1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDKernelCodeT.h" 13 #include "GCNSubtarget.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/IR/Attributes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/GlobalValue.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IntrinsicsR600.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/MC/MCSubtargetInfo.h" 23 #include "llvm/Support/AMDHSAKernelDescriptor.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/TargetParser.h" 26 27 #define GET_INSTRINFO_NAMED_OPS 28 #define GET_INSTRMAP_INFO 29 #include "AMDGPUGenInstrInfo.inc" 30 31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion( 32 "amdhsa-code-object-version", llvm::cl::Hidden, 33 llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4), 34 llvm::cl::ZeroOrMore); 35 36 namespace { 37 38 /// \returns Bit mask for given bit \p Shift and bit \p Width. 39 unsigned getBitMask(unsigned Shift, unsigned Width) { 40 return ((1 << Width) - 1) << Shift; 41 } 42 43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 44 /// 45 /// \returns Packed \p Dst. 46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 47 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 48 Dst |= (Src << Shift) & getBitMask(Shift, Width); 49 return Dst; 50 } 51 52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 53 /// 54 /// \returns Unpacked bits. 55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 56 return (Src & getBitMask(Shift, Width)) >> Shift; 57 } 58 59 /// \returns Vmcnt bit shift (lower bits). 60 unsigned getVmcntBitShiftLo() { return 0; } 61 62 /// \returns Vmcnt bit width (lower bits). 63 unsigned getVmcntBitWidthLo() { return 4; } 64 65 /// \returns Expcnt bit shift. 66 unsigned getExpcntBitShift() { return 4; } 67 68 /// \returns Expcnt bit width. 69 unsigned getExpcntBitWidth() { return 3; } 70 71 /// \returns Lgkmcnt bit shift. 72 unsigned getLgkmcntBitShift() { return 8; } 73 74 /// \returns Lgkmcnt bit width. 75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 76 return (VersionMajor >= 10) ? 6 : 4; 77 } 78 79 /// \returns Vmcnt bit shift (higher bits). 80 unsigned getVmcntBitShiftHi() { return 14; } 81 82 /// \returns Vmcnt bit width (higher bits). 83 unsigned getVmcntBitWidthHi() { return 2; } 84 85 } // end namespace anonymous 86 87 namespace llvm { 88 89 namespace AMDGPU { 90 91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) { 92 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) 93 return None; 94 95 switch (AmdhsaCodeObjectVersion) { 96 case 2: 97 return ELF::ELFABIVERSION_AMDGPU_HSA_V2; 98 case 3: 99 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 100 case 4: 101 return ELF::ELFABIVERSION_AMDGPU_HSA_V4; 102 case 5: 103 return ELF::ELFABIVERSION_AMDGPU_HSA_V5; 104 default: 105 report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") + 106 Twine(AmdhsaCodeObjectVersion)); 107 } 108 } 109 110 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { 111 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 112 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2; 113 return false; 114 } 115 116 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { 117 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 118 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3; 119 return false; 120 } 121 122 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) { 123 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 124 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4; 125 return false; 126 } 127 128 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) { 129 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 130 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5; 131 return false; 132 } 133 134 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) { 135 return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) || 136 isHsaAbiVersion5(STI); 137 } 138 139 unsigned getAmdhsaCodeObjectVersion() { 140 return AmdhsaCodeObjectVersion; 141 } 142 143 // FIXME: All such magic numbers about the ABI should be in a 144 // central TD file. 145 unsigned getHostcallImplicitArgPosition() { 146 switch (AmdhsaCodeObjectVersion) { 147 case 2: 148 case 3: 149 case 4: 150 return 24; 151 case 5: 152 return AMDGPU::ImplicitArg::HOSTCALL_PTR_OFFSET; 153 default: 154 llvm_unreachable("Unexpected code object version"); 155 return 0; 156 } 157 } 158 159 #define GET_MIMGBaseOpcodesTable_IMPL 160 #define GET_MIMGDimInfoTable_IMPL 161 #define GET_MIMGInfoTable_IMPL 162 #define GET_MIMGLZMappingTable_IMPL 163 #define GET_MIMGMIPMappingTable_IMPL 164 #define GET_MIMGBiasMappingTable_IMPL 165 #define GET_MIMGOffsetMappingTable_IMPL 166 #define GET_MIMGG16MappingTable_IMPL 167 #define GET_MAIInstInfoTable_IMPL 168 #include "AMDGPUGenSearchableTables.inc" 169 170 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 171 unsigned VDataDwords, unsigned VAddrDwords) { 172 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 173 VDataDwords, VAddrDwords); 174 return Info ? Info->Opcode : -1; 175 } 176 177 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 178 const MIMGInfo *Info = getMIMGInfo(Opc); 179 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 180 } 181 182 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 183 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 184 const MIMGInfo *NewInfo = 185 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 186 NewChannels, OrigInfo->VAddrDwords); 187 return NewInfo ? NewInfo->Opcode : -1; 188 } 189 190 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, 191 const MIMGDimInfo *Dim, bool IsA16, 192 bool IsG16Supported) { 193 unsigned AddrWords = BaseOpcode->NumExtraArgs; 194 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) + 195 (BaseOpcode->LodOrClampOrMip ? 1 : 0); 196 if (IsA16) 197 AddrWords += divideCeil(AddrComponents, 2); 198 else 199 AddrWords += AddrComponents; 200 201 // Note: For subtargets that support A16 but not G16, enabling A16 also 202 // enables 16 bit gradients. 203 // For subtargets that support A16 (operand) and G16 (done with a different 204 // instruction encoding), they are independent. 205 206 if (BaseOpcode->Gradients) { 207 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16) 208 // There are two gradients per coordinate, we pack them separately. 209 // For the 3d case, 210 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv) 211 AddrWords += alignTo<2>(Dim->NumGradients / 2); 212 else 213 AddrWords += Dim->NumGradients; 214 } 215 return AddrWords; 216 } 217 218 struct MUBUFInfo { 219 uint16_t Opcode; 220 uint16_t BaseOpcode; 221 uint8_t elements; 222 bool has_vaddr; 223 bool has_srsrc; 224 bool has_soffset; 225 bool IsBufferInv; 226 }; 227 228 struct MTBUFInfo { 229 uint16_t Opcode; 230 uint16_t BaseOpcode; 231 uint8_t elements; 232 bool has_vaddr; 233 bool has_srsrc; 234 bool has_soffset; 235 }; 236 237 struct SMInfo { 238 uint16_t Opcode; 239 bool IsBuffer; 240 }; 241 242 struct VOPInfo { 243 uint16_t Opcode; 244 bool IsSingle; 245 }; 246 247 #define GET_MTBUFInfoTable_DECL 248 #define GET_MTBUFInfoTable_IMPL 249 #define GET_MUBUFInfoTable_DECL 250 #define GET_MUBUFInfoTable_IMPL 251 #define GET_SMInfoTable_DECL 252 #define GET_SMInfoTable_IMPL 253 #define GET_VOP1InfoTable_DECL 254 #define GET_VOP1InfoTable_IMPL 255 #define GET_VOP2InfoTable_DECL 256 #define GET_VOP2InfoTable_IMPL 257 #define GET_VOP3InfoTable_DECL 258 #define GET_VOP3InfoTable_IMPL 259 #include "AMDGPUGenSearchableTables.inc" 260 261 int getMTBUFBaseOpcode(unsigned Opc) { 262 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 263 return Info ? Info->BaseOpcode : -1; 264 } 265 266 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 267 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 268 return Info ? Info->Opcode : -1; 269 } 270 271 int getMTBUFElements(unsigned Opc) { 272 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 273 return Info ? Info->elements : 0; 274 } 275 276 bool getMTBUFHasVAddr(unsigned Opc) { 277 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 278 return Info ? Info->has_vaddr : false; 279 } 280 281 bool getMTBUFHasSrsrc(unsigned Opc) { 282 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 283 return Info ? Info->has_srsrc : false; 284 } 285 286 bool getMTBUFHasSoffset(unsigned Opc) { 287 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 288 return Info ? Info->has_soffset : false; 289 } 290 291 int getMUBUFBaseOpcode(unsigned Opc) { 292 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 293 return Info ? Info->BaseOpcode : -1; 294 } 295 296 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 297 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 298 return Info ? Info->Opcode : -1; 299 } 300 301 int getMUBUFElements(unsigned Opc) { 302 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 303 return Info ? Info->elements : 0; 304 } 305 306 bool getMUBUFHasVAddr(unsigned Opc) { 307 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 308 return Info ? Info->has_vaddr : false; 309 } 310 311 bool getMUBUFHasSrsrc(unsigned Opc) { 312 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 313 return Info ? Info->has_srsrc : false; 314 } 315 316 bool getMUBUFHasSoffset(unsigned Opc) { 317 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 318 return Info ? Info->has_soffset : false; 319 } 320 321 bool getMUBUFIsBufferInv(unsigned Opc) { 322 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 323 return Info ? Info->IsBufferInv : false; 324 } 325 326 bool getSMEMIsBuffer(unsigned Opc) { 327 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 328 return Info ? Info->IsBuffer : false; 329 } 330 331 bool getVOP1IsSingle(unsigned Opc) { 332 const VOPInfo *Info = getVOP1OpcodeHelper(Opc); 333 return Info ? Info->IsSingle : false; 334 } 335 336 bool getVOP2IsSingle(unsigned Opc) { 337 const VOPInfo *Info = getVOP2OpcodeHelper(Opc); 338 return Info ? Info->IsSingle : false; 339 } 340 341 bool getVOP3IsSingle(unsigned Opc) { 342 const VOPInfo *Info = getVOP3OpcodeHelper(Opc); 343 return Info ? Info->IsSingle : false; 344 } 345 346 bool getMAIIsDGEMM(unsigned Opc) { 347 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc); 348 return Info ? Info->is_dgemm : false; 349 } 350 351 bool getMAIIsGFX940XDL(unsigned Opc) { 352 const MAIInstInfo *Info = getMAIInstInfoHelper(Opc); 353 return Info ? Info->is_gfx940_xdl : false; 354 } 355 356 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 357 // header files, so we need to wrap it in a function that takes unsigned 358 // instead. 359 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 360 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 361 } 362 363 namespace IsaInfo { 364 365 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI) 366 : STI(STI), XnackSetting(TargetIDSetting::Any), 367 SramEccSetting(TargetIDSetting::Any) { 368 if (!STI.getFeatureBits().test(FeatureSupportsXNACK)) 369 XnackSetting = TargetIDSetting::Unsupported; 370 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC)) 371 SramEccSetting = TargetIDSetting::Unsupported; 372 } 373 374 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) { 375 // Check if xnack or sramecc is explicitly enabled or disabled. In the 376 // absence of the target features we assume we must generate code that can run 377 // in any environment. 378 SubtargetFeatures Features(FS); 379 Optional<bool> XnackRequested; 380 Optional<bool> SramEccRequested; 381 382 for (const std::string &Feature : Features.getFeatures()) { 383 if (Feature == "+xnack") 384 XnackRequested = true; 385 else if (Feature == "-xnack") 386 XnackRequested = false; 387 else if (Feature == "+sramecc") 388 SramEccRequested = true; 389 else if (Feature == "-sramecc") 390 SramEccRequested = false; 391 } 392 393 bool XnackSupported = isXnackSupported(); 394 bool SramEccSupported = isSramEccSupported(); 395 396 if (XnackRequested) { 397 if (XnackSupported) { 398 XnackSetting = 399 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off; 400 } else { 401 // If a specific xnack setting was requested and this GPU does not support 402 // xnack emit a warning. Setting will remain set to "Unsupported". 403 if (*XnackRequested) { 404 errs() << "warning: xnack 'On' was requested for a processor that does " 405 "not support it!\n"; 406 } else { 407 errs() << "warning: xnack 'Off' was requested for a processor that " 408 "does not support it!\n"; 409 } 410 } 411 } 412 413 if (SramEccRequested) { 414 if (SramEccSupported) { 415 SramEccSetting = 416 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off; 417 } else { 418 // If a specific sramecc setting was requested and this GPU does not 419 // support sramecc emit a warning. Setting will remain set to 420 // "Unsupported". 421 if (*SramEccRequested) { 422 errs() << "warning: sramecc 'On' was requested for a processor that " 423 "does not support it!\n"; 424 } else { 425 errs() << "warning: sramecc 'Off' was requested for a processor that " 426 "does not support it!\n"; 427 } 428 } 429 } 430 } 431 432 static TargetIDSetting 433 getTargetIDSettingFromFeatureString(StringRef FeatureString) { 434 if (FeatureString.endswith("-")) 435 return TargetIDSetting::Off; 436 if (FeatureString.endswith("+")) 437 return TargetIDSetting::On; 438 439 llvm_unreachable("Malformed feature string"); 440 } 441 442 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) { 443 SmallVector<StringRef, 3> TargetIDSplit; 444 TargetID.split(TargetIDSplit, ':'); 445 446 for (const auto &FeatureString : TargetIDSplit) { 447 if (FeatureString.startswith("xnack")) 448 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString); 449 if (FeatureString.startswith("sramecc")) 450 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString); 451 } 452 } 453 454 std::string AMDGPUTargetID::toString() const { 455 std::string StringRep; 456 raw_string_ostream StreamRep(StringRep); 457 458 auto TargetTriple = STI.getTargetTriple(); 459 auto Version = getIsaVersion(STI.getCPU()); 460 461 StreamRep << TargetTriple.getArchName() << '-' 462 << TargetTriple.getVendorName() << '-' 463 << TargetTriple.getOSName() << '-' 464 << TargetTriple.getEnvironmentName() << '-'; 465 466 std::string Processor; 467 // TODO: Following else statement is present here because we used various 468 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803'). 469 // Remove once all aliases are removed from GCNProcessors.td. 470 if (Version.Major >= 9) 471 Processor = STI.getCPU().str(); 472 else 473 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) + 474 Twine(Version.Stepping)) 475 .str(); 476 477 std::string Features; 478 if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) { 479 switch (*HsaAbiVersion) { 480 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 481 // Code object V2 only supported specific processors and had fixed 482 // settings for the XNACK. 483 if (Processor == "gfx600") { 484 } else if (Processor == "gfx601") { 485 } else if (Processor == "gfx602") { 486 } else if (Processor == "gfx700") { 487 } else if (Processor == "gfx701") { 488 } else if (Processor == "gfx702") { 489 } else if (Processor == "gfx703") { 490 } else if (Processor == "gfx704") { 491 } else if (Processor == "gfx705") { 492 } else if (Processor == "gfx801") { 493 if (!isXnackOnOrAny()) 494 report_fatal_error( 495 "AMD GPU code object V2 does not support processor " + 496 Twine(Processor) + " without XNACK"); 497 } else if (Processor == "gfx802") { 498 } else if (Processor == "gfx803") { 499 } else if (Processor == "gfx805") { 500 } else if (Processor == "gfx810") { 501 if (!isXnackOnOrAny()) 502 report_fatal_error( 503 "AMD GPU code object V2 does not support processor " + 504 Twine(Processor) + " without XNACK"); 505 } else if (Processor == "gfx900") { 506 if (isXnackOnOrAny()) 507 Processor = "gfx901"; 508 } else if (Processor == "gfx902") { 509 if (isXnackOnOrAny()) 510 Processor = "gfx903"; 511 } else if (Processor == "gfx904") { 512 if (isXnackOnOrAny()) 513 Processor = "gfx905"; 514 } else if (Processor == "gfx906") { 515 if (isXnackOnOrAny()) 516 Processor = "gfx907"; 517 } else if (Processor == "gfx90c") { 518 if (isXnackOnOrAny()) 519 report_fatal_error( 520 "AMD GPU code object V2 does not support processor " + 521 Twine(Processor) + " with XNACK being ON or ANY"); 522 } else { 523 report_fatal_error( 524 "AMD GPU code object V2 does not support processor " + 525 Twine(Processor)); 526 } 527 break; 528 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 529 // xnack. 530 if (isXnackOnOrAny()) 531 Features += "+xnack"; 532 // In code object v2 and v3, "sramecc" feature was spelled with a 533 // hyphen ("sram-ecc"). 534 if (isSramEccOnOrAny()) 535 Features += "+sram-ecc"; 536 break; 537 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 538 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 539 // sramecc. 540 if (getSramEccSetting() == TargetIDSetting::Off) 541 Features += ":sramecc-"; 542 else if (getSramEccSetting() == TargetIDSetting::On) 543 Features += ":sramecc+"; 544 // xnack. 545 if (getXnackSetting() == TargetIDSetting::Off) 546 Features += ":xnack-"; 547 else if (getXnackSetting() == TargetIDSetting::On) 548 Features += ":xnack+"; 549 break; 550 default: 551 break; 552 } 553 } 554 555 StreamRep << Processor << Features; 556 557 StreamRep.flush(); 558 return StringRep; 559 } 560 561 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 562 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 563 return 16; 564 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 565 return 32; 566 567 return 64; 568 } 569 570 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 571 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 572 return 32768; 573 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 574 return 65536; 575 576 return 0; 577 } 578 579 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 580 // "Per CU" really means "per whatever functional block the waves of a 581 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 582 // two SIMDs. 583 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 584 return 2; 585 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 586 // two CUs, so a total of four SIMDs. 587 return 4; 588 } 589 590 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 591 unsigned FlatWorkGroupSize) { 592 assert(FlatWorkGroupSize != 0); 593 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 594 return 8; 595 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 596 if (N == 1) 597 return 40; 598 N = 40 / N; 599 return std::min(N, 16u); 600 } 601 602 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 603 return 1; 604 } 605 606 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 607 // FIXME: Need to take scratch memory into account. 608 if (isGFX90A(*STI)) 609 return 8; 610 if (!isGFX10Plus(*STI)) 611 return 10; 612 return hasGFX10_3Insts(*STI) ? 16 : 20; 613 } 614 615 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 616 unsigned FlatWorkGroupSize) { 617 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 618 getEUsPerCU(STI)); 619 } 620 621 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 622 return 1; 623 } 624 625 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 626 // Some subtargets allow encoding 2048, but this isn't tested or supported. 627 return 1024; 628 } 629 630 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 631 unsigned FlatWorkGroupSize) { 632 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 633 } 634 635 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 636 IsaVersion Version = getIsaVersion(STI->getCPU()); 637 if (Version.Major >= 10) 638 return getAddressableNumSGPRs(STI); 639 if (Version.Major >= 8) 640 return 16; 641 return 8; 642 } 643 644 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 645 return 8; 646 } 647 648 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 649 IsaVersion Version = getIsaVersion(STI->getCPU()); 650 if (Version.Major >= 8) 651 return 800; 652 return 512; 653 } 654 655 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 656 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 657 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 658 659 IsaVersion Version = getIsaVersion(STI->getCPU()); 660 if (Version.Major >= 10) 661 return 106; 662 if (Version.Major >= 8) 663 return 102; 664 return 104; 665 } 666 667 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 668 assert(WavesPerEU != 0); 669 670 IsaVersion Version = getIsaVersion(STI->getCPU()); 671 if (Version.Major >= 10) 672 return 0; 673 674 if (WavesPerEU >= getMaxWavesPerEU(STI)) 675 return 0; 676 677 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 678 if (STI->getFeatureBits().test(FeatureTrapHandler)) 679 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 680 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 681 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 682 } 683 684 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 685 bool Addressable) { 686 assert(WavesPerEU != 0); 687 688 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 689 IsaVersion Version = getIsaVersion(STI->getCPU()); 690 if (Version.Major >= 10) 691 return Addressable ? AddressableNumSGPRs : 108; 692 if (Version.Major >= 8 && !Addressable) 693 AddressableNumSGPRs = 112; 694 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 695 if (STI->getFeatureBits().test(FeatureTrapHandler)) 696 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 697 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 698 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 699 } 700 701 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 702 bool FlatScrUsed, bool XNACKUsed) { 703 unsigned ExtraSGPRs = 0; 704 if (VCCUsed) 705 ExtraSGPRs = 2; 706 707 IsaVersion Version = getIsaVersion(STI->getCPU()); 708 if (Version.Major >= 10) 709 return ExtraSGPRs; 710 711 if (Version.Major < 8) { 712 if (FlatScrUsed) 713 ExtraSGPRs = 4; 714 } else { 715 if (XNACKUsed) 716 ExtraSGPRs = 4; 717 718 if (FlatScrUsed || 719 STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch)) 720 ExtraSGPRs = 6; 721 } 722 723 return ExtraSGPRs; 724 } 725 726 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 727 bool FlatScrUsed) { 728 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 729 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 730 } 731 732 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 733 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 734 // SGPRBlocks is actual number of SGPR blocks minus 1. 735 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 736 } 737 738 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 739 Optional<bool> EnableWavefrontSize32) { 740 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 741 return 8; 742 743 bool IsWave32 = EnableWavefrontSize32 ? 744 *EnableWavefrontSize32 : 745 STI->getFeatureBits().test(FeatureWavefrontSize32); 746 747 if (hasGFX10_3Insts(*STI)) 748 return IsWave32 ? 16 : 8; 749 750 return IsWave32 ? 8 : 4; 751 } 752 753 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 754 Optional<bool> EnableWavefrontSize32) { 755 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 756 return 8; 757 758 bool IsWave32 = EnableWavefrontSize32 ? 759 *EnableWavefrontSize32 : 760 STI->getFeatureBits().test(FeatureWavefrontSize32); 761 762 return IsWave32 ? 8 : 4; 763 } 764 765 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 766 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 767 return 512; 768 if (!isGFX10Plus(*STI)) 769 return 256; 770 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 771 } 772 773 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 774 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 775 return 512; 776 return 256; 777 } 778 779 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 780 assert(WavesPerEU != 0); 781 782 if (WavesPerEU >= getMaxWavesPerEU(STI)) 783 return 0; 784 unsigned MinNumVGPRs = 785 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 786 getVGPRAllocGranule(STI)) + 1; 787 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 788 } 789 790 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 791 assert(WavesPerEU != 0); 792 793 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 794 getVGPRAllocGranule(STI)); 795 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 796 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 797 } 798 799 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 800 Optional<bool> EnableWavefrontSize32) { 801 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 802 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 803 // VGPRBlocks is actual number of VGPR blocks minus 1. 804 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 805 } 806 807 } // end namespace IsaInfo 808 809 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 810 const MCSubtargetInfo *STI) { 811 IsaVersion Version = getIsaVersion(STI->getCPU()); 812 813 memset(&Header, 0, sizeof(Header)); 814 815 Header.amd_kernel_code_version_major = 1; 816 Header.amd_kernel_code_version_minor = 2; 817 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 818 Header.amd_machine_version_major = Version.Major; 819 Header.amd_machine_version_minor = Version.Minor; 820 Header.amd_machine_version_stepping = Version.Stepping; 821 Header.kernel_code_entry_byte_offset = sizeof(Header); 822 Header.wavefront_size = 6; 823 824 // If the code object does not support indirect functions, then the value must 825 // be 0xffffffff. 826 Header.call_convention = -1; 827 828 // These alignment values are specified in powers of two, so alignment = 829 // 2^n. The minimum alignment is 2^4 = 16. 830 Header.kernarg_segment_alignment = 4; 831 Header.group_segment_alignment = 4; 832 Header.private_segment_alignment = 4; 833 834 if (Version.Major >= 10) { 835 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 836 Header.wavefront_size = 5; 837 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 838 } 839 Header.compute_pgm_resource_registers |= 840 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 841 S_00B848_MEM_ORDERED(1); 842 } 843 } 844 845 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 846 const MCSubtargetInfo *STI) { 847 IsaVersion Version = getIsaVersion(STI->getCPU()); 848 849 amdhsa::kernel_descriptor_t KD; 850 memset(&KD, 0, sizeof(KD)); 851 852 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 853 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 854 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 855 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 856 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 857 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 858 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 859 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 860 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 861 if (Version.Major >= 10) { 862 AMDHSA_BITS_SET(KD.kernel_code_properties, 863 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 864 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 865 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 866 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 867 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 868 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 869 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 870 } 871 if (AMDGPU::isGFX90A(*STI)) { 872 AMDHSA_BITS_SET(KD.compute_pgm_rsrc3, 873 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, 874 STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0); 875 } 876 return KD; 877 } 878 879 bool isGroupSegment(const GlobalValue *GV) { 880 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 881 } 882 883 bool isGlobalSegment(const GlobalValue *GV) { 884 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 885 } 886 887 bool isReadOnlySegment(const GlobalValue *GV) { 888 unsigned AS = GV->getAddressSpace(); 889 return AS == AMDGPUAS::CONSTANT_ADDRESS || 890 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 891 } 892 893 bool shouldEmitConstantsToTextSection(const Triple &TT) { 894 return TT.getArch() == Triple::r600; 895 } 896 897 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 898 Attribute A = F.getFnAttribute(Name); 899 int Result = Default; 900 901 if (A.isStringAttribute()) { 902 StringRef Str = A.getValueAsString(); 903 if (Str.getAsInteger(0, Result)) { 904 LLVMContext &Ctx = F.getContext(); 905 Ctx.emitError("can't parse integer attribute " + Name); 906 } 907 } 908 909 return Result; 910 } 911 912 std::pair<int, int> getIntegerPairAttribute(const Function &F, 913 StringRef Name, 914 std::pair<int, int> Default, 915 bool OnlyFirstRequired) { 916 Attribute A = F.getFnAttribute(Name); 917 if (!A.isStringAttribute()) 918 return Default; 919 920 LLVMContext &Ctx = F.getContext(); 921 std::pair<int, int> Ints = Default; 922 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 923 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 924 Ctx.emitError("can't parse first integer attribute " + Name); 925 return Default; 926 } 927 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 928 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 929 Ctx.emitError("can't parse second integer attribute " + Name); 930 return Default; 931 } 932 } 933 934 return Ints; 935 } 936 937 unsigned getVmcntBitMask(const IsaVersion &Version) { 938 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 939 if (Version.Major < 9) 940 return VmcntLo; 941 942 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 943 return VmcntLo | VmcntHi; 944 } 945 946 unsigned getExpcntBitMask(const IsaVersion &Version) { 947 return (1 << getExpcntBitWidth()) - 1; 948 } 949 950 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 951 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 952 } 953 954 unsigned getWaitcntBitMask(const IsaVersion &Version) { 955 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 956 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 957 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 958 getLgkmcntBitWidth(Version.Major)); 959 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 960 if (Version.Major < 9) 961 return Waitcnt; 962 963 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 964 return Waitcnt | VmcntHi; 965 } 966 967 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 968 unsigned VmcntLo = 969 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 970 if (Version.Major < 9) 971 return VmcntLo; 972 973 unsigned VmcntHi = 974 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 975 VmcntHi <<= getVmcntBitWidthLo(); 976 return VmcntLo | VmcntHi; 977 } 978 979 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 980 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 981 } 982 983 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 984 return unpackBits(Waitcnt, getLgkmcntBitShift(), 985 getLgkmcntBitWidth(Version.Major)); 986 } 987 988 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 989 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 990 Vmcnt = decodeVmcnt(Version, Waitcnt); 991 Expcnt = decodeExpcnt(Version, Waitcnt); 992 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 993 } 994 995 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 996 Waitcnt Decoded; 997 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 998 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 999 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 1000 return Decoded; 1001 } 1002 1003 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 1004 unsigned Vmcnt) { 1005 Waitcnt = 1006 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 1007 if (Version.Major < 9) 1008 return Waitcnt; 1009 1010 Vmcnt >>= getVmcntBitWidthLo(); 1011 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 1012 } 1013 1014 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 1015 unsigned Expcnt) { 1016 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 1017 } 1018 1019 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 1020 unsigned Lgkmcnt) { 1021 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 1022 getLgkmcntBitWidth(Version.Major)); 1023 } 1024 1025 unsigned encodeWaitcnt(const IsaVersion &Version, 1026 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 1027 unsigned Waitcnt = getWaitcntBitMask(Version); 1028 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 1029 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 1030 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 1031 return Waitcnt; 1032 } 1033 1034 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 1035 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 1036 } 1037 1038 //===----------------------------------------------------------------------===// 1039 // Custom Operands. 1040 // 1041 // A table of custom operands shall describe "primary" operand names 1042 // first followed by aliases if any. It is not required but recommended 1043 // to arrange operands so that operand encoding match operand position 1044 // in the table. This will make disassembly a bit more efficient. 1045 // Unused slots in the table shall have an empty name. 1046 // 1047 //===----------------------------------------------------------------------===// 1048 1049 template <class T> 1050 static bool isValidOpr(int Idx, const CustomOperand<T> OpInfo[], int OpInfoSize, 1051 T Context) { 1052 return 0 <= Idx && Idx < OpInfoSize && !OpInfo[Idx].Name.empty() && 1053 (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context)); 1054 } 1055 1056 template <class T> 1057 static int getOprIdx(std::function<bool(const CustomOperand<T> &)> Test, 1058 const CustomOperand<T> OpInfo[], int OpInfoSize, 1059 T Context) { 1060 int InvalidIdx = OPR_ID_UNKNOWN; 1061 for (int Idx = 0; Idx < OpInfoSize; ++Idx) { 1062 if (Test(OpInfo[Idx])) { 1063 if (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context)) 1064 return Idx; 1065 InvalidIdx = OPR_ID_UNSUPPORTED; 1066 } 1067 } 1068 return InvalidIdx; 1069 } 1070 1071 template <class T> 1072 static int getOprIdx(const StringRef Name, const CustomOperand<T> OpInfo[], 1073 int OpInfoSize, T Context) { 1074 auto Test = [=](const CustomOperand<T> &Op) { return Op.Name == Name; }; 1075 return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context); 1076 } 1077 1078 template <class T> 1079 static int getOprIdx(int Id, const CustomOperand<T> OpInfo[], int OpInfoSize, 1080 T Context, bool QuickCheck = true) { 1081 auto Test = [=](const CustomOperand<T> &Op) { 1082 return Op.Encoding == Id && !Op.Name.empty(); 1083 }; 1084 // This is an optimization that should work in most cases. 1085 // As a side effect, it may cause selection of an alias 1086 // instead of a primary operand name in case of sparse tables. 1087 if (QuickCheck && isValidOpr<T>(Id, OpInfo, OpInfoSize, Context) && 1088 OpInfo[Id].Encoding == Id) { 1089 return Id; 1090 } 1091 return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context); 1092 } 1093 1094 //===----------------------------------------------------------------------===// 1095 // Custom Operand Values 1096 //===----------------------------------------------------------------------===// 1097 1098 static unsigned getDefaultCustomOperandEncoding(const CustomOperandVal *Opr, 1099 int Size, 1100 const MCSubtargetInfo &STI) { 1101 unsigned Enc = 0; 1102 for (int Idx = 0; Idx < Size; ++Idx) { 1103 const auto &Op = Opr[Idx]; 1104 if (Op.isSupported(STI)) 1105 Enc |= Op.encode(Op.Default); 1106 } 1107 return Enc; 1108 } 1109 1110 static bool isSymbolicCustomOperandEncoding(const CustomOperandVal *Opr, 1111 int Size, unsigned Code, 1112 bool &HasNonDefaultVal, 1113 const MCSubtargetInfo &STI) { 1114 unsigned UsedOprMask = 0; 1115 HasNonDefaultVal = false; 1116 for (int Idx = 0; Idx < Size; ++Idx) { 1117 const auto &Op = Opr[Idx]; 1118 if (!Op.isSupported(STI)) 1119 continue; 1120 UsedOprMask |= Op.getMask(); 1121 unsigned Val = Op.decode(Code); 1122 if (!Op.isValid(Val)) 1123 return false; 1124 HasNonDefaultVal |= (Val != Op.Default); 1125 } 1126 return (Code & ~UsedOprMask) == 0; 1127 } 1128 1129 static bool decodeCustomOperand(const CustomOperandVal *Opr, int Size, 1130 unsigned Code, int &Idx, StringRef &Name, 1131 unsigned &Val, bool &IsDefault, 1132 const MCSubtargetInfo &STI) { 1133 while (Idx < Size) { 1134 const auto &Op = Opr[Idx++]; 1135 if (Op.isSupported(STI)) { 1136 Name = Op.Name; 1137 Val = Op.decode(Code); 1138 IsDefault = (Val == Op.Default); 1139 return true; 1140 } 1141 } 1142 1143 return false; 1144 } 1145 1146 static int encodeCustomOperandVal(const CustomOperandVal &Op, 1147 int64_t InputVal) { 1148 if (InputVal < 0 || InputVal > Op.Max) 1149 return OPR_VAL_INVALID; 1150 return Op.encode(InputVal); 1151 } 1152 1153 static int encodeCustomOperand(const CustomOperandVal *Opr, int Size, 1154 const StringRef Name, int64_t InputVal, 1155 unsigned &UsedOprMask, 1156 const MCSubtargetInfo &STI) { 1157 int InvalidId = OPR_ID_UNKNOWN; 1158 for (int Idx = 0; Idx < Size; ++Idx) { 1159 const auto &Op = Opr[Idx]; 1160 if (Op.Name == Name) { 1161 if (!Op.isSupported(STI)) { 1162 InvalidId = OPR_ID_UNSUPPORTED; 1163 continue; 1164 } 1165 auto OprMask = Op.getMask(); 1166 if (OprMask & UsedOprMask) 1167 return OPR_ID_DUPLICATE; 1168 UsedOprMask |= OprMask; 1169 return encodeCustomOperandVal(Op, InputVal); 1170 } 1171 } 1172 return InvalidId; 1173 } 1174 1175 //===----------------------------------------------------------------------===// 1176 // DepCtr 1177 //===----------------------------------------------------------------------===// 1178 1179 namespace DepCtr { 1180 1181 int getDefaultDepCtrEncoding(const MCSubtargetInfo &STI) { 1182 static int Default = -1; 1183 if (Default == -1) 1184 Default = getDefaultCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, STI); 1185 return Default; 1186 } 1187 1188 bool isSymbolicDepCtrEncoding(unsigned Code, bool &HasNonDefaultVal, 1189 const MCSubtargetInfo &STI) { 1190 return isSymbolicCustomOperandEncoding(DepCtrInfo, DEP_CTR_SIZE, Code, 1191 HasNonDefaultVal, STI); 1192 } 1193 1194 bool decodeDepCtr(unsigned Code, int &Id, StringRef &Name, unsigned &Val, 1195 bool &IsDefault, const MCSubtargetInfo &STI) { 1196 return decodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Code, Id, Name, Val, 1197 IsDefault, STI); 1198 } 1199 1200 int encodeDepCtr(const StringRef Name, int64_t Val, unsigned &UsedOprMask, 1201 const MCSubtargetInfo &STI) { 1202 return encodeCustomOperand(DepCtrInfo, DEP_CTR_SIZE, Name, Val, UsedOprMask, 1203 STI); 1204 } 1205 1206 } // namespace DepCtr 1207 1208 //===----------------------------------------------------------------------===// 1209 // hwreg 1210 //===----------------------------------------------------------------------===// 1211 1212 namespace Hwreg { 1213 1214 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) { 1215 int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Opr, OPR_SIZE, STI); 1216 return (Idx < 0) ? Idx : Opr[Idx].Encoding; 1217 } 1218 1219 bool isValidHwreg(int64_t Id) { 1220 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 1221 } 1222 1223 bool isValidHwregOffset(int64_t Offset) { 1224 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 1225 } 1226 1227 bool isValidHwregWidth(int64_t Width) { 1228 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 1229 } 1230 1231 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 1232 return (Id << ID_SHIFT_) | 1233 (Offset << OFFSET_SHIFT_) | 1234 ((Width - 1) << WIDTH_M1_SHIFT_); 1235 } 1236 1237 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 1238 int Idx = getOprIdx<const MCSubtargetInfo &>(Id, Opr, OPR_SIZE, STI); 1239 return (Idx < 0) ? "" : Opr[Idx].Name; 1240 } 1241 1242 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 1243 Id = (Val & ID_MASK_) >> ID_SHIFT_; 1244 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 1245 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 1246 } 1247 1248 } // namespace Hwreg 1249 1250 //===----------------------------------------------------------------------===// 1251 // exp tgt 1252 //===----------------------------------------------------------------------===// 1253 1254 namespace Exp { 1255 1256 struct ExpTgt { 1257 StringLiteral Name; 1258 unsigned Tgt; 1259 unsigned MaxIndex; 1260 }; 1261 1262 static constexpr ExpTgt ExpTgtInfo[] = { 1263 {{"null"}, ET_NULL, ET_NULL_MAX_IDX}, 1264 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX}, 1265 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX}, 1266 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX}, 1267 {{"pos"}, ET_POS0, ET_POS_MAX_IDX}, 1268 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX}, 1269 }; 1270 1271 bool getTgtName(unsigned Id, StringRef &Name, int &Index) { 1272 for (const ExpTgt &Val : ExpTgtInfo) { 1273 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) { 1274 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt); 1275 Name = Val.Name; 1276 return true; 1277 } 1278 } 1279 return false; 1280 } 1281 1282 unsigned getTgtId(const StringRef Name) { 1283 1284 for (const ExpTgt &Val : ExpTgtInfo) { 1285 if (Val.MaxIndex == 0 && Name == Val.Name) 1286 return Val.Tgt; 1287 1288 if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) { 1289 StringRef Suffix = Name.drop_front(Val.Name.size()); 1290 1291 unsigned Id; 1292 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex) 1293 return ET_INVALID; 1294 1295 // Disable leading zeroes 1296 if (Suffix.size() > 1 && Suffix[0] == '0') 1297 return ET_INVALID; 1298 1299 return Val.Tgt + Id; 1300 } 1301 } 1302 return ET_INVALID; 1303 } 1304 1305 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) { 1306 return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI); 1307 } 1308 1309 } // namespace Exp 1310 1311 //===----------------------------------------------------------------------===// 1312 // MTBUF Format 1313 //===----------------------------------------------------------------------===// 1314 1315 namespace MTBUFFormat { 1316 1317 int64_t getDfmt(const StringRef Name) { 1318 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 1319 if (Name == DfmtSymbolic[Id]) 1320 return Id; 1321 } 1322 return DFMT_UNDEF; 1323 } 1324 1325 StringRef getDfmtName(unsigned Id) { 1326 assert(Id <= DFMT_MAX); 1327 return DfmtSymbolic[Id]; 1328 } 1329 1330 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 1331 if (isSI(STI) || isCI(STI)) 1332 return NfmtSymbolicSICI; 1333 if (isVI(STI) || isGFX9(STI)) 1334 return NfmtSymbolicVI; 1335 return NfmtSymbolicGFX10; 1336 } 1337 1338 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 1339 auto lookupTable = getNfmtLookupTable(STI); 1340 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 1341 if (Name == lookupTable[Id]) 1342 return Id; 1343 } 1344 return NFMT_UNDEF; 1345 } 1346 1347 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 1348 assert(Id <= NFMT_MAX); 1349 return getNfmtLookupTable(STI)[Id]; 1350 } 1351 1352 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1353 unsigned Dfmt; 1354 unsigned Nfmt; 1355 decodeDfmtNfmt(Id, Dfmt, Nfmt); 1356 return isValidNfmt(Nfmt, STI); 1357 } 1358 1359 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1360 return !getNfmtName(Id, STI).empty(); 1361 } 1362 1363 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 1364 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 1365 } 1366 1367 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 1368 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 1369 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 1370 } 1371 1372 int64_t getUnifiedFormat(const StringRef Name) { 1373 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1374 if (Name == UfmtSymbolic[Id]) 1375 return Id; 1376 } 1377 return UFMT_UNDEF; 1378 } 1379 1380 StringRef getUnifiedFormatName(unsigned Id) { 1381 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 1382 } 1383 1384 bool isValidUnifiedFormat(unsigned Id) { 1385 return Id <= UFMT_LAST; 1386 } 1387 1388 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 1389 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 1390 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1391 if (Fmt == DfmtNfmt2UFmt[Id]) 1392 return Id; 1393 } 1394 return UFMT_UNDEF; 1395 } 1396 1397 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 1398 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 1399 } 1400 1401 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 1402 if (isGFX10Plus(STI)) 1403 return UFMT_DEFAULT; 1404 return DFMT_NFMT_DEFAULT; 1405 } 1406 1407 } // namespace MTBUFFormat 1408 1409 //===----------------------------------------------------------------------===// 1410 // SendMsg 1411 //===----------------------------------------------------------------------===// 1412 1413 namespace SendMsg { 1414 1415 int64_t getMsgId(const StringRef Name, const MCSubtargetInfo &STI) { 1416 int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Msg, MSG_SIZE, STI); 1417 return (Idx < 0) ? Idx : Msg[Idx].Encoding; 1418 } 1419 1420 bool isValidMsgId(int64_t MsgId) { 1421 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 1422 } 1423 1424 StringRef getMsgName(int64_t MsgId, const MCSubtargetInfo &STI) { 1425 int Idx = getOprIdx<const MCSubtargetInfo &>(MsgId, Msg, MSG_SIZE, STI); 1426 return (Idx < 0) ? "" : Msg[Idx].Name; 1427 } 1428 1429 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 1430 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 1431 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 1432 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 1433 for (int i = F; i < L; ++i) { 1434 if (Name == S[i]) { 1435 return i; 1436 } 1437 } 1438 return OP_UNKNOWN_; 1439 } 1440 1441 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, 1442 bool Strict) { 1443 assert(isValidMsgId(MsgId)); 1444 1445 if (!Strict) 1446 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 1447 1448 switch(MsgId) 1449 { 1450 case ID_GS: 1451 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 1452 case ID_GS_DONE: 1453 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 1454 case ID_SYSMSG: 1455 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 1456 default: 1457 return OpId == OP_NONE_; 1458 } 1459 } 1460 1461 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 1462 assert(msgRequiresOp(MsgId)); 1463 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 1464 } 1465 1466 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, 1467 const MCSubtargetInfo &STI, bool Strict) { 1468 assert(isValidMsgOp(MsgId, OpId, STI, Strict)); 1469 1470 if (!Strict) 1471 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 1472 1473 switch(MsgId) 1474 { 1475 case ID_GS: 1476 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 1477 case ID_GS_DONE: 1478 return (OpId == OP_GS_NOP)? 1479 (StreamId == STREAM_ID_NONE_) : 1480 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 1481 default: 1482 return StreamId == STREAM_ID_NONE_; 1483 } 1484 } 1485 1486 bool msgRequiresOp(int64_t MsgId) { 1487 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 1488 } 1489 1490 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 1491 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 1492 } 1493 1494 void decodeMsg(unsigned Val, 1495 uint16_t &MsgId, 1496 uint16_t &OpId, 1497 uint16_t &StreamId) { 1498 MsgId = Val & ID_MASK_; 1499 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 1500 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 1501 } 1502 1503 uint64_t encodeMsg(uint64_t MsgId, 1504 uint64_t OpId, 1505 uint64_t StreamId) { 1506 return (MsgId << ID_SHIFT_) | 1507 (OpId << OP_SHIFT_) | 1508 (StreamId << STREAM_ID_SHIFT_); 1509 } 1510 1511 } // namespace SendMsg 1512 1513 //===----------------------------------------------------------------------===// 1514 // 1515 //===----------------------------------------------------------------------===// 1516 1517 unsigned getInitialPSInputAddr(const Function &F) { 1518 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1519 } 1520 1521 bool getHasColorExport(const Function &F) { 1522 // As a safe default always respond as if PS has color exports. 1523 return getIntegerAttribute( 1524 F, "amdgpu-color-export", 1525 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0; 1526 } 1527 1528 bool getHasDepthExport(const Function &F) { 1529 return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0; 1530 } 1531 1532 bool isShader(CallingConv::ID cc) { 1533 switch(cc) { 1534 case CallingConv::AMDGPU_VS: 1535 case CallingConv::AMDGPU_LS: 1536 case CallingConv::AMDGPU_HS: 1537 case CallingConv::AMDGPU_ES: 1538 case CallingConv::AMDGPU_GS: 1539 case CallingConv::AMDGPU_PS: 1540 case CallingConv::AMDGPU_CS: 1541 return true; 1542 default: 1543 return false; 1544 } 1545 } 1546 1547 bool isGraphics(CallingConv::ID cc) { 1548 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; 1549 } 1550 1551 bool isCompute(CallingConv::ID cc) { 1552 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; 1553 } 1554 1555 bool isEntryFunctionCC(CallingConv::ID CC) { 1556 switch (CC) { 1557 case CallingConv::AMDGPU_KERNEL: 1558 case CallingConv::SPIR_KERNEL: 1559 case CallingConv::AMDGPU_VS: 1560 case CallingConv::AMDGPU_GS: 1561 case CallingConv::AMDGPU_PS: 1562 case CallingConv::AMDGPU_CS: 1563 case CallingConv::AMDGPU_ES: 1564 case CallingConv::AMDGPU_HS: 1565 case CallingConv::AMDGPU_LS: 1566 return true; 1567 default: 1568 return false; 1569 } 1570 } 1571 1572 bool isModuleEntryFunctionCC(CallingConv::ID CC) { 1573 switch (CC) { 1574 case CallingConv::AMDGPU_Gfx: 1575 return true; 1576 default: 1577 return isEntryFunctionCC(CC); 1578 } 1579 } 1580 1581 bool isKernelCC(const Function *Func) { 1582 return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv()); 1583 } 1584 1585 bool hasXNACK(const MCSubtargetInfo &STI) { 1586 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1587 } 1588 1589 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1590 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1591 } 1592 1593 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1594 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1595 } 1596 1597 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1598 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1599 } 1600 1601 bool hasG16(const MCSubtargetInfo &STI) { 1602 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1603 } 1604 1605 bool hasPackedD16(const MCSubtargetInfo &STI) { 1606 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1607 } 1608 1609 bool isSI(const MCSubtargetInfo &STI) { 1610 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1611 } 1612 1613 bool isCI(const MCSubtargetInfo &STI) { 1614 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1615 } 1616 1617 bool isVI(const MCSubtargetInfo &STI) { 1618 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1619 } 1620 1621 bool isGFX9(const MCSubtargetInfo &STI) { 1622 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1623 } 1624 1625 bool isGFX9_GFX10(const MCSubtargetInfo &STI) { 1626 return isGFX9(STI) || isGFX10(STI); 1627 } 1628 1629 bool isGFX8Plus(const MCSubtargetInfo &STI) { 1630 return isVI(STI) || isGFX9Plus(STI); 1631 } 1632 1633 bool isGFX9Plus(const MCSubtargetInfo &STI) { 1634 return isGFX9(STI) || isGFX10Plus(STI); 1635 } 1636 1637 bool isGFX10(const MCSubtargetInfo &STI) { 1638 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1639 } 1640 1641 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } 1642 1643 bool isNotGFX10Plus(const MCSubtargetInfo &STI) { 1644 return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI); 1645 } 1646 1647 bool isGFX10Before1030(const MCSubtargetInfo &STI) { 1648 return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI); 1649 } 1650 1651 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1652 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1653 } 1654 1655 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) { 1656 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding]; 1657 } 1658 1659 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1660 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1661 } 1662 1663 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1664 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1665 } 1666 1667 bool isGFX90A(const MCSubtargetInfo &STI) { 1668 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1669 } 1670 1671 bool isGFX940(const MCSubtargetInfo &STI) { 1672 return STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]; 1673 } 1674 1675 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) { 1676 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1677 } 1678 1679 bool hasMAIInsts(const MCSubtargetInfo &STI) { 1680 return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts]; 1681 } 1682 1683 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, 1684 int32_t ArgNumVGPR) { 1685 if (has90AInsts && ArgNumAGPR) 1686 return alignTo(ArgNumVGPR, 4) + ArgNumAGPR; 1687 return std::max(ArgNumVGPR, ArgNumAGPR); 1688 } 1689 1690 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1691 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1692 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1693 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1694 Reg == AMDGPU::SCC; 1695 } 1696 1697 #define MAP_REG2REG \ 1698 using namespace AMDGPU; \ 1699 switch(Reg) { \ 1700 default: return Reg; \ 1701 CASE_CI_VI(FLAT_SCR) \ 1702 CASE_CI_VI(FLAT_SCR_LO) \ 1703 CASE_CI_VI(FLAT_SCR_HI) \ 1704 CASE_VI_GFX9PLUS(TTMP0) \ 1705 CASE_VI_GFX9PLUS(TTMP1) \ 1706 CASE_VI_GFX9PLUS(TTMP2) \ 1707 CASE_VI_GFX9PLUS(TTMP3) \ 1708 CASE_VI_GFX9PLUS(TTMP4) \ 1709 CASE_VI_GFX9PLUS(TTMP5) \ 1710 CASE_VI_GFX9PLUS(TTMP6) \ 1711 CASE_VI_GFX9PLUS(TTMP7) \ 1712 CASE_VI_GFX9PLUS(TTMP8) \ 1713 CASE_VI_GFX9PLUS(TTMP9) \ 1714 CASE_VI_GFX9PLUS(TTMP10) \ 1715 CASE_VI_GFX9PLUS(TTMP11) \ 1716 CASE_VI_GFX9PLUS(TTMP12) \ 1717 CASE_VI_GFX9PLUS(TTMP13) \ 1718 CASE_VI_GFX9PLUS(TTMP14) \ 1719 CASE_VI_GFX9PLUS(TTMP15) \ 1720 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \ 1721 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \ 1722 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \ 1723 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \ 1724 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \ 1725 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \ 1726 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \ 1727 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \ 1728 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \ 1729 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \ 1730 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \ 1731 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \ 1732 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1733 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1734 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1735 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1736 } 1737 1738 #define CASE_CI_VI(node) \ 1739 assert(!isSI(STI)); \ 1740 case node: return isCI(STI) ? node##_ci : node##_vi; 1741 1742 #define CASE_VI_GFX9PLUS(node) \ 1743 case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi; 1744 1745 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1746 if (STI.getTargetTriple().getArch() == Triple::r600) 1747 return Reg; 1748 MAP_REG2REG 1749 } 1750 1751 #undef CASE_CI_VI 1752 #undef CASE_VI_GFX9PLUS 1753 1754 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1755 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node; 1756 1757 unsigned mc2PseudoReg(unsigned Reg) { 1758 MAP_REG2REG 1759 } 1760 1761 #undef CASE_CI_VI 1762 #undef CASE_VI_GFX9PLUS 1763 #undef MAP_REG2REG 1764 1765 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1766 assert(OpNo < Desc.NumOperands); 1767 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1768 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1769 OpType <= AMDGPU::OPERAND_SRC_LAST; 1770 } 1771 1772 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1773 assert(OpNo < Desc.NumOperands); 1774 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1775 switch (OpType) { 1776 case AMDGPU::OPERAND_REG_IMM_FP32: 1777 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 1778 case AMDGPU::OPERAND_REG_IMM_FP64: 1779 case AMDGPU::OPERAND_REG_IMM_FP16: 1780 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: 1781 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1782 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1783 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1784 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1785 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1786 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1787 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1788 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1789 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1790 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1791 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1792 case AMDGPU::OPERAND_REG_IMM_V2FP32: 1793 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 1794 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 1795 return true; 1796 default: 1797 return false; 1798 } 1799 } 1800 1801 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1802 assert(OpNo < Desc.NumOperands); 1803 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1804 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1805 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1806 } 1807 1808 // Avoid using MCRegisterClass::getSize, since that function will go away 1809 // (move from MC* level to Target* level). Return size in bits. 1810 unsigned getRegBitWidth(unsigned RCID) { 1811 switch (RCID) { 1812 case AMDGPU::VGPR_LO16RegClassID: 1813 case AMDGPU::VGPR_HI16RegClassID: 1814 case AMDGPU::SGPR_LO16RegClassID: 1815 case AMDGPU::AGPR_LO16RegClassID: 1816 return 16; 1817 case AMDGPU::SGPR_32RegClassID: 1818 case AMDGPU::VGPR_32RegClassID: 1819 case AMDGPU::VRegOrLds_32RegClassID: 1820 case AMDGPU::AGPR_32RegClassID: 1821 case AMDGPU::VS_32RegClassID: 1822 case AMDGPU::AV_32RegClassID: 1823 case AMDGPU::SReg_32RegClassID: 1824 case AMDGPU::SReg_32_XM0RegClassID: 1825 case AMDGPU::SRegOrLds_32RegClassID: 1826 return 32; 1827 case AMDGPU::SGPR_64RegClassID: 1828 case AMDGPU::VS_64RegClassID: 1829 case AMDGPU::SReg_64RegClassID: 1830 case AMDGPU::VReg_64RegClassID: 1831 case AMDGPU::AReg_64RegClassID: 1832 case AMDGPU::SReg_64_XEXECRegClassID: 1833 case AMDGPU::VReg_64_Align2RegClassID: 1834 case AMDGPU::AReg_64_Align2RegClassID: 1835 case AMDGPU::AV_64RegClassID: 1836 case AMDGPU::AV_64_Align2RegClassID: 1837 return 64; 1838 case AMDGPU::SGPR_96RegClassID: 1839 case AMDGPU::SReg_96RegClassID: 1840 case AMDGPU::VReg_96RegClassID: 1841 case AMDGPU::AReg_96RegClassID: 1842 case AMDGPU::VReg_96_Align2RegClassID: 1843 case AMDGPU::AReg_96_Align2RegClassID: 1844 case AMDGPU::AV_96RegClassID: 1845 case AMDGPU::AV_96_Align2RegClassID: 1846 return 96; 1847 case AMDGPU::SGPR_128RegClassID: 1848 case AMDGPU::SReg_128RegClassID: 1849 case AMDGPU::VReg_128RegClassID: 1850 case AMDGPU::AReg_128RegClassID: 1851 case AMDGPU::VReg_128_Align2RegClassID: 1852 case AMDGPU::AReg_128_Align2RegClassID: 1853 case AMDGPU::AV_128RegClassID: 1854 case AMDGPU::AV_128_Align2RegClassID: 1855 return 128; 1856 case AMDGPU::SGPR_160RegClassID: 1857 case AMDGPU::SReg_160RegClassID: 1858 case AMDGPU::VReg_160RegClassID: 1859 case AMDGPU::AReg_160RegClassID: 1860 case AMDGPU::VReg_160_Align2RegClassID: 1861 case AMDGPU::AReg_160_Align2RegClassID: 1862 case AMDGPU::AV_160RegClassID: 1863 case AMDGPU::AV_160_Align2RegClassID: 1864 return 160; 1865 case AMDGPU::SGPR_192RegClassID: 1866 case AMDGPU::SReg_192RegClassID: 1867 case AMDGPU::VReg_192RegClassID: 1868 case AMDGPU::AReg_192RegClassID: 1869 case AMDGPU::VReg_192_Align2RegClassID: 1870 case AMDGPU::AReg_192_Align2RegClassID: 1871 case AMDGPU::AV_192RegClassID: 1872 case AMDGPU::AV_192_Align2RegClassID: 1873 return 192; 1874 case AMDGPU::SGPR_224RegClassID: 1875 case AMDGPU::SReg_224RegClassID: 1876 case AMDGPU::VReg_224RegClassID: 1877 case AMDGPU::AReg_224RegClassID: 1878 case AMDGPU::VReg_224_Align2RegClassID: 1879 case AMDGPU::AReg_224_Align2RegClassID: 1880 case AMDGPU::AV_224RegClassID: 1881 case AMDGPU::AV_224_Align2RegClassID: 1882 return 224; 1883 case AMDGPU::SGPR_256RegClassID: 1884 case AMDGPU::SReg_256RegClassID: 1885 case AMDGPU::VReg_256RegClassID: 1886 case AMDGPU::AReg_256RegClassID: 1887 case AMDGPU::VReg_256_Align2RegClassID: 1888 case AMDGPU::AReg_256_Align2RegClassID: 1889 case AMDGPU::AV_256RegClassID: 1890 case AMDGPU::AV_256_Align2RegClassID: 1891 return 256; 1892 case AMDGPU::SGPR_512RegClassID: 1893 case AMDGPU::SReg_512RegClassID: 1894 case AMDGPU::VReg_512RegClassID: 1895 case AMDGPU::AReg_512RegClassID: 1896 case AMDGPU::VReg_512_Align2RegClassID: 1897 case AMDGPU::AReg_512_Align2RegClassID: 1898 case AMDGPU::AV_512RegClassID: 1899 case AMDGPU::AV_512_Align2RegClassID: 1900 return 512; 1901 case AMDGPU::SGPR_1024RegClassID: 1902 case AMDGPU::SReg_1024RegClassID: 1903 case AMDGPU::VReg_1024RegClassID: 1904 case AMDGPU::AReg_1024RegClassID: 1905 case AMDGPU::VReg_1024_Align2RegClassID: 1906 case AMDGPU::AReg_1024_Align2RegClassID: 1907 case AMDGPU::AV_1024RegClassID: 1908 case AMDGPU::AV_1024_Align2RegClassID: 1909 return 1024; 1910 default: 1911 llvm_unreachable("Unexpected register class"); 1912 } 1913 } 1914 1915 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1916 return getRegBitWidth(RC.getID()); 1917 } 1918 1919 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1920 unsigned OpNo) { 1921 assert(OpNo < Desc.NumOperands); 1922 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1923 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1924 } 1925 1926 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1927 if (isInlinableIntLiteral(Literal)) 1928 return true; 1929 1930 uint64_t Val = static_cast<uint64_t>(Literal); 1931 return (Val == DoubleToBits(0.0)) || 1932 (Val == DoubleToBits(1.0)) || 1933 (Val == DoubleToBits(-1.0)) || 1934 (Val == DoubleToBits(0.5)) || 1935 (Val == DoubleToBits(-0.5)) || 1936 (Val == DoubleToBits(2.0)) || 1937 (Val == DoubleToBits(-2.0)) || 1938 (Val == DoubleToBits(4.0)) || 1939 (Val == DoubleToBits(-4.0)) || 1940 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1941 } 1942 1943 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1944 if (isInlinableIntLiteral(Literal)) 1945 return true; 1946 1947 // The actual type of the operand does not seem to matter as long 1948 // as the bits match one of the inline immediate values. For example: 1949 // 1950 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1951 // so it is a legal inline immediate. 1952 // 1953 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1954 // floating-point, so it is a legal inline immediate. 1955 1956 uint32_t Val = static_cast<uint32_t>(Literal); 1957 return (Val == FloatToBits(0.0f)) || 1958 (Val == FloatToBits(1.0f)) || 1959 (Val == FloatToBits(-1.0f)) || 1960 (Val == FloatToBits(0.5f)) || 1961 (Val == FloatToBits(-0.5f)) || 1962 (Val == FloatToBits(2.0f)) || 1963 (Val == FloatToBits(-2.0f)) || 1964 (Val == FloatToBits(4.0f)) || 1965 (Val == FloatToBits(-4.0f)) || 1966 (Val == 0x3e22f983 && HasInv2Pi); 1967 } 1968 1969 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1970 if (!HasInv2Pi) 1971 return false; 1972 1973 if (isInlinableIntLiteral(Literal)) 1974 return true; 1975 1976 uint16_t Val = static_cast<uint16_t>(Literal); 1977 return Val == 0x3C00 || // 1.0 1978 Val == 0xBC00 || // -1.0 1979 Val == 0x3800 || // 0.5 1980 Val == 0xB800 || // -0.5 1981 Val == 0x4000 || // 2.0 1982 Val == 0xC000 || // -2.0 1983 Val == 0x4400 || // 4.0 1984 Val == 0xC400 || // -4.0 1985 Val == 0x3118; // 1/2pi 1986 } 1987 1988 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1989 assert(HasInv2Pi); 1990 1991 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1992 int16_t Trunc = static_cast<int16_t>(Literal); 1993 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1994 } 1995 if (!(Literal & 0xffff)) 1996 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1997 1998 int16_t Lo16 = static_cast<int16_t>(Literal); 1999 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 2000 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 2001 } 2002 2003 bool isInlinableIntLiteralV216(int32_t Literal) { 2004 int16_t Lo16 = static_cast<int16_t>(Literal); 2005 if (isInt<16>(Literal) || isUInt<16>(Literal)) 2006 return isInlinableIntLiteral(Lo16); 2007 2008 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 2009 if (!(Literal & 0xffff)) 2010 return isInlinableIntLiteral(Hi16); 2011 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 2012 } 2013 2014 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 2015 assert(HasInv2Pi); 2016 2017 int16_t Lo16 = static_cast<int16_t>(Literal); 2018 if (isInt<16>(Literal) || isUInt<16>(Literal)) 2019 return true; 2020 2021 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 2022 if (!(Literal & 0xffff)) 2023 return true; 2024 return Lo16 == Hi16; 2025 } 2026 2027 bool isArgPassedInSGPR(const Argument *A) { 2028 const Function *F = A->getParent(); 2029 2030 // Arguments to compute shaders are never a source of divergence. 2031 CallingConv::ID CC = F->getCallingConv(); 2032 switch (CC) { 2033 case CallingConv::AMDGPU_KERNEL: 2034 case CallingConv::SPIR_KERNEL: 2035 return true; 2036 case CallingConv::AMDGPU_VS: 2037 case CallingConv::AMDGPU_LS: 2038 case CallingConv::AMDGPU_HS: 2039 case CallingConv::AMDGPU_ES: 2040 case CallingConv::AMDGPU_GS: 2041 case CallingConv::AMDGPU_PS: 2042 case CallingConv::AMDGPU_CS: 2043 case CallingConv::AMDGPU_Gfx: 2044 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 2045 // Everything else is in VGPRs. 2046 return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) || 2047 F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal); 2048 default: 2049 // TODO: Should calls support inreg for SGPR inputs? 2050 return false; 2051 } 2052 } 2053 2054 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 2055 return isGCN3Encoding(ST) || isGFX10Plus(ST); 2056 } 2057 2058 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 2059 return isGFX9Plus(ST); 2060 } 2061 2062 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 2063 int64_t EncodedOffset) { 2064 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 2065 : isUInt<8>(EncodedOffset); 2066 } 2067 2068 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 2069 int64_t EncodedOffset, 2070 bool IsBuffer) { 2071 return !IsBuffer && 2072 hasSMRDSignedImmOffset(ST) && 2073 isInt<21>(EncodedOffset); 2074 } 2075 2076 static bool isDwordAligned(uint64_t ByteOffset) { 2077 return (ByteOffset & 3) == 0; 2078 } 2079 2080 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 2081 uint64_t ByteOffset) { 2082 if (hasSMEMByteOffset(ST)) 2083 return ByteOffset; 2084 2085 assert(isDwordAligned(ByteOffset)); 2086 return ByteOffset >> 2; 2087 } 2088 2089 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 2090 int64_t ByteOffset, bool IsBuffer) { 2091 // The signed version is always a byte offset. 2092 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 2093 assert(hasSMEMByteOffset(ST)); 2094 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 2095 } 2096 2097 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 2098 return None; 2099 2100 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 2101 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 2102 ? Optional<int64_t>(EncodedOffset) 2103 : None; 2104 } 2105 2106 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 2107 int64_t ByteOffset) { 2108 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 2109 return None; 2110 2111 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 2112 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 2113 } 2114 2115 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { 2116 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. 2117 if (AMDGPU::isGFX10(ST)) 2118 return Signed ? 12 : 11; 2119 2120 return Signed ? 13 : 12; 2121 } 2122 2123 // Given Imm, split it into the values to put into the SOffset and ImmOffset 2124 // fields in an MUBUF instruction. Return false if it is not possible (due to a 2125 // hardware bug needing a workaround). 2126 // 2127 // The required alignment ensures that individual address components remain 2128 // aligned if they are aligned to begin with. It also ensures that additional 2129 // offsets within the given alignment can be added to the resulting ImmOffset. 2130 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 2131 const GCNSubtarget *Subtarget, Align Alignment) { 2132 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 2133 uint32_t Overflow = 0; 2134 2135 if (Imm > MaxImm) { 2136 if (Imm <= MaxImm + 64) { 2137 // Use an SOffset inline constant for 4..64 2138 Overflow = Imm - MaxImm; 2139 Imm = MaxImm; 2140 } else { 2141 // Try to keep the same value in SOffset for adjacent loads, so that 2142 // the corresponding register contents can be re-used. 2143 // 2144 // Load values with all low-bits (except for alignment bits) set into 2145 // SOffset, so that a larger range of values can be covered using 2146 // s_movk_i32. 2147 // 2148 // Atomic operations fail to work correctly when individual address 2149 // components are unaligned, even if their sum is aligned. 2150 uint32_t High = (Imm + Alignment.value()) & ~4095; 2151 uint32_t Low = (Imm + Alignment.value()) & 4095; 2152 Imm = Low; 2153 Overflow = High - Alignment.value(); 2154 } 2155 } 2156 2157 // There is a hardware bug in SI and CI which prevents address clamping in 2158 // MUBUF instructions from working correctly with SOffsets. The immediate 2159 // offset is unaffected. 2160 if (Overflow > 0 && 2161 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 2162 return false; 2163 2164 ImmOffset = Imm; 2165 SOffset = Overflow; 2166 return true; 2167 } 2168 2169 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 2170 *this = getDefaultForCallingConv(F.getCallingConv()); 2171 2172 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 2173 if (!IEEEAttr.empty()) 2174 IEEE = IEEEAttr == "true"; 2175 2176 StringRef DX10ClampAttr 2177 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 2178 if (!DX10ClampAttr.empty()) 2179 DX10Clamp = DX10ClampAttr == "true"; 2180 2181 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 2182 if (!DenormF32Attr.empty()) { 2183 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 2184 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2185 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2186 } 2187 2188 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 2189 if (!DenormAttr.empty()) { 2190 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 2191 2192 if (DenormF32Attr.empty()) { 2193 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2194 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2195 } 2196 2197 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2198 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2199 } 2200 } 2201 2202 namespace { 2203 2204 struct SourceOfDivergence { 2205 unsigned Intr; 2206 }; 2207 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 2208 2209 #define GET_SourcesOfDivergence_IMPL 2210 #define GET_Gfx9BufferFormat_IMPL 2211 #define GET_Gfx10PlusBufferFormat_IMPL 2212 #include "AMDGPUGenSearchableTables.inc" 2213 2214 } // end anonymous namespace 2215 2216 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 2217 return lookupSourceOfDivergence(IntrID); 2218 } 2219 2220 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 2221 uint8_t NumComponents, 2222 uint8_t NumFormat, 2223 const MCSubtargetInfo &STI) { 2224 return isGFX10Plus(STI) 2225 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 2226 NumFormat) 2227 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 2228 } 2229 2230 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 2231 const MCSubtargetInfo &STI) { 2232 return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) 2233 : getGfx9BufferFormatInfo(Format); 2234 } 2235 2236 } // namespace AMDGPU 2237 2238 raw_ostream &operator<<(raw_ostream &OS, 2239 const AMDGPU::IsaInfo::TargetIDSetting S) { 2240 switch (S) { 2241 case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported): 2242 OS << "Unsupported"; 2243 break; 2244 case (AMDGPU::IsaInfo::TargetIDSetting::Any): 2245 OS << "Any"; 2246 break; 2247 case (AMDGPU::IsaInfo::TargetIDSetting::Off): 2248 OS << "Off"; 2249 break; 2250 case (AMDGPU::IsaInfo::TargetIDSetting::On): 2251 OS << "On"; 2252 break; 2253 } 2254 return OS; 2255 } 2256 2257 } // namespace llvm 2258