1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "AMDGPUBaseInfo.h"
11 #include "AMDGPUTargetTransformInfo.h"
12 #include "AMDGPU.h"
13 #include "SIDefines.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <utility>
40 
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
42 
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
48 
49 namespace {
50 
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
52 unsigned getBitMask(unsigned Shift, unsigned Width) {
53   return ((1 << Width) - 1) << Shift;
54 }
55 
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Packed \p Dst.
59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
60   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
61   Dst |= (Src << Shift) & getBitMask(Shift, Width);
62   return Dst;
63 }
64 
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
66 ///
67 /// \returns Unpacked bits.
68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
69   return (Src & getBitMask(Shift, Width)) >> Shift;
70 }
71 
72 /// \returns Vmcnt bit shift (lower bits).
73 unsigned getVmcntBitShiftLo() { return 0; }
74 
75 /// \returns Vmcnt bit width (lower bits).
76 unsigned getVmcntBitWidthLo() { return 4; }
77 
78 /// \returns Expcnt bit shift.
79 unsigned getExpcntBitShift() { return 4; }
80 
81 /// \returns Expcnt bit width.
82 unsigned getExpcntBitWidth() { return 3; }
83 
84 /// \returns Lgkmcnt bit shift.
85 unsigned getLgkmcntBitShift() { return 8; }
86 
87 /// \returns Lgkmcnt bit width.
88 unsigned getLgkmcntBitWidth() { return 4; }
89 
90 /// \returns Vmcnt bit shift (higher bits).
91 unsigned getVmcntBitShiftHi() { return 14; }
92 
93 /// \returns Vmcnt bit width (higher bits).
94 unsigned getVmcntBitWidthHi() { return 2; }
95 
96 } // end namespace anonymous
97 
98 namespace llvm {
99 
100 namespace AMDGPU {
101 
102 struct MIMGInfo {
103   uint16_t Opcode;
104   uint16_t BaseOpcode;
105   uint8_t MIMGEncoding;
106   uint8_t VDataDwords;
107   uint8_t VAddrDwords;
108 };
109 
110 #define GET_MIMGBaseOpcodesTable_IMPL
111 #define GET_MIMGDimInfoTable_IMPL
112 #define GET_MIMGInfoTable_IMPL
113 #define GET_MIMGLZMappingTable_IMPL
114 #include "AMDGPUGenSearchableTables.inc"
115 
116 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
117                   unsigned VDataDwords, unsigned VAddrDwords) {
118   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
119                                              VDataDwords, VAddrDwords);
120   return Info ? Info->Opcode : -1;
121 }
122 
123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
124   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
125   const MIMGInfo *NewInfo =
126       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
127                           NewChannels, OrigInfo->VAddrDwords);
128   return NewInfo ? NewInfo->Opcode : -1;
129 }
130 
131 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
132 // header files, so we need to wrap it in a function that takes unsigned
133 // instead.
134 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
135   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
136 }
137 
138 namespace IsaInfo {
139 
140 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
141   auto TargetTriple = STI->getTargetTriple();
142   auto Version = getIsaVersion(STI->getCPU());
143 
144   Stream << TargetTriple.getArchName() << '-'
145          << TargetTriple.getVendorName() << '-'
146          << TargetTriple.getOSName() << '-'
147          << TargetTriple.getEnvironmentName() << '-'
148          << "gfx"
149          << Version.Major
150          << Version.Minor
151          << Version.Stepping;
152 
153   if (hasXNACK(*STI))
154     Stream << "+xnack";
155 
156   Stream.flush();
157 }
158 
159 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
160   return STI->getFeatureBits().test(FeatureCodeObjectV3);
161 }
162 
163 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
164   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
165     return 16;
166   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
167     return 32;
168 
169   return 64;
170 }
171 
172 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
173   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
174     return 32768;
175   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
176     return 65536;
177 
178   return 0;
179 }
180 
181 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
182   return 4;
183 }
184 
185 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
186                                unsigned FlatWorkGroupSize) {
187   if (!STI->getFeatureBits().test(FeatureGCN))
188     return 8;
189   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
190   if (N == 1)
191     return 40;
192   N = 40 / N;
193   return std::min(N, 16u);
194 }
195 
196 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
197   return getMaxWavesPerEU() * getEUsPerCU(STI);
198 }
199 
200 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
201                           unsigned FlatWorkGroupSize) {
202   return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
203 }
204 
205 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
206   return 1;
207 }
208 
209 unsigned getMaxWavesPerEU() {
210   // FIXME: Need to take scratch memory into account.
211   return 10;
212 }
213 
214 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
215                           unsigned FlatWorkGroupSize) {
216   return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
217                  getEUsPerCU(STI)) / getEUsPerCU(STI);
218 }
219 
220 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
221   return 1;
222 }
223 
224 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
225   return 2048;
226 }
227 
228 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
229                               unsigned FlatWorkGroupSize) {
230   return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
231                  getWavefrontSize(STI);
232 }
233 
234 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
235   IsaVersion Version = getIsaVersion(STI->getCPU());
236   if (Version.Major >= 8)
237     return 16;
238   return 8;
239 }
240 
241 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
242   return 8;
243 }
244 
245 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
246   IsaVersion Version = getIsaVersion(STI->getCPU());
247   if (Version.Major >= 8)
248     return 800;
249   return 512;
250 }
251 
252 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
253   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
254     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
255 
256   IsaVersion Version = getIsaVersion(STI->getCPU());
257   if (Version.Major >= 8)
258     return 102;
259   return 104;
260 }
261 
262 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
263   assert(WavesPerEU != 0);
264 
265   if (WavesPerEU >= getMaxWavesPerEU())
266     return 0;
267 
268   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
269   if (STI->getFeatureBits().test(FeatureTrapHandler))
270     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
271   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
272   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
273 }
274 
275 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
276                         bool Addressable) {
277   assert(WavesPerEU != 0);
278 
279   IsaVersion Version = getIsaVersion(STI->getCPU());
280   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
281   if (Version.Major >= 8 && !Addressable)
282     AddressableNumSGPRs = 112;
283   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
284   if (STI->getFeatureBits().test(FeatureTrapHandler))
285     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
286   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
287   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
288 }
289 
290 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
291                           bool FlatScrUsed, bool XNACKUsed) {
292   unsigned ExtraSGPRs = 0;
293   if (VCCUsed)
294     ExtraSGPRs = 2;
295 
296   IsaVersion Version = getIsaVersion(STI->getCPU());
297   if (Version.Major < 8) {
298     if (FlatScrUsed)
299       ExtraSGPRs = 4;
300   } else {
301     if (XNACKUsed)
302       ExtraSGPRs = 4;
303 
304     if (FlatScrUsed)
305       ExtraSGPRs = 6;
306   }
307 
308   return ExtraSGPRs;
309 }
310 
311 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
312                           bool FlatScrUsed) {
313   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
314                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
315 }
316 
317 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
318   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
319   // SGPRBlocks is actual number of SGPR blocks minus 1.
320   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
321 }
322 
323 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
324   return 4;
325 }
326 
327 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
328   return getVGPRAllocGranule(STI);
329 }
330 
331 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
332   return 256;
333 }
334 
335 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
336   return getTotalNumVGPRs(STI);
337 }
338 
339 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
340   assert(WavesPerEU != 0);
341 
342   if (WavesPerEU >= getMaxWavesPerEU())
343     return 0;
344   unsigned MinNumVGPRs =
345       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
346                 getVGPRAllocGranule(STI)) + 1;
347   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
348 }
349 
350 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
351   assert(WavesPerEU != 0);
352 
353   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
354                                    getVGPRAllocGranule(STI));
355   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
356   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
357 }
358 
359 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
360   NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
361   // VGPRBlocks is actual number of VGPR blocks minus 1.
362   return NumVGPRs / getVGPREncodingGranule(STI) - 1;
363 }
364 
365 } // end namespace IsaInfo
366 
367 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
368                                const MCSubtargetInfo *STI) {
369   IsaVersion Version = getIsaVersion(STI->getCPU());
370 
371   memset(&Header, 0, sizeof(Header));
372 
373   Header.amd_kernel_code_version_major = 1;
374   Header.amd_kernel_code_version_minor = 2;
375   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
376   Header.amd_machine_version_major = Version.Major;
377   Header.amd_machine_version_minor = Version.Minor;
378   Header.amd_machine_version_stepping = Version.Stepping;
379   Header.kernel_code_entry_byte_offset = sizeof(Header);
380   // wavefront_size is specified as a power of 2: 2^6 = 64 threads.
381   Header.wavefront_size = 6;
382 
383   // If the code object does not support indirect functions, then the value must
384   // be 0xffffffff.
385   Header.call_convention = -1;
386 
387   // These alignment values are specified in powers of two, so alignment =
388   // 2^n.  The minimum alignment is 2^4 = 16.
389   Header.kernarg_segment_alignment = 4;
390   Header.group_segment_alignment = 4;
391   Header.private_segment_alignment = 4;
392 }
393 
394 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() {
395   amdhsa::kernel_descriptor_t KD;
396   memset(&KD, 0, sizeof(KD));
397   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
398                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
399                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
400   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
401                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
402   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
403                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
404   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
405                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
406   return KD;
407 }
408 
409 bool isGroupSegment(const GlobalValue *GV) {
410   return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
411 }
412 
413 bool isGlobalSegment(const GlobalValue *GV) {
414   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
415 }
416 
417 bool isReadOnlySegment(const GlobalValue *GV) {
418   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
419          GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
420 }
421 
422 bool shouldEmitConstantsToTextSection(const Triple &TT) {
423   return TT.getOS() != Triple::AMDHSA;
424 }
425 
426 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
427   Attribute A = F.getFnAttribute(Name);
428   int Result = Default;
429 
430   if (A.isStringAttribute()) {
431     StringRef Str = A.getValueAsString();
432     if (Str.getAsInteger(0, Result)) {
433       LLVMContext &Ctx = F.getContext();
434       Ctx.emitError("can't parse integer attribute " + Name);
435     }
436   }
437 
438   return Result;
439 }
440 
441 std::pair<int, int> getIntegerPairAttribute(const Function &F,
442                                             StringRef Name,
443                                             std::pair<int, int> Default,
444                                             bool OnlyFirstRequired) {
445   Attribute A = F.getFnAttribute(Name);
446   if (!A.isStringAttribute())
447     return Default;
448 
449   LLVMContext &Ctx = F.getContext();
450   std::pair<int, int> Ints = Default;
451   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
452   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
453     Ctx.emitError("can't parse first integer attribute " + Name);
454     return Default;
455   }
456   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
457     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
458       Ctx.emitError("can't parse second integer attribute " + Name);
459       return Default;
460     }
461   }
462 
463   return Ints;
464 }
465 
466 unsigned getVmcntBitMask(const IsaVersion &Version) {
467   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
468   if (Version.Major < 9)
469     return VmcntLo;
470 
471   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
472   return VmcntLo | VmcntHi;
473 }
474 
475 unsigned getExpcntBitMask(const IsaVersion &Version) {
476   return (1 << getExpcntBitWidth()) - 1;
477 }
478 
479 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
480   return (1 << getLgkmcntBitWidth()) - 1;
481 }
482 
483 unsigned getWaitcntBitMask(const IsaVersion &Version) {
484   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
485   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
486   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth());
487   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
488   if (Version.Major < 9)
489     return Waitcnt;
490 
491   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
492   return Waitcnt | VmcntHi;
493 }
494 
495 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
496   unsigned VmcntLo =
497       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
498   if (Version.Major < 9)
499     return VmcntLo;
500 
501   unsigned VmcntHi =
502       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
503   VmcntHi <<= getVmcntBitWidthLo();
504   return VmcntLo | VmcntHi;
505 }
506 
507 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
508   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
509 }
510 
511 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
512   return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
513 }
514 
515 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
516                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
517   Vmcnt = decodeVmcnt(Version, Waitcnt);
518   Expcnt = decodeExpcnt(Version, Waitcnt);
519   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
520 }
521 
522 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
523                      unsigned Vmcnt) {
524   Waitcnt =
525       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
526   if (Version.Major < 9)
527     return Waitcnt;
528 
529   Vmcnt >>= getVmcntBitWidthLo();
530   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
531 }
532 
533 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
534                       unsigned Expcnt) {
535   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
536 }
537 
538 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
539                        unsigned Lgkmcnt) {
540   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
541 }
542 
543 unsigned encodeWaitcnt(const IsaVersion &Version,
544                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
545   unsigned Waitcnt = getWaitcntBitMask(Version);
546   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
547   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
548   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
549   return Waitcnt;
550 }
551 
552 unsigned getInitialPSInputAddr(const Function &F) {
553   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
554 }
555 
556 bool isShader(CallingConv::ID cc) {
557   switch(cc) {
558     case CallingConv::AMDGPU_VS:
559     case CallingConv::AMDGPU_LS:
560     case CallingConv::AMDGPU_HS:
561     case CallingConv::AMDGPU_ES:
562     case CallingConv::AMDGPU_GS:
563     case CallingConv::AMDGPU_PS:
564     case CallingConv::AMDGPU_CS:
565       return true;
566     default:
567       return false;
568   }
569 }
570 
571 bool isCompute(CallingConv::ID cc) {
572   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
573 }
574 
575 bool isEntryFunctionCC(CallingConv::ID CC) {
576   switch (CC) {
577   case CallingConv::AMDGPU_KERNEL:
578   case CallingConv::SPIR_KERNEL:
579   case CallingConv::AMDGPU_VS:
580   case CallingConv::AMDGPU_GS:
581   case CallingConv::AMDGPU_PS:
582   case CallingConv::AMDGPU_CS:
583   case CallingConv::AMDGPU_ES:
584   case CallingConv::AMDGPU_HS:
585   case CallingConv::AMDGPU_LS:
586     return true;
587   default:
588     return false;
589   }
590 }
591 
592 bool hasXNACK(const MCSubtargetInfo &STI) {
593   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
594 }
595 
596 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
597   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
598 }
599 
600 bool hasPackedD16(const MCSubtargetInfo &STI) {
601   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
602 }
603 
604 bool isSI(const MCSubtargetInfo &STI) {
605   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
606 }
607 
608 bool isCI(const MCSubtargetInfo &STI) {
609   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
610 }
611 
612 bool isVI(const MCSubtargetInfo &STI) {
613   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
614 }
615 
616 bool isGFX9(const MCSubtargetInfo &STI) {
617   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
618 }
619 
620 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
621   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
622 }
623 
624 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
625   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
626   const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
627   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
628     Reg == AMDGPU::SCC;
629 }
630 
631 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
632   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
633     if (*R == Reg1) return true;
634   }
635   return false;
636 }
637 
638 #define MAP_REG2REG \
639   using namespace AMDGPU; \
640   switch(Reg) { \
641   default: return Reg; \
642   CASE_CI_VI(FLAT_SCR) \
643   CASE_CI_VI(FLAT_SCR_LO) \
644   CASE_CI_VI(FLAT_SCR_HI) \
645   CASE_VI_GFX9(TTMP0) \
646   CASE_VI_GFX9(TTMP1) \
647   CASE_VI_GFX9(TTMP2) \
648   CASE_VI_GFX9(TTMP3) \
649   CASE_VI_GFX9(TTMP4) \
650   CASE_VI_GFX9(TTMP5) \
651   CASE_VI_GFX9(TTMP6) \
652   CASE_VI_GFX9(TTMP7) \
653   CASE_VI_GFX9(TTMP8) \
654   CASE_VI_GFX9(TTMP9) \
655   CASE_VI_GFX9(TTMP10) \
656   CASE_VI_GFX9(TTMP11) \
657   CASE_VI_GFX9(TTMP12) \
658   CASE_VI_GFX9(TTMP13) \
659   CASE_VI_GFX9(TTMP14) \
660   CASE_VI_GFX9(TTMP15) \
661   CASE_VI_GFX9(TTMP0_TTMP1) \
662   CASE_VI_GFX9(TTMP2_TTMP3) \
663   CASE_VI_GFX9(TTMP4_TTMP5) \
664   CASE_VI_GFX9(TTMP6_TTMP7) \
665   CASE_VI_GFX9(TTMP8_TTMP9) \
666   CASE_VI_GFX9(TTMP10_TTMP11) \
667   CASE_VI_GFX9(TTMP12_TTMP13) \
668   CASE_VI_GFX9(TTMP14_TTMP15) \
669   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \
670   CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \
671   CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \
672   CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \
673   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
674   CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
675   CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
676   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
677   }
678 
679 #define CASE_CI_VI(node) \
680   assert(!isSI(STI)); \
681   case node: return isCI(STI) ? node##_ci : node##_vi;
682 
683 #define CASE_VI_GFX9(node) \
684   case node: return isGFX9(STI) ? node##_gfx9 : node##_vi;
685 
686 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
687   if (STI.getTargetTriple().getArch() == Triple::r600)
688     return Reg;
689   MAP_REG2REG
690 }
691 
692 #undef CASE_CI_VI
693 #undef CASE_VI_GFX9
694 
695 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
696 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node;
697 
698 unsigned mc2PseudoReg(unsigned Reg) {
699   MAP_REG2REG
700 }
701 
702 #undef CASE_CI_VI
703 #undef CASE_VI_GFX9
704 #undef MAP_REG2REG
705 
706 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
707   assert(OpNo < Desc.NumOperands);
708   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
709   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
710          OpType <= AMDGPU::OPERAND_SRC_LAST;
711 }
712 
713 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
714   assert(OpNo < Desc.NumOperands);
715   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
716   switch (OpType) {
717   case AMDGPU::OPERAND_REG_IMM_FP32:
718   case AMDGPU::OPERAND_REG_IMM_FP64:
719   case AMDGPU::OPERAND_REG_IMM_FP16:
720   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
721   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
722   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
723   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
724     return true;
725   default:
726     return false;
727   }
728 }
729 
730 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
731   assert(OpNo < Desc.NumOperands);
732   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
733   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
734          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
735 }
736 
737 // Avoid using MCRegisterClass::getSize, since that function will go away
738 // (move from MC* level to Target* level). Return size in bits.
739 unsigned getRegBitWidth(unsigned RCID) {
740   switch (RCID) {
741   case AMDGPU::SGPR_32RegClassID:
742   case AMDGPU::VGPR_32RegClassID:
743   case AMDGPU::VS_32RegClassID:
744   case AMDGPU::SReg_32RegClassID:
745   case AMDGPU::SReg_32_XM0RegClassID:
746     return 32;
747   case AMDGPU::SGPR_64RegClassID:
748   case AMDGPU::VS_64RegClassID:
749   case AMDGPU::SReg_64RegClassID:
750   case AMDGPU::VReg_64RegClassID:
751     return 64;
752   case AMDGPU::VReg_96RegClassID:
753     return 96;
754   case AMDGPU::SGPR_128RegClassID:
755   case AMDGPU::SReg_128RegClassID:
756   case AMDGPU::VReg_128RegClassID:
757     return 128;
758   case AMDGPU::SReg_256RegClassID:
759   case AMDGPU::VReg_256RegClassID:
760     return 256;
761   case AMDGPU::SReg_512RegClassID:
762   case AMDGPU::VReg_512RegClassID:
763     return 512;
764   default:
765     llvm_unreachable("Unexpected register class");
766   }
767 }
768 
769 unsigned getRegBitWidth(const MCRegisterClass &RC) {
770   return getRegBitWidth(RC.getID());
771 }
772 
773 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
774                            unsigned OpNo) {
775   assert(OpNo < Desc.NumOperands);
776   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
777   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
778 }
779 
780 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
781   if (Literal >= -16 && Literal <= 64)
782     return true;
783 
784   uint64_t Val = static_cast<uint64_t>(Literal);
785   return (Val == DoubleToBits(0.0)) ||
786          (Val == DoubleToBits(1.0)) ||
787          (Val == DoubleToBits(-1.0)) ||
788          (Val == DoubleToBits(0.5)) ||
789          (Val == DoubleToBits(-0.5)) ||
790          (Val == DoubleToBits(2.0)) ||
791          (Val == DoubleToBits(-2.0)) ||
792          (Val == DoubleToBits(4.0)) ||
793          (Val == DoubleToBits(-4.0)) ||
794          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
795 }
796 
797 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
798   if (Literal >= -16 && Literal <= 64)
799     return true;
800 
801   // The actual type of the operand does not seem to matter as long
802   // as the bits match one of the inline immediate values.  For example:
803   //
804   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
805   // so it is a legal inline immediate.
806   //
807   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
808   // floating-point, so it is a legal inline immediate.
809 
810   uint32_t Val = static_cast<uint32_t>(Literal);
811   return (Val == FloatToBits(0.0f)) ||
812          (Val == FloatToBits(1.0f)) ||
813          (Val == FloatToBits(-1.0f)) ||
814          (Val == FloatToBits(0.5f)) ||
815          (Val == FloatToBits(-0.5f)) ||
816          (Val == FloatToBits(2.0f)) ||
817          (Val == FloatToBits(-2.0f)) ||
818          (Val == FloatToBits(4.0f)) ||
819          (Val == FloatToBits(-4.0f)) ||
820          (Val == 0x3e22f983 && HasInv2Pi);
821 }
822 
823 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
824   if (!HasInv2Pi)
825     return false;
826 
827   if (Literal >= -16 && Literal <= 64)
828     return true;
829 
830   uint16_t Val = static_cast<uint16_t>(Literal);
831   return Val == 0x3C00 || // 1.0
832          Val == 0xBC00 || // -1.0
833          Val == 0x3800 || // 0.5
834          Val == 0xB800 || // -0.5
835          Val == 0x4000 || // 2.0
836          Val == 0xC000 || // -2.0
837          Val == 0x4400 || // 4.0
838          Val == 0xC400 || // -4.0
839          Val == 0x3118;   // 1/2pi
840 }
841 
842 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
843   assert(HasInv2Pi);
844 
845   int16_t Lo16 = static_cast<int16_t>(Literal);
846   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
847   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
848 }
849 
850 bool isArgPassedInSGPR(const Argument *A) {
851   const Function *F = A->getParent();
852 
853   // Arguments to compute shaders are never a source of divergence.
854   CallingConv::ID CC = F->getCallingConv();
855   switch (CC) {
856   case CallingConv::AMDGPU_KERNEL:
857   case CallingConv::SPIR_KERNEL:
858     return true;
859   case CallingConv::AMDGPU_VS:
860   case CallingConv::AMDGPU_LS:
861   case CallingConv::AMDGPU_HS:
862   case CallingConv::AMDGPU_ES:
863   case CallingConv::AMDGPU_GS:
864   case CallingConv::AMDGPU_PS:
865   case CallingConv::AMDGPU_CS:
866     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
867     // Everything else is in VGPRs.
868     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
869            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
870   default:
871     // TODO: Should calls support inreg for SGPR inputs?
872     return false;
873   }
874 }
875 
876 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
877   if (isGCN3Encoding(ST))
878     return ByteOffset;
879   return ByteOffset >> 2;
880 }
881 
882 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
883   int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
884   return isGCN3Encoding(ST) ?
885     isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
886 }
887 
888 // Given Imm, split it into the values to put into the SOffset and ImmOffset
889 // fields in an MUBUF instruction. Return false if it is not possible (due to a
890 // hardware bug needing a workaround).
891 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
892                       const GCNSubtarget *Subtarget) {
893   const uint32_t Align = 4;
894   const uint32_t MaxImm = alignDown(4095, Align);
895   uint32_t Overflow = 0;
896 
897   if (Imm > MaxImm) {
898     if (Imm <= MaxImm + 64) {
899       // Use an SOffset inline constant for 4..64
900       Overflow = Imm - MaxImm;
901       Imm = MaxImm;
902     } else {
903       // Try to keep the same value in SOffset for adjacent loads, so that
904       // the corresponding register contents can be re-used.
905       //
906       // Load values with all low-bits (except for alignment bits) set into
907       // SOffset, so that a larger range of values can be covered using
908       // s_movk_i32.
909       //
910       // Atomic operations fail to work correctly when individual address
911       // components are unaligned, even if their sum is aligned.
912       uint32_t High = (Imm + Align) & ~4095;
913       uint32_t Low = (Imm + Align) & 4095;
914       Imm = Low;
915       Overflow = High - Align;
916     }
917   }
918 
919   // There is a hardware bug in SI and CI which prevents address clamping in
920   // MUBUF instructions from working correctly with SOffsets. The immediate
921   // offset is unaffected.
922   if (Overflow > 0 &&
923       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
924     return false;
925 
926   ImmOffset = Imm;
927   SOffset = Overflow;
928   return true;
929 }
930 
931 namespace {
932 
933 struct SourceOfDivergence {
934   unsigned Intr;
935 };
936 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
937 
938 #define GET_SourcesOfDivergence_IMPL
939 #include "AMDGPUGenSearchableTables.inc"
940 
941 } // end anonymous namespace
942 
943 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
944   return lookupSourceOfDivergence(IntrID);
945 }
946 } // namespace AMDGPU
947 } // namespace llvm
948