1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPUTargetTransformInfo.h" 11 #include "AMDGPU.h" 12 #include "SIDefines.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/CodeGen/MachineMemOperand.h" 17 #include "llvm/IR/Attributes.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GlobalValue.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/MC/MCContext.h" 25 #include "llvm/MC/MCInstrDesc.h" 26 #include "llvm/MC/MCInstrInfo.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/MC/MCSectionELF.h" 29 #include "llvm/MC/MCSubtargetInfo.h" 30 #include "llvm/MC/SubtargetFeature.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <cstring> 38 #include <utility> 39 40 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 41 42 #define GET_INSTRINFO_NAMED_OPS 43 #define GET_INSTRMAP_INFO 44 #include "AMDGPUGenInstrInfo.inc" 45 #undef GET_INSTRMAP_INFO 46 #undef GET_INSTRINFO_NAMED_OPS 47 48 namespace { 49 50 /// \returns Bit mask for given bit \p Shift and bit \p Width. 51 unsigned getBitMask(unsigned Shift, unsigned Width) { 52 return ((1 << Width) - 1) << Shift; 53 } 54 55 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 56 /// 57 /// \returns Packed \p Dst. 58 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 59 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 60 Dst |= (Src << Shift) & getBitMask(Shift, Width); 61 return Dst; 62 } 63 64 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 65 /// 66 /// \returns Unpacked bits. 67 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 68 return (Src & getBitMask(Shift, Width)) >> Shift; 69 } 70 71 /// \returns Vmcnt bit shift (lower bits). 72 unsigned getVmcntBitShiftLo() { return 0; } 73 74 /// \returns Vmcnt bit width (lower bits). 75 unsigned getVmcntBitWidthLo() { return 4; } 76 77 /// \returns Expcnt bit shift. 78 unsigned getExpcntBitShift() { return 4; } 79 80 /// \returns Expcnt bit width. 81 unsigned getExpcntBitWidth() { return 3; } 82 83 /// \returns Lgkmcnt bit shift. 84 unsigned getLgkmcntBitShift() { return 8; } 85 86 /// \returns Lgkmcnt bit width. 87 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 88 return (VersionMajor >= 10) ? 6 : 4; 89 } 90 91 /// \returns Vmcnt bit shift (higher bits). 92 unsigned getVmcntBitShiftHi() { return 14; } 93 94 /// \returns Vmcnt bit width (higher bits). 95 unsigned getVmcntBitWidthHi() { return 2; } 96 97 } // end namespace anonymous 98 99 namespace llvm { 100 101 namespace AMDGPU { 102 103 #define GET_MIMGBaseOpcodesTable_IMPL 104 #define GET_MIMGDimInfoTable_IMPL 105 #define GET_MIMGInfoTable_IMPL 106 #define GET_MIMGLZMappingTable_IMPL 107 #include "AMDGPUGenSearchableTables.inc" 108 109 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 110 unsigned VDataDwords, unsigned VAddrDwords) { 111 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 112 VDataDwords, VAddrDwords); 113 return Info ? Info->Opcode : -1; 114 } 115 116 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 117 const MIMGInfo *Info = getMIMGInfo(Opc); 118 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 119 } 120 121 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 122 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 123 const MIMGInfo *NewInfo = 124 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 125 NewChannels, OrigInfo->VAddrDwords); 126 return NewInfo ? NewInfo->Opcode : -1; 127 } 128 129 struct MUBUFInfo { 130 uint16_t Opcode; 131 uint16_t BaseOpcode; 132 uint8_t dwords; 133 bool has_vaddr; 134 bool has_srsrc; 135 bool has_soffset; 136 }; 137 138 #define GET_MUBUFInfoTable_DECL 139 #define GET_MUBUFInfoTable_IMPL 140 #include "AMDGPUGenSearchableTables.inc" 141 142 int getMUBUFBaseOpcode(unsigned Opc) { 143 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 144 return Info ? Info->BaseOpcode : -1; 145 } 146 147 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) { 148 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords); 149 return Info ? Info->Opcode : -1; 150 } 151 152 int getMUBUFDwords(unsigned Opc) { 153 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 154 return Info ? Info->dwords : 0; 155 } 156 157 bool getMUBUFHasVAddr(unsigned Opc) { 158 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 159 return Info ? Info->has_vaddr : false; 160 } 161 162 bool getMUBUFHasSrsrc(unsigned Opc) { 163 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 164 return Info ? Info->has_srsrc : false; 165 } 166 167 bool getMUBUFHasSoffset(unsigned Opc) { 168 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 169 return Info ? Info->has_soffset : false; 170 } 171 172 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 173 // header files, so we need to wrap it in a function that takes unsigned 174 // instead. 175 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 176 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 177 } 178 179 namespace IsaInfo { 180 181 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 182 auto TargetTriple = STI->getTargetTriple(); 183 auto Version = getIsaVersion(STI->getCPU()); 184 185 Stream << TargetTriple.getArchName() << '-' 186 << TargetTriple.getVendorName() << '-' 187 << TargetTriple.getOSName() << '-' 188 << TargetTriple.getEnvironmentName() << '-' 189 << "gfx" 190 << Version.Major 191 << Version.Minor 192 << Version.Stepping; 193 194 if (hasXNACK(*STI)) 195 Stream << "+xnack"; 196 if (hasSRAMECC(*STI)) 197 Stream << "+sram-ecc"; 198 199 Stream.flush(); 200 } 201 202 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 203 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 204 STI->getFeatureBits().test(FeatureCodeObjectV3); 205 } 206 207 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 208 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 209 return 16; 210 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 211 return 32; 212 213 return 64; 214 } 215 216 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 217 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 218 return 32768; 219 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 220 return 65536; 221 222 return 0; 223 } 224 225 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 226 return 4; 227 } 228 229 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 230 unsigned FlatWorkGroupSize) { 231 assert(FlatWorkGroupSize != 0); 232 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 233 return 8; 234 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 235 if (N == 1) 236 return 40; 237 N = 40 / N; 238 return std::min(N, 16u); 239 } 240 241 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 242 return getMaxWavesPerEU() * getEUsPerCU(STI); 243 } 244 245 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 246 unsigned FlatWorkGroupSize) { 247 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 248 } 249 250 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 251 return 1; 252 } 253 254 unsigned getMaxWavesPerEU() { 255 // FIXME: Need to take scratch memory into account. 256 return 10; 257 } 258 259 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 260 unsigned FlatWorkGroupSize) { 261 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 262 getEUsPerCU(STI)) / getEUsPerCU(STI); 263 } 264 265 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 266 return 1; 267 } 268 269 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 270 return 2048; 271 } 272 273 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 274 unsigned FlatWorkGroupSize) { 275 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 276 getWavefrontSize(STI); 277 } 278 279 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 280 IsaVersion Version = getIsaVersion(STI->getCPU()); 281 if (Version.Major >= 10) 282 return getAddressableNumSGPRs(STI); 283 if (Version.Major >= 8) 284 return 16; 285 return 8; 286 } 287 288 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 289 return 8; 290 } 291 292 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 293 IsaVersion Version = getIsaVersion(STI->getCPU()); 294 if (Version.Major >= 8) 295 return 800; 296 return 512; 297 } 298 299 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 300 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 301 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 302 303 IsaVersion Version = getIsaVersion(STI->getCPU()); 304 if (Version.Major >= 10) 305 return 106; 306 if (Version.Major >= 8) 307 return 102; 308 return 104; 309 } 310 311 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 312 assert(WavesPerEU != 0); 313 314 IsaVersion Version = getIsaVersion(STI->getCPU()); 315 if (Version.Major >= 10) 316 return 0; 317 318 if (WavesPerEU >= getMaxWavesPerEU()) 319 return 0; 320 321 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 322 if (STI->getFeatureBits().test(FeatureTrapHandler)) 323 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 324 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 325 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 326 } 327 328 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 329 bool Addressable) { 330 assert(WavesPerEU != 0); 331 332 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 333 IsaVersion Version = getIsaVersion(STI->getCPU()); 334 if (Version.Major >= 10) 335 return Addressable ? AddressableNumSGPRs : 108; 336 if (Version.Major >= 8 && !Addressable) 337 AddressableNumSGPRs = 112; 338 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 339 if (STI->getFeatureBits().test(FeatureTrapHandler)) 340 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 341 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 342 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 343 } 344 345 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 346 bool FlatScrUsed, bool XNACKUsed) { 347 unsigned ExtraSGPRs = 0; 348 if (VCCUsed) 349 ExtraSGPRs = 2; 350 351 IsaVersion Version = getIsaVersion(STI->getCPU()); 352 if (Version.Major >= 10) 353 return ExtraSGPRs; 354 355 if (Version.Major < 8) { 356 if (FlatScrUsed) 357 ExtraSGPRs = 4; 358 } else { 359 if (XNACKUsed) 360 ExtraSGPRs = 4; 361 362 if (FlatScrUsed) 363 ExtraSGPRs = 6; 364 } 365 366 return ExtraSGPRs; 367 } 368 369 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 370 bool FlatScrUsed) { 371 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 372 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 373 } 374 375 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 376 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 377 // SGPRBlocks is actual number of SGPR blocks minus 1. 378 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 379 } 380 381 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) { 382 return 4; 383 } 384 385 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) { 386 return getVGPRAllocGranule(STI); 387 } 388 389 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 390 return 256; 391 } 392 393 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 394 return getTotalNumVGPRs(STI); 395 } 396 397 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 398 assert(WavesPerEU != 0); 399 400 if (WavesPerEU >= getMaxWavesPerEU()) 401 return 0; 402 unsigned MinNumVGPRs = 403 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 404 getVGPRAllocGranule(STI)) + 1; 405 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 406 } 407 408 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 409 assert(WavesPerEU != 0); 410 411 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 412 getVGPRAllocGranule(STI)); 413 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 414 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 415 } 416 417 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) { 418 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI)); 419 // VGPRBlocks is actual number of VGPR blocks minus 1. 420 return NumVGPRs / getVGPREncodingGranule(STI) - 1; 421 } 422 423 } // end namespace IsaInfo 424 425 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 426 const MCSubtargetInfo *STI) { 427 IsaVersion Version = getIsaVersion(STI->getCPU()); 428 429 memset(&Header, 0, sizeof(Header)); 430 431 Header.amd_kernel_code_version_major = 1; 432 Header.amd_kernel_code_version_minor = 2; 433 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 434 Header.amd_machine_version_major = Version.Major; 435 Header.amd_machine_version_minor = Version.Minor; 436 Header.amd_machine_version_stepping = Version.Stepping; 437 Header.kernel_code_entry_byte_offset = sizeof(Header); 438 // wavefront_size is specified as a power of 2: 2^6 = 64 threads. 439 Header.wavefront_size = 6; 440 441 // If the code object does not support indirect functions, then the value must 442 // be 0xffffffff. 443 Header.call_convention = -1; 444 445 // These alignment values are specified in powers of two, so alignment = 446 // 2^n. The minimum alignment is 2^4 = 16. 447 Header.kernarg_segment_alignment = 4; 448 Header.group_segment_alignment = 4; 449 Header.private_segment_alignment = 4; 450 451 if (Version.Major >= 10) { 452 Header.compute_pgm_resource_registers |= 453 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 454 S_00B848_MEM_ORDERED(1); 455 } 456 } 457 458 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 459 const MCSubtargetInfo *STI) { 460 IsaVersion Version = getIsaVersion(STI->getCPU()); 461 462 amdhsa::kernel_descriptor_t KD; 463 memset(&KD, 0, sizeof(KD)); 464 465 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 466 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 467 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 468 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 469 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 470 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 471 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 472 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 473 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 474 if (Version.Major >= 10) { 475 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 476 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 477 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 478 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 479 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 480 } 481 return KD; 482 } 483 484 bool isGroupSegment(const GlobalValue *GV) { 485 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 486 } 487 488 bool isGlobalSegment(const GlobalValue *GV) { 489 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 490 } 491 492 bool isReadOnlySegment(const GlobalValue *GV) { 493 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 494 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 495 } 496 497 bool shouldEmitConstantsToTextSection(const Triple &TT) { 498 return TT.getOS() != Triple::AMDHSA; 499 } 500 501 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 502 Attribute A = F.getFnAttribute(Name); 503 int Result = Default; 504 505 if (A.isStringAttribute()) { 506 StringRef Str = A.getValueAsString(); 507 if (Str.getAsInteger(0, Result)) { 508 LLVMContext &Ctx = F.getContext(); 509 Ctx.emitError("can't parse integer attribute " + Name); 510 } 511 } 512 513 return Result; 514 } 515 516 std::pair<int, int> getIntegerPairAttribute(const Function &F, 517 StringRef Name, 518 std::pair<int, int> Default, 519 bool OnlyFirstRequired) { 520 Attribute A = F.getFnAttribute(Name); 521 if (!A.isStringAttribute()) 522 return Default; 523 524 LLVMContext &Ctx = F.getContext(); 525 std::pair<int, int> Ints = Default; 526 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 527 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 528 Ctx.emitError("can't parse first integer attribute " + Name); 529 return Default; 530 } 531 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 532 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 533 Ctx.emitError("can't parse second integer attribute " + Name); 534 return Default; 535 } 536 } 537 538 return Ints; 539 } 540 541 unsigned getVmcntBitMask(const IsaVersion &Version) { 542 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 543 if (Version.Major < 9) 544 return VmcntLo; 545 546 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 547 return VmcntLo | VmcntHi; 548 } 549 550 unsigned getExpcntBitMask(const IsaVersion &Version) { 551 return (1 << getExpcntBitWidth()) - 1; 552 } 553 554 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 555 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 556 } 557 558 unsigned getWaitcntBitMask(const IsaVersion &Version) { 559 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 560 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 561 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 562 getLgkmcntBitWidth(Version.Major)); 563 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 564 if (Version.Major < 9) 565 return Waitcnt; 566 567 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 568 return Waitcnt | VmcntHi; 569 } 570 571 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 572 unsigned VmcntLo = 573 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 574 if (Version.Major < 9) 575 return VmcntLo; 576 577 unsigned VmcntHi = 578 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 579 VmcntHi <<= getVmcntBitWidthLo(); 580 return VmcntLo | VmcntHi; 581 } 582 583 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 584 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 585 } 586 587 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 588 return unpackBits(Waitcnt, getLgkmcntBitShift(), 589 getLgkmcntBitWidth(Version.Major)); 590 } 591 592 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 593 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 594 Vmcnt = decodeVmcnt(Version, Waitcnt); 595 Expcnt = decodeExpcnt(Version, Waitcnt); 596 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 597 } 598 599 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 600 Waitcnt Decoded; 601 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 602 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 603 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 604 return Decoded; 605 } 606 607 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 608 unsigned Vmcnt) { 609 Waitcnt = 610 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 611 if (Version.Major < 9) 612 return Waitcnt; 613 614 Vmcnt >>= getVmcntBitWidthLo(); 615 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 616 } 617 618 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 619 unsigned Expcnt) { 620 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 621 } 622 623 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 624 unsigned Lgkmcnt) { 625 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 626 getLgkmcntBitWidth(Version.Major)); 627 } 628 629 unsigned encodeWaitcnt(const IsaVersion &Version, 630 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 631 unsigned Waitcnt = getWaitcntBitMask(Version); 632 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 633 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 634 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 635 return Waitcnt; 636 } 637 638 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 639 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 640 } 641 642 unsigned getInitialPSInputAddr(const Function &F) { 643 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 644 } 645 646 bool isShader(CallingConv::ID cc) { 647 switch(cc) { 648 case CallingConv::AMDGPU_VS: 649 case CallingConv::AMDGPU_LS: 650 case CallingConv::AMDGPU_HS: 651 case CallingConv::AMDGPU_ES: 652 case CallingConv::AMDGPU_GS: 653 case CallingConv::AMDGPU_PS: 654 case CallingConv::AMDGPU_CS: 655 return true; 656 default: 657 return false; 658 } 659 } 660 661 bool isCompute(CallingConv::ID cc) { 662 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 663 } 664 665 bool isEntryFunctionCC(CallingConv::ID CC) { 666 switch (CC) { 667 case CallingConv::AMDGPU_KERNEL: 668 case CallingConv::SPIR_KERNEL: 669 case CallingConv::AMDGPU_VS: 670 case CallingConv::AMDGPU_GS: 671 case CallingConv::AMDGPU_PS: 672 case CallingConv::AMDGPU_CS: 673 case CallingConv::AMDGPU_ES: 674 case CallingConv::AMDGPU_HS: 675 case CallingConv::AMDGPU_LS: 676 return true; 677 default: 678 return false; 679 } 680 } 681 682 bool hasXNACK(const MCSubtargetInfo &STI) { 683 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 684 } 685 686 bool hasSRAMECC(const MCSubtargetInfo &STI) { 687 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 688 } 689 690 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 691 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 692 } 693 694 bool hasPackedD16(const MCSubtargetInfo &STI) { 695 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 696 } 697 698 bool isSI(const MCSubtargetInfo &STI) { 699 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 700 } 701 702 bool isCI(const MCSubtargetInfo &STI) { 703 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 704 } 705 706 bool isVI(const MCSubtargetInfo &STI) { 707 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 708 } 709 710 bool isGFX9(const MCSubtargetInfo &STI) { 711 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 712 } 713 714 bool isGFX10(const MCSubtargetInfo &STI) { 715 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 716 } 717 718 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 719 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 720 } 721 722 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 723 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 724 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 725 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 726 Reg == AMDGPU::SCC; 727 } 728 729 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 730 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 731 if (*R == Reg1) return true; 732 } 733 return false; 734 } 735 736 #define MAP_REG2REG \ 737 using namespace AMDGPU; \ 738 switch(Reg) { \ 739 default: return Reg; \ 740 CASE_CI_VI(FLAT_SCR) \ 741 CASE_CI_VI(FLAT_SCR_LO) \ 742 CASE_CI_VI(FLAT_SCR_HI) \ 743 CASE_VI_GFX9_GFX10(TTMP0) \ 744 CASE_VI_GFX9_GFX10(TTMP1) \ 745 CASE_VI_GFX9_GFX10(TTMP2) \ 746 CASE_VI_GFX9_GFX10(TTMP3) \ 747 CASE_VI_GFX9_GFX10(TTMP4) \ 748 CASE_VI_GFX9_GFX10(TTMP5) \ 749 CASE_VI_GFX9_GFX10(TTMP6) \ 750 CASE_VI_GFX9_GFX10(TTMP7) \ 751 CASE_VI_GFX9_GFX10(TTMP8) \ 752 CASE_VI_GFX9_GFX10(TTMP9) \ 753 CASE_VI_GFX9_GFX10(TTMP10) \ 754 CASE_VI_GFX9_GFX10(TTMP11) \ 755 CASE_VI_GFX9_GFX10(TTMP12) \ 756 CASE_VI_GFX9_GFX10(TTMP13) \ 757 CASE_VI_GFX9_GFX10(TTMP14) \ 758 CASE_VI_GFX9_GFX10(TTMP15) \ 759 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 760 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 761 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 762 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 763 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 764 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 765 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 766 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 767 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 768 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 769 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 770 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 771 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 772 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 773 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 774 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 775 } 776 777 #define CASE_CI_VI(node) \ 778 assert(!isSI(STI)); \ 779 case node: return isCI(STI) ? node##_ci : node##_vi; 780 781 #define CASE_VI_GFX9_GFX10(node) \ 782 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 783 784 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 785 if (STI.getTargetTriple().getArch() == Triple::r600) 786 return Reg; 787 MAP_REG2REG 788 } 789 790 #undef CASE_CI_VI 791 #undef CASE_VI_GFX9_GFX10 792 793 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 794 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 795 796 unsigned mc2PseudoReg(unsigned Reg) { 797 MAP_REG2REG 798 } 799 800 #undef CASE_CI_VI 801 #undef CASE_VI_GFX9_GFX10 802 #undef MAP_REG2REG 803 804 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 805 assert(OpNo < Desc.NumOperands); 806 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 807 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 808 OpType <= AMDGPU::OPERAND_SRC_LAST; 809 } 810 811 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 812 assert(OpNo < Desc.NumOperands); 813 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 814 switch (OpType) { 815 case AMDGPU::OPERAND_REG_IMM_FP32: 816 case AMDGPU::OPERAND_REG_IMM_FP64: 817 case AMDGPU::OPERAND_REG_IMM_FP16: 818 case AMDGPU::OPERAND_REG_IMM_V2FP16: 819 case AMDGPU::OPERAND_REG_IMM_V2INT16: 820 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 821 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 822 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 823 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 824 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 825 return true; 826 default: 827 return false; 828 } 829 } 830 831 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 832 assert(OpNo < Desc.NumOperands); 833 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 834 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 835 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 836 } 837 838 // Avoid using MCRegisterClass::getSize, since that function will go away 839 // (move from MC* level to Target* level). Return size in bits. 840 unsigned getRegBitWidth(unsigned RCID) { 841 switch (RCID) { 842 case AMDGPU::SGPR_32RegClassID: 843 case AMDGPU::VGPR_32RegClassID: 844 case AMDGPU::VRegOrLds_32RegClassID: 845 case AMDGPU::VS_32RegClassID: 846 case AMDGPU::SReg_32RegClassID: 847 case AMDGPU::SReg_32_XM0RegClassID: 848 case AMDGPU::SRegOrLds_32RegClassID: 849 return 32; 850 case AMDGPU::SGPR_64RegClassID: 851 case AMDGPU::VS_64RegClassID: 852 case AMDGPU::SReg_64RegClassID: 853 case AMDGPU::VReg_64RegClassID: 854 case AMDGPU::SReg_64_XEXECRegClassID: 855 return 64; 856 case AMDGPU::SGPR_96RegClassID: 857 case AMDGPU::SReg_96RegClassID: 858 case AMDGPU::VReg_96RegClassID: 859 return 96; 860 case AMDGPU::SGPR_128RegClassID: 861 case AMDGPU::SReg_128RegClassID: 862 case AMDGPU::VReg_128RegClassID: 863 return 128; 864 case AMDGPU::SGPR_160RegClassID: 865 case AMDGPU::SReg_160RegClassID: 866 case AMDGPU::VReg_160RegClassID: 867 return 160; 868 case AMDGPU::SReg_256RegClassID: 869 case AMDGPU::VReg_256RegClassID: 870 return 256; 871 case AMDGPU::SReg_512RegClassID: 872 case AMDGPU::VReg_512RegClassID: 873 return 512; 874 default: 875 llvm_unreachable("Unexpected register class"); 876 } 877 } 878 879 unsigned getRegBitWidth(const MCRegisterClass &RC) { 880 return getRegBitWidth(RC.getID()); 881 } 882 883 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 884 unsigned OpNo) { 885 assert(OpNo < Desc.NumOperands); 886 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 887 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 888 } 889 890 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 891 if (Literal >= -16 && Literal <= 64) 892 return true; 893 894 uint64_t Val = static_cast<uint64_t>(Literal); 895 return (Val == DoubleToBits(0.0)) || 896 (Val == DoubleToBits(1.0)) || 897 (Val == DoubleToBits(-1.0)) || 898 (Val == DoubleToBits(0.5)) || 899 (Val == DoubleToBits(-0.5)) || 900 (Val == DoubleToBits(2.0)) || 901 (Val == DoubleToBits(-2.0)) || 902 (Val == DoubleToBits(4.0)) || 903 (Val == DoubleToBits(-4.0)) || 904 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 905 } 906 907 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 908 if (Literal >= -16 && Literal <= 64) 909 return true; 910 911 // The actual type of the operand does not seem to matter as long 912 // as the bits match one of the inline immediate values. For example: 913 // 914 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 915 // so it is a legal inline immediate. 916 // 917 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 918 // floating-point, so it is a legal inline immediate. 919 920 uint32_t Val = static_cast<uint32_t>(Literal); 921 return (Val == FloatToBits(0.0f)) || 922 (Val == FloatToBits(1.0f)) || 923 (Val == FloatToBits(-1.0f)) || 924 (Val == FloatToBits(0.5f)) || 925 (Val == FloatToBits(-0.5f)) || 926 (Val == FloatToBits(2.0f)) || 927 (Val == FloatToBits(-2.0f)) || 928 (Val == FloatToBits(4.0f)) || 929 (Val == FloatToBits(-4.0f)) || 930 (Val == 0x3e22f983 && HasInv2Pi); 931 } 932 933 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 934 if (!HasInv2Pi) 935 return false; 936 937 if (Literal >= -16 && Literal <= 64) 938 return true; 939 940 uint16_t Val = static_cast<uint16_t>(Literal); 941 return Val == 0x3C00 || // 1.0 942 Val == 0xBC00 || // -1.0 943 Val == 0x3800 || // 0.5 944 Val == 0xB800 || // -0.5 945 Val == 0x4000 || // 2.0 946 Val == 0xC000 || // -2.0 947 Val == 0x4400 || // 4.0 948 Val == 0xC400 || // -4.0 949 Val == 0x3118; // 1/2pi 950 } 951 952 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 953 assert(HasInv2Pi); 954 955 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 956 int16_t Trunc = static_cast<int16_t>(Literal); 957 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 958 } 959 if (!(Literal & 0xffff)) 960 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 961 962 int16_t Lo16 = static_cast<int16_t>(Literal); 963 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 964 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 965 } 966 967 bool isArgPassedInSGPR(const Argument *A) { 968 const Function *F = A->getParent(); 969 970 // Arguments to compute shaders are never a source of divergence. 971 CallingConv::ID CC = F->getCallingConv(); 972 switch (CC) { 973 case CallingConv::AMDGPU_KERNEL: 974 case CallingConv::SPIR_KERNEL: 975 return true; 976 case CallingConv::AMDGPU_VS: 977 case CallingConv::AMDGPU_LS: 978 case CallingConv::AMDGPU_HS: 979 case CallingConv::AMDGPU_ES: 980 case CallingConv::AMDGPU_GS: 981 case CallingConv::AMDGPU_PS: 982 case CallingConv::AMDGPU_CS: 983 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 984 // Everything else is in VGPRs. 985 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 986 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 987 default: 988 // TODO: Should calls support inreg for SGPR inputs? 989 return false; 990 } 991 } 992 993 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 994 return isGCN3Encoding(ST) || isGFX10(ST); 995 } 996 997 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 998 if (hasSMEMByteOffset(ST)) 999 return ByteOffset; 1000 return ByteOffset >> 2; 1001 } 1002 1003 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1004 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 1005 return (hasSMEMByteOffset(ST)) ? 1006 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 1007 } 1008 1009 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1010 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1011 // hardware bug needing a workaround). 1012 // 1013 // The required alignment ensures that individual address components remain 1014 // aligned if they are aligned to begin with. It also ensures that additional 1015 // offsets within the given alignment can be added to the resulting ImmOffset. 1016 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1017 const GCNSubtarget *Subtarget, uint32_t Align) { 1018 const uint32_t MaxImm = alignDown(4095, Align); 1019 uint32_t Overflow = 0; 1020 1021 if (Imm > MaxImm) { 1022 if (Imm <= MaxImm + 64) { 1023 // Use an SOffset inline constant for 4..64 1024 Overflow = Imm - MaxImm; 1025 Imm = MaxImm; 1026 } else { 1027 // Try to keep the same value in SOffset for adjacent loads, so that 1028 // the corresponding register contents can be re-used. 1029 // 1030 // Load values with all low-bits (except for alignment bits) set into 1031 // SOffset, so that a larger range of values can be covered using 1032 // s_movk_i32. 1033 // 1034 // Atomic operations fail to work correctly when individual address 1035 // components are unaligned, even if their sum is aligned. 1036 uint32_t High = (Imm + Align) & ~4095; 1037 uint32_t Low = (Imm + Align) & 4095; 1038 Imm = Low; 1039 Overflow = High - Align; 1040 } 1041 } 1042 1043 // There is a hardware bug in SI and CI which prevents address clamping in 1044 // MUBUF instructions from working correctly with SOffsets. The immediate 1045 // offset is unaffected. 1046 if (Overflow > 0 && 1047 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1048 return false; 1049 1050 ImmOffset = Imm; 1051 SOffset = Overflow; 1052 return true; 1053 } 1054 1055 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1056 *this = getDefaultForCallingConv(F.getCallingConv()); 1057 1058 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1059 if (!IEEEAttr.empty()) 1060 IEEE = IEEEAttr == "true"; 1061 1062 StringRef DX10ClampAttr 1063 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1064 if (!DX10ClampAttr.empty()) 1065 DX10Clamp = DX10ClampAttr == "true"; 1066 } 1067 1068 namespace { 1069 1070 struct SourceOfDivergence { 1071 unsigned Intr; 1072 }; 1073 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1074 1075 #define GET_SourcesOfDivergence_IMPL 1076 #include "AMDGPUGenSearchableTables.inc" 1077 1078 } // end anonymous namespace 1079 1080 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1081 return lookupSourceOfDivergence(IntrID); 1082 } 1083 1084 } // namespace AMDGPU 1085 } // namespace llvm 1086