1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPUTargetTransformInfo.h" 11 #include "AMDGPU.h" 12 #include "SIDefines.h" 13 #include "AMDGPUAsmUtils.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 89 return (VersionMajor >= 10) ? 6 : 4; 90 } 91 92 /// \returns Vmcnt bit shift (higher bits). 93 unsigned getVmcntBitShiftHi() { return 14; } 94 95 /// \returns Vmcnt bit width (higher bits). 96 unsigned getVmcntBitWidthHi() { return 2; } 97 98 } // end namespace anonymous 99 100 namespace llvm { 101 102 namespace AMDGPU { 103 104 #define GET_MIMGBaseOpcodesTable_IMPL 105 #define GET_MIMGDimInfoTable_IMPL 106 #define GET_MIMGInfoTable_IMPL 107 #define GET_MIMGLZMappingTable_IMPL 108 #define GET_MIMGMIPMappingTable_IMPL 109 #include "AMDGPUGenSearchableTables.inc" 110 111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 112 unsigned VDataDwords, unsigned VAddrDwords) { 113 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 114 VDataDwords, VAddrDwords); 115 return Info ? Info->Opcode : -1; 116 } 117 118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 119 const MIMGInfo *Info = getMIMGInfo(Opc); 120 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 struct MUBUFInfo { 132 uint16_t Opcode; 133 uint16_t BaseOpcode; 134 uint8_t dwords; 135 bool has_vaddr; 136 bool has_srsrc; 137 bool has_soffset; 138 }; 139 140 #define GET_MUBUFInfoTable_DECL 141 #define GET_MUBUFInfoTable_IMPL 142 #include "AMDGPUGenSearchableTables.inc" 143 144 int getMUBUFBaseOpcode(unsigned Opc) { 145 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 146 return Info ? Info->BaseOpcode : -1; 147 } 148 149 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) { 150 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords); 151 return Info ? Info->Opcode : -1; 152 } 153 154 int getMUBUFDwords(unsigned Opc) { 155 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 156 return Info ? Info->dwords : 0; 157 } 158 159 bool getMUBUFHasVAddr(unsigned Opc) { 160 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 161 return Info ? Info->has_vaddr : false; 162 } 163 164 bool getMUBUFHasSrsrc(unsigned Opc) { 165 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 166 return Info ? Info->has_srsrc : false; 167 } 168 169 bool getMUBUFHasSoffset(unsigned Opc) { 170 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 171 return Info ? Info->has_soffset : false; 172 } 173 174 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 175 // header files, so we need to wrap it in a function that takes unsigned 176 // instead. 177 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 178 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 179 } 180 181 namespace IsaInfo { 182 183 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 184 auto TargetTriple = STI->getTargetTriple(); 185 auto Version = getIsaVersion(STI->getCPU()); 186 187 Stream << TargetTriple.getArchName() << '-' 188 << TargetTriple.getVendorName() << '-' 189 << TargetTriple.getOSName() << '-' 190 << TargetTriple.getEnvironmentName() << '-' 191 << "gfx" 192 << Version.Major 193 << Version.Minor 194 << Version.Stepping; 195 196 if (hasXNACK(*STI)) 197 Stream << "+xnack"; 198 if (hasSRAMECC(*STI)) 199 Stream << "+sram-ecc"; 200 201 Stream.flush(); 202 } 203 204 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 205 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 206 STI->getFeatureBits().test(FeatureCodeObjectV3); 207 } 208 209 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 210 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 211 return 16; 212 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 213 return 32; 214 215 return 64; 216 } 217 218 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 219 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 220 return 32768; 221 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 222 return 65536; 223 224 return 0; 225 } 226 227 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 228 return 4; 229 } 230 231 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 232 unsigned FlatWorkGroupSize) { 233 assert(FlatWorkGroupSize != 0); 234 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 235 return 8; 236 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 237 if (N == 1) 238 return 40; 239 N = 40 / N; 240 return std::min(N, 16u); 241 } 242 243 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 244 return getMaxWavesPerEU(STI) * getEUsPerCU(STI); 245 } 246 247 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 248 unsigned FlatWorkGroupSize) { 249 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 250 } 251 252 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 253 return 1; 254 } 255 256 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 257 // FIXME: Need to take scratch memory into account. 258 if (!isGFX10(*STI)) 259 return 10; 260 return 20; 261 } 262 263 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 264 unsigned FlatWorkGroupSize) { 265 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 266 getEUsPerCU(STI)) / getEUsPerCU(STI); 267 } 268 269 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 270 return 1; 271 } 272 273 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 274 return 2048; 275 } 276 277 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 278 unsigned FlatWorkGroupSize) { 279 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 280 getWavefrontSize(STI); 281 } 282 283 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 284 IsaVersion Version = getIsaVersion(STI->getCPU()); 285 if (Version.Major >= 10) 286 return getAddressableNumSGPRs(STI); 287 if (Version.Major >= 8) 288 return 16; 289 return 8; 290 } 291 292 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 293 return 8; 294 } 295 296 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 297 IsaVersion Version = getIsaVersion(STI->getCPU()); 298 if (Version.Major >= 8) 299 return 800; 300 return 512; 301 } 302 303 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 304 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 305 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 306 307 IsaVersion Version = getIsaVersion(STI->getCPU()); 308 if (Version.Major >= 10) 309 return 106; 310 if (Version.Major >= 8) 311 return 102; 312 return 104; 313 } 314 315 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 316 assert(WavesPerEU != 0); 317 318 IsaVersion Version = getIsaVersion(STI->getCPU()); 319 if (Version.Major >= 10) 320 return 0; 321 322 if (WavesPerEU >= getMaxWavesPerEU(STI)) 323 return 0; 324 325 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 326 if (STI->getFeatureBits().test(FeatureTrapHandler)) 327 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 328 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 329 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 330 } 331 332 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 333 bool Addressable) { 334 assert(WavesPerEU != 0); 335 336 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 337 IsaVersion Version = getIsaVersion(STI->getCPU()); 338 if (Version.Major >= 10) 339 return Addressable ? AddressableNumSGPRs : 108; 340 if (Version.Major >= 8 && !Addressable) 341 AddressableNumSGPRs = 112; 342 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 343 if (STI->getFeatureBits().test(FeatureTrapHandler)) 344 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 345 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 346 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 347 } 348 349 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 350 bool FlatScrUsed, bool XNACKUsed) { 351 unsigned ExtraSGPRs = 0; 352 if (VCCUsed) 353 ExtraSGPRs = 2; 354 355 IsaVersion Version = getIsaVersion(STI->getCPU()); 356 if (Version.Major >= 10) 357 return ExtraSGPRs; 358 359 if (Version.Major < 8) { 360 if (FlatScrUsed) 361 ExtraSGPRs = 4; 362 } else { 363 if (XNACKUsed) 364 ExtraSGPRs = 4; 365 366 if (FlatScrUsed) 367 ExtraSGPRs = 6; 368 } 369 370 return ExtraSGPRs; 371 } 372 373 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 374 bool FlatScrUsed) { 375 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 376 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 377 } 378 379 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 380 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 381 // SGPRBlocks is actual number of SGPR blocks minus 1. 382 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 383 } 384 385 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 386 Optional<bool> EnableWavefrontSize32) { 387 bool IsWave32 = EnableWavefrontSize32 ? 388 *EnableWavefrontSize32 : 389 STI->getFeatureBits().test(FeatureWavefrontSize32); 390 return IsWave32 ? 8 : 4; 391 } 392 393 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 394 Optional<bool> EnableWavefrontSize32) { 395 return getVGPRAllocGranule(STI, EnableWavefrontSize32); 396 } 397 398 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 399 if (!isGFX10(*STI)) 400 return 256; 401 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 402 } 403 404 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 405 return 256; 406 } 407 408 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 409 assert(WavesPerEU != 0); 410 411 if (WavesPerEU >= getMaxWavesPerEU(STI)) 412 return 0; 413 unsigned MinNumVGPRs = 414 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 415 getVGPRAllocGranule(STI)) + 1; 416 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 417 } 418 419 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 420 assert(WavesPerEU != 0); 421 422 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 423 getVGPRAllocGranule(STI)); 424 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 425 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 426 } 427 428 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 429 Optional<bool> EnableWavefrontSize32) { 430 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 431 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 432 // VGPRBlocks is actual number of VGPR blocks minus 1. 433 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 434 } 435 436 } // end namespace IsaInfo 437 438 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 439 const MCSubtargetInfo *STI) { 440 IsaVersion Version = getIsaVersion(STI->getCPU()); 441 442 memset(&Header, 0, sizeof(Header)); 443 444 Header.amd_kernel_code_version_major = 1; 445 Header.amd_kernel_code_version_minor = 2; 446 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 447 Header.amd_machine_version_major = Version.Major; 448 Header.amd_machine_version_minor = Version.Minor; 449 Header.amd_machine_version_stepping = Version.Stepping; 450 Header.kernel_code_entry_byte_offset = sizeof(Header); 451 Header.wavefront_size = 6; 452 453 // If the code object does not support indirect functions, then the value must 454 // be 0xffffffff. 455 Header.call_convention = -1; 456 457 // These alignment values are specified in powers of two, so alignment = 458 // 2^n. The minimum alignment is 2^4 = 16. 459 Header.kernarg_segment_alignment = 4; 460 Header.group_segment_alignment = 4; 461 Header.private_segment_alignment = 4; 462 463 if (Version.Major >= 10) { 464 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 465 Header.wavefront_size = 5; 466 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 467 } 468 Header.compute_pgm_resource_registers |= 469 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 470 S_00B848_MEM_ORDERED(1); 471 } 472 } 473 474 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 475 const MCSubtargetInfo *STI) { 476 IsaVersion Version = getIsaVersion(STI->getCPU()); 477 478 amdhsa::kernel_descriptor_t KD; 479 memset(&KD, 0, sizeof(KD)); 480 481 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 482 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 483 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 484 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 485 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 486 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 487 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 488 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 489 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 490 if (Version.Major >= 10) { 491 AMDHSA_BITS_SET(KD.kernel_code_properties, 492 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 493 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 494 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 495 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 496 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 497 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 498 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 499 } 500 return KD; 501 } 502 503 bool isGroupSegment(const GlobalValue *GV) { 504 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 505 } 506 507 bool isGlobalSegment(const GlobalValue *GV) { 508 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 509 } 510 511 bool isReadOnlySegment(const GlobalValue *GV) { 512 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 513 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 514 } 515 516 bool shouldEmitConstantsToTextSection(const Triple &TT) { 517 return TT.getOS() != Triple::AMDHSA; 518 } 519 520 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 521 Attribute A = F.getFnAttribute(Name); 522 int Result = Default; 523 524 if (A.isStringAttribute()) { 525 StringRef Str = A.getValueAsString(); 526 if (Str.getAsInteger(0, Result)) { 527 LLVMContext &Ctx = F.getContext(); 528 Ctx.emitError("can't parse integer attribute " + Name); 529 } 530 } 531 532 return Result; 533 } 534 535 std::pair<int, int> getIntegerPairAttribute(const Function &F, 536 StringRef Name, 537 std::pair<int, int> Default, 538 bool OnlyFirstRequired) { 539 Attribute A = F.getFnAttribute(Name); 540 if (!A.isStringAttribute()) 541 return Default; 542 543 LLVMContext &Ctx = F.getContext(); 544 std::pair<int, int> Ints = Default; 545 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 546 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 547 Ctx.emitError("can't parse first integer attribute " + Name); 548 return Default; 549 } 550 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 551 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 552 Ctx.emitError("can't parse second integer attribute " + Name); 553 return Default; 554 } 555 } 556 557 return Ints; 558 } 559 560 unsigned getVmcntBitMask(const IsaVersion &Version) { 561 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 562 if (Version.Major < 9) 563 return VmcntLo; 564 565 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 566 return VmcntLo | VmcntHi; 567 } 568 569 unsigned getExpcntBitMask(const IsaVersion &Version) { 570 return (1 << getExpcntBitWidth()) - 1; 571 } 572 573 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 574 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 575 } 576 577 unsigned getWaitcntBitMask(const IsaVersion &Version) { 578 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 579 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 580 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 581 getLgkmcntBitWidth(Version.Major)); 582 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 583 if (Version.Major < 9) 584 return Waitcnt; 585 586 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 587 return Waitcnt | VmcntHi; 588 } 589 590 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 591 unsigned VmcntLo = 592 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 593 if (Version.Major < 9) 594 return VmcntLo; 595 596 unsigned VmcntHi = 597 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 598 VmcntHi <<= getVmcntBitWidthLo(); 599 return VmcntLo | VmcntHi; 600 } 601 602 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 603 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 604 } 605 606 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 607 return unpackBits(Waitcnt, getLgkmcntBitShift(), 608 getLgkmcntBitWidth(Version.Major)); 609 } 610 611 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 612 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 613 Vmcnt = decodeVmcnt(Version, Waitcnt); 614 Expcnt = decodeExpcnt(Version, Waitcnt); 615 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 616 } 617 618 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 619 Waitcnt Decoded; 620 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 621 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 622 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 623 return Decoded; 624 } 625 626 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 627 unsigned Vmcnt) { 628 Waitcnt = 629 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 630 if (Version.Major < 9) 631 return Waitcnt; 632 633 Vmcnt >>= getVmcntBitWidthLo(); 634 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 635 } 636 637 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 638 unsigned Expcnt) { 639 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 640 } 641 642 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 643 unsigned Lgkmcnt) { 644 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 645 getLgkmcntBitWidth(Version.Major)); 646 } 647 648 unsigned encodeWaitcnt(const IsaVersion &Version, 649 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 650 unsigned Waitcnt = getWaitcntBitMask(Version); 651 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 652 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 653 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 654 return Waitcnt; 655 } 656 657 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 658 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 659 } 660 661 //===----------------------------------------------------------------------===// 662 // hwreg 663 //===----------------------------------------------------------------------===// 664 665 namespace Hwreg { 666 667 int64_t getHwregId(const StringRef Name) { 668 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 669 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 670 return Id; 671 } 672 return ID_UNKNOWN_; 673 } 674 675 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 676 if (isSI(STI) || isCI(STI) || isVI(STI)) 677 return ID_SYMBOLIC_FIRST_GFX9_; 678 else if (isGFX9(STI)) 679 return ID_SYMBOLIC_FIRST_GFX10_; 680 else 681 return ID_SYMBOLIC_LAST_; 682 } 683 684 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 685 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 686 IdSymbolic[Id]; 687 } 688 689 bool isValidHwreg(int64_t Id) { 690 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 691 } 692 693 bool isValidHwregOffset(int64_t Offset) { 694 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 695 } 696 697 bool isValidHwregWidth(int64_t Width) { 698 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 699 } 700 701 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 702 return (Id << ID_SHIFT_) | 703 (Offset << OFFSET_SHIFT_) | 704 ((Width - 1) << WIDTH_M1_SHIFT_); 705 } 706 707 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 708 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 709 } 710 711 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 712 Id = (Val & ID_MASK_) >> ID_SHIFT_; 713 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 714 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 715 } 716 717 } // namespace Hwreg 718 719 //===----------------------------------------------------------------------===// 720 // SendMsg 721 //===----------------------------------------------------------------------===// 722 723 namespace SendMsg { 724 725 int64_t getMsgId(const StringRef Name) { 726 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 727 if (IdSymbolic[i] && Name == IdSymbolic[i]) 728 return i; 729 } 730 return ID_UNKNOWN_; 731 } 732 733 static bool isValidMsgId(int64_t MsgId) { 734 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 735 } 736 737 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 738 if (Strict) { 739 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 740 return isGFX9(STI) || isGFX10(STI); 741 else 742 return isValidMsgId(MsgId); 743 } else { 744 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 745 } 746 } 747 748 StringRef getMsgName(int64_t MsgId) { 749 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 750 } 751 752 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 753 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 754 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 755 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 756 for (int i = F; i < L; ++i) { 757 if (Name == S[i]) { 758 return i; 759 } 760 } 761 return OP_UNKNOWN_; 762 } 763 764 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 765 766 if (!Strict) 767 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 768 769 switch(MsgId) 770 { 771 case ID_GS: 772 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 773 case ID_GS_DONE: 774 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 775 case ID_SYSMSG: 776 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 777 default: 778 return OpId == OP_NONE_; 779 } 780 } 781 782 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 783 assert(msgRequiresOp(MsgId)); 784 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 785 } 786 787 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 788 789 if (!Strict) 790 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 791 792 switch(MsgId) 793 { 794 case ID_GS: 795 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 796 case ID_GS_DONE: 797 return (OpId == OP_GS_NOP)? 798 (StreamId == STREAM_ID_NONE_) : 799 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 800 default: 801 return StreamId == STREAM_ID_NONE_; 802 } 803 } 804 805 bool msgRequiresOp(int64_t MsgId) { 806 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 807 } 808 809 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 810 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 811 } 812 813 void decodeMsg(unsigned Val, 814 uint16_t &MsgId, 815 uint16_t &OpId, 816 uint16_t &StreamId) { 817 MsgId = Val & ID_MASK_; 818 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 819 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 820 } 821 822 uint64_t encodeMsg(uint64_t MsgId, 823 uint64_t OpId, 824 uint64_t StreamId) { 825 return (MsgId << ID_SHIFT_) | 826 (OpId << OP_SHIFT_) | 827 (StreamId << STREAM_ID_SHIFT_); 828 } 829 830 } // namespace SendMsg 831 832 //===----------------------------------------------------------------------===// 833 // 834 //===----------------------------------------------------------------------===// 835 836 unsigned getInitialPSInputAddr(const Function &F) { 837 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 838 } 839 840 bool isShader(CallingConv::ID cc) { 841 switch(cc) { 842 case CallingConv::AMDGPU_VS: 843 case CallingConv::AMDGPU_LS: 844 case CallingConv::AMDGPU_HS: 845 case CallingConv::AMDGPU_ES: 846 case CallingConv::AMDGPU_GS: 847 case CallingConv::AMDGPU_PS: 848 case CallingConv::AMDGPU_CS: 849 return true; 850 default: 851 return false; 852 } 853 } 854 855 bool isCompute(CallingConv::ID cc) { 856 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 857 } 858 859 bool isEntryFunctionCC(CallingConv::ID CC) { 860 switch (CC) { 861 case CallingConv::AMDGPU_KERNEL: 862 case CallingConv::SPIR_KERNEL: 863 case CallingConv::AMDGPU_VS: 864 case CallingConv::AMDGPU_GS: 865 case CallingConv::AMDGPU_PS: 866 case CallingConv::AMDGPU_CS: 867 case CallingConv::AMDGPU_ES: 868 case CallingConv::AMDGPU_HS: 869 case CallingConv::AMDGPU_LS: 870 return true; 871 default: 872 return false; 873 } 874 } 875 876 bool hasXNACK(const MCSubtargetInfo &STI) { 877 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 878 } 879 880 bool hasSRAMECC(const MCSubtargetInfo &STI) { 881 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 882 } 883 884 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 885 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 886 } 887 888 bool hasPackedD16(const MCSubtargetInfo &STI) { 889 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 890 } 891 892 bool isSI(const MCSubtargetInfo &STI) { 893 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 894 } 895 896 bool isCI(const MCSubtargetInfo &STI) { 897 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 898 } 899 900 bool isVI(const MCSubtargetInfo &STI) { 901 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 902 } 903 904 bool isGFX9(const MCSubtargetInfo &STI) { 905 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 906 } 907 908 bool isGFX10(const MCSubtargetInfo &STI) { 909 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 910 } 911 912 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 913 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 914 } 915 916 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 917 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 918 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 919 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 920 Reg == AMDGPU::SCC; 921 } 922 923 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 924 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 925 if (*R == Reg1) return true; 926 } 927 return false; 928 } 929 930 #define MAP_REG2REG \ 931 using namespace AMDGPU; \ 932 switch(Reg) { \ 933 default: return Reg; \ 934 CASE_CI_VI(FLAT_SCR) \ 935 CASE_CI_VI(FLAT_SCR_LO) \ 936 CASE_CI_VI(FLAT_SCR_HI) \ 937 CASE_VI_GFX9_GFX10(TTMP0) \ 938 CASE_VI_GFX9_GFX10(TTMP1) \ 939 CASE_VI_GFX9_GFX10(TTMP2) \ 940 CASE_VI_GFX9_GFX10(TTMP3) \ 941 CASE_VI_GFX9_GFX10(TTMP4) \ 942 CASE_VI_GFX9_GFX10(TTMP5) \ 943 CASE_VI_GFX9_GFX10(TTMP6) \ 944 CASE_VI_GFX9_GFX10(TTMP7) \ 945 CASE_VI_GFX9_GFX10(TTMP8) \ 946 CASE_VI_GFX9_GFX10(TTMP9) \ 947 CASE_VI_GFX9_GFX10(TTMP10) \ 948 CASE_VI_GFX9_GFX10(TTMP11) \ 949 CASE_VI_GFX9_GFX10(TTMP12) \ 950 CASE_VI_GFX9_GFX10(TTMP13) \ 951 CASE_VI_GFX9_GFX10(TTMP14) \ 952 CASE_VI_GFX9_GFX10(TTMP15) \ 953 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 954 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 955 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 956 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 957 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 958 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 959 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 960 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 961 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 962 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 963 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 964 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 965 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 966 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 967 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 968 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 969 } 970 971 #define CASE_CI_VI(node) \ 972 assert(!isSI(STI)); \ 973 case node: return isCI(STI) ? node##_ci : node##_vi; 974 975 #define CASE_VI_GFX9_GFX10(node) \ 976 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 977 978 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 979 if (STI.getTargetTriple().getArch() == Triple::r600) 980 return Reg; 981 MAP_REG2REG 982 } 983 984 #undef CASE_CI_VI 985 #undef CASE_VI_GFX9_GFX10 986 987 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 988 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 989 990 unsigned mc2PseudoReg(unsigned Reg) { 991 MAP_REG2REG 992 } 993 994 #undef CASE_CI_VI 995 #undef CASE_VI_GFX9_GFX10 996 #undef MAP_REG2REG 997 998 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 999 assert(OpNo < Desc.NumOperands); 1000 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1001 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1002 OpType <= AMDGPU::OPERAND_SRC_LAST; 1003 } 1004 1005 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1006 assert(OpNo < Desc.NumOperands); 1007 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1008 switch (OpType) { 1009 case AMDGPU::OPERAND_REG_IMM_FP32: 1010 case AMDGPU::OPERAND_REG_IMM_FP64: 1011 case AMDGPU::OPERAND_REG_IMM_FP16: 1012 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1013 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1014 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1015 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1016 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1017 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1018 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1019 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1020 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1021 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1022 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1023 return true; 1024 default: 1025 return false; 1026 } 1027 } 1028 1029 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1030 assert(OpNo < Desc.NumOperands); 1031 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1032 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1033 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1034 } 1035 1036 // Avoid using MCRegisterClass::getSize, since that function will go away 1037 // (move from MC* level to Target* level). Return size in bits. 1038 unsigned getRegBitWidth(unsigned RCID) { 1039 switch (RCID) { 1040 case AMDGPU::SGPR_32RegClassID: 1041 case AMDGPU::VGPR_32RegClassID: 1042 case AMDGPU::VRegOrLds_32RegClassID: 1043 case AMDGPU::AGPR_32RegClassID: 1044 case AMDGPU::VS_32RegClassID: 1045 case AMDGPU::AV_32RegClassID: 1046 case AMDGPU::SReg_32RegClassID: 1047 case AMDGPU::SReg_32_XM0RegClassID: 1048 case AMDGPU::SRegOrLds_32RegClassID: 1049 return 32; 1050 case AMDGPU::SGPR_64RegClassID: 1051 case AMDGPU::VS_64RegClassID: 1052 case AMDGPU::AV_64RegClassID: 1053 case AMDGPU::SReg_64RegClassID: 1054 case AMDGPU::VReg_64RegClassID: 1055 case AMDGPU::AReg_64RegClassID: 1056 case AMDGPU::SReg_64_XEXECRegClassID: 1057 return 64; 1058 case AMDGPU::SGPR_96RegClassID: 1059 case AMDGPU::SReg_96RegClassID: 1060 case AMDGPU::VReg_96RegClassID: 1061 return 96; 1062 case AMDGPU::SGPR_128RegClassID: 1063 case AMDGPU::SReg_128RegClassID: 1064 case AMDGPU::VReg_128RegClassID: 1065 case AMDGPU::AReg_128RegClassID: 1066 return 128; 1067 case AMDGPU::SGPR_160RegClassID: 1068 case AMDGPU::SReg_160RegClassID: 1069 case AMDGPU::VReg_160RegClassID: 1070 return 160; 1071 case AMDGPU::SReg_256RegClassID: 1072 case AMDGPU::VReg_256RegClassID: 1073 return 256; 1074 case AMDGPU::SReg_512RegClassID: 1075 case AMDGPU::VReg_512RegClassID: 1076 case AMDGPU::AReg_512RegClassID: 1077 return 512; 1078 case AMDGPU::SReg_1024RegClassID: 1079 case AMDGPU::VReg_1024RegClassID: 1080 case AMDGPU::AReg_1024RegClassID: 1081 return 1024; 1082 default: 1083 llvm_unreachable("Unexpected register class"); 1084 } 1085 } 1086 1087 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1088 return getRegBitWidth(RC.getID()); 1089 } 1090 1091 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1092 unsigned OpNo) { 1093 assert(OpNo < Desc.NumOperands); 1094 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1095 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1096 } 1097 1098 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1099 if (Literal >= -16 && Literal <= 64) 1100 return true; 1101 1102 uint64_t Val = static_cast<uint64_t>(Literal); 1103 return (Val == DoubleToBits(0.0)) || 1104 (Val == DoubleToBits(1.0)) || 1105 (Val == DoubleToBits(-1.0)) || 1106 (Val == DoubleToBits(0.5)) || 1107 (Val == DoubleToBits(-0.5)) || 1108 (Val == DoubleToBits(2.0)) || 1109 (Val == DoubleToBits(-2.0)) || 1110 (Val == DoubleToBits(4.0)) || 1111 (Val == DoubleToBits(-4.0)) || 1112 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1113 } 1114 1115 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1116 if (Literal >= -16 && Literal <= 64) 1117 return true; 1118 1119 // The actual type of the operand does not seem to matter as long 1120 // as the bits match one of the inline immediate values. For example: 1121 // 1122 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1123 // so it is a legal inline immediate. 1124 // 1125 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1126 // floating-point, so it is a legal inline immediate. 1127 1128 uint32_t Val = static_cast<uint32_t>(Literal); 1129 return (Val == FloatToBits(0.0f)) || 1130 (Val == FloatToBits(1.0f)) || 1131 (Val == FloatToBits(-1.0f)) || 1132 (Val == FloatToBits(0.5f)) || 1133 (Val == FloatToBits(-0.5f)) || 1134 (Val == FloatToBits(2.0f)) || 1135 (Val == FloatToBits(-2.0f)) || 1136 (Val == FloatToBits(4.0f)) || 1137 (Val == FloatToBits(-4.0f)) || 1138 (Val == 0x3e22f983 && HasInv2Pi); 1139 } 1140 1141 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1142 if (!HasInv2Pi) 1143 return false; 1144 1145 if (Literal >= -16 && Literal <= 64) 1146 return true; 1147 1148 uint16_t Val = static_cast<uint16_t>(Literal); 1149 return Val == 0x3C00 || // 1.0 1150 Val == 0xBC00 || // -1.0 1151 Val == 0x3800 || // 0.5 1152 Val == 0xB800 || // -0.5 1153 Val == 0x4000 || // 2.0 1154 Val == 0xC000 || // -2.0 1155 Val == 0x4400 || // 4.0 1156 Val == 0xC400 || // -4.0 1157 Val == 0x3118; // 1/2pi 1158 } 1159 1160 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1161 assert(HasInv2Pi); 1162 1163 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1164 int16_t Trunc = static_cast<int16_t>(Literal); 1165 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1166 } 1167 if (!(Literal & 0xffff)) 1168 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1169 1170 int16_t Lo16 = static_cast<int16_t>(Literal); 1171 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1172 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1173 } 1174 1175 bool isArgPassedInSGPR(const Argument *A) { 1176 const Function *F = A->getParent(); 1177 1178 // Arguments to compute shaders are never a source of divergence. 1179 CallingConv::ID CC = F->getCallingConv(); 1180 switch (CC) { 1181 case CallingConv::AMDGPU_KERNEL: 1182 case CallingConv::SPIR_KERNEL: 1183 return true; 1184 case CallingConv::AMDGPU_VS: 1185 case CallingConv::AMDGPU_LS: 1186 case CallingConv::AMDGPU_HS: 1187 case CallingConv::AMDGPU_ES: 1188 case CallingConv::AMDGPU_GS: 1189 case CallingConv::AMDGPU_PS: 1190 case CallingConv::AMDGPU_CS: 1191 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1192 // Everything else is in VGPRs. 1193 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1194 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1195 default: 1196 // TODO: Should calls support inreg for SGPR inputs? 1197 return false; 1198 } 1199 } 1200 1201 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1202 return isGCN3Encoding(ST) || isGFX10(ST); 1203 } 1204 1205 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1206 if (hasSMEMByteOffset(ST)) 1207 return ByteOffset; 1208 return ByteOffset >> 2; 1209 } 1210 1211 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1212 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 1213 return (hasSMEMByteOffset(ST)) ? 1214 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 1215 } 1216 1217 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1218 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1219 // hardware bug needing a workaround). 1220 // 1221 // The required alignment ensures that individual address components remain 1222 // aligned if they are aligned to begin with. It also ensures that additional 1223 // offsets within the given alignment can be added to the resulting ImmOffset. 1224 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1225 const GCNSubtarget *Subtarget, uint32_t Align) { 1226 const uint32_t MaxImm = alignDown(4095, Align); 1227 uint32_t Overflow = 0; 1228 1229 if (Imm > MaxImm) { 1230 if (Imm <= MaxImm + 64) { 1231 // Use an SOffset inline constant for 4..64 1232 Overflow = Imm - MaxImm; 1233 Imm = MaxImm; 1234 } else { 1235 // Try to keep the same value in SOffset for adjacent loads, so that 1236 // the corresponding register contents can be re-used. 1237 // 1238 // Load values with all low-bits (except for alignment bits) set into 1239 // SOffset, so that a larger range of values can be covered using 1240 // s_movk_i32. 1241 // 1242 // Atomic operations fail to work correctly when individual address 1243 // components are unaligned, even if their sum is aligned. 1244 uint32_t High = (Imm + Align) & ~4095; 1245 uint32_t Low = (Imm + Align) & 4095; 1246 Imm = Low; 1247 Overflow = High - Align; 1248 } 1249 } 1250 1251 // There is a hardware bug in SI and CI which prevents address clamping in 1252 // MUBUF instructions from working correctly with SOffsets. The immediate 1253 // offset is unaffected. 1254 if (Overflow > 0 && 1255 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1256 return false; 1257 1258 ImmOffset = Imm; 1259 SOffset = Overflow; 1260 return true; 1261 } 1262 1263 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1264 *this = getDefaultForCallingConv(F.getCallingConv()); 1265 1266 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1267 if (!IEEEAttr.empty()) 1268 IEEE = IEEEAttr == "true"; 1269 1270 StringRef DX10ClampAttr 1271 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1272 if (!DX10ClampAttr.empty()) 1273 DX10Clamp = DX10ClampAttr == "true"; 1274 } 1275 1276 namespace { 1277 1278 struct SourceOfDivergence { 1279 unsigned Intr; 1280 }; 1281 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1282 1283 #define GET_SourcesOfDivergence_IMPL 1284 #include "AMDGPUGenSearchableTables.inc" 1285 1286 } // end anonymous namespace 1287 1288 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1289 return lookupSourceOfDivergence(IntrID); 1290 } 1291 1292 } // namespace AMDGPU 1293 } // namespace llvm 1294