1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPUTargetTransformInfo.h"
11 #include "AMDGPU.h"
12 #include "SIDefines.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/IR/Attributes.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GlobalValue.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCInstrDesc.h"
26 #include "llvm/MC/MCInstrInfo.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSubtargetInfo.h"
30 #include "llvm/MC/SubtargetFeature.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <cstring>
38 #include <utility>
39 
40 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
41 
42 #define GET_INSTRINFO_NAMED_OPS
43 #define GET_INSTRMAP_INFO
44 #include "AMDGPUGenInstrInfo.inc"
45 #undef GET_INSTRMAP_INFO
46 #undef GET_INSTRINFO_NAMED_OPS
47 
48 namespace {
49 
50 /// \returns Bit mask for given bit \p Shift and bit \p Width.
51 unsigned getBitMask(unsigned Shift, unsigned Width) {
52   return ((1 << Width) - 1) << Shift;
53 }
54 
55 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
56 ///
57 /// \returns Packed \p Dst.
58 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
59   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
60   Dst |= (Src << Shift) & getBitMask(Shift, Width);
61   return Dst;
62 }
63 
64 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
65 ///
66 /// \returns Unpacked bits.
67 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
68   return (Src & getBitMask(Shift, Width)) >> Shift;
69 }
70 
71 /// \returns Vmcnt bit shift (lower bits).
72 unsigned getVmcntBitShiftLo() { return 0; }
73 
74 /// \returns Vmcnt bit width (lower bits).
75 unsigned getVmcntBitWidthLo() { return 4; }
76 
77 /// \returns Expcnt bit shift.
78 unsigned getExpcntBitShift() { return 4; }
79 
80 /// \returns Expcnt bit width.
81 unsigned getExpcntBitWidth() { return 3; }
82 
83 /// \returns Lgkmcnt bit shift.
84 unsigned getLgkmcntBitShift() { return 8; }
85 
86 /// \returns Lgkmcnt bit width.
87 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
88   return (VersionMajor >= 10) ? 6 : 4;
89 }
90 
91 /// \returns Vmcnt bit shift (higher bits).
92 unsigned getVmcntBitShiftHi() { return 14; }
93 
94 /// \returns Vmcnt bit width (higher bits).
95 unsigned getVmcntBitWidthHi() { return 2; }
96 
97 } // end namespace anonymous
98 
99 namespace llvm {
100 
101 namespace AMDGPU {
102 
103 #define GET_MIMGBaseOpcodesTable_IMPL
104 #define GET_MIMGDimInfoTable_IMPL
105 #define GET_MIMGInfoTable_IMPL
106 #define GET_MIMGLZMappingTable_IMPL
107 #include "AMDGPUGenSearchableTables.inc"
108 
109 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
110                   unsigned VDataDwords, unsigned VAddrDwords) {
111   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
112                                              VDataDwords, VAddrDwords);
113   return Info ? Info->Opcode : -1;
114 }
115 
116 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
117   const MIMGInfo *Info = getMIMGInfo(Opc);
118   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
119 }
120 
121 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
122   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
123   const MIMGInfo *NewInfo =
124       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
125                           NewChannels, OrigInfo->VAddrDwords);
126   return NewInfo ? NewInfo->Opcode : -1;
127 }
128 
129 struct MUBUFInfo {
130   uint16_t Opcode;
131   uint16_t BaseOpcode;
132   uint8_t dwords;
133   bool has_vaddr;
134   bool has_srsrc;
135   bool has_soffset;
136 };
137 
138 #define GET_MUBUFInfoTable_DECL
139 #define GET_MUBUFInfoTable_IMPL
140 #include "AMDGPUGenSearchableTables.inc"
141 
142 int getMUBUFBaseOpcode(unsigned Opc) {
143   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
144   return Info ? Info->BaseOpcode : -1;
145 }
146 
147 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) {
148   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords);
149   return Info ? Info->Opcode : -1;
150 }
151 
152 int getMUBUFDwords(unsigned Opc) {
153   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
154   return Info ? Info->dwords : 0;
155 }
156 
157 bool getMUBUFHasVAddr(unsigned Opc) {
158   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
159   return Info ? Info->has_vaddr : false;
160 }
161 
162 bool getMUBUFHasSrsrc(unsigned Opc) {
163   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
164   return Info ? Info->has_srsrc : false;
165 }
166 
167 bool getMUBUFHasSoffset(unsigned Opc) {
168   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
169   return Info ? Info->has_soffset : false;
170 }
171 
172 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
173 // header files, so we need to wrap it in a function that takes unsigned
174 // instead.
175 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
176   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
177 }
178 
179 namespace IsaInfo {
180 
181 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
182   auto TargetTriple = STI->getTargetTriple();
183   auto Version = getIsaVersion(STI->getCPU());
184 
185   Stream << TargetTriple.getArchName() << '-'
186          << TargetTriple.getVendorName() << '-'
187          << TargetTriple.getOSName() << '-'
188          << TargetTriple.getEnvironmentName() << '-'
189          << "gfx"
190          << Version.Major
191          << Version.Minor
192          << Version.Stepping;
193 
194   if (hasXNACK(*STI))
195     Stream << "+xnack";
196   if (hasSRAMECC(*STI))
197     Stream << "+sram-ecc";
198 
199   Stream.flush();
200 }
201 
202 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
203   return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
204              STI->getFeatureBits().test(FeatureCodeObjectV3);
205 }
206 
207 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
208   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
209     return 16;
210   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
211     return 32;
212 
213   return 64;
214 }
215 
216 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
217   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
218     return 32768;
219   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
220     return 65536;
221 
222   return 0;
223 }
224 
225 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
226   return 4;
227 }
228 
229 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
230                                unsigned FlatWorkGroupSize) {
231   assert(FlatWorkGroupSize != 0);
232   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
233     return 8;
234   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
235   if (N == 1)
236     return 40;
237   N = 40 / N;
238   return std::min(N, 16u);
239 }
240 
241 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
242   return getMaxWavesPerEU() * getEUsPerCU(STI);
243 }
244 
245 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
246                           unsigned FlatWorkGroupSize) {
247   return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
248 }
249 
250 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
251   return 1;
252 }
253 
254 unsigned getMaxWavesPerEU() {
255   // FIXME: Need to take scratch memory into account.
256   return 10;
257 }
258 
259 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
260                           unsigned FlatWorkGroupSize) {
261   return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
262                  getEUsPerCU(STI)) / getEUsPerCU(STI);
263 }
264 
265 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
266   return 1;
267 }
268 
269 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
270   return 2048;
271 }
272 
273 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
274                               unsigned FlatWorkGroupSize) {
275   return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
276                  getWavefrontSize(STI);
277 }
278 
279 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
280   IsaVersion Version = getIsaVersion(STI->getCPU());
281   if (Version.Major >= 10)
282     return getAddressableNumSGPRs(STI);
283   if (Version.Major >= 8)
284     return 16;
285   return 8;
286 }
287 
288 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
289   return 8;
290 }
291 
292 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
293   IsaVersion Version = getIsaVersion(STI->getCPU());
294   if (Version.Major >= 8)
295     return 800;
296   return 512;
297 }
298 
299 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
300   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
301     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
302 
303   IsaVersion Version = getIsaVersion(STI->getCPU());
304   if (Version.Major >= 10)
305     return 106;
306   if (Version.Major >= 8)
307     return 102;
308   return 104;
309 }
310 
311 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
312   assert(WavesPerEU != 0);
313 
314   IsaVersion Version = getIsaVersion(STI->getCPU());
315   if (Version.Major >= 10)
316     return 0;
317 
318   if (WavesPerEU >= getMaxWavesPerEU())
319     return 0;
320 
321   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
322   if (STI->getFeatureBits().test(FeatureTrapHandler))
323     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
324   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
325   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
326 }
327 
328 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
329                         bool Addressable) {
330   assert(WavesPerEU != 0);
331 
332   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
333   IsaVersion Version = getIsaVersion(STI->getCPU());
334   if (Version.Major >= 10)
335     return Addressable ? AddressableNumSGPRs : 108;
336   if (Version.Major >= 8 && !Addressable)
337     AddressableNumSGPRs = 112;
338   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
339   if (STI->getFeatureBits().test(FeatureTrapHandler))
340     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
341   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
342   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
343 }
344 
345 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
346                           bool FlatScrUsed, bool XNACKUsed) {
347   unsigned ExtraSGPRs = 0;
348   if (VCCUsed)
349     ExtraSGPRs = 2;
350 
351   IsaVersion Version = getIsaVersion(STI->getCPU());
352   if (Version.Major >= 10)
353     return ExtraSGPRs;
354 
355   if (Version.Major < 8) {
356     if (FlatScrUsed)
357       ExtraSGPRs = 4;
358   } else {
359     if (XNACKUsed)
360       ExtraSGPRs = 4;
361 
362     if (FlatScrUsed)
363       ExtraSGPRs = 6;
364   }
365 
366   return ExtraSGPRs;
367 }
368 
369 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
370                           bool FlatScrUsed) {
371   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
372                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
373 }
374 
375 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
376   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
377   // SGPRBlocks is actual number of SGPR blocks minus 1.
378   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
379 }
380 
381 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
382   return 4;
383 }
384 
385 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
386   return getVGPRAllocGranule(STI);
387 }
388 
389 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
390   return 256;
391 }
392 
393 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
394   return getTotalNumVGPRs(STI);
395 }
396 
397 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
398   assert(WavesPerEU != 0);
399 
400   if (WavesPerEU >= getMaxWavesPerEU())
401     return 0;
402   unsigned MinNumVGPRs =
403       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
404                 getVGPRAllocGranule(STI)) + 1;
405   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
406 }
407 
408 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
409   assert(WavesPerEU != 0);
410 
411   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
412                                    getVGPRAllocGranule(STI));
413   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
414   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
415 }
416 
417 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
418   NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
419   // VGPRBlocks is actual number of VGPR blocks minus 1.
420   return NumVGPRs / getVGPREncodingGranule(STI) - 1;
421 }
422 
423 } // end namespace IsaInfo
424 
425 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
426                                const MCSubtargetInfo *STI) {
427   IsaVersion Version = getIsaVersion(STI->getCPU());
428 
429   memset(&Header, 0, sizeof(Header));
430 
431   Header.amd_kernel_code_version_major = 1;
432   Header.amd_kernel_code_version_minor = 2;
433   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
434   Header.amd_machine_version_major = Version.Major;
435   Header.amd_machine_version_minor = Version.Minor;
436   Header.amd_machine_version_stepping = Version.Stepping;
437   Header.kernel_code_entry_byte_offset = sizeof(Header);
438   // wavefront_size is specified as a power of 2: 2^6 = 64 threads.
439   Header.wavefront_size = 6;
440 
441   // If the code object does not support indirect functions, then the value must
442   // be 0xffffffff.
443   Header.call_convention = -1;
444 
445   // These alignment values are specified in powers of two, so alignment =
446   // 2^n.  The minimum alignment is 2^4 = 16.
447   Header.kernarg_segment_alignment = 4;
448   Header.group_segment_alignment = 4;
449   Header.private_segment_alignment = 4;
450 
451   if (Version.Major >= 10) {
452     Header.compute_pgm_resource_registers |=
453       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
454       S_00B848_MEM_ORDERED(1);
455   }
456 }
457 
458 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
459     const MCSubtargetInfo *STI) {
460   IsaVersion Version = getIsaVersion(STI->getCPU());
461 
462   amdhsa::kernel_descriptor_t KD;
463   memset(&KD, 0, sizeof(KD));
464 
465   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
466                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
467                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
468   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
469                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
470   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
471                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
472   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
473                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
474   if (Version.Major >= 10) {
475     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
476                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
477                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
478     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
479                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
480   }
481   return KD;
482 }
483 
484 bool isGroupSegment(const GlobalValue *GV) {
485   return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
486 }
487 
488 bool isGlobalSegment(const GlobalValue *GV) {
489   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
490 }
491 
492 bool isReadOnlySegment(const GlobalValue *GV) {
493   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
494          GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
495 }
496 
497 bool shouldEmitConstantsToTextSection(const Triple &TT) {
498   return TT.getOS() != Triple::AMDHSA;
499 }
500 
501 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
502   Attribute A = F.getFnAttribute(Name);
503   int Result = Default;
504 
505   if (A.isStringAttribute()) {
506     StringRef Str = A.getValueAsString();
507     if (Str.getAsInteger(0, Result)) {
508       LLVMContext &Ctx = F.getContext();
509       Ctx.emitError("can't parse integer attribute " + Name);
510     }
511   }
512 
513   return Result;
514 }
515 
516 std::pair<int, int> getIntegerPairAttribute(const Function &F,
517                                             StringRef Name,
518                                             std::pair<int, int> Default,
519                                             bool OnlyFirstRequired) {
520   Attribute A = F.getFnAttribute(Name);
521   if (!A.isStringAttribute())
522     return Default;
523 
524   LLVMContext &Ctx = F.getContext();
525   std::pair<int, int> Ints = Default;
526   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
527   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
528     Ctx.emitError("can't parse first integer attribute " + Name);
529     return Default;
530   }
531   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
532     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
533       Ctx.emitError("can't parse second integer attribute " + Name);
534       return Default;
535     }
536   }
537 
538   return Ints;
539 }
540 
541 unsigned getVmcntBitMask(const IsaVersion &Version) {
542   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
543   if (Version.Major < 9)
544     return VmcntLo;
545 
546   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
547   return VmcntLo | VmcntHi;
548 }
549 
550 unsigned getExpcntBitMask(const IsaVersion &Version) {
551   return (1 << getExpcntBitWidth()) - 1;
552 }
553 
554 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
555   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
556 }
557 
558 unsigned getWaitcntBitMask(const IsaVersion &Version) {
559   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
560   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
561   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
562                                 getLgkmcntBitWidth(Version.Major));
563   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
564   if (Version.Major < 9)
565     return Waitcnt;
566 
567   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
568   return Waitcnt | VmcntHi;
569 }
570 
571 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
572   unsigned VmcntLo =
573       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
574   if (Version.Major < 9)
575     return VmcntLo;
576 
577   unsigned VmcntHi =
578       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
579   VmcntHi <<= getVmcntBitWidthLo();
580   return VmcntLo | VmcntHi;
581 }
582 
583 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
584   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
585 }
586 
587 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
588   return unpackBits(Waitcnt, getLgkmcntBitShift(),
589                     getLgkmcntBitWidth(Version.Major));
590 }
591 
592 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
593                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
594   Vmcnt = decodeVmcnt(Version, Waitcnt);
595   Expcnt = decodeExpcnt(Version, Waitcnt);
596   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
597 }
598 
599 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
600   Waitcnt Decoded;
601   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
602   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
603   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
604   return Decoded;
605 }
606 
607 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
608                      unsigned Vmcnt) {
609   Waitcnt =
610       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
611   if (Version.Major < 9)
612     return Waitcnt;
613 
614   Vmcnt >>= getVmcntBitWidthLo();
615   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
616 }
617 
618 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
619                       unsigned Expcnt) {
620   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
621 }
622 
623 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
624                        unsigned Lgkmcnt) {
625   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
626                                     getLgkmcntBitWidth(Version.Major));
627 }
628 
629 unsigned encodeWaitcnt(const IsaVersion &Version,
630                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
631   unsigned Waitcnt = getWaitcntBitMask(Version);
632   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
633   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
634   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
635   return Waitcnt;
636 }
637 
638 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
639   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
640 }
641 
642 unsigned getInitialPSInputAddr(const Function &F) {
643   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
644 }
645 
646 bool isShader(CallingConv::ID cc) {
647   switch(cc) {
648     case CallingConv::AMDGPU_VS:
649     case CallingConv::AMDGPU_LS:
650     case CallingConv::AMDGPU_HS:
651     case CallingConv::AMDGPU_ES:
652     case CallingConv::AMDGPU_GS:
653     case CallingConv::AMDGPU_PS:
654     case CallingConv::AMDGPU_CS:
655       return true;
656     default:
657       return false;
658   }
659 }
660 
661 bool isCompute(CallingConv::ID cc) {
662   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
663 }
664 
665 bool isEntryFunctionCC(CallingConv::ID CC) {
666   switch (CC) {
667   case CallingConv::AMDGPU_KERNEL:
668   case CallingConv::SPIR_KERNEL:
669   case CallingConv::AMDGPU_VS:
670   case CallingConv::AMDGPU_GS:
671   case CallingConv::AMDGPU_PS:
672   case CallingConv::AMDGPU_CS:
673   case CallingConv::AMDGPU_ES:
674   case CallingConv::AMDGPU_HS:
675   case CallingConv::AMDGPU_LS:
676     return true;
677   default:
678     return false;
679   }
680 }
681 
682 bool hasXNACK(const MCSubtargetInfo &STI) {
683   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
684 }
685 
686 bool hasSRAMECC(const MCSubtargetInfo &STI) {
687   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
688 }
689 
690 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
691   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
692 }
693 
694 bool hasPackedD16(const MCSubtargetInfo &STI) {
695   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
696 }
697 
698 bool isSI(const MCSubtargetInfo &STI) {
699   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
700 }
701 
702 bool isCI(const MCSubtargetInfo &STI) {
703   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
704 }
705 
706 bool isVI(const MCSubtargetInfo &STI) {
707   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
708 }
709 
710 bool isGFX9(const MCSubtargetInfo &STI) {
711   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
712 }
713 
714 bool isGFX10(const MCSubtargetInfo &STI) {
715   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
716 }
717 
718 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
719   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
720 }
721 
722 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
723   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
724   const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
725   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
726     Reg == AMDGPU::SCC;
727 }
728 
729 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
730   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
731     if (*R == Reg1) return true;
732   }
733   return false;
734 }
735 
736 #define MAP_REG2REG \
737   using namespace AMDGPU; \
738   switch(Reg) { \
739   default: return Reg; \
740   CASE_CI_VI(FLAT_SCR) \
741   CASE_CI_VI(FLAT_SCR_LO) \
742   CASE_CI_VI(FLAT_SCR_HI) \
743   CASE_VI_GFX9_GFX10(TTMP0) \
744   CASE_VI_GFX9_GFX10(TTMP1) \
745   CASE_VI_GFX9_GFX10(TTMP2) \
746   CASE_VI_GFX9_GFX10(TTMP3) \
747   CASE_VI_GFX9_GFX10(TTMP4) \
748   CASE_VI_GFX9_GFX10(TTMP5) \
749   CASE_VI_GFX9_GFX10(TTMP6) \
750   CASE_VI_GFX9_GFX10(TTMP7) \
751   CASE_VI_GFX9_GFX10(TTMP8) \
752   CASE_VI_GFX9_GFX10(TTMP9) \
753   CASE_VI_GFX9_GFX10(TTMP10) \
754   CASE_VI_GFX9_GFX10(TTMP11) \
755   CASE_VI_GFX9_GFX10(TTMP12) \
756   CASE_VI_GFX9_GFX10(TTMP13) \
757   CASE_VI_GFX9_GFX10(TTMP14) \
758   CASE_VI_GFX9_GFX10(TTMP15) \
759   CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
760   CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
761   CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
762   CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
763   CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
764   CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
765   CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
766   CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
767   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
768   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
769   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
770   CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
771   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
772   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
773   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
774   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
775   }
776 
777 #define CASE_CI_VI(node) \
778   assert(!isSI(STI)); \
779   case node: return isCI(STI) ? node##_ci : node##_vi;
780 
781 #define CASE_VI_GFX9_GFX10(node) \
782   case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
783 
784 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
785   if (STI.getTargetTriple().getArch() == Triple::r600)
786     return Reg;
787   MAP_REG2REG
788 }
789 
790 #undef CASE_CI_VI
791 #undef CASE_VI_GFX9_GFX10
792 
793 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
794 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
795 
796 unsigned mc2PseudoReg(unsigned Reg) {
797   MAP_REG2REG
798 }
799 
800 #undef CASE_CI_VI
801 #undef CASE_VI_GFX9_GFX10
802 #undef MAP_REG2REG
803 
804 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
805   assert(OpNo < Desc.NumOperands);
806   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
807   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
808          OpType <= AMDGPU::OPERAND_SRC_LAST;
809 }
810 
811 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
812   assert(OpNo < Desc.NumOperands);
813   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
814   switch (OpType) {
815   case AMDGPU::OPERAND_REG_IMM_FP32:
816   case AMDGPU::OPERAND_REG_IMM_FP64:
817   case AMDGPU::OPERAND_REG_IMM_FP16:
818   case AMDGPU::OPERAND_REG_IMM_V2FP16:
819   case AMDGPU::OPERAND_REG_IMM_V2INT16:
820   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
821   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
822   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
823   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
824   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
825     return true;
826   default:
827     return false;
828   }
829 }
830 
831 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
832   assert(OpNo < Desc.NumOperands);
833   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
834   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
835          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
836 }
837 
838 // Avoid using MCRegisterClass::getSize, since that function will go away
839 // (move from MC* level to Target* level). Return size in bits.
840 unsigned getRegBitWidth(unsigned RCID) {
841   switch (RCID) {
842   case AMDGPU::SGPR_32RegClassID:
843   case AMDGPU::VGPR_32RegClassID:
844   case AMDGPU::VRegOrLds_32RegClassID:
845   case AMDGPU::VS_32RegClassID:
846   case AMDGPU::SReg_32RegClassID:
847   case AMDGPU::SReg_32_XM0RegClassID:
848   case AMDGPU::SRegOrLds_32RegClassID:
849     return 32;
850   case AMDGPU::SGPR_64RegClassID:
851   case AMDGPU::VS_64RegClassID:
852   case AMDGPU::SReg_64RegClassID:
853   case AMDGPU::VReg_64RegClassID:
854   case AMDGPU::SReg_64_XEXECRegClassID:
855     return 64;
856   case AMDGPU::SGPR_96RegClassID:
857   case AMDGPU::SReg_96RegClassID:
858   case AMDGPU::VReg_96RegClassID:
859     return 96;
860   case AMDGPU::SGPR_128RegClassID:
861   case AMDGPU::SReg_128RegClassID:
862   case AMDGPU::VReg_128RegClassID:
863     return 128;
864   case AMDGPU::SGPR_160RegClassID:
865   case AMDGPU::SReg_160RegClassID:
866   case AMDGPU::VReg_160RegClassID:
867     return 160;
868   case AMDGPU::SReg_256RegClassID:
869   case AMDGPU::VReg_256RegClassID:
870     return 256;
871   case AMDGPU::SReg_512RegClassID:
872   case AMDGPU::VReg_512RegClassID:
873     return 512;
874   default:
875     llvm_unreachable("Unexpected register class");
876   }
877 }
878 
879 unsigned getRegBitWidth(const MCRegisterClass &RC) {
880   return getRegBitWidth(RC.getID());
881 }
882 
883 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
884                            unsigned OpNo) {
885   assert(OpNo < Desc.NumOperands);
886   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
887   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
888 }
889 
890 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
891   if (Literal >= -16 && Literal <= 64)
892     return true;
893 
894   uint64_t Val = static_cast<uint64_t>(Literal);
895   return (Val == DoubleToBits(0.0)) ||
896          (Val == DoubleToBits(1.0)) ||
897          (Val == DoubleToBits(-1.0)) ||
898          (Val == DoubleToBits(0.5)) ||
899          (Val == DoubleToBits(-0.5)) ||
900          (Val == DoubleToBits(2.0)) ||
901          (Val == DoubleToBits(-2.0)) ||
902          (Val == DoubleToBits(4.0)) ||
903          (Val == DoubleToBits(-4.0)) ||
904          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
905 }
906 
907 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
908   if (Literal >= -16 && Literal <= 64)
909     return true;
910 
911   // The actual type of the operand does not seem to matter as long
912   // as the bits match one of the inline immediate values.  For example:
913   //
914   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
915   // so it is a legal inline immediate.
916   //
917   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
918   // floating-point, so it is a legal inline immediate.
919 
920   uint32_t Val = static_cast<uint32_t>(Literal);
921   return (Val == FloatToBits(0.0f)) ||
922          (Val == FloatToBits(1.0f)) ||
923          (Val == FloatToBits(-1.0f)) ||
924          (Val == FloatToBits(0.5f)) ||
925          (Val == FloatToBits(-0.5f)) ||
926          (Val == FloatToBits(2.0f)) ||
927          (Val == FloatToBits(-2.0f)) ||
928          (Val == FloatToBits(4.0f)) ||
929          (Val == FloatToBits(-4.0f)) ||
930          (Val == 0x3e22f983 && HasInv2Pi);
931 }
932 
933 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
934   if (!HasInv2Pi)
935     return false;
936 
937   if (Literal >= -16 && Literal <= 64)
938     return true;
939 
940   uint16_t Val = static_cast<uint16_t>(Literal);
941   return Val == 0x3C00 || // 1.0
942          Val == 0xBC00 || // -1.0
943          Val == 0x3800 || // 0.5
944          Val == 0xB800 || // -0.5
945          Val == 0x4000 || // 2.0
946          Val == 0xC000 || // -2.0
947          Val == 0x4400 || // 4.0
948          Val == 0xC400 || // -4.0
949          Val == 0x3118;   // 1/2pi
950 }
951 
952 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
953   assert(HasInv2Pi);
954 
955   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
956     int16_t Trunc = static_cast<int16_t>(Literal);
957     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
958   }
959   if (!(Literal & 0xffff))
960     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
961 
962   int16_t Lo16 = static_cast<int16_t>(Literal);
963   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
964   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
965 }
966 
967 bool isArgPassedInSGPR(const Argument *A) {
968   const Function *F = A->getParent();
969 
970   // Arguments to compute shaders are never a source of divergence.
971   CallingConv::ID CC = F->getCallingConv();
972   switch (CC) {
973   case CallingConv::AMDGPU_KERNEL:
974   case CallingConv::SPIR_KERNEL:
975     return true;
976   case CallingConv::AMDGPU_VS:
977   case CallingConv::AMDGPU_LS:
978   case CallingConv::AMDGPU_HS:
979   case CallingConv::AMDGPU_ES:
980   case CallingConv::AMDGPU_GS:
981   case CallingConv::AMDGPU_PS:
982   case CallingConv::AMDGPU_CS:
983     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
984     // Everything else is in VGPRs.
985     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
986            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
987   default:
988     // TODO: Should calls support inreg for SGPR inputs?
989     return false;
990   }
991 }
992 
993 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
994   return isGCN3Encoding(ST) || isGFX10(ST);
995 }
996 
997 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
998   if (hasSMEMByteOffset(ST))
999     return ByteOffset;
1000   return ByteOffset >> 2;
1001 }
1002 
1003 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1004   int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
1005   return (hasSMEMByteOffset(ST)) ?
1006     isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
1007 }
1008 
1009 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1010 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1011 // hardware bug needing a workaround).
1012 //
1013 // The required alignment ensures that individual address components remain
1014 // aligned if they are aligned to begin with. It also ensures that additional
1015 // offsets within the given alignment can be added to the resulting ImmOffset.
1016 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1017                       const GCNSubtarget *Subtarget, uint32_t Align) {
1018   const uint32_t MaxImm = alignDown(4095, Align);
1019   uint32_t Overflow = 0;
1020 
1021   if (Imm > MaxImm) {
1022     if (Imm <= MaxImm + 64) {
1023       // Use an SOffset inline constant for 4..64
1024       Overflow = Imm - MaxImm;
1025       Imm = MaxImm;
1026     } else {
1027       // Try to keep the same value in SOffset for adjacent loads, so that
1028       // the corresponding register contents can be re-used.
1029       //
1030       // Load values with all low-bits (except for alignment bits) set into
1031       // SOffset, so that a larger range of values can be covered using
1032       // s_movk_i32.
1033       //
1034       // Atomic operations fail to work correctly when individual address
1035       // components are unaligned, even if their sum is aligned.
1036       uint32_t High = (Imm + Align) & ~4095;
1037       uint32_t Low = (Imm + Align) & 4095;
1038       Imm = Low;
1039       Overflow = High - Align;
1040     }
1041   }
1042 
1043   // There is a hardware bug in SI and CI which prevents address clamping in
1044   // MUBUF instructions from working correctly with SOffsets. The immediate
1045   // offset is unaffected.
1046   if (Overflow > 0 &&
1047       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1048     return false;
1049 
1050   ImmOffset = Imm;
1051   SOffset = Overflow;
1052   return true;
1053 }
1054 
1055 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1056   *this = getDefaultForCallingConv(F.getCallingConv());
1057 
1058   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1059   if (!IEEEAttr.empty())
1060     IEEE = IEEEAttr == "true";
1061 
1062   StringRef DX10ClampAttr
1063     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1064   if (!DX10ClampAttr.empty())
1065     DX10Clamp = DX10ClampAttr == "true";
1066 }
1067 
1068 namespace {
1069 
1070 struct SourceOfDivergence {
1071   unsigned Intr;
1072 };
1073 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1074 
1075 #define GET_SourcesOfDivergence_IMPL
1076 #include "AMDGPUGenSearchableTables.inc"
1077 
1078 } // end anonymous namespace
1079 
1080 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1081   return lookupSourceOfDivergence(IntrID);
1082 }
1083 
1084 } // namespace AMDGPU
1085 } // namespace llvm
1086