1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDGPUTargetTransformInfo.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/IntrinsicsR600.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/MC/MCSectionELF.h" 32 #include "llvm/MC/MCSubtargetInfo.h" 33 #include "llvm/MC/SubtargetFeature.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <cstring> 41 #include <utility> 42 43 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 44 45 #define GET_INSTRINFO_NAMED_OPS 46 #define GET_INSTRMAP_INFO 47 #include "AMDGPUGenInstrInfo.inc" 48 #undef GET_INSTRMAP_INFO 49 #undef GET_INSTRINFO_NAMED_OPS 50 51 namespace { 52 53 /// \returns Bit mask for given bit \p Shift and bit \p Width. 54 unsigned getBitMask(unsigned Shift, unsigned Width) { 55 return ((1 << Width) - 1) << Shift; 56 } 57 58 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 59 /// 60 /// \returns Packed \p Dst. 61 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 62 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 63 Dst |= (Src << Shift) & getBitMask(Shift, Width); 64 return Dst; 65 } 66 67 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 68 /// 69 /// \returns Unpacked bits. 70 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 71 return (Src & getBitMask(Shift, Width)) >> Shift; 72 } 73 74 /// \returns Vmcnt bit shift (lower bits). 75 unsigned getVmcntBitShiftLo() { return 0; } 76 77 /// \returns Vmcnt bit width (lower bits). 78 unsigned getVmcntBitWidthLo() { return 4; } 79 80 /// \returns Expcnt bit shift. 81 unsigned getExpcntBitShift() { return 4; } 82 83 /// \returns Expcnt bit width. 84 unsigned getExpcntBitWidth() { return 3; } 85 86 /// \returns Lgkmcnt bit shift. 87 unsigned getLgkmcntBitShift() { return 8; } 88 89 /// \returns Lgkmcnt bit width. 90 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 91 return (VersionMajor >= 10) ? 6 : 4; 92 } 93 94 /// \returns Vmcnt bit shift (higher bits). 95 unsigned getVmcntBitShiftHi() { return 14; } 96 97 /// \returns Vmcnt bit width (higher bits). 98 unsigned getVmcntBitWidthHi() { return 2; } 99 100 } // end namespace anonymous 101 102 namespace llvm { 103 104 namespace AMDGPU { 105 106 #define GET_MIMGBaseOpcodesTable_IMPL 107 #define GET_MIMGDimInfoTable_IMPL 108 #define GET_MIMGInfoTable_IMPL 109 #define GET_MIMGLZMappingTable_IMPL 110 #define GET_MIMGMIPMappingTable_IMPL 111 #include "AMDGPUGenSearchableTables.inc" 112 113 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 114 unsigned VDataDwords, unsigned VAddrDwords) { 115 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 116 VDataDwords, VAddrDwords); 117 return Info ? Info->Opcode : -1; 118 } 119 120 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 121 const MIMGInfo *Info = getMIMGInfo(Opc); 122 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 123 } 124 125 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 126 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 127 const MIMGInfo *NewInfo = 128 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 129 NewChannels, OrigInfo->VAddrDwords); 130 return NewInfo ? NewInfo->Opcode : -1; 131 } 132 133 struct MUBUFInfo { 134 uint16_t Opcode; 135 uint16_t BaseOpcode; 136 uint8_t elements; 137 bool has_vaddr; 138 bool has_srsrc; 139 bool has_soffset; 140 }; 141 142 struct MTBUFInfo { 143 uint16_t Opcode; 144 uint16_t BaseOpcode; 145 uint8_t elements; 146 bool has_vaddr; 147 bool has_srsrc; 148 bool has_soffset; 149 }; 150 151 struct SMInfo { 152 uint16_t Opcode; 153 bool IsBuffer; 154 }; 155 156 #define GET_MTBUFInfoTable_DECL 157 #define GET_MTBUFInfoTable_IMPL 158 #define GET_MUBUFInfoTable_DECL 159 #define GET_MUBUFInfoTable_IMPL 160 #define GET_SMInfoTable_DECL 161 #define GET_SMInfoTable_IMPL 162 #include "AMDGPUGenSearchableTables.inc" 163 164 int getMTBUFBaseOpcode(unsigned Opc) { 165 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 166 return Info ? Info->BaseOpcode : -1; 167 } 168 169 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 170 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 171 return Info ? Info->Opcode : -1; 172 } 173 174 int getMTBUFElements(unsigned Opc) { 175 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 176 return Info ? Info->elements : 0; 177 } 178 179 bool getMTBUFHasVAddr(unsigned Opc) { 180 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 181 return Info ? Info->has_vaddr : false; 182 } 183 184 bool getMTBUFHasSrsrc(unsigned Opc) { 185 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 186 return Info ? Info->has_srsrc : false; 187 } 188 189 bool getMTBUFHasSoffset(unsigned Opc) { 190 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 191 return Info ? Info->has_soffset : false; 192 } 193 194 int getMUBUFBaseOpcode(unsigned Opc) { 195 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 196 return Info ? Info->BaseOpcode : -1; 197 } 198 199 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 200 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 201 return Info ? Info->Opcode : -1; 202 } 203 204 int getMUBUFElements(unsigned Opc) { 205 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 206 return Info ? Info->elements : 0; 207 } 208 209 bool getMUBUFHasVAddr(unsigned Opc) { 210 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 211 return Info ? Info->has_vaddr : false; 212 } 213 214 bool getMUBUFHasSrsrc(unsigned Opc) { 215 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 216 return Info ? Info->has_srsrc : false; 217 } 218 219 bool getMUBUFHasSoffset(unsigned Opc) { 220 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 221 return Info ? Info->has_soffset : false; 222 } 223 224 bool getSMEMIsBuffer(unsigned Opc) { 225 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 226 return Info ? Info->IsBuffer : false; 227 } 228 229 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 230 // header files, so we need to wrap it in a function that takes unsigned 231 // instead. 232 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 233 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 234 } 235 236 namespace IsaInfo { 237 238 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 239 auto TargetTriple = STI->getTargetTriple(); 240 auto Version = getIsaVersion(STI->getCPU()); 241 242 Stream << TargetTriple.getArchName() << '-' 243 << TargetTriple.getVendorName() << '-' 244 << TargetTriple.getOSName() << '-' 245 << TargetTriple.getEnvironmentName() << '-' 246 << "gfx" 247 << Version.Major 248 << Version.Minor 249 << Version.Stepping; 250 251 if (hasXNACK(*STI)) 252 Stream << "+xnack"; 253 if (hasSRAMECC(*STI)) 254 Stream << "+sram-ecc"; 255 256 Stream.flush(); 257 } 258 259 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 260 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 261 STI->getFeatureBits().test(FeatureCodeObjectV3); 262 } 263 264 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 265 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 266 return 16; 267 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 268 return 32; 269 270 return 64; 271 } 272 273 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 274 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 275 return 32768; 276 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 277 return 65536; 278 279 return 0; 280 } 281 282 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 283 // "Per CU" really means "per whatever functional block the waves of a 284 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 285 // two SIMDs. 286 if (isGFX10(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 287 return 2; 288 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 289 // two CUs, so a total of four SIMDs. 290 return 4; 291 } 292 293 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 294 unsigned FlatWorkGroupSize) { 295 assert(FlatWorkGroupSize != 0); 296 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 297 return 8; 298 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 299 if (N == 1) 300 return 40; 301 N = 40 / N; 302 return std::min(N, 16u); 303 } 304 305 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 306 return 1; 307 } 308 309 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 310 // FIXME: Need to take scratch memory into account. 311 if (!isGFX10(*STI)) 312 return 10; 313 return 20; 314 } 315 316 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 317 unsigned FlatWorkGroupSize) { 318 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 319 getEUsPerCU(STI)); 320 } 321 322 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 323 return 1; 324 } 325 326 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 327 // Some subtargets allow encoding 2048, but this isn't tested or supported. 328 return 1024; 329 } 330 331 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 332 unsigned FlatWorkGroupSize) { 333 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 334 } 335 336 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 337 IsaVersion Version = getIsaVersion(STI->getCPU()); 338 if (Version.Major >= 10) 339 return getAddressableNumSGPRs(STI); 340 if (Version.Major >= 8) 341 return 16; 342 return 8; 343 } 344 345 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 346 return 8; 347 } 348 349 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 350 IsaVersion Version = getIsaVersion(STI->getCPU()); 351 if (Version.Major >= 8) 352 return 800; 353 return 512; 354 } 355 356 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 357 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 358 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 359 360 IsaVersion Version = getIsaVersion(STI->getCPU()); 361 if (Version.Major >= 10) 362 return 106; 363 if (Version.Major >= 8) 364 return 102; 365 return 104; 366 } 367 368 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 369 assert(WavesPerEU != 0); 370 371 IsaVersion Version = getIsaVersion(STI->getCPU()); 372 if (Version.Major >= 10) 373 return 0; 374 375 if (WavesPerEU >= getMaxWavesPerEU(STI)) 376 return 0; 377 378 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 379 if (STI->getFeatureBits().test(FeatureTrapHandler)) 380 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 381 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 382 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 383 } 384 385 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 386 bool Addressable) { 387 assert(WavesPerEU != 0); 388 389 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 390 IsaVersion Version = getIsaVersion(STI->getCPU()); 391 if (Version.Major >= 10) 392 return Addressable ? AddressableNumSGPRs : 108; 393 if (Version.Major >= 8 && !Addressable) 394 AddressableNumSGPRs = 112; 395 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 396 if (STI->getFeatureBits().test(FeatureTrapHandler)) 397 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 398 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 399 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 400 } 401 402 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 403 bool FlatScrUsed, bool XNACKUsed) { 404 unsigned ExtraSGPRs = 0; 405 if (VCCUsed) 406 ExtraSGPRs = 2; 407 408 IsaVersion Version = getIsaVersion(STI->getCPU()); 409 if (Version.Major >= 10) 410 return ExtraSGPRs; 411 412 if (Version.Major < 8) { 413 if (FlatScrUsed) 414 ExtraSGPRs = 4; 415 } else { 416 if (XNACKUsed) 417 ExtraSGPRs = 4; 418 419 if (FlatScrUsed) 420 ExtraSGPRs = 6; 421 } 422 423 return ExtraSGPRs; 424 } 425 426 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 427 bool FlatScrUsed) { 428 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 429 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 430 } 431 432 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 433 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 434 // SGPRBlocks is actual number of SGPR blocks minus 1. 435 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 436 } 437 438 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 439 Optional<bool> EnableWavefrontSize32) { 440 bool IsWave32 = EnableWavefrontSize32 ? 441 *EnableWavefrontSize32 : 442 STI->getFeatureBits().test(FeatureWavefrontSize32); 443 return IsWave32 ? 8 : 4; 444 } 445 446 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 447 Optional<bool> EnableWavefrontSize32) { 448 return getVGPRAllocGranule(STI, EnableWavefrontSize32); 449 } 450 451 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 452 if (!isGFX10(*STI)) 453 return 256; 454 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 455 } 456 457 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 458 return 256; 459 } 460 461 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 462 assert(WavesPerEU != 0); 463 464 if (WavesPerEU >= getMaxWavesPerEU(STI)) 465 return 0; 466 unsigned MinNumVGPRs = 467 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 468 getVGPRAllocGranule(STI)) + 1; 469 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 470 } 471 472 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 473 assert(WavesPerEU != 0); 474 475 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 476 getVGPRAllocGranule(STI)); 477 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 478 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 479 } 480 481 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 482 Optional<bool> EnableWavefrontSize32) { 483 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 484 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 485 // VGPRBlocks is actual number of VGPR blocks minus 1. 486 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 487 } 488 489 } // end namespace IsaInfo 490 491 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 492 const MCSubtargetInfo *STI) { 493 IsaVersion Version = getIsaVersion(STI->getCPU()); 494 495 memset(&Header, 0, sizeof(Header)); 496 497 Header.amd_kernel_code_version_major = 1; 498 Header.amd_kernel_code_version_minor = 2; 499 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 500 Header.amd_machine_version_major = Version.Major; 501 Header.amd_machine_version_minor = Version.Minor; 502 Header.amd_machine_version_stepping = Version.Stepping; 503 Header.kernel_code_entry_byte_offset = sizeof(Header); 504 Header.wavefront_size = 6; 505 506 // If the code object does not support indirect functions, then the value must 507 // be 0xffffffff. 508 Header.call_convention = -1; 509 510 // These alignment values are specified in powers of two, so alignment = 511 // 2^n. The minimum alignment is 2^4 = 16. 512 Header.kernarg_segment_alignment = 4; 513 Header.group_segment_alignment = 4; 514 Header.private_segment_alignment = 4; 515 516 if (Version.Major >= 10) { 517 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 518 Header.wavefront_size = 5; 519 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 520 } 521 Header.compute_pgm_resource_registers |= 522 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 523 S_00B848_MEM_ORDERED(1); 524 } 525 } 526 527 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 528 const MCSubtargetInfo *STI) { 529 IsaVersion Version = getIsaVersion(STI->getCPU()); 530 531 amdhsa::kernel_descriptor_t KD; 532 memset(&KD, 0, sizeof(KD)); 533 534 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 535 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 536 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 537 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 538 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 539 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 540 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 541 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 542 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 543 if (Version.Major >= 10) { 544 AMDHSA_BITS_SET(KD.kernel_code_properties, 545 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 546 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 547 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 548 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 549 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 550 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 551 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 552 } 553 return KD; 554 } 555 556 bool isGroupSegment(const GlobalValue *GV) { 557 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 558 } 559 560 bool isGlobalSegment(const GlobalValue *GV) { 561 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 562 } 563 564 bool isReadOnlySegment(const GlobalValue *GV) { 565 unsigned AS = GV->getAddressSpace(); 566 return AS == AMDGPUAS::CONSTANT_ADDRESS || 567 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 568 } 569 570 bool shouldEmitConstantsToTextSection(const Triple &TT) { 571 return TT.getOS() == Triple::AMDPAL || TT.getArch() == Triple::r600; 572 } 573 574 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 575 Attribute A = F.getFnAttribute(Name); 576 int Result = Default; 577 578 if (A.isStringAttribute()) { 579 StringRef Str = A.getValueAsString(); 580 if (Str.getAsInteger(0, Result)) { 581 LLVMContext &Ctx = F.getContext(); 582 Ctx.emitError("can't parse integer attribute " + Name); 583 } 584 } 585 586 return Result; 587 } 588 589 std::pair<int, int> getIntegerPairAttribute(const Function &F, 590 StringRef Name, 591 std::pair<int, int> Default, 592 bool OnlyFirstRequired) { 593 Attribute A = F.getFnAttribute(Name); 594 if (!A.isStringAttribute()) 595 return Default; 596 597 LLVMContext &Ctx = F.getContext(); 598 std::pair<int, int> Ints = Default; 599 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 600 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 601 Ctx.emitError("can't parse first integer attribute " + Name); 602 return Default; 603 } 604 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 605 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 606 Ctx.emitError("can't parse second integer attribute " + Name); 607 return Default; 608 } 609 } 610 611 return Ints; 612 } 613 614 unsigned getVmcntBitMask(const IsaVersion &Version) { 615 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 616 if (Version.Major < 9) 617 return VmcntLo; 618 619 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 620 return VmcntLo | VmcntHi; 621 } 622 623 unsigned getExpcntBitMask(const IsaVersion &Version) { 624 return (1 << getExpcntBitWidth()) - 1; 625 } 626 627 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 628 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 629 } 630 631 unsigned getWaitcntBitMask(const IsaVersion &Version) { 632 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 633 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 634 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 635 getLgkmcntBitWidth(Version.Major)); 636 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 637 if (Version.Major < 9) 638 return Waitcnt; 639 640 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 641 return Waitcnt | VmcntHi; 642 } 643 644 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 645 unsigned VmcntLo = 646 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 647 if (Version.Major < 9) 648 return VmcntLo; 649 650 unsigned VmcntHi = 651 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 652 VmcntHi <<= getVmcntBitWidthLo(); 653 return VmcntLo | VmcntHi; 654 } 655 656 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 657 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 658 } 659 660 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 661 return unpackBits(Waitcnt, getLgkmcntBitShift(), 662 getLgkmcntBitWidth(Version.Major)); 663 } 664 665 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 666 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 667 Vmcnt = decodeVmcnt(Version, Waitcnt); 668 Expcnt = decodeExpcnt(Version, Waitcnt); 669 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 670 } 671 672 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 673 Waitcnt Decoded; 674 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 675 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 676 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 677 return Decoded; 678 } 679 680 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 681 unsigned Vmcnt) { 682 Waitcnt = 683 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 684 if (Version.Major < 9) 685 return Waitcnt; 686 687 Vmcnt >>= getVmcntBitWidthLo(); 688 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 689 } 690 691 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 692 unsigned Expcnt) { 693 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 694 } 695 696 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 697 unsigned Lgkmcnt) { 698 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 699 getLgkmcntBitWidth(Version.Major)); 700 } 701 702 unsigned encodeWaitcnt(const IsaVersion &Version, 703 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 704 unsigned Waitcnt = getWaitcntBitMask(Version); 705 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 706 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 707 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 708 return Waitcnt; 709 } 710 711 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 712 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 713 } 714 715 //===----------------------------------------------------------------------===// 716 // hwreg 717 //===----------------------------------------------------------------------===// 718 719 namespace Hwreg { 720 721 int64_t getHwregId(const StringRef Name) { 722 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 723 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 724 return Id; 725 } 726 return ID_UNKNOWN_; 727 } 728 729 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 730 if (isSI(STI) || isCI(STI) || isVI(STI)) 731 return ID_SYMBOLIC_FIRST_GFX9_; 732 else if (isGFX9(STI)) 733 return ID_SYMBOLIC_FIRST_GFX10_; 734 else 735 return ID_SYMBOLIC_LAST_; 736 } 737 738 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 739 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 740 IdSymbolic[Id]; 741 } 742 743 bool isValidHwreg(int64_t Id) { 744 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 745 } 746 747 bool isValidHwregOffset(int64_t Offset) { 748 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 749 } 750 751 bool isValidHwregWidth(int64_t Width) { 752 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 753 } 754 755 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 756 return (Id << ID_SHIFT_) | 757 (Offset << OFFSET_SHIFT_) | 758 ((Width - 1) << WIDTH_M1_SHIFT_); 759 } 760 761 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 762 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 763 } 764 765 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 766 Id = (Val & ID_MASK_) >> ID_SHIFT_; 767 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 768 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 769 } 770 771 } // namespace Hwreg 772 773 //===----------------------------------------------------------------------===// 774 // SendMsg 775 //===----------------------------------------------------------------------===// 776 777 namespace SendMsg { 778 779 int64_t getMsgId(const StringRef Name) { 780 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 781 if (IdSymbolic[i] && Name == IdSymbolic[i]) 782 return i; 783 } 784 return ID_UNKNOWN_; 785 } 786 787 static bool isValidMsgId(int64_t MsgId) { 788 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 789 } 790 791 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 792 if (Strict) { 793 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 794 return isGFX9(STI) || isGFX10(STI); 795 else 796 return isValidMsgId(MsgId); 797 } else { 798 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 799 } 800 } 801 802 StringRef getMsgName(int64_t MsgId) { 803 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 804 } 805 806 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 807 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 808 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 809 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 810 for (int i = F; i < L; ++i) { 811 if (Name == S[i]) { 812 return i; 813 } 814 } 815 return OP_UNKNOWN_; 816 } 817 818 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 819 820 if (!Strict) 821 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 822 823 switch(MsgId) 824 { 825 case ID_GS: 826 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 827 case ID_GS_DONE: 828 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 829 case ID_SYSMSG: 830 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 831 default: 832 return OpId == OP_NONE_; 833 } 834 } 835 836 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 837 assert(msgRequiresOp(MsgId)); 838 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 839 } 840 841 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 842 843 if (!Strict) 844 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 845 846 switch(MsgId) 847 { 848 case ID_GS: 849 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 850 case ID_GS_DONE: 851 return (OpId == OP_GS_NOP)? 852 (StreamId == STREAM_ID_NONE_) : 853 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 854 default: 855 return StreamId == STREAM_ID_NONE_; 856 } 857 } 858 859 bool msgRequiresOp(int64_t MsgId) { 860 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 861 } 862 863 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 864 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 865 } 866 867 void decodeMsg(unsigned Val, 868 uint16_t &MsgId, 869 uint16_t &OpId, 870 uint16_t &StreamId) { 871 MsgId = Val & ID_MASK_; 872 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 873 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 874 } 875 876 uint64_t encodeMsg(uint64_t MsgId, 877 uint64_t OpId, 878 uint64_t StreamId) { 879 return (MsgId << ID_SHIFT_) | 880 (OpId << OP_SHIFT_) | 881 (StreamId << STREAM_ID_SHIFT_); 882 } 883 884 } // namespace SendMsg 885 886 //===----------------------------------------------------------------------===// 887 // 888 //===----------------------------------------------------------------------===// 889 890 unsigned getInitialPSInputAddr(const Function &F) { 891 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 892 } 893 894 bool isShader(CallingConv::ID cc) { 895 switch(cc) { 896 case CallingConv::AMDGPU_VS: 897 case CallingConv::AMDGPU_LS: 898 case CallingConv::AMDGPU_HS: 899 case CallingConv::AMDGPU_ES: 900 case CallingConv::AMDGPU_GS: 901 case CallingConv::AMDGPU_PS: 902 case CallingConv::AMDGPU_CS: 903 return true; 904 default: 905 return false; 906 } 907 } 908 909 bool isCompute(CallingConv::ID cc) { 910 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 911 } 912 913 bool isEntryFunctionCC(CallingConv::ID CC) { 914 switch (CC) { 915 case CallingConv::AMDGPU_KERNEL: 916 case CallingConv::SPIR_KERNEL: 917 case CallingConv::AMDGPU_VS: 918 case CallingConv::AMDGPU_GS: 919 case CallingConv::AMDGPU_PS: 920 case CallingConv::AMDGPU_CS: 921 case CallingConv::AMDGPU_ES: 922 case CallingConv::AMDGPU_HS: 923 case CallingConv::AMDGPU_LS: 924 return true; 925 default: 926 return false; 927 } 928 } 929 930 bool hasXNACK(const MCSubtargetInfo &STI) { 931 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 932 } 933 934 bool hasSRAMECC(const MCSubtargetInfo &STI) { 935 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 936 } 937 938 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 939 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 940 } 941 942 bool hasGFX10A16(const MCSubtargetInfo &STI) { 943 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 944 } 945 946 bool hasPackedD16(const MCSubtargetInfo &STI) { 947 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 948 } 949 950 bool isSI(const MCSubtargetInfo &STI) { 951 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 952 } 953 954 bool isCI(const MCSubtargetInfo &STI) { 955 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 956 } 957 958 bool isVI(const MCSubtargetInfo &STI) { 959 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 960 } 961 962 bool isGFX9(const MCSubtargetInfo &STI) { 963 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 964 } 965 966 bool isGFX10(const MCSubtargetInfo &STI) { 967 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 968 } 969 970 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 971 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 972 } 973 974 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 975 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 976 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 977 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 978 Reg == AMDGPU::SCC; 979 } 980 981 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 982 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 983 if (*R == Reg1) return true; 984 } 985 return false; 986 } 987 988 #define MAP_REG2REG \ 989 using namespace AMDGPU; \ 990 switch(Reg) { \ 991 default: return Reg; \ 992 CASE_CI_VI(FLAT_SCR) \ 993 CASE_CI_VI(FLAT_SCR_LO) \ 994 CASE_CI_VI(FLAT_SCR_HI) \ 995 CASE_VI_GFX9_GFX10(TTMP0) \ 996 CASE_VI_GFX9_GFX10(TTMP1) \ 997 CASE_VI_GFX9_GFX10(TTMP2) \ 998 CASE_VI_GFX9_GFX10(TTMP3) \ 999 CASE_VI_GFX9_GFX10(TTMP4) \ 1000 CASE_VI_GFX9_GFX10(TTMP5) \ 1001 CASE_VI_GFX9_GFX10(TTMP6) \ 1002 CASE_VI_GFX9_GFX10(TTMP7) \ 1003 CASE_VI_GFX9_GFX10(TTMP8) \ 1004 CASE_VI_GFX9_GFX10(TTMP9) \ 1005 CASE_VI_GFX9_GFX10(TTMP10) \ 1006 CASE_VI_GFX9_GFX10(TTMP11) \ 1007 CASE_VI_GFX9_GFX10(TTMP12) \ 1008 CASE_VI_GFX9_GFX10(TTMP13) \ 1009 CASE_VI_GFX9_GFX10(TTMP14) \ 1010 CASE_VI_GFX9_GFX10(TTMP15) \ 1011 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 1012 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 1013 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 1014 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 1015 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 1016 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 1017 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 1018 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 1019 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 1020 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 1021 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 1022 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 1023 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1024 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1025 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1026 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1027 } 1028 1029 #define CASE_CI_VI(node) \ 1030 assert(!isSI(STI)); \ 1031 case node: return isCI(STI) ? node##_ci : node##_vi; 1032 1033 #define CASE_VI_GFX9_GFX10(node) \ 1034 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 1035 1036 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1037 if (STI.getTargetTriple().getArch() == Triple::r600) 1038 return Reg; 1039 MAP_REG2REG 1040 } 1041 1042 #undef CASE_CI_VI 1043 #undef CASE_VI_GFX9_GFX10 1044 1045 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1046 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 1047 1048 unsigned mc2PseudoReg(unsigned Reg) { 1049 MAP_REG2REG 1050 } 1051 1052 #undef CASE_CI_VI 1053 #undef CASE_VI_GFX9_GFX10 1054 #undef MAP_REG2REG 1055 1056 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1057 assert(OpNo < Desc.NumOperands); 1058 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1059 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1060 OpType <= AMDGPU::OPERAND_SRC_LAST; 1061 } 1062 1063 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1064 assert(OpNo < Desc.NumOperands); 1065 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1066 switch (OpType) { 1067 case AMDGPU::OPERAND_REG_IMM_FP32: 1068 case AMDGPU::OPERAND_REG_IMM_FP64: 1069 case AMDGPU::OPERAND_REG_IMM_FP16: 1070 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1071 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1072 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1073 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1074 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1075 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1076 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1077 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1078 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1079 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1080 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1081 return true; 1082 default: 1083 return false; 1084 } 1085 } 1086 1087 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1088 assert(OpNo < Desc.NumOperands); 1089 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1090 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1091 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1092 } 1093 1094 // Avoid using MCRegisterClass::getSize, since that function will go away 1095 // (move from MC* level to Target* level). Return size in bits. 1096 unsigned getRegBitWidth(unsigned RCID) { 1097 switch (RCID) { 1098 case AMDGPU::VGPR_LO16RegClassID: 1099 case AMDGPU::VGPR_HI16RegClassID: 1100 case AMDGPU::SGPR_LO16RegClassID: 1101 case AMDGPU::AGPR_LO16RegClassID: 1102 return 16; 1103 case AMDGPU::SGPR_32RegClassID: 1104 case AMDGPU::VGPR_32RegClassID: 1105 case AMDGPU::VRegOrLds_32RegClassID: 1106 case AMDGPU::AGPR_32RegClassID: 1107 case AMDGPU::VS_32RegClassID: 1108 case AMDGPU::AV_32RegClassID: 1109 case AMDGPU::SReg_32RegClassID: 1110 case AMDGPU::SReg_32_XM0RegClassID: 1111 case AMDGPU::SRegOrLds_32RegClassID: 1112 return 32; 1113 case AMDGPU::SGPR_64RegClassID: 1114 case AMDGPU::VS_64RegClassID: 1115 case AMDGPU::AV_64RegClassID: 1116 case AMDGPU::SReg_64RegClassID: 1117 case AMDGPU::VReg_64RegClassID: 1118 case AMDGPU::AReg_64RegClassID: 1119 case AMDGPU::SReg_64_XEXECRegClassID: 1120 return 64; 1121 case AMDGPU::SGPR_96RegClassID: 1122 case AMDGPU::SReg_96RegClassID: 1123 case AMDGPU::VReg_96RegClassID: 1124 case AMDGPU::AReg_96RegClassID: 1125 return 96; 1126 case AMDGPU::SGPR_128RegClassID: 1127 case AMDGPU::SReg_128RegClassID: 1128 case AMDGPU::VReg_128RegClassID: 1129 case AMDGPU::AReg_128RegClassID: 1130 return 128; 1131 case AMDGPU::SGPR_160RegClassID: 1132 case AMDGPU::SReg_160RegClassID: 1133 case AMDGPU::VReg_160RegClassID: 1134 case AMDGPU::AReg_160RegClassID: 1135 return 160; 1136 case AMDGPU::SGPR_192RegClassID: 1137 case AMDGPU::SReg_192RegClassID: 1138 case AMDGPU::VReg_192RegClassID: 1139 case AMDGPU::AReg_192RegClassID: 1140 return 192; 1141 case AMDGPU::SGPR_256RegClassID: 1142 case AMDGPU::SReg_256RegClassID: 1143 case AMDGPU::VReg_256RegClassID: 1144 case AMDGPU::AReg_256RegClassID: 1145 return 256; 1146 case AMDGPU::SGPR_512RegClassID: 1147 case AMDGPU::SReg_512RegClassID: 1148 case AMDGPU::VReg_512RegClassID: 1149 case AMDGPU::AReg_512RegClassID: 1150 return 512; 1151 case AMDGPU::SGPR_1024RegClassID: 1152 case AMDGPU::SReg_1024RegClassID: 1153 case AMDGPU::VReg_1024RegClassID: 1154 case AMDGPU::AReg_1024RegClassID: 1155 return 1024; 1156 default: 1157 llvm_unreachable("Unexpected register class"); 1158 } 1159 } 1160 1161 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1162 return getRegBitWidth(RC.getID()); 1163 } 1164 1165 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1166 unsigned OpNo) { 1167 assert(OpNo < Desc.NumOperands); 1168 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1169 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1170 } 1171 1172 bool isInlinableIntLiteral(int64_t Literal) { 1173 return Literal >= -16 && Literal <= 64; 1174 } 1175 1176 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1177 if (isInlinableIntLiteral(Literal)) 1178 return true; 1179 1180 uint64_t Val = static_cast<uint64_t>(Literal); 1181 return (Val == DoubleToBits(0.0)) || 1182 (Val == DoubleToBits(1.0)) || 1183 (Val == DoubleToBits(-1.0)) || 1184 (Val == DoubleToBits(0.5)) || 1185 (Val == DoubleToBits(-0.5)) || 1186 (Val == DoubleToBits(2.0)) || 1187 (Val == DoubleToBits(-2.0)) || 1188 (Val == DoubleToBits(4.0)) || 1189 (Val == DoubleToBits(-4.0)) || 1190 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1191 } 1192 1193 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1194 if (isInlinableIntLiteral(Literal)) 1195 return true; 1196 1197 // The actual type of the operand does not seem to matter as long 1198 // as the bits match one of the inline immediate values. For example: 1199 // 1200 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1201 // so it is a legal inline immediate. 1202 // 1203 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1204 // floating-point, so it is a legal inline immediate. 1205 1206 uint32_t Val = static_cast<uint32_t>(Literal); 1207 return (Val == FloatToBits(0.0f)) || 1208 (Val == FloatToBits(1.0f)) || 1209 (Val == FloatToBits(-1.0f)) || 1210 (Val == FloatToBits(0.5f)) || 1211 (Val == FloatToBits(-0.5f)) || 1212 (Val == FloatToBits(2.0f)) || 1213 (Val == FloatToBits(-2.0f)) || 1214 (Val == FloatToBits(4.0f)) || 1215 (Val == FloatToBits(-4.0f)) || 1216 (Val == 0x3e22f983 && HasInv2Pi); 1217 } 1218 1219 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1220 if (!HasInv2Pi) 1221 return false; 1222 1223 if (isInlinableIntLiteral(Literal)) 1224 return true; 1225 1226 uint16_t Val = static_cast<uint16_t>(Literal); 1227 return Val == 0x3C00 || // 1.0 1228 Val == 0xBC00 || // -1.0 1229 Val == 0x3800 || // 0.5 1230 Val == 0xB800 || // -0.5 1231 Val == 0x4000 || // 2.0 1232 Val == 0xC000 || // -2.0 1233 Val == 0x4400 || // 4.0 1234 Val == 0xC400 || // -4.0 1235 Val == 0x3118; // 1/2pi 1236 } 1237 1238 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1239 assert(HasInv2Pi); 1240 1241 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1242 int16_t Trunc = static_cast<int16_t>(Literal); 1243 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1244 } 1245 if (!(Literal & 0xffff)) 1246 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1247 1248 int16_t Lo16 = static_cast<int16_t>(Literal); 1249 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1250 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1251 } 1252 1253 bool isArgPassedInSGPR(const Argument *A) { 1254 const Function *F = A->getParent(); 1255 1256 // Arguments to compute shaders are never a source of divergence. 1257 CallingConv::ID CC = F->getCallingConv(); 1258 switch (CC) { 1259 case CallingConv::AMDGPU_KERNEL: 1260 case CallingConv::SPIR_KERNEL: 1261 return true; 1262 case CallingConv::AMDGPU_VS: 1263 case CallingConv::AMDGPU_LS: 1264 case CallingConv::AMDGPU_HS: 1265 case CallingConv::AMDGPU_ES: 1266 case CallingConv::AMDGPU_GS: 1267 case CallingConv::AMDGPU_PS: 1268 case CallingConv::AMDGPU_CS: 1269 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1270 // Everything else is in VGPRs. 1271 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1272 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1273 default: 1274 // TODO: Should calls support inreg for SGPR inputs? 1275 return false; 1276 } 1277 } 1278 1279 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1280 return isGCN3Encoding(ST) || isGFX10(ST); 1281 } 1282 1283 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1284 return isGFX9(ST) || isGFX10(ST); 1285 } 1286 1287 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1288 int64_t EncodedOffset) { 1289 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1290 : isUInt<8>(EncodedOffset); 1291 } 1292 1293 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1294 int64_t EncodedOffset, 1295 bool IsBuffer) { 1296 return !IsBuffer && 1297 hasSMRDSignedImmOffset(ST) && 1298 isInt<21>(EncodedOffset); 1299 } 1300 1301 static bool isDwordAligned(uint64_t ByteOffset) { 1302 return (ByteOffset & 3) == 0; 1303 } 1304 1305 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1306 uint64_t ByteOffset) { 1307 if (hasSMEMByteOffset(ST)) 1308 return ByteOffset; 1309 1310 assert(isDwordAligned(ByteOffset)); 1311 return ByteOffset >> 2; 1312 } 1313 1314 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1315 int64_t ByteOffset, bool IsBuffer) { 1316 // The signed version is always a byte offset. 1317 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1318 assert(hasSMEMByteOffset(ST)); 1319 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1320 } 1321 1322 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1323 return None; 1324 1325 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1326 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1327 ? Optional<int64_t>(EncodedOffset) 1328 : None; 1329 } 1330 1331 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1332 int64_t ByteOffset) { 1333 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1334 return None; 1335 1336 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1337 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1338 } 1339 1340 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1341 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1342 // hardware bug needing a workaround). 1343 // 1344 // The required alignment ensures that individual address components remain 1345 // aligned if they are aligned to begin with. It also ensures that additional 1346 // offsets within the given alignment can be added to the resulting ImmOffset. 1347 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1348 const GCNSubtarget *Subtarget, uint32_t Align) { 1349 const uint32_t MaxImm = alignDown(4095, Align); 1350 uint32_t Overflow = 0; 1351 1352 if (Imm > MaxImm) { 1353 if (Imm <= MaxImm + 64) { 1354 // Use an SOffset inline constant for 4..64 1355 Overflow = Imm - MaxImm; 1356 Imm = MaxImm; 1357 } else { 1358 // Try to keep the same value in SOffset for adjacent loads, so that 1359 // the corresponding register contents can be re-used. 1360 // 1361 // Load values with all low-bits (except for alignment bits) set into 1362 // SOffset, so that a larger range of values can be covered using 1363 // s_movk_i32. 1364 // 1365 // Atomic operations fail to work correctly when individual address 1366 // components are unaligned, even if their sum is aligned. 1367 uint32_t High = (Imm + Align) & ~4095; 1368 uint32_t Low = (Imm + Align) & 4095; 1369 Imm = Low; 1370 Overflow = High - Align; 1371 } 1372 } 1373 1374 // There is a hardware bug in SI and CI which prevents address clamping in 1375 // MUBUF instructions from working correctly with SOffsets. The immediate 1376 // offset is unaffected. 1377 if (Overflow > 0 && 1378 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1379 return false; 1380 1381 ImmOffset = Imm; 1382 SOffset = Overflow; 1383 return true; 1384 } 1385 1386 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1387 *this = getDefaultForCallingConv(F.getCallingConv()); 1388 1389 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1390 if (!IEEEAttr.empty()) 1391 IEEE = IEEEAttr == "true"; 1392 1393 StringRef DX10ClampAttr 1394 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1395 if (!DX10ClampAttr.empty()) 1396 DX10Clamp = DX10ClampAttr == "true"; 1397 1398 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1399 if (!DenormF32Attr.empty()) { 1400 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1401 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1402 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1403 } 1404 1405 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1406 if (!DenormAttr.empty()) { 1407 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1408 1409 if (DenormF32Attr.empty()) { 1410 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1411 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1412 } 1413 1414 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1415 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1416 } 1417 } 1418 1419 namespace { 1420 1421 struct SourceOfDivergence { 1422 unsigned Intr; 1423 }; 1424 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1425 1426 #define GET_SourcesOfDivergence_IMPL 1427 #define GET_Gfx9BufferFormat_IMPL 1428 #define GET_Gfx10PlusBufferFormat_IMPL 1429 #include "AMDGPUGenSearchableTables.inc" 1430 1431 } // end anonymous namespace 1432 1433 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1434 return lookupSourceOfDivergence(IntrID); 1435 } 1436 1437 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 1438 uint8_t NumComponents, 1439 uint8_t NumFormat, 1440 const MCSubtargetInfo &STI) { 1441 return isGFX10(STI) 1442 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 1443 NumFormat) 1444 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 1445 } 1446 1447 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 1448 const MCSubtargetInfo &STI) { 1449 return isGFX10(STI) ? getGfx10PlusBufferFormatInfo(Format) 1450 : getGfx9BufferFormatInfo(Format); 1451 } 1452 1453 } // namespace AMDGPU 1454 } // namespace llvm 1455