1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "InstPrinter/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "MCTargetDesc/ARMMCExpr.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/BinaryFormat/ELF.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineJumpTableInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Mangler.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCAssembler.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCELFStreamer.h"
41 #include "llvm/MC/MCInst.h"
42 #include "llvm/MC/MCInstBuilder.h"
43 #include "llvm/MC/MCObjectStreamer.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/MC/MCStreamer.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/TargetParser.h"
51 #include "llvm/Support/TargetRegistry.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <cctype>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "asm-printer"
58 
59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
60                              std::unique_ptr<MCStreamer> Streamer)
61     : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
62       InConstantPool(false), OptimizationGoals(-1) {}
63 
64 void ARMAsmPrinter::EmitFunctionBodyEnd() {
65   // Make sure to terminate any constant pools that were at the end
66   // of the function.
67   if (!InConstantPool)
68     return;
69   InConstantPool = false;
70   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
71 }
72 
73 void ARMAsmPrinter::EmitFunctionEntryLabel() {
74   if (AFI->isThumbFunction()) {
75     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
76     OutStreamer->EmitThumbFunc(CurrentFnSym);
77   } else {
78     OutStreamer->EmitAssemblerFlag(MCAF_Code32);
79   }
80   OutStreamer->EmitLabel(CurrentFnSym);
81 }
82 
83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
84   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
85   assert(Size && "C++ constructor pointer had zero size!");
86 
87   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
88   assert(GV && "C++ constructor pointer was not a GlobalValue!");
89 
90   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
91                                                            ARMII::MO_NO_FLAG),
92                                             (Subtarget->isTargetELF()
93                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
94                                              : MCSymbolRefExpr::VK_None),
95                                             OutContext);
96 
97   OutStreamer->EmitValue(E, Size);
98 }
99 
100 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
101   if (PromotedGlobals.count(GV))
102     // The global was promoted into a constant pool. It should not be emitted.
103     return;
104   AsmPrinter::EmitGlobalVariable(GV);
105 }
106 
107 /// runOnMachineFunction - This uses the EmitInstruction()
108 /// method to print assembly for each instruction.
109 ///
110 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
111   AFI = MF.getInfo<ARMFunctionInfo>();
112   MCP = MF.getConstantPool();
113   Subtarget = &MF.getSubtarget<ARMSubtarget>();
114 
115   SetupMachineFunction(MF);
116   const Function* F = MF.getFunction();
117   const TargetMachine& TM = MF.getTarget();
118 
119   // Collect all globals that had their storage promoted to a constant pool.
120   // Functions are emitted before variables, so this accumulates promoted
121   // globals from all functions in PromotedGlobals.
122   for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
123     PromotedGlobals.insert(GV);
124 
125   // Calculate this function's optimization goal.
126   unsigned OptimizationGoal;
127   if (F->hasFnAttribute(Attribute::OptimizeNone))
128     // For best debugging illusion, speed and small size sacrificed
129     OptimizationGoal = 6;
130   else if (F->optForMinSize())
131     // Aggressively for small size, speed and debug illusion sacrificed
132     OptimizationGoal = 4;
133   else if (F->optForSize())
134     // For small size, but speed and debugging illusion preserved
135     OptimizationGoal = 3;
136   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
137     // Aggressively for speed, small size and debug illusion sacrificed
138     OptimizationGoal = 2;
139   else if (TM.getOptLevel() > CodeGenOpt::None)
140     // For speed, but small size and good debug illusion preserved
141     OptimizationGoal = 1;
142   else // TM.getOptLevel() == CodeGenOpt::None
143     // For good debugging, but speed and small size preserved
144     OptimizationGoal = 5;
145 
146   // Combine a new optimization goal with existing ones.
147   if (OptimizationGoals == -1) // uninitialized goals
148     OptimizationGoals = OptimizationGoal;
149   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
150     OptimizationGoals = 0;
151 
152   if (Subtarget->isTargetCOFF()) {
153     bool Internal = F->hasInternalLinkage();
154     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
155                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
156     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
157 
158     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
159     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
160     OutStreamer->EmitCOFFSymbolType(Type);
161     OutStreamer->EndCOFFSymbolDef();
162   }
163 
164   // Emit the rest of the function body.
165   EmitFunctionBody();
166 
167   // Emit the XRay table for this function.
168   emitXRayTable();
169 
170   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
171   // These are created per function, rather than per TU, since it's
172   // relatively easy to exceed the thumb branch range within a TU.
173   if (! ThumbIndirectPads.empty()) {
174     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
175     EmitAlignment(1);
176     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
177       OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
178       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
179         .addReg(ThumbIndirectPads[i].first)
180         // Add predicate operands.
181         .addImm(ARMCC::AL)
182         .addReg(0));
183     }
184     ThumbIndirectPads.clear();
185   }
186 
187   // We didn't modify anything.
188   return false;
189 }
190 
191 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
192                                  raw_ostream &O) {
193   const MachineOperand &MO = MI->getOperand(OpNum);
194   unsigned TF = MO.getTargetFlags();
195 
196   switch (MO.getType()) {
197   default: llvm_unreachable("<unknown operand type>");
198   case MachineOperand::MO_Register: {
199     unsigned Reg = MO.getReg();
200     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
201     assert(!MO.getSubReg() && "Subregs should be eliminated!");
202     if(ARM::GPRPairRegClass.contains(Reg)) {
203       const MachineFunction &MF = *MI->getParent()->getParent();
204       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
205       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
206     }
207     O << ARMInstPrinter::getRegisterName(Reg);
208     break;
209   }
210   case MachineOperand::MO_Immediate: {
211     int64_t Imm = MO.getImm();
212     O << '#';
213     if (TF == ARMII::MO_LO16)
214       O << ":lower16:";
215     else if (TF == ARMII::MO_HI16)
216       O << ":upper16:";
217     O << Imm;
218     break;
219   }
220   case MachineOperand::MO_MachineBasicBlock:
221     MO.getMBB()->getSymbol()->print(O, MAI);
222     return;
223   case MachineOperand::MO_GlobalAddress: {
224     const GlobalValue *GV = MO.getGlobal();
225     if (TF & ARMII::MO_LO16)
226       O << ":lower16:";
227     else if (TF & ARMII::MO_HI16)
228       O << ":upper16:";
229     GetARMGVSymbol(GV, TF)->print(O, MAI);
230 
231     printOffset(MO.getOffset(), O);
232     break;
233   }
234   case MachineOperand::MO_ConstantPoolIndex:
235     if (Subtarget->genExecuteOnly())
236       llvm_unreachable("execute-only should not generate constant pools");
237     GetCPISymbol(MO.getIndex())->print(O, MAI);
238     break;
239   }
240 }
241 
242 //===--------------------------------------------------------------------===//
243 
244 MCSymbol *ARMAsmPrinter::
245 GetARMJTIPICJumpTableLabel(unsigned uid) const {
246   const DataLayout &DL = getDataLayout();
247   SmallString<60> Name;
248   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
249                             << getFunctionNumber() << '_' << uid;
250   return OutContext.getOrCreateSymbol(Name);
251 }
252 
253 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
254                                     unsigned AsmVariant, const char *ExtraCode,
255                                     raw_ostream &O) {
256   // Does this asm operand have a single letter operand modifier?
257   if (ExtraCode && ExtraCode[0]) {
258     if (ExtraCode[1] != 0) return true; // Unknown modifier.
259 
260     switch (ExtraCode[0]) {
261     default:
262       // See if this is a generic print operand
263       return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
264     case 'a': // Print as a memory address.
265       if (MI->getOperand(OpNum).isReg()) {
266         O << "["
267           << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
268           << "]";
269         return false;
270       }
271       LLVM_FALLTHROUGH;
272     case 'c': // Don't print "#" before an immediate operand.
273       if (!MI->getOperand(OpNum).isImm())
274         return true;
275       O << MI->getOperand(OpNum).getImm();
276       return false;
277     case 'P': // Print a VFP double precision register.
278     case 'q': // Print a NEON quad precision register.
279       printOperand(MI, OpNum, O);
280       return false;
281     case 'y': // Print a VFP single precision register as indexed double.
282       if (MI->getOperand(OpNum).isReg()) {
283         unsigned Reg = MI->getOperand(OpNum).getReg();
284         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
285         // Find the 'd' register that has this 's' register as a sub-register,
286         // and determine the lane number.
287         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
288           if (!ARM::DPRRegClass.contains(*SR))
289             continue;
290           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
291           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
292           return false;
293         }
294       }
295       return true;
296     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
297       if (!MI->getOperand(OpNum).isImm())
298         return true;
299       O << ~(MI->getOperand(OpNum).getImm());
300       return false;
301     case 'L': // The low 16 bits of an immediate constant.
302       if (!MI->getOperand(OpNum).isImm())
303         return true;
304       O << (MI->getOperand(OpNum).getImm() & 0xffff);
305       return false;
306     case 'M': { // A register range suitable for LDM/STM.
307       if (!MI->getOperand(OpNum).isReg())
308         return true;
309       const MachineOperand &MO = MI->getOperand(OpNum);
310       unsigned RegBegin = MO.getReg();
311       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
312       // already got the operands in registers that are operands to the
313       // inline asm statement.
314       O << "{";
315       if (ARM::GPRPairRegClass.contains(RegBegin)) {
316         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
317         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
318         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
319         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
320       }
321       O << ARMInstPrinter::getRegisterName(RegBegin);
322 
323       // FIXME: The register allocator not only may not have given us the
324       // registers in sequence, but may not be in ascending registers. This
325       // will require changes in the register allocator that'll need to be
326       // propagated down here if the operands change.
327       unsigned RegOps = OpNum + 1;
328       while (MI->getOperand(RegOps).isReg()) {
329         O << ", "
330           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
331         RegOps++;
332       }
333 
334       O << "}";
335 
336       return false;
337     }
338     case 'R': // The most significant register of a pair.
339     case 'Q': { // The least significant register of a pair.
340       if (OpNum == 0)
341         return true;
342       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
343       if (!FlagsOP.isImm())
344         return true;
345       unsigned Flags = FlagsOP.getImm();
346 
347       // This operand may not be the one that actually provides the register. If
348       // it's tied to a previous one then we should refer instead to that one
349       // for registers and their classes.
350       unsigned TiedIdx;
351       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
352         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
353           unsigned OpFlags = MI->getOperand(OpNum).getImm();
354           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
355         }
356         Flags = MI->getOperand(OpNum).getImm();
357 
358         // Later code expects OpNum to be pointing at the register rather than
359         // the flags.
360         OpNum += 1;
361       }
362 
363       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
364       unsigned RC;
365       InlineAsm::hasRegClassConstraint(Flags, RC);
366       if (RC == ARM::GPRPairRegClassID) {
367         if (NumVals != 1)
368           return true;
369         const MachineOperand &MO = MI->getOperand(OpNum);
370         if (!MO.isReg())
371           return true;
372         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
373         unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
374             ARM::gsub_0 : ARM::gsub_1);
375         O << ARMInstPrinter::getRegisterName(Reg);
376         return false;
377       }
378       if (NumVals != 2)
379         return true;
380       unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
381       if (RegOp >= MI->getNumOperands())
382         return true;
383       const MachineOperand &MO = MI->getOperand(RegOp);
384       if (!MO.isReg())
385         return true;
386       unsigned Reg = MO.getReg();
387       O << ARMInstPrinter::getRegisterName(Reg);
388       return false;
389     }
390 
391     case 'e': // The low doubleword register of a NEON quad register.
392     case 'f': { // The high doubleword register of a NEON quad register.
393       if (!MI->getOperand(OpNum).isReg())
394         return true;
395       unsigned Reg = MI->getOperand(OpNum).getReg();
396       if (!ARM::QPRRegClass.contains(Reg))
397         return true;
398       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
399       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
400                                        ARM::dsub_0 : ARM::dsub_1);
401       O << ARMInstPrinter::getRegisterName(SubReg);
402       return false;
403     }
404 
405     // This modifier is not yet supported.
406     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
407       return true;
408     case 'H': { // The highest-numbered register of a pair.
409       const MachineOperand &MO = MI->getOperand(OpNum);
410       if (!MO.isReg())
411         return true;
412       const MachineFunction &MF = *MI->getParent()->getParent();
413       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
414       unsigned Reg = MO.getReg();
415       if(!ARM::GPRPairRegClass.contains(Reg))
416         return false;
417       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
418       O << ARMInstPrinter::getRegisterName(Reg);
419       return false;
420     }
421     }
422   }
423 
424   printOperand(MI, OpNum, O);
425   return false;
426 }
427 
428 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
429                                           unsigned OpNum, unsigned AsmVariant,
430                                           const char *ExtraCode,
431                                           raw_ostream &O) {
432   // Does this asm operand have a single letter operand modifier?
433   if (ExtraCode && ExtraCode[0]) {
434     if (ExtraCode[1] != 0) return true; // Unknown modifier.
435 
436     switch (ExtraCode[0]) {
437       case 'A': // A memory operand for a VLD1/VST1 instruction.
438       default: return true;  // Unknown modifier.
439       case 'm': // The base register of a memory operand.
440         if (!MI->getOperand(OpNum).isReg())
441           return true;
442         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
443         return false;
444     }
445   }
446 
447   const MachineOperand &MO = MI->getOperand(OpNum);
448   assert(MO.isReg() && "unexpected inline asm memory operand");
449   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
450   return false;
451 }
452 
453 static bool isThumb(const MCSubtargetInfo& STI) {
454   return STI.getFeatureBits()[ARM::ModeThumb];
455 }
456 
457 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
458                                      const MCSubtargetInfo *EndInfo) const {
459   // If either end mode is unknown (EndInfo == NULL) or different than
460   // the start mode, then restore the start mode.
461   const bool WasThumb = isThumb(StartInfo);
462   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
463     OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
464   }
465 }
466 
467 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
468   const Triple &TT = TM.getTargetTriple();
469   // Use unified assembler syntax.
470   OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
471 
472   // Emit ARM Build Attributes
473   if (TT.isOSBinFormatELF())
474     emitAttributes();
475 
476   // Use the triple's architecture and subarchitecture to determine
477   // if we're thumb for the purposes of the top level code16 assembler
478   // flag.
479   bool isThumb = TT.getArch() == Triple::thumb ||
480                  TT.getArch() == Triple::thumbeb ||
481                  TT.getSubArch() == Triple::ARMSubArch_v7m ||
482                  TT.getSubArch() == Triple::ARMSubArch_v6m;
483   if (!M.getModuleInlineAsm().empty() && isThumb)
484     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
485 }
486 
487 static void
488 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
489                          MachineModuleInfoImpl::StubValueTy &MCSym) {
490   // L_foo$stub:
491   OutStreamer.EmitLabel(StubLabel);
492   //   .indirect_symbol _foo
493   OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
494 
495   if (MCSym.getInt())
496     // External to current translation unit.
497     OutStreamer.EmitIntValue(0, 4/*size*/);
498   else
499     // Internal to current translation unit.
500     //
501     // When we place the LSDA into the TEXT section, the type info
502     // pointers need to be indirect and pc-rel. We accomplish this by
503     // using NLPs; however, sometimes the types are local to the file.
504     // We need to fill in the value for the NLP in those cases.
505     OutStreamer.EmitValue(
506         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
507         4 /*size*/);
508 }
509 
510 
511 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
512   const Triple &TT = TM.getTargetTriple();
513   if (TT.isOSBinFormatMachO()) {
514     // All darwin targets use mach-o.
515     const TargetLoweringObjectFileMachO &TLOFMacho =
516       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
517     MachineModuleInfoMachO &MMIMacho =
518       MMI->getObjFileInfo<MachineModuleInfoMachO>();
519 
520     // Output non-lazy-pointers for external and common global variables.
521     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
522 
523     if (!Stubs.empty()) {
524       // Switch with ".non_lazy_symbol_pointer" directive.
525       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
526       EmitAlignment(2);
527 
528       for (auto &Stub : Stubs)
529         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
530 
531       Stubs.clear();
532       OutStreamer->AddBlankLine();
533     }
534 
535     Stubs = MMIMacho.GetThreadLocalGVStubList();
536     if (!Stubs.empty()) {
537       // Switch with ".non_lazy_symbol_pointer" directive.
538       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
539       EmitAlignment(2);
540 
541       for (auto &Stub : Stubs)
542         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
543 
544       Stubs.clear();
545       OutStreamer->AddBlankLine();
546     }
547 
548     // Funny Darwin hack: This flag tells the linker that no global symbols
549     // contain code that falls through to other global symbols (e.g. the obvious
550     // implementation of multiple entry points).  If this doesn't occur, the
551     // linker can safely perform dead code stripping.  Since LLVM never
552     // generates code that does this, it is always safe to set.
553     OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
554   }
555 
556   if (TT.isOSBinFormatCOFF()) {
557     const auto &TLOF =
558         static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering());
559 
560     std::string Flags;
561     raw_string_ostream OS(Flags);
562 
563     for (const auto &Function : M)
564       TLOF.emitLinkerFlagsForGlobal(OS, &Function);
565     for (const auto &Global : M.globals())
566       TLOF.emitLinkerFlagsForGlobal(OS, &Global);
567     for (const auto &Alias : M.aliases())
568       TLOF.emitLinkerFlagsForGlobal(OS, &Alias);
569 
570     OS.flush();
571 
572     // Output collected flags
573     if (!Flags.empty()) {
574       OutStreamer->SwitchSection(TLOF.getDrectveSection());
575       OutStreamer->EmitBytes(Flags);
576     }
577   }
578 
579   // The last attribute to be emitted is ABI_optimization_goals
580   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
581   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
582 
583   if (OptimizationGoals > 0 &&
584       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
585        Subtarget->isTargetMuslAEABI()))
586     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
587   OptimizationGoals = -1;
588 
589   ATS.finishAttributeSection();
590 }
591 
592 //===----------------------------------------------------------------------===//
593 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
594 // FIXME:
595 // The following seem like one-off assembler flags, but they actually need
596 // to appear in the .ARM.attributes section in ELF.
597 // Instead of subclassing the MCELFStreamer, we do the work here.
598 
599 // Returns true if all functions have the same function attribute value.
600 // It also returns true when the module has no functions.
601 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
602                                                StringRef Value) {
603   return !any_of(M, [&](const Function &F) {
604     return F.getFnAttribute(Attr).getValueAsString() != Value;
605   });
606 }
607 
608 void ARMAsmPrinter::emitAttributes() {
609   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
610   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
611 
612   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
613 
614   ATS.switchVendor("aeabi");
615 
616   // Compute ARM ELF Attributes based on the default subtarget that
617   // we'd have constructed. The existing ARM behavior isn't LTO clean
618   // anyhow.
619   // FIXME: For ifunc related functions we could iterate over and look
620   // for a feature string that doesn't match the default one.
621   const Triple &TT = TM.getTargetTriple();
622   StringRef CPU = TM.getTargetCPU();
623   StringRef FS = TM.getTargetFeatureString();
624   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
625   if (!FS.empty()) {
626     if (!ArchFS.empty())
627       ArchFS = (Twine(ArchFS) + "," + FS).str();
628     else
629       ArchFS = FS;
630   }
631   const ARMBaseTargetMachine &ATM =
632       static_cast<const ARMBaseTargetMachine &>(TM);
633   const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
634 
635   // Emit build attributes for the available hardware.
636   ATS.emitTargetAttributes(STI);
637 
638   // RW data addressing.
639   if (isPositionIndependent()) {
640     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
641                       ARMBuildAttrs::AddressRWPCRel);
642   } else if (STI.isRWPI()) {
643     // RWPI specific attributes.
644     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
645                       ARMBuildAttrs::AddressRWSBRel);
646   }
647 
648   // RO data addressing.
649   if (isPositionIndependent() || STI.isROPI()) {
650     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
651                       ARMBuildAttrs::AddressROPCRel);
652   }
653 
654   // GOT use.
655   if (isPositionIndependent()) {
656     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
657                       ARMBuildAttrs::AddressGOT);
658   } else {
659     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
660                       ARMBuildAttrs::AddressDirect);
661   }
662 
663   // Set FP Denormals.
664   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
665                                          "denormal-fp-math",
666                                          "preserve-sign") ||
667       TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
668     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
669                       ARMBuildAttrs::PreserveFPSign);
670   else if (checkFunctionsAttributeConsistency(*MMI->getModule(),
671                                               "denormal-fp-math",
672                                               "positive-zero") ||
673            TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
674     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
675                       ARMBuildAttrs::PositiveZero);
676   else if (!TM.Options.UnsafeFPMath)
677     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
678                       ARMBuildAttrs::IEEEDenormals);
679   else {
680     if (!STI.hasVFP2()) {
681       // When the target doesn't have an FPU (by design or
682       // intention), the assumptions made on the software support
683       // mirror that of the equivalent hardware support *if it
684       // existed*. For v7 and better we indicate that denormals are
685       // flushed preserving sign, and for V6 we indicate that
686       // denormals are flushed to positive zero.
687       if (STI.hasV7Ops())
688         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
689                           ARMBuildAttrs::PreserveFPSign);
690     } else if (STI.hasVFP3()) {
691       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
692       // the sign bit of the zero matches the sign bit of the input or
693       // result that is being flushed to zero.
694       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
695                         ARMBuildAttrs::PreserveFPSign);
696     }
697     // For VFPv2 implementations it is implementation defined as
698     // to whether denormals are flushed to positive zero or to
699     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
700     // LLVM has chosen to flush this to positive zero (most likely for
701     // GCC compatibility), so that's the chosen value here (the
702     // absence of its emission implies zero).
703   }
704 
705   // Set FP exceptions and rounding
706   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
707                                          "no-trapping-math", "true") ||
708       TM.Options.NoTrappingFPMath)
709     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
710                       ARMBuildAttrs::Not_Allowed);
711   else if (!TM.Options.UnsafeFPMath) {
712     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
713 
714     // If the user has permitted this code to choose the IEEE 754
715     // rounding at run-time, emit the rounding attribute.
716     if (TM.Options.HonorSignDependentRoundingFPMathOption)
717       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
718   }
719 
720   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
721   // equivalent of GCC's -ffinite-math-only flag.
722   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
723     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
724                       ARMBuildAttrs::Allowed);
725   else
726     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
727                       ARMBuildAttrs::AllowIEEE754);
728 
729   // FIXME: add more flags to ARMBuildAttributes.h
730   // 8-bytes alignment stuff.
731   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
732   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
733 
734   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
735   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
736     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
737 
738   // FIXME: To support emitting this build attribute as GCC does, the
739   // -mfp16-format option and associated plumbing must be
740   // supported. For now the __fp16 type is exposed by default, so this
741   // attribute should be emitted with value 1.
742   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
743                     ARMBuildAttrs::FP16FormatIEEE);
744 
745   if (MMI) {
746     if (const Module *SourceModule = MMI->getModule()) {
747       // ABI_PCS_wchar_t to indicate wchar_t width
748       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
749       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
750               SourceModule->getModuleFlag("wchar_size"))) {
751         int WCharWidth = WCharWidthValue->getZExtValue();
752         assert((WCharWidth == 2 || WCharWidth == 4) &&
753                "wchar_t width must be 2 or 4 bytes");
754         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
755       }
756 
757       // ABI_enum_size to indicate enum width
758       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
759       //        (all enums contain a value needing 32 bits to encode).
760       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
761               SourceModule->getModuleFlag("min_enum_size"))) {
762         int EnumWidth = EnumWidthValue->getZExtValue();
763         assert((EnumWidth == 1 || EnumWidth == 4) &&
764                "Minimum enum width must be 1 or 4 bytes");
765         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
766         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
767       }
768     }
769   }
770 
771   // We currently do not support using R9 as the TLS pointer.
772   if (STI.isRWPI())
773     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
774                       ARMBuildAttrs::R9IsSB);
775   else if (STI.isR9Reserved())
776     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
777                       ARMBuildAttrs::R9Reserved);
778   else
779     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
780                       ARMBuildAttrs::R9IsGPR);
781 }
782 
783 //===----------------------------------------------------------------------===//
784 
785 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
786                              unsigned LabelId, MCContext &Ctx) {
787 
788   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
789                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
790   return Label;
791 }
792 
793 static MCSymbolRefExpr::VariantKind
794 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
795   switch (Modifier) {
796   case ARMCP::no_modifier:
797     return MCSymbolRefExpr::VK_None;
798   case ARMCP::TLSGD:
799     return MCSymbolRefExpr::VK_TLSGD;
800   case ARMCP::TPOFF:
801     return MCSymbolRefExpr::VK_TPOFF;
802   case ARMCP::GOTTPOFF:
803     return MCSymbolRefExpr::VK_GOTTPOFF;
804   case ARMCP::SBREL:
805     return MCSymbolRefExpr::VK_ARM_SBREL;
806   case ARMCP::GOT_PREL:
807     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
808   case ARMCP::SECREL:
809     return MCSymbolRefExpr::VK_SECREL;
810   }
811   llvm_unreachable("Invalid ARMCPModifier!");
812 }
813 
814 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
815                                         unsigned char TargetFlags) {
816   if (Subtarget->isTargetMachO()) {
817     bool IsIndirect =
818         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
819 
820     if (!IsIndirect)
821       return getSymbol(GV);
822 
823     // FIXME: Remove this when Darwin transition to @GOT like syntax.
824     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
825     MachineModuleInfoMachO &MMIMachO =
826       MMI->getObjFileInfo<MachineModuleInfoMachO>();
827     MachineModuleInfoImpl::StubValueTy &StubSym =
828         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
829                             : MMIMachO.getGVStubEntry(MCSym);
830 
831     if (!StubSym.getPointer())
832       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
833                                                    !GV->hasInternalLinkage());
834     return MCSym;
835   } else if (Subtarget->isTargetCOFF()) {
836     assert(Subtarget->isTargetWindows() &&
837            "Windows is the only supported COFF target");
838 
839     bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
840     if (!IsIndirect)
841       return getSymbol(GV);
842 
843     SmallString<128> Name;
844     Name = "__imp_";
845     getNameWithPrefix(Name, GV);
846 
847     return OutContext.getOrCreateSymbol(Name);
848   } else if (Subtarget->isTargetELF()) {
849     return getSymbol(GV);
850   }
851   llvm_unreachable("unexpected target");
852 }
853 
854 void ARMAsmPrinter::
855 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
856   const DataLayout &DL = getDataLayout();
857   int Size = DL.getTypeAllocSize(MCPV->getType());
858 
859   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
860 
861   if (ACPV->isPromotedGlobal()) {
862     // This constant pool entry is actually a global whose storage has been
863     // promoted into the constant pool. This global may be referenced still
864     // by debug information, and due to the way AsmPrinter is set up, the debug
865     // info is immutable by the time we decide to promote globals to constant
866     // pools. Because of this, we need to ensure we emit a symbol for the global
867     // with private linkage (the default) so debug info can refer to it.
868     //
869     // However, if this global is promoted into several functions we must ensure
870     // we don't try and emit duplicate symbols!
871     auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
872     auto *GV = ACPC->getPromotedGlobal();
873     if (!EmittedPromotedGlobalLabels.count(GV)) {
874       MCSymbol *GVSym = getSymbol(GV);
875       OutStreamer->EmitLabel(GVSym);
876       EmittedPromotedGlobalLabels.insert(GV);
877     }
878     return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
879   }
880 
881   MCSymbol *MCSym;
882   if (ACPV->isLSDA()) {
883     MCSym = getCurExceptionSym();
884   } else if (ACPV->isBlockAddress()) {
885     const BlockAddress *BA =
886       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
887     MCSym = GetBlockAddressSymbol(BA);
888   } else if (ACPV->isGlobalValue()) {
889     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
890 
891     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
892     // flag the global as MO_NONLAZY.
893     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
894     MCSym = GetARMGVSymbol(GV, TF);
895   } else if (ACPV->isMachineBasicBlock()) {
896     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
897     MCSym = MBB->getSymbol();
898   } else {
899     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
900     auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
901     MCSym = GetExternalSymbolSymbol(Sym);
902   }
903 
904   // Create an MCSymbol for the reference.
905   const MCExpr *Expr =
906     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
907                             OutContext);
908 
909   if (ACPV->getPCAdjustment()) {
910     MCSymbol *PCLabel =
911         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
912                     ACPV->getLabelId(), OutContext);
913     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
914     PCRelExpr =
915       MCBinaryExpr::createAdd(PCRelExpr,
916                               MCConstantExpr::create(ACPV->getPCAdjustment(),
917                                                      OutContext),
918                               OutContext);
919     if (ACPV->mustAddCurrentAddress()) {
920       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
921       // label, so just emit a local label end reference that instead.
922       MCSymbol *DotSym = OutContext.createTempSymbol();
923       OutStreamer->EmitLabel(DotSym);
924       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
925       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
926     }
927     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
928   }
929   OutStreamer->EmitValue(Expr, Size);
930 }
931 
932 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
933   const MachineOperand &MO1 = MI->getOperand(1);
934   unsigned JTI = MO1.getIndex();
935 
936   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
937   // ARM mode tables.
938   EmitAlignment(2);
939 
940   // Emit a label for the jump table.
941   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
942   OutStreamer->EmitLabel(JTISymbol);
943 
944   // Mark the jump table as data-in-code.
945   OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
946 
947   // Emit each entry of the table.
948   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
949   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
950   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
951 
952   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
953     MachineBasicBlock *MBB = JTBBs[i];
954     // Construct an MCExpr for the entry. We want a value of the form:
955     // (BasicBlockAddr - TableBeginAddr)
956     //
957     // For example, a table with entries jumping to basic blocks BB0 and BB1
958     // would look like:
959     // LJTI_0_0:
960     //    .word (LBB0 - LJTI_0_0)
961     //    .word (LBB1 - LJTI_0_0)
962     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
963 
964     if (isPositionIndependent() || Subtarget->isROPI())
965       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
966                                                                    OutContext),
967                                      OutContext);
968     // If we're generating a table of Thumb addresses in static relocation
969     // model, we need to add one to keep interworking correctly.
970     else if (AFI->isThumbFunction())
971       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
972                                      OutContext);
973     OutStreamer->EmitValue(Expr, 4);
974   }
975   // Mark the end of jump table data-in-code region.
976   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
977 }
978 
979 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
980   const MachineOperand &MO1 = MI->getOperand(1);
981   unsigned JTI = MO1.getIndex();
982 
983   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
984   // ARM mode tables.
985   EmitAlignment(2);
986 
987   // Emit a label for the jump table.
988   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
989   OutStreamer->EmitLabel(JTISymbol);
990 
991   // Emit each entry of the table.
992   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
993   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
994   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
995 
996   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
997     MachineBasicBlock *MBB = JTBBs[i];
998     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
999                                                           OutContext);
1000     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1001     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1002         .addExpr(MBBSymbolExpr)
1003         .addImm(ARMCC::AL)
1004         .addReg(0));
1005   }
1006 }
1007 
1008 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1009                                         unsigned OffsetWidth) {
1010   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1011   const MachineOperand &MO1 = MI->getOperand(1);
1012   unsigned JTI = MO1.getIndex();
1013 
1014   if (Subtarget->isThumb1Only())
1015     EmitAlignment(2);
1016 
1017   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1018   OutStreamer->EmitLabel(JTISymbol);
1019 
1020   // Emit each entry of the table.
1021   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1022   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1023   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1024 
1025   // Mark the jump table as data-in-code.
1026   OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1027                                                : MCDR_DataRegionJT16);
1028 
1029   for (auto MBB : JTBBs) {
1030     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1031                                                           OutContext);
1032     // Otherwise it's an offset from the dispatch instruction. Construct an
1033     // MCExpr for the entry. We want a value of the form:
1034     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1035     //
1036     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1037     // would look like:
1038     // LJTI_0_0:
1039     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1040     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1041     // where LCPI0_0 is a label defined just before the TBB instruction using
1042     // this table.
1043     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1044     const MCExpr *Expr = MCBinaryExpr::createAdd(
1045         MCSymbolRefExpr::create(TBInstPC, OutContext),
1046         MCConstantExpr::create(4, OutContext), OutContext);
1047     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1048     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1049                                    OutContext);
1050     OutStreamer->EmitValue(Expr, OffsetWidth);
1051   }
1052   // Mark the end of jump table data-in-code region. 32-bit offsets use
1053   // actual branch instructions here, so we don't mark those as a data-region
1054   // at all.
1055   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1056 
1057   // Make sure the next instruction is 2-byte aligned.
1058   EmitAlignment(1);
1059 }
1060 
1061 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1062   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1063       "Only instruction which are involved into frame setup code are allowed");
1064 
1065   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1066   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1067   const MachineFunction &MF = *MI->getParent()->getParent();
1068   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1069   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1070 
1071   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1072   unsigned Opc = MI->getOpcode();
1073   unsigned SrcReg, DstReg;
1074 
1075   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1076     // Two special cases:
1077     // 1) tPUSH does not have src/dst regs.
1078     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1079     // load. Yes, this is pretty fragile, but for now I don't see better
1080     // way... :(
1081     SrcReg = DstReg = ARM::SP;
1082   } else {
1083     SrcReg = MI->getOperand(1).getReg();
1084     DstReg = MI->getOperand(0).getReg();
1085   }
1086 
1087   // Try to figure out the unwinding opcode out of src / dst regs.
1088   if (MI->mayStore()) {
1089     // Register saves.
1090     assert(DstReg == ARM::SP &&
1091            "Only stack pointer as a destination reg is supported");
1092 
1093     SmallVector<unsigned, 4> RegList;
1094     // Skip src & dst reg, and pred ops.
1095     unsigned StartOp = 2 + 2;
1096     // Use all the operands.
1097     unsigned NumOffset = 0;
1098 
1099     switch (Opc) {
1100     default:
1101       MI->print(errs());
1102       llvm_unreachable("Unsupported opcode for unwinding information");
1103     case ARM::tPUSH:
1104       // Special case here: no src & dst reg, but two extra imp ops.
1105       StartOp = 2; NumOffset = 2;
1106     case ARM::STMDB_UPD:
1107     case ARM::t2STMDB_UPD:
1108     case ARM::VSTMDDB_UPD:
1109       assert(SrcReg == ARM::SP &&
1110              "Only stack pointer as a source reg is supported");
1111       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1112            i != NumOps; ++i) {
1113         const MachineOperand &MO = MI->getOperand(i);
1114         // Actually, there should never be any impdef stuff here. Skip it
1115         // temporary to workaround PR11902.
1116         if (MO.isImplicit())
1117           continue;
1118         RegList.push_back(MO.getReg());
1119       }
1120       break;
1121     case ARM::STR_PRE_IMM:
1122     case ARM::STR_PRE_REG:
1123     case ARM::t2STR_PRE:
1124       assert(MI->getOperand(2).getReg() == ARM::SP &&
1125              "Only stack pointer as a source reg is supported");
1126       RegList.push_back(SrcReg);
1127       break;
1128     }
1129     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1130       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1131   } else {
1132     // Changes of stack / frame pointer.
1133     if (SrcReg == ARM::SP) {
1134       int64_t Offset = 0;
1135       switch (Opc) {
1136       default:
1137         MI->print(errs());
1138         llvm_unreachable("Unsupported opcode for unwinding information");
1139       case ARM::MOVr:
1140       case ARM::tMOVr:
1141         Offset = 0;
1142         break;
1143       case ARM::ADDri:
1144       case ARM::t2ADDri:
1145         Offset = -MI->getOperand(2).getImm();
1146         break;
1147       case ARM::SUBri:
1148       case ARM::t2SUBri:
1149         Offset = MI->getOperand(2).getImm();
1150         break;
1151       case ARM::tSUBspi:
1152         Offset = MI->getOperand(2).getImm()*4;
1153         break;
1154       case ARM::tADDspi:
1155       case ARM::tADDrSPi:
1156         Offset = -MI->getOperand(2).getImm()*4;
1157         break;
1158       case ARM::tLDRpci: {
1159         // Grab the constpool index and check, whether it corresponds to
1160         // original or cloned constpool entry.
1161         unsigned CPI = MI->getOperand(1).getIndex();
1162         const MachineConstantPool *MCP = MF.getConstantPool();
1163         if (CPI >= MCP->getConstants().size())
1164           CPI = AFI.getOriginalCPIdx(CPI);
1165         assert(CPI != -1U && "Invalid constpool index");
1166 
1167         // Derive the actual offset.
1168         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1169         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1170         // FIXME: Check for user, it should be "add" instruction!
1171         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1172         break;
1173       }
1174       }
1175 
1176       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1177         if (DstReg == FramePtr && FramePtr != ARM::SP)
1178           // Set-up of the frame pointer. Positive values correspond to "add"
1179           // instruction.
1180           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1181         else if (DstReg == ARM::SP) {
1182           // Change of SP by an offset. Positive values correspond to "sub"
1183           // instruction.
1184           ATS.emitPad(Offset);
1185         } else {
1186           // Move of SP to a register.  Positive values correspond to an "add"
1187           // instruction.
1188           ATS.emitMovSP(DstReg, -Offset);
1189         }
1190       }
1191     } else if (DstReg == ARM::SP) {
1192       MI->print(errs());
1193       llvm_unreachable("Unsupported opcode for unwinding information");
1194     }
1195     else {
1196       MI->print(errs());
1197       llvm_unreachable("Unsupported opcode for unwinding information");
1198     }
1199   }
1200 }
1201 
1202 // Simple pseudo-instructions have their lowering (with expansion to real
1203 // instructions) auto-generated.
1204 #include "ARMGenMCPseudoLowering.inc"
1205 
1206 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1207   const DataLayout &DL = getDataLayout();
1208   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1209   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1210 
1211   // If we just ended a constant pool, mark it as such.
1212   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1213     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1214     InConstantPool = false;
1215   }
1216 
1217   // Emit unwinding stuff for frame-related instructions
1218   if (Subtarget->isTargetEHABICompatible() &&
1219        MI->getFlag(MachineInstr::FrameSetup))
1220     EmitUnwindingInstruction(MI);
1221 
1222   // Do any auto-generated pseudo lowerings.
1223   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1224     return;
1225 
1226   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1227          "Pseudo flag setting opcode should be expanded early");
1228 
1229   // Check for manual lowerings.
1230   unsigned Opc = MI->getOpcode();
1231   switch (Opc) {
1232   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1233   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1234   case ARM::LEApcrel:
1235   case ARM::tLEApcrel:
1236   case ARM::t2LEApcrel: {
1237     // FIXME: Need to also handle globals and externals
1238     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1239     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1240                                                ARM::t2LEApcrel ? ARM::t2ADR
1241                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1242                      : ARM::ADR))
1243       .addReg(MI->getOperand(0).getReg())
1244       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1245       // Add predicate operands.
1246       .addImm(MI->getOperand(2).getImm())
1247       .addReg(MI->getOperand(3).getReg()));
1248     return;
1249   }
1250   case ARM::LEApcrelJT:
1251   case ARM::tLEApcrelJT:
1252   case ARM::t2LEApcrelJT: {
1253     MCSymbol *JTIPICSymbol =
1254       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1255     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1256                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1257                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1258                      : ARM::ADR))
1259       .addReg(MI->getOperand(0).getReg())
1260       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1261       // Add predicate operands.
1262       .addImm(MI->getOperand(2).getImm())
1263       .addReg(MI->getOperand(3).getReg()));
1264     return;
1265   }
1266   // Darwin call instructions are just normal call instructions with different
1267   // clobber semantics (they clobber R9).
1268   case ARM::BX_CALL: {
1269     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1270       .addReg(ARM::LR)
1271       .addReg(ARM::PC)
1272       // Add predicate operands.
1273       .addImm(ARMCC::AL)
1274       .addReg(0)
1275       // Add 's' bit operand (always reg0 for this)
1276       .addReg(0));
1277 
1278     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1279       .addReg(MI->getOperand(0).getReg()));
1280     return;
1281   }
1282   case ARM::tBX_CALL: {
1283     if (Subtarget->hasV5TOps())
1284       llvm_unreachable("Expected BLX to be selected for v5t+");
1285 
1286     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1287     // that the saved lr has its LSB set correctly (the arch doesn't
1288     // have blx).
1289     // So here we generate a bl to a small jump pad that does bx rN.
1290     // The jump pads are emitted after the function body.
1291 
1292     unsigned TReg = MI->getOperand(0).getReg();
1293     MCSymbol *TRegSym = nullptr;
1294     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
1295       if (ThumbIndirectPads[i].first == TReg) {
1296         TRegSym = ThumbIndirectPads[i].second;
1297         break;
1298       }
1299     }
1300 
1301     if (!TRegSym) {
1302       TRegSym = OutContext.createTempSymbol();
1303       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1304     }
1305 
1306     // Create a link-saving branch to the Reg Indirect Jump Pad.
1307     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1308         // Predicate comes first here.
1309         .addImm(ARMCC::AL).addReg(0)
1310         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1311     return;
1312   }
1313   case ARM::BMOVPCRX_CALL: {
1314     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1315       .addReg(ARM::LR)
1316       .addReg(ARM::PC)
1317       // Add predicate operands.
1318       .addImm(ARMCC::AL)
1319       .addReg(0)
1320       // Add 's' bit operand (always reg0 for this)
1321       .addReg(0));
1322 
1323     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1324       .addReg(ARM::PC)
1325       .addReg(MI->getOperand(0).getReg())
1326       // Add predicate operands.
1327       .addImm(ARMCC::AL)
1328       .addReg(0)
1329       // Add 's' bit operand (always reg0 for this)
1330       .addReg(0));
1331     return;
1332   }
1333   case ARM::BMOVPCB_CALL: {
1334     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1335       .addReg(ARM::LR)
1336       .addReg(ARM::PC)
1337       // Add predicate operands.
1338       .addImm(ARMCC::AL)
1339       .addReg(0)
1340       // Add 's' bit operand (always reg0 for this)
1341       .addReg(0));
1342 
1343     const MachineOperand &Op = MI->getOperand(0);
1344     const GlobalValue *GV = Op.getGlobal();
1345     const unsigned TF = Op.getTargetFlags();
1346     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1347     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1348     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1349       .addExpr(GVSymExpr)
1350       // Add predicate operands.
1351       .addImm(ARMCC::AL)
1352       .addReg(0));
1353     return;
1354   }
1355   case ARM::MOVi16_ga_pcrel:
1356   case ARM::t2MOVi16_ga_pcrel: {
1357     MCInst TmpInst;
1358     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1359     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1360 
1361     unsigned TF = MI->getOperand(1).getTargetFlags();
1362     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1363     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1364     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1365 
1366     MCSymbol *LabelSym =
1367         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1368                     MI->getOperand(2).getImm(), OutContext);
1369     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1370     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1371     const MCExpr *PCRelExpr =
1372       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1373                                       MCBinaryExpr::createAdd(LabelSymExpr,
1374                                       MCConstantExpr::create(PCAdj, OutContext),
1375                                       OutContext), OutContext), OutContext);
1376       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1377 
1378     // Add predicate operands.
1379     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1380     TmpInst.addOperand(MCOperand::createReg(0));
1381     // Add 's' bit operand (always reg0 for this)
1382     TmpInst.addOperand(MCOperand::createReg(0));
1383     EmitToStreamer(*OutStreamer, TmpInst);
1384     return;
1385   }
1386   case ARM::MOVTi16_ga_pcrel:
1387   case ARM::t2MOVTi16_ga_pcrel: {
1388     MCInst TmpInst;
1389     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1390                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1391     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1392     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1393 
1394     unsigned TF = MI->getOperand(2).getTargetFlags();
1395     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1396     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1397     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1398 
1399     MCSymbol *LabelSym =
1400         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1401                     MI->getOperand(3).getImm(), OutContext);
1402     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1403     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1404     const MCExpr *PCRelExpr =
1405         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1406                                    MCBinaryExpr::createAdd(LabelSymExpr,
1407                                       MCConstantExpr::create(PCAdj, OutContext),
1408                                           OutContext), OutContext), OutContext);
1409       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1410     // Add predicate operands.
1411     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1412     TmpInst.addOperand(MCOperand::createReg(0));
1413     // Add 's' bit operand (always reg0 for this)
1414     TmpInst.addOperand(MCOperand::createReg(0));
1415     EmitToStreamer(*OutStreamer, TmpInst);
1416     return;
1417   }
1418   case ARM::tPICADD: {
1419     // This is a pseudo op for a label + instruction sequence, which looks like:
1420     // LPC0:
1421     //     add r0, pc
1422     // This adds the address of LPC0 to r0.
1423 
1424     // Emit the label.
1425     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1426                                        getFunctionNumber(),
1427                                        MI->getOperand(2).getImm(), OutContext));
1428 
1429     // Form and emit the add.
1430     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1431       .addReg(MI->getOperand(0).getReg())
1432       .addReg(MI->getOperand(0).getReg())
1433       .addReg(ARM::PC)
1434       // Add predicate operands.
1435       .addImm(ARMCC::AL)
1436       .addReg(0));
1437     return;
1438   }
1439   case ARM::PICADD: {
1440     // This is a pseudo op for a label + instruction sequence, which looks like:
1441     // LPC0:
1442     //     add r0, pc, r0
1443     // This adds the address of LPC0 to r0.
1444 
1445     // Emit the label.
1446     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1447                                        getFunctionNumber(),
1448                                        MI->getOperand(2).getImm(), OutContext));
1449 
1450     // Form and emit the add.
1451     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1452       .addReg(MI->getOperand(0).getReg())
1453       .addReg(ARM::PC)
1454       .addReg(MI->getOperand(1).getReg())
1455       // Add predicate operands.
1456       .addImm(MI->getOperand(3).getImm())
1457       .addReg(MI->getOperand(4).getReg())
1458       // Add 's' bit operand (always reg0 for this)
1459       .addReg(0));
1460     return;
1461   }
1462   case ARM::PICSTR:
1463   case ARM::PICSTRB:
1464   case ARM::PICSTRH:
1465   case ARM::PICLDR:
1466   case ARM::PICLDRB:
1467   case ARM::PICLDRH:
1468   case ARM::PICLDRSB:
1469   case ARM::PICLDRSH: {
1470     // This is a pseudo op for a label + instruction sequence, which looks like:
1471     // LPC0:
1472     //     OP r0, [pc, r0]
1473     // The LCP0 label is referenced by a constant pool entry in order to get
1474     // a PC-relative address at the ldr instruction.
1475 
1476     // Emit the label.
1477     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1478                                        getFunctionNumber(),
1479                                        MI->getOperand(2).getImm(), OutContext));
1480 
1481     // Form and emit the load
1482     unsigned Opcode;
1483     switch (MI->getOpcode()) {
1484     default:
1485       llvm_unreachable("Unexpected opcode!");
1486     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1487     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1488     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1489     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1490     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1491     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1492     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1493     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1494     }
1495     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1496       .addReg(MI->getOperand(0).getReg())
1497       .addReg(ARM::PC)
1498       .addReg(MI->getOperand(1).getReg())
1499       .addImm(0)
1500       // Add predicate operands.
1501       .addImm(MI->getOperand(3).getImm())
1502       .addReg(MI->getOperand(4).getReg()));
1503 
1504     return;
1505   }
1506   case ARM::CONSTPOOL_ENTRY: {
1507     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1508     /// in the function.  The first operand is the ID# for this instruction, the
1509     /// second is the index into the MachineConstantPool that this is, the third
1510     /// is the size in bytes of this constant pool entry.
1511     /// The required alignment is specified on the basic block holding this MI.
1512     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1513     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1514 
1515     // If this is the first entry of the pool, mark it.
1516     if (!InConstantPool) {
1517       OutStreamer->EmitDataRegion(MCDR_DataRegion);
1518       InConstantPool = true;
1519     }
1520 
1521     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1522 
1523     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1524     if (MCPE.isMachineConstantPoolEntry())
1525       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1526     else
1527       EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1528     return;
1529   }
1530   case ARM::JUMPTABLE_ADDRS:
1531     EmitJumpTableAddrs(MI);
1532     return;
1533   case ARM::JUMPTABLE_INSTS:
1534     EmitJumpTableInsts(MI);
1535     return;
1536   case ARM::JUMPTABLE_TBB:
1537   case ARM::JUMPTABLE_TBH:
1538     EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1539     return;
1540   case ARM::t2BR_JT: {
1541     // Lower and emit the instruction itself, then the jump table following it.
1542     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1543       .addReg(ARM::PC)
1544       .addReg(MI->getOperand(0).getReg())
1545       // Add predicate operands.
1546       .addImm(ARMCC::AL)
1547       .addReg(0));
1548     return;
1549   }
1550   case ARM::t2TBB_JT:
1551   case ARM::t2TBH_JT: {
1552     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1553     // Lower and emit the PC label, then the instruction itself.
1554     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1555     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1556                                      .addReg(MI->getOperand(0).getReg())
1557                                      .addReg(MI->getOperand(1).getReg())
1558                                      // Add predicate operands.
1559                                      .addImm(ARMCC::AL)
1560                                      .addReg(0));
1561     return;
1562   }
1563   case ARM::tTBB_JT:
1564   case ARM::tTBH_JT: {
1565 
1566     bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1567     unsigned Base = MI->getOperand(0).getReg();
1568     unsigned Idx = MI->getOperand(1).getReg();
1569     assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1570 
1571     // Multiply up idx if necessary.
1572     if (!Is8Bit)
1573       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1574                                        .addReg(Idx)
1575                                        .addReg(ARM::CPSR)
1576                                        .addReg(Idx)
1577                                        .addImm(1)
1578                                        // Add predicate operands.
1579                                        .addImm(ARMCC::AL)
1580                                        .addReg(0));
1581 
1582     if (Base == ARM::PC) {
1583       // TBB [base, idx] =
1584       //    ADDS idx, idx, base
1585       //    LDRB idx, [idx, #4] ; or LDRH if TBH
1586       //    LSLS idx, #1
1587       //    ADDS pc, pc, idx
1588 
1589       // When using PC as the base, it's important that there is no padding
1590       // between the last ADDS and the start of the jump table. The jump table
1591       // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1592       //
1593       // FIXME: Ideally we could vary the LDRB index based on the padding
1594       // between the sequence and jump table, however that relies on MCExprs
1595       // for load indexes which are currently not supported.
1596       OutStreamer->EmitCodeAlignment(4);
1597       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1598                                        .addReg(Idx)
1599                                        .addReg(Idx)
1600                                        .addReg(Base)
1601                                        // Add predicate operands.
1602                                        .addImm(ARMCC::AL)
1603                                        .addReg(0));
1604 
1605       unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1606       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1607                                        .addReg(Idx)
1608                                        .addReg(Idx)
1609                                        .addImm(Is8Bit ? 4 : 2)
1610                                        // Add predicate operands.
1611                                        .addImm(ARMCC::AL)
1612                                        .addReg(0));
1613     } else {
1614       // TBB [base, idx] =
1615       //    LDRB idx, [base, idx] ; or LDRH if TBH
1616       //    LSLS idx, #1
1617       //    ADDS pc, pc, idx
1618 
1619       unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1620       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1621                                        .addReg(Idx)
1622                                        .addReg(Base)
1623                                        .addReg(Idx)
1624                                        // Add predicate operands.
1625                                        .addImm(ARMCC::AL)
1626                                        .addReg(0));
1627     }
1628 
1629     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1630                                      .addReg(Idx)
1631                                      .addReg(ARM::CPSR)
1632                                      .addReg(Idx)
1633                                      .addImm(1)
1634                                      // Add predicate operands.
1635                                      .addImm(ARMCC::AL)
1636                                      .addReg(0));
1637 
1638     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1639     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1640                                      .addReg(ARM::PC)
1641                                      .addReg(ARM::PC)
1642                                      .addReg(Idx)
1643                                      // Add predicate operands.
1644                                      .addImm(ARMCC::AL)
1645                                      .addReg(0));
1646     return;
1647   }
1648   case ARM::tBR_JTr:
1649   case ARM::BR_JTr: {
1650     // Lower and emit the instruction itself, then the jump table following it.
1651     // mov pc, target
1652     MCInst TmpInst;
1653     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1654       ARM::MOVr : ARM::tMOVr;
1655     TmpInst.setOpcode(Opc);
1656     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1657     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1658     // Add predicate operands.
1659     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1660     TmpInst.addOperand(MCOperand::createReg(0));
1661     // Add 's' bit operand (always reg0 for this)
1662     if (Opc == ARM::MOVr)
1663       TmpInst.addOperand(MCOperand::createReg(0));
1664     EmitToStreamer(*OutStreamer, TmpInst);
1665     return;
1666   }
1667   case ARM::BR_JTm: {
1668     // Lower and emit the instruction itself, then the jump table following it.
1669     // ldr pc, target
1670     MCInst TmpInst;
1671     if (MI->getOperand(1).getReg() == 0) {
1672       // literal offset
1673       TmpInst.setOpcode(ARM::LDRi12);
1674       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1675       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1676       TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1677     } else {
1678       TmpInst.setOpcode(ARM::LDRrs);
1679       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1680       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1681       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1682       TmpInst.addOperand(MCOperand::createImm(0));
1683     }
1684     // Add predicate operands.
1685     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1686     TmpInst.addOperand(MCOperand::createReg(0));
1687     EmitToStreamer(*OutStreamer, TmpInst);
1688     return;
1689   }
1690   case ARM::BR_JTadd: {
1691     // Lower and emit the instruction itself, then the jump table following it.
1692     // add pc, target, idx
1693     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1694       .addReg(ARM::PC)
1695       .addReg(MI->getOperand(0).getReg())
1696       .addReg(MI->getOperand(1).getReg())
1697       // Add predicate operands.
1698       .addImm(ARMCC::AL)
1699       .addReg(0)
1700       // Add 's' bit operand (always reg0 for this)
1701       .addReg(0));
1702     return;
1703   }
1704   case ARM::SPACE:
1705     OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1706     return;
1707   case ARM::TRAP: {
1708     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1709     // FIXME: Remove this special case when they do.
1710     if (!Subtarget->isTargetMachO()) {
1711       uint32_t Val = 0xe7ffdefeUL;
1712       OutStreamer->AddComment("trap");
1713       ATS.emitInst(Val);
1714       return;
1715     }
1716     break;
1717   }
1718   case ARM::TRAPNaCl: {
1719     uint32_t Val = 0xe7fedef0UL;
1720     OutStreamer->AddComment("trap");
1721     ATS.emitInst(Val);
1722     return;
1723   }
1724   case ARM::tTRAP: {
1725     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1726     // FIXME: Remove this special case when they do.
1727     if (!Subtarget->isTargetMachO()) {
1728       uint16_t Val = 0xdefe;
1729       OutStreamer->AddComment("trap");
1730       ATS.emitInst(Val, 'n');
1731       return;
1732     }
1733     break;
1734   }
1735   case ARM::t2Int_eh_sjlj_setjmp:
1736   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1737   case ARM::tInt_eh_sjlj_setjmp: {
1738     // Two incoming args: GPR:$src, GPR:$val
1739     // mov $val, pc
1740     // adds $val, #7
1741     // str $val, [$src, #4]
1742     // movs r0, #0
1743     // b LSJLJEH
1744     // movs r0, #1
1745     // LSJLJEH:
1746     unsigned SrcReg = MI->getOperand(0).getReg();
1747     unsigned ValReg = MI->getOperand(1).getReg();
1748     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1749     OutStreamer->AddComment("eh_setjmp begin");
1750     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1751       .addReg(ValReg)
1752       .addReg(ARM::PC)
1753       // Predicate.
1754       .addImm(ARMCC::AL)
1755       .addReg(0));
1756 
1757     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1758       .addReg(ValReg)
1759       // 's' bit operand
1760       .addReg(ARM::CPSR)
1761       .addReg(ValReg)
1762       .addImm(7)
1763       // Predicate.
1764       .addImm(ARMCC::AL)
1765       .addReg(0));
1766 
1767     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1768       .addReg(ValReg)
1769       .addReg(SrcReg)
1770       // The offset immediate is #4. The operand value is scaled by 4 for the
1771       // tSTR instruction.
1772       .addImm(1)
1773       // Predicate.
1774       .addImm(ARMCC::AL)
1775       .addReg(0));
1776 
1777     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1778       .addReg(ARM::R0)
1779       .addReg(ARM::CPSR)
1780       .addImm(0)
1781       // Predicate.
1782       .addImm(ARMCC::AL)
1783       .addReg(0));
1784 
1785     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1786     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1787       .addExpr(SymbolExpr)
1788       .addImm(ARMCC::AL)
1789       .addReg(0));
1790 
1791     OutStreamer->AddComment("eh_setjmp end");
1792     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1793       .addReg(ARM::R0)
1794       .addReg(ARM::CPSR)
1795       .addImm(1)
1796       // Predicate.
1797       .addImm(ARMCC::AL)
1798       .addReg(0));
1799 
1800     OutStreamer->EmitLabel(Label);
1801     return;
1802   }
1803 
1804   case ARM::Int_eh_sjlj_setjmp_nofp:
1805   case ARM::Int_eh_sjlj_setjmp: {
1806     // Two incoming args: GPR:$src, GPR:$val
1807     // add $val, pc, #8
1808     // str $val, [$src, #+4]
1809     // mov r0, #0
1810     // add pc, pc, #0
1811     // mov r0, #1
1812     unsigned SrcReg = MI->getOperand(0).getReg();
1813     unsigned ValReg = MI->getOperand(1).getReg();
1814 
1815     OutStreamer->AddComment("eh_setjmp begin");
1816     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1817       .addReg(ValReg)
1818       .addReg(ARM::PC)
1819       .addImm(8)
1820       // Predicate.
1821       .addImm(ARMCC::AL)
1822       .addReg(0)
1823       // 's' bit operand (always reg0 for this).
1824       .addReg(0));
1825 
1826     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1827       .addReg(ValReg)
1828       .addReg(SrcReg)
1829       .addImm(4)
1830       // Predicate.
1831       .addImm(ARMCC::AL)
1832       .addReg(0));
1833 
1834     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1835       .addReg(ARM::R0)
1836       .addImm(0)
1837       // Predicate.
1838       .addImm(ARMCC::AL)
1839       .addReg(0)
1840       // 's' bit operand (always reg0 for this).
1841       .addReg(0));
1842 
1843     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1844       .addReg(ARM::PC)
1845       .addReg(ARM::PC)
1846       .addImm(0)
1847       // Predicate.
1848       .addImm(ARMCC::AL)
1849       .addReg(0)
1850       // 's' bit operand (always reg0 for this).
1851       .addReg(0));
1852 
1853     OutStreamer->AddComment("eh_setjmp end");
1854     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1855       .addReg(ARM::R0)
1856       .addImm(1)
1857       // Predicate.
1858       .addImm(ARMCC::AL)
1859       .addReg(0)
1860       // 's' bit operand (always reg0 for this).
1861       .addReg(0));
1862     return;
1863   }
1864   case ARM::Int_eh_sjlj_longjmp: {
1865     // ldr sp, [$src, #8]
1866     // ldr $scratch, [$src, #4]
1867     // ldr r7, [$src]
1868     // bx $scratch
1869     unsigned SrcReg = MI->getOperand(0).getReg();
1870     unsigned ScratchReg = MI->getOperand(1).getReg();
1871     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1872       .addReg(ARM::SP)
1873       .addReg(SrcReg)
1874       .addImm(8)
1875       // Predicate.
1876       .addImm(ARMCC::AL)
1877       .addReg(0));
1878 
1879     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1880       .addReg(ScratchReg)
1881       .addReg(SrcReg)
1882       .addImm(4)
1883       // Predicate.
1884       .addImm(ARMCC::AL)
1885       .addReg(0));
1886 
1887     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1888       .addReg(ARM::R7)
1889       .addReg(SrcReg)
1890       .addImm(0)
1891       // Predicate.
1892       .addImm(ARMCC::AL)
1893       .addReg(0));
1894 
1895     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1896       .addReg(ScratchReg)
1897       // Predicate.
1898       .addImm(ARMCC::AL)
1899       .addReg(0));
1900     return;
1901   }
1902   case ARM::tInt_eh_sjlj_longjmp: {
1903     // ldr $scratch, [$src, #8]
1904     // mov sp, $scratch
1905     // ldr $scratch, [$src, #4]
1906     // ldr r7, [$src]
1907     // bx $scratch
1908     unsigned SrcReg = MI->getOperand(0).getReg();
1909     unsigned ScratchReg = MI->getOperand(1).getReg();
1910 
1911     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1912       .addReg(ScratchReg)
1913       .addReg(SrcReg)
1914       // The offset immediate is #8. The operand value is scaled by 4 for the
1915       // tLDR instruction.
1916       .addImm(2)
1917       // Predicate.
1918       .addImm(ARMCC::AL)
1919       .addReg(0));
1920 
1921     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1922       .addReg(ARM::SP)
1923       .addReg(ScratchReg)
1924       // Predicate.
1925       .addImm(ARMCC::AL)
1926       .addReg(0));
1927 
1928     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1929       .addReg(ScratchReg)
1930       .addReg(SrcReg)
1931       .addImm(1)
1932       // Predicate.
1933       .addImm(ARMCC::AL)
1934       .addReg(0));
1935 
1936     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1937       .addReg(ARM::R7)
1938       .addReg(SrcReg)
1939       .addImm(0)
1940       // Predicate.
1941       .addImm(ARMCC::AL)
1942       .addReg(0));
1943 
1944     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
1945       .addReg(ScratchReg)
1946       // Predicate.
1947       .addImm(ARMCC::AL)
1948       .addReg(0));
1949     return;
1950   }
1951   case ARM::tInt_WIN_eh_sjlj_longjmp: {
1952     // ldr.w r11, [$src, #0]
1953     // ldr.w  sp, [$src, #8]
1954     // ldr.w  pc, [$src, #4]
1955 
1956     unsigned SrcReg = MI->getOperand(0).getReg();
1957 
1958     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
1959                                      .addReg(ARM::R11)
1960                                      .addReg(SrcReg)
1961                                      .addImm(0)
1962                                      // Predicate
1963                                      .addImm(ARMCC::AL)
1964                                      .addReg(0));
1965     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
1966                                      .addReg(ARM::SP)
1967                                      .addReg(SrcReg)
1968                                      .addImm(8)
1969                                      // Predicate
1970                                      .addImm(ARMCC::AL)
1971                                      .addReg(0));
1972     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
1973                                      .addReg(ARM::PC)
1974                                      .addReg(SrcReg)
1975                                      .addImm(4)
1976                                      // Predicate
1977                                      .addImm(ARMCC::AL)
1978                                      .addReg(0));
1979     return;
1980   }
1981   case ARM::PATCHABLE_FUNCTION_ENTER:
1982     LowerPATCHABLE_FUNCTION_ENTER(*MI);
1983     return;
1984   case ARM::PATCHABLE_FUNCTION_EXIT:
1985     LowerPATCHABLE_FUNCTION_EXIT(*MI);
1986     return;
1987   case ARM::PATCHABLE_TAIL_CALL:
1988     LowerPATCHABLE_TAIL_CALL(*MI);
1989     return;
1990   }
1991 
1992   MCInst TmpInst;
1993   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
1994 
1995   EmitToStreamer(*OutStreamer, TmpInst);
1996 }
1997 
1998 //===----------------------------------------------------------------------===//
1999 // Target Registry Stuff
2000 //===----------------------------------------------------------------------===//
2001 
2002 // Force static initialization.
2003 extern "C" void LLVMInitializeARMAsmPrinter() {
2004   RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2005   RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2006   RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2007   RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
2008 }
2009