1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/COFF.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ELF.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/TargetParser.h" 51 #include "llvm/Support/TargetRegistry.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cctype> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 60 std::unique_ptr<MCStreamer> Streamer) 61 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 62 InConstantPool(false), OptimizationGoals(-1) {} 63 64 void ARMAsmPrinter::EmitFunctionBodyEnd() { 65 // Make sure to terminate any constant pools that were at the end 66 // of the function. 67 if (!InConstantPool) 68 return; 69 InConstantPool = false; 70 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 71 } 72 73 void ARMAsmPrinter::EmitFunctionEntryLabel() { 74 if (AFI->isThumbFunction()) { 75 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 76 OutStreamer->EmitThumbFunc(CurrentFnSym); 77 } else { 78 OutStreamer->EmitAssemblerFlag(MCAF_Code32); 79 } 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 /// runOnMachineFunction - This uses the EmitInstruction() 101 /// method to print assembly for each instruction. 102 /// 103 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 104 AFI = MF.getInfo<ARMFunctionInfo>(); 105 MCP = MF.getConstantPool(); 106 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 107 108 SetupMachineFunction(MF); 109 const Function* F = MF.getFunction(); 110 const TargetMachine& TM = MF.getTarget(); 111 112 // Calculate this function's optimization goal. 113 unsigned OptimizationGoal; 114 if (F->hasFnAttribute(Attribute::OptimizeNone)) 115 // For best debugging illusion, speed and small size sacrificed 116 OptimizationGoal = 6; 117 else if (F->optForMinSize()) 118 // Aggressively for small size, speed and debug illusion sacrificed 119 OptimizationGoal = 4; 120 else if (F->optForSize()) 121 // For small size, but speed and debugging illusion preserved 122 OptimizationGoal = 3; 123 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 124 // Aggressively for speed, small size and debug illusion sacrificed 125 OptimizationGoal = 2; 126 else if (TM.getOptLevel() > CodeGenOpt::None) 127 // For speed, but small size and good debug illusion preserved 128 OptimizationGoal = 1; 129 else // TM.getOptLevel() == CodeGenOpt::None 130 // For good debugging, but speed and small size preserved 131 OptimizationGoal = 5; 132 133 // Combine a new optimization goal with existing ones. 134 if (OptimizationGoals == -1) // uninitialized goals 135 OptimizationGoals = OptimizationGoal; 136 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 137 OptimizationGoals = 0; 138 139 if (Subtarget->isTargetCOFF()) { 140 bool Internal = F->hasInternalLinkage(); 141 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 142 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 143 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 144 145 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 146 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 147 OutStreamer->EmitCOFFSymbolType(Type); 148 OutStreamer->EndCOFFSymbolDef(); 149 } 150 151 // Emit the rest of the function body. 152 EmitFunctionBody(); 153 154 // Emit the XRay table for this function. 155 EmitXRayTable(); 156 157 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 158 // These are created per function, rather than per TU, since it's 159 // relatively easy to exceed the thumb branch range within a TU. 160 if (! ThumbIndirectPads.empty()) { 161 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 162 EmitAlignment(1); 163 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 164 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 165 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 166 .addReg(ThumbIndirectPads[i].first) 167 // Add predicate operands. 168 .addImm(ARMCC::AL) 169 .addReg(0)); 170 } 171 ThumbIndirectPads.clear(); 172 } 173 174 // We didn't modify anything. 175 return false; 176 } 177 178 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 179 raw_ostream &O) { 180 const MachineOperand &MO = MI->getOperand(OpNum); 181 unsigned TF = MO.getTargetFlags(); 182 183 switch (MO.getType()) { 184 default: llvm_unreachable("<unknown operand type>"); 185 case MachineOperand::MO_Register: { 186 unsigned Reg = MO.getReg(); 187 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 188 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 189 if(ARM::GPRPairRegClass.contains(Reg)) { 190 const MachineFunction &MF = *MI->getParent()->getParent(); 191 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 192 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 193 } 194 O << ARMInstPrinter::getRegisterName(Reg); 195 break; 196 } 197 case MachineOperand::MO_Immediate: { 198 int64_t Imm = MO.getImm(); 199 O << '#'; 200 if (TF == ARMII::MO_LO16) 201 O << ":lower16:"; 202 else if (TF == ARMII::MO_HI16) 203 O << ":upper16:"; 204 O << Imm; 205 break; 206 } 207 case MachineOperand::MO_MachineBasicBlock: 208 MO.getMBB()->getSymbol()->print(O, MAI); 209 return; 210 case MachineOperand::MO_GlobalAddress: { 211 const GlobalValue *GV = MO.getGlobal(); 212 if (TF & ARMII::MO_LO16) 213 O << ":lower16:"; 214 else if (TF & ARMII::MO_HI16) 215 O << ":upper16:"; 216 GetARMGVSymbol(GV, TF)->print(O, MAI); 217 218 printOffset(MO.getOffset(), O); 219 break; 220 } 221 case MachineOperand::MO_ConstantPoolIndex: 222 GetCPISymbol(MO.getIndex())->print(O, MAI); 223 break; 224 } 225 } 226 227 //===--------------------------------------------------------------------===// 228 229 MCSymbol *ARMAsmPrinter:: 230 GetARMJTIPICJumpTableLabel(unsigned uid) const { 231 const DataLayout &DL = getDataLayout(); 232 SmallString<60> Name; 233 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 234 << getFunctionNumber() << '_' << uid; 235 return OutContext.getOrCreateSymbol(Name); 236 } 237 238 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 239 unsigned AsmVariant, const char *ExtraCode, 240 raw_ostream &O) { 241 // Does this asm operand have a single letter operand modifier? 242 if (ExtraCode && ExtraCode[0]) { 243 if (ExtraCode[1] != 0) return true; // Unknown modifier. 244 245 switch (ExtraCode[0]) { 246 default: 247 // See if this is a generic print operand 248 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 249 case 'a': // Print as a memory address. 250 if (MI->getOperand(OpNum).isReg()) { 251 O << "[" 252 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 253 << "]"; 254 return false; 255 } 256 LLVM_FALLTHROUGH; 257 case 'c': // Don't print "#" before an immediate operand. 258 if (!MI->getOperand(OpNum).isImm()) 259 return true; 260 O << MI->getOperand(OpNum).getImm(); 261 return false; 262 case 'P': // Print a VFP double precision register. 263 case 'q': // Print a NEON quad precision register. 264 printOperand(MI, OpNum, O); 265 return false; 266 case 'y': // Print a VFP single precision register as indexed double. 267 if (MI->getOperand(OpNum).isReg()) { 268 unsigned Reg = MI->getOperand(OpNum).getReg(); 269 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 270 // Find the 'd' register that has this 's' register as a sub-register, 271 // and determine the lane number. 272 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 273 if (!ARM::DPRRegClass.contains(*SR)) 274 continue; 275 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 276 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 277 return false; 278 } 279 } 280 return true; 281 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 282 if (!MI->getOperand(OpNum).isImm()) 283 return true; 284 O << ~(MI->getOperand(OpNum).getImm()); 285 return false; 286 case 'L': // The low 16 bits of an immediate constant. 287 if (!MI->getOperand(OpNum).isImm()) 288 return true; 289 O << (MI->getOperand(OpNum).getImm() & 0xffff); 290 return false; 291 case 'M': { // A register range suitable for LDM/STM. 292 if (!MI->getOperand(OpNum).isReg()) 293 return true; 294 const MachineOperand &MO = MI->getOperand(OpNum); 295 unsigned RegBegin = MO.getReg(); 296 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 297 // already got the operands in registers that are operands to the 298 // inline asm statement. 299 O << "{"; 300 if (ARM::GPRPairRegClass.contains(RegBegin)) { 301 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 302 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 303 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 304 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 305 } 306 O << ARMInstPrinter::getRegisterName(RegBegin); 307 308 // FIXME: The register allocator not only may not have given us the 309 // registers in sequence, but may not be in ascending registers. This 310 // will require changes in the register allocator that'll need to be 311 // propagated down here if the operands change. 312 unsigned RegOps = OpNum + 1; 313 while (MI->getOperand(RegOps).isReg()) { 314 O << ", " 315 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 316 RegOps++; 317 } 318 319 O << "}"; 320 321 return false; 322 } 323 case 'R': // The most significant register of a pair. 324 case 'Q': { // The least significant register of a pair. 325 if (OpNum == 0) 326 return true; 327 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 328 if (!FlagsOP.isImm()) 329 return true; 330 unsigned Flags = FlagsOP.getImm(); 331 332 // This operand may not be the one that actually provides the register. If 333 // it's tied to a previous one then we should refer instead to that one 334 // for registers and their classes. 335 unsigned TiedIdx; 336 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 337 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 338 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 339 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 340 } 341 Flags = MI->getOperand(OpNum).getImm(); 342 343 // Later code expects OpNum to be pointing at the register rather than 344 // the flags. 345 OpNum += 1; 346 } 347 348 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 349 unsigned RC; 350 InlineAsm::hasRegClassConstraint(Flags, RC); 351 if (RC == ARM::GPRPairRegClassID) { 352 if (NumVals != 1) 353 return true; 354 const MachineOperand &MO = MI->getOperand(OpNum); 355 if (!MO.isReg()) 356 return true; 357 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 358 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 359 ARM::gsub_0 : ARM::gsub_1); 360 O << ARMInstPrinter::getRegisterName(Reg); 361 return false; 362 } 363 if (NumVals != 2) 364 return true; 365 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 366 if (RegOp >= MI->getNumOperands()) 367 return true; 368 const MachineOperand &MO = MI->getOperand(RegOp); 369 if (!MO.isReg()) 370 return true; 371 unsigned Reg = MO.getReg(); 372 O << ARMInstPrinter::getRegisterName(Reg); 373 return false; 374 } 375 376 case 'e': // The low doubleword register of a NEON quad register. 377 case 'f': { // The high doubleword register of a NEON quad register. 378 if (!MI->getOperand(OpNum).isReg()) 379 return true; 380 unsigned Reg = MI->getOperand(OpNum).getReg(); 381 if (!ARM::QPRRegClass.contains(Reg)) 382 return true; 383 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 384 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 385 ARM::dsub_0 : ARM::dsub_1); 386 O << ARMInstPrinter::getRegisterName(SubReg); 387 return false; 388 } 389 390 // This modifier is not yet supported. 391 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 392 return true; 393 case 'H': { // The highest-numbered register of a pair. 394 const MachineOperand &MO = MI->getOperand(OpNum); 395 if (!MO.isReg()) 396 return true; 397 const MachineFunction &MF = *MI->getParent()->getParent(); 398 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 399 unsigned Reg = MO.getReg(); 400 if(!ARM::GPRPairRegClass.contains(Reg)) 401 return false; 402 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 403 O << ARMInstPrinter::getRegisterName(Reg); 404 return false; 405 } 406 } 407 } 408 409 printOperand(MI, OpNum, O); 410 return false; 411 } 412 413 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 414 unsigned OpNum, unsigned AsmVariant, 415 const char *ExtraCode, 416 raw_ostream &O) { 417 // Does this asm operand have a single letter operand modifier? 418 if (ExtraCode && ExtraCode[0]) { 419 if (ExtraCode[1] != 0) return true; // Unknown modifier. 420 421 switch (ExtraCode[0]) { 422 case 'A': // A memory operand for a VLD1/VST1 instruction. 423 default: return true; // Unknown modifier. 424 case 'm': // The base register of a memory operand. 425 if (!MI->getOperand(OpNum).isReg()) 426 return true; 427 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 428 return false; 429 } 430 } 431 432 const MachineOperand &MO = MI->getOperand(OpNum); 433 assert(MO.isReg() && "unexpected inline asm memory operand"); 434 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 435 return false; 436 } 437 438 static bool isThumb(const MCSubtargetInfo& STI) { 439 return STI.getFeatureBits()[ARM::ModeThumb]; 440 } 441 442 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 443 const MCSubtargetInfo *EndInfo) const { 444 // If either end mode is unknown (EndInfo == NULL) or different than 445 // the start mode, then restore the start mode. 446 const bool WasThumb = isThumb(StartInfo); 447 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 448 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 449 } 450 } 451 452 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 453 const Triple &TT = TM.getTargetTriple(); 454 // Use unified assembler syntax. 455 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 456 457 // Emit ARM Build Attributes 458 if (TT.isOSBinFormatELF()) 459 emitAttributes(); 460 461 // Use the triple's architecture and subarchitecture to determine 462 // if we're thumb for the purposes of the top level code16 assembler 463 // flag. 464 bool isThumb = TT.getArch() == Triple::thumb || 465 TT.getArch() == Triple::thumbeb || 466 TT.getSubArch() == Triple::ARMSubArch_v7m || 467 TT.getSubArch() == Triple::ARMSubArch_v6m; 468 if (!M.getModuleInlineAsm().empty() && isThumb) 469 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 470 } 471 472 static void 473 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 474 MachineModuleInfoImpl::StubValueTy &MCSym) { 475 // L_foo$stub: 476 OutStreamer.EmitLabel(StubLabel); 477 // .indirect_symbol _foo 478 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 479 480 if (MCSym.getInt()) 481 // External to current translation unit. 482 OutStreamer.EmitIntValue(0, 4/*size*/); 483 else 484 // Internal to current translation unit. 485 // 486 // When we place the LSDA into the TEXT section, the type info 487 // pointers need to be indirect and pc-rel. We accomplish this by 488 // using NLPs; however, sometimes the types are local to the file. 489 // We need to fill in the value for the NLP in those cases. 490 OutStreamer.EmitValue( 491 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 492 4 /*size*/); 493 } 494 495 496 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 497 const Triple &TT = TM.getTargetTriple(); 498 if (TT.isOSBinFormatMachO()) { 499 // All darwin targets use mach-o. 500 const TargetLoweringObjectFileMachO &TLOFMacho = 501 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 502 MachineModuleInfoMachO &MMIMacho = 503 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 504 505 // Output non-lazy-pointers for external and common global variables. 506 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 507 508 if (!Stubs.empty()) { 509 // Switch with ".non_lazy_symbol_pointer" directive. 510 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 511 EmitAlignment(2); 512 513 for (auto &Stub : Stubs) 514 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 515 516 Stubs.clear(); 517 OutStreamer->AddBlankLine(); 518 } 519 520 Stubs = MMIMacho.GetThreadLocalGVStubList(); 521 if (!Stubs.empty()) { 522 // Switch with ".non_lazy_symbol_pointer" directive. 523 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 524 EmitAlignment(2); 525 526 for (auto &Stub : Stubs) 527 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 528 529 Stubs.clear(); 530 OutStreamer->AddBlankLine(); 531 } 532 533 // Funny Darwin hack: This flag tells the linker that no global symbols 534 // contain code that falls through to other global symbols (e.g. the obvious 535 // implementation of multiple entry points). If this doesn't occur, the 536 // linker can safely perform dead code stripping. Since LLVM never 537 // generates code that does this, it is always safe to set. 538 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 539 } 540 541 if (TT.isOSBinFormatCOFF()) { 542 const auto &TLOF = 543 static_cast<const TargetLoweringObjectFileCOFF &>(getObjFileLowering()); 544 545 std::string Flags; 546 raw_string_ostream OS(Flags); 547 548 for (const auto &Function : M) 549 TLOF.emitLinkerFlagsForGlobal(OS, &Function); 550 for (const auto &Global : M.globals()) 551 TLOF.emitLinkerFlagsForGlobal(OS, &Global); 552 for (const auto &Alias : M.aliases()) 553 TLOF.emitLinkerFlagsForGlobal(OS, &Alias); 554 555 OS.flush(); 556 557 // Output collected flags 558 if (!Flags.empty()) { 559 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 560 OutStreamer->EmitBytes(Flags); 561 } 562 } 563 564 // The last attribute to be emitted is ABI_optimization_goals 565 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 566 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 567 568 if (OptimizationGoals > 0 && 569 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 570 Subtarget->isTargetMuslAEABI())) 571 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 572 OptimizationGoals = -1; 573 574 ATS.finishAttributeSection(); 575 } 576 577 static bool isV8M(const ARMSubtarget *Subtarget) { 578 // Note that v8M Baseline is a subset of v6T2! 579 return (Subtarget->hasV8MBaselineOps() && !Subtarget->hasV6T2Ops()) || 580 Subtarget->hasV8MMainlineOps(); 581 } 582 583 //===----------------------------------------------------------------------===// 584 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 585 // FIXME: 586 // The following seem like one-off assembler flags, but they actually need 587 // to appear in the .ARM.attributes section in ELF. 588 // Instead of subclassing the MCELFStreamer, we do the work here. 589 590 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 591 const ARMSubtarget *Subtarget) { 592 if (CPU == "xscale") 593 return ARMBuildAttrs::v5TEJ; 594 595 if (Subtarget->hasV8Ops()) 596 return ARMBuildAttrs::v8_A; 597 else if (Subtarget->hasV8MMainlineOps()) 598 return ARMBuildAttrs::v8_M_Main; 599 else if (Subtarget->hasV7Ops()) { 600 if (Subtarget->isMClass() && Subtarget->hasDSP()) 601 return ARMBuildAttrs::v7E_M; 602 return ARMBuildAttrs::v7; 603 } else if (Subtarget->hasV6T2Ops()) 604 return ARMBuildAttrs::v6T2; 605 else if (Subtarget->hasV8MBaselineOps()) 606 return ARMBuildAttrs::v8_M_Base; 607 else if (Subtarget->hasV6MOps()) 608 return ARMBuildAttrs::v6S_M; 609 else if (Subtarget->hasV6Ops()) 610 return ARMBuildAttrs::v6; 611 else if (Subtarget->hasV5TEOps()) 612 return ARMBuildAttrs::v5TE; 613 else if (Subtarget->hasV5TOps()) 614 return ARMBuildAttrs::v5T; 615 else if (Subtarget->hasV4TOps()) 616 return ARMBuildAttrs::v4T; 617 else 618 return ARMBuildAttrs::v4; 619 } 620 621 // Returns true if all functions have the same function attribute value 622 static bool haveAllFunctionsAttribute(const Module &M, StringRef Attr, 623 StringRef Value) { 624 for (auto &F : M) 625 if (F.getFnAttribute(Attr).getValueAsString() != Value) 626 return false; 627 628 return true; 629 } 630 631 632 void ARMAsmPrinter::emitAttributes() { 633 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 634 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 635 636 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 637 638 ATS.switchVendor("aeabi"); 639 640 // Compute ARM ELF Attributes based on the default subtarget that 641 // we'd have constructed. The existing ARM behavior isn't LTO clean 642 // anyhow. 643 // FIXME: For ifunc related functions we could iterate over and look 644 // for a feature string that doesn't match the default one. 645 const Triple &TT = TM.getTargetTriple(); 646 StringRef CPU = TM.getTargetCPU(); 647 StringRef FS = TM.getTargetFeatureString(); 648 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 649 if (!FS.empty()) { 650 if (!ArchFS.empty()) 651 ArchFS = (Twine(ArchFS) + "," + FS).str(); 652 else 653 ArchFS = FS; 654 } 655 const ARMBaseTargetMachine &ATM = 656 static_cast<const ARMBaseTargetMachine &>(TM); 657 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 658 659 const std::string &CPUString = STI.getCPUString(); 660 661 if (!StringRef(CPUString).startswith("generic")) { 662 // FIXME: remove krait check when GNU tools support krait cpu 663 if (STI.isKrait()) { 664 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 665 // We consider krait as a "cortex-a9" + hwdiv CPU 666 // Enable hwdiv through ".arch_extension idiv" 667 if (STI.hasDivide() || STI.hasDivideInARMMode()) 668 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM); 669 } else 670 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 671 } 672 673 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 674 675 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 676 // profile is not applicable (e.g. pre v7, or cross-profile code)". 677 if (STI.hasV7Ops() || isV8M(&STI)) { 678 if (STI.isAClass()) { 679 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 680 ARMBuildAttrs::ApplicationProfile); 681 } else if (STI.isRClass()) { 682 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 683 ARMBuildAttrs::RealTimeProfile); 684 } else if (STI.isMClass()) { 685 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 686 ARMBuildAttrs::MicroControllerProfile); 687 } 688 } 689 690 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 691 STI.hasARMOps() ? ARMBuildAttrs::Allowed 692 : ARMBuildAttrs::Not_Allowed); 693 if (isV8M(&STI)) { 694 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 695 ARMBuildAttrs::AllowThumbDerived); 696 } else if (STI.isThumb1Only()) { 697 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 698 } else if (STI.hasThumb2()) { 699 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 700 ARMBuildAttrs::AllowThumb32); 701 } 702 703 if (STI.hasNEON()) { 704 /* NEON is not exactly a VFP architecture, but GAS emit one of 705 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 706 if (STI.hasFPARMv8()) { 707 if (STI.hasCrypto()) 708 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 709 else 710 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 711 } else if (STI.hasVFP4()) 712 ATS.emitFPU(ARM::FK_NEON_VFPV4); 713 else 714 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 715 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 716 if (STI.hasV8Ops()) 717 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 718 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 719 ARMBuildAttrs::AllowNeonARMv8); 720 } else { 721 if (STI.hasFPARMv8()) 722 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 723 // FPU, but there are two different names for it depending on the CPU. 724 ATS.emitFPU(STI.hasD16() 725 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 726 : ARM::FK_FP_ARMV8); 727 else if (STI.hasVFP4()) 728 ATS.emitFPU(STI.hasD16() 729 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 730 : ARM::FK_VFPV4); 731 else if (STI.hasVFP3()) 732 ATS.emitFPU(STI.hasD16() 733 // +d16 734 ? (STI.isFPOnlySP() 735 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 736 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 737 // -d16 738 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 739 else if (STI.hasVFP2()) 740 ATS.emitFPU(ARM::FK_VFPV2); 741 } 742 743 // RW data addressing. 744 if (isPositionIndependent()) { 745 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 746 ARMBuildAttrs::AddressRWPCRel); 747 } else if (STI.isRWPI()) { 748 // RWPI specific attributes. 749 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 750 ARMBuildAttrs::AddressRWSBRel); 751 } 752 753 // RO data addressing. 754 if (isPositionIndependent() || STI.isROPI()) { 755 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 756 ARMBuildAttrs::AddressROPCRel); 757 } 758 759 // GOT use. 760 if (isPositionIndependent()) { 761 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 762 ARMBuildAttrs::AddressGOT); 763 } else { 764 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 765 ARMBuildAttrs::AddressDirect); 766 } 767 768 // Set FP Denormals. 769 if (haveAllFunctionsAttribute(*MMI->getModule(), "denormal-fp-math", 770 "preserve-sign") || 771 TM.Options.FPDenormalType == FPDenormal::PreserveSign) 772 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 773 ARMBuildAttrs::PreserveFPSign); 774 else if (haveAllFunctionsAttribute(*MMI->getModule(), "denormal-fp-math", 775 "positive-zero") || 776 TM.Options.FPDenormalType == FPDenormal::PositiveZero) 777 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 778 ARMBuildAttrs::PositiveZero); 779 else if (!TM.Options.UnsafeFPMath) 780 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 781 ARMBuildAttrs::IEEEDenormals); 782 else { 783 if (!STI.hasVFP2()) { 784 // When the target doesn't have an FPU (by design or 785 // intention), the assumptions made on the software support 786 // mirror that of the equivalent hardware support *if it 787 // existed*. For v7 and better we indicate that denormals are 788 // flushed preserving sign, and for V6 we indicate that 789 // denormals are flushed to positive zero. 790 if (STI.hasV7Ops()) 791 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 792 ARMBuildAttrs::PreserveFPSign); 793 } else if (STI.hasVFP3()) { 794 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 795 // the sign bit of the zero matches the sign bit of the input or 796 // result that is being flushed to zero. 797 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 798 ARMBuildAttrs::PreserveFPSign); 799 } 800 // For VFPv2 implementations it is implementation defined as 801 // to whether denormals are flushed to positive zero or to 802 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 803 // LLVM has chosen to flush this to positive zero (most likely for 804 // GCC compatibility), so that's the chosen value here (the 805 // absence of its emission implies zero). 806 } 807 808 // Set FP exceptions and rounding 809 if (haveAllFunctionsAttribute(*MMI->getModule(), "no-trapping-math", "true") || 810 TM.Options.NoTrappingFPMath) 811 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 812 ARMBuildAttrs::Not_Allowed); 813 else if (!TM.Options.UnsafeFPMath) { 814 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 815 816 // If the user has permitted this code to choose the IEEE 754 817 // rounding at run-time, emit the rounding attribute. 818 if (TM.Options.HonorSignDependentRoundingFPMathOption) 819 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 820 } 821 822 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 823 // equivalent of GCC's -ffinite-math-only flag. 824 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 825 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 826 ARMBuildAttrs::Allowed); 827 else 828 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 829 ARMBuildAttrs::AllowIEE754); 830 831 if (STI.allowsUnalignedMem()) 832 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 833 ARMBuildAttrs::Allowed); 834 else 835 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 836 ARMBuildAttrs::Not_Allowed); 837 838 // FIXME: add more flags to ARMBuildAttributes.h 839 // 8-bytes alignment stuff. 840 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 841 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 842 843 // ABI_HardFP_use attribute to indicate single precision FP. 844 if (STI.isFPOnlySP()) 845 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 846 ARMBuildAttrs::HardFPSinglePrecision); 847 848 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 849 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 850 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 851 852 // FIXME: Should we signal R9 usage? 853 854 if (STI.hasFP16()) 855 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 856 857 // FIXME: To support emitting this build attribute as GCC does, the 858 // -mfp16-format option and associated plumbing must be 859 // supported. For now the __fp16 type is exposed by default, so this 860 // attribute should be emitted with value 1. 861 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 862 ARMBuildAttrs::FP16FormatIEEE); 863 864 if (STI.hasMPExtension()) 865 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 866 867 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 868 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 869 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 870 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 871 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 872 // otherwise, the default value (AllowDIVIfExists) applies. 873 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 874 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 875 876 if (STI.hasDSP() && isV8M(&STI)) 877 ATS.emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed); 878 879 if (MMI) { 880 if (const Module *SourceModule = MMI->getModule()) { 881 // ABI_PCS_wchar_t to indicate wchar_t width 882 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 883 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 884 SourceModule->getModuleFlag("wchar_size"))) { 885 int WCharWidth = WCharWidthValue->getZExtValue(); 886 assert((WCharWidth == 2 || WCharWidth == 4) && 887 "wchar_t width must be 2 or 4 bytes"); 888 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 889 } 890 891 // ABI_enum_size to indicate enum width 892 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 893 // (all enums contain a value needing 32 bits to encode). 894 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 895 SourceModule->getModuleFlag("min_enum_size"))) { 896 int EnumWidth = EnumWidthValue->getZExtValue(); 897 assert((EnumWidth == 1 || EnumWidth == 4) && 898 "Minimum enum width must be 1 or 4 bytes"); 899 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 900 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 901 } 902 } 903 } 904 905 // We currently do not support using R9 as the TLS pointer. 906 if (STI.isRWPI()) 907 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 908 ARMBuildAttrs::R9IsSB); 909 else if (STI.isR9Reserved()) 910 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 911 ARMBuildAttrs::R9Reserved); 912 else 913 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 914 ARMBuildAttrs::R9IsGPR); 915 916 if (STI.hasTrustZone() && STI.hasVirtualization()) 917 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 918 ARMBuildAttrs::AllowTZVirtualization); 919 else if (STI.hasTrustZone()) 920 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 921 ARMBuildAttrs::AllowTZ); 922 else if (STI.hasVirtualization()) 923 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 924 ARMBuildAttrs::AllowVirtualization); 925 } 926 927 //===----------------------------------------------------------------------===// 928 929 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, 930 unsigned LabelId, MCContext &Ctx) { 931 932 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 933 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 934 return Label; 935 } 936 937 static MCSymbolRefExpr::VariantKind 938 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 939 switch (Modifier) { 940 case ARMCP::no_modifier: 941 return MCSymbolRefExpr::VK_None; 942 case ARMCP::TLSGD: 943 return MCSymbolRefExpr::VK_TLSGD; 944 case ARMCP::TPOFF: 945 return MCSymbolRefExpr::VK_TPOFF; 946 case ARMCP::GOTTPOFF: 947 return MCSymbolRefExpr::VK_GOTTPOFF; 948 case ARMCP::SBREL: 949 return MCSymbolRefExpr::VK_ARM_SBREL; 950 case ARMCP::GOT_PREL: 951 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 952 case ARMCP::SECREL: 953 return MCSymbolRefExpr::VK_SECREL; 954 } 955 llvm_unreachable("Invalid ARMCPModifier!"); 956 } 957 958 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 959 unsigned char TargetFlags) { 960 if (Subtarget->isTargetMachO()) { 961 bool IsIndirect = 962 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 963 964 if (!IsIndirect) 965 return getSymbol(GV); 966 967 // FIXME: Remove this when Darwin transition to @GOT like syntax. 968 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 969 MachineModuleInfoMachO &MMIMachO = 970 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 971 MachineModuleInfoImpl::StubValueTy &StubSym = 972 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 973 : MMIMachO.getGVStubEntry(MCSym); 974 975 if (!StubSym.getPointer()) 976 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 977 !GV->hasInternalLinkage()); 978 return MCSym; 979 } else if (Subtarget->isTargetCOFF()) { 980 assert(Subtarget->isTargetWindows() && 981 "Windows is the only supported COFF target"); 982 983 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 984 if (!IsIndirect) 985 return getSymbol(GV); 986 987 SmallString<128> Name; 988 Name = "__imp_"; 989 getNameWithPrefix(Name, GV); 990 991 return OutContext.getOrCreateSymbol(Name); 992 } else if (Subtarget->isTargetELF()) { 993 return getSymbol(GV); 994 } 995 llvm_unreachable("unexpected target"); 996 } 997 998 void ARMAsmPrinter:: 999 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1000 const DataLayout &DL = getDataLayout(); 1001 int Size = DL.getTypeAllocSize(MCPV->getType()); 1002 1003 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 1004 1005 MCSymbol *MCSym; 1006 if (ACPV->isLSDA()) { 1007 MCSym = getCurExceptionSym(); 1008 } else if (ACPV->isBlockAddress()) { 1009 const BlockAddress *BA = 1010 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 1011 MCSym = GetBlockAddressSymbol(BA); 1012 } else if (ACPV->isGlobalValue()) { 1013 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 1014 1015 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 1016 // flag the global as MO_NONLAZY. 1017 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 1018 MCSym = GetARMGVSymbol(GV, TF); 1019 } else if (ACPV->isMachineBasicBlock()) { 1020 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 1021 MCSym = MBB->getSymbol(); 1022 } else { 1023 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 1024 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 1025 MCSym = GetExternalSymbolSymbol(Sym); 1026 } 1027 1028 // Create an MCSymbol for the reference. 1029 const MCExpr *Expr = 1030 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 1031 OutContext); 1032 1033 if (ACPV->getPCAdjustment()) { 1034 MCSymbol *PCLabel = 1035 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1036 ACPV->getLabelId(), OutContext); 1037 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 1038 PCRelExpr = 1039 MCBinaryExpr::createAdd(PCRelExpr, 1040 MCConstantExpr::create(ACPV->getPCAdjustment(), 1041 OutContext), 1042 OutContext); 1043 if (ACPV->mustAddCurrentAddress()) { 1044 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 1045 // label, so just emit a local label end reference that instead. 1046 MCSymbol *DotSym = OutContext.createTempSymbol(); 1047 OutStreamer->EmitLabel(DotSym); 1048 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 1049 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 1050 } 1051 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 1052 } 1053 OutStreamer->EmitValue(Expr, Size); 1054 } 1055 1056 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 1057 const MachineOperand &MO1 = MI->getOperand(1); 1058 unsigned JTI = MO1.getIndex(); 1059 1060 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1061 // ARM mode tables. 1062 EmitAlignment(2); 1063 1064 // Emit a label for the jump table. 1065 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1066 OutStreamer->EmitLabel(JTISymbol); 1067 1068 // Mark the jump table as data-in-code. 1069 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1070 1071 // Emit each entry of the table. 1072 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1073 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1074 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1075 1076 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1077 MachineBasicBlock *MBB = JTBBs[i]; 1078 // Construct an MCExpr for the entry. We want a value of the form: 1079 // (BasicBlockAddr - TableBeginAddr) 1080 // 1081 // For example, a table with entries jumping to basic blocks BB0 and BB1 1082 // would look like: 1083 // LJTI_0_0: 1084 // .word (LBB0 - LJTI_0_0) 1085 // .word (LBB1 - LJTI_0_0) 1086 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1087 1088 if (isPositionIndependent() || Subtarget->isROPI()) 1089 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 1090 OutContext), 1091 OutContext); 1092 // If we're generating a table of Thumb addresses in static relocation 1093 // model, we need to add one to keep interworking correctly. 1094 else if (AFI->isThumbFunction()) 1095 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1096 OutContext); 1097 OutStreamer->EmitValue(Expr, 4); 1098 } 1099 // Mark the end of jump table data-in-code region. 1100 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1101 } 1102 1103 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 1104 const MachineOperand &MO1 = MI->getOperand(1); 1105 unsigned JTI = MO1.getIndex(); 1106 1107 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1108 OutStreamer->EmitLabel(JTISymbol); 1109 1110 // Emit each entry of the table. 1111 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1112 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1113 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1114 1115 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1116 MachineBasicBlock *MBB = JTBBs[i]; 1117 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1118 OutContext); 1119 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1120 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1121 .addExpr(MBBSymbolExpr) 1122 .addImm(ARMCC::AL) 1123 .addReg(0)); 1124 } 1125 } 1126 1127 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1128 unsigned OffsetWidth) { 1129 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1130 const MachineOperand &MO1 = MI->getOperand(1); 1131 unsigned JTI = MO1.getIndex(); 1132 1133 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1134 OutStreamer->EmitLabel(JTISymbol); 1135 1136 // Emit each entry of the table. 1137 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1138 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1139 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1140 1141 // Mark the jump table as data-in-code. 1142 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1143 : MCDR_DataRegionJT16); 1144 1145 for (auto MBB : JTBBs) { 1146 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1147 OutContext); 1148 // Otherwise it's an offset from the dispatch instruction. Construct an 1149 // MCExpr for the entry. We want a value of the form: 1150 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1151 // 1152 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1153 // would look like: 1154 // LJTI_0_0: 1155 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1156 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1157 // where LCPI0_0 is a label defined just before the TBB instruction using 1158 // this table. 1159 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1160 const MCExpr *Expr = MCBinaryExpr::createAdd( 1161 MCSymbolRefExpr::create(TBInstPC, OutContext), 1162 MCConstantExpr::create(4, OutContext), OutContext); 1163 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1164 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1165 OutContext); 1166 OutStreamer->EmitValue(Expr, OffsetWidth); 1167 } 1168 // Mark the end of jump table data-in-code region. 32-bit offsets use 1169 // actual branch instructions here, so we don't mark those as a data-region 1170 // at all. 1171 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1172 1173 // Make sure the next instruction is 2-byte aligned. 1174 EmitAlignment(1); 1175 } 1176 1177 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1178 assert(MI->getFlag(MachineInstr::FrameSetup) && 1179 "Only instruction which are involved into frame setup code are allowed"); 1180 1181 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1182 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1183 const MachineFunction &MF = *MI->getParent()->getParent(); 1184 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1185 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1186 1187 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1188 unsigned Opc = MI->getOpcode(); 1189 unsigned SrcReg, DstReg; 1190 1191 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1192 // Two special cases: 1193 // 1) tPUSH does not have src/dst regs. 1194 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1195 // load. Yes, this is pretty fragile, but for now I don't see better 1196 // way... :( 1197 SrcReg = DstReg = ARM::SP; 1198 } else { 1199 SrcReg = MI->getOperand(1).getReg(); 1200 DstReg = MI->getOperand(0).getReg(); 1201 } 1202 1203 // Try to figure out the unwinding opcode out of src / dst regs. 1204 if (MI->mayStore()) { 1205 // Register saves. 1206 assert(DstReg == ARM::SP && 1207 "Only stack pointer as a destination reg is supported"); 1208 1209 SmallVector<unsigned, 4> RegList; 1210 // Skip src & dst reg, and pred ops. 1211 unsigned StartOp = 2 + 2; 1212 // Use all the operands. 1213 unsigned NumOffset = 0; 1214 1215 switch (Opc) { 1216 default: 1217 MI->dump(); 1218 llvm_unreachable("Unsupported opcode for unwinding information"); 1219 case ARM::tPUSH: 1220 // Special case here: no src & dst reg, but two extra imp ops. 1221 StartOp = 2; NumOffset = 2; 1222 case ARM::STMDB_UPD: 1223 case ARM::t2STMDB_UPD: 1224 case ARM::VSTMDDB_UPD: 1225 assert(SrcReg == ARM::SP && 1226 "Only stack pointer as a source reg is supported"); 1227 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1228 i != NumOps; ++i) { 1229 const MachineOperand &MO = MI->getOperand(i); 1230 // Actually, there should never be any impdef stuff here. Skip it 1231 // temporary to workaround PR11902. 1232 if (MO.isImplicit()) 1233 continue; 1234 RegList.push_back(MO.getReg()); 1235 } 1236 break; 1237 case ARM::STR_PRE_IMM: 1238 case ARM::STR_PRE_REG: 1239 case ARM::t2STR_PRE: 1240 assert(MI->getOperand(2).getReg() == ARM::SP && 1241 "Only stack pointer as a source reg is supported"); 1242 RegList.push_back(SrcReg); 1243 break; 1244 } 1245 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1246 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1247 } else { 1248 // Changes of stack / frame pointer. 1249 if (SrcReg == ARM::SP) { 1250 int64_t Offset = 0; 1251 switch (Opc) { 1252 default: 1253 MI->dump(); 1254 llvm_unreachable("Unsupported opcode for unwinding information"); 1255 case ARM::MOVr: 1256 case ARM::tMOVr: 1257 Offset = 0; 1258 break; 1259 case ARM::ADDri: 1260 case ARM::t2ADDri: 1261 Offset = -MI->getOperand(2).getImm(); 1262 break; 1263 case ARM::SUBri: 1264 case ARM::t2SUBri: 1265 Offset = MI->getOperand(2).getImm(); 1266 break; 1267 case ARM::tSUBspi: 1268 Offset = MI->getOperand(2).getImm()*4; 1269 break; 1270 case ARM::tADDspi: 1271 case ARM::tADDrSPi: 1272 Offset = -MI->getOperand(2).getImm()*4; 1273 break; 1274 case ARM::tLDRpci: { 1275 // Grab the constpool index and check, whether it corresponds to 1276 // original or cloned constpool entry. 1277 unsigned CPI = MI->getOperand(1).getIndex(); 1278 const MachineConstantPool *MCP = MF.getConstantPool(); 1279 if (CPI >= MCP->getConstants().size()) 1280 CPI = AFI.getOriginalCPIdx(CPI); 1281 assert(CPI != -1U && "Invalid constpool index"); 1282 1283 // Derive the actual offset. 1284 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1285 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1286 // FIXME: Check for user, it should be "add" instruction! 1287 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1288 break; 1289 } 1290 } 1291 1292 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1293 if (DstReg == FramePtr && FramePtr != ARM::SP) 1294 // Set-up of the frame pointer. Positive values correspond to "add" 1295 // instruction. 1296 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1297 else if (DstReg == ARM::SP) { 1298 // Change of SP by an offset. Positive values correspond to "sub" 1299 // instruction. 1300 ATS.emitPad(Offset); 1301 } else { 1302 // Move of SP to a register. Positive values correspond to an "add" 1303 // instruction. 1304 ATS.emitMovSP(DstReg, -Offset); 1305 } 1306 } 1307 } else if (DstReg == ARM::SP) { 1308 MI->dump(); 1309 llvm_unreachable("Unsupported opcode for unwinding information"); 1310 } 1311 else { 1312 MI->dump(); 1313 llvm_unreachable("Unsupported opcode for unwinding information"); 1314 } 1315 } 1316 } 1317 1318 // Simple pseudo-instructions have their lowering (with expansion to real 1319 // instructions) auto-generated. 1320 #include "ARMGenMCPseudoLowering.inc" 1321 1322 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1323 const DataLayout &DL = getDataLayout(); 1324 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1325 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1326 1327 // If we just ended a constant pool, mark it as such. 1328 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1329 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1330 InConstantPool = false; 1331 } 1332 1333 // Emit unwinding stuff for frame-related instructions 1334 if (Subtarget->isTargetEHABICompatible() && 1335 MI->getFlag(MachineInstr::FrameSetup)) 1336 EmitUnwindingInstruction(MI); 1337 1338 // Do any auto-generated pseudo lowerings. 1339 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1340 return; 1341 1342 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1343 "Pseudo flag setting opcode should be expanded early"); 1344 1345 // Check for manual lowerings. 1346 unsigned Opc = MI->getOpcode(); 1347 switch (Opc) { 1348 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1349 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1350 case ARM::LEApcrel: 1351 case ARM::tLEApcrel: 1352 case ARM::t2LEApcrel: { 1353 // FIXME: Need to also handle globals and externals 1354 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1355 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1356 ARM::t2LEApcrel ? ARM::t2ADR 1357 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1358 : ARM::ADR)) 1359 .addReg(MI->getOperand(0).getReg()) 1360 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1361 // Add predicate operands. 1362 .addImm(MI->getOperand(2).getImm()) 1363 .addReg(MI->getOperand(3).getReg())); 1364 return; 1365 } 1366 case ARM::LEApcrelJT: 1367 case ARM::tLEApcrelJT: 1368 case ARM::t2LEApcrelJT: { 1369 MCSymbol *JTIPICSymbol = 1370 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1371 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1372 ARM::t2LEApcrelJT ? ARM::t2ADR 1373 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1374 : ARM::ADR)) 1375 .addReg(MI->getOperand(0).getReg()) 1376 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1377 // Add predicate operands. 1378 .addImm(MI->getOperand(2).getImm()) 1379 .addReg(MI->getOperand(3).getReg())); 1380 return; 1381 } 1382 // Darwin call instructions are just normal call instructions with different 1383 // clobber semantics (they clobber R9). 1384 case ARM::BX_CALL: { 1385 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1386 .addReg(ARM::LR) 1387 .addReg(ARM::PC) 1388 // Add predicate operands. 1389 .addImm(ARMCC::AL) 1390 .addReg(0) 1391 // Add 's' bit operand (always reg0 for this) 1392 .addReg(0)); 1393 1394 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1395 .addReg(MI->getOperand(0).getReg())); 1396 return; 1397 } 1398 case ARM::tBX_CALL: { 1399 if (Subtarget->hasV5TOps()) 1400 llvm_unreachable("Expected BLX to be selected for v5t+"); 1401 1402 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1403 // that the saved lr has its LSB set correctly (the arch doesn't 1404 // have blx). 1405 // So here we generate a bl to a small jump pad that does bx rN. 1406 // The jump pads are emitted after the function body. 1407 1408 unsigned TReg = MI->getOperand(0).getReg(); 1409 MCSymbol *TRegSym = nullptr; 1410 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1411 if (ThumbIndirectPads[i].first == TReg) { 1412 TRegSym = ThumbIndirectPads[i].second; 1413 break; 1414 } 1415 } 1416 1417 if (!TRegSym) { 1418 TRegSym = OutContext.createTempSymbol(); 1419 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1420 } 1421 1422 // Create a link-saving branch to the Reg Indirect Jump Pad. 1423 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1424 // Predicate comes first here. 1425 .addImm(ARMCC::AL).addReg(0) 1426 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1427 return; 1428 } 1429 case ARM::BMOVPCRX_CALL: { 1430 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1431 .addReg(ARM::LR) 1432 .addReg(ARM::PC) 1433 // Add predicate operands. 1434 .addImm(ARMCC::AL) 1435 .addReg(0) 1436 // Add 's' bit operand (always reg0 for this) 1437 .addReg(0)); 1438 1439 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1440 .addReg(ARM::PC) 1441 .addReg(MI->getOperand(0).getReg()) 1442 // Add predicate operands. 1443 .addImm(ARMCC::AL) 1444 .addReg(0) 1445 // Add 's' bit operand (always reg0 for this) 1446 .addReg(0)); 1447 return; 1448 } 1449 case ARM::BMOVPCB_CALL: { 1450 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1451 .addReg(ARM::LR) 1452 .addReg(ARM::PC) 1453 // Add predicate operands. 1454 .addImm(ARMCC::AL) 1455 .addReg(0) 1456 // Add 's' bit operand (always reg0 for this) 1457 .addReg(0)); 1458 1459 const MachineOperand &Op = MI->getOperand(0); 1460 const GlobalValue *GV = Op.getGlobal(); 1461 const unsigned TF = Op.getTargetFlags(); 1462 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1463 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1464 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1465 .addExpr(GVSymExpr) 1466 // Add predicate operands. 1467 .addImm(ARMCC::AL) 1468 .addReg(0)); 1469 return; 1470 } 1471 case ARM::MOVi16_ga_pcrel: 1472 case ARM::t2MOVi16_ga_pcrel: { 1473 MCInst TmpInst; 1474 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1475 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1476 1477 unsigned TF = MI->getOperand(1).getTargetFlags(); 1478 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1479 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1480 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1481 1482 MCSymbol *LabelSym = 1483 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1484 MI->getOperand(2).getImm(), OutContext); 1485 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1486 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1487 const MCExpr *PCRelExpr = 1488 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1489 MCBinaryExpr::createAdd(LabelSymExpr, 1490 MCConstantExpr::create(PCAdj, OutContext), 1491 OutContext), OutContext), OutContext); 1492 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1493 1494 // Add predicate operands. 1495 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1496 TmpInst.addOperand(MCOperand::createReg(0)); 1497 // Add 's' bit operand (always reg0 for this) 1498 TmpInst.addOperand(MCOperand::createReg(0)); 1499 EmitToStreamer(*OutStreamer, TmpInst); 1500 return; 1501 } 1502 case ARM::MOVTi16_ga_pcrel: 1503 case ARM::t2MOVTi16_ga_pcrel: { 1504 MCInst TmpInst; 1505 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1506 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1507 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1508 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1509 1510 unsigned TF = MI->getOperand(2).getTargetFlags(); 1511 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1512 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1513 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1514 1515 MCSymbol *LabelSym = 1516 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1517 MI->getOperand(3).getImm(), OutContext); 1518 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1519 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1520 const MCExpr *PCRelExpr = 1521 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1522 MCBinaryExpr::createAdd(LabelSymExpr, 1523 MCConstantExpr::create(PCAdj, OutContext), 1524 OutContext), OutContext), OutContext); 1525 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1526 // Add predicate operands. 1527 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1528 TmpInst.addOperand(MCOperand::createReg(0)); 1529 // Add 's' bit operand (always reg0 for this) 1530 TmpInst.addOperand(MCOperand::createReg(0)); 1531 EmitToStreamer(*OutStreamer, TmpInst); 1532 return; 1533 } 1534 case ARM::tPICADD: { 1535 // This is a pseudo op for a label + instruction sequence, which looks like: 1536 // LPC0: 1537 // add r0, pc 1538 // This adds the address of LPC0 to r0. 1539 1540 // Emit the label. 1541 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1542 getFunctionNumber(), 1543 MI->getOperand(2).getImm(), OutContext)); 1544 1545 // Form and emit the add. 1546 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1547 .addReg(MI->getOperand(0).getReg()) 1548 .addReg(MI->getOperand(0).getReg()) 1549 .addReg(ARM::PC) 1550 // Add predicate operands. 1551 .addImm(ARMCC::AL) 1552 .addReg(0)); 1553 return; 1554 } 1555 case ARM::PICADD: { 1556 // This is a pseudo op for a label + instruction sequence, which looks like: 1557 // LPC0: 1558 // add r0, pc, r0 1559 // This adds the address of LPC0 to r0. 1560 1561 // Emit the label. 1562 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1563 getFunctionNumber(), 1564 MI->getOperand(2).getImm(), OutContext)); 1565 1566 // Form and emit the add. 1567 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1568 .addReg(MI->getOperand(0).getReg()) 1569 .addReg(ARM::PC) 1570 .addReg(MI->getOperand(1).getReg()) 1571 // Add predicate operands. 1572 .addImm(MI->getOperand(3).getImm()) 1573 .addReg(MI->getOperand(4).getReg()) 1574 // Add 's' bit operand (always reg0 for this) 1575 .addReg(0)); 1576 return; 1577 } 1578 case ARM::PICSTR: 1579 case ARM::PICSTRB: 1580 case ARM::PICSTRH: 1581 case ARM::PICLDR: 1582 case ARM::PICLDRB: 1583 case ARM::PICLDRH: 1584 case ARM::PICLDRSB: 1585 case ARM::PICLDRSH: { 1586 // This is a pseudo op for a label + instruction sequence, which looks like: 1587 // LPC0: 1588 // OP r0, [pc, r0] 1589 // The LCP0 label is referenced by a constant pool entry in order to get 1590 // a PC-relative address at the ldr instruction. 1591 1592 // Emit the label. 1593 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1594 getFunctionNumber(), 1595 MI->getOperand(2).getImm(), OutContext)); 1596 1597 // Form and emit the load 1598 unsigned Opcode; 1599 switch (MI->getOpcode()) { 1600 default: 1601 llvm_unreachable("Unexpected opcode!"); 1602 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1603 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1604 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1605 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1606 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1607 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1608 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1609 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1610 } 1611 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1612 .addReg(MI->getOperand(0).getReg()) 1613 .addReg(ARM::PC) 1614 .addReg(MI->getOperand(1).getReg()) 1615 .addImm(0) 1616 // Add predicate operands. 1617 .addImm(MI->getOperand(3).getImm()) 1618 .addReg(MI->getOperand(4).getReg())); 1619 1620 return; 1621 } 1622 case ARM::CONSTPOOL_ENTRY: { 1623 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1624 /// in the function. The first operand is the ID# for this instruction, the 1625 /// second is the index into the MachineConstantPool that this is, the third 1626 /// is the size in bytes of this constant pool entry. 1627 /// The required alignment is specified on the basic block holding this MI. 1628 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1629 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1630 1631 // If this is the first entry of the pool, mark it. 1632 if (!InConstantPool) { 1633 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1634 InConstantPool = true; 1635 } 1636 1637 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1638 1639 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1640 if (MCPE.isMachineConstantPoolEntry()) 1641 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1642 else 1643 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1644 return; 1645 } 1646 case ARM::JUMPTABLE_ADDRS: 1647 EmitJumpTableAddrs(MI); 1648 return; 1649 case ARM::JUMPTABLE_INSTS: 1650 EmitJumpTableInsts(MI); 1651 return; 1652 case ARM::JUMPTABLE_TBB: 1653 case ARM::JUMPTABLE_TBH: 1654 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1655 return; 1656 case ARM::t2BR_JT: { 1657 // Lower and emit the instruction itself, then the jump table following it. 1658 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1659 .addReg(ARM::PC) 1660 .addReg(MI->getOperand(0).getReg()) 1661 // Add predicate operands. 1662 .addImm(ARMCC::AL) 1663 .addReg(0)); 1664 return; 1665 } 1666 case ARM::t2TBB_JT: 1667 case ARM::t2TBH_JT: { 1668 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1669 // Lower and emit the PC label, then the instruction itself. 1670 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1671 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1672 .addReg(MI->getOperand(0).getReg()) 1673 .addReg(MI->getOperand(1).getReg()) 1674 // Add predicate operands. 1675 .addImm(ARMCC::AL) 1676 .addReg(0)); 1677 return; 1678 } 1679 case ARM::tBR_JTr: 1680 case ARM::BR_JTr: { 1681 // Lower and emit the instruction itself, then the jump table following it. 1682 // mov pc, target 1683 MCInst TmpInst; 1684 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1685 ARM::MOVr : ARM::tMOVr; 1686 TmpInst.setOpcode(Opc); 1687 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1688 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1689 // Add predicate operands. 1690 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1691 TmpInst.addOperand(MCOperand::createReg(0)); 1692 // Add 's' bit operand (always reg0 for this) 1693 if (Opc == ARM::MOVr) 1694 TmpInst.addOperand(MCOperand::createReg(0)); 1695 EmitToStreamer(*OutStreamer, TmpInst); 1696 return; 1697 } 1698 case ARM::BR_JTm: { 1699 // Lower and emit the instruction itself, then the jump table following it. 1700 // ldr pc, target 1701 MCInst TmpInst; 1702 if (MI->getOperand(1).getReg() == 0) { 1703 // literal offset 1704 TmpInst.setOpcode(ARM::LDRi12); 1705 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1706 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1707 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1708 } else { 1709 TmpInst.setOpcode(ARM::LDRrs); 1710 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1711 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1712 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1713 TmpInst.addOperand(MCOperand::createImm(0)); 1714 } 1715 // Add predicate operands. 1716 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1717 TmpInst.addOperand(MCOperand::createReg(0)); 1718 EmitToStreamer(*OutStreamer, TmpInst); 1719 return; 1720 } 1721 case ARM::BR_JTadd: { 1722 // Lower and emit the instruction itself, then the jump table following it. 1723 // add pc, target, idx 1724 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1725 .addReg(ARM::PC) 1726 .addReg(MI->getOperand(0).getReg()) 1727 .addReg(MI->getOperand(1).getReg()) 1728 // Add predicate operands. 1729 .addImm(ARMCC::AL) 1730 .addReg(0) 1731 // Add 's' bit operand (always reg0 for this) 1732 .addReg(0)); 1733 return; 1734 } 1735 case ARM::SPACE: 1736 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1737 return; 1738 case ARM::TRAP: { 1739 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1740 // FIXME: Remove this special case when they do. 1741 if (!Subtarget->isTargetMachO()) { 1742 uint32_t Val = 0xe7ffdefeUL; 1743 OutStreamer->AddComment("trap"); 1744 ATS.emitInst(Val); 1745 return; 1746 } 1747 break; 1748 } 1749 case ARM::TRAPNaCl: { 1750 uint32_t Val = 0xe7fedef0UL; 1751 OutStreamer->AddComment("trap"); 1752 ATS.emitInst(Val); 1753 return; 1754 } 1755 case ARM::tTRAP: { 1756 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1757 // FIXME: Remove this special case when they do. 1758 if (!Subtarget->isTargetMachO()) { 1759 uint16_t Val = 0xdefe; 1760 OutStreamer->AddComment("trap"); 1761 ATS.emitInst(Val, 'n'); 1762 return; 1763 } 1764 break; 1765 } 1766 case ARM::t2Int_eh_sjlj_setjmp: 1767 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1768 case ARM::tInt_eh_sjlj_setjmp: { 1769 // Two incoming args: GPR:$src, GPR:$val 1770 // mov $val, pc 1771 // adds $val, #7 1772 // str $val, [$src, #4] 1773 // movs r0, #0 1774 // b LSJLJEH 1775 // movs r0, #1 1776 // LSJLJEH: 1777 unsigned SrcReg = MI->getOperand(0).getReg(); 1778 unsigned ValReg = MI->getOperand(1).getReg(); 1779 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1780 OutStreamer->AddComment("eh_setjmp begin"); 1781 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1782 .addReg(ValReg) 1783 .addReg(ARM::PC) 1784 // Predicate. 1785 .addImm(ARMCC::AL) 1786 .addReg(0)); 1787 1788 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1789 .addReg(ValReg) 1790 // 's' bit operand 1791 .addReg(ARM::CPSR) 1792 .addReg(ValReg) 1793 .addImm(7) 1794 // Predicate. 1795 .addImm(ARMCC::AL) 1796 .addReg(0)); 1797 1798 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1799 .addReg(ValReg) 1800 .addReg(SrcReg) 1801 // The offset immediate is #4. The operand value is scaled by 4 for the 1802 // tSTR instruction. 1803 .addImm(1) 1804 // Predicate. 1805 .addImm(ARMCC::AL) 1806 .addReg(0)); 1807 1808 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1809 .addReg(ARM::R0) 1810 .addReg(ARM::CPSR) 1811 .addImm(0) 1812 // Predicate. 1813 .addImm(ARMCC::AL) 1814 .addReg(0)); 1815 1816 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1817 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1818 .addExpr(SymbolExpr) 1819 .addImm(ARMCC::AL) 1820 .addReg(0)); 1821 1822 OutStreamer->AddComment("eh_setjmp end"); 1823 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1824 .addReg(ARM::R0) 1825 .addReg(ARM::CPSR) 1826 .addImm(1) 1827 // Predicate. 1828 .addImm(ARMCC::AL) 1829 .addReg(0)); 1830 1831 OutStreamer->EmitLabel(Label); 1832 return; 1833 } 1834 1835 case ARM::Int_eh_sjlj_setjmp_nofp: 1836 case ARM::Int_eh_sjlj_setjmp: { 1837 // Two incoming args: GPR:$src, GPR:$val 1838 // add $val, pc, #8 1839 // str $val, [$src, #+4] 1840 // mov r0, #0 1841 // add pc, pc, #0 1842 // mov r0, #1 1843 unsigned SrcReg = MI->getOperand(0).getReg(); 1844 unsigned ValReg = MI->getOperand(1).getReg(); 1845 1846 OutStreamer->AddComment("eh_setjmp begin"); 1847 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1848 .addReg(ValReg) 1849 .addReg(ARM::PC) 1850 .addImm(8) 1851 // Predicate. 1852 .addImm(ARMCC::AL) 1853 .addReg(0) 1854 // 's' bit operand (always reg0 for this). 1855 .addReg(0)); 1856 1857 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1858 .addReg(ValReg) 1859 .addReg(SrcReg) 1860 .addImm(4) 1861 // Predicate. 1862 .addImm(ARMCC::AL) 1863 .addReg(0)); 1864 1865 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1866 .addReg(ARM::R0) 1867 .addImm(0) 1868 // Predicate. 1869 .addImm(ARMCC::AL) 1870 .addReg(0) 1871 // 's' bit operand (always reg0 for this). 1872 .addReg(0)); 1873 1874 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1875 .addReg(ARM::PC) 1876 .addReg(ARM::PC) 1877 .addImm(0) 1878 // Predicate. 1879 .addImm(ARMCC::AL) 1880 .addReg(0) 1881 // 's' bit operand (always reg0 for this). 1882 .addReg(0)); 1883 1884 OutStreamer->AddComment("eh_setjmp end"); 1885 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1886 .addReg(ARM::R0) 1887 .addImm(1) 1888 // Predicate. 1889 .addImm(ARMCC::AL) 1890 .addReg(0) 1891 // 's' bit operand (always reg0 for this). 1892 .addReg(0)); 1893 return; 1894 } 1895 case ARM::Int_eh_sjlj_longjmp: { 1896 // ldr sp, [$src, #8] 1897 // ldr $scratch, [$src, #4] 1898 // ldr r7, [$src] 1899 // bx $scratch 1900 unsigned SrcReg = MI->getOperand(0).getReg(); 1901 unsigned ScratchReg = MI->getOperand(1).getReg(); 1902 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1903 .addReg(ARM::SP) 1904 .addReg(SrcReg) 1905 .addImm(8) 1906 // Predicate. 1907 .addImm(ARMCC::AL) 1908 .addReg(0)); 1909 1910 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1911 .addReg(ScratchReg) 1912 .addReg(SrcReg) 1913 .addImm(4) 1914 // Predicate. 1915 .addImm(ARMCC::AL) 1916 .addReg(0)); 1917 1918 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1919 .addReg(ARM::R7) 1920 .addReg(SrcReg) 1921 .addImm(0) 1922 // Predicate. 1923 .addImm(ARMCC::AL) 1924 .addReg(0)); 1925 1926 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1927 .addReg(ScratchReg) 1928 // Predicate. 1929 .addImm(ARMCC::AL) 1930 .addReg(0)); 1931 return; 1932 } 1933 case ARM::tInt_eh_sjlj_longjmp: { 1934 // ldr $scratch, [$src, #8] 1935 // mov sp, $scratch 1936 // ldr $scratch, [$src, #4] 1937 // ldr r7, [$src] 1938 // bx $scratch 1939 unsigned SrcReg = MI->getOperand(0).getReg(); 1940 unsigned ScratchReg = MI->getOperand(1).getReg(); 1941 1942 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1943 .addReg(ScratchReg) 1944 .addReg(SrcReg) 1945 // The offset immediate is #8. The operand value is scaled by 4 for the 1946 // tLDR instruction. 1947 .addImm(2) 1948 // Predicate. 1949 .addImm(ARMCC::AL) 1950 .addReg(0)); 1951 1952 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1953 .addReg(ARM::SP) 1954 .addReg(ScratchReg) 1955 // Predicate. 1956 .addImm(ARMCC::AL) 1957 .addReg(0)); 1958 1959 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1960 .addReg(ScratchReg) 1961 .addReg(SrcReg) 1962 .addImm(1) 1963 // Predicate. 1964 .addImm(ARMCC::AL) 1965 .addReg(0)); 1966 1967 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1968 .addReg(ARM::R7) 1969 .addReg(SrcReg) 1970 .addImm(0) 1971 // Predicate. 1972 .addImm(ARMCC::AL) 1973 .addReg(0)); 1974 1975 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 1976 .addReg(ScratchReg) 1977 // Predicate. 1978 .addImm(ARMCC::AL) 1979 .addReg(0)); 1980 return; 1981 } 1982 case ARM::tInt_WIN_eh_sjlj_longjmp: { 1983 // ldr.w r11, [$src, #0] 1984 // ldr.w sp, [$src, #8] 1985 // ldr.w pc, [$src, #4] 1986 1987 unsigned SrcReg = MI->getOperand(0).getReg(); 1988 1989 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 1990 .addReg(ARM::R11) 1991 .addReg(SrcReg) 1992 .addImm(0) 1993 // Predicate 1994 .addImm(ARMCC::AL) 1995 .addReg(0)); 1996 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 1997 .addReg(ARM::SP) 1998 .addReg(SrcReg) 1999 .addImm(8) 2000 // Predicate 2001 .addImm(ARMCC::AL) 2002 .addReg(0)); 2003 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2004 .addReg(ARM::PC) 2005 .addReg(SrcReg) 2006 .addImm(4) 2007 // Predicate 2008 .addImm(ARMCC::AL) 2009 .addReg(0)); 2010 return; 2011 } 2012 case ARM::PATCHABLE_FUNCTION_ENTER: 2013 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2014 return; 2015 case ARM::PATCHABLE_FUNCTION_EXIT: 2016 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2017 return; 2018 } 2019 2020 MCInst TmpInst; 2021 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2022 2023 EmitToStreamer(*OutStreamer, TmpInst); 2024 } 2025 2026 //===----------------------------------------------------------------------===// 2027 // Target Registry Stuff 2028 //===----------------------------------------------------------------------===// 2029 2030 // Force static initialization. 2031 extern "C" void LLVMInitializeARMAsmPrinter() { 2032 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget); 2033 RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget); 2034 RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget); 2035 RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget); 2036 } 2037