1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/TargetParser.h" 47 #include "llvm/Support/COFF.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ELF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/TargetRegistry.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <cctype> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "asm-printer" 59 60 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 61 std::unique_ptr<MCStreamer> Streamer) 62 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 63 InConstantPool(false) {} 64 65 void ARMAsmPrinter::EmitFunctionBodyEnd() { 66 // Make sure to terminate any constant pools that were at the end 67 // of the function. 68 if (!InConstantPool) 69 return; 70 InConstantPool = false; 71 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 72 } 73 74 void ARMAsmPrinter::EmitFunctionEntryLabel() { 75 if (AFI->isThumbFunction()) { 76 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 77 OutStreamer->EmitThumbFunc(CurrentFnSym); 78 } 79 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const Constant *CV) { 84 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 /// runOnMachineFunction - This uses the EmitInstruction() 101 /// method to print assembly for each instruction. 102 /// 103 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 104 AFI = MF.getInfo<ARMFunctionInfo>(); 105 MCP = MF.getConstantPool(); 106 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 107 108 SetupMachineFunction(MF); 109 110 if (Subtarget->isTargetCOFF()) { 111 bool Internal = MF.getFunction()->hasInternalLinkage(); 112 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 113 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 114 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 115 116 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 117 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 118 OutStreamer->EmitCOFFSymbolType(Type); 119 OutStreamer->EndCOFFSymbolDef(); 120 } 121 122 // Emit the rest of the function body. 123 EmitFunctionBody(); 124 125 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 126 // These are created per function, rather than per TU, since it's 127 // relatively easy to exceed the thumb branch range within a TU. 128 if (! ThumbIndirectPads.empty()) { 129 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 130 EmitAlignment(1); 131 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 132 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 133 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 134 .addReg(ThumbIndirectPads[i].first) 135 // Add predicate operands. 136 .addImm(ARMCC::AL) 137 .addReg(0)); 138 } 139 ThumbIndirectPads.clear(); 140 } 141 142 // We didn't modify anything. 143 return false; 144 } 145 146 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 147 raw_ostream &O) { 148 const MachineOperand &MO = MI->getOperand(OpNum); 149 unsigned TF = MO.getTargetFlags(); 150 151 switch (MO.getType()) { 152 default: llvm_unreachable("<unknown operand type>"); 153 case MachineOperand::MO_Register: { 154 unsigned Reg = MO.getReg(); 155 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 156 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 157 if(ARM::GPRPairRegClass.contains(Reg)) { 158 const MachineFunction &MF = *MI->getParent()->getParent(); 159 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 160 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 161 } 162 O << ARMInstPrinter::getRegisterName(Reg); 163 break; 164 } 165 case MachineOperand::MO_Immediate: { 166 int64_t Imm = MO.getImm(); 167 O << '#'; 168 if (TF == ARMII::MO_LO16) 169 O << ":lower16:"; 170 else if (TF == ARMII::MO_HI16) 171 O << ":upper16:"; 172 O << Imm; 173 break; 174 } 175 case MachineOperand::MO_MachineBasicBlock: 176 MO.getMBB()->getSymbol()->print(O, MAI); 177 return; 178 case MachineOperand::MO_GlobalAddress: { 179 const GlobalValue *GV = MO.getGlobal(); 180 if (TF & ARMII::MO_LO16) 181 O << ":lower16:"; 182 else if (TF & ARMII::MO_HI16) 183 O << ":upper16:"; 184 GetARMGVSymbol(GV, TF)->print(O, MAI); 185 186 printOffset(MO.getOffset(), O); 187 if (TF == ARMII::MO_PLT) 188 O << "(PLT)"; 189 break; 190 } 191 case MachineOperand::MO_ConstantPoolIndex: 192 GetCPISymbol(MO.getIndex())->print(O, MAI); 193 break; 194 } 195 } 196 197 //===--------------------------------------------------------------------===// 198 199 MCSymbol *ARMAsmPrinter:: 200 GetARMJTIPICJumpTableLabel(unsigned uid) const { 201 const DataLayout *DL = TM.getDataLayout(); 202 SmallString<60> Name; 203 raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "JTI" 204 << getFunctionNumber() << '_' << uid; 205 return OutContext.getOrCreateSymbol(Name); 206 } 207 208 209 MCSymbol *ARMAsmPrinter::GetARMSJLJEHLabel() const { 210 const DataLayout *DL = TM.getDataLayout(); 211 SmallString<60> Name; 212 raw_svector_ostream(Name) << DL->getPrivateGlobalPrefix() << "SJLJEH" 213 << getFunctionNumber(); 214 return OutContext.getOrCreateSymbol(Name); 215 } 216 217 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 218 unsigned AsmVariant, const char *ExtraCode, 219 raw_ostream &O) { 220 // Does this asm operand have a single letter operand modifier? 221 if (ExtraCode && ExtraCode[0]) { 222 if (ExtraCode[1] != 0) return true; // Unknown modifier. 223 224 switch (ExtraCode[0]) { 225 default: 226 // See if this is a generic print operand 227 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 228 case 'a': // Print as a memory address. 229 if (MI->getOperand(OpNum).isReg()) { 230 O << "[" 231 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 232 << "]"; 233 return false; 234 } 235 // Fallthrough 236 case 'c': // Don't print "#" before an immediate operand. 237 if (!MI->getOperand(OpNum).isImm()) 238 return true; 239 O << MI->getOperand(OpNum).getImm(); 240 return false; 241 case 'P': // Print a VFP double precision register. 242 case 'q': // Print a NEON quad precision register. 243 printOperand(MI, OpNum, O); 244 return false; 245 case 'y': // Print a VFP single precision register as indexed double. 246 if (MI->getOperand(OpNum).isReg()) { 247 unsigned Reg = MI->getOperand(OpNum).getReg(); 248 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 249 // Find the 'd' register that has this 's' register as a sub-register, 250 // and determine the lane number. 251 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 252 if (!ARM::DPRRegClass.contains(*SR)) 253 continue; 254 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 255 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 256 return false; 257 } 258 } 259 return true; 260 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 261 if (!MI->getOperand(OpNum).isImm()) 262 return true; 263 O << ~(MI->getOperand(OpNum).getImm()); 264 return false; 265 case 'L': // The low 16 bits of an immediate constant. 266 if (!MI->getOperand(OpNum).isImm()) 267 return true; 268 O << (MI->getOperand(OpNum).getImm() & 0xffff); 269 return false; 270 case 'M': { // A register range suitable for LDM/STM. 271 if (!MI->getOperand(OpNum).isReg()) 272 return true; 273 const MachineOperand &MO = MI->getOperand(OpNum); 274 unsigned RegBegin = MO.getReg(); 275 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 276 // already got the operands in registers that are operands to the 277 // inline asm statement. 278 O << "{"; 279 if (ARM::GPRPairRegClass.contains(RegBegin)) { 280 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 281 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 282 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 283 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 284 } 285 O << ARMInstPrinter::getRegisterName(RegBegin); 286 287 // FIXME: The register allocator not only may not have given us the 288 // registers in sequence, but may not be in ascending registers. This 289 // will require changes in the register allocator that'll need to be 290 // propagated down here if the operands change. 291 unsigned RegOps = OpNum + 1; 292 while (MI->getOperand(RegOps).isReg()) { 293 O << ", " 294 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 295 RegOps++; 296 } 297 298 O << "}"; 299 300 return false; 301 } 302 case 'R': // The most significant register of a pair. 303 case 'Q': { // The least significant register of a pair. 304 if (OpNum == 0) 305 return true; 306 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 307 if (!FlagsOP.isImm()) 308 return true; 309 unsigned Flags = FlagsOP.getImm(); 310 311 // This operand may not be the one that actually provides the register. If 312 // it's tied to a previous one then we should refer instead to that one 313 // for registers and their classes. 314 unsigned TiedIdx; 315 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 316 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 317 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 318 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 319 } 320 Flags = MI->getOperand(OpNum).getImm(); 321 322 // Later code expects OpNum to be pointing at the register rather than 323 // the flags. 324 OpNum += 1; 325 } 326 327 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 328 unsigned RC; 329 InlineAsm::hasRegClassConstraint(Flags, RC); 330 if (RC == ARM::GPRPairRegClassID) { 331 if (NumVals != 1) 332 return true; 333 const MachineOperand &MO = MI->getOperand(OpNum); 334 if (!MO.isReg()) 335 return true; 336 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 337 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 338 ARM::gsub_0 : ARM::gsub_1); 339 O << ARMInstPrinter::getRegisterName(Reg); 340 return false; 341 } 342 if (NumVals != 2) 343 return true; 344 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 345 if (RegOp >= MI->getNumOperands()) 346 return true; 347 const MachineOperand &MO = MI->getOperand(RegOp); 348 if (!MO.isReg()) 349 return true; 350 unsigned Reg = MO.getReg(); 351 O << ARMInstPrinter::getRegisterName(Reg); 352 return false; 353 } 354 355 case 'e': // The low doubleword register of a NEON quad register. 356 case 'f': { // The high doubleword register of a NEON quad register. 357 if (!MI->getOperand(OpNum).isReg()) 358 return true; 359 unsigned Reg = MI->getOperand(OpNum).getReg(); 360 if (!ARM::QPRRegClass.contains(Reg)) 361 return true; 362 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 363 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 364 ARM::dsub_0 : ARM::dsub_1); 365 O << ARMInstPrinter::getRegisterName(SubReg); 366 return false; 367 } 368 369 // This modifier is not yet supported. 370 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 371 return true; 372 case 'H': { // The highest-numbered register of a pair. 373 const MachineOperand &MO = MI->getOperand(OpNum); 374 if (!MO.isReg()) 375 return true; 376 const MachineFunction &MF = *MI->getParent()->getParent(); 377 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 378 unsigned Reg = MO.getReg(); 379 if(!ARM::GPRPairRegClass.contains(Reg)) 380 return false; 381 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 382 O << ARMInstPrinter::getRegisterName(Reg); 383 return false; 384 } 385 } 386 } 387 388 printOperand(MI, OpNum, O); 389 return false; 390 } 391 392 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 393 unsigned OpNum, unsigned AsmVariant, 394 const char *ExtraCode, 395 raw_ostream &O) { 396 // Does this asm operand have a single letter operand modifier? 397 if (ExtraCode && ExtraCode[0]) { 398 if (ExtraCode[1] != 0) return true; // Unknown modifier. 399 400 switch (ExtraCode[0]) { 401 case 'A': // A memory operand for a VLD1/VST1 instruction. 402 default: return true; // Unknown modifier. 403 case 'm': // The base register of a memory operand. 404 if (!MI->getOperand(OpNum).isReg()) 405 return true; 406 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 407 return false; 408 } 409 } 410 411 const MachineOperand &MO = MI->getOperand(OpNum); 412 assert(MO.isReg() && "unexpected inline asm memory operand"); 413 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 414 return false; 415 } 416 417 static bool isThumb(const MCSubtargetInfo& STI) { 418 return STI.getFeatureBits()[ARM::ModeThumb]; 419 } 420 421 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 422 const MCSubtargetInfo *EndInfo) const { 423 // If either end mode is unknown (EndInfo == NULL) or different than 424 // the start mode, then restore the start mode. 425 const bool WasThumb = isThumb(StartInfo); 426 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 427 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 428 } 429 } 430 431 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 432 const Triple &TT = TM.getTargetTriple(); 433 // Use unified assembler syntax. 434 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 435 436 // Emit ARM Build Attributes 437 if (TT.isOSBinFormatELF()) 438 emitAttributes(); 439 440 // Use the triple's architecture and subarchitecture to determine 441 // if we're thumb for the purposes of the top level code16 assembler 442 // flag. 443 bool isThumb = TT.getArch() == Triple::thumb || 444 TT.getArch() == Triple::thumbeb || 445 TT.getSubArch() == Triple::ARMSubArch_v7m || 446 TT.getSubArch() == Triple::ARMSubArch_v6m; 447 if (!M.getModuleInlineAsm().empty() && isThumb) 448 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 449 } 450 451 static void 452 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 453 MachineModuleInfoImpl::StubValueTy &MCSym) { 454 // L_foo$stub: 455 OutStreamer.EmitLabel(StubLabel); 456 // .indirect_symbol _foo 457 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 458 459 if (MCSym.getInt()) 460 // External to current translation unit. 461 OutStreamer.EmitIntValue(0, 4/*size*/); 462 else 463 // Internal to current translation unit. 464 // 465 // When we place the LSDA into the TEXT section, the type info 466 // pointers need to be indirect and pc-rel. We accomplish this by 467 // using NLPs; however, sometimes the types are local to the file. 468 // We need to fill in the value for the NLP in those cases. 469 OutStreamer.EmitValue( 470 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 471 4 /*size*/); 472 } 473 474 475 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 476 const Triple &TT = TM.getTargetTriple(); 477 if (TT.isOSBinFormatMachO()) { 478 // All darwin targets use mach-o. 479 const TargetLoweringObjectFileMachO &TLOFMacho = 480 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 481 MachineModuleInfoMachO &MMIMacho = 482 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 483 484 // Output non-lazy-pointers for external and common global variables. 485 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 486 487 if (!Stubs.empty()) { 488 // Switch with ".non_lazy_symbol_pointer" directive. 489 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 490 EmitAlignment(2); 491 492 for (auto &Stub : Stubs) 493 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 494 495 Stubs.clear(); 496 OutStreamer->AddBlankLine(); 497 } 498 499 Stubs = MMIMacho.GetHiddenGVStubList(); 500 if (!Stubs.empty()) { 501 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 502 EmitAlignment(2); 503 504 for (auto &Stub : Stubs) 505 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 506 507 Stubs.clear(); 508 OutStreamer->AddBlankLine(); 509 } 510 511 // Funny Darwin hack: This flag tells the linker that no global symbols 512 // contain code that falls through to other global symbols (e.g. the obvious 513 // implementation of multiple entry points). If this doesn't occur, the 514 // linker can safely perform dead code stripping. Since LLVM never 515 // generates code that does this, it is always safe to set. 516 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 517 } 518 } 519 520 //===----------------------------------------------------------------------===// 521 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 522 // FIXME: 523 // The following seem like one-off assembler flags, but they actually need 524 // to appear in the .ARM.attributes section in ELF. 525 // Instead of subclassing the MCELFStreamer, we do the work here. 526 527 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 528 const ARMSubtarget *Subtarget) { 529 if (CPU == "xscale") 530 return ARMBuildAttrs::v5TEJ; 531 532 if (Subtarget->hasV8Ops()) 533 return ARMBuildAttrs::v8; 534 else if (Subtarget->hasV7Ops()) { 535 if (Subtarget->isMClass() && Subtarget->hasThumb2DSP()) 536 return ARMBuildAttrs::v7E_M; 537 return ARMBuildAttrs::v7; 538 } else if (Subtarget->hasV6T2Ops()) 539 return ARMBuildAttrs::v6T2; 540 else if (Subtarget->hasV6MOps()) 541 return ARMBuildAttrs::v6S_M; 542 else if (Subtarget->hasV6Ops()) 543 return ARMBuildAttrs::v6; 544 else if (Subtarget->hasV5TEOps()) 545 return ARMBuildAttrs::v5TE; 546 else if (Subtarget->hasV5TOps()) 547 return ARMBuildAttrs::v5T; 548 else if (Subtarget->hasV4TOps()) 549 return ARMBuildAttrs::v4T; 550 else 551 return ARMBuildAttrs::v4; 552 } 553 554 void ARMAsmPrinter::emitAttributes() { 555 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 556 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 557 558 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 559 560 ATS.switchVendor("aeabi"); 561 562 // Compute ARM ELF Attributes based on the default subtarget that 563 // we'd have constructed. The existing ARM behavior isn't LTO clean 564 // anyhow. 565 // FIXME: For ifunc related functions we could iterate over and look 566 // for a feature string that doesn't match the default one. 567 const Triple &TT = TM.getTargetTriple(); 568 StringRef CPU = TM.getTargetCPU(); 569 StringRef FS = TM.getTargetFeatureString(); 570 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 571 if (!FS.empty()) { 572 if (!ArchFS.empty()) 573 ArchFS = (Twine(ArchFS) + "," + FS).str(); 574 else 575 ArchFS = FS; 576 } 577 const ARMBaseTargetMachine &ATM = 578 static_cast<const ARMBaseTargetMachine &>(TM); 579 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 580 581 std::string CPUString = STI.getCPUString(); 582 583 if (CPUString.find("generic") != 0) { //CPUString doesn't start with "generic" 584 // FIXME: remove krait check when GNU tools support krait cpu 585 if (STI.isKrait()) { 586 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 587 // We consider krait as a "cortex-a9" + hwdiv CPU 588 // Enable hwdiv through ".arch_extension idiv" 589 if (STI.hasDivide() || STI.hasDivideInARMMode()) 590 ATS.emitArchExtension(ARM::AEK_HWDIV); 591 } else 592 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 593 } 594 595 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 596 597 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 598 // profile is not applicable (e.g. pre v7, or cross-profile code)". 599 if (STI.hasV7Ops()) { 600 if (STI.isAClass()) { 601 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 602 ARMBuildAttrs::ApplicationProfile); 603 } else if (STI.isRClass()) { 604 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 605 ARMBuildAttrs::RealTimeProfile); 606 } else if (STI.isMClass()) { 607 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 608 ARMBuildAttrs::MicroControllerProfile); 609 } 610 } 611 612 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 613 STI.hasARMOps() ? ARMBuildAttrs::Allowed 614 : ARMBuildAttrs::Not_Allowed); 615 if (STI.isThumb1Only()) { 616 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 617 } else if (STI.hasThumb2()) { 618 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 619 ARMBuildAttrs::AllowThumb32); 620 } 621 622 if (STI.hasNEON()) { 623 /* NEON is not exactly a VFP architecture, but GAS emit one of 624 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 625 if (STI.hasFPARMv8()) { 626 if (STI.hasCrypto()) 627 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 628 else 629 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 630 } else if (STI.hasVFP4()) 631 ATS.emitFPU(ARM::FK_NEON_VFPV4); 632 else 633 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 634 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 635 if (STI.hasV8Ops()) 636 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 637 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 638 ARMBuildAttrs::AllowNeonARMv8); 639 } else { 640 if (STI.hasFPARMv8()) 641 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 642 // FPU, but there are two different names for it depending on the CPU. 643 ATS.emitFPU(STI.hasD16() 644 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 645 : ARM::FK_FP_ARMV8); 646 else if (STI.hasVFP4()) 647 ATS.emitFPU(STI.hasD16() 648 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 649 : ARM::FK_VFPV4); 650 else if (STI.hasVFP3()) 651 ATS.emitFPU(STI.hasD16() 652 // +d16 653 ? (STI.isFPOnlySP() 654 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 655 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 656 // -d16 657 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 658 else if (STI.hasVFP2()) 659 ATS.emitFPU(ARM::FK_VFPV2); 660 } 661 662 if (TM.getRelocationModel() == Reloc::PIC_) { 663 // PIC specific attributes. 664 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 665 ARMBuildAttrs::AddressRWPCRel); 666 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 667 ARMBuildAttrs::AddressROPCRel); 668 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 669 ARMBuildAttrs::AddressGOT); 670 } else { 671 // Allow direct addressing of imported data for all other relocation models. 672 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 673 ARMBuildAttrs::AddressDirect); 674 } 675 676 // Signal various FP modes. 677 if (!TM.Options.UnsafeFPMath) { 678 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 679 ARMBuildAttrs::IEEEDenormals); 680 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 681 682 // If the user has permitted this code to choose the IEEE 754 683 // rounding at run-time, emit the rounding attribute. 684 if (TM.Options.HonorSignDependentRoundingFPMathOption) 685 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 686 } else { 687 if (!STI.hasVFP2()) { 688 // When the target doesn't have an FPU (by design or 689 // intention), the assumptions made on the software support 690 // mirror that of the equivalent hardware support *if it 691 // existed*. For v7 and better we indicate that denormals are 692 // flushed preserving sign, and for V6 we indicate that 693 // denormals are flushed to positive zero. 694 if (STI.hasV7Ops()) 695 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 696 ARMBuildAttrs::PreserveFPSign); 697 } else if (STI.hasVFP3()) { 698 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 699 // the sign bit of the zero matches the sign bit of the input or 700 // result that is being flushed to zero. 701 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 702 ARMBuildAttrs::PreserveFPSign); 703 } 704 // For VFPv2 implementations it is implementation defined as 705 // to whether denormals are flushed to positive zero or to 706 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 707 // LLVM has chosen to flush this to positive zero (most likely for 708 // GCC compatibility), so that's the chosen value here (the 709 // absence of its emission implies zero). 710 } 711 712 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 713 // equivalent of GCC's -ffinite-math-only flag. 714 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 715 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 716 ARMBuildAttrs::Allowed); 717 else 718 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 719 ARMBuildAttrs::AllowIEE754); 720 721 if (STI.allowsUnalignedMem()) 722 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 723 ARMBuildAttrs::Allowed); 724 else 725 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 726 ARMBuildAttrs::Not_Allowed); 727 728 // FIXME: add more flags to ARMBuildAttributes.h 729 // 8-bytes alignment stuff. 730 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 731 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 732 733 // ABI_HardFP_use attribute to indicate single precision FP. 734 if (STI.isFPOnlySP()) 735 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 736 ARMBuildAttrs::HardFPSinglePrecision); 737 738 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 739 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 740 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 741 742 // FIXME: Should we signal R9 usage? 743 744 if (STI.hasFP16()) 745 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 746 747 // FIXME: To support emitting this build attribute as GCC does, the 748 // -mfp16-format option and associated plumbing must be 749 // supported. For now the __fp16 type is exposed by default, so this 750 // attribute should be emitted with value 1. 751 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 752 ARMBuildAttrs::FP16FormatIEEE); 753 754 if (STI.hasMPExtension()) 755 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 756 757 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 758 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 759 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 760 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 761 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 762 // otherwise, the default value (AllowDIVIfExists) applies. 763 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 764 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 765 766 if (MMI) { 767 if (const Module *SourceModule = MMI->getModule()) { 768 // ABI_PCS_wchar_t to indicate wchar_t width 769 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 770 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 771 SourceModule->getModuleFlag("wchar_size"))) { 772 int WCharWidth = WCharWidthValue->getZExtValue(); 773 assert((WCharWidth == 2 || WCharWidth == 4) && 774 "wchar_t width must be 2 or 4 bytes"); 775 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 776 } 777 778 // ABI_enum_size to indicate enum width 779 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 780 // (all enums contain a value needing 32 bits to encode). 781 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 782 SourceModule->getModuleFlag("min_enum_size"))) { 783 int EnumWidth = EnumWidthValue->getZExtValue(); 784 assert((EnumWidth == 1 || EnumWidth == 4) && 785 "Minimum enum width must be 1 or 4 bytes"); 786 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 787 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 788 } 789 } 790 } 791 792 // TODO: We currently only support either reserving the register, or treating 793 // it as another callee-saved register, but not as SB or a TLS pointer; It 794 // would instead be nicer to push this from the frontend as metadata, as we do 795 // for the wchar and enum size tags 796 if (STI.isR9Reserved()) 797 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved); 798 else 799 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR); 800 801 if (STI.hasTrustZone() && STI.hasVirtualization()) 802 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 803 ARMBuildAttrs::AllowTZVirtualization); 804 else if (STI.hasTrustZone()) 805 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 806 ARMBuildAttrs::AllowTZ); 807 else if (STI.hasVirtualization()) 808 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 809 ARMBuildAttrs::AllowVirtualization); 810 811 ATS.finishAttributeSection(); 812 } 813 814 //===----------------------------------------------------------------------===// 815 816 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, 817 unsigned LabelId, MCContext &Ctx) { 818 819 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 820 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 821 return Label; 822 } 823 824 static MCSymbolRefExpr::VariantKind 825 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 826 switch (Modifier) { 827 case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None; 828 case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD; 829 case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF; 830 case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF; 831 case ARMCP::GOT: return MCSymbolRefExpr::VK_GOT; 832 case ARMCP::GOTOFF: return MCSymbolRefExpr::VK_GOTOFF; 833 } 834 llvm_unreachable("Invalid ARMCPModifier!"); 835 } 836 837 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 838 unsigned char TargetFlags) { 839 if (Subtarget->isTargetMachO()) { 840 bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) && 841 Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); 842 843 if (!IsIndirect) 844 return getSymbol(GV); 845 846 // FIXME: Remove this when Darwin transition to @GOT like syntax. 847 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 848 MachineModuleInfoMachO &MMIMachO = 849 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 850 MachineModuleInfoImpl::StubValueTy &StubSym = 851 GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) 852 : MMIMachO.getGVStubEntry(MCSym); 853 if (!StubSym.getPointer()) 854 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 855 !GV->hasInternalLinkage()); 856 return MCSym; 857 } else if (Subtarget->isTargetCOFF()) { 858 assert(Subtarget->isTargetWindows() && 859 "Windows is the only supported COFF target"); 860 861 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 862 if (!IsIndirect) 863 return getSymbol(GV); 864 865 SmallString<128> Name; 866 Name = "__imp_"; 867 getNameWithPrefix(Name, GV); 868 869 return OutContext.getOrCreateSymbol(Name); 870 } else if (Subtarget->isTargetELF()) { 871 return getSymbol(GV); 872 } 873 llvm_unreachable("unexpected target"); 874 } 875 876 void ARMAsmPrinter:: 877 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 878 const DataLayout *DL = TM.getDataLayout(); 879 int Size = TM.getDataLayout()->getTypeAllocSize(MCPV->getType()); 880 881 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 882 883 MCSymbol *MCSym; 884 if (ACPV->isLSDA()) { 885 MCSym = getCurExceptionSym(); 886 } else if (ACPV->isBlockAddress()) { 887 const BlockAddress *BA = 888 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 889 MCSym = GetBlockAddressSymbol(BA); 890 } else if (ACPV->isGlobalValue()) { 891 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 892 893 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 894 // flag the global as MO_NONLAZY. 895 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 896 MCSym = GetARMGVSymbol(GV, TF); 897 } else if (ACPV->isMachineBasicBlock()) { 898 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 899 MCSym = MBB->getSymbol(); 900 } else { 901 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 902 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 903 MCSym = GetExternalSymbolSymbol(Sym); 904 } 905 906 // Create an MCSymbol for the reference. 907 const MCExpr *Expr = 908 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 909 OutContext); 910 911 if (ACPV->getPCAdjustment()) { 912 MCSymbol *PCLabel = getPICLabel(DL->getPrivateGlobalPrefix(), 913 getFunctionNumber(), 914 ACPV->getLabelId(), 915 OutContext); 916 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 917 PCRelExpr = 918 MCBinaryExpr::createAdd(PCRelExpr, 919 MCConstantExpr::create(ACPV->getPCAdjustment(), 920 OutContext), 921 OutContext); 922 if (ACPV->mustAddCurrentAddress()) { 923 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 924 // label, so just emit a local label end reference that instead. 925 MCSymbol *DotSym = OutContext.createTempSymbol(); 926 OutStreamer->EmitLabel(DotSym); 927 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 928 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 929 } 930 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 931 } 932 OutStreamer->EmitValue(Expr, Size); 933 } 934 935 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 936 const MachineOperand &MO1 = MI->getOperand(1); 937 unsigned JTI = MO1.getIndex(); 938 939 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 940 // ARM mode tables. 941 EmitAlignment(2); 942 943 // Emit a label for the jump table. 944 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 945 OutStreamer->EmitLabel(JTISymbol); 946 947 // Mark the jump table as data-in-code. 948 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 949 950 // Emit each entry of the table. 951 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 952 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 953 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 954 955 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 956 MachineBasicBlock *MBB = JTBBs[i]; 957 // Construct an MCExpr for the entry. We want a value of the form: 958 // (BasicBlockAddr - TableBeginAddr) 959 // 960 // For example, a table with entries jumping to basic blocks BB0 and BB1 961 // would look like: 962 // LJTI_0_0: 963 // .word (LBB0 - LJTI_0_0) 964 // .word (LBB1 - LJTI_0_0) 965 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 966 967 if (TM.getRelocationModel() == Reloc::PIC_) 968 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 969 OutContext), 970 OutContext); 971 // If we're generating a table of Thumb addresses in static relocation 972 // model, we need to add one to keep interworking correctly. 973 else if (AFI->isThumbFunction()) 974 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 975 OutContext); 976 OutStreamer->EmitValue(Expr, 4); 977 } 978 // Mark the end of jump table data-in-code region. 979 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 980 } 981 982 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 983 const MachineOperand &MO1 = MI->getOperand(1); 984 unsigned JTI = MO1.getIndex(); 985 986 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 987 OutStreamer->EmitLabel(JTISymbol); 988 989 // Emit each entry of the table. 990 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 991 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 992 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 993 994 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 995 MachineBasicBlock *MBB = JTBBs[i]; 996 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 997 OutContext); 998 // If this isn't a TBB or TBH, the entries are direct branch instructions. 999 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1000 .addExpr(MBBSymbolExpr) 1001 .addImm(ARMCC::AL) 1002 .addReg(0)); 1003 } 1004 } 1005 1006 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1007 unsigned OffsetWidth) { 1008 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1009 const MachineOperand &MO1 = MI->getOperand(1); 1010 unsigned JTI = MO1.getIndex(); 1011 1012 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1013 OutStreamer->EmitLabel(JTISymbol); 1014 1015 // Emit each entry of the table. 1016 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1017 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1018 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1019 1020 // Mark the jump table as data-in-code. 1021 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1022 : MCDR_DataRegionJT16); 1023 1024 for (auto MBB : JTBBs) { 1025 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1026 OutContext); 1027 // Otherwise it's an offset from the dispatch instruction. Construct an 1028 // MCExpr for the entry. We want a value of the form: 1029 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1030 // 1031 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1032 // would look like: 1033 // LJTI_0_0: 1034 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1035 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1036 // where LCPI0_0 is a label defined just before the TBB instruction using 1037 // this table. 1038 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1039 const MCExpr *Expr = MCBinaryExpr::createAdd( 1040 MCSymbolRefExpr::create(TBInstPC, OutContext), 1041 MCConstantExpr::create(4, OutContext), OutContext); 1042 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1043 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1044 OutContext); 1045 OutStreamer->EmitValue(Expr, OffsetWidth); 1046 } 1047 // Mark the end of jump table data-in-code region. 32-bit offsets use 1048 // actual branch instructions here, so we don't mark those as a data-region 1049 // at all. 1050 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1051 1052 // Make sure the next instruction is 2-byte aligned. 1053 EmitAlignment(1); 1054 } 1055 1056 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1057 assert(MI->getFlag(MachineInstr::FrameSetup) && 1058 "Only instruction which are involved into frame setup code are allowed"); 1059 1060 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1061 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1062 const MachineFunction &MF = *MI->getParent()->getParent(); 1063 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1064 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1065 1066 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1067 unsigned Opc = MI->getOpcode(); 1068 unsigned SrcReg, DstReg; 1069 1070 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1071 // Two special cases: 1072 // 1) tPUSH does not have src/dst regs. 1073 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1074 // load. Yes, this is pretty fragile, but for now I don't see better 1075 // way... :( 1076 SrcReg = DstReg = ARM::SP; 1077 } else { 1078 SrcReg = MI->getOperand(1).getReg(); 1079 DstReg = MI->getOperand(0).getReg(); 1080 } 1081 1082 // Try to figure out the unwinding opcode out of src / dst regs. 1083 if (MI->mayStore()) { 1084 // Register saves. 1085 assert(DstReg == ARM::SP && 1086 "Only stack pointer as a destination reg is supported"); 1087 1088 SmallVector<unsigned, 4> RegList; 1089 // Skip src & dst reg, and pred ops. 1090 unsigned StartOp = 2 + 2; 1091 // Use all the operands. 1092 unsigned NumOffset = 0; 1093 1094 switch (Opc) { 1095 default: 1096 MI->dump(); 1097 llvm_unreachable("Unsupported opcode for unwinding information"); 1098 case ARM::tPUSH: 1099 // Special case here: no src & dst reg, but two extra imp ops. 1100 StartOp = 2; NumOffset = 2; 1101 case ARM::STMDB_UPD: 1102 case ARM::t2STMDB_UPD: 1103 case ARM::VSTMDDB_UPD: 1104 assert(SrcReg == ARM::SP && 1105 "Only stack pointer as a source reg is supported"); 1106 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1107 i != NumOps; ++i) { 1108 const MachineOperand &MO = MI->getOperand(i); 1109 // Actually, there should never be any impdef stuff here. Skip it 1110 // temporary to workaround PR11902. 1111 if (MO.isImplicit()) 1112 continue; 1113 RegList.push_back(MO.getReg()); 1114 } 1115 break; 1116 case ARM::STR_PRE_IMM: 1117 case ARM::STR_PRE_REG: 1118 case ARM::t2STR_PRE: 1119 assert(MI->getOperand(2).getReg() == ARM::SP && 1120 "Only stack pointer as a source reg is supported"); 1121 RegList.push_back(SrcReg); 1122 break; 1123 } 1124 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1125 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1126 } else { 1127 // Changes of stack / frame pointer. 1128 if (SrcReg == ARM::SP) { 1129 int64_t Offset = 0; 1130 switch (Opc) { 1131 default: 1132 MI->dump(); 1133 llvm_unreachable("Unsupported opcode for unwinding information"); 1134 case ARM::MOVr: 1135 case ARM::tMOVr: 1136 Offset = 0; 1137 break; 1138 case ARM::ADDri: 1139 Offset = -MI->getOperand(2).getImm(); 1140 break; 1141 case ARM::SUBri: 1142 case ARM::t2SUBri: 1143 Offset = MI->getOperand(2).getImm(); 1144 break; 1145 case ARM::tSUBspi: 1146 Offset = MI->getOperand(2).getImm()*4; 1147 break; 1148 case ARM::tADDspi: 1149 case ARM::tADDrSPi: 1150 Offset = -MI->getOperand(2).getImm()*4; 1151 break; 1152 case ARM::tLDRpci: { 1153 // Grab the constpool index and check, whether it corresponds to 1154 // original or cloned constpool entry. 1155 unsigned CPI = MI->getOperand(1).getIndex(); 1156 const MachineConstantPool *MCP = MF.getConstantPool(); 1157 if (CPI >= MCP->getConstants().size()) 1158 CPI = AFI.getOriginalCPIdx(CPI); 1159 assert(CPI != -1U && "Invalid constpool index"); 1160 1161 // Derive the actual offset. 1162 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1163 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1164 // FIXME: Check for user, it should be "add" instruction! 1165 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1166 break; 1167 } 1168 } 1169 1170 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1171 if (DstReg == FramePtr && FramePtr != ARM::SP) 1172 // Set-up of the frame pointer. Positive values correspond to "add" 1173 // instruction. 1174 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1175 else if (DstReg == ARM::SP) { 1176 // Change of SP by an offset. Positive values correspond to "sub" 1177 // instruction. 1178 ATS.emitPad(Offset); 1179 } else { 1180 // Move of SP to a register. Positive values correspond to an "add" 1181 // instruction. 1182 ATS.emitMovSP(DstReg, -Offset); 1183 } 1184 } 1185 } else if (DstReg == ARM::SP) { 1186 MI->dump(); 1187 llvm_unreachable("Unsupported opcode for unwinding information"); 1188 } 1189 else { 1190 MI->dump(); 1191 llvm_unreachable("Unsupported opcode for unwinding information"); 1192 } 1193 } 1194 } 1195 1196 // Simple pseudo-instructions have their lowering (with expansion to real 1197 // instructions) auto-generated. 1198 #include "ARMGenMCPseudoLowering.inc" 1199 1200 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1201 const DataLayout *DL = TM.getDataLayout(); 1202 1203 // If we just ended a constant pool, mark it as such. 1204 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1205 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1206 InConstantPool = false; 1207 } 1208 1209 // Emit unwinding stuff for frame-related instructions 1210 if (Subtarget->isTargetEHABICompatible() && 1211 MI->getFlag(MachineInstr::FrameSetup)) 1212 EmitUnwindingInstruction(MI); 1213 1214 // Do any auto-generated pseudo lowerings. 1215 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1216 return; 1217 1218 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1219 "Pseudo flag setting opcode should be expanded early"); 1220 1221 // Check for manual lowerings. 1222 unsigned Opc = MI->getOpcode(); 1223 switch (Opc) { 1224 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1225 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1226 case ARM::LEApcrel: 1227 case ARM::tLEApcrel: 1228 case ARM::t2LEApcrel: { 1229 // FIXME: Need to also handle globals and externals 1230 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1231 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1232 ARM::t2LEApcrel ? ARM::t2ADR 1233 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1234 : ARM::ADR)) 1235 .addReg(MI->getOperand(0).getReg()) 1236 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1237 // Add predicate operands. 1238 .addImm(MI->getOperand(2).getImm()) 1239 .addReg(MI->getOperand(3).getReg())); 1240 return; 1241 } 1242 case ARM::LEApcrelJT: 1243 case ARM::tLEApcrelJT: 1244 case ARM::t2LEApcrelJT: { 1245 MCSymbol *JTIPICSymbol = 1246 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1247 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1248 ARM::t2LEApcrelJT ? ARM::t2ADR 1249 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1250 : ARM::ADR)) 1251 .addReg(MI->getOperand(0).getReg()) 1252 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1253 // Add predicate operands. 1254 .addImm(MI->getOperand(2).getImm()) 1255 .addReg(MI->getOperand(3).getReg())); 1256 return; 1257 } 1258 // Darwin call instructions are just normal call instructions with different 1259 // clobber semantics (they clobber R9). 1260 case ARM::BX_CALL: { 1261 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1262 .addReg(ARM::LR) 1263 .addReg(ARM::PC) 1264 // Add predicate operands. 1265 .addImm(ARMCC::AL) 1266 .addReg(0) 1267 // Add 's' bit operand (always reg0 for this) 1268 .addReg(0)); 1269 1270 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1271 .addReg(MI->getOperand(0).getReg())); 1272 return; 1273 } 1274 case ARM::tBX_CALL: { 1275 if (Subtarget->hasV5TOps()) 1276 llvm_unreachable("Expected BLX to be selected for v5t+"); 1277 1278 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1279 // that the saved lr has its LSB set correctly (the arch doesn't 1280 // have blx). 1281 // So here we generate a bl to a small jump pad that does bx rN. 1282 // The jump pads are emitted after the function body. 1283 1284 unsigned TReg = MI->getOperand(0).getReg(); 1285 MCSymbol *TRegSym = nullptr; 1286 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1287 if (ThumbIndirectPads[i].first == TReg) { 1288 TRegSym = ThumbIndirectPads[i].second; 1289 break; 1290 } 1291 } 1292 1293 if (!TRegSym) { 1294 TRegSym = OutContext.createTempSymbol(); 1295 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1296 } 1297 1298 // Create a link-saving branch to the Reg Indirect Jump Pad. 1299 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1300 // Predicate comes first here. 1301 .addImm(ARMCC::AL).addReg(0) 1302 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1303 return; 1304 } 1305 case ARM::BMOVPCRX_CALL: { 1306 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1307 .addReg(ARM::LR) 1308 .addReg(ARM::PC) 1309 // Add predicate operands. 1310 .addImm(ARMCC::AL) 1311 .addReg(0) 1312 // Add 's' bit operand (always reg0 for this) 1313 .addReg(0)); 1314 1315 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1316 .addReg(ARM::PC) 1317 .addReg(MI->getOperand(0).getReg()) 1318 // Add predicate operands. 1319 .addImm(ARMCC::AL) 1320 .addReg(0) 1321 // Add 's' bit operand (always reg0 for this) 1322 .addReg(0)); 1323 return; 1324 } 1325 case ARM::BMOVPCB_CALL: { 1326 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1327 .addReg(ARM::LR) 1328 .addReg(ARM::PC) 1329 // Add predicate operands. 1330 .addImm(ARMCC::AL) 1331 .addReg(0) 1332 // Add 's' bit operand (always reg0 for this) 1333 .addReg(0)); 1334 1335 const MachineOperand &Op = MI->getOperand(0); 1336 const GlobalValue *GV = Op.getGlobal(); 1337 const unsigned TF = Op.getTargetFlags(); 1338 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1339 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1340 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1341 .addExpr(GVSymExpr) 1342 // Add predicate operands. 1343 .addImm(ARMCC::AL) 1344 .addReg(0)); 1345 return; 1346 } 1347 case ARM::MOVi16_ga_pcrel: 1348 case ARM::t2MOVi16_ga_pcrel: { 1349 MCInst TmpInst; 1350 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1351 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1352 1353 unsigned TF = MI->getOperand(1).getTargetFlags(); 1354 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1355 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1356 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1357 1358 MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(), 1359 getFunctionNumber(), 1360 MI->getOperand(2).getImm(), OutContext); 1361 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1362 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1363 const MCExpr *PCRelExpr = 1364 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1365 MCBinaryExpr::createAdd(LabelSymExpr, 1366 MCConstantExpr::create(PCAdj, OutContext), 1367 OutContext), OutContext), OutContext); 1368 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1369 1370 // Add predicate operands. 1371 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1372 TmpInst.addOperand(MCOperand::createReg(0)); 1373 // Add 's' bit operand (always reg0 for this) 1374 TmpInst.addOperand(MCOperand::createReg(0)); 1375 EmitToStreamer(*OutStreamer, TmpInst); 1376 return; 1377 } 1378 case ARM::MOVTi16_ga_pcrel: 1379 case ARM::t2MOVTi16_ga_pcrel: { 1380 MCInst TmpInst; 1381 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1382 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1383 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1384 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1385 1386 unsigned TF = MI->getOperand(2).getTargetFlags(); 1387 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1388 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1389 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1390 1391 MCSymbol *LabelSym = getPICLabel(DL->getPrivateGlobalPrefix(), 1392 getFunctionNumber(), 1393 MI->getOperand(3).getImm(), OutContext); 1394 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1395 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1396 const MCExpr *PCRelExpr = 1397 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1398 MCBinaryExpr::createAdd(LabelSymExpr, 1399 MCConstantExpr::create(PCAdj, OutContext), 1400 OutContext), OutContext), OutContext); 1401 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1402 // Add predicate operands. 1403 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1404 TmpInst.addOperand(MCOperand::createReg(0)); 1405 // Add 's' bit operand (always reg0 for this) 1406 TmpInst.addOperand(MCOperand::createReg(0)); 1407 EmitToStreamer(*OutStreamer, TmpInst); 1408 return; 1409 } 1410 case ARM::tPICADD: { 1411 // This is a pseudo op for a label + instruction sequence, which looks like: 1412 // LPC0: 1413 // add r0, pc 1414 // This adds the address of LPC0 to r0. 1415 1416 // Emit the label. 1417 OutStreamer->EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), 1418 getFunctionNumber(), 1419 MI->getOperand(2).getImm(), 1420 OutContext)); 1421 1422 // Form and emit the add. 1423 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1424 .addReg(MI->getOperand(0).getReg()) 1425 .addReg(MI->getOperand(0).getReg()) 1426 .addReg(ARM::PC) 1427 // Add predicate operands. 1428 .addImm(ARMCC::AL) 1429 .addReg(0)); 1430 return; 1431 } 1432 case ARM::PICADD: { 1433 // This is a pseudo op for a label + instruction sequence, which looks like: 1434 // LPC0: 1435 // add r0, pc, r0 1436 // This adds the address of LPC0 to r0. 1437 1438 // Emit the label. 1439 OutStreamer->EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), 1440 getFunctionNumber(), 1441 MI->getOperand(2).getImm(), 1442 OutContext)); 1443 1444 // Form and emit the add. 1445 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1446 .addReg(MI->getOperand(0).getReg()) 1447 .addReg(ARM::PC) 1448 .addReg(MI->getOperand(1).getReg()) 1449 // Add predicate operands. 1450 .addImm(MI->getOperand(3).getImm()) 1451 .addReg(MI->getOperand(4).getReg()) 1452 // Add 's' bit operand (always reg0 for this) 1453 .addReg(0)); 1454 return; 1455 } 1456 case ARM::PICSTR: 1457 case ARM::PICSTRB: 1458 case ARM::PICSTRH: 1459 case ARM::PICLDR: 1460 case ARM::PICLDRB: 1461 case ARM::PICLDRH: 1462 case ARM::PICLDRSB: 1463 case ARM::PICLDRSH: { 1464 // This is a pseudo op for a label + instruction sequence, which looks like: 1465 // LPC0: 1466 // OP r0, [pc, r0] 1467 // The LCP0 label is referenced by a constant pool entry in order to get 1468 // a PC-relative address at the ldr instruction. 1469 1470 // Emit the label. 1471 OutStreamer->EmitLabel(getPICLabel(DL->getPrivateGlobalPrefix(), 1472 getFunctionNumber(), 1473 MI->getOperand(2).getImm(), 1474 OutContext)); 1475 1476 // Form and emit the load 1477 unsigned Opcode; 1478 switch (MI->getOpcode()) { 1479 default: 1480 llvm_unreachable("Unexpected opcode!"); 1481 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1482 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1483 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1484 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1485 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1486 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1487 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1488 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1489 } 1490 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1491 .addReg(MI->getOperand(0).getReg()) 1492 .addReg(ARM::PC) 1493 .addReg(MI->getOperand(1).getReg()) 1494 .addImm(0) 1495 // Add predicate operands. 1496 .addImm(MI->getOperand(3).getImm()) 1497 .addReg(MI->getOperand(4).getReg())); 1498 1499 return; 1500 } 1501 case ARM::CONSTPOOL_ENTRY: { 1502 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1503 /// in the function. The first operand is the ID# for this instruction, the 1504 /// second is the index into the MachineConstantPool that this is, the third 1505 /// is the size in bytes of this constant pool entry. 1506 /// The required alignment is specified on the basic block holding this MI. 1507 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1508 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1509 1510 // If this is the first entry of the pool, mark it. 1511 if (!InConstantPool) { 1512 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1513 InConstantPool = true; 1514 } 1515 1516 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1517 1518 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1519 if (MCPE.isMachineConstantPoolEntry()) 1520 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1521 else 1522 EmitGlobalConstant(MCPE.Val.ConstVal); 1523 return; 1524 } 1525 case ARM::JUMPTABLE_ADDRS: 1526 EmitJumpTableAddrs(MI); 1527 return; 1528 case ARM::JUMPTABLE_INSTS: 1529 EmitJumpTableInsts(MI); 1530 return; 1531 case ARM::JUMPTABLE_TBB: 1532 case ARM::JUMPTABLE_TBH: 1533 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1534 return; 1535 case ARM::t2BR_JT: { 1536 // Lower and emit the instruction itself, then the jump table following it. 1537 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1538 .addReg(ARM::PC) 1539 .addReg(MI->getOperand(0).getReg()) 1540 // Add predicate operands. 1541 .addImm(ARMCC::AL) 1542 .addReg(0)); 1543 return; 1544 } 1545 case ARM::t2TBB_JT: 1546 case ARM::t2TBH_JT: { 1547 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1548 // Lower and emit the PC label, then the instruction itself. 1549 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1550 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1551 .addReg(MI->getOperand(0).getReg()) 1552 .addReg(MI->getOperand(1).getReg()) 1553 // Add predicate operands. 1554 .addImm(ARMCC::AL) 1555 .addReg(0)); 1556 return; 1557 } 1558 case ARM::tBR_JTr: 1559 case ARM::BR_JTr: { 1560 // Lower and emit the instruction itself, then the jump table following it. 1561 // mov pc, target 1562 MCInst TmpInst; 1563 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1564 ARM::MOVr : ARM::tMOVr; 1565 TmpInst.setOpcode(Opc); 1566 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1567 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1568 // Add predicate operands. 1569 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1570 TmpInst.addOperand(MCOperand::createReg(0)); 1571 // Add 's' bit operand (always reg0 for this) 1572 if (Opc == ARM::MOVr) 1573 TmpInst.addOperand(MCOperand::createReg(0)); 1574 EmitToStreamer(*OutStreamer, TmpInst); 1575 return; 1576 } 1577 case ARM::BR_JTm: { 1578 // Lower and emit the instruction itself, then the jump table following it. 1579 // ldr pc, target 1580 MCInst TmpInst; 1581 if (MI->getOperand(1).getReg() == 0) { 1582 // literal offset 1583 TmpInst.setOpcode(ARM::LDRi12); 1584 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1585 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1586 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1587 } else { 1588 TmpInst.setOpcode(ARM::LDRrs); 1589 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1590 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1591 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1592 TmpInst.addOperand(MCOperand::createImm(0)); 1593 } 1594 // Add predicate operands. 1595 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1596 TmpInst.addOperand(MCOperand::createReg(0)); 1597 EmitToStreamer(*OutStreamer, TmpInst); 1598 return; 1599 } 1600 case ARM::BR_JTadd: { 1601 // Lower and emit the instruction itself, then the jump table following it. 1602 // add pc, target, idx 1603 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1604 .addReg(ARM::PC) 1605 .addReg(MI->getOperand(0).getReg()) 1606 .addReg(MI->getOperand(1).getReg()) 1607 // Add predicate operands. 1608 .addImm(ARMCC::AL) 1609 .addReg(0) 1610 // Add 's' bit operand (always reg0 for this) 1611 .addReg(0)); 1612 return; 1613 } 1614 case ARM::SPACE: 1615 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1616 return; 1617 case ARM::TRAP: { 1618 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1619 // FIXME: Remove this special case when they do. 1620 if (!Subtarget->isTargetMachO()) { 1621 //.long 0xe7ffdefe @ trap 1622 uint32_t Val = 0xe7ffdefeUL; 1623 OutStreamer->AddComment("trap"); 1624 OutStreamer->EmitIntValue(Val, 4); 1625 return; 1626 } 1627 break; 1628 } 1629 case ARM::TRAPNaCl: { 1630 //.long 0xe7fedef0 @ trap 1631 uint32_t Val = 0xe7fedef0UL; 1632 OutStreamer->AddComment("trap"); 1633 OutStreamer->EmitIntValue(Val, 4); 1634 return; 1635 } 1636 case ARM::tTRAP: { 1637 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1638 // FIXME: Remove this special case when they do. 1639 if (!Subtarget->isTargetMachO()) { 1640 //.short 57086 @ trap 1641 uint16_t Val = 0xdefe; 1642 OutStreamer->AddComment("trap"); 1643 OutStreamer->EmitIntValue(Val, 2); 1644 return; 1645 } 1646 break; 1647 } 1648 case ARM::t2Int_eh_sjlj_setjmp: 1649 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1650 case ARM::tInt_eh_sjlj_setjmp: { 1651 // Two incoming args: GPR:$src, GPR:$val 1652 // mov $val, pc 1653 // adds $val, #7 1654 // str $val, [$src, #4] 1655 // movs r0, #0 1656 // b 1f 1657 // movs r0, #1 1658 // 1: 1659 unsigned SrcReg = MI->getOperand(0).getReg(); 1660 unsigned ValReg = MI->getOperand(1).getReg(); 1661 MCSymbol *Label = GetARMSJLJEHLabel(); 1662 OutStreamer->AddComment("eh_setjmp begin"); 1663 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1664 .addReg(ValReg) 1665 .addReg(ARM::PC) 1666 // Predicate. 1667 .addImm(ARMCC::AL) 1668 .addReg(0)); 1669 1670 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1671 .addReg(ValReg) 1672 // 's' bit operand 1673 .addReg(ARM::CPSR) 1674 .addReg(ValReg) 1675 .addImm(7) 1676 // Predicate. 1677 .addImm(ARMCC::AL) 1678 .addReg(0)); 1679 1680 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1681 .addReg(ValReg) 1682 .addReg(SrcReg) 1683 // The offset immediate is #4. The operand value is scaled by 4 for the 1684 // tSTR instruction. 1685 .addImm(1) 1686 // Predicate. 1687 .addImm(ARMCC::AL) 1688 .addReg(0)); 1689 1690 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1691 .addReg(ARM::R0) 1692 .addReg(ARM::CPSR) 1693 .addImm(0) 1694 // Predicate. 1695 .addImm(ARMCC::AL) 1696 .addReg(0)); 1697 1698 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1699 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1700 .addExpr(SymbolExpr) 1701 .addImm(ARMCC::AL) 1702 .addReg(0)); 1703 1704 OutStreamer->AddComment("eh_setjmp end"); 1705 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1706 .addReg(ARM::R0) 1707 .addReg(ARM::CPSR) 1708 .addImm(1) 1709 // Predicate. 1710 .addImm(ARMCC::AL) 1711 .addReg(0)); 1712 1713 OutStreamer->EmitLabel(Label); 1714 return; 1715 } 1716 1717 case ARM::Int_eh_sjlj_setjmp_nofp: 1718 case ARM::Int_eh_sjlj_setjmp: { 1719 // Two incoming args: GPR:$src, GPR:$val 1720 // add $val, pc, #8 1721 // str $val, [$src, #+4] 1722 // mov r0, #0 1723 // add pc, pc, #0 1724 // mov r0, #1 1725 unsigned SrcReg = MI->getOperand(0).getReg(); 1726 unsigned ValReg = MI->getOperand(1).getReg(); 1727 1728 OutStreamer->AddComment("eh_setjmp begin"); 1729 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1730 .addReg(ValReg) 1731 .addReg(ARM::PC) 1732 .addImm(8) 1733 // Predicate. 1734 .addImm(ARMCC::AL) 1735 .addReg(0) 1736 // 's' bit operand (always reg0 for this). 1737 .addReg(0)); 1738 1739 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1740 .addReg(ValReg) 1741 .addReg(SrcReg) 1742 .addImm(4) 1743 // Predicate. 1744 .addImm(ARMCC::AL) 1745 .addReg(0)); 1746 1747 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1748 .addReg(ARM::R0) 1749 .addImm(0) 1750 // Predicate. 1751 .addImm(ARMCC::AL) 1752 .addReg(0) 1753 // 's' bit operand (always reg0 for this). 1754 .addReg(0)); 1755 1756 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1757 .addReg(ARM::PC) 1758 .addReg(ARM::PC) 1759 .addImm(0) 1760 // Predicate. 1761 .addImm(ARMCC::AL) 1762 .addReg(0) 1763 // 's' bit operand (always reg0 for this). 1764 .addReg(0)); 1765 1766 OutStreamer->AddComment("eh_setjmp end"); 1767 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1768 .addReg(ARM::R0) 1769 .addImm(1) 1770 // Predicate. 1771 .addImm(ARMCC::AL) 1772 .addReg(0) 1773 // 's' bit operand (always reg0 for this). 1774 .addReg(0)); 1775 return; 1776 } 1777 case ARM::Int_eh_sjlj_longjmp: { 1778 // ldr sp, [$src, #8] 1779 // ldr $scratch, [$src, #4] 1780 // ldr r7, [$src] 1781 // bx $scratch 1782 unsigned SrcReg = MI->getOperand(0).getReg(); 1783 unsigned ScratchReg = MI->getOperand(1).getReg(); 1784 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1785 .addReg(ARM::SP) 1786 .addReg(SrcReg) 1787 .addImm(8) 1788 // Predicate. 1789 .addImm(ARMCC::AL) 1790 .addReg(0)); 1791 1792 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1793 .addReg(ScratchReg) 1794 .addReg(SrcReg) 1795 .addImm(4) 1796 // Predicate. 1797 .addImm(ARMCC::AL) 1798 .addReg(0)); 1799 1800 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1801 .addReg(ARM::R7) 1802 .addReg(SrcReg) 1803 .addImm(0) 1804 // Predicate. 1805 .addImm(ARMCC::AL) 1806 .addReg(0)); 1807 1808 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1809 .addReg(ScratchReg) 1810 // Predicate. 1811 .addImm(ARMCC::AL) 1812 .addReg(0)); 1813 return; 1814 } 1815 case ARM::tInt_eh_sjlj_longjmp: { 1816 // ldr $scratch, [$src, #8] 1817 // mov sp, $scratch 1818 // ldr $scratch, [$src, #4] 1819 // ldr r7, [$src] 1820 // bx $scratch 1821 unsigned SrcReg = MI->getOperand(0).getReg(); 1822 unsigned ScratchReg = MI->getOperand(1).getReg(); 1823 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1824 .addReg(ScratchReg) 1825 .addReg(SrcReg) 1826 // The offset immediate is #8. The operand value is scaled by 4 for the 1827 // tLDR instruction. 1828 .addImm(2) 1829 // Predicate. 1830 .addImm(ARMCC::AL) 1831 .addReg(0)); 1832 1833 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1834 .addReg(ARM::SP) 1835 .addReg(ScratchReg) 1836 // Predicate. 1837 .addImm(ARMCC::AL) 1838 .addReg(0)); 1839 1840 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1841 .addReg(ScratchReg) 1842 .addReg(SrcReg) 1843 .addImm(1) 1844 // Predicate. 1845 .addImm(ARMCC::AL) 1846 .addReg(0)); 1847 1848 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1849 .addReg(ARM::R7) 1850 .addReg(SrcReg) 1851 .addImm(0) 1852 // Predicate. 1853 .addImm(ARMCC::AL) 1854 .addReg(0)); 1855 1856 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 1857 .addReg(ScratchReg) 1858 // Predicate. 1859 .addImm(ARMCC::AL) 1860 .addReg(0)); 1861 return; 1862 } 1863 } 1864 1865 MCInst TmpInst; 1866 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 1867 1868 EmitToStreamer(*OutStreamer, TmpInst); 1869 } 1870 1871 //===----------------------------------------------------------------------===// 1872 // Target Registry Stuff 1873 //===----------------------------------------------------------------------===// 1874 1875 // Force static initialization. 1876 extern "C" void LLVMInitializeARMAsmPrinter() { 1877 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget); 1878 RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget); 1879 RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget); 1880 RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget); 1881 } 1882