1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/COFF.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ELF.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/TargetParser.h" 51 #include "llvm/Support/TargetRegistry.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cctype> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 60 std::unique_ptr<MCStreamer> Streamer) 61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 62 InConstantPool(false), OptimizationGoals(-1) {} 63 64 void ARMAsmPrinter::EmitFunctionBodyEnd() { 65 // Make sure to terminate any constant pools that were at the end 66 // of the function. 67 if (!InConstantPool) 68 return; 69 InConstantPool = false; 70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 71 } 72 73 void ARMAsmPrinter::EmitFunctionEntryLabel() { 74 if (AFI->isThumbFunction()) { 75 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 76 OutStreamer->EmitThumbFunc(CurrentFnSym); 77 } else { 78 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 79 } 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 101 if (PromotedGlobals.count(GV)) 102 // The global was promoted into a constant pool. It should not be emitted. 103 return; 104 AsmPrinter::EmitGlobalVariable(GV); 105 } 106 107 /// runOnMachineFunction - This uses the EmitInstruction() 108 /// method to print assembly for each instruction. 109 /// 110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 111 AFI = MF.getInfo<ARMFunctionInfo>(); 112 MCP = MF.getConstantPool(); 113 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 114 115 SetupMachineFunction(MF); 116 const Function* F = MF.getFunction(); 117 const TargetMachine& TM = MF.getTarget(); 118 119 // Collect all globals that had their storage promoted to a constant pool. 120 // Functions are emitted before variables, so this accumulates promoted 121 // globals from all functions in PromotedGlobals. 122 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 123 PromotedGlobals.insert(GV); 124 125 // Calculate this function's optimization goal. 126 unsigned OptimizationGoal; 127 if (F->hasFnAttribute(Attribute::OptimizeNone)) 128 // For best debugging illusion, speed and small size sacrificed 129 OptimizationGoal = 6; 130 else if (F->optForMinSize()) 131 // Aggressively for small size, speed and debug illusion sacrificed 132 OptimizationGoal = 4; 133 else if (F->optForSize()) 134 // For small size, but speed and debugging illusion preserved 135 OptimizationGoal = 3; 136 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 137 // Aggressively for speed, small size and debug illusion sacrificed 138 OptimizationGoal = 2; 139 else if (TM.getOptLevel() > CodeGenOpt::None) 140 // For speed, but small size and good debug illusion preserved 141 OptimizationGoal = 1; 142 else // TM.getOptLevel() == CodeGenOpt::None 143 // For good debugging, but speed and small size preserved 144 OptimizationGoal = 5; 145 146 // Combine a new optimization goal with existing ones. 147 if (OptimizationGoals == -1) // uninitialized goals 148 OptimizationGoals = OptimizationGoal; 149 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 150 OptimizationGoals = 0; 151 152 if (Subtarget->isTargetCOFF()) { 153 bool Internal = F->hasInternalLinkage(); 154 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 155 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 156 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 157 158 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 159 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 160 OutStreamer->EmitCOFFSymbolType(Type); 161 OutStreamer->EndCOFFSymbolDef(); 162 } 163 164 // Emit the rest of the function body. 165 EmitFunctionBody(); 166 167 // Emit the XRay table for this function. 168 EmitXRayTable(); 169 170 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 171 // These are created per function, rather than per TU, since it's 172 // relatively easy to exceed the thumb branch range within a TU. 173 if (! ThumbIndirectPads.empty()) { 174 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 175 EmitAlignment(1); 176 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 177 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 178 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 179 .addReg(ThumbIndirectPads[i].first) 180 // Add predicate operands. 181 .addImm(ARMCC::AL) 182 .addReg(0)); 183 } 184 ThumbIndirectPads.clear(); 185 } 186 187 // We didn't modify anything. 188 return false; 189 } 190 191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 192 raw_ostream &O) { 193 const MachineOperand &MO = MI->getOperand(OpNum); 194 unsigned TF = MO.getTargetFlags(); 195 196 switch (MO.getType()) { 197 default: llvm_unreachable("<unknown operand type>"); 198 case MachineOperand::MO_Register: { 199 unsigned Reg = MO.getReg(); 200 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 201 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 202 if(ARM::GPRPairRegClass.contains(Reg)) { 203 const MachineFunction &MF = *MI->getParent()->getParent(); 204 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 205 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 206 } 207 O << ARMInstPrinter::getRegisterName(Reg); 208 break; 209 } 210 case MachineOperand::MO_Immediate: { 211 int64_t Imm = MO.getImm(); 212 O << '#'; 213 if (TF == ARMII::MO_LO16) 214 O << ":lower16:"; 215 else if (TF == ARMII::MO_HI16) 216 O << ":upper16:"; 217 O << Imm; 218 break; 219 } 220 case MachineOperand::MO_MachineBasicBlock: 221 MO.getMBB()->getSymbol()->print(O, MAI); 222 return; 223 case MachineOperand::MO_GlobalAddress: { 224 const GlobalValue *GV = MO.getGlobal(); 225 if (TF & ARMII::MO_LO16) 226 O << ":lower16:"; 227 else if (TF & ARMII::MO_HI16) 228 O << ":upper16:"; 229 GetARMGVSymbol(GV, TF)->print(O, MAI); 230 231 printOffset(MO.getOffset(), O); 232 break; 233 } 234 case MachineOperand::MO_ConstantPoolIndex: 235 GetCPISymbol(MO.getIndex())->print(O, MAI); 236 break; 237 } 238 } 239 240 //===--------------------------------------------------------------------===// 241 242 MCSymbol *ARMAsmPrinter:: 243 GetARMJTIPICJumpTableLabel(unsigned uid) const { 244 const DataLayout &DL = getDataLayout(); 245 SmallString<60> Name; 246 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 247 << getFunctionNumber() << '_' << uid; 248 return OutContext.getOrCreateSymbol(Name); 249 } 250 251 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 252 unsigned AsmVariant, const char *ExtraCode, 253 raw_ostream &O) { 254 // Does this asm operand have a single letter operand modifier? 255 if (ExtraCode && ExtraCode[0]) { 256 if (ExtraCode[1] != 0) return true; // Unknown modifier. 257 258 switch (ExtraCode[0]) { 259 default: 260 // See if this is a generic print operand 261 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 262 case 'a': // Print as a memory address. 263 if (MI->getOperand(OpNum).isReg()) { 264 O << "[" 265 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 266 << "]"; 267 return false; 268 } 269 LLVM_FALLTHROUGH; 270 case 'c': // Don't print "#" before an immediate operand. 271 if (!MI->getOperand(OpNum).isImm()) 272 return true; 273 O << MI->getOperand(OpNum).getImm(); 274 return false; 275 case 'P': // Print a VFP double precision register. 276 case 'q': // Print a NEON quad precision register. 277 printOperand(MI, OpNum, O); 278 return false; 279 case 'y': // Print a VFP single precision register as indexed double. 280 if (MI->getOperand(OpNum).isReg()) { 281 unsigned Reg = MI->getOperand(OpNum).getReg(); 282 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 283 // Find the 'd' register that has this 's' register as a sub-register, 284 // and determine the lane number. 285 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 286 if (!ARM::DPRRegClass.contains(*SR)) 287 continue; 288 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 289 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 290 return false; 291 } 292 } 293 return true; 294 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 295 if (!MI->getOperand(OpNum).isImm()) 296 return true; 297 O << ~(MI->getOperand(OpNum).getImm()); 298 return false; 299 case 'L': // The low 16 bits of an immediate constant. 300 if (!MI->getOperand(OpNum).isImm()) 301 return true; 302 O << (MI->getOperand(OpNum).getImm() & 0xffff); 303 return false; 304 case 'M': { // A register range suitable for LDM/STM. 305 if (!MI->getOperand(OpNum).isReg()) 306 return true; 307 const MachineOperand &MO = MI->getOperand(OpNum); 308 unsigned RegBegin = MO.getReg(); 309 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 310 // already got the operands in registers that are operands to the 311 // inline asm statement. 312 O << "{"; 313 if (ARM::GPRPairRegClass.contains(RegBegin)) { 314 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 315 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 316 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 317 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 318 } 319 O << ARMInstPrinter::getRegisterName(RegBegin); 320 321 // FIXME: The register allocator not only may not have given us the 322 // registers in sequence, but may not be in ascending registers. This 323 // will require changes in the register allocator that'll need to be 324 // propagated down here if the operands change. 325 unsigned RegOps = OpNum + 1; 326 while (MI->getOperand(RegOps).isReg()) { 327 O << ", " 328 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 329 RegOps++; 330 } 331 332 O << "}"; 333 334 return false; 335 } 336 case 'R': // The most significant register of a pair. 337 case 'Q': { // The least significant register of a pair. 338 if (OpNum == 0) 339 return true; 340 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 341 if (!FlagsOP.isImm()) 342 return true; 343 unsigned Flags = FlagsOP.getImm(); 344 345 // This operand may not be the one that actually provides the register. If 346 // it's tied to a previous one then we should refer instead to that one 347 // for registers and their classes. 348 unsigned TiedIdx; 349 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 350 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 351 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 352 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 353 } 354 Flags = MI->getOperand(OpNum).getImm(); 355 356 // Later code expects OpNum to be pointing at the register rather than 357 // the flags. 358 OpNum += 1; 359 } 360 361 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 362 unsigned RC; 363 InlineAsm::hasRegClassConstraint(Flags, RC); 364 if (RC == ARM::GPRPairRegClassID) { 365 if (NumVals != 1) 366 return true; 367 const MachineOperand &MO = MI->getOperand(OpNum); 368 if (!MO.isReg()) 369 return true; 370 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 371 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 372 ARM::gsub_0 : ARM::gsub_1); 373 O << ARMInstPrinter::getRegisterName(Reg); 374 return false; 375 } 376 if (NumVals != 2) 377 return true; 378 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 379 if (RegOp >= MI->getNumOperands()) 380 return true; 381 const MachineOperand &MO = MI->getOperand(RegOp); 382 if (!MO.isReg()) 383 return true; 384 unsigned Reg = MO.getReg(); 385 O << ARMInstPrinter::getRegisterName(Reg); 386 return false; 387 } 388 389 case 'e': // The low doubleword register of a NEON quad register. 390 case 'f': { // The high doubleword register of a NEON quad register. 391 if (!MI->getOperand(OpNum).isReg()) 392 return true; 393 unsigned Reg = MI->getOperand(OpNum).getReg(); 394 if (!ARM::QPRRegClass.contains(Reg)) 395 return true; 396 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 397 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 398 ARM::dsub_0 : ARM::dsub_1); 399 O << ARMInstPrinter::getRegisterName(SubReg); 400 return false; 401 } 402 403 // This modifier is not yet supported. 404 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 405 return true; 406 case 'H': { // The highest-numbered register of a pair. 407 const MachineOperand &MO = MI->getOperand(OpNum); 408 if (!MO.isReg()) 409 return true; 410 const MachineFunction &MF = *MI->getParent()->getParent(); 411 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 412 unsigned Reg = MO.getReg(); 413 if(!ARM::GPRPairRegClass.contains(Reg)) 414 return false; 415 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 416 O << ARMInstPrinter::getRegisterName(Reg); 417 return false; 418 } 419 } 420 } 421 422 printOperand(MI, OpNum, O); 423 return false; 424 } 425 426 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 427 unsigned OpNum, unsigned AsmVariant, 428 const char *ExtraCode, 429 raw_ostream &O) { 430 // Does this asm operand have a single letter operand modifier? 431 if (ExtraCode && ExtraCode[0]) { 432 if (ExtraCode[1] != 0) return true; // Unknown modifier. 433 434 switch (ExtraCode[0]) { 435 case 'A': // A memory operand for a VLD1/VST1 instruction. 436 default: return true; // Unknown modifier. 437 case 'm': // The base register of a memory operand. 438 if (!MI->getOperand(OpNum).isReg()) 439 return true; 440 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 441 return false; 442 } 443 } 444 445 const MachineOperand &MO = MI->getOperand(OpNum); 446 assert(MO.isReg() && "unexpected inline asm memory operand"); 447 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 448 return false; 449 } 450 451 static bool isThumb(const MCSubtargetInfo& STI) { 452 return STI.getFeatureBits()[ARM::ModeThumb]; 453 } 454 455 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 456 const MCSubtargetInfo *EndInfo) const { 457 // If either end mode is unknown (EndInfo == NULL) or different than 458 // the start mode, then restore the start mode. 459 const bool WasThumb = isThumb(StartInfo); 460 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 461 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 462 } 463 } 464 465 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 466 const Triple &TT = TM.getTargetTriple(); 467 // Use unified assembler syntax. 468 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 469 470 // Emit ARM Build Attributes 471 if (TT.isOSBinFormatELF()) 472 emitAttributes(); 473 474 // Use the triple's architecture and subarchitecture to determine 475 // if we're thumb for the purposes of the top level code16 assembler 476 // flag. 477 bool isThumb = TT.getArch() == Triple::thumb || 478 TT.getArch() == Triple::thumbeb || 479 TT.getSubArch() == Triple::ARMSubArch_v7m || 480 TT.getSubArch() == Triple::ARMSubArch_v6m; 481 if (!M.getModuleInlineAsm().empty() && isThumb) 482 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 483 } 484 485 static void 486 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 487 MachineModuleInfoImpl::StubValueTy &MCSym) { 488 // L_foo$stub: 489 OutStreamer.EmitLabel(StubLabel); 490 // .indirect_symbol _foo 491 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 492 493 if (MCSym.getInt()) 494 // External to current translation unit. 495 OutStreamer.EmitIntValue(0, 4/*size*/); 496 else 497 // Internal to current translation unit. 498 // 499 // When we place the LSDA into the TEXT section, the type info 500 // pointers need to be indirect and pc-rel. We accomplish this by 501 // using NLPs; however, sometimes the types are local to the file. 502 // We need to fill in the value for the NLP in those cases. 503 OutStreamer.EmitValue( 504 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 505 4 /*size*/); 506 } 507 508 509 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 510 const Triple &TT = TM.getTargetTriple(); 511 if (TT.isOSBinFormatMachO()) { 512 // All darwin targets use mach-o. 513 const TargetLoweringObjectFileMachO &TLOFMacho = 514 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 515 MachineModuleInfoMachO &MMIMacho = 516 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 517 518 // Output non-lazy-pointers for external and common global variables. 519 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 520 521 if (!Stubs.empty()) { 522 // Switch with ".non_lazy_symbol_pointer" directive. 523 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 524 EmitAlignment(2); 525 526 for (auto &Stub : Stubs) 527 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 528 529 Stubs.clear(); 530 OutStreamer->AddBlankLine(); 531 } 532 533 Stubs = MMIMacho.GetThreadLocalGVStubList(); 534 if (!Stubs.empty()) { 535 // Switch with ".non_lazy_symbol_pointer" directive. 536 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 537 EmitAlignment(2); 538 539 for (auto &Stub : Stubs) 540 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 541 542 Stubs.clear(); 543 OutStreamer->AddBlankLine(); 544 } 545 546 // Funny Darwin hack: This flag tells the linker that no global symbols 547 // contain code that falls through to other global symbols (e.g. the obvious 548 // implementation of multiple entry points). If this doesn't occur, the 549 // linker can safely perform dead code stripping. Since LLVM never 550 // generates code that does this, it is always safe to set. 551 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 552 } 553 554 if (TT.isOSBinFormatCOFF()) { 555 const auto &TLOF = 556 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering()); 557 558 std::string Flags; 559 raw_string_ostream OS(Flags); 560 561 for (const auto &Function : M) 562 TLOF.emitLinkerFlagsForGlobal(OS, &Function); 563 for (const auto &Global : M.globals()) 564 TLOF.emitLinkerFlagsForGlobal(OS, &Global); 565 for (const auto &Alias : M.aliases()) 566 TLOF.emitLinkerFlagsForGlobal(OS, &Alias); 567 568 OS.flush(); 569 570 // Output collected flags 571 if (!Flags.empty()) { 572 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 573 OutStreamer->EmitBytes(Flags); 574 } 575 } 576 577 // The last attribute to be emitted is ABI_optimization_goals 578 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 579 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 580 581 if (OptimizationGoals > 0 && 582 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 583 Subtarget->isTargetMuslAEABI())) 584 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 585 OptimizationGoals = -1; 586 587 ATS.finishAttributeSection(); 588 } 589 590 static bool isV8M(const ARMSubtarget *Subtarget) { 591 // Note that v8M Baseline is a subset of v6T2! 592 return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) || 593 Subtarget->hasV8MMainlineOps(); 594 } 595 596 //===----------------------------------------------------------------------===// 597 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 598 // FIXME: 599 // The following seem like one-off assembler flags, but they actually need 600 // to appear in the .ARM.attributes section in ELF. 601 // Instead of subclassing the MCELFStreamer, we do the work here. 602 603 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 604 const ARMSubtarget *Subtarget) { 605 if (CPU == "xscale") 606 return ARMBuildAttrs::v5TEJ; 607 608 if (Subtarget->hasV8Ops()) 609 return ARMBuildAttrs::v8_A; 610 else if (Subtarget->hasV8MMainlineOps()) 611 return ARMBuildAttrs::v8_M_Main; 612 else if (Subtarget->hasV7Ops()) { 613 if (Subtarget->isMClass() && Subtarget->hasDSP()) 614 return ARMBuildAttrs::v7E_M; 615 return ARMBuildAttrs::v7; 616 } else if (Subtarget->hasV6T2Ops()) 617 return ARMBuildAttrs::v6T2; 618 else if (Subtarget->hasV8MBaselineOps()) 619 return ARMBuildAttrs::v8_M_Base; 620 else if (Subtarget->hasV6MOps()) 621 return ARMBuildAttrs::v6S_M; 622 else if (Subtarget->hasV6Ops()) 623 return ARMBuildAttrs::v6; 624 else if (Subtarget->hasV5TEOps()) 625 return ARMBuildAttrs::v5TE; 626 else if (Subtarget->hasV5TOps()) 627 return ARMBuildAttrs::v5T; 628 else if (Subtarget->hasV4TOps()) 629 return ARMBuildAttrs::v4T; 630 else 631 return ARMBuildAttrs::v4; 632 } 633 634 // Returns true if all functions have the same function attribute value 635 static bool haveAllFunctionsAttribute(const Module &M, StringRef Attr, 636 StringRef Value) { 637 for (auto &F : M) 638 if (F.getFnAttribute(Attr).getValueAsString() != Value) 639 return false; 640 641 return true; 642 } 643 644 645 void ARMAsmPrinter::emitAttributes() { 646 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 647 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 648 649 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 650 651 ATS.switchVendor("aeabi"); 652 653 // Compute ARM ELF Attributes based on the default subtarget that 654 // we'd have constructed. The existing ARM behavior isn't LTO clean 655 // anyhow. 656 // FIXME: For ifunc related functions we could iterate over and look 657 // for a feature string that doesn't match the default one. 658 const Triple &TT = TM.getTargetTriple(); 659 StringRef CPU = TM.getTargetCPU(); 660 StringRef FS = TM.getTargetFeatureString(); 661 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 662 if (!FS.empty()) { 663 if (!ArchFS.empty()) 664 ArchFS = (Twine(ArchFS) + "," + FS).str(); 665 else 666 ArchFS = FS; 667 } 668 const ARMBaseTargetMachine &ATM = 669 static_cast<const ARMBaseTargetMachine &>(TM); 670 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 671 672 const std::string &CPUString = STI.getCPUString(); 673 674 if (!StringRef(CPUString).startswith("generic")) { 675 // FIXME: remove krait check when GNU tools support krait cpu 676 if (STI.isKrait()) { 677 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 678 // We consider krait as a "cortex-a9" + hwdiv CPU 679 // Enable hwdiv through ".arch_extension idiv" 680 if (STI.hasDivide() || STI.hasDivideInARMMode()) 681 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM); 682 } else 683 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 684 } 685 686 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 687 688 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 689 // profile is not applicable (e.g. pre v7, or cross-profile code)". 690 if (STI.hasV7Ops() || isV8M(&STI)) { 691 if (STI.isAClass()) { 692 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 693 ARMBuildAttrs::ApplicationProfile); 694 } else if (STI.isRClass()) { 695 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 696 ARMBuildAttrs::RealTimeProfile); 697 } else if (STI.isMClass()) { 698 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 699 ARMBuildAttrs::MicroControllerProfile); 700 } 701 } 702 703 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 704 STI.hasARMOps() ? ARMBuildAttrs::Allowed 705 : ARMBuildAttrs::Not_Allowed); 706 if (isV8M(&STI)) { 707 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 708 ARMBuildAttrs::AllowThumbDerived); 709 } else if (STI.isThumb1Only()) { 710 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 711 } else if (STI.hasThumb2()) { 712 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 713 ARMBuildAttrs::AllowThumb32); 714 } 715 716 if (STI.hasNEON()) { 717 /* NEON is not exactly a VFP architecture, but GAS emit one of 718 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 719 if (STI.hasFPARMv8()) { 720 if (STI.hasCrypto()) 721 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 722 else 723 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 724 } else if (STI.hasVFP4()) 725 ATS.emitFPU(ARM::FK_NEON_VFPV4); 726 else 727 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 728 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 729 if (STI.hasV8Ops()) 730 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 731 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 732 ARMBuildAttrs::AllowNeonARMv8); 733 } else { 734 if (STI.hasFPARMv8()) 735 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 736 // FPU, but there are two different names for it depending on the CPU. 737 ATS.emitFPU(STI.hasD16() 738 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 739 : ARM::FK_FP_ARMV8); 740 else if (STI.hasVFP4()) 741 ATS.emitFPU(STI.hasD16() 742 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 743 : ARM::FK_VFPV4); 744 else if (STI.hasVFP3()) 745 ATS.emitFPU(STI.hasD16() 746 // +d16 747 ? (STI.isFPOnlySP() 748 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 749 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 750 // -d16 751 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 752 else if (STI.hasVFP2()) 753 ATS.emitFPU(ARM::FK_VFPV2); 754 } 755 756 // RW data addressing. 757 if (isPositionIndependent()) { 758 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 759 ARMBuildAttrs::AddressRWPCRel); 760 } else if (STI.isRWPI()) { 761 // RWPI specific attributes. 762 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 763 ARMBuildAttrs::AddressRWSBRel); 764 } 765 766 // RO data addressing. 767 if (isPositionIndependent() || STI.isROPI()) { 768 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 769 ARMBuildAttrs::AddressROPCRel); 770 } 771 772 // GOT use. 773 if (isPositionIndependent()) { 774 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 775 ARMBuildAttrs::AddressGOT); 776 } else { 777 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 778 ARMBuildAttrs::AddressDirect); 779 } 780 781 // Set FP Denormals. 782 if (haveAllFunctionsAttribute(*MMI->getModule(), "denormal-fp-math", 783 "preserve-sign") || 784 TM.Options.FPDenormalType == FPDenormal::PreserveSign) 785 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 786 ARMBuildAttrs::PreserveFPSign); 787 else if (haveAllFunctionsAttribute(*MMI->getModule(), "denormal-fp-math", 788 "positive-zero") || 789 TM.Options.FPDenormalType == FPDenormal::PositiveZero) 790 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 791 ARMBuildAttrs::PositiveZero); 792 else if (!TM.Options.UnsafeFPMath) 793 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 794 ARMBuildAttrs::IEEEDenormals); 795 else { 796 if (!STI.hasVFP2()) { 797 // When the target doesn't have an FPU (by design or 798 // intention), the assumptions made on the software support 799 // mirror that of the equivalent hardware support *if it 800 // existed*. For v7 and better we indicate that denormals are 801 // flushed preserving sign, and for V6 we indicate that 802 // denormals are flushed to positive zero. 803 if (STI.hasV7Ops()) 804 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 805 ARMBuildAttrs::PreserveFPSign); 806 } else if (STI.hasVFP3()) { 807 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 808 // the sign bit of the zero matches the sign bit of the input or 809 // result that is being flushed to zero. 810 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 811 ARMBuildAttrs::PreserveFPSign); 812 } 813 // For VFPv2 implementations it is implementation defined as 814 // to whether denormals are flushed to positive zero or to 815 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 816 // LLVM has chosen to flush this to positive zero (most likely for 817 // GCC compatibility), so that's the chosen value here (the 818 // absence of its emission implies zero). 819 } 820 821 // Set FP exceptions and rounding 822 if (haveAllFunctionsAttribute(*MMI->getModule(), "no-trapping-math", "true") || 823 TM.Options.NoTrappingFPMath) 824 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 825 ARMBuildAttrs::Not_Allowed); 826 else if (!TM.Options.UnsafeFPMath) { 827 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 828 829 // If the user has permitted this code to choose the IEEE 754 830 // rounding at run-time, emit the rounding attribute. 831 if (TM.Options.HonorSignDependentRoundingFPMathOption) 832 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 833 } 834 835 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 836 // equivalent of GCC's -ffinite-math-only flag. 837 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 838 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 839 ARMBuildAttrs::Allowed); 840 else 841 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 842 ARMBuildAttrs::AllowIEE754); 843 844 if (STI.allowsUnalignedMem()) 845 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 846 ARMBuildAttrs::Allowed); 847 else 848 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 849 ARMBuildAttrs::Not_Allowed); 850 851 // FIXME: add more flags to ARMBuildAttributes.h 852 // 8-bytes alignment stuff. 853 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 854 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 855 856 // ABI_HardFP_use attribute to indicate single precision FP. 857 if (STI.isFPOnlySP()) 858 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 859 ARMBuildAttrs::HardFPSinglePrecision); 860 861 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 862 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 863 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 864 865 // FIXME: Should we signal R9 usage? 866 867 if (STI.hasFP16()) 868 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 869 870 // FIXME: To support emitting this build attribute as GCC does, the 871 // -mfp16-format option and associated plumbing must be 872 // supported. For now the __fp16 type is exposed by default, so this 873 // attribute should be emitted with value 1. 874 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 875 ARMBuildAttrs::FP16FormatIEEE); 876 877 if (STI.hasMPExtension()) 878 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 879 880 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 881 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 882 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 883 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 884 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 885 // otherwise, the default value (AllowDIVIfExists) applies. 886 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 887 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 888 889 if (STI.hasDSP() && isV8M(&STI)) 890 ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); 891 892 if (MMI) { 893 if (const Module *SourceModule = MMI->getModule()) { 894 // ABI_PCS_wchar_t to indicate wchar_t width 895 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 896 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 897 SourceModule->getModuleFlag("wchar_size"))) { 898 int WCharWidth = WCharWidthValue->getZExtValue(); 899 assert((WCharWidth == 2 || WCharWidth == 4) && 900 "wchar_t width must be 2 or 4 bytes"); 901 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 902 } 903 904 // ABI_enum_size to indicate enum width 905 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 906 // (all enums contain a value needing 32 bits to encode). 907 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 908 SourceModule->getModuleFlag("min_enum_size"))) { 909 int EnumWidth = EnumWidthValue->getZExtValue(); 910 assert((EnumWidth == 1 || EnumWidth == 4) && 911 "Minimum enum width must be 1 or 4 bytes"); 912 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 913 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 914 } 915 } 916 } 917 918 // We currently do not support using R9 as the TLS pointer. 919 if (STI.isRWPI()) 920 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 921 ARMBuildAttrs::R9IsSB); 922 else if (STI.isR9Reserved()) 923 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 924 ARMBuildAttrs::R9Reserved); 925 else 926 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 927 ARMBuildAttrs::R9IsGPR); 928 929 if (STI.hasTrustZone() && STI.hasVirtualization()) 930 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 931 ARMBuildAttrs::AllowTZVirtualization); 932 else if (STI.hasTrustZone()) 933 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 934 ARMBuildAttrs::AllowTZ); 935 else if (STI.hasVirtualization()) 936 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 937 ARMBuildAttrs::AllowVirtualization); 938 } 939 940 //===----------------------------------------------------------------------===// 941 942 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, 943 unsigned LabelId, MCContext &Ctx) { 944 945 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 946 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 947 return Label; 948 } 949 950 static MCSymbolRefExpr::VariantKind 951 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 952 switch (Modifier) { 953 case ARMCP::no_modifier: 954 return MCSymbolRefExpr::VK_None; 955 case ARMCP::TLSGD: 956 return MCSymbolRefExpr::VK_TLSGD; 957 case ARMCP::TPOFF: 958 return MCSymbolRefExpr::VK_TPOFF; 959 case ARMCP::GOTTPOFF: 960 return MCSymbolRefExpr::VK_GOTTPOFF; 961 case ARMCP::SBREL: 962 return MCSymbolRefExpr::VK_ARM_SBREL; 963 case ARMCP::GOT_PREL: 964 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 965 case ARMCP::SECREL: 966 return MCSymbolRefExpr::VK_SECREL; 967 } 968 llvm_unreachable("Invalid ARMCPModifier!"); 969 } 970 971 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 972 unsigned char TargetFlags) { 973 if (Subtarget->isTargetMachO()) { 974 bool IsIndirect = 975 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 976 977 if (!IsIndirect) 978 return getSymbol(GV); 979 980 // FIXME: Remove this when Darwin transition to @GOT like syntax. 981 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 982 MachineModuleInfoMachO &MMIMachO = 983 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 984 MachineModuleInfoImpl::StubValueTy &StubSym = 985 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 986 : MMIMachO.getGVStubEntry(MCSym); 987 988 if (!StubSym.getPointer()) 989 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 990 !GV->hasInternalLinkage()); 991 return MCSym; 992 } else if (Subtarget->isTargetCOFF()) { 993 assert(Subtarget->isTargetWindows() && 994 "Windows is the only supported COFF target"); 995 996 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 997 if (!IsIndirect) 998 return getSymbol(GV); 999 1000 SmallString<128> Name; 1001 Name = "__imp_"; 1002 getNameWithPrefix(Name, GV); 1003 1004 return OutContext.getOrCreateSymbol(Name); 1005 } else if (Subtarget->isTargetELF()) { 1006 return getSymbol(GV); 1007 } 1008 llvm_unreachable("unexpected target"); 1009 } 1010 1011 void ARMAsmPrinter:: 1012 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1013 const DataLayout &DL = getDataLayout(); 1014 int Size = DL.getTypeAllocSize(MCPV->getType()); 1015 1016 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 1017 1018 if (ACPV->isPromotedGlobal()) { 1019 // This constant pool entry is actually a global whose storage has been 1020 // promoted into the constant pool. This global may be referenced still 1021 // by debug information, and due to the way AsmPrinter is set up, the debug 1022 // info is immutable by the time we decide to promote globals to constant 1023 // pools. Because of this, we need to ensure we emit a symbol for the global 1024 // with private linkage (the default) so debug info can refer to it. 1025 // 1026 // However, if this global is promoted into several functions we must ensure 1027 // we don't try and emit duplicate symbols! 1028 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 1029 auto *GV = ACPC->getPromotedGlobal(); 1030 if (!EmittedPromotedGlobalLabels.count(GV)) { 1031 MCSymbol *GVSym = getSymbol(GV); 1032 OutStreamer->EmitLabel(GVSym); 1033 EmittedPromotedGlobalLabels.insert(GV); 1034 } 1035 return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 1036 } 1037 1038 MCSymbol *MCSym; 1039 if (ACPV->isLSDA()) { 1040 MCSym = getCurExceptionSym(); 1041 } else if (ACPV->isBlockAddress()) { 1042 const BlockAddress *BA = 1043 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 1044 MCSym = GetBlockAddressSymbol(BA); 1045 } else if (ACPV->isGlobalValue()) { 1046 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 1047 1048 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 1049 // flag the global as MO_NONLAZY. 1050 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 1051 MCSym = GetARMGVSymbol(GV, TF); 1052 } else if (ACPV->isMachineBasicBlock()) { 1053 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 1054 MCSym = MBB->getSymbol(); 1055 } else { 1056 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 1057 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 1058 MCSym = GetExternalSymbolSymbol(Sym); 1059 } 1060 1061 // Create an MCSymbol for the reference. 1062 const MCExpr *Expr = 1063 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 1064 OutContext); 1065 1066 if (ACPV->getPCAdjustment()) { 1067 MCSymbol *PCLabel = 1068 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1069 ACPV->getLabelId(), OutContext); 1070 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 1071 PCRelExpr = 1072 MCBinaryExpr::createAdd(PCRelExpr, 1073 MCConstantExpr::create(ACPV->getPCAdjustment(), 1074 OutContext), 1075 OutContext); 1076 if (ACPV->mustAddCurrentAddress()) { 1077 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 1078 // label, so just emit a local label end reference that instead. 1079 MCSymbol *DotSym = OutContext.createTempSymbol(); 1080 OutStreamer->EmitLabel(DotSym); 1081 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 1082 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 1083 } 1084 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 1085 } 1086 OutStreamer->EmitValue(Expr, Size); 1087 } 1088 1089 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 1090 const MachineOperand &MO1 = MI->getOperand(1); 1091 unsigned JTI = MO1.getIndex(); 1092 1093 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1094 // ARM mode tables. 1095 EmitAlignment(2); 1096 1097 // Emit a label for the jump table. 1098 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1099 OutStreamer->EmitLabel(JTISymbol); 1100 1101 // Mark the jump table as data-in-code. 1102 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1103 1104 // Emit each entry of the table. 1105 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1106 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1107 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1108 1109 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1110 MachineBasicBlock *MBB = JTBBs[i]; 1111 // Construct an MCExpr for the entry. We want a value of the form: 1112 // (BasicBlockAddr - TableBeginAddr) 1113 // 1114 // For example, a table with entries jumping to basic blocks BB0 and BB1 1115 // would look like: 1116 // LJTI_0_0: 1117 // .word (LBB0 - LJTI_0_0) 1118 // .word (LBB1 - LJTI_0_0) 1119 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1120 1121 if (isPositionIndependent() || Subtarget->isROPI()) 1122 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1123 OutContext), 1124 OutContext); 1125 // If we're generating a table of Thumb addresses in static relocation 1126 // model, we need to add one to keep interworking correctly. 1127 else if (AFI->isThumbFunction()) 1128 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1129 OutContext); 1130 OutStreamer->EmitValue(Expr, 4); 1131 } 1132 // Mark the end of jump table data-in-code region. 1133 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1134 } 1135 1136 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 1137 const MachineOperand &MO1 = MI->getOperand(1); 1138 unsigned JTI = MO1.getIndex(); 1139 1140 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1141 OutStreamer->EmitLabel(JTISymbol); 1142 1143 // Emit each entry of the table. 1144 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1145 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1146 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1147 1148 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1149 MachineBasicBlock *MBB = JTBBs[i]; 1150 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1151 OutContext); 1152 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1153 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1154 .addExpr(MBBSymbolExpr) 1155 .addImm(ARMCC::AL) 1156 .addReg(0)); 1157 } 1158 } 1159 1160 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1161 unsigned OffsetWidth) { 1162 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1163 const MachineOperand &MO1 = MI->getOperand(1); 1164 unsigned JTI = MO1.getIndex(); 1165 1166 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1167 OutStreamer->EmitLabel(JTISymbol); 1168 1169 // Emit each entry of the table. 1170 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1171 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1172 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1173 1174 // Mark the jump table as data-in-code. 1175 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1176 : MCDR_DataRegionJT16); 1177 1178 for (auto MBB : JTBBs) { 1179 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1180 OutContext); 1181 // Otherwise it's an offset from the dispatch instruction. Construct an 1182 // MCExpr for the entry. We want a value of the form: 1183 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1184 // 1185 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1186 // would look like: 1187 // LJTI_0_0: 1188 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1189 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1190 // where LCPI0_0 is a label defined just before the TBB instruction using 1191 // this table. 1192 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1193 const MCExpr *Expr = MCBinaryExpr::createAdd( 1194 MCSymbolRefExpr::create(TBInstPC, OutContext), 1195 MCConstantExpr::create(4, OutContext), OutContext); 1196 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1197 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1198 OutContext); 1199 OutStreamer->EmitValue(Expr, OffsetWidth); 1200 } 1201 // Mark the end of jump table data-in-code region. 32-bit offsets use 1202 // actual branch instructions here, so we don't mark those as a data-region 1203 // at all. 1204 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1205 1206 // Make sure the next instruction is 2-byte aligned. 1207 EmitAlignment(1); 1208 } 1209 1210 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1211 assert(MI->getFlag(MachineInstr::FrameSetup) && 1212 "Only instruction which are involved into frame setup code are allowed"); 1213 1214 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1215 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1216 const MachineFunction &MF = *MI->getParent()->getParent(); 1217 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1218 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1219 1220 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1221 unsigned Opc = MI->getOpcode(); 1222 unsigned SrcReg, DstReg; 1223 1224 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1225 // Two special cases: 1226 // 1) tPUSH does not have src/dst regs. 1227 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1228 // load. Yes, this is pretty fragile, but for now I don't see better 1229 // way... :( 1230 SrcReg = DstReg = ARM::SP; 1231 } else { 1232 SrcReg = MI->getOperand(1).getReg(); 1233 DstReg = MI->getOperand(0).getReg(); 1234 } 1235 1236 // Try to figure out the unwinding opcode out of src / dst regs. 1237 if (MI->mayStore()) { 1238 // Register saves. 1239 assert(DstReg == ARM::SP && 1240 "Only stack pointer as a destination reg is supported"); 1241 1242 SmallVector<unsigned, 4> RegList; 1243 // Skip src & dst reg, and pred ops. 1244 unsigned StartOp = 2 + 2; 1245 // Use all the operands. 1246 unsigned NumOffset = 0; 1247 1248 switch (Opc) { 1249 default: 1250 MI->dump(); 1251 llvm_unreachable("Unsupported opcode for unwinding information"); 1252 case ARM::tPUSH: 1253 // Special case here: no src & dst reg, but two extra imp ops. 1254 StartOp = 2; NumOffset = 2; 1255 case ARM::STMDB_UPD: 1256 case ARM::t2STMDB_UPD: 1257 case ARM::VSTMDDB_UPD: 1258 assert(SrcReg == ARM::SP && 1259 "Only stack pointer as a source reg is supported"); 1260 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1261 i != NumOps; ++i) { 1262 const MachineOperand &MO = MI->getOperand(i); 1263 // Actually, there should never be any impdef stuff here. Skip it 1264 // temporary to workaround PR11902. 1265 if (MO.isImplicit()) 1266 continue; 1267 RegList.push_back(MO.getReg()); 1268 } 1269 break; 1270 case ARM::STR_PRE_IMM: 1271 case ARM::STR_PRE_REG: 1272 case ARM::t2STR_PRE: 1273 assert(MI->getOperand(2).getReg() == ARM::SP && 1274 "Only stack pointer as a source reg is supported"); 1275 RegList.push_back(SrcReg); 1276 break; 1277 } 1278 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1279 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1280 } else { 1281 // Changes of stack / frame pointer. 1282 if (SrcReg == ARM::SP) { 1283 int64_t Offset = 0; 1284 switch (Opc) { 1285 default: 1286 MI->dump(); 1287 llvm_unreachable("Unsupported opcode for unwinding information"); 1288 case ARM::MOVr: 1289 case ARM::tMOVr: 1290 Offset = 0; 1291 break; 1292 case ARM::ADDri: 1293 case ARM::t2ADDri: 1294 Offset = -MI->getOperand(2).getImm(); 1295 break; 1296 case ARM::SUBri: 1297 case ARM::t2SUBri: 1298 Offset = MI->getOperand(2).getImm(); 1299 break; 1300 case ARM::tSUBspi: 1301 Offset = MI->getOperand(2).getImm()*4; 1302 break; 1303 case ARM::tADDspi: 1304 case ARM::tADDrSPi: 1305 Offset = -MI->getOperand(2).getImm()*4; 1306 break; 1307 case ARM::tLDRpci: { 1308 // Grab the constpool index and check, whether it corresponds to 1309 // original or cloned constpool entry. 1310 unsigned CPI = MI->getOperand(1).getIndex(); 1311 const MachineConstantPool *MCP = MF.getConstantPool(); 1312 if (CPI >= MCP->getConstants().size()) 1313 CPI = AFI.getOriginalCPIdx(CPI); 1314 assert(CPI != -1U && "Invalid constpool index"); 1315 1316 // Derive the actual offset. 1317 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1318 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1319 // FIXME: Check for user, it should be "add" instruction! 1320 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1321 break; 1322 } 1323 } 1324 1325 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1326 if (DstReg == FramePtr && FramePtr != ARM::SP) 1327 // Set-up of the frame pointer. Positive values correspond to "add" 1328 // instruction. 1329 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1330 else if (DstReg == ARM::SP) { 1331 // Change of SP by an offset. Positive values correspond to "sub" 1332 // instruction. 1333 ATS.emitPad(Offset); 1334 } else { 1335 // Move of SP to a register. Positive values correspond to an "add" 1336 // instruction. 1337 ATS.emitMovSP(DstReg, -Offset); 1338 } 1339 } 1340 } else if (DstReg == ARM::SP) { 1341 MI->dump(); 1342 llvm_unreachable("Unsupported opcode for unwinding information"); 1343 } 1344 else { 1345 MI->dump(); 1346 llvm_unreachable("Unsupported opcode for unwinding information"); 1347 } 1348 } 1349 } 1350 1351 // Simple pseudo-instructions have their lowering (with expansion to real 1352 // instructions) auto-generated. 1353 #include "ARMGenMCPseudoLowering.inc" 1354 1355 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1356 const DataLayout &DL = getDataLayout(); 1357 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1358 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1359 1360 // If we just ended a constant pool, mark it as such. 1361 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1362 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1363 InConstantPool = false; 1364 } 1365 1366 // Emit unwinding stuff for frame-related instructions 1367 if (Subtarget->isTargetEHABICompatible() && 1368 MI->getFlag(MachineInstr::FrameSetup)) 1369 EmitUnwindingInstruction(MI); 1370 1371 // Do any auto-generated pseudo lowerings. 1372 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1373 return; 1374 1375 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1376 "Pseudo flag setting opcode should be expanded early"); 1377 1378 // Check for manual lowerings. 1379 unsigned Opc = MI->getOpcode(); 1380 switch (Opc) { 1381 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1382 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1383 case ARM::LEApcrel: 1384 case ARM::tLEApcrel: 1385 case ARM::t2LEApcrel: { 1386 // FIXME: Need to also handle globals and externals 1387 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1388 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1389 ARM::t2LEApcrel ? ARM::t2ADR 1390 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1391 : ARM::ADR)) 1392 .addReg(MI->getOperand(0).getReg()) 1393 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1394 // Add predicate operands. 1395 .addImm(MI->getOperand(2).getImm()) 1396 .addReg(MI->getOperand(3).getReg())); 1397 return; 1398 } 1399 case ARM::LEApcrelJT: 1400 case ARM::tLEApcrelJT: 1401 case ARM::t2LEApcrelJT: { 1402 MCSymbol *JTIPICSymbol = 1403 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1404 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1405 ARM::t2LEApcrelJT ? ARM::t2ADR 1406 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1407 : ARM::ADR)) 1408 .addReg(MI->getOperand(0).getReg()) 1409 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1410 // Add predicate operands. 1411 .addImm(MI->getOperand(2).getImm()) 1412 .addReg(MI->getOperand(3).getReg())); 1413 return; 1414 } 1415 // Darwin call instructions are just normal call instructions with different 1416 // clobber semantics (they clobber R9). 1417 case ARM::BX_CALL: { 1418 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1419 .addReg(ARM::LR) 1420 .addReg(ARM::PC) 1421 // Add predicate operands. 1422 .addImm(ARMCC::AL) 1423 .addReg(0) 1424 // Add 's' bit operand (always reg0 for this) 1425 .addReg(0)); 1426 1427 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1428 .addReg(MI->getOperand(0).getReg())); 1429 return; 1430 } 1431 case ARM::tBX_CALL: { 1432 if (Subtarget->hasV5TOps()) 1433 llvm_unreachable("Expected BLX to be selected for v5t+"); 1434 1435 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1436 // that the saved lr has its LSB set correctly (the arch doesn't 1437 // have blx). 1438 // So here we generate a bl to a small jump pad that does bx rN. 1439 // The jump pads are emitted after the function body. 1440 1441 unsigned TReg = MI->getOperand(0).getReg(); 1442 MCSymbol *TRegSym = nullptr; 1443 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1444 if (ThumbIndirectPads[i].first == TReg) { 1445 TRegSym = ThumbIndirectPads[i].second; 1446 break; 1447 } 1448 } 1449 1450 if (!TRegSym) { 1451 TRegSym = OutContext.createTempSymbol(); 1452 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1453 } 1454 1455 // Create a link-saving branch to the Reg Indirect Jump Pad. 1456 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1457 // Predicate comes first here. 1458 .addImm(ARMCC::AL).addReg(0) 1459 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1460 return; 1461 } 1462 case ARM::BMOVPCRX_CALL: { 1463 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1464 .addReg(ARM::LR) 1465 .addReg(ARM::PC) 1466 // Add predicate operands. 1467 .addImm(ARMCC::AL) 1468 .addReg(0) 1469 // Add 's' bit operand (always reg0 for this) 1470 .addReg(0)); 1471 1472 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1473 .addReg(ARM::PC) 1474 .addReg(MI->getOperand(0).getReg()) 1475 // Add predicate operands. 1476 .addImm(ARMCC::AL) 1477 .addReg(0) 1478 // Add 's' bit operand (always reg0 for this) 1479 .addReg(0)); 1480 return; 1481 } 1482 case ARM::BMOVPCB_CALL: { 1483 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1484 .addReg(ARM::LR) 1485 .addReg(ARM::PC) 1486 // Add predicate operands. 1487 .addImm(ARMCC::AL) 1488 .addReg(0) 1489 // Add 's' bit operand (always reg0 for this) 1490 .addReg(0)); 1491 1492 const MachineOperand &Op = MI->getOperand(0); 1493 const GlobalValue *GV = Op.getGlobal(); 1494 const unsigned TF = Op.getTargetFlags(); 1495 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1496 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1497 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1498 .addExpr(GVSymExpr) 1499 // Add predicate operands. 1500 .addImm(ARMCC::AL) 1501 .addReg(0)); 1502 return; 1503 } 1504 case ARM::MOVi16_ga_pcrel: 1505 case ARM::t2MOVi16_ga_pcrel: { 1506 MCInst TmpInst; 1507 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1508 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1509 1510 unsigned TF = MI->getOperand(1).getTargetFlags(); 1511 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1512 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1513 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1514 1515 MCSymbol *LabelSym = 1516 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1517 MI->getOperand(2).getImm(), OutContext); 1518 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1519 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1520 const MCExpr *PCRelExpr = 1521 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1522 MCBinaryExpr::createAdd(LabelSymExpr, 1523 MCConstantExpr::create(PCAdj, OutContext), 1524 OutContext), OutContext), OutContext); 1525 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1526 1527 // Add predicate operands. 1528 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1529 TmpInst.addOperand(MCOperand::createReg(0)); 1530 // Add 's' bit operand (always reg0 for this) 1531 TmpInst.addOperand(MCOperand::createReg(0)); 1532 EmitToStreamer(*OutStreamer, TmpInst); 1533 return; 1534 } 1535 case ARM::MOVTi16_ga_pcrel: 1536 case ARM::t2MOVTi16_ga_pcrel: { 1537 MCInst TmpInst; 1538 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1539 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1540 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1541 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1542 1543 unsigned TF = MI->getOperand(2).getTargetFlags(); 1544 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1545 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1546 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1547 1548 MCSymbol *LabelSym = 1549 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1550 MI->getOperand(3).getImm(), OutContext); 1551 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1552 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1553 const MCExpr *PCRelExpr = 1554 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1555 MCBinaryExpr::createAdd(LabelSymExpr, 1556 MCConstantExpr::create(PCAdj, OutContext), 1557 OutContext), OutContext), OutContext); 1558 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1559 // Add predicate operands. 1560 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1561 TmpInst.addOperand(MCOperand::createReg(0)); 1562 // Add 's' bit operand (always reg0 for this) 1563 TmpInst.addOperand(MCOperand::createReg(0)); 1564 EmitToStreamer(*OutStreamer, TmpInst); 1565 return; 1566 } 1567 case ARM::tPICADD: { 1568 // This is a pseudo op for a label + instruction sequence, which looks like: 1569 // LPC0: 1570 // add r0, pc 1571 // This adds the address of LPC0 to r0. 1572 1573 // Emit the label. 1574 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1575 getFunctionNumber(), 1576 MI->getOperand(2).getImm(), OutContext)); 1577 1578 // Form and emit the add. 1579 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1580 .addReg(MI->getOperand(0).getReg()) 1581 .addReg(MI->getOperand(0).getReg()) 1582 .addReg(ARM::PC) 1583 // Add predicate operands. 1584 .addImm(ARMCC::AL) 1585 .addReg(0)); 1586 return; 1587 } 1588 case ARM::PICADD: { 1589 // This is a pseudo op for a label + instruction sequence, which looks like: 1590 // LPC0: 1591 // add r0, pc, r0 1592 // This adds the address of LPC0 to r0. 1593 1594 // Emit the label. 1595 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1596 getFunctionNumber(), 1597 MI->getOperand(2).getImm(), OutContext)); 1598 1599 // Form and emit the add. 1600 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1601 .addReg(MI->getOperand(0).getReg()) 1602 .addReg(ARM::PC) 1603 .addReg(MI->getOperand(1).getReg()) 1604 // Add predicate operands. 1605 .addImm(MI->getOperand(3).getImm()) 1606 .addReg(MI->getOperand(4).getReg()) 1607 // Add 's' bit operand (always reg0 for this) 1608 .addReg(0)); 1609 return; 1610 } 1611 case ARM::PICSTR: 1612 case ARM::PICSTRB: 1613 case ARM::PICSTRH: 1614 case ARM::PICLDR: 1615 case ARM::PICLDRB: 1616 case ARM::PICLDRH: 1617 case ARM::PICLDRSB: 1618 case ARM::PICLDRSH: { 1619 // This is a pseudo op for a label + instruction sequence, which looks like: 1620 // LPC0: 1621 // OP r0, [pc, r0] 1622 // The LCP0 label is referenced by a constant pool entry in order to get 1623 // a PC-relative address at the ldr instruction. 1624 1625 // Emit the label. 1626 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1627 getFunctionNumber(), 1628 MI->getOperand(2).getImm(), OutContext)); 1629 1630 // Form and emit the load 1631 unsigned Opcode; 1632 switch (MI->getOpcode()) { 1633 default: 1634 llvm_unreachable("Unexpected opcode!"); 1635 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1636 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1637 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1638 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1639 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1640 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1641 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1642 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1643 } 1644 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1645 .addReg(MI->getOperand(0).getReg()) 1646 .addReg(ARM::PC) 1647 .addReg(MI->getOperand(1).getReg()) 1648 .addImm(0) 1649 // Add predicate operands. 1650 .addImm(MI->getOperand(3).getImm()) 1651 .addReg(MI->getOperand(4).getReg())); 1652 1653 return; 1654 } 1655 case ARM::CONSTPOOL_ENTRY: { 1656 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1657 /// in the function. The first operand is the ID# for this instruction, the 1658 /// second is the index into the MachineConstantPool that this is, the third 1659 /// is the size in bytes of this constant pool entry. 1660 /// The required alignment is specified on the basic block holding this MI. 1661 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1662 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1663 1664 // If this is the first entry of the pool, mark it. 1665 if (!InConstantPool) { 1666 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1667 InConstantPool = true; 1668 } 1669 1670 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1671 1672 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1673 if (MCPE.isMachineConstantPoolEntry()) 1674 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1675 else 1676 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1677 return; 1678 } 1679 case ARM::JUMPTABLE_ADDRS: 1680 EmitJumpTableAddrs(MI); 1681 return; 1682 case ARM::JUMPTABLE_INSTS: 1683 EmitJumpTableInsts(MI); 1684 return; 1685 case ARM::JUMPTABLE_TBB: 1686 case ARM::JUMPTABLE_TBH: 1687 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1688 return; 1689 case ARM::t2BR_JT: { 1690 // Lower and emit the instruction itself, then the jump table following it. 1691 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1692 .addReg(ARM::PC) 1693 .addReg(MI->getOperand(0).getReg()) 1694 // Add predicate operands. 1695 .addImm(ARMCC::AL) 1696 .addReg(0)); 1697 return; 1698 } 1699 case ARM::t2TBB_JT: 1700 case ARM::t2TBH_JT: { 1701 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1702 // Lower and emit the PC label, then the instruction itself. 1703 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1704 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1705 .addReg(MI->getOperand(0).getReg()) 1706 .addReg(MI->getOperand(1).getReg()) 1707 // Add predicate operands. 1708 .addImm(ARMCC::AL) 1709 .addReg(0)); 1710 return; 1711 } 1712 case ARM::tBR_JTr: 1713 case ARM::BR_JTr: { 1714 // Lower and emit the instruction itself, then the jump table following it. 1715 // mov pc, target 1716 MCInst TmpInst; 1717 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1718 ARM::MOVr : ARM::tMOVr; 1719 TmpInst.setOpcode(Opc); 1720 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1721 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1722 // Add predicate operands. 1723 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1724 TmpInst.addOperand(MCOperand::createReg(0)); 1725 // Add 's' bit operand (always reg0 for this) 1726 if (Opc == ARM::MOVr) 1727 TmpInst.addOperand(MCOperand::createReg(0)); 1728 EmitToStreamer(*OutStreamer, TmpInst); 1729 return; 1730 } 1731 case ARM::BR_JTm: { 1732 // Lower and emit the instruction itself, then the jump table following it. 1733 // ldr pc, target 1734 MCInst TmpInst; 1735 if (MI->getOperand(1).getReg() == 0) { 1736 // literal offset 1737 TmpInst.setOpcode(ARM::LDRi12); 1738 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1739 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1740 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1741 } else { 1742 TmpInst.setOpcode(ARM::LDRrs); 1743 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1744 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1745 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1746 TmpInst.addOperand(MCOperand::createImm(0)); 1747 } 1748 // Add predicate operands. 1749 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1750 TmpInst.addOperand(MCOperand::createReg(0)); 1751 EmitToStreamer(*OutStreamer, TmpInst); 1752 return; 1753 } 1754 case ARM::BR_JTadd: { 1755 // Lower and emit the instruction itself, then the jump table following it. 1756 // add pc, target, idx 1757 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1758 .addReg(ARM::PC) 1759 .addReg(MI->getOperand(0).getReg()) 1760 .addReg(MI->getOperand(1).getReg()) 1761 // Add predicate operands. 1762 .addImm(ARMCC::AL) 1763 .addReg(0) 1764 // Add 's' bit operand (always reg0 for this) 1765 .addReg(0)); 1766 return; 1767 } 1768 case ARM::SPACE: 1769 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1770 return; 1771 case ARM::TRAP: { 1772 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1773 // FIXME: Remove this special case when they do. 1774 if (!Subtarget->isTargetMachO()) { 1775 uint32_t Val = 0xe7ffdefeUL; 1776 OutStreamer->AddComment("trap"); 1777 ATS.emitInst(Val); 1778 return; 1779 } 1780 break; 1781 } 1782 case ARM::TRAPNaCl: { 1783 uint32_t Val = 0xe7fedef0UL; 1784 OutStreamer->AddComment("trap"); 1785 ATS.emitInst(Val); 1786 return; 1787 } 1788 case ARM::tTRAP: { 1789 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1790 // FIXME: Remove this special case when they do. 1791 if (!Subtarget->isTargetMachO()) { 1792 uint16_t Val = 0xdefe; 1793 OutStreamer->AddComment("trap"); 1794 ATS.emitInst(Val, 'n'); 1795 return; 1796 } 1797 break; 1798 } 1799 case ARM::t2Int_eh_sjlj_setjmp: 1800 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1801 case ARM::tInt_eh_sjlj_setjmp: { 1802 // Two incoming args: GPR:$src, GPR:$val 1803 // mov $val, pc 1804 // adds $val, #7 1805 // str $val, [$src, #4] 1806 // movs r0, #0 1807 // b LSJLJEH 1808 // movs r0, #1 1809 // LSJLJEH: 1810 unsigned SrcReg = MI->getOperand(0).getReg(); 1811 unsigned ValReg = MI->getOperand(1).getReg(); 1812 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1813 OutStreamer->AddComment("eh_setjmp begin"); 1814 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1815 .addReg(ValReg) 1816 .addReg(ARM::PC) 1817 // Predicate. 1818 .addImm(ARMCC::AL) 1819 .addReg(0)); 1820 1821 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1822 .addReg(ValReg) 1823 // 's' bit operand 1824 .addReg(ARM::CPSR) 1825 .addReg(ValReg) 1826 .addImm(7) 1827 // Predicate. 1828 .addImm(ARMCC::AL) 1829 .addReg(0)); 1830 1831 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1832 .addReg(ValReg) 1833 .addReg(SrcReg) 1834 // The offset immediate is #4. The operand value is scaled by 4 for the 1835 // tSTR instruction. 1836 .addImm(1) 1837 // Predicate. 1838 .addImm(ARMCC::AL) 1839 .addReg(0)); 1840 1841 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1842 .addReg(ARM::R0) 1843 .addReg(ARM::CPSR) 1844 .addImm(0) 1845 // Predicate. 1846 .addImm(ARMCC::AL) 1847 .addReg(0)); 1848 1849 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1850 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1851 .addExpr(SymbolExpr) 1852 .addImm(ARMCC::AL) 1853 .addReg(0)); 1854 1855 OutStreamer->AddComment("eh_setjmp end"); 1856 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1857 .addReg(ARM::R0) 1858 .addReg(ARM::CPSR) 1859 .addImm(1) 1860 // Predicate. 1861 .addImm(ARMCC::AL) 1862 .addReg(0)); 1863 1864 OutStreamer->EmitLabel(Label); 1865 return; 1866 } 1867 1868 case ARM::Int_eh_sjlj_setjmp_nofp: 1869 case ARM::Int_eh_sjlj_setjmp: { 1870 // Two incoming args: GPR:$src, GPR:$val 1871 // add $val, pc, #8 1872 // str $val, [$src, #+4] 1873 // mov r0, #0 1874 // add pc, pc, #0 1875 // mov r0, #1 1876 unsigned SrcReg = MI->getOperand(0).getReg(); 1877 unsigned ValReg = MI->getOperand(1).getReg(); 1878 1879 OutStreamer->AddComment("eh_setjmp begin"); 1880 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1881 .addReg(ValReg) 1882 .addReg(ARM::PC) 1883 .addImm(8) 1884 // Predicate. 1885 .addImm(ARMCC::AL) 1886 .addReg(0) 1887 // 's' bit operand (always reg0 for this). 1888 .addReg(0)); 1889 1890 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1891 .addReg(ValReg) 1892 .addReg(SrcReg) 1893 .addImm(4) 1894 // Predicate. 1895 .addImm(ARMCC::AL) 1896 .addReg(0)); 1897 1898 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1899 .addReg(ARM::R0) 1900 .addImm(0) 1901 // Predicate. 1902 .addImm(ARMCC::AL) 1903 .addReg(0) 1904 // 's' bit operand (always reg0 for this). 1905 .addReg(0)); 1906 1907 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1908 .addReg(ARM::PC) 1909 .addReg(ARM::PC) 1910 .addImm(0) 1911 // Predicate. 1912 .addImm(ARMCC::AL) 1913 .addReg(0) 1914 // 's' bit operand (always reg0 for this). 1915 .addReg(0)); 1916 1917 OutStreamer->AddComment("eh_setjmp end"); 1918 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1919 .addReg(ARM::R0) 1920 .addImm(1) 1921 // Predicate. 1922 .addImm(ARMCC::AL) 1923 .addReg(0) 1924 // 's' bit operand (always reg0 for this). 1925 .addReg(0)); 1926 return; 1927 } 1928 case ARM::Int_eh_sjlj_longjmp: { 1929 // ldr sp, [$src, #8] 1930 // ldr $scratch, [$src, #4] 1931 // ldr r7, [$src] 1932 // bx $scratch 1933 unsigned SrcReg = MI->getOperand(0).getReg(); 1934 unsigned ScratchReg = MI->getOperand(1).getReg(); 1935 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1936 .addReg(ARM::SP) 1937 .addReg(SrcReg) 1938 .addImm(8) 1939 // Predicate. 1940 .addImm(ARMCC::AL) 1941 .addReg(0)); 1942 1943 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1944 .addReg(ScratchReg) 1945 .addReg(SrcReg) 1946 .addImm(4) 1947 // Predicate. 1948 .addImm(ARMCC::AL) 1949 .addReg(0)); 1950 1951 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1952 .addReg(ARM::R7) 1953 .addReg(SrcReg) 1954 .addImm(0) 1955 // Predicate. 1956 .addImm(ARMCC::AL) 1957 .addReg(0)); 1958 1959 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1960 .addReg(ScratchReg) 1961 // Predicate. 1962 .addImm(ARMCC::AL) 1963 .addReg(0)); 1964 return; 1965 } 1966 case ARM::tInt_eh_sjlj_longjmp: { 1967 // ldr $scratch, [$src, #8] 1968 // mov sp, $scratch 1969 // ldr $scratch, [$src, #4] 1970 // ldr r7, [$src] 1971 // bx $scratch 1972 unsigned SrcReg = MI->getOperand(0).getReg(); 1973 unsigned ScratchReg = MI->getOperand(1).getReg(); 1974 1975 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1976 .addReg(ScratchReg) 1977 .addReg(SrcReg) 1978 // The offset immediate is #8. The operand value is scaled by 4 for the 1979 // tLDR instruction. 1980 .addImm(2) 1981 // Predicate. 1982 .addImm(ARMCC::AL) 1983 .addReg(0)); 1984 1985 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1986 .addReg(ARM::SP) 1987 .addReg(ScratchReg) 1988 // Predicate. 1989 .addImm(ARMCC::AL) 1990 .addReg(0)); 1991 1992 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1993 .addReg(ScratchReg) 1994 .addReg(SrcReg) 1995 .addImm(1) 1996 // Predicate. 1997 .addImm(ARMCC::AL) 1998 .addReg(0)); 1999 2000 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2001 .addReg(ARM::R7) 2002 .addReg(SrcReg) 2003 .addImm(0) 2004 // Predicate. 2005 .addImm(ARMCC::AL) 2006 .addReg(0)); 2007 2008 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2009 .addReg(ScratchReg) 2010 // Predicate. 2011 .addImm(ARMCC::AL) 2012 .addReg(0)); 2013 return; 2014 } 2015 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2016 // ldr.w r11, [$src, #0] 2017 // ldr.w sp, [$src, #8] 2018 // ldr.w pc, [$src, #4] 2019 2020 unsigned SrcReg = MI->getOperand(0).getReg(); 2021 2022 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2023 .addReg(ARM::R11) 2024 .addReg(SrcReg) 2025 .addImm(0) 2026 // Predicate 2027 .addImm(ARMCC::AL) 2028 .addReg(0)); 2029 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2030 .addReg(ARM::SP) 2031 .addReg(SrcReg) 2032 .addImm(8) 2033 // Predicate 2034 .addImm(ARMCC::AL) 2035 .addReg(0)); 2036 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2037 .addReg(ARM::PC) 2038 .addReg(SrcReg) 2039 .addImm(4) 2040 // Predicate 2041 .addImm(ARMCC::AL) 2042 .addReg(0)); 2043 return; 2044 } 2045 case ARM::PATCHABLE_FUNCTION_ENTER: 2046 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2047 return; 2048 case ARM::PATCHABLE_FUNCTION_EXIT: 2049 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2050 return; 2051 } 2052 2053 MCInst TmpInst; 2054 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2055 2056 EmitToStreamer(*OutStreamer, TmpInst); 2057 } 2058 2059 //===----------------------------------------------------------------------===// 2060 // Target Registry Stuff 2061 //===----------------------------------------------------------------------===// 2062 2063 // Force static initialization. 2064 extern "C" void LLVMInitializeARMAsmPrinter() { 2065 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget); 2066 RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget); 2067 RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget); 2068 RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget); 2069 } 2070