1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "InstPrinter/ARMInstPrinter.h" 21 #include "MCTargetDesc/ARMAddressingModes.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/BinaryFormat/COFF.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCAssembler.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCELFStreamer.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCInstBuilder.h" 40 #include "llvm/MC/MCObjectStreamer.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/Support/ARMBuildAttributes.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetParser.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 using namespace llvm; 51 52 #define DEBUG_TYPE "asm-printer" 53 54 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 55 std::unique_ptr<MCStreamer> Streamer) 56 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 57 InConstantPool(false), OptimizationGoals(-1) {} 58 59 void ARMAsmPrinter::EmitFunctionBodyEnd() { 60 // Make sure to terminate any constant pools that were at the end 61 // of the function. 62 if (!InConstantPool) 63 return; 64 InConstantPool = false; 65 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 66 } 67 68 void ARMAsmPrinter::EmitFunctionEntryLabel() { 69 if (AFI->isThumbFunction()) { 70 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 71 OutStreamer->EmitThumbFunc(CurrentFnSym); 72 } else { 73 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 74 } 75 OutStreamer->EmitLabel(CurrentFnSym); 76 } 77 78 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 79 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 80 assert(Size && "C++ constructor pointer had zero size!"); 81 82 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 83 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 84 85 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 86 ARMII::MO_NO_FLAG), 87 (Subtarget->isTargetELF() 88 ? MCSymbolRefExpr::VK_ARM_TARGET1 89 : MCSymbolRefExpr::VK_None), 90 OutContext); 91 92 OutStreamer->EmitValue(E, Size); 93 } 94 95 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 96 if (PromotedGlobals.count(GV)) 97 // The global was promoted into a constant pool. It should not be emitted. 98 return; 99 AsmPrinter::EmitGlobalVariable(GV); 100 } 101 102 /// runOnMachineFunction - This uses the EmitInstruction() 103 /// method to print assembly for each instruction. 104 /// 105 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 106 AFI = MF.getInfo<ARMFunctionInfo>(); 107 MCP = MF.getConstantPool(); 108 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 109 110 SetupMachineFunction(MF); 111 const Function &F = MF.getFunction(); 112 const TargetMachine& TM = MF.getTarget(); 113 114 // Collect all globals that had their storage promoted to a constant pool. 115 // Functions are emitted before variables, so this accumulates promoted 116 // globals from all functions in PromotedGlobals. 117 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 118 PromotedGlobals.insert(GV); 119 120 // Calculate this function's optimization goal. 121 unsigned OptimizationGoal; 122 if (F.hasOptNone()) 123 // For best debugging illusion, speed and small size sacrificed 124 OptimizationGoal = 6; 125 else if (F.hasMinSize()) 126 // Aggressively for small size, speed and debug illusion sacrificed 127 OptimizationGoal = 4; 128 else if (F.hasOptSize()) 129 // For small size, but speed and debugging illusion preserved 130 OptimizationGoal = 3; 131 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 132 // Aggressively for speed, small size and debug illusion sacrificed 133 OptimizationGoal = 2; 134 else if (TM.getOptLevel() > CodeGenOpt::None) 135 // For speed, but small size and good debug illusion preserved 136 OptimizationGoal = 1; 137 else // TM.getOptLevel() == CodeGenOpt::None 138 // For good debugging, but speed and small size preserved 139 OptimizationGoal = 5; 140 141 // Combine a new optimization goal with existing ones. 142 if (OptimizationGoals == -1) // uninitialized goals 143 OptimizationGoals = OptimizationGoal; 144 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 145 OptimizationGoals = 0; 146 147 if (Subtarget->isTargetCOFF()) { 148 bool Internal = F.hasInternalLinkage(); 149 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 150 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 151 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 152 153 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 154 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 155 OutStreamer->EmitCOFFSymbolType(Type); 156 OutStreamer->EndCOFFSymbolDef(); 157 } 158 159 // Emit the rest of the function body. 160 EmitFunctionBody(); 161 162 // Emit the XRay table for this function. 163 emitXRayTable(); 164 165 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 166 // These are created per function, rather than per TU, since it's 167 // relatively easy to exceed the thumb branch range within a TU. 168 if (! ThumbIndirectPads.empty()) { 169 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 170 EmitAlignment(1); 171 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 172 OutStreamer->EmitLabel(TIP.second); 173 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 174 .addReg(TIP.first) 175 // Add predicate operands. 176 .addImm(ARMCC::AL) 177 .addReg(0)); 178 } 179 ThumbIndirectPads.clear(); 180 } 181 182 // We didn't modify anything. 183 return false; 184 } 185 186 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 187 raw_ostream &O) { 188 const MachineOperand &MO = MI->getOperand(OpNum); 189 unsigned TF = MO.getTargetFlags(); 190 191 switch (MO.getType()) { 192 default: llvm_unreachable("<unknown operand type>"); 193 case MachineOperand::MO_Register: { 194 unsigned Reg = MO.getReg(); 195 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 196 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 197 if(ARM::GPRPairRegClass.contains(Reg)) { 198 const MachineFunction &MF = *MI->getParent()->getParent(); 199 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 200 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 201 } 202 O << ARMInstPrinter::getRegisterName(Reg); 203 break; 204 } 205 case MachineOperand::MO_Immediate: { 206 int64_t Imm = MO.getImm(); 207 O << '#'; 208 if (TF == ARMII::MO_LO16) 209 O << ":lower16:"; 210 else if (TF == ARMII::MO_HI16) 211 O << ":upper16:"; 212 O << Imm; 213 break; 214 } 215 case MachineOperand::MO_MachineBasicBlock: 216 MO.getMBB()->getSymbol()->print(O, MAI); 217 return; 218 case MachineOperand::MO_GlobalAddress: { 219 const GlobalValue *GV = MO.getGlobal(); 220 if (TF & ARMII::MO_LO16) 221 O << ":lower16:"; 222 else if (TF & ARMII::MO_HI16) 223 O << ":upper16:"; 224 GetARMGVSymbol(GV, TF)->print(O, MAI); 225 226 printOffset(MO.getOffset(), O); 227 break; 228 } 229 case MachineOperand::MO_ConstantPoolIndex: 230 if (Subtarget->genExecuteOnly()) 231 llvm_unreachable("execute-only should not generate constant pools"); 232 GetCPISymbol(MO.getIndex())->print(O, MAI); 233 break; 234 } 235 } 236 237 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 238 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 239 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 240 const DataLayout &DL = getDataLayout(); 241 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 242 "CPI" + Twine(getFunctionNumber()) + "_" + 243 Twine(CPID)); 244 } 245 246 //===--------------------------------------------------------------------===// 247 248 MCSymbol *ARMAsmPrinter:: 249 GetARMJTIPICJumpTableLabel(unsigned uid) const { 250 const DataLayout &DL = getDataLayout(); 251 SmallString<60> Name; 252 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 253 << getFunctionNumber() << '_' << uid; 254 return OutContext.getOrCreateSymbol(Name); 255 } 256 257 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 258 const char *ExtraCode, raw_ostream &O) { 259 // Does this asm operand have a single letter operand modifier? 260 if (ExtraCode && ExtraCode[0]) { 261 if (ExtraCode[1] != 0) return true; // Unknown modifier. 262 263 switch (ExtraCode[0]) { 264 default: 265 // See if this is a generic print operand 266 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 267 case 'a': // Print as a memory address. 268 if (MI->getOperand(OpNum).isReg()) { 269 O << "[" 270 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 271 << "]"; 272 return false; 273 } 274 LLVM_FALLTHROUGH; 275 case 'c': // Don't print "#" before an immediate operand. 276 if (!MI->getOperand(OpNum).isImm()) 277 return true; 278 O << MI->getOperand(OpNum).getImm(); 279 return false; 280 case 'P': // Print a VFP double precision register. 281 case 'q': // Print a NEON quad precision register. 282 printOperand(MI, OpNum, O); 283 return false; 284 case 'y': // Print a VFP single precision register as indexed double. 285 if (MI->getOperand(OpNum).isReg()) { 286 unsigned Reg = MI->getOperand(OpNum).getReg(); 287 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 288 // Find the 'd' register that has this 's' register as a sub-register, 289 // and determine the lane number. 290 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 291 if (!ARM::DPRRegClass.contains(*SR)) 292 continue; 293 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 294 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 295 return false; 296 } 297 } 298 return true; 299 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 300 if (!MI->getOperand(OpNum).isImm()) 301 return true; 302 O << ~(MI->getOperand(OpNum).getImm()); 303 return false; 304 case 'L': // The low 16 bits of an immediate constant. 305 if (!MI->getOperand(OpNum).isImm()) 306 return true; 307 O << (MI->getOperand(OpNum).getImm() & 0xffff); 308 return false; 309 case 'M': { // A register range suitable for LDM/STM. 310 if (!MI->getOperand(OpNum).isReg()) 311 return true; 312 const MachineOperand &MO = MI->getOperand(OpNum); 313 unsigned RegBegin = MO.getReg(); 314 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 315 // already got the operands in registers that are operands to the 316 // inline asm statement. 317 O << "{"; 318 if (ARM::GPRPairRegClass.contains(RegBegin)) { 319 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 320 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 321 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 322 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 323 } 324 O << ARMInstPrinter::getRegisterName(RegBegin); 325 326 // FIXME: The register allocator not only may not have given us the 327 // registers in sequence, but may not be in ascending registers. This 328 // will require changes in the register allocator that'll need to be 329 // propagated down here if the operands change. 330 unsigned RegOps = OpNum + 1; 331 while (MI->getOperand(RegOps).isReg()) { 332 O << ", " 333 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 334 RegOps++; 335 } 336 337 O << "}"; 338 339 return false; 340 } 341 case 'R': // The most significant register of a pair. 342 case 'Q': { // The least significant register of a pair. 343 if (OpNum == 0) 344 return true; 345 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 346 if (!FlagsOP.isImm()) 347 return true; 348 unsigned Flags = FlagsOP.getImm(); 349 350 // This operand may not be the one that actually provides the register. If 351 // it's tied to a previous one then we should refer instead to that one 352 // for registers and their classes. 353 unsigned TiedIdx; 354 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 355 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 356 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 357 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 358 } 359 Flags = MI->getOperand(OpNum).getImm(); 360 361 // Later code expects OpNum to be pointing at the register rather than 362 // the flags. 363 OpNum += 1; 364 } 365 366 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 367 unsigned RC; 368 bool FirstHalf; 369 const ARMBaseTargetMachine &ATM = 370 static_cast<const ARMBaseTargetMachine &>(TM); 371 372 // 'Q' should correspond to the low order register and 'R' to the high 373 // order register. Whether this corresponds to the upper or lower half 374 // depends on the endianess mode. 375 if (ExtraCode[0] == 'Q') 376 FirstHalf = ATM.isLittleEndian(); 377 else 378 // ExtraCode[0] == 'R'. 379 FirstHalf = !ATM.isLittleEndian(); 380 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 381 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 382 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 383 if (NumVals != 1) 384 return true; 385 const MachineOperand &MO = MI->getOperand(OpNum); 386 if (!MO.isReg()) 387 return true; 388 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 389 unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ? 390 ARM::gsub_0 : ARM::gsub_1); 391 O << ARMInstPrinter::getRegisterName(Reg); 392 return false; 393 } 394 if (NumVals != 2) 395 return true; 396 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 397 if (RegOp >= MI->getNumOperands()) 398 return true; 399 const MachineOperand &MO = MI->getOperand(RegOp); 400 if (!MO.isReg()) 401 return true; 402 unsigned Reg = MO.getReg(); 403 O << ARMInstPrinter::getRegisterName(Reg); 404 return false; 405 } 406 407 case 'e': // The low doubleword register of a NEON quad register. 408 case 'f': { // The high doubleword register of a NEON quad register. 409 if (!MI->getOperand(OpNum).isReg()) 410 return true; 411 unsigned Reg = MI->getOperand(OpNum).getReg(); 412 if (!ARM::QPRRegClass.contains(Reg)) 413 return true; 414 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 415 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 416 ARM::dsub_0 : ARM::dsub_1); 417 O << ARMInstPrinter::getRegisterName(SubReg); 418 return false; 419 } 420 421 // This modifier is not yet supported. 422 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 423 return true; 424 case 'H': { // The highest-numbered register of a pair. 425 const MachineOperand &MO = MI->getOperand(OpNum); 426 if (!MO.isReg()) 427 return true; 428 const MachineFunction &MF = *MI->getParent()->getParent(); 429 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 430 unsigned Reg = MO.getReg(); 431 if(!ARM::GPRPairRegClass.contains(Reg)) 432 return false; 433 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 434 O << ARMInstPrinter::getRegisterName(Reg); 435 return false; 436 } 437 } 438 } 439 440 printOperand(MI, OpNum, O); 441 return false; 442 } 443 444 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 445 unsigned OpNum, const char *ExtraCode, 446 raw_ostream &O) { 447 // Does this asm operand have a single letter operand modifier? 448 if (ExtraCode && ExtraCode[0]) { 449 if (ExtraCode[1] != 0) return true; // Unknown modifier. 450 451 switch (ExtraCode[0]) { 452 case 'A': // A memory operand for a VLD1/VST1 instruction. 453 default: return true; // Unknown modifier. 454 case 'm': // The base register of a memory operand. 455 if (!MI->getOperand(OpNum).isReg()) 456 return true; 457 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 458 return false; 459 } 460 } 461 462 const MachineOperand &MO = MI->getOperand(OpNum); 463 assert(MO.isReg() && "unexpected inline asm memory operand"); 464 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 465 return false; 466 } 467 468 static bool isThumb(const MCSubtargetInfo& STI) { 469 return STI.getFeatureBits()[ARM::ModeThumb]; 470 } 471 472 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 473 const MCSubtargetInfo *EndInfo) const { 474 // If either end mode is unknown (EndInfo == NULL) or different than 475 // the start mode, then restore the start mode. 476 const bool WasThumb = isThumb(StartInfo); 477 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 478 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 479 } 480 } 481 482 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 483 const Triple &TT = TM.getTargetTriple(); 484 // Use unified assembler syntax. 485 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 486 487 // Emit ARM Build Attributes 488 if (TT.isOSBinFormatELF()) 489 emitAttributes(); 490 491 // Use the triple's architecture and subarchitecture to determine 492 // if we're thumb for the purposes of the top level code16 assembler 493 // flag. 494 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 495 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 496 } 497 498 static void 499 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 500 MachineModuleInfoImpl::StubValueTy &MCSym) { 501 // L_foo$stub: 502 OutStreamer.EmitLabel(StubLabel); 503 // .indirect_symbol _foo 504 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 505 506 if (MCSym.getInt()) 507 // External to current translation unit. 508 OutStreamer.EmitIntValue(0, 4/*size*/); 509 else 510 // Internal to current translation unit. 511 // 512 // When we place the LSDA into the TEXT section, the type info 513 // pointers need to be indirect and pc-rel. We accomplish this by 514 // using NLPs; however, sometimes the types are local to the file. 515 // We need to fill in the value for the NLP in those cases. 516 OutStreamer.EmitValue( 517 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 518 4 /*size*/); 519 } 520 521 522 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 523 const Triple &TT = TM.getTargetTriple(); 524 if (TT.isOSBinFormatMachO()) { 525 // All darwin targets use mach-o. 526 const TargetLoweringObjectFileMachO &TLOFMacho = 527 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 528 MachineModuleInfoMachO &MMIMacho = 529 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 530 531 // Output non-lazy-pointers for external and common global variables. 532 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 533 534 if (!Stubs.empty()) { 535 // Switch with ".non_lazy_symbol_pointer" directive. 536 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 537 EmitAlignment(2); 538 539 for (auto &Stub : Stubs) 540 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 541 542 Stubs.clear(); 543 OutStreamer->AddBlankLine(); 544 } 545 546 Stubs = MMIMacho.GetThreadLocalGVStubList(); 547 if (!Stubs.empty()) { 548 // Switch with ".non_lazy_symbol_pointer" directive. 549 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 550 EmitAlignment(2); 551 552 for (auto &Stub : Stubs) 553 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 554 555 Stubs.clear(); 556 OutStreamer->AddBlankLine(); 557 } 558 559 // Funny Darwin hack: This flag tells the linker that no global symbols 560 // contain code that falls through to other global symbols (e.g. the obvious 561 // implementation of multiple entry points). If this doesn't occur, the 562 // linker can safely perform dead code stripping. Since LLVM never 563 // generates code that does this, it is always safe to set. 564 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 565 } 566 567 // The last attribute to be emitted is ABI_optimization_goals 568 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 569 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 570 571 if (OptimizationGoals > 0 && 572 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 573 Subtarget->isTargetMuslAEABI())) 574 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 575 OptimizationGoals = -1; 576 577 ATS.finishAttributeSection(); 578 } 579 580 //===----------------------------------------------------------------------===// 581 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 582 // FIXME: 583 // The following seem like one-off assembler flags, but they actually need 584 // to appear in the .ARM.attributes section in ELF. 585 // Instead of subclassing the MCELFStreamer, we do the work here. 586 587 // Returns true if all functions have the same function attribute value. 588 // It also returns true when the module has no functions. 589 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 590 StringRef Value) { 591 return !any_of(M, [&](const Function &F) { 592 return F.getFnAttribute(Attr).getValueAsString() != Value; 593 }); 594 } 595 596 void ARMAsmPrinter::emitAttributes() { 597 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 598 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 599 600 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 601 602 ATS.switchVendor("aeabi"); 603 604 // Compute ARM ELF Attributes based on the default subtarget that 605 // we'd have constructed. The existing ARM behavior isn't LTO clean 606 // anyhow. 607 // FIXME: For ifunc related functions we could iterate over and look 608 // for a feature string that doesn't match the default one. 609 const Triple &TT = TM.getTargetTriple(); 610 StringRef CPU = TM.getTargetCPU(); 611 StringRef FS = TM.getTargetFeatureString(); 612 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 613 if (!FS.empty()) { 614 if (!ArchFS.empty()) 615 ArchFS = (Twine(ArchFS) + "," + FS).str(); 616 else 617 ArchFS = FS; 618 } 619 const ARMBaseTargetMachine &ATM = 620 static_cast<const ARMBaseTargetMachine &>(TM); 621 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 622 623 // Emit build attributes for the available hardware. 624 ATS.emitTargetAttributes(STI); 625 626 // RW data addressing. 627 if (isPositionIndependent()) { 628 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 629 ARMBuildAttrs::AddressRWPCRel); 630 } else if (STI.isRWPI()) { 631 // RWPI specific attributes. 632 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 633 ARMBuildAttrs::AddressRWSBRel); 634 } 635 636 // RO data addressing. 637 if (isPositionIndependent() || STI.isROPI()) { 638 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 639 ARMBuildAttrs::AddressROPCRel); 640 } 641 642 // GOT use. 643 if (isPositionIndependent()) { 644 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 645 ARMBuildAttrs::AddressGOT); 646 } else { 647 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 648 ARMBuildAttrs::AddressDirect); 649 } 650 651 // Set FP Denormals. 652 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 653 "denormal-fp-math", 654 "preserve-sign") || 655 TM.Options.FPDenormalMode == FPDenormal::PreserveSign) 656 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 657 ARMBuildAttrs::PreserveFPSign); 658 else if (checkFunctionsAttributeConsistency(*MMI->getModule(), 659 "denormal-fp-math", 660 "positive-zero") || 661 TM.Options.FPDenormalMode == FPDenormal::PositiveZero) 662 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 663 ARMBuildAttrs::PositiveZero); 664 else if (!TM.Options.UnsafeFPMath) 665 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 666 ARMBuildAttrs::IEEEDenormals); 667 else { 668 if (!STI.hasVFP2()) { 669 // When the target doesn't have an FPU (by design or 670 // intention), the assumptions made on the software support 671 // mirror that of the equivalent hardware support *if it 672 // existed*. For v7 and better we indicate that denormals are 673 // flushed preserving sign, and for V6 we indicate that 674 // denormals are flushed to positive zero. 675 if (STI.hasV7Ops()) 676 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 677 ARMBuildAttrs::PreserveFPSign); 678 } else if (STI.hasVFP3()) { 679 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 680 // the sign bit of the zero matches the sign bit of the input or 681 // result that is being flushed to zero. 682 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 683 ARMBuildAttrs::PreserveFPSign); 684 } 685 // For VFPv2 implementations it is implementation defined as 686 // to whether denormals are flushed to positive zero or to 687 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 688 // LLVM has chosen to flush this to positive zero (most likely for 689 // GCC compatibility), so that's the chosen value here (the 690 // absence of its emission implies zero). 691 } 692 693 // Set FP exceptions and rounding 694 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 695 "no-trapping-math", "true") || 696 TM.Options.NoTrappingFPMath) 697 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 698 ARMBuildAttrs::Not_Allowed); 699 else if (!TM.Options.UnsafeFPMath) { 700 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 701 702 // If the user has permitted this code to choose the IEEE 754 703 // rounding at run-time, emit the rounding attribute. 704 if (TM.Options.HonorSignDependentRoundingFPMathOption) 705 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 706 } 707 708 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 709 // equivalent of GCC's -ffinite-math-only flag. 710 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 711 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 712 ARMBuildAttrs::Allowed); 713 else 714 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 715 ARMBuildAttrs::AllowIEEE754); 716 717 // FIXME: add more flags to ARMBuildAttributes.h 718 // 8-bytes alignment stuff. 719 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 720 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 721 722 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 723 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 724 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 725 726 // FIXME: To support emitting this build attribute as GCC does, the 727 // -mfp16-format option and associated plumbing must be 728 // supported. For now the __fp16 type is exposed by default, so this 729 // attribute should be emitted with value 1. 730 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 731 ARMBuildAttrs::FP16FormatIEEE); 732 733 if (MMI) { 734 if (const Module *SourceModule = MMI->getModule()) { 735 // ABI_PCS_wchar_t to indicate wchar_t width 736 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 737 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 738 SourceModule->getModuleFlag("wchar_size"))) { 739 int WCharWidth = WCharWidthValue->getZExtValue(); 740 assert((WCharWidth == 2 || WCharWidth == 4) && 741 "wchar_t width must be 2 or 4 bytes"); 742 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 743 } 744 745 // ABI_enum_size to indicate enum width 746 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 747 // (all enums contain a value needing 32 bits to encode). 748 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 749 SourceModule->getModuleFlag("min_enum_size"))) { 750 int EnumWidth = EnumWidthValue->getZExtValue(); 751 assert((EnumWidth == 1 || EnumWidth == 4) && 752 "Minimum enum width must be 1 or 4 bytes"); 753 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 754 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 755 } 756 } 757 } 758 759 // We currently do not support using R9 as the TLS pointer. 760 if (STI.isRWPI()) 761 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 762 ARMBuildAttrs::R9IsSB); 763 else if (STI.isR9Reserved()) 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 765 ARMBuildAttrs::R9Reserved); 766 else 767 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 768 ARMBuildAttrs::R9IsGPR); 769 } 770 771 //===----------------------------------------------------------------------===// 772 773 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 774 unsigned LabelId, MCContext &Ctx) { 775 776 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 777 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 778 return Label; 779 } 780 781 static MCSymbolRefExpr::VariantKind 782 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 783 switch (Modifier) { 784 case ARMCP::no_modifier: 785 return MCSymbolRefExpr::VK_None; 786 case ARMCP::TLSGD: 787 return MCSymbolRefExpr::VK_TLSGD; 788 case ARMCP::TPOFF: 789 return MCSymbolRefExpr::VK_TPOFF; 790 case ARMCP::GOTTPOFF: 791 return MCSymbolRefExpr::VK_GOTTPOFF; 792 case ARMCP::SBREL: 793 return MCSymbolRefExpr::VK_ARM_SBREL; 794 case ARMCP::GOT_PREL: 795 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 796 case ARMCP::SECREL: 797 return MCSymbolRefExpr::VK_SECREL; 798 } 799 llvm_unreachable("Invalid ARMCPModifier!"); 800 } 801 802 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 803 unsigned char TargetFlags) { 804 if (Subtarget->isTargetMachO()) { 805 bool IsIndirect = 806 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 807 808 if (!IsIndirect) 809 return getSymbol(GV); 810 811 // FIXME: Remove this when Darwin transition to @GOT like syntax. 812 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 813 MachineModuleInfoMachO &MMIMachO = 814 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 815 MachineModuleInfoImpl::StubValueTy &StubSym = 816 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 817 : MMIMachO.getGVStubEntry(MCSym); 818 819 if (!StubSym.getPointer()) 820 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 821 !GV->hasInternalLinkage()); 822 return MCSym; 823 } else if (Subtarget->isTargetCOFF()) { 824 assert(Subtarget->isTargetWindows() && 825 "Windows is the only supported COFF target"); 826 827 bool IsIndirect = 828 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 829 if (!IsIndirect) 830 return getSymbol(GV); 831 832 SmallString<128> Name; 833 if (TargetFlags & ARMII::MO_DLLIMPORT) 834 Name = "__imp_"; 835 else if (TargetFlags & ARMII::MO_COFFSTUB) 836 Name = ".refptr."; 837 getNameWithPrefix(Name, GV); 838 839 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 840 841 if (TargetFlags & ARMII::MO_COFFSTUB) { 842 MachineModuleInfoCOFF &MMICOFF = 843 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 844 MachineModuleInfoImpl::StubValueTy &StubSym = 845 MMICOFF.getGVStubEntry(MCSym); 846 847 if (!StubSym.getPointer()) 848 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 849 } 850 851 return MCSym; 852 } else if (Subtarget->isTargetELF()) { 853 return getSymbol(GV); 854 } 855 llvm_unreachable("unexpected target"); 856 } 857 858 void ARMAsmPrinter:: 859 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 860 const DataLayout &DL = getDataLayout(); 861 int Size = DL.getTypeAllocSize(MCPV->getType()); 862 863 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 864 865 if (ACPV->isPromotedGlobal()) { 866 // This constant pool entry is actually a global whose storage has been 867 // promoted into the constant pool. This global may be referenced still 868 // by debug information, and due to the way AsmPrinter is set up, the debug 869 // info is immutable by the time we decide to promote globals to constant 870 // pools. Because of this, we need to ensure we emit a symbol for the global 871 // with private linkage (the default) so debug info can refer to it. 872 // 873 // However, if this global is promoted into several functions we must ensure 874 // we don't try and emit duplicate symbols! 875 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 876 for (const auto *GV : ACPC->promotedGlobals()) { 877 if (!EmittedPromotedGlobalLabels.count(GV)) { 878 MCSymbol *GVSym = getSymbol(GV); 879 OutStreamer->EmitLabel(GVSym); 880 EmittedPromotedGlobalLabels.insert(GV); 881 } 882 } 883 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 884 } 885 886 MCSymbol *MCSym; 887 if (ACPV->isLSDA()) { 888 MCSym = getCurExceptionSym(); 889 } else if (ACPV->isBlockAddress()) { 890 const BlockAddress *BA = 891 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 892 MCSym = GetBlockAddressSymbol(BA); 893 } else if (ACPV->isGlobalValue()) { 894 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 895 896 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 897 // flag the global as MO_NONLAZY. 898 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 899 MCSym = GetARMGVSymbol(GV, TF); 900 } else if (ACPV->isMachineBasicBlock()) { 901 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 902 MCSym = MBB->getSymbol(); 903 } else { 904 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 905 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 906 MCSym = GetExternalSymbolSymbol(Sym); 907 } 908 909 // Create an MCSymbol for the reference. 910 const MCExpr *Expr = 911 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 912 OutContext); 913 914 if (ACPV->getPCAdjustment()) { 915 MCSymbol *PCLabel = 916 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 917 ACPV->getLabelId(), OutContext); 918 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 919 PCRelExpr = 920 MCBinaryExpr::createAdd(PCRelExpr, 921 MCConstantExpr::create(ACPV->getPCAdjustment(), 922 OutContext), 923 OutContext); 924 if (ACPV->mustAddCurrentAddress()) { 925 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 926 // label, so just emit a local label end reference that instead. 927 MCSymbol *DotSym = OutContext.createTempSymbol(); 928 OutStreamer->EmitLabel(DotSym); 929 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 930 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 931 } 932 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 933 } 934 OutStreamer->EmitValue(Expr, Size); 935 } 936 937 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 938 const MachineOperand &MO1 = MI->getOperand(1); 939 unsigned JTI = MO1.getIndex(); 940 941 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 942 // ARM mode tables. 943 EmitAlignment(2); 944 945 // Emit a label for the jump table. 946 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 947 OutStreamer->EmitLabel(JTISymbol); 948 949 // Mark the jump table as data-in-code. 950 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 951 952 // Emit each entry of the table. 953 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 954 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 955 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 956 957 for (MachineBasicBlock *MBB : JTBBs) { 958 // Construct an MCExpr for the entry. We want a value of the form: 959 // (BasicBlockAddr - TableBeginAddr) 960 // 961 // For example, a table with entries jumping to basic blocks BB0 and BB1 962 // would look like: 963 // LJTI_0_0: 964 // .word (LBB0 - LJTI_0_0) 965 // .word (LBB1 - LJTI_0_0) 966 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 967 968 if (isPositionIndependent() || Subtarget->isROPI()) 969 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 970 OutContext), 971 OutContext); 972 // If we're generating a table of Thumb addresses in static relocation 973 // model, we need to add one to keep interworking correctly. 974 else if (AFI->isThumbFunction()) 975 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 976 OutContext); 977 OutStreamer->EmitValue(Expr, 4); 978 } 979 // Mark the end of jump table data-in-code region. 980 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 981 } 982 983 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 984 const MachineOperand &MO1 = MI->getOperand(1); 985 unsigned JTI = MO1.getIndex(); 986 987 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 988 // ARM mode tables. 989 EmitAlignment(2); 990 991 // Emit a label for the jump table. 992 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 993 OutStreamer->EmitLabel(JTISymbol); 994 995 // Emit each entry of the table. 996 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 997 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 998 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 999 1000 for (MachineBasicBlock *MBB : JTBBs) { 1001 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1002 OutContext); 1003 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1004 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1005 .addExpr(MBBSymbolExpr) 1006 .addImm(ARMCC::AL) 1007 .addReg(0)); 1008 } 1009 } 1010 1011 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1012 unsigned OffsetWidth) { 1013 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1014 const MachineOperand &MO1 = MI->getOperand(1); 1015 unsigned JTI = MO1.getIndex(); 1016 1017 if (Subtarget->isThumb1Only()) 1018 EmitAlignment(2); 1019 1020 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1021 OutStreamer->EmitLabel(JTISymbol); 1022 1023 // Emit each entry of the table. 1024 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1025 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1026 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1027 1028 // Mark the jump table as data-in-code. 1029 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1030 : MCDR_DataRegionJT16); 1031 1032 for (auto MBB : JTBBs) { 1033 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1034 OutContext); 1035 // Otherwise it's an offset from the dispatch instruction. Construct an 1036 // MCExpr for the entry. We want a value of the form: 1037 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1038 // 1039 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1040 // would look like: 1041 // LJTI_0_0: 1042 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1043 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1044 // where LCPI0_0 is a label defined just before the TBB instruction using 1045 // this table. 1046 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1047 const MCExpr *Expr = MCBinaryExpr::createAdd( 1048 MCSymbolRefExpr::create(TBInstPC, OutContext), 1049 MCConstantExpr::create(4, OutContext), OutContext); 1050 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1051 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1052 OutContext); 1053 OutStreamer->EmitValue(Expr, OffsetWidth); 1054 } 1055 // Mark the end of jump table data-in-code region. 32-bit offsets use 1056 // actual branch instructions here, so we don't mark those as a data-region 1057 // at all. 1058 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1059 1060 // Make sure the next instruction is 2-byte aligned. 1061 EmitAlignment(1); 1062 } 1063 1064 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1065 assert(MI->getFlag(MachineInstr::FrameSetup) && 1066 "Only instruction which are involved into frame setup code are allowed"); 1067 1068 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1069 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1070 const MachineFunction &MF = *MI->getParent()->getParent(); 1071 const TargetRegisterInfo *TargetRegInfo = 1072 MF.getSubtarget().getRegisterInfo(); 1073 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1074 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1075 1076 unsigned FramePtr = TargetRegInfo->getFrameRegister(MF); 1077 unsigned Opc = MI->getOpcode(); 1078 unsigned SrcReg, DstReg; 1079 1080 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1081 // Two special cases: 1082 // 1) tPUSH does not have src/dst regs. 1083 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1084 // load. Yes, this is pretty fragile, but for now I don't see better 1085 // way... :( 1086 SrcReg = DstReg = ARM::SP; 1087 } else { 1088 SrcReg = MI->getOperand(1).getReg(); 1089 DstReg = MI->getOperand(0).getReg(); 1090 } 1091 1092 // Try to figure out the unwinding opcode out of src / dst regs. 1093 if (MI->mayStore()) { 1094 // Register saves. 1095 assert(DstReg == ARM::SP && 1096 "Only stack pointer as a destination reg is supported"); 1097 1098 SmallVector<unsigned, 4> RegList; 1099 // Skip src & dst reg, and pred ops. 1100 unsigned StartOp = 2 + 2; 1101 // Use all the operands. 1102 unsigned NumOffset = 0; 1103 // Amount of SP adjustment folded into a push. 1104 unsigned Pad = 0; 1105 1106 switch (Opc) { 1107 default: 1108 MI->print(errs()); 1109 llvm_unreachable("Unsupported opcode for unwinding information"); 1110 case ARM::tPUSH: 1111 // Special case here: no src & dst reg, but two extra imp ops. 1112 StartOp = 2; NumOffset = 2; 1113 LLVM_FALLTHROUGH; 1114 case ARM::STMDB_UPD: 1115 case ARM::t2STMDB_UPD: 1116 case ARM::VSTMDDB_UPD: 1117 assert(SrcReg == ARM::SP && 1118 "Only stack pointer as a source reg is supported"); 1119 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1120 i != NumOps; ++i) { 1121 const MachineOperand &MO = MI->getOperand(i); 1122 // Actually, there should never be any impdef stuff here. Skip it 1123 // temporary to workaround PR11902. 1124 if (MO.isImplicit()) 1125 continue; 1126 // Registers, pushed as a part of folding an SP update into the 1127 // push instruction are marked as undef and should not be 1128 // restored when unwinding, because the function can modify the 1129 // corresponding stack slots. 1130 if (MO.isUndef()) { 1131 assert(RegList.empty() && 1132 "Pad registers must come before restored ones"); 1133 unsigned Width = 1134 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1135 Pad += Width; 1136 continue; 1137 } 1138 RegList.push_back(MO.getReg()); 1139 } 1140 break; 1141 case ARM::STR_PRE_IMM: 1142 case ARM::STR_PRE_REG: 1143 case ARM::t2STR_PRE: 1144 assert(MI->getOperand(2).getReg() == ARM::SP && 1145 "Only stack pointer as a source reg is supported"); 1146 RegList.push_back(SrcReg); 1147 break; 1148 } 1149 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1150 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1151 // Account for the SP adjustment, folded into the push. 1152 if (Pad) 1153 ATS.emitPad(Pad); 1154 } 1155 } else { 1156 // Changes of stack / frame pointer. 1157 if (SrcReg == ARM::SP) { 1158 int64_t Offset = 0; 1159 switch (Opc) { 1160 default: 1161 MI->print(errs()); 1162 llvm_unreachable("Unsupported opcode for unwinding information"); 1163 case ARM::MOVr: 1164 case ARM::tMOVr: 1165 Offset = 0; 1166 break; 1167 case ARM::ADDri: 1168 case ARM::t2ADDri: 1169 Offset = -MI->getOperand(2).getImm(); 1170 break; 1171 case ARM::SUBri: 1172 case ARM::t2SUBri: 1173 Offset = MI->getOperand(2).getImm(); 1174 break; 1175 case ARM::tSUBspi: 1176 Offset = MI->getOperand(2).getImm()*4; 1177 break; 1178 case ARM::tADDspi: 1179 case ARM::tADDrSPi: 1180 Offset = -MI->getOperand(2).getImm()*4; 1181 break; 1182 case ARM::tLDRpci: { 1183 // Grab the constpool index and check, whether it corresponds to 1184 // original or cloned constpool entry. 1185 unsigned CPI = MI->getOperand(1).getIndex(); 1186 const MachineConstantPool *MCP = MF.getConstantPool(); 1187 if (CPI >= MCP->getConstants().size()) 1188 CPI = AFI.getOriginalCPIdx(CPI); 1189 assert(CPI != -1U && "Invalid constpool index"); 1190 1191 // Derive the actual offset. 1192 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1193 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1194 // FIXME: Check for user, it should be "add" instruction! 1195 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1196 break; 1197 } 1198 } 1199 1200 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1201 if (DstReg == FramePtr && FramePtr != ARM::SP) 1202 // Set-up of the frame pointer. Positive values correspond to "add" 1203 // instruction. 1204 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1205 else if (DstReg == ARM::SP) { 1206 // Change of SP by an offset. Positive values correspond to "sub" 1207 // instruction. 1208 ATS.emitPad(Offset); 1209 } else { 1210 // Move of SP to a register. Positive values correspond to an "add" 1211 // instruction. 1212 ATS.emitMovSP(DstReg, -Offset); 1213 } 1214 } 1215 } else if (DstReg == ARM::SP) { 1216 MI->print(errs()); 1217 llvm_unreachable("Unsupported opcode for unwinding information"); 1218 } 1219 else { 1220 MI->print(errs()); 1221 llvm_unreachable("Unsupported opcode for unwinding information"); 1222 } 1223 } 1224 } 1225 1226 // Simple pseudo-instructions have their lowering (with expansion to real 1227 // instructions) auto-generated. 1228 #include "ARMGenMCPseudoLowering.inc" 1229 1230 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1231 const DataLayout &DL = getDataLayout(); 1232 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1233 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1234 1235 const MachineFunction &MF = *MI->getParent()->getParent(); 1236 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1237 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1238 1239 // If we just ended a constant pool, mark it as such. 1240 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1241 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1242 InConstantPool = false; 1243 } 1244 1245 // Emit unwinding stuff for frame-related instructions 1246 if (Subtarget->isTargetEHABICompatible() && 1247 MI->getFlag(MachineInstr::FrameSetup)) 1248 EmitUnwindingInstruction(MI); 1249 1250 // Do any auto-generated pseudo lowerings. 1251 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1252 return; 1253 1254 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1255 "Pseudo flag setting opcode should be expanded early"); 1256 1257 // Check for manual lowerings. 1258 unsigned Opc = MI->getOpcode(); 1259 switch (Opc) { 1260 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1261 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1262 case ARM::LEApcrel: 1263 case ARM::tLEApcrel: 1264 case ARM::t2LEApcrel: { 1265 // FIXME: Need to also handle globals and externals 1266 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1267 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1268 ARM::t2LEApcrel ? ARM::t2ADR 1269 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1270 : ARM::ADR)) 1271 .addReg(MI->getOperand(0).getReg()) 1272 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1273 // Add predicate operands. 1274 .addImm(MI->getOperand(2).getImm()) 1275 .addReg(MI->getOperand(3).getReg())); 1276 return; 1277 } 1278 case ARM::LEApcrelJT: 1279 case ARM::tLEApcrelJT: 1280 case ARM::t2LEApcrelJT: { 1281 MCSymbol *JTIPICSymbol = 1282 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1283 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1284 ARM::t2LEApcrelJT ? ARM::t2ADR 1285 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1286 : ARM::ADR)) 1287 .addReg(MI->getOperand(0).getReg()) 1288 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1289 // Add predicate operands. 1290 .addImm(MI->getOperand(2).getImm()) 1291 .addReg(MI->getOperand(3).getReg())); 1292 return; 1293 } 1294 // Darwin call instructions are just normal call instructions with different 1295 // clobber semantics (they clobber R9). 1296 case ARM::BX_CALL: { 1297 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1298 .addReg(ARM::LR) 1299 .addReg(ARM::PC) 1300 // Add predicate operands. 1301 .addImm(ARMCC::AL) 1302 .addReg(0) 1303 // Add 's' bit operand (always reg0 for this) 1304 .addReg(0)); 1305 1306 assert(Subtarget->hasV4TOps()); 1307 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1308 .addReg(MI->getOperand(0).getReg())); 1309 return; 1310 } 1311 case ARM::tBX_CALL: { 1312 if (Subtarget->hasV5TOps()) 1313 llvm_unreachable("Expected BLX to be selected for v5t+"); 1314 1315 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1316 // that the saved lr has its LSB set correctly (the arch doesn't 1317 // have blx). 1318 // So here we generate a bl to a small jump pad that does bx rN. 1319 // The jump pads are emitted after the function body. 1320 1321 unsigned TReg = MI->getOperand(0).getReg(); 1322 MCSymbol *TRegSym = nullptr; 1323 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1324 if (TIP.first == TReg) { 1325 TRegSym = TIP.second; 1326 break; 1327 } 1328 } 1329 1330 if (!TRegSym) { 1331 TRegSym = OutContext.createTempSymbol(); 1332 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1333 } 1334 1335 // Create a link-saving branch to the Reg Indirect Jump Pad. 1336 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1337 // Predicate comes first here. 1338 .addImm(ARMCC::AL).addReg(0) 1339 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1340 return; 1341 } 1342 case ARM::BMOVPCRX_CALL: { 1343 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1344 .addReg(ARM::LR) 1345 .addReg(ARM::PC) 1346 // Add predicate operands. 1347 .addImm(ARMCC::AL) 1348 .addReg(0) 1349 // Add 's' bit operand (always reg0 for this) 1350 .addReg(0)); 1351 1352 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1353 .addReg(ARM::PC) 1354 .addReg(MI->getOperand(0).getReg()) 1355 // Add predicate operands. 1356 .addImm(ARMCC::AL) 1357 .addReg(0) 1358 // Add 's' bit operand (always reg0 for this) 1359 .addReg(0)); 1360 return; 1361 } 1362 case ARM::BMOVPCB_CALL: { 1363 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1364 .addReg(ARM::LR) 1365 .addReg(ARM::PC) 1366 // Add predicate operands. 1367 .addImm(ARMCC::AL) 1368 .addReg(0) 1369 // Add 's' bit operand (always reg0 for this) 1370 .addReg(0)); 1371 1372 const MachineOperand &Op = MI->getOperand(0); 1373 const GlobalValue *GV = Op.getGlobal(); 1374 const unsigned TF = Op.getTargetFlags(); 1375 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1376 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1377 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1378 .addExpr(GVSymExpr) 1379 // Add predicate operands. 1380 .addImm(ARMCC::AL) 1381 .addReg(0)); 1382 return; 1383 } 1384 case ARM::MOVi16_ga_pcrel: 1385 case ARM::t2MOVi16_ga_pcrel: { 1386 MCInst TmpInst; 1387 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1388 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1389 1390 unsigned TF = MI->getOperand(1).getTargetFlags(); 1391 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1392 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1393 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1394 1395 MCSymbol *LabelSym = 1396 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1397 MI->getOperand(2).getImm(), OutContext); 1398 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1399 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1400 const MCExpr *PCRelExpr = 1401 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1402 MCBinaryExpr::createAdd(LabelSymExpr, 1403 MCConstantExpr::create(PCAdj, OutContext), 1404 OutContext), OutContext), OutContext); 1405 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1406 1407 // Add predicate operands. 1408 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1409 TmpInst.addOperand(MCOperand::createReg(0)); 1410 // Add 's' bit operand (always reg0 for this) 1411 TmpInst.addOperand(MCOperand::createReg(0)); 1412 EmitToStreamer(*OutStreamer, TmpInst); 1413 return; 1414 } 1415 case ARM::MOVTi16_ga_pcrel: 1416 case ARM::t2MOVTi16_ga_pcrel: { 1417 MCInst TmpInst; 1418 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1419 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1420 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1421 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1422 1423 unsigned TF = MI->getOperand(2).getTargetFlags(); 1424 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1425 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1426 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1427 1428 MCSymbol *LabelSym = 1429 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1430 MI->getOperand(3).getImm(), OutContext); 1431 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1432 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1433 const MCExpr *PCRelExpr = 1434 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1435 MCBinaryExpr::createAdd(LabelSymExpr, 1436 MCConstantExpr::create(PCAdj, OutContext), 1437 OutContext), OutContext), OutContext); 1438 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1439 // Add predicate operands. 1440 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1441 TmpInst.addOperand(MCOperand::createReg(0)); 1442 // Add 's' bit operand (always reg0 for this) 1443 TmpInst.addOperand(MCOperand::createReg(0)); 1444 EmitToStreamer(*OutStreamer, TmpInst); 1445 return; 1446 } 1447 case ARM::tPICADD: { 1448 // This is a pseudo op for a label + instruction sequence, which looks like: 1449 // LPC0: 1450 // add r0, pc 1451 // This adds the address of LPC0 to r0. 1452 1453 // Emit the label. 1454 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1455 getFunctionNumber(), 1456 MI->getOperand(2).getImm(), OutContext)); 1457 1458 // Form and emit the add. 1459 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1460 .addReg(MI->getOperand(0).getReg()) 1461 .addReg(MI->getOperand(0).getReg()) 1462 .addReg(ARM::PC) 1463 // Add predicate operands. 1464 .addImm(ARMCC::AL) 1465 .addReg(0)); 1466 return; 1467 } 1468 case ARM::PICADD: { 1469 // This is a pseudo op for a label + instruction sequence, which looks like: 1470 // LPC0: 1471 // add r0, pc, r0 1472 // This adds the address of LPC0 to r0. 1473 1474 // Emit the label. 1475 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1476 getFunctionNumber(), 1477 MI->getOperand(2).getImm(), OutContext)); 1478 1479 // Form and emit the add. 1480 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1481 .addReg(MI->getOperand(0).getReg()) 1482 .addReg(ARM::PC) 1483 .addReg(MI->getOperand(1).getReg()) 1484 // Add predicate operands. 1485 .addImm(MI->getOperand(3).getImm()) 1486 .addReg(MI->getOperand(4).getReg()) 1487 // Add 's' bit operand (always reg0 for this) 1488 .addReg(0)); 1489 return; 1490 } 1491 case ARM::PICSTR: 1492 case ARM::PICSTRB: 1493 case ARM::PICSTRH: 1494 case ARM::PICLDR: 1495 case ARM::PICLDRB: 1496 case ARM::PICLDRH: 1497 case ARM::PICLDRSB: 1498 case ARM::PICLDRSH: { 1499 // This is a pseudo op for a label + instruction sequence, which looks like: 1500 // LPC0: 1501 // OP r0, [pc, r0] 1502 // The LCP0 label is referenced by a constant pool entry in order to get 1503 // a PC-relative address at the ldr instruction. 1504 1505 // Emit the label. 1506 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1507 getFunctionNumber(), 1508 MI->getOperand(2).getImm(), OutContext)); 1509 1510 // Form and emit the load 1511 unsigned Opcode; 1512 switch (MI->getOpcode()) { 1513 default: 1514 llvm_unreachable("Unexpected opcode!"); 1515 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1516 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1517 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1518 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1519 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1520 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1521 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1522 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1523 } 1524 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1525 .addReg(MI->getOperand(0).getReg()) 1526 .addReg(ARM::PC) 1527 .addReg(MI->getOperand(1).getReg()) 1528 .addImm(0) 1529 // Add predicate operands. 1530 .addImm(MI->getOperand(3).getImm()) 1531 .addReg(MI->getOperand(4).getReg())); 1532 1533 return; 1534 } 1535 case ARM::CONSTPOOL_ENTRY: { 1536 if (Subtarget->genExecuteOnly()) 1537 llvm_unreachable("execute-only should not generate constant pools"); 1538 1539 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1540 /// in the function. The first operand is the ID# for this instruction, the 1541 /// second is the index into the MachineConstantPool that this is, the third 1542 /// is the size in bytes of this constant pool entry. 1543 /// The required alignment is specified on the basic block holding this MI. 1544 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1545 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1546 1547 // If this is the first entry of the pool, mark it. 1548 if (!InConstantPool) { 1549 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1550 InConstantPool = true; 1551 } 1552 1553 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1554 1555 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1556 if (MCPE.isMachineConstantPoolEntry()) 1557 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1558 else 1559 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1560 return; 1561 } 1562 case ARM::JUMPTABLE_ADDRS: 1563 EmitJumpTableAddrs(MI); 1564 return; 1565 case ARM::JUMPTABLE_INSTS: 1566 EmitJumpTableInsts(MI); 1567 return; 1568 case ARM::JUMPTABLE_TBB: 1569 case ARM::JUMPTABLE_TBH: 1570 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1571 return; 1572 case ARM::t2BR_JT: { 1573 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1574 .addReg(ARM::PC) 1575 .addReg(MI->getOperand(0).getReg()) 1576 // Add predicate operands. 1577 .addImm(ARMCC::AL) 1578 .addReg(0)); 1579 return; 1580 } 1581 case ARM::t2TBB_JT: 1582 case ARM::t2TBH_JT: { 1583 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1584 // Lower and emit the PC label, then the instruction itself. 1585 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1586 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1587 .addReg(MI->getOperand(0).getReg()) 1588 .addReg(MI->getOperand(1).getReg()) 1589 // Add predicate operands. 1590 .addImm(ARMCC::AL) 1591 .addReg(0)); 1592 return; 1593 } 1594 case ARM::tTBB_JT: 1595 case ARM::tTBH_JT: { 1596 1597 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1598 unsigned Base = MI->getOperand(0).getReg(); 1599 unsigned Idx = MI->getOperand(1).getReg(); 1600 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1601 1602 // Multiply up idx if necessary. 1603 if (!Is8Bit) 1604 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1605 .addReg(Idx) 1606 .addReg(ARM::CPSR) 1607 .addReg(Idx) 1608 .addImm(1) 1609 // Add predicate operands. 1610 .addImm(ARMCC::AL) 1611 .addReg(0)); 1612 1613 if (Base == ARM::PC) { 1614 // TBB [base, idx] = 1615 // ADDS idx, idx, base 1616 // LDRB idx, [idx, #4] ; or LDRH if TBH 1617 // LSLS idx, #1 1618 // ADDS pc, pc, idx 1619 1620 // When using PC as the base, it's important that there is no padding 1621 // between the last ADDS and the start of the jump table. The jump table 1622 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1623 // 1624 // FIXME: Ideally we could vary the LDRB index based on the padding 1625 // between the sequence and jump table, however that relies on MCExprs 1626 // for load indexes which are currently not supported. 1627 OutStreamer->EmitCodeAlignment(4); 1628 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1629 .addReg(Idx) 1630 .addReg(Idx) 1631 .addReg(Base) 1632 // Add predicate operands. 1633 .addImm(ARMCC::AL) 1634 .addReg(0)); 1635 1636 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1637 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1638 .addReg(Idx) 1639 .addReg(Idx) 1640 .addImm(Is8Bit ? 4 : 2) 1641 // Add predicate operands. 1642 .addImm(ARMCC::AL) 1643 .addReg(0)); 1644 } else { 1645 // TBB [base, idx] = 1646 // LDRB idx, [base, idx] ; or LDRH if TBH 1647 // LSLS idx, #1 1648 // ADDS pc, pc, idx 1649 1650 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1651 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1652 .addReg(Idx) 1653 .addReg(Base) 1654 .addReg(Idx) 1655 // Add predicate operands. 1656 .addImm(ARMCC::AL) 1657 .addReg(0)); 1658 } 1659 1660 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1661 .addReg(Idx) 1662 .addReg(ARM::CPSR) 1663 .addReg(Idx) 1664 .addImm(1) 1665 // Add predicate operands. 1666 .addImm(ARMCC::AL) 1667 .addReg(0)); 1668 1669 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1670 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1671 .addReg(ARM::PC) 1672 .addReg(ARM::PC) 1673 .addReg(Idx) 1674 // Add predicate operands. 1675 .addImm(ARMCC::AL) 1676 .addReg(0)); 1677 return; 1678 } 1679 case ARM::tBR_JTr: 1680 case ARM::BR_JTr: { 1681 // mov pc, target 1682 MCInst TmpInst; 1683 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1684 ARM::MOVr : ARM::tMOVr; 1685 TmpInst.setOpcode(Opc); 1686 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1687 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1688 // Add predicate operands. 1689 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1690 TmpInst.addOperand(MCOperand::createReg(0)); 1691 // Add 's' bit operand (always reg0 for this) 1692 if (Opc == ARM::MOVr) 1693 TmpInst.addOperand(MCOperand::createReg(0)); 1694 EmitToStreamer(*OutStreamer, TmpInst); 1695 return; 1696 } 1697 case ARM::BR_JTm_i12: { 1698 // ldr pc, target 1699 MCInst TmpInst; 1700 TmpInst.setOpcode(ARM::LDRi12); 1701 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1702 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1703 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1704 // Add predicate operands. 1705 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1706 TmpInst.addOperand(MCOperand::createReg(0)); 1707 EmitToStreamer(*OutStreamer, TmpInst); 1708 return; 1709 } 1710 case ARM::BR_JTm_rs: { 1711 // ldr pc, target 1712 MCInst TmpInst; 1713 TmpInst.setOpcode(ARM::LDRrs); 1714 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1715 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1716 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1717 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1718 // Add predicate operands. 1719 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1720 TmpInst.addOperand(MCOperand::createReg(0)); 1721 EmitToStreamer(*OutStreamer, TmpInst); 1722 return; 1723 } 1724 case ARM::BR_JTadd: { 1725 // add pc, target, idx 1726 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1727 .addReg(ARM::PC) 1728 .addReg(MI->getOperand(0).getReg()) 1729 .addReg(MI->getOperand(1).getReg()) 1730 // Add predicate operands. 1731 .addImm(ARMCC::AL) 1732 .addReg(0) 1733 // Add 's' bit operand (always reg0 for this) 1734 .addReg(0)); 1735 return; 1736 } 1737 case ARM::SPACE: 1738 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1739 return; 1740 case ARM::TRAP: { 1741 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1742 // FIXME: Remove this special case when they do. 1743 if (!Subtarget->isTargetMachO()) { 1744 uint32_t Val = 0xe7ffdefeUL; 1745 OutStreamer->AddComment("trap"); 1746 ATS.emitInst(Val); 1747 return; 1748 } 1749 break; 1750 } 1751 case ARM::TRAPNaCl: { 1752 uint32_t Val = 0xe7fedef0UL; 1753 OutStreamer->AddComment("trap"); 1754 ATS.emitInst(Val); 1755 return; 1756 } 1757 case ARM::tTRAP: { 1758 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1759 // FIXME: Remove this special case when they do. 1760 if (!Subtarget->isTargetMachO()) { 1761 uint16_t Val = 0xdefe; 1762 OutStreamer->AddComment("trap"); 1763 ATS.emitInst(Val, 'n'); 1764 return; 1765 } 1766 break; 1767 } 1768 case ARM::t2Int_eh_sjlj_setjmp: 1769 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1770 case ARM::tInt_eh_sjlj_setjmp: { 1771 // Two incoming args: GPR:$src, GPR:$val 1772 // mov $val, pc 1773 // adds $val, #7 1774 // str $val, [$src, #4] 1775 // movs r0, #0 1776 // b LSJLJEH 1777 // movs r0, #1 1778 // LSJLJEH: 1779 unsigned SrcReg = MI->getOperand(0).getReg(); 1780 unsigned ValReg = MI->getOperand(1).getReg(); 1781 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1782 OutStreamer->AddComment("eh_setjmp begin"); 1783 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1784 .addReg(ValReg) 1785 .addReg(ARM::PC) 1786 // Predicate. 1787 .addImm(ARMCC::AL) 1788 .addReg(0)); 1789 1790 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1791 .addReg(ValReg) 1792 // 's' bit operand 1793 .addReg(ARM::CPSR) 1794 .addReg(ValReg) 1795 .addImm(7) 1796 // Predicate. 1797 .addImm(ARMCC::AL) 1798 .addReg(0)); 1799 1800 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1801 .addReg(ValReg) 1802 .addReg(SrcReg) 1803 // The offset immediate is #4. The operand value is scaled by 4 for the 1804 // tSTR instruction. 1805 .addImm(1) 1806 // Predicate. 1807 .addImm(ARMCC::AL) 1808 .addReg(0)); 1809 1810 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1811 .addReg(ARM::R0) 1812 .addReg(ARM::CPSR) 1813 .addImm(0) 1814 // Predicate. 1815 .addImm(ARMCC::AL) 1816 .addReg(0)); 1817 1818 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1819 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1820 .addExpr(SymbolExpr) 1821 .addImm(ARMCC::AL) 1822 .addReg(0)); 1823 1824 OutStreamer->AddComment("eh_setjmp end"); 1825 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1826 .addReg(ARM::R0) 1827 .addReg(ARM::CPSR) 1828 .addImm(1) 1829 // Predicate. 1830 .addImm(ARMCC::AL) 1831 .addReg(0)); 1832 1833 OutStreamer->EmitLabel(Label); 1834 return; 1835 } 1836 1837 case ARM::Int_eh_sjlj_setjmp_nofp: 1838 case ARM::Int_eh_sjlj_setjmp: { 1839 // Two incoming args: GPR:$src, GPR:$val 1840 // add $val, pc, #8 1841 // str $val, [$src, #+4] 1842 // mov r0, #0 1843 // add pc, pc, #0 1844 // mov r0, #1 1845 unsigned SrcReg = MI->getOperand(0).getReg(); 1846 unsigned ValReg = MI->getOperand(1).getReg(); 1847 1848 OutStreamer->AddComment("eh_setjmp begin"); 1849 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1850 .addReg(ValReg) 1851 .addReg(ARM::PC) 1852 .addImm(8) 1853 // Predicate. 1854 .addImm(ARMCC::AL) 1855 .addReg(0) 1856 // 's' bit operand (always reg0 for this). 1857 .addReg(0)); 1858 1859 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1860 .addReg(ValReg) 1861 .addReg(SrcReg) 1862 .addImm(4) 1863 // Predicate. 1864 .addImm(ARMCC::AL) 1865 .addReg(0)); 1866 1867 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1868 .addReg(ARM::R0) 1869 .addImm(0) 1870 // Predicate. 1871 .addImm(ARMCC::AL) 1872 .addReg(0) 1873 // 's' bit operand (always reg0 for this). 1874 .addReg(0)); 1875 1876 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1877 .addReg(ARM::PC) 1878 .addReg(ARM::PC) 1879 .addImm(0) 1880 // Predicate. 1881 .addImm(ARMCC::AL) 1882 .addReg(0) 1883 // 's' bit operand (always reg0 for this). 1884 .addReg(0)); 1885 1886 OutStreamer->AddComment("eh_setjmp end"); 1887 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1888 .addReg(ARM::R0) 1889 .addImm(1) 1890 // Predicate. 1891 .addImm(ARMCC::AL) 1892 .addReg(0) 1893 // 's' bit operand (always reg0 for this). 1894 .addReg(0)); 1895 return; 1896 } 1897 case ARM::Int_eh_sjlj_longjmp: { 1898 // ldr sp, [$src, #8] 1899 // ldr $scratch, [$src, #4] 1900 // ldr r7, [$src] 1901 // bx $scratch 1902 unsigned SrcReg = MI->getOperand(0).getReg(); 1903 unsigned ScratchReg = MI->getOperand(1).getReg(); 1904 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1905 .addReg(ARM::SP) 1906 .addReg(SrcReg) 1907 .addImm(8) 1908 // Predicate. 1909 .addImm(ARMCC::AL) 1910 .addReg(0)); 1911 1912 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1913 .addReg(ScratchReg) 1914 .addReg(SrcReg) 1915 .addImm(4) 1916 // Predicate. 1917 .addImm(ARMCC::AL) 1918 .addReg(0)); 1919 1920 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1921 // These platforms always use the same frame register 1922 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1923 .addReg(FramePtr) 1924 .addReg(SrcReg) 1925 .addImm(0) 1926 // Predicate. 1927 .addImm(ARMCC::AL) 1928 .addReg(0)); 1929 } else { 1930 // If the calling code might use either R7 or R11 as 1931 // frame pointer register, restore it into both. 1932 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1933 .addReg(ARM::R7) 1934 .addReg(SrcReg) 1935 .addImm(0) 1936 // Predicate. 1937 .addImm(ARMCC::AL) 1938 .addReg(0)); 1939 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1940 .addReg(ARM::R11) 1941 .addReg(SrcReg) 1942 .addImm(0) 1943 // Predicate. 1944 .addImm(ARMCC::AL) 1945 .addReg(0)); 1946 } 1947 1948 assert(Subtarget->hasV4TOps()); 1949 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1950 .addReg(ScratchReg) 1951 // Predicate. 1952 .addImm(ARMCC::AL) 1953 .addReg(0)); 1954 return; 1955 } 1956 case ARM::tInt_eh_sjlj_longjmp: { 1957 // ldr $scratch, [$src, #8] 1958 // mov sp, $scratch 1959 // ldr $scratch, [$src, #4] 1960 // ldr r7, [$src] 1961 // bx $scratch 1962 unsigned SrcReg = MI->getOperand(0).getReg(); 1963 unsigned ScratchReg = MI->getOperand(1).getReg(); 1964 1965 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1966 .addReg(ScratchReg) 1967 .addReg(SrcReg) 1968 // The offset immediate is #8. The operand value is scaled by 4 for the 1969 // tLDR instruction. 1970 .addImm(2) 1971 // Predicate. 1972 .addImm(ARMCC::AL) 1973 .addReg(0)); 1974 1975 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1976 .addReg(ARM::SP) 1977 .addReg(ScratchReg) 1978 // Predicate. 1979 .addImm(ARMCC::AL) 1980 .addReg(0)); 1981 1982 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1983 .addReg(ScratchReg) 1984 .addReg(SrcReg) 1985 .addImm(1) 1986 // Predicate. 1987 .addImm(ARMCC::AL) 1988 .addReg(0)); 1989 1990 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 1991 // These platforms always use the same frame register 1992 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1993 .addReg(FramePtr) 1994 .addReg(SrcReg) 1995 .addImm(0) 1996 // Predicate. 1997 .addImm(ARMCC::AL) 1998 .addReg(0)); 1999 } else { 2000 // If the calling code might use either R7 or R11 as 2001 // frame pointer register, restore it into both. 2002 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2003 .addReg(ARM::R7) 2004 .addReg(SrcReg) 2005 .addImm(0) 2006 // Predicate. 2007 .addImm(ARMCC::AL) 2008 .addReg(0)); 2009 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2010 .addReg(ARM::R11) 2011 .addReg(SrcReg) 2012 .addImm(0) 2013 // Predicate. 2014 .addImm(ARMCC::AL) 2015 .addReg(0)); 2016 } 2017 2018 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2019 .addReg(ScratchReg) 2020 // Predicate. 2021 .addImm(ARMCC::AL) 2022 .addReg(0)); 2023 return; 2024 } 2025 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2026 // ldr.w r11, [$src, #0] 2027 // ldr.w sp, [$src, #8] 2028 // ldr.w pc, [$src, #4] 2029 2030 unsigned SrcReg = MI->getOperand(0).getReg(); 2031 2032 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2033 .addReg(ARM::R11) 2034 .addReg(SrcReg) 2035 .addImm(0) 2036 // Predicate 2037 .addImm(ARMCC::AL) 2038 .addReg(0)); 2039 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2040 .addReg(ARM::SP) 2041 .addReg(SrcReg) 2042 .addImm(8) 2043 // Predicate 2044 .addImm(ARMCC::AL) 2045 .addReg(0)); 2046 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2047 .addReg(ARM::PC) 2048 .addReg(SrcReg) 2049 .addImm(4) 2050 // Predicate 2051 .addImm(ARMCC::AL) 2052 .addReg(0)); 2053 return; 2054 } 2055 case ARM::PATCHABLE_FUNCTION_ENTER: 2056 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2057 return; 2058 case ARM::PATCHABLE_FUNCTION_EXIT: 2059 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2060 return; 2061 case ARM::PATCHABLE_TAIL_CALL: 2062 LowerPATCHABLE_TAIL_CALL(*MI); 2063 return; 2064 } 2065 2066 MCInst TmpInst; 2067 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2068 2069 EmitToStreamer(*OutStreamer, TmpInst); 2070 } 2071 2072 //===----------------------------------------------------------------------===// 2073 // Target Registry Stuff 2074 //===----------------------------------------------------------------------===// 2075 2076 // Force static initialization. 2077 extern "C" void LLVMInitializeARMAsmPrinter() { 2078 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2079 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2080 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2081 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2082 } 2083