1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPUTargetTransformInfo.h"
11 #include "AMDGPU.h"
12 #include "SIDefines.h"
13 #include "AMDGPUAsmUtils.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <utility>
40 
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
42 
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
48 
49 namespace {
50 
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
52 unsigned getBitMask(unsigned Shift, unsigned Width) {
53   return ((1 << Width) - 1) << Shift;
54 }
55 
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Packed \p Dst.
59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
60   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
61   Dst |= (Src << Shift) & getBitMask(Shift, Width);
62   return Dst;
63 }
64 
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
66 ///
67 /// \returns Unpacked bits.
68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
69   return (Src & getBitMask(Shift, Width)) >> Shift;
70 }
71 
72 /// \returns Vmcnt bit shift (lower bits).
73 unsigned getVmcntBitShiftLo() { return 0; }
74 
75 /// \returns Vmcnt bit width (lower bits).
76 unsigned getVmcntBitWidthLo() { return 4; }
77 
78 /// \returns Expcnt bit shift.
79 unsigned getExpcntBitShift() { return 4; }
80 
81 /// \returns Expcnt bit width.
82 unsigned getExpcntBitWidth() { return 3; }
83 
84 /// \returns Lgkmcnt bit shift.
85 unsigned getLgkmcntBitShift() { return 8; }
86 
87 /// \returns Lgkmcnt bit width.
88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89   return (VersionMajor >= 10) ? 6 : 4;
90 }
91 
92 /// \returns Vmcnt bit shift (higher bits).
93 unsigned getVmcntBitShiftHi() { return 14; }
94 
95 /// \returns Vmcnt bit width (higher bits).
96 unsigned getVmcntBitWidthHi() { return 2; }
97 
98 } // end namespace anonymous
99 
100 namespace llvm {
101 
102 namespace AMDGPU {
103 
104 #define GET_MIMGBaseOpcodesTable_IMPL
105 #define GET_MIMGDimInfoTable_IMPL
106 #define GET_MIMGInfoTable_IMPL
107 #define GET_MIMGLZMappingTable_IMPL
108 #define GET_MIMGMIPMappingTable_IMPL
109 #include "AMDGPUGenSearchableTables.inc"
110 
111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
112                   unsigned VDataDwords, unsigned VAddrDwords) {
113   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
114                                              VDataDwords, VAddrDwords);
115   return Info ? Info->Opcode : -1;
116 }
117 
118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
119   const MIMGInfo *Info = getMIMGInfo(Opc);
120   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
121 }
122 
123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
124   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
125   const MIMGInfo *NewInfo =
126       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
127                           NewChannels, OrigInfo->VAddrDwords);
128   return NewInfo ? NewInfo->Opcode : -1;
129 }
130 
131 struct MUBUFInfo {
132   uint16_t Opcode;
133   uint16_t BaseOpcode;
134   uint8_t dwords;
135   bool has_vaddr;
136   bool has_srsrc;
137   bool has_soffset;
138 };
139 
140 #define GET_MUBUFInfoTable_DECL
141 #define GET_MUBUFInfoTable_IMPL
142 #include "AMDGPUGenSearchableTables.inc"
143 
144 int getMUBUFBaseOpcode(unsigned Opc) {
145   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
146   return Info ? Info->BaseOpcode : -1;
147 }
148 
149 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) {
150   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords);
151   return Info ? Info->Opcode : -1;
152 }
153 
154 int getMUBUFDwords(unsigned Opc) {
155   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
156   return Info ? Info->dwords : 0;
157 }
158 
159 bool getMUBUFHasVAddr(unsigned Opc) {
160   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
161   return Info ? Info->has_vaddr : false;
162 }
163 
164 bool getMUBUFHasSrsrc(unsigned Opc) {
165   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
166   return Info ? Info->has_srsrc : false;
167 }
168 
169 bool getMUBUFHasSoffset(unsigned Opc) {
170   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
171   return Info ? Info->has_soffset : false;
172 }
173 
174 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
175 // header files, so we need to wrap it in a function that takes unsigned
176 // instead.
177 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
178   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
179 }
180 
181 namespace IsaInfo {
182 
183 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
184   auto TargetTriple = STI->getTargetTriple();
185   auto Version = getIsaVersion(STI->getCPU());
186 
187   Stream << TargetTriple.getArchName() << '-'
188          << TargetTriple.getVendorName() << '-'
189          << TargetTriple.getOSName() << '-'
190          << TargetTriple.getEnvironmentName() << '-'
191          << "gfx"
192          << Version.Major
193          << Version.Minor
194          << Version.Stepping;
195 
196   if (hasXNACK(*STI))
197     Stream << "+xnack";
198   if (hasSRAMECC(*STI))
199     Stream << "+sram-ecc";
200 
201   Stream.flush();
202 }
203 
204 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
205   return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
206              STI->getFeatureBits().test(FeatureCodeObjectV3);
207 }
208 
209 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
210   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
211     return 16;
212   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
213     return 32;
214 
215   return 64;
216 }
217 
218 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
219   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
220     return 32768;
221   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
222     return 65536;
223 
224   return 0;
225 }
226 
227 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
228   return 4;
229 }
230 
231 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
232                                unsigned FlatWorkGroupSize) {
233   assert(FlatWorkGroupSize != 0);
234   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
235     return 8;
236   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
237   if (N == 1)
238     return 40;
239   N = 40 / N;
240   return std::min(N, 16u);
241 }
242 
243 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
244   return getMaxWavesPerEU(STI) * getEUsPerCU(STI);
245 }
246 
247 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
248                           unsigned FlatWorkGroupSize) {
249   return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
250 }
251 
252 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
253   return 1;
254 }
255 
256 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
257   // FIXME: Need to take scratch memory into account.
258   if (!isGFX10(*STI))
259     return 10;
260   return 20;
261 }
262 
263 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
264                           unsigned FlatWorkGroupSize) {
265   return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
266                  getEUsPerCU(STI)) / getEUsPerCU(STI);
267 }
268 
269 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
270   return 1;
271 }
272 
273 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
274   return 2048;
275 }
276 
277 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
278                               unsigned FlatWorkGroupSize) {
279   return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
280                  getWavefrontSize(STI);
281 }
282 
283 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
284   IsaVersion Version = getIsaVersion(STI->getCPU());
285   if (Version.Major >= 10)
286     return getAddressableNumSGPRs(STI);
287   if (Version.Major >= 8)
288     return 16;
289   return 8;
290 }
291 
292 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
293   return 8;
294 }
295 
296 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
297   IsaVersion Version = getIsaVersion(STI->getCPU());
298   if (Version.Major >= 8)
299     return 800;
300   return 512;
301 }
302 
303 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
304   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
305     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
306 
307   IsaVersion Version = getIsaVersion(STI->getCPU());
308   if (Version.Major >= 10)
309     return 106;
310   if (Version.Major >= 8)
311     return 102;
312   return 104;
313 }
314 
315 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
316   assert(WavesPerEU != 0);
317 
318   IsaVersion Version = getIsaVersion(STI->getCPU());
319   if (Version.Major >= 10)
320     return 0;
321 
322   if (WavesPerEU >= getMaxWavesPerEU(STI))
323     return 0;
324 
325   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
326   if (STI->getFeatureBits().test(FeatureTrapHandler))
327     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
328   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
329   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
330 }
331 
332 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
333                         bool Addressable) {
334   assert(WavesPerEU != 0);
335 
336   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
337   IsaVersion Version = getIsaVersion(STI->getCPU());
338   if (Version.Major >= 10)
339     return Addressable ? AddressableNumSGPRs : 108;
340   if (Version.Major >= 8 && !Addressable)
341     AddressableNumSGPRs = 112;
342   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
343   if (STI->getFeatureBits().test(FeatureTrapHandler))
344     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
345   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
346   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
347 }
348 
349 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
350                           bool FlatScrUsed, bool XNACKUsed) {
351   unsigned ExtraSGPRs = 0;
352   if (VCCUsed)
353     ExtraSGPRs = 2;
354 
355   IsaVersion Version = getIsaVersion(STI->getCPU());
356   if (Version.Major >= 10)
357     return ExtraSGPRs;
358 
359   if (Version.Major < 8) {
360     if (FlatScrUsed)
361       ExtraSGPRs = 4;
362   } else {
363     if (XNACKUsed)
364       ExtraSGPRs = 4;
365 
366     if (FlatScrUsed)
367       ExtraSGPRs = 6;
368   }
369 
370   return ExtraSGPRs;
371 }
372 
373 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
374                           bool FlatScrUsed) {
375   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
376                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
377 }
378 
379 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
380   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
381   // SGPRBlocks is actual number of SGPR blocks minus 1.
382   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
383 }
384 
385 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
386                              Optional<bool> EnableWavefrontSize32) {
387   bool IsWave32 = EnableWavefrontSize32 ?
388       *EnableWavefrontSize32 :
389       STI->getFeatureBits().test(FeatureWavefrontSize32);
390   return IsWave32 ? 8 : 4;
391 }
392 
393 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
394                                 Optional<bool> EnableWavefrontSize32) {
395   return getVGPRAllocGranule(STI, EnableWavefrontSize32);
396 }
397 
398 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
399   if (!isGFX10(*STI))
400     return 256;
401   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
402 }
403 
404 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
405   return 256;
406 }
407 
408 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
409   assert(WavesPerEU != 0);
410 
411   if (WavesPerEU >= getMaxWavesPerEU(STI))
412     return 0;
413   unsigned MinNumVGPRs =
414       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
415                 getVGPRAllocGranule(STI)) + 1;
416   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
417 }
418 
419 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
420   assert(WavesPerEU != 0);
421 
422   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
423                                    getVGPRAllocGranule(STI));
424   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
425   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
426 }
427 
428 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
429                           Optional<bool> EnableWavefrontSize32) {
430   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
431                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
432   // VGPRBlocks is actual number of VGPR blocks minus 1.
433   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
434 }
435 
436 } // end namespace IsaInfo
437 
438 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
439                                const MCSubtargetInfo *STI) {
440   IsaVersion Version = getIsaVersion(STI->getCPU());
441 
442   memset(&Header, 0, sizeof(Header));
443 
444   Header.amd_kernel_code_version_major = 1;
445   Header.amd_kernel_code_version_minor = 2;
446   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
447   Header.amd_machine_version_major = Version.Major;
448   Header.amd_machine_version_minor = Version.Minor;
449   Header.amd_machine_version_stepping = Version.Stepping;
450   Header.kernel_code_entry_byte_offset = sizeof(Header);
451   Header.wavefront_size = 6;
452 
453   // If the code object does not support indirect functions, then the value must
454   // be 0xffffffff.
455   Header.call_convention = -1;
456 
457   // These alignment values are specified in powers of two, so alignment =
458   // 2^n.  The minimum alignment is 2^4 = 16.
459   Header.kernarg_segment_alignment = 4;
460   Header.group_segment_alignment = 4;
461   Header.private_segment_alignment = 4;
462 
463   if (Version.Major >= 10) {
464     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
465       Header.wavefront_size = 5;
466       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
467     }
468     Header.compute_pgm_resource_registers |=
469       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
470       S_00B848_MEM_ORDERED(1);
471   }
472 }
473 
474 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
475     const MCSubtargetInfo *STI) {
476   IsaVersion Version = getIsaVersion(STI->getCPU());
477 
478   amdhsa::kernel_descriptor_t KD;
479   memset(&KD, 0, sizeof(KD));
480 
481   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
482                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
483                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
484   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
485                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
486   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
487                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
488   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
489                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
490   if (Version.Major >= 10) {
491     AMDHSA_BITS_SET(KD.kernel_code_properties,
492                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
493                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
494     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
495                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
496                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
497     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
498                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
499   }
500   return KD;
501 }
502 
503 bool isGroupSegment(const GlobalValue *GV) {
504   return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
505 }
506 
507 bool isGlobalSegment(const GlobalValue *GV) {
508   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
509 }
510 
511 bool isReadOnlySegment(const GlobalValue *GV) {
512   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
513          GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
514 }
515 
516 bool shouldEmitConstantsToTextSection(const Triple &TT) {
517   return TT.getOS() != Triple::AMDHSA;
518 }
519 
520 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
521   Attribute A = F.getFnAttribute(Name);
522   int Result = Default;
523 
524   if (A.isStringAttribute()) {
525     StringRef Str = A.getValueAsString();
526     if (Str.getAsInteger(0, Result)) {
527       LLVMContext &Ctx = F.getContext();
528       Ctx.emitError("can't parse integer attribute " + Name);
529     }
530   }
531 
532   return Result;
533 }
534 
535 std::pair<int, int> getIntegerPairAttribute(const Function &F,
536                                             StringRef Name,
537                                             std::pair<int, int> Default,
538                                             bool OnlyFirstRequired) {
539   Attribute A = F.getFnAttribute(Name);
540   if (!A.isStringAttribute())
541     return Default;
542 
543   LLVMContext &Ctx = F.getContext();
544   std::pair<int, int> Ints = Default;
545   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
546   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
547     Ctx.emitError("can't parse first integer attribute " + Name);
548     return Default;
549   }
550   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
551     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
552       Ctx.emitError("can't parse second integer attribute " + Name);
553       return Default;
554     }
555   }
556 
557   return Ints;
558 }
559 
560 unsigned getVmcntBitMask(const IsaVersion &Version) {
561   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
562   if (Version.Major < 9)
563     return VmcntLo;
564 
565   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
566   return VmcntLo | VmcntHi;
567 }
568 
569 unsigned getExpcntBitMask(const IsaVersion &Version) {
570   return (1 << getExpcntBitWidth()) - 1;
571 }
572 
573 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
574   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
575 }
576 
577 unsigned getWaitcntBitMask(const IsaVersion &Version) {
578   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
579   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
580   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
581                                 getLgkmcntBitWidth(Version.Major));
582   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
583   if (Version.Major < 9)
584     return Waitcnt;
585 
586   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
587   return Waitcnt | VmcntHi;
588 }
589 
590 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
591   unsigned VmcntLo =
592       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
593   if (Version.Major < 9)
594     return VmcntLo;
595 
596   unsigned VmcntHi =
597       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
598   VmcntHi <<= getVmcntBitWidthLo();
599   return VmcntLo | VmcntHi;
600 }
601 
602 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
603   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
604 }
605 
606 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
607   return unpackBits(Waitcnt, getLgkmcntBitShift(),
608                     getLgkmcntBitWidth(Version.Major));
609 }
610 
611 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
612                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
613   Vmcnt = decodeVmcnt(Version, Waitcnt);
614   Expcnt = decodeExpcnt(Version, Waitcnt);
615   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
616 }
617 
618 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
619   Waitcnt Decoded;
620   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
621   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
622   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
623   return Decoded;
624 }
625 
626 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
627                      unsigned Vmcnt) {
628   Waitcnt =
629       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
630   if (Version.Major < 9)
631     return Waitcnt;
632 
633   Vmcnt >>= getVmcntBitWidthLo();
634   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
635 }
636 
637 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
638                       unsigned Expcnt) {
639   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
640 }
641 
642 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
643                        unsigned Lgkmcnt) {
644   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
645                                     getLgkmcntBitWidth(Version.Major));
646 }
647 
648 unsigned encodeWaitcnt(const IsaVersion &Version,
649                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
650   unsigned Waitcnt = getWaitcntBitMask(Version);
651   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
652   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
653   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
654   return Waitcnt;
655 }
656 
657 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
658   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
659 }
660 
661 //===----------------------------------------------------------------------===//
662 // hwreg
663 //===----------------------------------------------------------------------===//
664 
665 namespace Hwreg {
666 
667 int64_t getHwregId(const StringRef Name) {
668   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
669     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
670       return Id;
671   }
672   return ID_UNKNOWN_;
673 }
674 
675 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
676   if (isSI(STI) || isCI(STI) || isVI(STI))
677     return ID_SYMBOLIC_FIRST_GFX9_;
678   else if (isGFX9(STI))
679     return ID_SYMBOLIC_FIRST_GFX10_;
680   else
681     return ID_SYMBOLIC_LAST_;
682 }
683 
684 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
685   return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
686          IdSymbolic[Id];
687 }
688 
689 bool isValidHwreg(int64_t Id) {
690   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
691 }
692 
693 bool isValidHwregOffset(int64_t Offset) {
694   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
695 }
696 
697 bool isValidHwregWidth(int64_t Width) {
698   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
699 }
700 
701 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
702   return (Id << ID_SHIFT_) |
703          (Offset << OFFSET_SHIFT_) |
704          ((Width - 1) << WIDTH_M1_SHIFT_);
705 }
706 
707 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
708   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
709 }
710 
711 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
712   Id = (Val & ID_MASK_) >> ID_SHIFT_;
713   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
714   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
715 }
716 
717 } // namespace Hwreg
718 
719 //===----------------------------------------------------------------------===//
720 // SendMsg
721 //===----------------------------------------------------------------------===//
722 
723 namespace SendMsg {
724 
725 int64_t getMsgId(const StringRef Name) {
726   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
727     if (IdSymbolic[i] && Name == IdSymbolic[i])
728       return i;
729   }
730   return ID_UNKNOWN_;
731 }
732 
733 static bool isValidMsgId(int64_t MsgId) {
734   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
735 }
736 
737 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
738   if (Strict) {
739     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
740       return isGFX9(STI) || isGFX10(STI);
741     else
742       return isValidMsgId(MsgId);
743   } else {
744     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
745   }
746 }
747 
748 StringRef getMsgName(int64_t MsgId) {
749   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
750 }
751 
752 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
753   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
754   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
755   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
756   for (int i = F; i < L; ++i) {
757     if (Name == S[i]) {
758       return i;
759     }
760   }
761   return OP_UNKNOWN_;
762 }
763 
764 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
765 
766   if (!Strict)
767     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
768 
769   switch(MsgId)
770   {
771   case ID_GS:
772     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
773   case ID_GS_DONE:
774     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
775   case ID_SYSMSG:
776     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
777   default:
778     return OpId == OP_NONE_;
779   }
780 }
781 
782 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
783   assert(msgRequiresOp(MsgId));
784   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
785 }
786 
787 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
788 
789   if (!Strict)
790     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
791 
792   switch(MsgId)
793   {
794   case ID_GS:
795     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
796   case ID_GS_DONE:
797     return (OpId == OP_GS_NOP)?
798            (StreamId == STREAM_ID_NONE_) :
799            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
800   default:
801     return StreamId == STREAM_ID_NONE_;
802   }
803 }
804 
805 bool msgRequiresOp(int64_t MsgId) {
806   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
807 }
808 
809 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
810   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
811 }
812 
813 void decodeMsg(unsigned Val,
814                uint16_t &MsgId,
815                uint16_t &OpId,
816                uint16_t &StreamId) {
817   MsgId = Val & ID_MASK_;
818   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
819   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
820 }
821 
822 uint64_t encodeMsg(uint64_t MsgId,
823                    uint64_t OpId,
824                    uint64_t StreamId) {
825   return (MsgId << ID_SHIFT_) |
826          (OpId << OP_SHIFT_) |
827          (StreamId << STREAM_ID_SHIFT_);
828 }
829 
830 } // namespace SendMsg
831 
832 //===----------------------------------------------------------------------===//
833 //
834 //===----------------------------------------------------------------------===//
835 
836 unsigned getInitialPSInputAddr(const Function &F) {
837   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
838 }
839 
840 bool isShader(CallingConv::ID cc) {
841   switch(cc) {
842     case CallingConv::AMDGPU_VS:
843     case CallingConv::AMDGPU_LS:
844     case CallingConv::AMDGPU_HS:
845     case CallingConv::AMDGPU_ES:
846     case CallingConv::AMDGPU_GS:
847     case CallingConv::AMDGPU_PS:
848     case CallingConv::AMDGPU_CS:
849       return true;
850     default:
851       return false;
852   }
853 }
854 
855 bool isCompute(CallingConv::ID cc) {
856   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
857 }
858 
859 bool isEntryFunctionCC(CallingConv::ID CC) {
860   switch (CC) {
861   case CallingConv::AMDGPU_KERNEL:
862   case CallingConv::SPIR_KERNEL:
863   case CallingConv::AMDGPU_VS:
864   case CallingConv::AMDGPU_GS:
865   case CallingConv::AMDGPU_PS:
866   case CallingConv::AMDGPU_CS:
867   case CallingConv::AMDGPU_ES:
868   case CallingConv::AMDGPU_HS:
869   case CallingConv::AMDGPU_LS:
870     return true;
871   default:
872     return false;
873   }
874 }
875 
876 bool hasXNACK(const MCSubtargetInfo &STI) {
877   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
878 }
879 
880 bool hasSRAMECC(const MCSubtargetInfo &STI) {
881   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
882 }
883 
884 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
885   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
886 }
887 
888 bool hasPackedD16(const MCSubtargetInfo &STI) {
889   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
890 }
891 
892 bool isSI(const MCSubtargetInfo &STI) {
893   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
894 }
895 
896 bool isCI(const MCSubtargetInfo &STI) {
897   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
898 }
899 
900 bool isVI(const MCSubtargetInfo &STI) {
901   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
902 }
903 
904 bool isGFX9(const MCSubtargetInfo &STI) {
905   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
906 }
907 
908 bool isGFX10(const MCSubtargetInfo &STI) {
909   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
910 }
911 
912 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
913   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
914 }
915 
916 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
917   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
918   const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
919   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
920     Reg == AMDGPU::SCC;
921 }
922 
923 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
924   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
925     if (*R == Reg1) return true;
926   }
927   return false;
928 }
929 
930 #define MAP_REG2REG \
931   using namespace AMDGPU; \
932   switch(Reg) { \
933   default: return Reg; \
934   CASE_CI_VI(FLAT_SCR) \
935   CASE_CI_VI(FLAT_SCR_LO) \
936   CASE_CI_VI(FLAT_SCR_HI) \
937   CASE_VI_GFX9_GFX10(TTMP0) \
938   CASE_VI_GFX9_GFX10(TTMP1) \
939   CASE_VI_GFX9_GFX10(TTMP2) \
940   CASE_VI_GFX9_GFX10(TTMP3) \
941   CASE_VI_GFX9_GFX10(TTMP4) \
942   CASE_VI_GFX9_GFX10(TTMP5) \
943   CASE_VI_GFX9_GFX10(TTMP6) \
944   CASE_VI_GFX9_GFX10(TTMP7) \
945   CASE_VI_GFX9_GFX10(TTMP8) \
946   CASE_VI_GFX9_GFX10(TTMP9) \
947   CASE_VI_GFX9_GFX10(TTMP10) \
948   CASE_VI_GFX9_GFX10(TTMP11) \
949   CASE_VI_GFX9_GFX10(TTMP12) \
950   CASE_VI_GFX9_GFX10(TTMP13) \
951   CASE_VI_GFX9_GFX10(TTMP14) \
952   CASE_VI_GFX9_GFX10(TTMP15) \
953   CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
954   CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
955   CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
956   CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
957   CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
958   CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
959   CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
960   CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
961   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
962   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
963   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
964   CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
965   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
966   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
967   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
968   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
969   }
970 
971 #define CASE_CI_VI(node) \
972   assert(!isSI(STI)); \
973   case node: return isCI(STI) ? node##_ci : node##_vi;
974 
975 #define CASE_VI_GFX9_GFX10(node) \
976   case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
977 
978 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
979   if (STI.getTargetTriple().getArch() == Triple::r600)
980     return Reg;
981   MAP_REG2REG
982 }
983 
984 #undef CASE_CI_VI
985 #undef CASE_VI_GFX9_GFX10
986 
987 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
988 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
989 
990 unsigned mc2PseudoReg(unsigned Reg) {
991   MAP_REG2REG
992 }
993 
994 #undef CASE_CI_VI
995 #undef CASE_VI_GFX9_GFX10
996 #undef MAP_REG2REG
997 
998 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
999   assert(OpNo < Desc.NumOperands);
1000   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1001   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1002          OpType <= AMDGPU::OPERAND_SRC_LAST;
1003 }
1004 
1005 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1006   assert(OpNo < Desc.NumOperands);
1007   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1008   switch (OpType) {
1009   case AMDGPU::OPERAND_REG_IMM_FP32:
1010   case AMDGPU::OPERAND_REG_IMM_FP64:
1011   case AMDGPU::OPERAND_REG_IMM_FP16:
1012   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1013   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1014   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1015   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1016   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1017   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1018   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1019   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1020   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1021   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1022   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1023     return true;
1024   default:
1025     return false;
1026   }
1027 }
1028 
1029 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1030   assert(OpNo < Desc.NumOperands);
1031   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1032   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1033          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1034 }
1035 
1036 // Avoid using MCRegisterClass::getSize, since that function will go away
1037 // (move from MC* level to Target* level). Return size in bits.
1038 unsigned getRegBitWidth(unsigned RCID) {
1039   switch (RCID) {
1040   case AMDGPU::SGPR_32RegClassID:
1041   case AMDGPU::VGPR_32RegClassID:
1042   case AMDGPU::VRegOrLds_32RegClassID:
1043   case AMDGPU::AGPR_32RegClassID:
1044   case AMDGPU::VS_32RegClassID:
1045   case AMDGPU::AV_32RegClassID:
1046   case AMDGPU::SReg_32RegClassID:
1047   case AMDGPU::SReg_32_XM0RegClassID:
1048   case AMDGPU::SRegOrLds_32RegClassID:
1049     return 32;
1050   case AMDGPU::SGPR_64RegClassID:
1051   case AMDGPU::VS_64RegClassID:
1052   case AMDGPU::AV_64RegClassID:
1053   case AMDGPU::SReg_64RegClassID:
1054   case AMDGPU::VReg_64RegClassID:
1055   case AMDGPU::AReg_64RegClassID:
1056   case AMDGPU::SReg_64_XEXECRegClassID:
1057     return 64;
1058   case AMDGPU::SGPR_96RegClassID:
1059   case AMDGPU::SReg_96RegClassID:
1060   case AMDGPU::VReg_96RegClassID:
1061     return 96;
1062   case AMDGPU::SGPR_128RegClassID:
1063   case AMDGPU::SReg_128RegClassID:
1064   case AMDGPU::VReg_128RegClassID:
1065   case AMDGPU::AReg_128RegClassID:
1066     return 128;
1067   case AMDGPU::SGPR_160RegClassID:
1068   case AMDGPU::SReg_160RegClassID:
1069   case AMDGPU::VReg_160RegClassID:
1070     return 160;
1071   case AMDGPU::SReg_256RegClassID:
1072   case AMDGPU::VReg_256RegClassID:
1073     return 256;
1074   case AMDGPU::SReg_512RegClassID:
1075   case AMDGPU::VReg_512RegClassID:
1076   case AMDGPU::AReg_512RegClassID:
1077     return 512;
1078   case AMDGPU::SReg_1024RegClassID:
1079   case AMDGPU::VReg_1024RegClassID:
1080   case AMDGPU::AReg_1024RegClassID:
1081     return 1024;
1082   default:
1083     llvm_unreachable("Unexpected register class");
1084   }
1085 }
1086 
1087 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1088   return getRegBitWidth(RC.getID());
1089 }
1090 
1091 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1092                            unsigned OpNo) {
1093   assert(OpNo < Desc.NumOperands);
1094   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1095   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1096 }
1097 
1098 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1099   if (Literal >= -16 && Literal <= 64)
1100     return true;
1101 
1102   uint64_t Val = static_cast<uint64_t>(Literal);
1103   return (Val == DoubleToBits(0.0)) ||
1104          (Val == DoubleToBits(1.0)) ||
1105          (Val == DoubleToBits(-1.0)) ||
1106          (Val == DoubleToBits(0.5)) ||
1107          (Val == DoubleToBits(-0.5)) ||
1108          (Val == DoubleToBits(2.0)) ||
1109          (Val == DoubleToBits(-2.0)) ||
1110          (Val == DoubleToBits(4.0)) ||
1111          (Val == DoubleToBits(-4.0)) ||
1112          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1113 }
1114 
1115 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1116   if (Literal >= -16 && Literal <= 64)
1117     return true;
1118 
1119   // The actual type of the operand does not seem to matter as long
1120   // as the bits match one of the inline immediate values.  For example:
1121   //
1122   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1123   // so it is a legal inline immediate.
1124   //
1125   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1126   // floating-point, so it is a legal inline immediate.
1127 
1128   uint32_t Val = static_cast<uint32_t>(Literal);
1129   return (Val == FloatToBits(0.0f)) ||
1130          (Val == FloatToBits(1.0f)) ||
1131          (Val == FloatToBits(-1.0f)) ||
1132          (Val == FloatToBits(0.5f)) ||
1133          (Val == FloatToBits(-0.5f)) ||
1134          (Val == FloatToBits(2.0f)) ||
1135          (Val == FloatToBits(-2.0f)) ||
1136          (Val == FloatToBits(4.0f)) ||
1137          (Val == FloatToBits(-4.0f)) ||
1138          (Val == 0x3e22f983 && HasInv2Pi);
1139 }
1140 
1141 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1142   if (!HasInv2Pi)
1143     return false;
1144 
1145   if (Literal >= -16 && Literal <= 64)
1146     return true;
1147 
1148   uint16_t Val = static_cast<uint16_t>(Literal);
1149   return Val == 0x3C00 || // 1.0
1150          Val == 0xBC00 || // -1.0
1151          Val == 0x3800 || // 0.5
1152          Val == 0xB800 || // -0.5
1153          Val == 0x4000 || // 2.0
1154          Val == 0xC000 || // -2.0
1155          Val == 0x4400 || // 4.0
1156          Val == 0xC400 || // -4.0
1157          Val == 0x3118;   // 1/2pi
1158 }
1159 
1160 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1161   assert(HasInv2Pi);
1162 
1163   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1164     int16_t Trunc = static_cast<int16_t>(Literal);
1165     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1166   }
1167   if (!(Literal & 0xffff))
1168     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1169 
1170   int16_t Lo16 = static_cast<int16_t>(Literal);
1171   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1172   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1173 }
1174 
1175 bool isArgPassedInSGPR(const Argument *A) {
1176   const Function *F = A->getParent();
1177 
1178   // Arguments to compute shaders are never a source of divergence.
1179   CallingConv::ID CC = F->getCallingConv();
1180   switch (CC) {
1181   case CallingConv::AMDGPU_KERNEL:
1182   case CallingConv::SPIR_KERNEL:
1183     return true;
1184   case CallingConv::AMDGPU_VS:
1185   case CallingConv::AMDGPU_LS:
1186   case CallingConv::AMDGPU_HS:
1187   case CallingConv::AMDGPU_ES:
1188   case CallingConv::AMDGPU_GS:
1189   case CallingConv::AMDGPU_PS:
1190   case CallingConv::AMDGPU_CS:
1191     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1192     // Everything else is in VGPRs.
1193     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1194            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1195   default:
1196     // TODO: Should calls support inreg for SGPR inputs?
1197     return false;
1198   }
1199 }
1200 
1201 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1202   return isGCN3Encoding(ST) || isGFX10(ST);
1203 }
1204 
1205 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1206   if (hasSMEMByteOffset(ST))
1207     return ByteOffset;
1208   return ByteOffset >> 2;
1209 }
1210 
1211 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1212   int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
1213   return (hasSMEMByteOffset(ST)) ?
1214     isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
1215 }
1216 
1217 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1218 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1219 // hardware bug needing a workaround).
1220 //
1221 // The required alignment ensures that individual address components remain
1222 // aligned if they are aligned to begin with. It also ensures that additional
1223 // offsets within the given alignment can be added to the resulting ImmOffset.
1224 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1225                       const GCNSubtarget *Subtarget, uint32_t Align) {
1226   const uint32_t MaxImm = alignDown(4095, Align);
1227   uint32_t Overflow = 0;
1228 
1229   if (Imm > MaxImm) {
1230     if (Imm <= MaxImm + 64) {
1231       // Use an SOffset inline constant for 4..64
1232       Overflow = Imm - MaxImm;
1233       Imm = MaxImm;
1234     } else {
1235       // Try to keep the same value in SOffset for adjacent loads, so that
1236       // the corresponding register contents can be re-used.
1237       //
1238       // Load values with all low-bits (except for alignment bits) set into
1239       // SOffset, so that a larger range of values can be covered using
1240       // s_movk_i32.
1241       //
1242       // Atomic operations fail to work correctly when individual address
1243       // components are unaligned, even if their sum is aligned.
1244       uint32_t High = (Imm + Align) & ~4095;
1245       uint32_t Low = (Imm + Align) & 4095;
1246       Imm = Low;
1247       Overflow = High - Align;
1248     }
1249   }
1250 
1251   // There is a hardware bug in SI and CI which prevents address clamping in
1252   // MUBUF instructions from working correctly with SOffsets. The immediate
1253   // offset is unaffected.
1254   if (Overflow > 0 &&
1255       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1256     return false;
1257 
1258   ImmOffset = Imm;
1259   SOffset = Overflow;
1260   return true;
1261 }
1262 
1263 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1264   *this = getDefaultForCallingConv(F.getCallingConv());
1265 
1266   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1267   if (!IEEEAttr.empty())
1268     IEEE = IEEEAttr == "true";
1269 
1270   StringRef DX10ClampAttr
1271     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1272   if (!DX10ClampAttr.empty())
1273     DX10Clamp = DX10ClampAttr == "true";
1274 }
1275 
1276 namespace {
1277 
1278 struct SourceOfDivergence {
1279   unsigned Intr;
1280 };
1281 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1282 
1283 #define GET_SourcesOfDivergence_IMPL
1284 #include "AMDGPUGenSearchableTables.inc"
1285 
1286 } // end anonymous namespace
1287 
1288 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1289   return lookupSourceOfDivergence(IntrID);
1290 }
1291 
1292 } // namespace AMDGPU
1293 } // namespace llvm
1294