1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPUTargetTransformInfo.h" 11 #include "AMDGPU.h" 12 #include "SIDefines.h" 13 #include "AMDGPUAsmUtils.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 89 return (VersionMajor >= 10) ? 6 : 4; 90 } 91 92 /// \returns Vmcnt bit shift (higher bits). 93 unsigned getVmcntBitShiftHi() { return 14; } 94 95 /// \returns Vmcnt bit width (higher bits). 96 unsigned getVmcntBitWidthHi() { return 2; } 97 98 } // end namespace anonymous 99 100 namespace llvm { 101 102 namespace AMDGPU { 103 104 #define GET_MIMGBaseOpcodesTable_IMPL 105 #define GET_MIMGDimInfoTable_IMPL 106 #define GET_MIMGInfoTable_IMPL 107 #define GET_MIMGLZMappingTable_IMPL 108 #define GET_MIMGMIPMappingTable_IMPL 109 #include "AMDGPUGenSearchableTables.inc" 110 111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 112 unsigned VDataDwords, unsigned VAddrDwords) { 113 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 114 VDataDwords, VAddrDwords); 115 return Info ? Info->Opcode : -1; 116 } 117 118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 119 const MIMGInfo *Info = getMIMGInfo(Opc); 120 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 struct MUBUFInfo { 132 uint16_t Opcode; 133 uint16_t BaseOpcode; 134 uint8_t elements; 135 bool has_vaddr; 136 bool has_srsrc; 137 bool has_soffset; 138 }; 139 140 struct MTBUFInfo { 141 uint16_t Opcode; 142 uint16_t BaseOpcode; 143 uint8_t elements; 144 bool has_vaddr; 145 bool has_srsrc; 146 bool has_soffset; 147 }; 148 149 #define GET_MTBUFInfoTable_DECL 150 #define GET_MTBUFInfoTable_IMPL 151 #define GET_MUBUFInfoTable_DECL 152 #define GET_MUBUFInfoTable_IMPL 153 #include "AMDGPUGenSearchableTables.inc" 154 155 int getMTBUFBaseOpcode(unsigned Opc) { 156 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 157 return Info ? Info->BaseOpcode : -1; 158 } 159 160 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 161 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 162 return Info ? Info->Opcode : -1; 163 } 164 165 int getMTBUFElements(unsigned Opc) { 166 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 167 return Info ? Info->elements : 0; 168 } 169 170 bool getMTBUFHasVAddr(unsigned Opc) { 171 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 172 return Info ? Info->has_vaddr : false; 173 } 174 175 bool getMTBUFHasSrsrc(unsigned Opc) { 176 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 177 return Info ? Info->has_srsrc : false; 178 } 179 180 bool getMTBUFHasSoffset(unsigned Opc) { 181 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 182 return Info ? Info->has_soffset : false; 183 } 184 185 int getMUBUFBaseOpcode(unsigned Opc) { 186 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 187 return Info ? Info->BaseOpcode : -1; 188 } 189 190 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 191 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 192 return Info ? Info->Opcode : -1; 193 } 194 195 int getMUBUFElements(unsigned Opc) { 196 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 197 return Info ? Info->elements : 0; 198 } 199 200 bool getMUBUFHasVAddr(unsigned Opc) { 201 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 202 return Info ? Info->has_vaddr : false; 203 } 204 205 bool getMUBUFHasSrsrc(unsigned Opc) { 206 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 207 return Info ? Info->has_srsrc : false; 208 } 209 210 bool getMUBUFHasSoffset(unsigned Opc) { 211 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 212 return Info ? Info->has_soffset : false; 213 } 214 215 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 216 // header files, so we need to wrap it in a function that takes unsigned 217 // instead. 218 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 219 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 220 } 221 222 namespace IsaInfo { 223 224 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 225 auto TargetTriple = STI->getTargetTriple(); 226 auto Version = getIsaVersion(STI->getCPU()); 227 228 Stream << TargetTriple.getArchName() << '-' 229 << TargetTriple.getVendorName() << '-' 230 << TargetTriple.getOSName() << '-' 231 << TargetTriple.getEnvironmentName() << '-' 232 << "gfx" 233 << Version.Major 234 << Version.Minor 235 << Version.Stepping; 236 237 if (hasXNACK(*STI)) 238 Stream << "+xnack"; 239 if (hasSRAMECC(*STI)) 240 Stream << "+sram-ecc"; 241 242 Stream.flush(); 243 } 244 245 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 246 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 247 STI->getFeatureBits().test(FeatureCodeObjectV3); 248 } 249 250 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 251 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 252 return 16; 253 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 254 return 32; 255 256 return 64; 257 } 258 259 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 260 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 261 return 32768; 262 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 263 return 65536; 264 265 return 0; 266 } 267 268 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 269 return 4; 270 } 271 272 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 273 unsigned FlatWorkGroupSize) { 274 assert(FlatWorkGroupSize != 0); 275 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 276 return 8; 277 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 278 if (N == 1) 279 return 40; 280 N = 40 / N; 281 return std::min(N, 16u); 282 } 283 284 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 285 return getMaxWavesPerEU(STI) * getEUsPerCU(STI); 286 } 287 288 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 289 unsigned FlatWorkGroupSize) { 290 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 291 } 292 293 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 294 return 1; 295 } 296 297 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 298 // FIXME: Need to take scratch memory into account. 299 if (!isGFX10(*STI)) 300 return 10; 301 return 20; 302 } 303 304 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 305 unsigned FlatWorkGroupSize) { 306 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 307 getEUsPerCU(STI)) / getEUsPerCU(STI); 308 } 309 310 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 311 return 1; 312 } 313 314 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 315 return 2048; 316 } 317 318 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 319 unsigned FlatWorkGroupSize) { 320 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 321 getWavefrontSize(STI); 322 } 323 324 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 325 IsaVersion Version = getIsaVersion(STI->getCPU()); 326 if (Version.Major >= 10) 327 return getAddressableNumSGPRs(STI); 328 if (Version.Major >= 8) 329 return 16; 330 return 8; 331 } 332 333 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 334 return 8; 335 } 336 337 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 338 IsaVersion Version = getIsaVersion(STI->getCPU()); 339 if (Version.Major >= 8) 340 return 800; 341 return 512; 342 } 343 344 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 345 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 346 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 347 348 IsaVersion Version = getIsaVersion(STI->getCPU()); 349 if (Version.Major >= 10) 350 return 106; 351 if (Version.Major >= 8) 352 return 102; 353 return 104; 354 } 355 356 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 357 assert(WavesPerEU != 0); 358 359 IsaVersion Version = getIsaVersion(STI->getCPU()); 360 if (Version.Major >= 10) 361 return 0; 362 363 if (WavesPerEU >= getMaxWavesPerEU(STI)) 364 return 0; 365 366 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 367 if (STI->getFeatureBits().test(FeatureTrapHandler)) 368 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 369 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 370 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 371 } 372 373 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 374 bool Addressable) { 375 assert(WavesPerEU != 0); 376 377 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 378 IsaVersion Version = getIsaVersion(STI->getCPU()); 379 if (Version.Major >= 10) 380 return Addressable ? AddressableNumSGPRs : 108; 381 if (Version.Major >= 8 && !Addressable) 382 AddressableNumSGPRs = 112; 383 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 384 if (STI->getFeatureBits().test(FeatureTrapHandler)) 385 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 386 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 387 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 388 } 389 390 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 391 bool FlatScrUsed, bool XNACKUsed) { 392 unsigned ExtraSGPRs = 0; 393 if (VCCUsed) 394 ExtraSGPRs = 2; 395 396 IsaVersion Version = getIsaVersion(STI->getCPU()); 397 if (Version.Major >= 10) 398 return ExtraSGPRs; 399 400 if (Version.Major < 8) { 401 if (FlatScrUsed) 402 ExtraSGPRs = 4; 403 } else { 404 if (XNACKUsed) 405 ExtraSGPRs = 4; 406 407 if (FlatScrUsed) 408 ExtraSGPRs = 6; 409 } 410 411 return ExtraSGPRs; 412 } 413 414 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 415 bool FlatScrUsed) { 416 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 417 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 418 } 419 420 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 421 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 422 // SGPRBlocks is actual number of SGPR blocks minus 1. 423 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 424 } 425 426 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 427 Optional<bool> EnableWavefrontSize32) { 428 bool IsWave32 = EnableWavefrontSize32 ? 429 *EnableWavefrontSize32 : 430 STI->getFeatureBits().test(FeatureWavefrontSize32); 431 return IsWave32 ? 8 : 4; 432 } 433 434 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 435 Optional<bool> EnableWavefrontSize32) { 436 return getVGPRAllocGranule(STI, EnableWavefrontSize32); 437 } 438 439 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 440 if (!isGFX10(*STI)) 441 return 256; 442 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 443 } 444 445 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 446 return 256; 447 } 448 449 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 450 assert(WavesPerEU != 0); 451 452 if (WavesPerEU >= getMaxWavesPerEU(STI)) 453 return 0; 454 unsigned MinNumVGPRs = 455 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 456 getVGPRAllocGranule(STI)) + 1; 457 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 458 } 459 460 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 461 assert(WavesPerEU != 0); 462 463 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 464 getVGPRAllocGranule(STI)); 465 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 466 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 467 } 468 469 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 470 Optional<bool> EnableWavefrontSize32) { 471 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 472 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 473 // VGPRBlocks is actual number of VGPR blocks minus 1. 474 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 475 } 476 477 } // end namespace IsaInfo 478 479 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 480 const MCSubtargetInfo *STI) { 481 IsaVersion Version = getIsaVersion(STI->getCPU()); 482 483 memset(&Header, 0, sizeof(Header)); 484 485 Header.amd_kernel_code_version_major = 1; 486 Header.amd_kernel_code_version_minor = 2; 487 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 488 Header.amd_machine_version_major = Version.Major; 489 Header.amd_machine_version_minor = Version.Minor; 490 Header.amd_machine_version_stepping = Version.Stepping; 491 Header.kernel_code_entry_byte_offset = sizeof(Header); 492 Header.wavefront_size = 6; 493 494 // If the code object does not support indirect functions, then the value must 495 // be 0xffffffff. 496 Header.call_convention = -1; 497 498 // These alignment values are specified in powers of two, so alignment = 499 // 2^n. The minimum alignment is 2^4 = 16. 500 Header.kernarg_segment_alignment = 4; 501 Header.group_segment_alignment = 4; 502 Header.private_segment_alignment = 4; 503 504 if (Version.Major >= 10) { 505 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 506 Header.wavefront_size = 5; 507 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 508 } 509 Header.compute_pgm_resource_registers |= 510 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 511 S_00B848_MEM_ORDERED(1); 512 } 513 } 514 515 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 516 const MCSubtargetInfo *STI) { 517 IsaVersion Version = getIsaVersion(STI->getCPU()); 518 519 amdhsa::kernel_descriptor_t KD; 520 memset(&KD, 0, sizeof(KD)); 521 522 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 523 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 524 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 525 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 526 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 527 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 528 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 529 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 530 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 531 if (Version.Major >= 10) { 532 AMDHSA_BITS_SET(KD.kernel_code_properties, 533 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 534 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 535 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 536 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 537 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 538 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 539 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 540 } 541 return KD; 542 } 543 544 bool isGroupSegment(const GlobalValue *GV) { 545 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 546 } 547 548 bool isGlobalSegment(const GlobalValue *GV) { 549 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 550 } 551 552 bool isReadOnlySegment(const GlobalValue *GV) { 553 unsigned AS = GV->getAddressSpace(); 554 return AS == AMDGPUAS::CONSTANT_ADDRESS || 555 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 556 } 557 558 bool shouldEmitConstantsToTextSection(const Triple &TT) { 559 return TT.getOS() == Triple::AMDPAL; 560 } 561 562 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 563 Attribute A = F.getFnAttribute(Name); 564 int Result = Default; 565 566 if (A.isStringAttribute()) { 567 StringRef Str = A.getValueAsString(); 568 if (Str.getAsInteger(0, Result)) { 569 LLVMContext &Ctx = F.getContext(); 570 Ctx.emitError("can't parse integer attribute " + Name); 571 } 572 } 573 574 return Result; 575 } 576 577 std::pair<int, int> getIntegerPairAttribute(const Function &F, 578 StringRef Name, 579 std::pair<int, int> Default, 580 bool OnlyFirstRequired) { 581 Attribute A = F.getFnAttribute(Name); 582 if (!A.isStringAttribute()) 583 return Default; 584 585 LLVMContext &Ctx = F.getContext(); 586 std::pair<int, int> Ints = Default; 587 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 588 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 589 Ctx.emitError("can't parse first integer attribute " + Name); 590 return Default; 591 } 592 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 593 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 594 Ctx.emitError("can't parse second integer attribute " + Name); 595 return Default; 596 } 597 } 598 599 return Ints; 600 } 601 602 unsigned getVmcntBitMask(const IsaVersion &Version) { 603 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 604 if (Version.Major < 9) 605 return VmcntLo; 606 607 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 608 return VmcntLo | VmcntHi; 609 } 610 611 unsigned getExpcntBitMask(const IsaVersion &Version) { 612 return (1 << getExpcntBitWidth()) - 1; 613 } 614 615 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 616 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 617 } 618 619 unsigned getWaitcntBitMask(const IsaVersion &Version) { 620 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 621 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 622 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 623 getLgkmcntBitWidth(Version.Major)); 624 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 625 if (Version.Major < 9) 626 return Waitcnt; 627 628 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 629 return Waitcnt | VmcntHi; 630 } 631 632 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 633 unsigned VmcntLo = 634 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 635 if (Version.Major < 9) 636 return VmcntLo; 637 638 unsigned VmcntHi = 639 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 640 VmcntHi <<= getVmcntBitWidthLo(); 641 return VmcntLo | VmcntHi; 642 } 643 644 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 645 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 646 } 647 648 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 649 return unpackBits(Waitcnt, getLgkmcntBitShift(), 650 getLgkmcntBitWidth(Version.Major)); 651 } 652 653 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 654 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 655 Vmcnt = decodeVmcnt(Version, Waitcnt); 656 Expcnt = decodeExpcnt(Version, Waitcnt); 657 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 658 } 659 660 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 661 Waitcnt Decoded; 662 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 663 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 664 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 665 return Decoded; 666 } 667 668 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 669 unsigned Vmcnt) { 670 Waitcnt = 671 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 672 if (Version.Major < 9) 673 return Waitcnt; 674 675 Vmcnt >>= getVmcntBitWidthLo(); 676 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 677 } 678 679 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 680 unsigned Expcnt) { 681 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 682 } 683 684 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 685 unsigned Lgkmcnt) { 686 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 687 getLgkmcntBitWidth(Version.Major)); 688 } 689 690 unsigned encodeWaitcnt(const IsaVersion &Version, 691 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 692 unsigned Waitcnt = getWaitcntBitMask(Version); 693 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 694 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 695 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 696 return Waitcnt; 697 } 698 699 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 700 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 701 } 702 703 //===----------------------------------------------------------------------===// 704 // hwreg 705 //===----------------------------------------------------------------------===// 706 707 namespace Hwreg { 708 709 int64_t getHwregId(const StringRef Name) { 710 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 711 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 712 return Id; 713 } 714 return ID_UNKNOWN_; 715 } 716 717 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 718 if (isSI(STI) || isCI(STI) || isVI(STI)) 719 return ID_SYMBOLIC_FIRST_GFX9_; 720 else if (isGFX9(STI)) 721 return ID_SYMBOLIC_FIRST_GFX10_; 722 else 723 return ID_SYMBOLIC_LAST_; 724 } 725 726 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 727 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 728 IdSymbolic[Id]; 729 } 730 731 bool isValidHwreg(int64_t Id) { 732 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 733 } 734 735 bool isValidHwregOffset(int64_t Offset) { 736 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 737 } 738 739 bool isValidHwregWidth(int64_t Width) { 740 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 741 } 742 743 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 744 return (Id << ID_SHIFT_) | 745 (Offset << OFFSET_SHIFT_) | 746 ((Width - 1) << WIDTH_M1_SHIFT_); 747 } 748 749 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 750 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 751 } 752 753 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 754 Id = (Val & ID_MASK_) >> ID_SHIFT_; 755 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 756 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 757 } 758 759 } // namespace Hwreg 760 761 //===----------------------------------------------------------------------===// 762 // SendMsg 763 //===----------------------------------------------------------------------===// 764 765 namespace SendMsg { 766 767 int64_t getMsgId(const StringRef Name) { 768 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 769 if (IdSymbolic[i] && Name == IdSymbolic[i]) 770 return i; 771 } 772 return ID_UNKNOWN_; 773 } 774 775 static bool isValidMsgId(int64_t MsgId) { 776 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 777 } 778 779 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 780 if (Strict) { 781 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 782 return isGFX9(STI) || isGFX10(STI); 783 else 784 return isValidMsgId(MsgId); 785 } else { 786 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 787 } 788 } 789 790 StringRef getMsgName(int64_t MsgId) { 791 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 792 } 793 794 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 795 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 796 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 797 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 798 for (int i = F; i < L; ++i) { 799 if (Name == S[i]) { 800 return i; 801 } 802 } 803 return OP_UNKNOWN_; 804 } 805 806 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 807 808 if (!Strict) 809 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 810 811 switch(MsgId) 812 { 813 case ID_GS: 814 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 815 case ID_GS_DONE: 816 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 817 case ID_SYSMSG: 818 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 819 default: 820 return OpId == OP_NONE_; 821 } 822 } 823 824 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 825 assert(msgRequiresOp(MsgId)); 826 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 827 } 828 829 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 830 831 if (!Strict) 832 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 833 834 switch(MsgId) 835 { 836 case ID_GS: 837 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 838 case ID_GS_DONE: 839 return (OpId == OP_GS_NOP)? 840 (StreamId == STREAM_ID_NONE_) : 841 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 842 default: 843 return StreamId == STREAM_ID_NONE_; 844 } 845 } 846 847 bool msgRequiresOp(int64_t MsgId) { 848 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 849 } 850 851 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 852 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 853 } 854 855 void decodeMsg(unsigned Val, 856 uint16_t &MsgId, 857 uint16_t &OpId, 858 uint16_t &StreamId) { 859 MsgId = Val & ID_MASK_; 860 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 861 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 862 } 863 864 uint64_t encodeMsg(uint64_t MsgId, 865 uint64_t OpId, 866 uint64_t StreamId) { 867 return (MsgId << ID_SHIFT_) | 868 (OpId << OP_SHIFT_) | 869 (StreamId << STREAM_ID_SHIFT_); 870 } 871 872 } // namespace SendMsg 873 874 //===----------------------------------------------------------------------===// 875 // 876 //===----------------------------------------------------------------------===// 877 878 unsigned getInitialPSInputAddr(const Function &F) { 879 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 880 } 881 882 bool isShader(CallingConv::ID cc) { 883 switch(cc) { 884 case CallingConv::AMDGPU_VS: 885 case CallingConv::AMDGPU_LS: 886 case CallingConv::AMDGPU_HS: 887 case CallingConv::AMDGPU_ES: 888 case CallingConv::AMDGPU_GS: 889 case CallingConv::AMDGPU_PS: 890 case CallingConv::AMDGPU_CS: 891 return true; 892 default: 893 return false; 894 } 895 } 896 897 bool isCompute(CallingConv::ID cc) { 898 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 899 } 900 901 bool isEntryFunctionCC(CallingConv::ID CC) { 902 switch (CC) { 903 case CallingConv::AMDGPU_KERNEL: 904 case CallingConv::SPIR_KERNEL: 905 case CallingConv::AMDGPU_VS: 906 case CallingConv::AMDGPU_GS: 907 case CallingConv::AMDGPU_PS: 908 case CallingConv::AMDGPU_CS: 909 case CallingConv::AMDGPU_ES: 910 case CallingConv::AMDGPU_HS: 911 case CallingConv::AMDGPU_LS: 912 return true; 913 default: 914 return false; 915 } 916 } 917 918 bool hasXNACK(const MCSubtargetInfo &STI) { 919 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 920 } 921 922 bool hasSRAMECC(const MCSubtargetInfo &STI) { 923 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 924 } 925 926 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 927 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 928 } 929 930 bool hasPackedD16(const MCSubtargetInfo &STI) { 931 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 932 } 933 934 bool isSI(const MCSubtargetInfo &STI) { 935 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 936 } 937 938 bool isCI(const MCSubtargetInfo &STI) { 939 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 940 } 941 942 bool isVI(const MCSubtargetInfo &STI) { 943 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 944 } 945 946 bool isGFX9(const MCSubtargetInfo &STI) { 947 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 948 } 949 950 bool isGFX10(const MCSubtargetInfo &STI) { 951 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 952 } 953 954 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 955 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 956 } 957 958 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 959 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 960 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 961 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 962 Reg == AMDGPU::SCC; 963 } 964 965 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 966 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 967 if (*R == Reg1) return true; 968 } 969 return false; 970 } 971 972 #define MAP_REG2REG \ 973 using namespace AMDGPU; \ 974 switch(Reg) { \ 975 default: return Reg; \ 976 CASE_CI_VI(FLAT_SCR) \ 977 CASE_CI_VI(FLAT_SCR_LO) \ 978 CASE_CI_VI(FLAT_SCR_HI) \ 979 CASE_VI_GFX9_GFX10(TTMP0) \ 980 CASE_VI_GFX9_GFX10(TTMP1) \ 981 CASE_VI_GFX9_GFX10(TTMP2) \ 982 CASE_VI_GFX9_GFX10(TTMP3) \ 983 CASE_VI_GFX9_GFX10(TTMP4) \ 984 CASE_VI_GFX9_GFX10(TTMP5) \ 985 CASE_VI_GFX9_GFX10(TTMP6) \ 986 CASE_VI_GFX9_GFX10(TTMP7) \ 987 CASE_VI_GFX9_GFX10(TTMP8) \ 988 CASE_VI_GFX9_GFX10(TTMP9) \ 989 CASE_VI_GFX9_GFX10(TTMP10) \ 990 CASE_VI_GFX9_GFX10(TTMP11) \ 991 CASE_VI_GFX9_GFX10(TTMP12) \ 992 CASE_VI_GFX9_GFX10(TTMP13) \ 993 CASE_VI_GFX9_GFX10(TTMP14) \ 994 CASE_VI_GFX9_GFX10(TTMP15) \ 995 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 996 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 997 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 998 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 999 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 1000 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 1001 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 1002 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 1003 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 1004 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 1005 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 1006 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 1007 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1008 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1009 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1010 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1011 } 1012 1013 #define CASE_CI_VI(node) \ 1014 assert(!isSI(STI)); \ 1015 case node: return isCI(STI) ? node##_ci : node##_vi; 1016 1017 #define CASE_VI_GFX9_GFX10(node) \ 1018 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 1019 1020 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1021 if (STI.getTargetTriple().getArch() == Triple::r600) 1022 return Reg; 1023 MAP_REG2REG 1024 } 1025 1026 #undef CASE_CI_VI 1027 #undef CASE_VI_GFX9_GFX10 1028 1029 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1030 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 1031 1032 unsigned mc2PseudoReg(unsigned Reg) { 1033 MAP_REG2REG 1034 } 1035 1036 #undef CASE_CI_VI 1037 #undef CASE_VI_GFX9_GFX10 1038 #undef MAP_REG2REG 1039 1040 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1041 assert(OpNo < Desc.NumOperands); 1042 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1043 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1044 OpType <= AMDGPU::OPERAND_SRC_LAST; 1045 } 1046 1047 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1048 assert(OpNo < Desc.NumOperands); 1049 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1050 switch (OpType) { 1051 case AMDGPU::OPERAND_REG_IMM_FP32: 1052 case AMDGPU::OPERAND_REG_IMM_FP64: 1053 case AMDGPU::OPERAND_REG_IMM_FP16: 1054 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1055 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1056 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1057 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1058 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1059 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1060 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1061 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1062 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1063 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1064 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1065 return true; 1066 default: 1067 return false; 1068 } 1069 } 1070 1071 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1072 assert(OpNo < Desc.NumOperands); 1073 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1074 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1075 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1076 } 1077 1078 // Avoid using MCRegisterClass::getSize, since that function will go away 1079 // (move from MC* level to Target* level). Return size in bits. 1080 unsigned getRegBitWidth(unsigned RCID) { 1081 switch (RCID) { 1082 case AMDGPU::SGPR_32RegClassID: 1083 case AMDGPU::VGPR_32RegClassID: 1084 case AMDGPU::VRegOrLds_32RegClassID: 1085 case AMDGPU::AGPR_32RegClassID: 1086 case AMDGPU::VS_32RegClassID: 1087 case AMDGPU::AV_32RegClassID: 1088 case AMDGPU::SReg_32RegClassID: 1089 case AMDGPU::SReg_32_XM0RegClassID: 1090 case AMDGPU::SRegOrLds_32RegClassID: 1091 return 32; 1092 case AMDGPU::SGPR_64RegClassID: 1093 case AMDGPU::VS_64RegClassID: 1094 case AMDGPU::AV_64RegClassID: 1095 case AMDGPU::SReg_64RegClassID: 1096 case AMDGPU::VReg_64RegClassID: 1097 case AMDGPU::AReg_64RegClassID: 1098 case AMDGPU::SReg_64_XEXECRegClassID: 1099 return 64; 1100 case AMDGPU::SGPR_96RegClassID: 1101 case AMDGPU::SReg_96RegClassID: 1102 case AMDGPU::VReg_96RegClassID: 1103 return 96; 1104 case AMDGPU::SGPR_128RegClassID: 1105 case AMDGPU::SReg_128RegClassID: 1106 case AMDGPU::VReg_128RegClassID: 1107 case AMDGPU::AReg_128RegClassID: 1108 return 128; 1109 case AMDGPU::SGPR_160RegClassID: 1110 case AMDGPU::SReg_160RegClassID: 1111 case AMDGPU::VReg_160RegClassID: 1112 return 160; 1113 case AMDGPU::SReg_256RegClassID: 1114 case AMDGPU::VReg_256RegClassID: 1115 return 256; 1116 case AMDGPU::SReg_512RegClassID: 1117 case AMDGPU::VReg_512RegClassID: 1118 case AMDGPU::AReg_512RegClassID: 1119 return 512; 1120 case AMDGPU::SReg_1024RegClassID: 1121 case AMDGPU::VReg_1024RegClassID: 1122 case AMDGPU::AReg_1024RegClassID: 1123 return 1024; 1124 default: 1125 llvm_unreachable("Unexpected register class"); 1126 } 1127 } 1128 1129 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1130 return getRegBitWidth(RC.getID()); 1131 } 1132 1133 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1134 unsigned OpNo) { 1135 assert(OpNo < Desc.NumOperands); 1136 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1137 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1138 } 1139 1140 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1141 if (Literal >= -16 && Literal <= 64) 1142 return true; 1143 1144 uint64_t Val = static_cast<uint64_t>(Literal); 1145 return (Val == DoubleToBits(0.0)) || 1146 (Val == DoubleToBits(1.0)) || 1147 (Val == DoubleToBits(-1.0)) || 1148 (Val == DoubleToBits(0.5)) || 1149 (Val == DoubleToBits(-0.5)) || 1150 (Val == DoubleToBits(2.0)) || 1151 (Val == DoubleToBits(-2.0)) || 1152 (Val == DoubleToBits(4.0)) || 1153 (Val == DoubleToBits(-4.0)) || 1154 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1155 } 1156 1157 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1158 if (Literal >= -16 && Literal <= 64) 1159 return true; 1160 1161 // The actual type of the operand does not seem to matter as long 1162 // as the bits match one of the inline immediate values. For example: 1163 // 1164 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1165 // so it is a legal inline immediate. 1166 // 1167 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1168 // floating-point, so it is a legal inline immediate. 1169 1170 uint32_t Val = static_cast<uint32_t>(Literal); 1171 return (Val == FloatToBits(0.0f)) || 1172 (Val == FloatToBits(1.0f)) || 1173 (Val == FloatToBits(-1.0f)) || 1174 (Val == FloatToBits(0.5f)) || 1175 (Val == FloatToBits(-0.5f)) || 1176 (Val == FloatToBits(2.0f)) || 1177 (Val == FloatToBits(-2.0f)) || 1178 (Val == FloatToBits(4.0f)) || 1179 (Val == FloatToBits(-4.0f)) || 1180 (Val == 0x3e22f983 && HasInv2Pi); 1181 } 1182 1183 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1184 if (!HasInv2Pi) 1185 return false; 1186 1187 if (Literal >= -16 && Literal <= 64) 1188 return true; 1189 1190 uint16_t Val = static_cast<uint16_t>(Literal); 1191 return Val == 0x3C00 || // 1.0 1192 Val == 0xBC00 || // -1.0 1193 Val == 0x3800 || // 0.5 1194 Val == 0xB800 || // -0.5 1195 Val == 0x4000 || // 2.0 1196 Val == 0xC000 || // -2.0 1197 Val == 0x4400 || // 4.0 1198 Val == 0xC400 || // -4.0 1199 Val == 0x3118; // 1/2pi 1200 } 1201 1202 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1203 assert(HasInv2Pi); 1204 1205 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1206 int16_t Trunc = static_cast<int16_t>(Literal); 1207 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1208 } 1209 if (!(Literal & 0xffff)) 1210 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1211 1212 int16_t Lo16 = static_cast<int16_t>(Literal); 1213 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1214 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1215 } 1216 1217 bool isArgPassedInSGPR(const Argument *A) { 1218 const Function *F = A->getParent(); 1219 1220 // Arguments to compute shaders are never a source of divergence. 1221 CallingConv::ID CC = F->getCallingConv(); 1222 switch (CC) { 1223 case CallingConv::AMDGPU_KERNEL: 1224 case CallingConv::SPIR_KERNEL: 1225 return true; 1226 case CallingConv::AMDGPU_VS: 1227 case CallingConv::AMDGPU_LS: 1228 case CallingConv::AMDGPU_HS: 1229 case CallingConv::AMDGPU_ES: 1230 case CallingConv::AMDGPU_GS: 1231 case CallingConv::AMDGPU_PS: 1232 case CallingConv::AMDGPU_CS: 1233 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1234 // Everything else is in VGPRs. 1235 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1236 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1237 default: 1238 // TODO: Should calls support inreg for SGPR inputs? 1239 return false; 1240 } 1241 } 1242 1243 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1244 return isGCN3Encoding(ST) || isGFX10(ST); 1245 } 1246 1247 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1248 if (hasSMEMByteOffset(ST)) 1249 return ByteOffset; 1250 return ByteOffset >> 2; 1251 } 1252 1253 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1254 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 1255 return (hasSMEMByteOffset(ST)) ? 1256 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 1257 } 1258 1259 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1260 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1261 // hardware bug needing a workaround). 1262 // 1263 // The required alignment ensures that individual address components remain 1264 // aligned if they are aligned to begin with. It also ensures that additional 1265 // offsets within the given alignment can be added to the resulting ImmOffset. 1266 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1267 const GCNSubtarget *Subtarget, uint32_t Align) { 1268 const uint32_t MaxImm = alignDown(4095, Align); 1269 uint32_t Overflow = 0; 1270 1271 if (Imm > MaxImm) { 1272 if (Imm <= MaxImm + 64) { 1273 // Use an SOffset inline constant for 4..64 1274 Overflow = Imm - MaxImm; 1275 Imm = MaxImm; 1276 } else { 1277 // Try to keep the same value in SOffset for adjacent loads, so that 1278 // the corresponding register contents can be re-used. 1279 // 1280 // Load values with all low-bits (except for alignment bits) set into 1281 // SOffset, so that a larger range of values can be covered using 1282 // s_movk_i32. 1283 // 1284 // Atomic operations fail to work correctly when individual address 1285 // components are unaligned, even if their sum is aligned. 1286 uint32_t High = (Imm + Align) & ~4095; 1287 uint32_t Low = (Imm + Align) & 4095; 1288 Imm = Low; 1289 Overflow = High - Align; 1290 } 1291 } 1292 1293 // There is a hardware bug in SI and CI which prevents address clamping in 1294 // MUBUF instructions from working correctly with SOffsets. The immediate 1295 // offset is unaffected. 1296 if (Overflow > 0 && 1297 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1298 return false; 1299 1300 ImmOffset = Imm; 1301 SOffset = Overflow; 1302 return true; 1303 } 1304 1305 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1306 *this = getDefaultForCallingConv(F.getCallingConv()); 1307 1308 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1309 if (!IEEEAttr.empty()) 1310 IEEE = IEEEAttr == "true"; 1311 1312 StringRef DX10ClampAttr 1313 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1314 if (!DX10ClampAttr.empty()) 1315 DX10Clamp = DX10ClampAttr == "true"; 1316 } 1317 1318 namespace { 1319 1320 struct SourceOfDivergence { 1321 unsigned Intr; 1322 }; 1323 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1324 1325 #define GET_SourcesOfDivergence_IMPL 1326 #include "AMDGPUGenSearchableTables.inc" 1327 1328 } // end anonymous namespace 1329 1330 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1331 return lookupSourceOfDivergence(IntrID); 1332 } 1333 1334 } // namespace AMDGPU 1335 } // namespace llvm 1336