1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "AMDGPUBaseInfo.h" 11 #include "AMDGPUTargetTransformInfo.h" 12 #include "AMDGPU.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth() { return 4; } 89 90 /// \returns Vmcnt bit shift (higher bits). 91 unsigned getVmcntBitShiftHi() { return 14; } 92 93 /// \returns Vmcnt bit width (higher bits). 94 unsigned getVmcntBitWidthHi() { return 2; } 95 96 } // end namespace anonymous 97 98 namespace llvm { 99 100 namespace AMDGPU { 101 102 struct MIMGInfo { 103 uint16_t Opcode; 104 uint16_t BaseOpcode; 105 uint8_t MIMGEncoding; 106 uint8_t VDataDwords; 107 uint8_t VAddrDwords; 108 }; 109 110 #define GET_MIMGBaseOpcodesTable_IMPL 111 #define GET_MIMGDimInfoTable_IMPL 112 #define GET_MIMGInfoTable_IMPL 113 #define GET_MIMGLZMappingTable_IMPL 114 #include "AMDGPUGenSearchableTables.inc" 115 116 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 117 unsigned VDataDwords, unsigned VAddrDwords) { 118 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 119 VDataDwords, VAddrDwords); 120 return Info ? Info->Opcode : -1; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 132 // header files, so we need to wrap it in a function that takes unsigned 133 // instead. 134 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 135 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 136 } 137 138 namespace IsaInfo { 139 140 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 141 auto TargetTriple = STI->getTargetTriple(); 142 auto Version = getIsaVersion(STI->getCPU()); 143 144 Stream << TargetTriple.getArchName() << '-' 145 << TargetTriple.getVendorName() << '-' 146 << TargetTriple.getOSName() << '-' 147 << TargetTriple.getEnvironmentName() << '-' 148 << "gfx" 149 << Version.Major 150 << Version.Minor 151 << Version.Stepping; 152 153 if (hasXNACK(*STI)) 154 Stream << "+xnack"; 155 156 Stream.flush(); 157 } 158 159 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 160 return STI->getFeatureBits().test(FeatureCodeObjectV3); 161 } 162 163 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 164 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 165 return 16; 166 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 167 return 32; 168 169 return 64; 170 } 171 172 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 173 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 174 return 32768; 175 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 176 return 65536; 177 178 return 0; 179 } 180 181 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 182 return 4; 183 } 184 185 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 186 unsigned FlatWorkGroupSize) { 187 if (!STI->getFeatureBits().test(FeatureGCN)) 188 return 8; 189 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 190 if (N == 1) 191 return 40; 192 N = 40 / N; 193 return std::min(N, 16u); 194 } 195 196 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 197 return getMaxWavesPerEU() * getEUsPerCU(STI); 198 } 199 200 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 201 unsigned FlatWorkGroupSize) { 202 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 203 } 204 205 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 206 return 1; 207 } 208 209 unsigned getMaxWavesPerEU() { 210 // FIXME: Need to take scratch memory into account. 211 return 10; 212 } 213 214 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 215 unsigned FlatWorkGroupSize) { 216 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 217 getEUsPerCU(STI)) / getEUsPerCU(STI); 218 } 219 220 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 221 return 1; 222 } 223 224 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 225 return 2048; 226 } 227 228 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 229 unsigned FlatWorkGroupSize) { 230 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 231 getWavefrontSize(STI); 232 } 233 234 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 235 IsaVersion Version = getIsaVersion(STI->getCPU()); 236 if (Version.Major >= 8) 237 return 16; 238 return 8; 239 } 240 241 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 242 return 8; 243 } 244 245 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 246 IsaVersion Version = getIsaVersion(STI->getCPU()); 247 if (Version.Major >= 8) 248 return 800; 249 return 512; 250 } 251 252 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 253 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 254 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 255 256 IsaVersion Version = getIsaVersion(STI->getCPU()); 257 if (Version.Major >= 8) 258 return 102; 259 return 104; 260 } 261 262 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 263 assert(WavesPerEU != 0); 264 265 if (WavesPerEU >= getMaxWavesPerEU()) 266 return 0; 267 268 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 269 if (STI->getFeatureBits().test(FeatureTrapHandler)) 270 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 271 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 272 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 273 } 274 275 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 276 bool Addressable) { 277 assert(WavesPerEU != 0); 278 279 IsaVersion Version = getIsaVersion(STI->getCPU()); 280 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 281 if (Version.Major >= 8 && !Addressable) 282 AddressableNumSGPRs = 112; 283 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 284 if (STI->getFeatureBits().test(FeatureTrapHandler)) 285 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 286 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 287 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 288 } 289 290 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 291 bool FlatScrUsed, bool XNACKUsed) { 292 unsigned ExtraSGPRs = 0; 293 if (VCCUsed) 294 ExtraSGPRs = 2; 295 296 IsaVersion Version = getIsaVersion(STI->getCPU()); 297 if (Version.Major < 8) { 298 if (FlatScrUsed) 299 ExtraSGPRs = 4; 300 } else { 301 if (XNACKUsed) 302 ExtraSGPRs = 4; 303 304 if (FlatScrUsed) 305 ExtraSGPRs = 6; 306 } 307 308 return ExtraSGPRs; 309 } 310 311 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 312 bool FlatScrUsed) { 313 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 314 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 315 } 316 317 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 318 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 319 // SGPRBlocks is actual number of SGPR blocks minus 1. 320 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 321 } 322 323 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) { 324 return 4; 325 } 326 327 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) { 328 return getVGPRAllocGranule(STI); 329 } 330 331 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 332 return 256; 333 } 334 335 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 336 return getTotalNumVGPRs(STI); 337 } 338 339 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 340 assert(WavesPerEU != 0); 341 342 if (WavesPerEU >= getMaxWavesPerEU()) 343 return 0; 344 unsigned MinNumVGPRs = 345 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 346 getVGPRAllocGranule(STI)) + 1; 347 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 348 } 349 350 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 351 assert(WavesPerEU != 0); 352 353 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 354 getVGPRAllocGranule(STI)); 355 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 356 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 357 } 358 359 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) { 360 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI)); 361 // VGPRBlocks is actual number of VGPR blocks minus 1. 362 return NumVGPRs / getVGPREncodingGranule(STI) - 1; 363 } 364 365 } // end namespace IsaInfo 366 367 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 368 const MCSubtargetInfo *STI) { 369 IsaVersion Version = getIsaVersion(STI->getCPU()); 370 371 memset(&Header, 0, sizeof(Header)); 372 373 Header.amd_kernel_code_version_major = 1; 374 Header.amd_kernel_code_version_minor = 2; 375 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 376 Header.amd_machine_version_major = Version.Major; 377 Header.amd_machine_version_minor = Version.Minor; 378 Header.amd_machine_version_stepping = Version.Stepping; 379 Header.kernel_code_entry_byte_offset = sizeof(Header); 380 // wavefront_size is specified as a power of 2: 2^6 = 64 threads. 381 Header.wavefront_size = 6; 382 383 // If the code object does not support indirect functions, then the value must 384 // be 0xffffffff. 385 Header.call_convention = -1; 386 387 // These alignment values are specified in powers of two, so alignment = 388 // 2^n. The minimum alignment is 2^4 = 16. 389 Header.kernarg_segment_alignment = 4; 390 Header.group_segment_alignment = 4; 391 Header.private_segment_alignment = 4; 392 } 393 394 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() { 395 amdhsa::kernel_descriptor_t KD; 396 memset(&KD, 0, sizeof(KD)); 397 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 398 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 399 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 400 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 401 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 402 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 403 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 404 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 405 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 406 return KD; 407 } 408 409 bool isGroupSegment(const GlobalValue *GV) { 410 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 411 } 412 413 bool isGlobalSegment(const GlobalValue *GV) { 414 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 415 } 416 417 bool isReadOnlySegment(const GlobalValue *GV) { 418 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 419 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 420 } 421 422 bool shouldEmitConstantsToTextSection(const Triple &TT) { 423 return TT.getOS() != Triple::AMDHSA; 424 } 425 426 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 427 Attribute A = F.getFnAttribute(Name); 428 int Result = Default; 429 430 if (A.isStringAttribute()) { 431 StringRef Str = A.getValueAsString(); 432 if (Str.getAsInteger(0, Result)) { 433 LLVMContext &Ctx = F.getContext(); 434 Ctx.emitError("can't parse integer attribute " + Name); 435 } 436 } 437 438 return Result; 439 } 440 441 std::pair<int, int> getIntegerPairAttribute(const Function &F, 442 StringRef Name, 443 std::pair<int, int> Default, 444 bool OnlyFirstRequired) { 445 Attribute A = F.getFnAttribute(Name); 446 if (!A.isStringAttribute()) 447 return Default; 448 449 LLVMContext &Ctx = F.getContext(); 450 std::pair<int, int> Ints = Default; 451 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 452 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 453 Ctx.emitError("can't parse first integer attribute " + Name); 454 return Default; 455 } 456 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 457 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 458 Ctx.emitError("can't parse second integer attribute " + Name); 459 return Default; 460 } 461 } 462 463 return Ints; 464 } 465 466 unsigned getVmcntBitMask(const IsaVersion &Version) { 467 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 468 if (Version.Major < 9) 469 return VmcntLo; 470 471 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 472 return VmcntLo | VmcntHi; 473 } 474 475 unsigned getExpcntBitMask(const IsaVersion &Version) { 476 return (1 << getExpcntBitWidth()) - 1; 477 } 478 479 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 480 return (1 << getLgkmcntBitWidth()) - 1; 481 } 482 483 unsigned getWaitcntBitMask(const IsaVersion &Version) { 484 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 485 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 486 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth()); 487 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 488 if (Version.Major < 9) 489 return Waitcnt; 490 491 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 492 return Waitcnt | VmcntHi; 493 } 494 495 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 496 unsigned VmcntLo = 497 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 498 if (Version.Major < 9) 499 return VmcntLo; 500 501 unsigned VmcntHi = 502 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 503 VmcntHi <<= getVmcntBitWidthLo(); 504 return VmcntLo | VmcntHi; 505 } 506 507 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 508 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 509 } 510 511 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 512 return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 513 } 514 515 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 516 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 517 Vmcnt = decodeVmcnt(Version, Waitcnt); 518 Expcnt = decodeExpcnt(Version, Waitcnt); 519 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 520 } 521 522 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 523 unsigned Vmcnt) { 524 Waitcnt = 525 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 526 if (Version.Major < 9) 527 return Waitcnt; 528 529 Vmcnt >>= getVmcntBitWidthLo(); 530 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 531 } 532 533 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 534 unsigned Expcnt) { 535 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 536 } 537 538 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 539 unsigned Lgkmcnt) { 540 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 541 } 542 543 unsigned encodeWaitcnt(const IsaVersion &Version, 544 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 545 unsigned Waitcnt = getWaitcntBitMask(Version); 546 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 547 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 548 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 549 return Waitcnt; 550 } 551 552 unsigned getInitialPSInputAddr(const Function &F) { 553 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 554 } 555 556 bool isShader(CallingConv::ID cc) { 557 switch(cc) { 558 case CallingConv::AMDGPU_VS: 559 case CallingConv::AMDGPU_LS: 560 case CallingConv::AMDGPU_HS: 561 case CallingConv::AMDGPU_ES: 562 case CallingConv::AMDGPU_GS: 563 case CallingConv::AMDGPU_PS: 564 case CallingConv::AMDGPU_CS: 565 return true; 566 default: 567 return false; 568 } 569 } 570 571 bool isCompute(CallingConv::ID cc) { 572 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 573 } 574 575 bool isEntryFunctionCC(CallingConv::ID CC) { 576 switch (CC) { 577 case CallingConv::AMDGPU_KERNEL: 578 case CallingConv::SPIR_KERNEL: 579 case CallingConv::AMDGPU_VS: 580 case CallingConv::AMDGPU_GS: 581 case CallingConv::AMDGPU_PS: 582 case CallingConv::AMDGPU_CS: 583 case CallingConv::AMDGPU_ES: 584 case CallingConv::AMDGPU_HS: 585 case CallingConv::AMDGPU_LS: 586 return true; 587 default: 588 return false; 589 } 590 } 591 592 bool hasXNACK(const MCSubtargetInfo &STI) { 593 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 594 } 595 596 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 597 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 598 } 599 600 bool hasPackedD16(const MCSubtargetInfo &STI) { 601 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 602 } 603 604 bool isSI(const MCSubtargetInfo &STI) { 605 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 606 } 607 608 bool isCI(const MCSubtargetInfo &STI) { 609 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 610 } 611 612 bool isVI(const MCSubtargetInfo &STI) { 613 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 614 } 615 616 bool isGFX9(const MCSubtargetInfo &STI) { 617 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 618 } 619 620 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 621 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 622 } 623 624 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 625 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 626 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 627 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 628 Reg == AMDGPU::SCC; 629 } 630 631 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 632 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 633 if (*R == Reg1) return true; 634 } 635 return false; 636 } 637 638 #define MAP_REG2REG \ 639 using namespace AMDGPU; \ 640 switch(Reg) { \ 641 default: return Reg; \ 642 CASE_CI_VI(FLAT_SCR) \ 643 CASE_CI_VI(FLAT_SCR_LO) \ 644 CASE_CI_VI(FLAT_SCR_HI) \ 645 CASE_VI_GFX9(TTMP0) \ 646 CASE_VI_GFX9(TTMP1) \ 647 CASE_VI_GFX9(TTMP2) \ 648 CASE_VI_GFX9(TTMP3) \ 649 CASE_VI_GFX9(TTMP4) \ 650 CASE_VI_GFX9(TTMP5) \ 651 CASE_VI_GFX9(TTMP6) \ 652 CASE_VI_GFX9(TTMP7) \ 653 CASE_VI_GFX9(TTMP8) \ 654 CASE_VI_GFX9(TTMP9) \ 655 CASE_VI_GFX9(TTMP10) \ 656 CASE_VI_GFX9(TTMP11) \ 657 CASE_VI_GFX9(TTMP12) \ 658 CASE_VI_GFX9(TTMP13) \ 659 CASE_VI_GFX9(TTMP14) \ 660 CASE_VI_GFX9(TTMP15) \ 661 CASE_VI_GFX9(TTMP0_TTMP1) \ 662 CASE_VI_GFX9(TTMP2_TTMP3) \ 663 CASE_VI_GFX9(TTMP4_TTMP5) \ 664 CASE_VI_GFX9(TTMP6_TTMP7) \ 665 CASE_VI_GFX9(TTMP8_TTMP9) \ 666 CASE_VI_GFX9(TTMP10_TTMP11) \ 667 CASE_VI_GFX9(TTMP12_TTMP13) \ 668 CASE_VI_GFX9(TTMP14_TTMP15) \ 669 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \ 670 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \ 671 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \ 672 CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \ 673 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 674 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 675 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 676 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 677 } 678 679 #define CASE_CI_VI(node) \ 680 assert(!isSI(STI)); \ 681 case node: return isCI(STI) ? node##_ci : node##_vi; 682 683 #define CASE_VI_GFX9(node) \ 684 case node: return isGFX9(STI) ? node##_gfx9 : node##_vi; 685 686 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 687 if (STI.getTargetTriple().getArch() == Triple::r600) 688 return Reg; 689 MAP_REG2REG 690 } 691 692 #undef CASE_CI_VI 693 #undef CASE_VI_GFX9 694 695 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 696 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node; 697 698 unsigned mc2PseudoReg(unsigned Reg) { 699 MAP_REG2REG 700 } 701 702 #undef CASE_CI_VI 703 #undef CASE_VI_GFX9 704 #undef MAP_REG2REG 705 706 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 707 assert(OpNo < Desc.NumOperands); 708 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 709 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 710 OpType <= AMDGPU::OPERAND_SRC_LAST; 711 } 712 713 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 714 assert(OpNo < Desc.NumOperands); 715 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 716 switch (OpType) { 717 case AMDGPU::OPERAND_REG_IMM_FP32: 718 case AMDGPU::OPERAND_REG_IMM_FP64: 719 case AMDGPU::OPERAND_REG_IMM_FP16: 720 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 721 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 722 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 723 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 724 return true; 725 default: 726 return false; 727 } 728 } 729 730 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 731 assert(OpNo < Desc.NumOperands); 732 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 733 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 734 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 735 } 736 737 // Avoid using MCRegisterClass::getSize, since that function will go away 738 // (move from MC* level to Target* level). Return size in bits. 739 unsigned getRegBitWidth(unsigned RCID) { 740 switch (RCID) { 741 case AMDGPU::SGPR_32RegClassID: 742 case AMDGPU::VGPR_32RegClassID: 743 case AMDGPU::VS_32RegClassID: 744 case AMDGPU::SReg_32RegClassID: 745 case AMDGPU::SReg_32_XM0RegClassID: 746 return 32; 747 case AMDGPU::SGPR_64RegClassID: 748 case AMDGPU::VS_64RegClassID: 749 case AMDGPU::SReg_64RegClassID: 750 case AMDGPU::VReg_64RegClassID: 751 return 64; 752 case AMDGPU::VReg_96RegClassID: 753 return 96; 754 case AMDGPU::SGPR_128RegClassID: 755 case AMDGPU::SReg_128RegClassID: 756 case AMDGPU::VReg_128RegClassID: 757 return 128; 758 case AMDGPU::SReg_256RegClassID: 759 case AMDGPU::VReg_256RegClassID: 760 return 256; 761 case AMDGPU::SReg_512RegClassID: 762 case AMDGPU::VReg_512RegClassID: 763 return 512; 764 default: 765 llvm_unreachable("Unexpected register class"); 766 } 767 } 768 769 unsigned getRegBitWidth(const MCRegisterClass &RC) { 770 return getRegBitWidth(RC.getID()); 771 } 772 773 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 774 unsigned OpNo) { 775 assert(OpNo < Desc.NumOperands); 776 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 777 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 778 } 779 780 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 781 if (Literal >= -16 && Literal <= 64) 782 return true; 783 784 uint64_t Val = static_cast<uint64_t>(Literal); 785 return (Val == DoubleToBits(0.0)) || 786 (Val == DoubleToBits(1.0)) || 787 (Val == DoubleToBits(-1.0)) || 788 (Val == DoubleToBits(0.5)) || 789 (Val == DoubleToBits(-0.5)) || 790 (Val == DoubleToBits(2.0)) || 791 (Val == DoubleToBits(-2.0)) || 792 (Val == DoubleToBits(4.0)) || 793 (Val == DoubleToBits(-4.0)) || 794 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 795 } 796 797 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 798 if (Literal >= -16 && Literal <= 64) 799 return true; 800 801 // The actual type of the operand does not seem to matter as long 802 // as the bits match one of the inline immediate values. For example: 803 // 804 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 805 // so it is a legal inline immediate. 806 // 807 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 808 // floating-point, so it is a legal inline immediate. 809 810 uint32_t Val = static_cast<uint32_t>(Literal); 811 return (Val == FloatToBits(0.0f)) || 812 (Val == FloatToBits(1.0f)) || 813 (Val == FloatToBits(-1.0f)) || 814 (Val == FloatToBits(0.5f)) || 815 (Val == FloatToBits(-0.5f)) || 816 (Val == FloatToBits(2.0f)) || 817 (Val == FloatToBits(-2.0f)) || 818 (Val == FloatToBits(4.0f)) || 819 (Val == FloatToBits(-4.0f)) || 820 (Val == 0x3e22f983 && HasInv2Pi); 821 } 822 823 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 824 if (!HasInv2Pi) 825 return false; 826 827 if (Literal >= -16 && Literal <= 64) 828 return true; 829 830 uint16_t Val = static_cast<uint16_t>(Literal); 831 return Val == 0x3C00 || // 1.0 832 Val == 0xBC00 || // -1.0 833 Val == 0x3800 || // 0.5 834 Val == 0xB800 || // -0.5 835 Val == 0x4000 || // 2.0 836 Val == 0xC000 || // -2.0 837 Val == 0x4400 || // 4.0 838 Val == 0xC400 || // -4.0 839 Val == 0x3118; // 1/2pi 840 } 841 842 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 843 assert(HasInv2Pi); 844 845 int16_t Lo16 = static_cast<int16_t>(Literal); 846 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 847 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 848 } 849 850 bool isArgPassedInSGPR(const Argument *A) { 851 const Function *F = A->getParent(); 852 853 // Arguments to compute shaders are never a source of divergence. 854 CallingConv::ID CC = F->getCallingConv(); 855 switch (CC) { 856 case CallingConv::AMDGPU_KERNEL: 857 case CallingConv::SPIR_KERNEL: 858 return true; 859 case CallingConv::AMDGPU_VS: 860 case CallingConv::AMDGPU_LS: 861 case CallingConv::AMDGPU_HS: 862 case CallingConv::AMDGPU_ES: 863 case CallingConv::AMDGPU_GS: 864 case CallingConv::AMDGPU_PS: 865 case CallingConv::AMDGPU_CS: 866 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 867 // Everything else is in VGPRs. 868 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 869 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 870 default: 871 // TODO: Should calls support inreg for SGPR inputs? 872 return false; 873 } 874 } 875 876 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 877 if (isGCN3Encoding(ST)) 878 return ByteOffset; 879 return ByteOffset >> 2; 880 } 881 882 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 883 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 884 return isGCN3Encoding(ST) ? 885 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 886 } 887 888 // Given Imm, split it into the values to put into the SOffset and ImmOffset 889 // fields in an MUBUF instruction. Return false if it is not possible (due to a 890 // hardware bug needing a workaround). 891 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 892 const GCNSubtarget *Subtarget) { 893 const uint32_t Align = 4; 894 const uint32_t MaxImm = alignDown(4095, Align); 895 uint32_t Overflow = 0; 896 897 if (Imm > MaxImm) { 898 if (Imm <= MaxImm + 64) { 899 // Use an SOffset inline constant for 4..64 900 Overflow = Imm - MaxImm; 901 Imm = MaxImm; 902 } else { 903 // Try to keep the same value in SOffset for adjacent loads, so that 904 // the corresponding register contents can be re-used. 905 // 906 // Load values with all low-bits (except for alignment bits) set into 907 // SOffset, so that a larger range of values can be covered using 908 // s_movk_i32. 909 // 910 // Atomic operations fail to work correctly when individual address 911 // components are unaligned, even if their sum is aligned. 912 uint32_t High = (Imm + Align) & ~4095; 913 uint32_t Low = (Imm + Align) & 4095; 914 Imm = Low; 915 Overflow = High - Align; 916 } 917 } 918 919 // There is a hardware bug in SI and CI which prevents address clamping in 920 // MUBUF instructions from working correctly with SOffsets. The immediate 921 // offset is unaffected. 922 if (Overflow > 0 && 923 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 924 return false; 925 926 ImmOffset = Imm; 927 SOffset = Overflow; 928 return true; 929 } 930 931 namespace { 932 933 struct SourceOfDivergence { 934 unsigned Intr; 935 }; 936 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 937 938 #define GET_SourcesOfDivergence_IMPL 939 #include "AMDGPUGenSearchableTables.inc" 940 941 } // end anonymous namespace 942 943 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 944 return lookupSourceOfDivergence(IntrID); 945 } 946 } // namespace AMDGPU 947 } // namespace llvm 948