 1277 .addReg(0)); 1278 1279 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1280 .addReg(MI->getOperand(0).getReg())); 1281 return; 1282 } 1283 case ARM::tBX_CALL: { 1284 if (Subtarget->hasV5TOps()) 1285 llvm_unreachable("Expected BLX to be selected for v5t+"); 1286 1287 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1288 // that the saved lr has its LSB set correctly (the arch doesn't 1289 // have blx). 1290 // So here we generate a bl to a small jump pad that does bx rN. 1291 // The jump pads are emitted after the function body. 1292 1293 unsigned TReg = MI->getOperand(0).getReg(); 1294 MCSymbol *TRegSym = nullptr; 1295 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1296 if (ThumbIndirectPads[i].first == TReg) { 1297 TRegSym = ThumbIndirectPads[i].second; 1298 break; 1299 } 1300 } 1301 1302 if (!TRegSym) { 1303 TRegSym = OutContext.createTempSymbol(); 1304 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1305 } 1306 1307 // Create a link-saving branch to the Reg Indirect Jump Pad. 1308 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1309 // Predicate comes first here. 1310 .addImm(ARMCC::AL).addReg(0) 1311 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1312 return; 1313 } 1314 case ARM::BMOVPCRX_CALL: { 1315 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1316 .addReg(ARM::LR) 1317 .addReg(ARM::PC) 1318 // Add predicate operands. 1319 .addImm(ARMCC::AL) 1320 .addReg(0) 1321 // Add 's' bit operand (always reg0 for this) 1322 .addReg(0)); 1323 1324 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1325 .addReg(ARM::PC) 1326 .addReg(MI->getOperand(0).getReg()) 1327 // Add predicate operands. 1328 .addImm(ARMCC::AL) 1329 .addReg(0) 1330 // Add 's' bit operand (always reg0 for this) 1331 .addReg(0)); 1332 return; 1333 } 1334 case ARM::BMOVPCB_CALL: { 1335 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1336 .addReg(ARM::LR) 1337 .addReg(ARM::PC) 1338 // Add predicate operands. 1339 .addImm(ARMCC::AL) 1340 .addReg(0) 1341 // Add 's' bit operand (always reg0 for this) 1342 .addReg(0)); 1343 1344 const MachineOperand &Op = MI->getOperand(0); 1345 const GlobalValue *GV = Op.getGlobal(); 1346 const unsigned TF = Op.getTargetFlags(); 1347 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1348 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1349 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1350 .addExpr(GVSymExpr) 1351 // Add predicate operands. 1352 .addImm(ARMCC::AL) 1353 .addReg(0)); 1354 return; 1355 } 1356 case ARM::MOVi16_ga_pcrel: 1357 case ARM::t2MOVi16_ga_pcrel: { 1358 MCInst TmpInst; 1359 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1360 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1361 1362 unsigned TF = MI->getOperand(1).getTargetFlags(); 1363 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1364 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1365 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1366 1367 MCSymbol *LabelSym = 1368 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1369 MI->getOperand(2).getImm(), OutContext); 1370 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1371 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1372 const MCExpr *PCRelExpr = 1373 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1374 MCBinaryExpr::createAdd(LabelSymExpr, 1375 MCConstantExpr::create(PCAdj, OutContext), 1376 OutContext), OutContext), OutContext); 1377 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1378 1379 // Add predicate operands. 1380 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1381 TmpInst.addOperand(MCOperand::createReg(0)); 1382 // Add 's' bit operand (always reg0 for this) 1383 TmpInst.addOperand(MCOperand::createReg(0)); 1384 EmitToStreamer(*OutStreamer, TmpInst); 1385 return; 1386 } 1387 case ARM::MOVTi16_ga_pcrel: 1388 case ARM::t2MOVTi16_ga_pcrel: { 1389 MCInst TmpInst; 1390 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1391 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1392 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1393 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1394 1395 unsigned TF = MI->getOperand(2).getTargetFlags(); 1396 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1397 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1398 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1399 1400 MCSymbol *LabelSym = 1401 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1402 MI->getOperand(3).getImm(), OutContext); 1403 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1404 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1405 const MCExpr *PCRelExpr = 1406 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1407 MCBinaryExpr::createAdd(LabelSymExpr, 1408 MCConstantExpr::create(PCAdj, OutContext), 1409 OutContext), OutContext), OutContext); 1410 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1411 // Add predicate operands. 1412 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1413 TmpInst.addOperand(MCOperand::createReg(0)); 1414 // Add 's' bit operand (always reg0 for this) 1415 TmpInst.addOperand(MCOperand::createReg(0)); 1416 EmitToStreamer(*OutStreamer, TmpInst); 1417 return; 1418 } 1419 case ARM::tPICADD: { 1420 // This is a pseudo op for a label + instruction sequence, which looks like: 1421 // LPC0: 1422 // add r0, pc 1423 // This adds the address of LPC0 to r0. 1424 1425 // Emit the label. 1426 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1427 getFunctionNumber(), 1428 MI->getOperand(2).getImm(), OutContext)); 1429 1430 // Form and emit the add. 1431 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1432 .addReg(MI->getOperand(0).getReg()) 1433 .addReg(MI->getOperand(0).getReg()) 1434 .addReg(ARM::PC) 1435 // Add predicate operands. 1436 .addImm(ARMCC::AL) 1437 .addReg(0)); 1438 return; 1439 } 1440 case ARM::PICADD: { 1441 // This is a pseudo op for a label + instruction sequence, which looks like: 1442 // LPC0: 1443 // add r0, pc, r0 1444 // This adds the address of LPC0 to r0. 1445 1446 // Emit the label. 1447 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1448 getFunctionNumber(), 1449 MI->getOperand(2).getImm(), OutContext)); 1450 1451 // Form and emit the add. 1452 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1453 .addReg(MI->getOperand(0).getReg()) 1454 .addReg(ARM::PC) 1455 .addReg(MI->getOperand(1).getReg()) 1456 // Add predicate operands. 1457 .addImm(MI->getOperand(3).getImm()) 1458 .addReg(MI->getOperand(4).getReg()) 1459 // Add 's' bit operand (always reg0 for this) 1460 .addReg(0)); 1461 return; 1462 } 1463 case ARM::PICSTR: 1464 case ARM::PICSTRB: 1465 case ARM::PICSTRH: 1466 case ARM::PICLDR: 1467 case ARM::PICLDRB: 1468 case ARM::PICLDRH: 1469 case ARM::PICLDRSB: 1470 case ARM::PICLDRSH: { 1471 // This is a pseudo op for a label + instruction sequence, which looks like: 1472 // LPC0: 1473 // OP r0, [pc, r0] 1474 // The LCP0 label is referenced by a constant pool entry in order to get 1475 // a PC-relative address at the ldr instruction. 1476 1477 // Emit the label. 1478 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1479 getFunctionNumber(), 1480 MI->getOperand(2).getImm(), OutContext)); 1481 1482 // Form and emit the load 1483 unsigned Opcode; 1484 switch (MI->getOpcode()) { 1485 default: 1486 llvm_unreachable("Unexpected opcode!"); 1487 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1488 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1489 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1490 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1491 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1492 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1493 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1494 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1495 } 1496 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1497 .addReg(MI->getOperand(0).getReg()) 1498 .addReg(ARM::PC) 1499 .addReg(MI->getOperand(1).getReg()) 1500 .addImm(0) 1501 // Add predicate operands. 1502 .addImm(MI->getOperand(3).getImm()) 1503 .addReg(MI->getOperand(4).getReg())); 1504 1505 return; 1506 } 1507 case ARM::CONSTPOOL_ENTRY: { 1508 if (Subtarget->genExecuteOnly()) 1509 llvm_unreachable("execute-only should not generate constant pools"); 1510 1511 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1512 /// in the function. The first operand is the ID# for this instruction, the 1513 /// second is the index into the MachineConstantPool that this is, the third 1514 /// is the size in bytes of this constant pool entry. 1515 /// The required alignment is specified on the basic block holding this MI. 1516 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1517 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1518 1519 // If this is the first entry of the pool, mark it. 1520 if (!InConstantPool) { 1521 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1522 InConstantPool = true; 1523 } 1524 1525 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1526 1527 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1528 if (MCPE.isMachineConstantPoolEntry()) 1529 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1530 else 1531 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1532 return; 1533 } 1534 case ARM::JUMPTABLE_ADDRS: 1535 EmitJumpTableAddrs(MI); 1536 return; 1537 case ARM::JUMPTABLE_INSTS: 1538 EmitJumpTableInsts(MI); 1539 return; 1540 case ARM::JUMPTABLE_TBB: 1541 case ARM::JUMPTABLE_TBH: 1542 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1543 return; 1544 case ARM::t2BR_JT: { 1545 // Lower and emit the instruction itself, then the jump table following it. 1546 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1547 .addReg(ARM::PC) 1548 .addReg(MI->getOperand(0).getReg()) 1549 // Add predicate operands. 1550 .addImm(ARMCC::AL) 1551 .addReg(0)); 1552 return; 1553 } 1554 case ARM::t2TBB_JT: 1555 case ARM::t2TBH_JT: { 1556 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1557 // Lower and emit the PC label, then the instruction itself. 1558 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1559 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1560 .addReg(MI->getOperand(0).getReg()) 1561 .addReg(MI->getOperand(1).getReg()) 1562 // Add predicate operands. 1563 .addImm(ARMCC::AL) 1564 .addReg(0)); 1565 return; 1566 } 1567 case ARM::tTBB_JT: 1568 case ARM::tTBH_JT: { 1569 1570 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1571 unsigned Base = MI->getOperand(0).getReg(); 1572 unsigned Idx = MI->getOperand(1).getReg(); 1573 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1574 1575 // Multiply up idx if necessary. 1576 if (!Is8Bit) 1577 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1578 .addReg(Idx) 1579 .addReg(ARM::CPSR) 1580 .addReg(Idx) 1581 .addImm(1) 1582 // Add predicate operands. 1583 .addImm(ARMCC::AL) 1584 .addReg(0)); 1585 1586 if (Base == ARM::PC) { 1587 // TBB [base, idx] = 1588 // ADDS idx, idx, base 1589 // LDRB idx, [idx, #4] ; or LDRH if TBH 1590 // LSLS idx, #1 1591 // ADDS pc, pc, idx 1592 1593 // When using PC as the base, it's important that there is no padding 1594 // between the last ADDS and the start of the jump table. The jump table 1595 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1596 // 1597 // FIXME: Ideally we could vary the LDRB index based on the padding 1598 // between the sequence and jump table, however that relies on MCExprs 1599 // for load indexes which are currently not supported. 1600 OutStreamer->EmitCodeAlignment(4); 1601 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1602 .addReg(Idx) 1603 .addReg(Idx) 1604 .addReg(Base) 1605 // Add predicate operands. 1606 .addImm(ARMCC::AL) 1607 .addReg(0)); 1608 1609 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1610 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1611 .addReg(Idx) 1612 .addReg(Idx) 1613 .addImm(Is8Bit ? 4 : 2) 1614 // Add predicate operands. 1615 .addImm(ARMCC::AL) 1616 .addReg(0)); 1617 } else { 1618 // TBB [base, idx] = 1619 // LDRB idx, [base, idx] ; or LDRH if TBH 1620 // LSLS idx, #1 1621 // ADDS pc, pc, idx 1622 1623 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1624 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1625 .addReg(Idx) 1626 .addReg(Base) 1627 .addReg(Idx) 1628 // Add predicate operands. 1629 .addImm(ARMCC::AL) 1630 .addReg(0)); 1631 } 1632 1633 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1634 .addReg(Idx) 1635 .addReg(ARM::CPSR) 1636 .addReg(Idx) 1637 .addImm(1) 1638 // Add predicate operands. 1639 .addImm(ARMCC::AL) 1640 .addReg(0)); 1641 1642 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1643 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1644 .addReg(ARM::PC) 1645 .addReg(ARM::PC) 1646 .addReg(Idx) 1647 // Add predicate operands. 1648 .addImm(ARMCC::AL) 1649 .addReg(0)); 1650 return; 1651 } 1652 case ARM::tBR_JTr: 1653 case ARM::BR_JTr: { 1654 // Lower and emit the instruction itself, then the jump table following it. 1655 // mov pc, target 1656 MCInst TmpInst; 1657 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1658 ARM::MOVr : ARM::tMOVr; 1659 TmpInst.setOpcode(Opc); 1660 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1661 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1662 // Add predicate operands. 1663 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1664 TmpInst.addOperand(MCOperand::createReg(0)); 1665 // Add 's' bit operand (always reg0 for this) 1666 if (Opc == ARM::MOVr) 1667 TmpInst.addOperand(MCOperand::createReg(0)); 1668 EmitToStreamer(*OutStreamer, TmpInst); 1669 return; 1670 } 1671 case ARM::BR_JTm: { 1672 // Lower and emit the instruction itself, then the jump table following it. 1673 // ldr pc, target 1674 MCInst TmpInst; 1675 if (MI->getOperand(1).getReg() == 0) { 1676 // literal offset 1677 TmpInst.setOpcode(ARM::LDRi12); 1678 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1679 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1680 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1681 } else { 1682 TmpInst.setOpcode(ARM::LDRrs); 1683 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1684 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1685 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1686 TmpInst.addOperand(MCOperand::createImm(0)); 1687 } 1688 // Add predicate operands. 1689 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1690 TmpInst.addOperand(MCOperand::createReg(0)); 1691 EmitToStreamer(*OutStreamer, TmpInst); 1692 return; 1693 } 1694 case ARM::BR_JTadd: { 1695 // Lower and emit the instruction itself, then the jump table following it. 1696 // add pc, target, idx 1697 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1698 .addReg(ARM::PC) 1699 .addReg(MI->getOperand(0).getReg()) 1700 .addReg(MI->getOperand(1).getReg()) 1701 // Add predicate operands. 1702 .addImm(ARMCC::AL) 1703 .addReg(0) 1704 // Add 's' bit operand (always reg0 for this) 1705 .addReg(0)); 1706 return; 1707 } 1708 case ARM::SPACE: 1709 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1710 return; 1711 case ARM::TRAP: { 1712 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1713 // FIXME: Remove this special case when they do. 1714 if (!Subtarget->isTargetMachO()) { 1715 uint32_t Val = 0xe7ffdefeUL; 1716 OutStreamer->AddComment("trap"); 1717 ATS.emitInst(Val); 1718 return; 1719 } 1720 break; 1721 } 1722 case ARM::TRAPNaCl: { 1723 uint32_t Val = 0xe7fedef0UL; 1724 OutStreamer->AddComment("trap"); 1725 ATS.emitInst(Val); 1726 return; 1727 } 1728 case ARM::tTRAP: { 1729 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1730 // FIXME: Remove this special case when they do. 1731 if (!Subtarget->isTargetMachO()) { 1732 uint16_t Val = 0xdefe; 1733 OutStreamer->AddComment("trap"); 1734 ATS.emitInst(Val, 'n'); 1735 return; 1736 } 1737 break; 1738 } 1739 case ARM::t2Int_eh_sjlj_setjmp: 1740 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1741 case ARM::tInt_eh_sjlj_setjmp: { 1742 // Two incoming args: GPR:$src, GPR:$val 1743 // mov $val, pc 1744 // adds $val, #7 1745 // str $val, [$src, #4] 1746 // movs r0, #0 1747 // b LSJLJEH 1748 // movs r0, #1 1749 // LSJLJEH: 1750 unsigned SrcReg = MI->getOperand(0).getReg(); 1751 unsigned ValReg = MI->getOperand(1).getReg(); 1752 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1753 OutStreamer->AddComment("eh_setjmp begin"); 1754 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1755 .addReg(ValReg) 1756 .addReg(ARM::PC) 1757 // Predicate. 1758 .addImm(ARMCC::AL) 1759 .addReg(0)); 1760 1761 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1762 .addReg(ValReg) 1763 // 's' bit operand 1764 .addReg(ARM::CPSR) 1765 .addReg(ValReg) 1766 .addImm(7) 1767 // Predicate. 1768 .addImm(ARMCC::AL) 1769 .addReg(0)); 1770 1771 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1772 .addReg(ValReg) 1773 .addReg(SrcReg) 1774 // The offset immediate is #4. The operand value is scaled by 4 for the 1775 // tSTR instruction. 1776 .addImm(1) 1777 // Predicate. 1778 .addImm(ARMCC::AL) 1779 .addReg(0)); 1780 1781 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1782 .addReg(ARM::R0) 1783 .addReg(ARM::CPSR) 1784 .addImm(0) 1785 // Predicate. 1786 .addImm(ARMCC::AL) 1787 .addReg(0)); 1788 1789 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1790 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1791 .addExpr(SymbolExpr) 1792 .addImm(ARMCC::AL) 1793 .addReg(0)); 1794 1795 OutStreamer->AddComment("eh_setjmp end"); 1796 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1797 .addReg(ARM::R0) 1798 .addReg(ARM::CPSR) 1799 .addImm(1) 1800 // Predicate. 1801 .addImm(ARMCC::AL) 1802 .addReg(0)); 1803 1804 OutStreamer->EmitLabel(Label); 1805 return; 1806 } 1807 1808 case ARM::Int_eh_sjlj_setjmp_nofp: 1809 case ARM::Int_eh_sjlj_setjmp: { 1810 // Two incoming args: GPR:$src, GPR:$val 1811 // add $val, pc, #8 1812 // str $val, [$src, #+4] 1813 // mov r0, #0 1814 // add pc, pc, #0 1815 // mov r0, #1 1816 unsigned SrcReg = MI->getOperand(0).getReg(); 1817 unsigned ValReg = MI->getOperand(1).getReg(); 1818 1819 OutStreamer->AddComment("eh_setjmp begin"); 1820 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1821 .addReg(ValReg) 1822 .addReg(ARM::PC) 1823 .addImm(8) 1824 // Predicate. 1825 .addImm(ARMCC::AL) 1826 .addReg(0) 1827 // 's' bit operand (always reg0 for this). 1828 .addReg(0)); 1829 1830 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1831 .addReg(ValReg) 1832 .addReg(SrcReg) 1833 .addImm(4) 1834 // Predicate. 1835 .addImm(ARMCC::AL) 1836 .addReg(0)); 1837 1838 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1839 .addReg(ARM::R0) 1840 .addImm(0) 1841 // Predicate. 1842 .addImm(ARMCC::AL) 1843 .addReg(0) 1844 // 's' bit operand (always reg0 for this). 1845 .addReg(0)); 1846 1847 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1848 .addReg(ARM::PC) 1849 .addReg(ARM::PC) 1850 .addImm(0) 1851 // Predicate. 1852 .addImm(ARMCC::AL) 1853 .addReg(0) 1854 // 's' bit operand (always reg0 for this). 1855 .addReg(0)); 1856 1857 OutStreamer->AddComment("eh_setjmp end"); 1858 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1859 .addReg(ARM::R0) 1860 .addImm(1) 1861 // Predicate. 1862 .addImm(ARMCC::AL) 1863 .addReg(0) 1864 // 's' bit operand (always reg0 for this). 1865 .addReg(0)); 1866 return; 1867 } 1868 case ARM::Int_eh_sjlj_longjmp: { 1869 // ldr sp, [$src, #8] 1870 // ldr $scratch, [$src, #4] 1871 // ldr r7, [$src] 1872 // bx $scratch 1873 unsigned SrcReg = MI->getOperand(0).getReg(); 1874 unsigned ScratchReg = MI->getOperand(1).getReg(); 1875 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1876 .addReg(ARM::SP) 1877 .addReg(SrcReg) 1878 .addImm(8) 1879 // Predicate. 1880 .addImm(ARMCC::AL) 1881 .addReg(0)); 1882 1883 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1884 .addReg(ScratchReg) 1885 .addReg(SrcReg) 1886 .addImm(4) 1887 // Predicate. 1888 .addImm(ARMCC::AL) 1889 .addReg(0)); 1890 1891 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1892 .addReg(ARM::R7) 1893 .addReg(SrcReg) 1894 .addImm(0) 1895 // Predicate. 1896 .addImm(ARMCC::AL) 1897 .addReg(0)); 1898 1899 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1900 .addReg(ScratchReg) 1901 // Predicate. 1902 .addImm(ARMCC::AL) 1903 .addReg(0)); 1904 return; 1905 } 1906 case ARM::tInt_eh_sjlj_longjmp: { 1907 // ldr $scratch, [$src, #8] 1908 // mov sp, $scratch 1909 // ldr $scratch, [$src, #4] 1910 // ldr r7, [$src] 1911 // bx $scratch 1912 unsigned SrcReg = MI->getOperand(0).getReg(); 1913 unsigned ScratchReg = MI->getOperand(1).getReg(); 1914 1915 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1916 .addReg(ScratchReg) 1917 .addReg(SrcReg) 1918 // The offset immediate is #8. The operand value is scaled by 4 for the 1919 // tLDR instruction. 1920 .addImm(2) 1921 // Predicate. 1922 .addImm(ARMCC::AL) 1923 .addReg(0)); 1924 1925 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1926 .addReg(ARM::SP) 1927 .addReg(ScratchReg) 1928 // Predicate. 1929 .addImm(ARMCC::AL) 1930 .addReg(0)); 1931 1932 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1933 .addReg(ScratchReg) 1934 .addReg(SrcReg) 1935 .addImm(1) 1936 // Predicate. 1937 .addImm(ARMCC::AL) 1938 .addReg(0)); 1939 1940 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1941 .addReg(ARM::R7) 1942 .addReg(SrcReg) 1943 .addImm(0) 1944 // Predicate. 1945 .addImm(ARMCC::AL) 1946 .addReg(0)); 1947 1948 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 1949 .addReg(ScratchReg) 1950 // Predicate. 1951 .addImm(ARMCC::AL) 1952 .addReg(0)); 1953 return; 1954 } 1955 case ARM::tInt_WIN_eh_sjlj_longjmp: { 1956 // ldr.w r11, [$src, #0] 1957 // ldr.w sp, [$src, #8] 1958 // ldr.w pc, [$src, #4] 1959 1960 unsigned SrcReg = MI->getOperand(0).getReg(); 1961 1962 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 1963 .addReg(ARM::R11) 1964 .addReg(SrcReg) 1965 .addImm(0) 1966 // Predicate 1967 .addImm(ARMCC::AL) 1968 .addReg(0)); 1969 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 1970 .addReg(ARM::SP) 1971 .addReg(SrcReg) 1972 .addImm(8) 1973 // Predicate 1974 .addImm(ARMCC::AL) 1975 .addReg(0)); 1976 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 1977 .addReg(ARM::PC) 1978 .addReg(SrcReg) 1979 .addImm(4) 1980 // Predicate 1981 .addImm(ARMCC::AL) 1982 .addReg(0)); 1983 return; 1984 } 1985 case ARM::PATCHABLE_FUNCTION_ENTER: 1986 LowerPATCHABLE_FUNCTION_ENTER(*MI); 1987 return; 1988 case ARM::PATCHABLE_FUNCTION_EXIT: 1989 LowerPATCHABLE_FUNCTION_EXIT(*MI); 1990 return; 1991 case ARM::PATCHABLE_TAIL_CALL: 1992 LowerPATCHABLE_TAIL_CALL(*MI); 1993 return; 1994 } 1995 1996 MCInst TmpInst; 1997 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 1998 1999 EmitToStreamer(*OutStreamer, TmpInst); 2000 } 2001 2002 //===----------------------------------------------------------------------===// 2003 // Target Registry Stuff 2004 //===----------------------------------------------------------------------===// 2005 2006 // Force static initialization. 2007 extern "C" void LLVMInitializeARMAsmPrinter() { 2008 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2009 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2010 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2011 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2012 } 2013