1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPUTargetTransformInfo.h" 11 #include "AMDGPU.h" 12 #include "SIDefines.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/CodeGen/MachineMemOperand.h" 17 #include "llvm/IR/Attributes.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GlobalValue.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/MC/MCContext.h" 25 #include "llvm/MC/MCInstrDesc.h" 26 #include "llvm/MC/MCInstrInfo.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/MC/MCSectionELF.h" 29 #include "llvm/MC/MCSubtargetInfo.h" 30 #include "llvm/MC/SubtargetFeature.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <cstring> 38 #include <utility> 39 40 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 41 42 #define GET_INSTRINFO_NAMED_OPS 43 #define GET_INSTRMAP_INFO 44 #include "AMDGPUGenInstrInfo.inc" 45 #undef GET_INSTRMAP_INFO 46 #undef GET_INSTRINFO_NAMED_OPS 47 48 namespace { 49 50 /// \returns Bit mask for given bit \p Shift and bit \p Width. 51 unsigned getBitMask(unsigned Shift, unsigned Width) { 52 return ((1 << Width) - 1) << Shift; 53 } 54 55 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 56 /// 57 /// \returns Packed \p Dst. 58 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 59 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 60 Dst |= (Src << Shift) & getBitMask(Shift, Width); 61 return Dst; 62 } 63 64 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 65 /// 66 /// \returns Unpacked bits. 67 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 68 return (Src & getBitMask(Shift, Width)) >> Shift; 69 } 70 71 /// \returns Vmcnt bit shift (lower bits). 72 unsigned getVmcntBitShiftLo() { return 0; } 73 74 /// \returns Vmcnt bit width (lower bits). 75 unsigned getVmcntBitWidthLo() { return 4; } 76 77 /// \returns Expcnt bit shift. 78 unsigned getExpcntBitShift() { return 4; } 79 80 /// \returns Expcnt bit width. 81 unsigned getExpcntBitWidth() { return 3; } 82 83 /// \returns Lgkmcnt bit shift. 84 unsigned getLgkmcntBitShift() { return 8; } 85 86 /// \returns Lgkmcnt bit width. 87 unsigned getLgkmcntBitWidth() { return 4; } 88 89 /// \returns Vmcnt bit shift (higher bits). 90 unsigned getVmcntBitShiftHi() { return 14; } 91 92 /// \returns Vmcnt bit width (higher bits). 93 unsigned getVmcntBitWidthHi() { return 2; } 94 95 } // end namespace anonymous 96 97 namespace llvm { 98 99 namespace AMDGPU { 100 101 struct MIMGInfo { 102 uint16_t Opcode; 103 uint16_t BaseOpcode; 104 uint8_t MIMGEncoding; 105 uint8_t VDataDwords; 106 uint8_t VAddrDwords; 107 }; 108 109 #define GET_MIMGBaseOpcodesTable_IMPL 110 #define GET_MIMGDimInfoTable_IMPL 111 #define GET_MIMGInfoTable_IMPL 112 #define GET_MIMGLZMappingTable_IMPL 113 #include "AMDGPUGenSearchableTables.inc" 114 115 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 116 unsigned VDataDwords, unsigned VAddrDwords) { 117 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 118 VDataDwords, VAddrDwords); 119 return Info ? Info->Opcode : -1; 120 } 121 122 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 123 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 124 const MIMGInfo *NewInfo = 125 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 126 NewChannels, OrigInfo->VAddrDwords); 127 return NewInfo ? NewInfo->Opcode : -1; 128 } 129 130 struct MUBUFInfo { 131 uint16_t Opcode; 132 uint16_t BaseOpcode; 133 uint8_t dwords; 134 bool has_vaddr; 135 bool has_srsrc; 136 bool has_soffset; 137 }; 138 139 #define GET_MUBUFInfoTable_DECL 140 #define GET_MUBUFInfoTable_IMPL 141 #include "AMDGPUGenSearchableTables.inc" 142 143 int getMUBUFBaseOpcode(unsigned Opc) { 144 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 145 return Info ? Info->BaseOpcode : -1; 146 } 147 148 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) { 149 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords); 150 return Info ? Info->Opcode : -1; 151 } 152 153 int getMUBUFDwords(unsigned Opc) { 154 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 155 return Info ? Info->dwords : 0; 156 } 157 158 bool getMUBUFHasVAddr(unsigned Opc) { 159 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 160 return Info ? Info->has_vaddr : false; 161 } 162 163 bool getMUBUFHasSrsrc(unsigned Opc) { 164 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 165 return Info ? Info->has_srsrc : false; 166 } 167 168 bool getMUBUFHasSoffset(unsigned Opc) { 169 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 170 return Info ? Info->has_soffset : false; 171 } 172 173 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 174 // header files, so we need to wrap it in a function that takes unsigned 175 // instead. 176 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 177 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 178 } 179 180 namespace IsaInfo { 181 182 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 183 auto TargetTriple = STI->getTargetTriple(); 184 auto Version = getIsaVersion(STI->getCPU()); 185 186 Stream << TargetTriple.getArchName() << '-' 187 << TargetTriple.getVendorName() << '-' 188 << TargetTriple.getOSName() << '-' 189 << TargetTriple.getEnvironmentName() << '-' 190 << "gfx" 191 << Version.Major 192 << Version.Minor 193 << Version.Stepping; 194 195 if (hasXNACK(*STI)) 196 Stream << "+xnack"; 197 if (hasSRAMECC(*STI)) 198 Stream << "+sram-ecc"; 199 200 Stream.flush(); 201 } 202 203 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 204 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 205 STI->getFeatureBits().test(FeatureCodeObjectV3); 206 } 207 208 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 209 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 210 return 16; 211 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 212 return 32; 213 214 return 64; 215 } 216 217 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 218 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 219 return 32768; 220 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 221 return 65536; 222 223 return 0; 224 } 225 226 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 227 return 4; 228 } 229 230 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 231 unsigned FlatWorkGroupSize) { 232 assert(FlatWorkGroupSize != 0); 233 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 234 return 8; 235 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 236 if (N == 1) 237 return 40; 238 N = 40 / N; 239 return std::min(N, 16u); 240 } 241 242 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 243 return getMaxWavesPerEU() * getEUsPerCU(STI); 244 } 245 246 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 247 unsigned FlatWorkGroupSize) { 248 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 249 } 250 251 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 252 return 1; 253 } 254 255 unsigned getMaxWavesPerEU() { 256 // FIXME: Need to take scratch memory into account. 257 return 10; 258 } 259 260 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 261 unsigned FlatWorkGroupSize) { 262 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 263 getEUsPerCU(STI)) / getEUsPerCU(STI); 264 } 265 266 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 267 return 1; 268 } 269 270 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 271 return 2048; 272 } 273 274 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 275 unsigned FlatWorkGroupSize) { 276 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 277 getWavefrontSize(STI); 278 } 279 280 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 281 IsaVersion Version = getIsaVersion(STI->getCPU()); 282 if (Version.Major >= 8) 283 return 16; 284 return 8; 285 } 286 287 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 288 return 8; 289 } 290 291 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 292 IsaVersion Version = getIsaVersion(STI->getCPU()); 293 if (Version.Major >= 8) 294 return 800; 295 return 512; 296 } 297 298 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 299 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 300 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 301 302 IsaVersion Version = getIsaVersion(STI->getCPU()); 303 if (Version.Major >= 8) 304 return 102; 305 return 104; 306 } 307 308 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 309 assert(WavesPerEU != 0); 310 311 if (WavesPerEU >= getMaxWavesPerEU()) 312 return 0; 313 314 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 315 if (STI->getFeatureBits().test(FeatureTrapHandler)) 316 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 317 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 318 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 319 } 320 321 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 322 bool Addressable) { 323 assert(WavesPerEU != 0); 324 325 IsaVersion Version = getIsaVersion(STI->getCPU()); 326 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 327 if (Version.Major >= 8 && !Addressable) 328 AddressableNumSGPRs = 112; 329 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 330 if (STI->getFeatureBits().test(FeatureTrapHandler)) 331 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 332 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 333 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 334 } 335 336 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 337 bool FlatScrUsed, bool XNACKUsed) { 338 unsigned ExtraSGPRs = 0; 339 if (VCCUsed) 340 ExtraSGPRs = 2; 341 342 IsaVersion Version = getIsaVersion(STI->getCPU()); 343 if (Version.Major < 8) { 344 if (FlatScrUsed) 345 ExtraSGPRs = 4; 346 } else { 347 if (XNACKUsed) 348 ExtraSGPRs = 4; 349 350 if (FlatScrUsed) 351 ExtraSGPRs = 6; 352 } 353 354 return ExtraSGPRs; 355 } 356 357 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 358 bool FlatScrUsed) { 359 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 360 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 361 } 362 363 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 364 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 365 // SGPRBlocks is actual number of SGPR blocks minus 1. 366 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 367 } 368 369 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) { 370 return 4; 371 } 372 373 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) { 374 return getVGPRAllocGranule(STI); 375 } 376 377 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 378 return 256; 379 } 380 381 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 382 return getTotalNumVGPRs(STI); 383 } 384 385 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 386 assert(WavesPerEU != 0); 387 388 if (WavesPerEU >= getMaxWavesPerEU()) 389 return 0; 390 unsigned MinNumVGPRs = 391 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 392 getVGPRAllocGranule(STI)) + 1; 393 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 394 } 395 396 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 397 assert(WavesPerEU != 0); 398 399 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 400 getVGPRAllocGranule(STI)); 401 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 402 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 403 } 404 405 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) { 406 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI)); 407 // VGPRBlocks is actual number of VGPR blocks minus 1. 408 return NumVGPRs / getVGPREncodingGranule(STI) - 1; 409 } 410 411 } // end namespace IsaInfo 412 413 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 414 const MCSubtargetInfo *STI) { 415 IsaVersion Version = getIsaVersion(STI->getCPU()); 416 417 memset(&Header, 0, sizeof(Header)); 418 419 Header.amd_kernel_code_version_major = 1; 420 Header.amd_kernel_code_version_minor = 2; 421 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 422 Header.amd_machine_version_major = Version.Major; 423 Header.amd_machine_version_minor = Version.Minor; 424 Header.amd_machine_version_stepping = Version.Stepping; 425 Header.kernel_code_entry_byte_offset = sizeof(Header); 426 // wavefront_size is specified as a power of 2: 2^6 = 64 threads. 427 Header.wavefront_size = 6; 428 429 // If the code object does not support indirect functions, then the value must 430 // be 0xffffffff. 431 Header.call_convention = -1; 432 433 // These alignment values are specified in powers of two, so alignment = 434 // 2^n. The minimum alignment is 2^4 = 16. 435 Header.kernarg_segment_alignment = 4; 436 Header.group_segment_alignment = 4; 437 Header.private_segment_alignment = 4; 438 439 if (Version.Major >= 10) { 440 Header.compute_pgm_resource_registers |= 441 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 442 S_00B848_MEM_ORDERED(1); 443 } 444 } 445 446 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 447 const MCSubtargetInfo *STI) { 448 IsaVersion Version = getIsaVersion(STI->getCPU()); 449 450 amdhsa::kernel_descriptor_t KD; 451 memset(&KD, 0, sizeof(KD)); 452 453 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 454 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 455 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 456 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 457 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 458 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 459 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 460 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 461 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 462 if (Version.Major >= 10) { 463 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 464 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 465 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 466 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 467 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 468 } 469 return KD; 470 } 471 472 bool isGroupSegment(const GlobalValue *GV) { 473 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 474 } 475 476 bool isGlobalSegment(const GlobalValue *GV) { 477 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 478 } 479 480 bool isReadOnlySegment(const GlobalValue *GV) { 481 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 482 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 483 } 484 485 bool shouldEmitConstantsToTextSection(const Triple &TT) { 486 return TT.getOS() != Triple::AMDHSA; 487 } 488 489 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 490 Attribute A = F.getFnAttribute(Name); 491 int Result = Default; 492 493 if (A.isStringAttribute()) { 494 StringRef Str = A.getValueAsString(); 495 if (Str.getAsInteger(0, Result)) { 496 LLVMContext &Ctx = F.getContext(); 497 Ctx.emitError("can't parse integer attribute " + Name); 498 } 499 } 500 501 return Result; 502 } 503 504 std::pair<int, int> getIntegerPairAttribute(const Function &F, 505 StringRef Name, 506 std::pair<int, int> Default, 507 bool OnlyFirstRequired) { 508 Attribute A = F.getFnAttribute(Name); 509 if (!A.isStringAttribute()) 510 return Default; 511 512 LLVMContext &Ctx = F.getContext(); 513 std::pair<int, int> Ints = Default; 514 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 515 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 516 Ctx.emitError("can't parse first integer attribute " + Name); 517 return Default; 518 } 519 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 520 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 521 Ctx.emitError("can't parse second integer attribute " + Name); 522 return Default; 523 } 524 } 525 526 return Ints; 527 } 528 529 unsigned getVmcntBitMask(const IsaVersion &Version) { 530 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 531 if (Version.Major < 9) 532 return VmcntLo; 533 534 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 535 return VmcntLo | VmcntHi; 536 } 537 538 unsigned getExpcntBitMask(const IsaVersion &Version) { 539 return (1 << getExpcntBitWidth()) - 1; 540 } 541 542 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 543 return (1 << getLgkmcntBitWidth()) - 1; 544 } 545 546 unsigned getWaitcntBitMask(const IsaVersion &Version) { 547 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 548 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 549 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth()); 550 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 551 if (Version.Major < 9) 552 return Waitcnt; 553 554 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 555 return Waitcnt | VmcntHi; 556 } 557 558 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 559 unsigned VmcntLo = 560 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 561 if (Version.Major < 9) 562 return VmcntLo; 563 564 unsigned VmcntHi = 565 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 566 VmcntHi <<= getVmcntBitWidthLo(); 567 return VmcntLo | VmcntHi; 568 } 569 570 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 571 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 572 } 573 574 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 575 return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 576 } 577 578 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 579 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 580 Vmcnt = decodeVmcnt(Version, Waitcnt); 581 Expcnt = decodeExpcnt(Version, Waitcnt); 582 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 583 } 584 585 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 586 Waitcnt Decoded; 587 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 588 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 589 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 590 return Decoded; 591 } 592 593 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 594 unsigned Vmcnt) { 595 Waitcnt = 596 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 597 if (Version.Major < 9) 598 return Waitcnt; 599 600 Vmcnt >>= getVmcntBitWidthLo(); 601 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 602 } 603 604 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 605 unsigned Expcnt) { 606 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 607 } 608 609 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 610 unsigned Lgkmcnt) { 611 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 612 } 613 614 unsigned encodeWaitcnt(const IsaVersion &Version, 615 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 616 unsigned Waitcnt = getWaitcntBitMask(Version); 617 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 618 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 619 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 620 return Waitcnt; 621 } 622 623 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 624 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 625 } 626 627 unsigned getInitialPSInputAddr(const Function &F) { 628 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 629 } 630 631 bool isShader(CallingConv::ID cc) { 632 switch(cc) { 633 case CallingConv::AMDGPU_VS: 634 case CallingConv::AMDGPU_LS: 635 case CallingConv::AMDGPU_HS: 636 case CallingConv::AMDGPU_ES: 637 case CallingConv::AMDGPU_GS: 638 case CallingConv::AMDGPU_PS: 639 case CallingConv::AMDGPU_CS: 640 return true; 641 default: 642 return false; 643 } 644 } 645 646 bool isCompute(CallingConv::ID cc) { 647 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 648 } 649 650 bool isEntryFunctionCC(CallingConv::ID CC) { 651 switch (CC) { 652 case CallingConv::AMDGPU_KERNEL: 653 case CallingConv::SPIR_KERNEL: 654 case CallingConv::AMDGPU_VS: 655 case CallingConv::AMDGPU_GS: 656 case CallingConv::AMDGPU_PS: 657 case CallingConv::AMDGPU_CS: 658 case CallingConv::AMDGPU_ES: 659 case CallingConv::AMDGPU_HS: 660 case CallingConv::AMDGPU_LS: 661 return true; 662 default: 663 return false; 664 } 665 } 666 667 bool hasXNACK(const MCSubtargetInfo &STI) { 668 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 669 } 670 671 bool hasSRAMECC(const MCSubtargetInfo &STI) { 672 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 673 } 674 675 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 676 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 677 } 678 679 bool hasPackedD16(const MCSubtargetInfo &STI) { 680 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 681 } 682 683 bool isSI(const MCSubtargetInfo &STI) { 684 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 685 } 686 687 bool isCI(const MCSubtargetInfo &STI) { 688 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 689 } 690 691 bool isVI(const MCSubtargetInfo &STI) { 692 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 693 } 694 695 bool isGFX9(const MCSubtargetInfo &STI) { 696 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 697 } 698 699 bool isGFX10(const MCSubtargetInfo &STI) { 700 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 701 } 702 703 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 704 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 705 } 706 707 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 708 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 709 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 710 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 711 Reg == AMDGPU::SCC; 712 } 713 714 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 715 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 716 if (*R == Reg1) return true; 717 } 718 return false; 719 } 720 721 #define MAP_REG2REG \ 722 using namespace AMDGPU; \ 723 switch(Reg) { \ 724 default: return Reg; \ 725 CASE_CI_VI(FLAT_SCR) \ 726 CASE_CI_VI(FLAT_SCR_LO) \ 727 CASE_CI_VI(FLAT_SCR_HI) \ 728 CASE_VI_GFX9_GFX10(TTMP0) \ 729 CASE_VI_GFX9_GFX10(TTMP1) \ 730 CASE_VI_GFX9_GFX10(TTMP2) \ 731 CASE_VI_GFX9_GFX10(TTMP3) \ 732 CASE_VI_GFX9_GFX10(TTMP4) \ 733 CASE_VI_GFX9_GFX10(TTMP5) \ 734 CASE_VI_GFX9_GFX10(TTMP6) \ 735 CASE_VI_GFX9_GFX10(TTMP7) \ 736 CASE_VI_GFX9_GFX10(TTMP8) \ 737 CASE_VI_GFX9_GFX10(TTMP9) \ 738 CASE_VI_GFX9_GFX10(TTMP10) \ 739 CASE_VI_GFX9_GFX10(TTMP11) \ 740 CASE_VI_GFX9_GFX10(TTMP12) \ 741 CASE_VI_GFX9_GFX10(TTMP13) \ 742 CASE_VI_GFX9_GFX10(TTMP14) \ 743 CASE_VI_GFX9_GFX10(TTMP15) \ 744 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 745 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 746 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 747 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 748 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 749 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 750 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 751 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 752 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 753 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 754 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 755 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 756 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 757 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 758 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 759 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 760 } 761 762 #define CASE_CI_VI(node) \ 763 assert(!isSI(STI)); \ 764 case node: return isCI(STI) ? node##_ci : node##_vi; 765 766 #define CASE_VI_GFX9_GFX10(node) \ 767 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 768 769 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 770 if (STI.getTargetTriple().getArch() == Triple::r600) 771 return Reg; 772 MAP_REG2REG 773 } 774 775 #undef CASE_CI_VI 776 #undef CASE_VI_GFX9_GFX10 777 778 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 779 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 780 781 unsigned mc2PseudoReg(unsigned Reg) { 782 MAP_REG2REG 783 } 784 785 #undef CASE_CI_VI 786 #undef CASE_VI_GFX9_GFX10 787 #undef MAP_REG2REG 788 789 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 790 assert(OpNo < Desc.NumOperands); 791 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 792 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 793 OpType <= AMDGPU::OPERAND_SRC_LAST; 794 } 795 796 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 797 assert(OpNo < Desc.NumOperands); 798 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 799 switch (OpType) { 800 case AMDGPU::OPERAND_REG_IMM_FP32: 801 case AMDGPU::OPERAND_REG_IMM_FP64: 802 case AMDGPU::OPERAND_REG_IMM_FP16: 803 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 804 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 805 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 806 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 807 return true; 808 default: 809 return false; 810 } 811 } 812 813 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 814 assert(OpNo < Desc.NumOperands); 815 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 816 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 817 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 818 } 819 820 // Avoid using MCRegisterClass::getSize, since that function will go away 821 // (move from MC* level to Target* level). Return size in bits. 822 unsigned getRegBitWidth(unsigned RCID) { 823 switch (RCID) { 824 case AMDGPU::SGPR_32RegClassID: 825 case AMDGPU::VGPR_32RegClassID: 826 case AMDGPU::VRegOrLds_32RegClassID: 827 case AMDGPU::VS_32RegClassID: 828 case AMDGPU::SReg_32RegClassID: 829 case AMDGPU::SReg_32_XM0RegClassID: 830 case AMDGPU::SRegOrLds_32RegClassID: 831 return 32; 832 case AMDGPU::SGPR_64RegClassID: 833 case AMDGPU::VS_64RegClassID: 834 case AMDGPU::SReg_64RegClassID: 835 case AMDGPU::VReg_64RegClassID: 836 case AMDGPU::SReg_64_XEXECRegClassID: 837 return 64; 838 case AMDGPU::SGPR_96RegClassID: 839 case AMDGPU::SReg_96RegClassID: 840 case AMDGPU::VReg_96RegClassID: 841 return 96; 842 case AMDGPU::SGPR_128RegClassID: 843 case AMDGPU::SReg_128RegClassID: 844 case AMDGPU::VReg_128RegClassID: 845 return 128; 846 case AMDGPU::SGPR_160RegClassID: 847 case AMDGPU::SReg_160RegClassID: 848 case AMDGPU::VReg_160RegClassID: 849 return 160; 850 case AMDGPU::SReg_256RegClassID: 851 case AMDGPU::VReg_256RegClassID: 852 return 256; 853 case AMDGPU::SReg_512RegClassID: 854 case AMDGPU::VReg_512RegClassID: 855 return 512; 856 default: 857 llvm_unreachable("Unexpected register class"); 858 } 859 } 860 861 unsigned getRegBitWidth(const MCRegisterClass &RC) { 862 return getRegBitWidth(RC.getID()); 863 } 864 865 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 866 unsigned OpNo) { 867 assert(OpNo < Desc.NumOperands); 868 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 869 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 870 } 871 872 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 873 if (Literal >= -16 && Literal <= 64) 874 return true; 875 876 uint64_t Val = static_cast<uint64_t>(Literal); 877 return (Val == DoubleToBits(0.0)) || 878 (Val == DoubleToBits(1.0)) || 879 (Val == DoubleToBits(-1.0)) || 880 (Val == DoubleToBits(0.5)) || 881 (Val == DoubleToBits(-0.5)) || 882 (Val == DoubleToBits(2.0)) || 883 (Val == DoubleToBits(-2.0)) || 884 (Val == DoubleToBits(4.0)) || 885 (Val == DoubleToBits(-4.0)) || 886 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 887 } 888 889 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 890 if (Literal >= -16 && Literal <= 64) 891 return true; 892 893 // The actual type of the operand does not seem to matter as long 894 // as the bits match one of the inline immediate values. For example: 895 // 896 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 897 // so it is a legal inline immediate. 898 // 899 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 900 // floating-point, so it is a legal inline immediate. 901 902 uint32_t Val = static_cast<uint32_t>(Literal); 903 return (Val == FloatToBits(0.0f)) || 904 (Val == FloatToBits(1.0f)) || 905 (Val == FloatToBits(-1.0f)) || 906 (Val == FloatToBits(0.5f)) || 907 (Val == FloatToBits(-0.5f)) || 908 (Val == FloatToBits(2.0f)) || 909 (Val == FloatToBits(-2.0f)) || 910 (Val == FloatToBits(4.0f)) || 911 (Val == FloatToBits(-4.0f)) || 912 (Val == 0x3e22f983 && HasInv2Pi); 913 } 914 915 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 916 if (!HasInv2Pi) 917 return false; 918 919 if (Literal >= -16 && Literal <= 64) 920 return true; 921 922 uint16_t Val = static_cast<uint16_t>(Literal); 923 return Val == 0x3C00 || // 1.0 924 Val == 0xBC00 || // -1.0 925 Val == 0x3800 || // 0.5 926 Val == 0xB800 || // -0.5 927 Val == 0x4000 || // 2.0 928 Val == 0xC000 || // -2.0 929 Val == 0x4400 || // 4.0 930 Val == 0xC400 || // -4.0 931 Val == 0x3118; // 1/2pi 932 } 933 934 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 935 assert(HasInv2Pi); 936 937 int16_t Lo16 = static_cast<int16_t>(Literal); 938 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 939 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 940 } 941 942 bool isArgPassedInSGPR(const Argument *A) { 943 const Function *F = A->getParent(); 944 945 // Arguments to compute shaders are never a source of divergence. 946 CallingConv::ID CC = F->getCallingConv(); 947 switch (CC) { 948 case CallingConv::AMDGPU_KERNEL: 949 case CallingConv::SPIR_KERNEL: 950 return true; 951 case CallingConv::AMDGPU_VS: 952 case CallingConv::AMDGPU_LS: 953 case CallingConv::AMDGPU_HS: 954 case CallingConv::AMDGPU_ES: 955 case CallingConv::AMDGPU_GS: 956 case CallingConv::AMDGPU_PS: 957 case CallingConv::AMDGPU_CS: 958 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 959 // Everything else is in VGPRs. 960 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 961 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 962 default: 963 // TODO: Should calls support inreg for SGPR inputs? 964 return false; 965 } 966 } 967 968 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 969 if (isGCN3Encoding(ST)) 970 return ByteOffset; 971 return ByteOffset >> 2; 972 } 973 974 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 975 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 976 return isGCN3Encoding(ST) ? 977 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 978 } 979 980 // Given Imm, split it into the values to put into the SOffset and ImmOffset 981 // fields in an MUBUF instruction. Return false if it is not possible (due to a 982 // hardware bug needing a workaround). 983 // 984 // The required alignment ensures that individual address components remain 985 // aligned if they are aligned to begin with. It also ensures that additional 986 // offsets within the given alignment can be added to the resulting ImmOffset. 987 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 988 const GCNSubtarget *Subtarget, uint32_t Align) { 989 const uint32_t MaxImm = alignDown(4095, Align); 990 uint32_t Overflow = 0; 991 992 if (Imm > MaxImm) { 993 if (Imm <= MaxImm + 64) { 994 // Use an SOffset inline constant for 4..64 995 Overflow = Imm - MaxImm; 996 Imm = MaxImm; 997 } else { 998 // Try to keep the same value in SOffset for adjacent loads, so that 999 // the corresponding register contents can be re-used. 1000 // 1001 // Load values with all low-bits (except for alignment bits) set into 1002 // SOffset, so that a larger range of values can be covered using 1003 // s_movk_i32. 1004 // 1005 // Atomic operations fail to work correctly when individual address 1006 // components are unaligned, even if their sum is aligned. 1007 uint32_t High = (Imm + Align) & ~4095; 1008 uint32_t Low = (Imm + Align) & 4095; 1009 Imm = Low; 1010 Overflow = High - Align; 1011 } 1012 } 1013 1014 // There is a hardware bug in SI and CI which prevents address clamping in 1015 // MUBUF instructions from working correctly with SOffsets. The immediate 1016 // offset is unaffected. 1017 if (Overflow > 0 && 1018 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1019 return false; 1020 1021 ImmOffset = Imm; 1022 SOffset = Overflow; 1023 return true; 1024 } 1025 1026 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1027 *this = getDefaultForCallingConv(F.getCallingConv()); 1028 1029 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1030 if (!IEEEAttr.empty()) 1031 IEEE = IEEEAttr == "true"; 1032 1033 StringRef DX10ClampAttr 1034 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1035 if (!DX10ClampAttr.empty()) 1036 DX10Clamp = DX10ClampAttr == "true"; 1037 } 1038 1039 namespace { 1040 1041 struct SourceOfDivergence { 1042 unsigned Intr; 1043 }; 1044 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1045 1046 #define GET_SourcesOfDivergence_IMPL 1047 #include "AMDGPUGenSearchableTables.inc" 1048 1049 } // end anonymous namespace 1050 1051 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1052 return lookupSourceOfDivergence(IntrID); 1053 } 1054 1055 } // namespace AMDGPU 1056 } // namespace llvm 1057