1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDKernelCodeT.h" 13 #include "GCNSubtarget.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/IR/Attributes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/GlobalValue.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IntrinsicsR600.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/MC/MCSubtargetInfo.h" 23 #include "llvm/Support/AMDHSAKernelDescriptor.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/TargetParser.h" 26 27 #define GET_INSTRINFO_NAMED_OPS 28 #define GET_INSTRMAP_INFO 29 #include "AMDGPUGenInstrInfo.inc" 30 31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion( 32 "amdhsa-code-object-version", llvm::cl::Hidden, 33 llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4), 34 llvm::cl::ZeroOrMore); 35 36 namespace { 37 38 /// \returns Bit mask for given bit \p Shift and bit \p Width. 39 unsigned getBitMask(unsigned Shift, unsigned Width) { 40 return ((1 << Width) - 1) << Shift; 41 } 42 43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 44 /// 45 /// \returns Packed \p Dst. 46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 47 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 48 Dst |= (Src << Shift) & getBitMask(Shift, Width); 49 return Dst; 50 } 51 52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 53 /// 54 /// \returns Unpacked bits. 55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 56 return (Src & getBitMask(Shift, Width)) >> Shift; 57 } 58 59 /// \returns Vmcnt bit shift (lower bits). 60 unsigned getVmcntBitShiftLo() { return 0; } 61 62 /// \returns Vmcnt bit width (lower bits). 63 unsigned getVmcntBitWidthLo() { return 4; } 64 65 /// \returns Expcnt bit shift. 66 unsigned getExpcntBitShift() { return 4; } 67 68 /// \returns Expcnt bit width. 69 unsigned getExpcntBitWidth() { return 3; } 70 71 /// \returns Lgkmcnt bit shift. 72 unsigned getLgkmcntBitShift() { return 8; } 73 74 /// \returns Lgkmcnt bit width. 75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 76 return (VersionMajor >= 10) ? 6 : 4; 77 } 78 79 /// \returns Vmcnt bit shift (higher bits). 80 unsigned getVmcntBitShiftHi() { return 14; } 81 82 /// \returns Vmcnt bit width (higher bits). 83 unsigned getVmcntBitWidthHi() { return 2; } 84 85 } // end namespace anonymous 86 87 namespace llvm { 88 89 namespace AMDGPU { 90 91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) { 92 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) 93 return None; 94 95 switch (AmdhsaCodeObjectVersion) { 96 case 2: 97 return ELF::ELFABIVERSION_AMDGPU_HSA_V2; 98 case 3: 99 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 100 case 4: 101 return ELF::ELFABIVERSION_AMDGPU_HSA_V4; 102 case 5: 103 return ELF::ELFABIVERSION_AMDGPU_HSA_V5; 104 default: 105 report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") + 106 Twine(AmdhsaCodeObjectVersion)); 107 } 108 } 109 110 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { 111 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 112 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2; 113 return false; 114 } 115 116 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { 117 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 118 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3; 119 return false; 120 } 121 122 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) { 123 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 124 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4; 125 return false; 126 } 127 128 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) { 129 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 130 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5; 131 return false; 132 } 133 134 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) { 135 return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) || 136 isHsaAbiVersion5(STI); 137 } 138 139 unsigned getAmdhsaCodeObjectVersion() { 140 return AmdhsaCodeObjectVersion; 141 } 142 143 // FIXME: All such magic numbers about the ABI should be in a 144 // central TD file. 145 unsigned getHostcallImplicitArgPosition() { 146 switch (AmdhsaCodeObjectVersion) { 147 case 2: 148 case 3: 149 case 4: 150 return 24; 151 case 5: 152 return 80; 153 default: 154 llvm_unreachable("Unexpected code object version"); 155 return 0; 156 } 157 } 158 159 unsigned getHeapPtrImplicitArgPosition() { 160 if (AmdhsaCodeObjectVersion == 5) 161 return 96; 162 llvm_unreachable("hidden_heap is supported only by code object version 5"); 163 return 0; 164 } 165 166 unsigned getQueuePtrImplicitArgPosition() { 167 if (AmdhsaCodeObjectVersion == 5) 168 return 200; 169 llvm_unreachable("queue_ptr is supported only by code object version 5"); 170 return 0; 171 } 172 173 #define GET_MIMGBaseOpcodesTable_IMPL 174 #define GET_MIMGDimInfoTable_IMPL 175 #define GET_MIMGInfoTable_IMPL 176 #define GET_MIMGLZMappingTable_IMPL 177 #define GET_MIMGMIPMappingTable_IMPL 178 #define GET_MIMGBiasMappingTable_IMPL 179 #define GET_MIMGOffsetMappingTable_IMPL 180 #define GET_MIMGG16MappingTable_IMPL 181 #include "AMDGPUGenSearchableTables.inc" 182 183 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 184 unsigned VDataDwords, unsigned VAddrDwords) { 185 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 186 VDataDwords, VAddrDwords); 187 return Info ? Info->Opcode : -1; 188 } 189 190 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 191 const MIMGInfo *Info = getMIMGInfo(Opc); 192 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 193 } 194 195 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 196 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 197 const MIMGInfo *NewInfo = 198 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 199 NewChannels, OrigInfo->VAddrDwords); 200 return NewInfo ? NewInfo->Opcode : -1; 201 } 202 203 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, 204 const MIMGDimInfo *Dim, bool IsA16, 205 bool IsG16Supported) { 206 unsigned AddrWords = BaseOpcode->NumExtraArgs; 207 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) + 208 (BaseOpcode->LodOrClampOrMip ? 1 : 0); 209 if (IsA16) 210 AddrWords += divideCeil(AddrComponents, 2); 211 else 212 AddrWords += AddrComponents; 213 214 // Note: For subtargets that support A16 but not G16, enabling A16 also 215 // enables 16 bit gradients. 216 // For subtargets that support A16 (operand) and G16 (done with a different 217 // instruction encoding), they are independent. 218 219 if (BaseOpcode->Gradients) { 220 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16) 221 // There are two gradients per coordinate, we pack them separately. 222 // For the 3d case, 223 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv) 224 AddrWords += alignTo<2>(Dim->NumGradients / 2); 225 else 226 AddrWords += Dim->NumGradients; 227 } 228 return AddrWords; 229 } 230 231 struct MUBUFInfo { 232 uint16_t Opcode; 233 uint16_t BaseOpcode; 234 uint8_t elements; 235 bool has_vaddr; 236 bool has_srsrc; 237 bool has_soffset; 238 bool IsBufferInv; 239 }; 240 241 struct MTBUFInfo { 242 uint16_t Opcode; 243 uint16_t BaseOpcode; 244 uint8_t elements; 245 bool has_vaddr; 246 bool has_srsrc; 247 bool has_soffset; 248 }; 249 250 struct SMInfo { 251 uint16_t Opcode; 252 bool IsBuffer; 253 }; 254 255 struct VOPInfo { 256 uint16_t Opcode; 257 bool IsSingle; 258 }; 259 260 #define GET_MTBUFInfoTable_DECL 261 #define GET_MTBUFInfoTable_IMPL 262 #define GET_MUBUFInfoTable_DECL 263 #define GET_MUBUFInfoTable_IMPL 264 #define GET_SMInfoTable_DECL 265 #define GET_SMInfoTable_IMPL 266 #define GET_VOP1InfoTable_DECL 267 #define GET_VOP1InfoTable_IMPL 268 #define GET_VOP2InfoTable_DECL 269 #define GET_VOP2InfoTable_IMPL 270 #define GET_VOP3InfoTable_DECL 271 #define GET_VOP3InfoTable_IMPL 272 #include "AMDGPUGenSearchableTables.inc" 273 274 int getMTBUFBaseOpcode(unsigned Opc) { 275 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 276 return Info ? Info->BaseOpcode : -1; 277 } 278 279 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 280 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 281 return Info ? Info->Opcode : -1; 282 } 283 284 int getMTBUFElements(unsigned Opc) { 285 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 286 return Info ? Info->elements : 0; 287 } 288 289 bool getMTBUFHasVAddr(unsigned Opc) { 290 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 291 return Info ? Info->has_vaddr : false; 292 } 293 294 bool getMTBUFHasSrsrc(unsigned Opc) { 295 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 296 return Info ? Info->has_srsrc : false; 297 } 298 299 bool getMTBUFHasSoffset(unsigned Opc) { 300 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 301 return Info ? Info->has_soffset : false; 302 } 303 304 int getMUBUFBaseOpcode(unsigned Opc) { 305 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 306 return Info ? Info->BaseOpcode : -1; 307 } 308 309 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 310 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 311 return Info ? Info->Opcode : -1; 312 } 313 314 int getMUBUFElements(unsigned Opc) { 315 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 316 return Info ? Info->elements : 0; 317 } 318 319 bool getMUBUFHasVAddr(unsigned Opc) { 320 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 321 return Info ? Info->has_vaddr : false; 322 } 323 324 bool getMUBUFHasSrsrc(unsigned Opc) { 325 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 326 return Info ? Info->has_srsrc : false; 327 } 328 329 bool getMUBUFHasSoffset(unsigned Opc) { 330 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 331 return Info ? Info->has_soffset : false; 332 } 333 334 bool getMUBUFIsBufferInv(unsigned Opc) { 335 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 336 return Info ? Info->IsBufferInv : false; 337 } 338 339 bool getSMEMIsBuffer(unsigned Opc) { 340 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 341 return Info ? Info->IsBuffer : false; 342 } 343 344 bool getVOP1IsSingle(unsigned Opc) { 345 const VOPInfo *Info = getVOP1OpcodeHelper(Opc); 346 return Info ? Info->IsSingle : false; 347 } 348 349 bool getVOP2IsSingle(unsigned Opc) { 350 const VOPInfo *Info = getVOP2OpcodeHelper(Opc); 351 return Info ? Info->IsSingle : false; 352 } 353 354 bool getVOP3IsSingle(unsigned Opc) { 355 const VOPInfo *Info = getVOP3OpcodeHelper(Opc); 356 return Info ? Info->IsSingle : false; 357 } 358 359 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 360 // header files, so we need to wrap it in a function that takes unsigned 361 // instead. 362 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 363 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 364 } 365 366 namespace IsaInfo { 367 368 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI) 369 : STI(STI), XnackSetting(TargetIDSetting::Any), 370 SramEccSetting(TargetIDSetting::Any) { 371 if (!STI.getFeatureBits().test(FeatureSupportsXNACK)) 372 XnackSetting = TargetIDSetting::Unsupported; 373 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC)) 374 SramEccSetting = TargetIDSetting::Unsupported; 375 } 376 377 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) { 378 // Check if xnack or sramecc is explicitly enabled or disabled. In the 379 // absence of the target features we assume we must generate code that can run 380 // in any environment. 381 SubtargetFeatures Features(FS); 382 Optional<bool> XnackRequested; 383 Optional<bool> SramEccRequested; 384 385 for (const std::string &Feature : Features.getFeatures()) { 386 if (Feature == "+xnack") 387 XnackRequested = true; 388 else if (Feature == "-xnack") 389 XnackRequested = false; 390 else if (Feature == "+sramecc") 391 SramEccRequested = true; 392 else if (Feature == "-sramecc") 393 SramEccRequested = false; 394 } 395 396 bool XnackSupported = isXnackSupported(); 397 bool SramEccSupported = isSramEccSupported(); 398 399 if (XnackRequested) { 400 if (XnackSupported) { 401 XnackSetting = 402 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off; 403 } else { 404 // If a specific xnack setting was requested and this GPU does not support 405 // xnack emit a warning. Setting will remain set to "Unsupported". 406 if (*XnackRequested) { 407 errs() << "warning: xnack 'On' was requested for a processor that does " 408 "not support it!\n"; 409 } else { 410 errs() << "warning: xnack 'Off' was requested for a processor that " 411 "does not support it!\n"; 412 } 413 } 414 } 415 416 if (SramEccRequested) { 417 if (SramEccSupported) { 418 SramEccSetting = 419 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off; 420 } else { 421 // If a specific sramecc setting was requested and this GPU does not 422 // support sramecc emit a warning. Setting will remain set to 423 // "Unsupported". 424 if (*SramEccRequested) { 425 errs() << "warning: sramecc 'On' was requested for a processor that " 426 "does not support it!\n"; 427 } else { 428 errs() << "warning: sramecc 'Off' was requested for a processor that " 429 "does not support it!\n"; 430 } 431 } 432 } 433 } 434 435 static TargetIDSetting 436 getTargetIDSettingFromFeatureString(StringRef FeatureString) { 437 if (FeatureString.endswith("-")) 438 return TargetIDSetting::Off; 439 if (FeatureString.endswith("+")) 440 return TargetIDSetting::On; 441 442 llvm_unreachable("Malformed feature string"); 443 } 444 445 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) { 446 SmallVector<StringRef, 3> TargetIDSplit; 447 TargetID.split(TargetIDSplit, ':'); 448 449 for (const auto &FeatureString : TargetIDSplit) { 450 if (FeatureString.startswith("xnack")) 451 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString); 452 if (FeatureString.startswith("sramecc")) 453 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString); 454 } 455 } 456 457 std::string AMDGPUTargetID::toString() const { 458 std::string StringRep; 459 raw_string_ostream StreamRep(StringRep); 460 461 auto TargetTriple = STI.getTargetTriple(); 462 auto Version = getIsaVersion(STI.getCPU()); 463 464 StreamRep << TargetTriple.getArchName() << '-' 465 << TargetTriple.getVendorName() << '-' 466 << TargetTriple.getOSName() << '-' 467 << TargetTriple.getEnvironmentName() << '-'; 468 469 std::string Processor; 470 // TODO: Following else statement is present here because we used various 471 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803'). 472 // Remove once all aliases are removed from GCNProcessors.td. 473 if (Version.Major >= 9) 474 Processor = STI.getCPU().str(); 475 else 476 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) + 477 Twine(Version.Stepping)) 478 .str(); 479 480 std::string Features; 481 if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) { 482 switch (*HsaAbiVersion) { 483 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 484 // Code object V2 only supported specific processors and had fixed 485 // settings for the XNACK. 486 if (Processor == "gfx600") { 487 } else if (Processor == "gfx601") { 488 } else if (Processor == "gfx602") { 489 } else if (Processor == "gfx700") { 490 } else if (Processor == "gfx701") { 491 } else if (Processor == "gfx702") { 492 } else if (Processor == "gfx703") { 493 } else if (Processor == "gfx704") { 494 } else if (Processor == "gfx705") { 495 } else if (Processor == "gfx801") { 496 if (!isXnackOnOrAny()) 497 report_fatal_error( 498 "AMD GPU code object V2 does not support processor " + 499 Twine(Processor) + " without XNACK"); 500 } else if (Processor == "gfx802") { 501 } else if (Processor == "gfx803") { 502 } else if (Processor == "gfx805") { 503 } else if (Processor == "gfx810") { 504 if (!isXnackOnOrAny()) 505 report_fatal_error( 506 "AMD GPU code object V2 does not support processor " + 507 Twine(Processor) + " without XNACK"); 508 } else if (Processor == "gfx900") { 509 if (isXnackOnOrAny()) 510 Processor = "gfx901"; 511 } else if (Processor == "gfx902") { 512 if (isXnackOnOrAny()) 513 Processor = "gfx903"; 514 } else if (Processor == "gfx904") { 515 if (isXnackOnOrAny()) 516 Processor = "gfx905"; 517 } else if (Processor == "gfx906") { 518 if (isXnackOnOrAny()) 519 Processor = "gfx907"; 520 } else if (Processor == "gfx90c") { 521 if (isXnackOnOrAny()) 522 report_fatal_error( 523 "AMD GPU code object V2 does not support processor " + 524 Twine(Processor) + " with XNACK being ON or ANY"); 525 } else { 526 report_fatal_error( 527 "AMD GPU code object V2 does not support processor " + 528 Twine(Processor)); 529 } 530 break; 531 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 532 // xnack. 533 if (isXnackOnOrAny()) 534 Features += "+xnack"; 535 // In code object v2 and v3, "sramecc" feature was spelled with a 536 // hyphen ("sram-ecc"). 537 if (isSramEccOnOrAny()) 538 Features += "+sram-ecc"; 539 break; 540 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 541 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 542 // sramecc. 543 if (getSramEccSetting() == TargetIDSetting::Off) 544 Features += ":sramecc-"; 545 else if (getSramEccSetting() == TargetIDSetting::On) 546 Features += ":sramecc+"; 547 // xnack. 548 if (getXnackSetting() == TargetIDSetting::Off) 549 Features += ":xnack-"; 550 else if (getXnackSetting() == TargetIDSetting::On) 551 Features += ":xnack+"; 552 break; 553 default: 554 break; 555 } 556 } 557 558 StreamRep << Processor << Features; 559 560 StreamRep.flush(); 561 return StringRep; 562 } 563 564 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 565 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 566 return 16; 567 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 568 return 32; 569 570 return 64; 571 } 572 573 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 574 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 575 return 32768; 576 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 577 return 65536; 578 579 return 0; 580 } 581 582 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 583 // "Per CU" really means "per whatever functional block the waves of a 584 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 585 // two SIMDs. 586 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 587 return 2; 588 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 589 // two CUs, so a total of four SIMDs. 590 return 4; 591 } 592 593 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 594 unsigned FlatWorkGroupSize) { 595 assert(FlatWorkGroupSize != 0); 596 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 597 return 8; 598 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 599 if (N == 1) 600 return 40; 601 N = 40 / N; 602 return std::min(N, 16u); 603 } 604 605 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 606 return 1; 607 } 608 609 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 610 // FIXME: Need to take scratch memory into account. 611 if (isGFX90A(*STI)) 612 return 8; 613 if (!isGFX10Plus(*STI)) 614 return 10; 615 return hasGFX10_3Insts(*STI) ? 16 : 20; 616 } 617 618 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 619 unsigned FlatWorkGroupSize) { 620 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 621 getEUsPerCU(STI)); 622 } 623 624 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 625 return 1; 626 } 627 628 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 629 // Some subtargets allow encoding 2048, but this isn't tested or supported. 630 return 1024; 631 } 632 633 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 634 unsigned FlatWorkGroupSize) { 635 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 636 } 637 638 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 639 IsaVersion Version = getIsaVersion(STI->getCPU()); 640 if (Version.Major >= 10) 641 return getAddressableNumSGPRs(STI); 642 if (Version.Major >= 8) 643 return 16; 644 return 8; 645 } 646 647 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 648 return 8; 649 } 650 651 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 652 IsaVersion Version = getIsaVersion(STI->getCPU()); 653 if (Version.Major >= 8) 654 return 800; 655 return 512; 656 } 657 658 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 659 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 660 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 661 662 IsaVersion Version = getIsaVersion(STI->getCPU()); 663 if (Version.Major >= 10) 664 return 106; 665 if (Version.Major >= 8) 666 return 102; 667 return 104; 668 } 669 670 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 671 assert(WavesPerEU != 0); 672 673 IsaVersion Version = getIsaVersion(STI->getCPU()); 674 if (Version.Major >= 10) 675 return 0; 676 677 if (WavesPerEU >= getMaxWavesPerEU(STI)) 678 return 0; 679 680 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 681 if (STI->getFeatureBits().test(FeatureTrapHandler)) 682 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 683 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 684 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 685 } 686 687 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 688 bool Addressable) { 689 assert(WavesPerEU != 0); 690 691 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 692 IsaVersion Version = getIsaVersion(STI->getCPU()); 693 if (Version.Major >= 10) 694 return Addressable ? AddressableNumSGPRs : 108; 695 if (Version.Major >= 8 && !Addressable) 696 AddressableNumSGPRs = 112; 697 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 698 if (STI->getFeatureBits().test(FeatureTrapHandler)) 699 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 700 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 701 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 702 } 703 704 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 705 bool FlatScrUsed, bool XNACKUsed) { 706 unsigned ExtraSGPRs = 0; 707 if (VCCUsed) 708 ExtraSGPRs = 2; 709 710 IsaVersion Version = getIsaVersion(STI->getCPU()); 711 if (Version.Major >= 10) 712 return ExtraSGPRs; 713 714 if (Version.Major < 8) { 715 if (FlatScrUsed) 716 ExtraSGPRs = 4; 717 } else { 718 if (XNACKUsed) 719 ExtraSGPRs = 4; 720 721 if (FlatScrUsed || 722 STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch)) 723 ExtraSGPRs = 6; 724 } 725 726 return ExtraSGPRs; 727 } 728 729 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 730 bool FlatScrUsed) { 731 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 732 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 733 } 734 735 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 736 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 737 // SGPRBlocks is actual number of SGPR blocks minus 1. 738 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 739 } 740 741 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 742 Optional<bool> EnableWavefrontSize32) { 743 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 744 return 8; 745 746 bool IsWave32 = EnableWavefrontSize32 ? 747 *EnableWavefrontSize32 : 748 STI->getFeatureBits().test(FeatureWavefrontSize32); 749 750 if (hasGFX10_3Insts(*STI)) 751 return IsWave32 ? 16 : 8; 752 753 return IsWave32 ? 8 : 4; 754 } 755 756 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 757 Optional<bool> EnableWavefrontSize32) { 758 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 759 return 8; 760 761 bool IsWave32 = EnableWavefrontSize32 ? 762 *EnableWavefrontSize32 : 763 STI->getFeatureBits().test(FeatureWavefrontSize32); 764 765 return IsWave32 ? 8 : 4; 766 } 767 768 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 769 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 770 return 512; 771 if (!isGFX10Plus(*STI)) 772 return 256; 773 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 774 } 775 776 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 777 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 778 return 512; 779 return 256; 780 } 781 782 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 783 assert(WavesPerEU != 0); 784 785 if (WavesPerEU >= getMaxWavesPerEU(STI)) 786 return 0; 787 unsigned MinNumVGPRs = 788 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 789 getVGPRAllocGranule(STI)) + 1; 790 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 791 } 792 793 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 794 assert(WavesPerEU != 0); 795 796 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 797 getVGPRAllocGranule(STI)); 798 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 799 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 800 } 801 802 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 803 Optional<bool> EnableWavefrontSize32) { 804 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 805 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 806 // VGPRBlocks is actual number of VGPR blocks minus 1. 807 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 808 } 809 810 } // end namespace IsaInfo 811 812 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 813 const MCSubtargetInfo *STI) { 814 IsaVersion Version = getIsaVersion(STI->getCPU()); 815 816 memset(&Header, 0, sizeof(Header)); 817 818 Header.amd_kernel_code_version_major = 1; 819 Header.amd_kernel_code_version_minor = 2; 820 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 821 Header.amd_machine_version_major = Version.Major; 822 Header.amd_machine_version_minor = Version.Minor; 823 Header.amd_machine_version_stepping = Version.Stepping; 824 Header.kernel_code_entry_byte_offset = sizeof(Header); 825 Header.wavefront_size = 6; 826 827 // If the code object does not support indirect functions, then the value must 828 // be 0xffffffff. 829 Header.call_convention = -1; 830 831 // These alignment values are specified in powers of two, so alignment = 832 // 2^n. The minimum alignment is 2^4 = 16. 833 Header.kernarg_segment_alignment = 4; 834 Header.group_segment_alignment = 4; 835 Header.private_segment_alignment = 4; 836 837 if (Version.Major >= 10) { 838 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 839 Header.wavefront_size = 5; 840 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 841 } 842 Header.compute_pgm_resource_registers |= 843 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 844 S_00B848_MEM_ORDERED(1); 845 } 846 } 847 848 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 849 const MCSubtargetInfo *STI) { 850 IsaVersion Version = getIsaVersion(STI->getCPU()); 851 852 amdhsa::kernel_descriptor_t KD; 853 memset(&KD, 0, sizeof(KD)); 854 855 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 856 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 857 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 858 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 859 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 860 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 861 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 862 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 863 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 864 if (Version.Major >= 10) { 865 AMDHSA_BITS_SET(KD.kernel_code_properties, 866 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 867 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 868 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 869 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 870 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 871 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 872 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 873 } 874 if (AMDGPU::isGFX90A(*STI)) { 875 AMDHSA_BITS_SET(KD.compute_pgm_rsrc3, 876 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, 877 STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0); 878 } 879 return KD; 880 } 881 882 bool isGroupSegment(const GlobalValue *GV) { 883 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 884 } 885 886 bool isGlobalSegment(const GlobalValue *GV) { 887 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 888 } 889 890 bool isReadOnlySegment(const GlobalValue *GV) { 891 unsigned AS = GV->getAddressSpace(); 892 return AS == AMDGPUAS::CONSTANT_ADDRESS || 893 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 894 } 895 896 bool shouldEmitConstantsToTextSection(const Triple &TT) { 897 return TT.getArch() == Triple::r600; 898 } 899 900 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 901 Attribute A = F.getFnAttribute(Name); 902 int Result = Default; 903 904 if (A.isStringAttribute()) { 905 StringRef Str = A.getValueAsString(); 906 if (Str.getAsInteger(0, Result)) { 907 LLVMContext &Ctx = F.getContext(); 908 Ctx.emitError("can't parse integer attribute " + Name); 909 } 910 } 911 912 return Result; 913 } 914 915 std::pair<int, int> getIntegerPairAttribute(const Function &F, 916 StringRef Name, 917 std::pair<int, int> Default, 918 bool OnlyFirstRequired) { 919 Attribute A = F.getFnAttribute(Name); 920 if (!A.isStringAttribute()) 921 return Default; 922 923 LLVMContext &Ctx = F.getContext(); 924 std::pair<int, int> Ints = Default; 925 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 926 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 927 Ctx.emitError("can't parse first integer attribute " + Name); 928 return Default; 929 } 930 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 931 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 932 Ctx.emitError("can't parse second integer attribute " + Name); 933 return Default; 934 } 935 } 936 937 return Ints; 938 } 939 940 unsigned getVmcntBitMask(const IsaVersion &Version) { 941 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 942 if (Version.Major < 9) 943 return VmcntLo; 944 945 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 946 return VmcntLo | VmcntHi; 947 } 948 949 unsigned getExpcntBitMask(const IsaVersion &Version) { 950 return (1 << getExpcntBitWidth()) - 1; 951 } 952 953 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 954 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 955 } 956 957 unsigned getWaitcntBitMask(const IsaVersion &Version) { 958 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 959 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 960 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 961 getLgkmcntBitWidth(Version.Major)); 962 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 963 if (Version.Major < 9) 964 return Waitcnt; 965 966 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 967 return Waitcnt | VmcntHi; 968 } 969 970 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 971 unsigned VmcntLo = 972 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 973 if (Version.Major < 9) 974 return VmcntLo; 975 976 unsigned VmcntHi = 977 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 978 VmcntHi <<= getVmcntBitWidthLo(); 979 return VmcntLo | VmcntHi; 980 } 981 982 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 983 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 984 } 985 986 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 987 return unpackBits(Waitcnt, getLgkmcntBitShift(), 988 getLgkmcntBitWidth(Version.Major)); 989 } 990 991 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 992 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 993 Vmcnt = decodeVmcnt(Version, Waitcnt); 994 Expcnt = decodeExpcnt(Version, Waitcnt); 995 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 996 } 997 998 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 999 Waitcnt Decoded; 1000 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 1001 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 1002 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 1003 return Decoded; 1004 } 1005 1006 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 1007 unsigned Vmcnt) { 1008 Waitcnt = 1009 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 1010 if (Version.Major < 9) 1011 return Waitcnt; 1012 1013 Vmcnt >>= getVmcntBitWidthLo(); 1014 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 1015 } 1016 1017 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 1018 unsigned Expcnt) { 1019 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 1020 } 1021 1022 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 1023 unsigned Lgkmcnt) { 1024 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 1025 getLgkmcntBitWidth(Version.Major)); 1026 } 1027 1028 unsigned encodeWaitcnt(const IsaVersion &Version, 1029 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 1030 unsigned Waitcnt = getWaitcntBitMask(Version); 1031 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 1032 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 1033 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 1034 return Waitcnt; 1035 } 1036 1037 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 1038 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 1039 } 1040 1041 //===----------------------------------------------------------------------===// 1042 // hwreg 1043 //===----------------------------------------------------------------------===// 1044 1045 namespace Hwreg { 1046 1047 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) { 1048 if (isGFX10(STI) && Name == "HW_REG_HW_ID") // An alias 1049 return ID_HW_ID1; 1050 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 1051 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 1052 return Id; 1053 } 1054 return ID_UNKNOWN_; 1055 } 1056 1057 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 1058 if (isSI(STI) || isCI(STI) || isVI(STI)) 1059 return ID_SYMBOLIC_FIRST_GFX9_; 1060 else if (isGFX9(STI)) 1061 return ID_SYMBOLIC_FIRST_GFX10_; 1062 else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) 1063 return ID_SYMBOLIC_FIRST_GFX1030_; 1064 else 1065 return ID_SYMBOLIC_LAST_; 1066 } 1067 1068 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 1069 switch (Id) { 1070 case ID_HW_ID: 1071 return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI); 1072 case ID_HW_ID1: 1073 case ID_HW_ID2: 1074 return isGFX10Plus(STI); 1075 case ID_XNACK_MASK: 1076 return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI); 1077 default: 1078 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 1079 IdSymbolic[Id]; 1080 } 1081 } 1082 1083 bool isValidHwreg(int64_t Id) { 1084 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 1085 } 1086 1087 bool isValidHwregOffset(int64_t Offset) { 1088 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 1089 } 1090 1091 bool isValidHwregWidth(int64_t Width) { 1092 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 1093 } 1094 1095 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 1096 return (Id << ID_SHIFT_) | 1097 (Offset << OFFSET_SHIFT_) | 1098 ((Width - 1) << WIDTH_M1_SHIFT_); 1099 } 1100 1101 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 1102 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 1103 } 1104 1105 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 1106 Id = (Val & ID_MASK_) >> ID_SHIFT_; 1107 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 1108 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 1109 } 1110 1111 } // namespace Hwreg 1112 1113 //===----------------------------------------------------------------------===// 1114 // exp tgt 1115 //===----------------------------------------------------------------------===// 1116 1117 namespace Exp { 1118 1119 struct ExpTgt { 1120 StringLiteral Name; 1121 unsigned Tgt; 1122 unsigned MaxIndex; 1123 }; 1124 1125 static constexpr ExpTgt ExpTgtInfo[] = { 1126 {{"null"}, ET_NULL, ET_NULL_MAX_IDX}, 1127 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX}, 1128 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX}, 1129 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX}, 1130 {{"pos"}, ET_POS0, ET_POS_MAX_IDX}, 1131 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX}, 1132 }; 1133 1134 bool getTgtName(unsigned Id, StringRef &Name, int &Index) { 1135 for (const ExpTgt &Val : ExpTgtInfo) { 1136 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) { 1137 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt); 1138 Name = Val.Name; 1139 return true; 1140 } 1141 } 1142 return false; 1143 } 1144 1145 unsigned getTgtId(const StringRef Name) { 1146 1147 for (const ExpTgt &Val : ExpTgtInfo) { 1148 if (Val.MaxIndex == 0 && Name == Val.Name) 1149 return Val.Tgt; 1150 1151 if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) { 1152 StringRef Suffix = Name.drop_front(Val.Name.size()); 1153 1154 unsigned Id; 1155 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex) 1156 return ET_INVALID; 1157 1158 // Disable leading zeroes 1159 if (Suffix.size() > 1 && Suffix[0] == '0') 1160 return ET_INVALID; 1161 1162 return Val.Tgt + Id; 1163 } 1164 } 1165 return ET_INVALID; 1166 } 1167 1168 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) { 1169 return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI); 1170 } 1171 1172 } // namespace Exp 1173 1174 //===----------------------------------------------------------------------===// 1175 // MTBUF Format 1176 //===----------------------------------------------------------------------===// 1177 1178 namespace MTBUFFormat { 1179 1180 int64_t getDfmt(const StringRef Name) { 1181 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 1182 if (Name == DfmtSymbolic[Id]) 1183 return Id; 1184 } 1185 return DFMT_UNDEF; 1186 } 1187 1188 StringRef getDfmtName(unsigned Id) { 1189 assert(Id <= DFMT_MAX); 1190 return DfmtSymbolic[Id]; 1191 } 1192 1193 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 1194 if (isSI(STI) || isCI(STI)) 1195 return NfmtSymbolicSICI; 1196 if (isVI(STI) || isGFX9(STI)) 1197 return NfmtSymbolicVI; 1198 return NfmtSymbolicGFX10; 1199 } 1200 1201 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 1202 auto lookupTable = getNfmtLookupTable(STI); 1203 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 1204 if (Name == lookupTable[Id]) 1205 return Id; 1206 } 1207 return NFMT_UNDEF; 1208 } 1209 1210 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 1211 assert(Id <= NFMT_MAX); 1212 return getNfmtLookupTable(STI)[Id]; 1213 } 1214 1215 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1216 unsigned Dfmt; 1217 unsigned Nfmt; 1218 decodeDfmtNfmt(Id, Dfmt, Nfmt); 1219 return isValidNfmt(Nfmt, STI); 1220 } 1221 1222 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1223 return !getNfmtName(Id, STI).empty(); 1224 } 1225 1226 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 1227 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 1228 } 1229 1230 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 1231 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 1232 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 1233 } 1234 1235 int64_t getUnifiedFormat(const StringRef Name) { 1236 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1237 if (Name == UfmtSymbolic[Id]) 1238 return Id; 1239 } 1240 return UFMT_UNDEF; 1241 } 1242 1243 StringRef getUnifiedFormatName(unsigned Id) { 1244 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 1245 } 1246 1247 bool isValidUnifiedFormat(unsigned Id) { 1248 return Id <= UFMT_LAST; 1249 } 1250 1251 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 1252 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 1253 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1254 if (Fmt == DfmtNfmt2UFmt[Id]) 1255 return Id; 1256 } 1257 return UFMT_UNDEF; 1258 } 1259 1260 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 1261 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 1262 } 1263 1264 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 1265 if (isGFX10Plus(STI)) 1266 return UFMT_DEFAULT; 1267 return DFMT_NFMT_DEFAULT; 1268 } 1269 1270 } // namespace MTBUFFormat 1271 1272 //===----------------------------------------------------------------------===// 1273 // SendMsg 1274 //===----------------------------------------------------------------------===// 1275 1276 namespace SendMsg { 1277 1278 int64_t getMsgId(const StringRef Name) { 1279 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 1280 if (IdSymbolic[i] && Name == IdSymbolic[i]) 1281 return i; 1282 } 1283 return ID_UNKNOWN_; 1284 } 1285 1286 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 1287 if (Strict) { 1288 switch (MsgId) { 1289 case ID_SAVEWAVE: 1290 return isVI(STI) || isGFX9Plus(STI); 1291 case ID_STALL_WAVE_GEN: 1292 case ID_HALT_WAVES: 1293 case ID_ORDERED_PS_DONE: 1294 case ID_GS_ALLOC_REQ: 1295 case ID_GET_DOORBELL: 1296 return isGFX9Plus(STI); 1297 case ID_EARLY_PRIM_DEALLOC: 1298 return isGFX9(STI); 1299 case ID_GET_DDID: 1300 return isGFX10Plus(STI); 1301 default: 1302 return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId]; 1303 } 1304 } else { 1305 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 1306 } 1307 } 1308 1309 StringRef getMsgName(int64_t MsgId) { 1310 assert(0 <= MsgId && MsgId < ID_GAPS_LAST_); 1311 return IdSymbolic[MsgId]; 1312 } 1313 1314 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 1315 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 1316 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 1317 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 1318 for (int i = F; i < L; ++i) { 1319 if (Name == S[i]) { 1320 return i; 1321 } 1322 } 1323 return OP_UNKNOWN_; 1324 } 1325 1326 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, 1327 bool Strict) { 1328 assert(isValidMsgId(MsgId, STI, Strict)); 1329 1330 if (!Strict) 1331 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 1332 1333 switch(MsgId) 1334 { 1335 case ID_GS: 1336 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 1337 case ID_GS_DONE: 1338 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 1339 case ID_SYSMSG: 1340 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 1341 default: 1342 return OpId == OP_NONE_; 1343 } 1344 } 1345 1346 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 1347 assert(msgRequiresOp(MsgId)); 1348 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 1349 } 1350 1351 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, 1352 const MCSubtargetInfo &STI, bool Strict) { 1353 assert(isValidMsgOp(MsgId, OpId, STI, Strict)); 1354 1355 if (!Strict) 1356 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 1357 1358 switch(MsgId) 1359 { 1360 case ID_GS: 1361 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 1362 case ID_GS_DONE: 1363 return (OpId == OP_GS_NOP)? 1364 (StreamId == STREAM_ID_NONE_) : 1365 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 1366 default: 1367 return StreamId == STREAM_ID_NONE_; 1368 } 1369 } 1370 1371 bool msgRequiresOp(int64_t MsgId) { 1372 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 1373 } 1374 1375 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 1376 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 1377 } 1378 1379 void decodeMsg(unsigned Val, 1380 uint16_t &MsgId, 1381 uint16_t &OpId, 1382 uint16_t &StreamId) { 1383 MsgId = Val & ID_MASK_; 1384 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 1385 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 1386 } 1387 1388 uint64_t encodeMsg(uint64_t MsgId, 1389 uint64_t OpId, 1390 uint64_t StreamId) { 1391 return (MsgId << ID_SHIFT_) | 1392 (OpId << OP_SHIFT_) | 1393 (StreamId << STREAM_ID_SHIFT_); 1394 } 1395 1396 } // namespace SendMsg 1397 1398 //===----------------------------------------------------------------------===// 1399 // 1400 //===----------------------------------------------------------------------===// 1401 1402 unsigned getInitialPSInputAddr(const Function &F) { 1403 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1404 } 1405 1406 bool getHasColorExport(const Function &F) { 1407 // As a safe default always respond as if PS has color exports. 1408 return getIntegerAttribute( 1409 F, "amdgpu-color-export", 1410 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0; 1411 } 1412 1413 bool getHasDepthExport(const Function &F) { 1414 return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0; 1415 } 1416 1417 bool isShader(CallingConv::ID cc) { 1418 switch(cc) { 1419 case CallingConv::AMDGPU_VS: 1420 case CallingConv::AMDGPU_LS: 1421 case CallingConv::AMDGPU_HS: 1422 case CallingConv::AMDGPU_ES: 1423 case CallingConv::AMDGPU_GS: 1424 case CallingConv::AMDGPU_PS: 1425 case CallingConv::AMDGPU_CS: 1426 return true; 1427 default: 1428 return false; 1429 } 1430 } 1431 1432 bool isGraphics(CallingConv::ID cc) { 1433 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; 1434 } 1435 1436 bool isCompute(CallingConv::ID cc) { 1437 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; 1438 } 1439 1440 bool isEntryFunctionCC(CallingConv::ID CC) { 1441 switch (CC) { 1442 case CallingConv::AMDGPU_KERNEL: 1443 case CallingConv::SPIR_KERNEL: 1444 case CallingConv::AMDGPU_VS: 1445 case CallingConv::AMDGPU_GS: 1446 case CallingConv::AMDGPU_PS: 1447 case CallingConv::AMDGPU_CS: 1448 case CallingConv::AMDGPU_ES: 1449 case CallingConv::AMDGPU_HS: 1450 case CallingConv::AMDGPU_LS: 1451 return true; 1452 default: 1453 return false; 1454 } 1455 } 1456 1457 bool isModuleEntryFunctionCC(CallingConv::ID CC) { 1458 switch (CC) { 1459 case CallingConv::AMDGPU_Gfx: 1460 return true; 1461 default: 1462 return isEntryFunctionCC(CC); 1463 } 1464 } 1465 1466 bool isKernelCC(const Function *Func) { 1467 return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv()); 1468 } 1469 1470 bool hasXNACK(const MCSubtargetInfo &STI) { 1471 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1472 } 1473 1474 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1475 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1476 } 1477 1478 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1479 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1480 } 1481 1482 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1483 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1484 } 1485 1486 bool hasG16(const MCSubtargetInfo &STI) { 1487 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1488 } 1489 1490 bool hasPackedD16(const MCSubtargetInfo &STI) { 1491 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1492 } 1493 1494 bool isSI(const MCSubtargetInfo &STI) { 1495 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1496 } 1497 1498 bool isCI(const MCSubtargetInfo &STI) { 1499 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1500 } 1501 1502 bool isVI(const MCSubtargetInfo &STI) { 1503 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1504 } 1505 1506 bool isGFX9(const MCSubtargetInfo &STI) { 1507 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1508 } 1509 1510 bool isGFX9Plus(const MCSubtargetInfo &STI) { 1511 return isGFX9(STI) || isGFX10Plus(STI); 1512 } 1513 1514 bool isGFX10(const MCSubtargetInfo &STI) { 1515 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1516 } 1517 1518 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } 1519 1520 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1521 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1522 } 1523 1524 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) { 1525 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding]; 1526 } 1527 1528 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1529 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1530 } 1531 1532 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1533 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1534 } 1535 1536 bool isGFX90A(const MCSubtargetInfo &STI) { 1537 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1538 } 1539 1540 bool isGFX940(const MCSubtargetInfo &STI) { 1541 return STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]; 1542 } 1543 1544 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) { 1545 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1546 } 1547 1548 bool hasMAIInsts(const MCSubtargetInfo &STI) { 1549 return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts]; 1550 } 1551 1552 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, 1553 int32_t ArgNumVGPR) { 1554 if (has90AInsts && ArgNumAGPR) 1555 return alignTo(ArgNumVGPR, 4) + ArgNumAGPR; 1556 return std::max(ArgNumVGPR, ArgNumAGPR); 1557 } 1558 1559 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1560 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1561 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1562 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1563 Reg == AMDGPU::SCC; 1564 } 1565 1566 #define MAP_REG2REG \ 1567 using namespace AMDGPU; \ 1568 switch(Reg) { \ 1569 default: return Reg; \ 1570 CASE_CI_VI(FLAT_SCR) \ 1571 CASE_CI_VI(FLAT_SCR_LO) \ 1572 CASE_CI_VI(FLAT_SCR_HI) \ 1573 CASE_VI_GFX9PLUS(TTMP0) \ 1574 CASE_VI_GFX9PLUS(TTMP1) \ 1575 CASE_VI_GFX9PLUS(TTMP2) \ 1576 CASE_VI_GFX9PLUS(TTMP3) \ 1577 CASE_VI_GFX9PLUS(TTMP4) \ 1578 CASE_VI_GFX9PLUS(TTMP5) \ 1579 CASE_VI_GFX9PLUS(TTMP6) \ 1580 CASE_VI_GFX9PLUS(TTMP7) \ 1581 CASE_VI_GFX9PLUS(TTMP8) \ 1582 CASE_VI_GFX9PLUS(TTMP9) \ 1583 CASE_VI_GFX9PLUS(TTMP10) \ 1584 CASE_VI_GFX9PLUS(TTMP11) \ 1585 CASE_VI_GFX9PLUS(TTMP12) \ 1586 CASE_VI_GFX9PLUS(TTMP13) \ 1587 CASE_VI_GFX9PLUS(TTMP14) \ 1588 CASE_VI_GFX9PLUS(TTMP15) \ 1589 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \ 1590 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \ 1591 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \ 1592 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \ 1593 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \ 1594 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \ 1595 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \ 1596 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \ 1597 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \ 1598 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \ 1599 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \ 1600 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \ 1601 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1602 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1603 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1604 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1605 } 1606 1607 #define CASE_CI_VI(node) \ 1608 assert(!isSI(STI)); \ 1609 case node: return isCI(STI) ? node##_ci : node##_vi; 1610 1611 #define CASE_VI_GFX9PLUS(node) \ 1612 case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi; 1613 1614 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1615 if (STI.getTargetTriple().getArch() == Triple::r600) 1616 return Reg; 1617 MAP_REG2REG 1618 } 1619 1620 #undef CASE_CI_VI 1621 #undef CASE_VI_GFX9PLUS 1622 1623 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1624 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node; 1625 1626 unsigned mc2PseudoReg(unsigned Reg) { 1627 MAP_REG2REG 1628 } 1629 1630 #undef CASE_CI_VI 1631 #undef CASE_VI_GFX9PLUS 1632 #undef MAP_REG2REG 1633 1634 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1635 assert(OpNo < Desc.NumOperands); 1636 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1637 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1638 OpType <= AMDGPU::OPERAND_SRC_LAST; 1639 } 1640 1641 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1642 assert(OpNo < Desc.NumOperands); 1643 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1644 switch (OpType) { 1645 case AMDGPU::OPERAND_REG_IMM_FP32: 1646 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 1647 case AMDGPU::OPERAND_REG_IMM_FP64: 1648 case AMDGPU::OPERAND_REG_IMM_FP16: 1649 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: 1650 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1651 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1652 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1653 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1654 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1655 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1656 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1657 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1658 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1659 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1660 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1661 case AMDGPU::OPERAND_REG_IMM_V2FP32: 1662 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 1663 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 1664 return true; 1665 default: 1666 return false; 1667 } 1668 } 1669 1670 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1671 assert(OpNo < Desc.NumOperands); 1672 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1673 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1674 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1675 } 1676 1677 // Avoid using MCRegisterClass::getSize, since that function will go away 1678 // (move from MC* level to Target* level). Return size in bits. 1679 unsigned getRegBitWidth(unsigned RCID) { 1680 switch (RCID) { 1681 case AMDGPU::VGPR_LO16RegClassID: 1682 case AMDGPU::VGPR_HI16RegClassID: 1683 case AMDGPU::SGPR_LO16RegClassID: 1684 case AMDGPU::AGPR_LO16RegClassID: 1685 return 16; 1686 case AMDGPU::SGPR_32RegClassID: 1687 case AMDGPU::VGPR_32RegClassID: 1688 case AMDGPU::VRegOrLds_32RegClassID: 1689 case AMDGPU::AGPR_32RegClassID: 1690 case AMDGPU::VS_32RegClassID: 1691 case AMDGPU::AV_32RegClassID: 1692 case AMDGPU::SReg_32RegClassID: 1693 case AMDGPU::SReg_32_XM0RegClassID: 1694 case AMDGPU::SRegOrLds_32RegClassID: 1695 return 32; 1696 case AMDGPU::SGPR_64RegClassID: 1697 case AMDGPU::VS_64RegClassID: 1698 case AMDGPU::SReg_64RegClassID: 1699 case AMDGPU::VReg_64RegClassID: 1700 case AMDGPU::AReg_64RegClassID: 1701 case AMDGPU::SReg_64_XEXECRegClassID: 1702 case AMDGPU::VReg_64_Align2RegClassID: 1703 case AMDGPU::AReg_64_Align2RegClassID: 1704 case AMDGPU::AV_64RegClassID: 1705 case AMDGPU::AV_64_Align2RegClassID: 1706 return 64; 1707 case AMDGPU::SGPR_96RegClassID: 1708 case AMDGPU::SReg_96RegClassID: 1709 case AMDGPU::VReg_96RegClassID: 1710 case AMDGPU::AReg_96RegClassID: 1711 case AMDGPU::VReg_96_Align2RegClassID: 1712 case AMDGPU::AReg_96_Align2RegClassID: 1713 case AMDGPU::AV_96RegClassID: 1714 case AMDGPU::AV_96_Align2RegClassID: 1715 return 96; 1716 case AMDGPU::SGPR_128RegClassID: 1717 case AMDGPU::SReg_128RegClassID: 1718 case AMDGPU::VReg_128RegClassID: 1719 case AMDGPU::AReg_128RegClassID: 1720 case AMDGPU::VReg_128_Align2RegClassID: 1721 case AMDGPU::AReg_128_Align2RegClassID: 1722 case AMDGPU::AV_128RegClassID: 1723 case AMDGPU::AV_128_Align2RegClassID: 1724 return 128; 1725 case AMDGPU::SGPR_160RegClassID: 1726 case AMDGPU::SReg_160RegClassID: 1727 case AMDGPU::VReg_160RegClassID: 1728 case AMDGPU::AReg_160RegClassID: 1729 case AMDGPU::VReg_160_Align2RegClassID: 1730 case AMDGPU::AReg_160_Align2RegClassID: 1731 case AMDGPU::AV_160RegClassID: 1732 case AMDGPU::AV_160_Align2RegClassID: 1733 return 160; 1734 case AMDGPU::SGPR_192RegClassID: 1735 case AMDGPU::SReg_192RegClassID: 1736 case AMDGPU::VReg_192RegClassID: 1737 case AMDGPU::AReg_192RegClassID: 1738 case AMDGPU::VReg_192_Align2RegClassID: 1739 case AMDGPU::AReg_192_Align2RegClassID: 1740 case AMDGPU::AV_192RegClassID: 1741 case AMDGPU::AV_192_Align2RegClassID: 1742 return 192; 1743 case AMDGPU::SGPR_224RegClassID: 1744 case AMDGPU::SReg_224RegClassID: 1745 case AMDGPU::VReg_224RegClassID: 1746 case AMDGPU::AReg_224RegClassID: 1747 case AMDGPU::VReg_224_Align2RegClassID: 1748 case AMDGPU::AReg_224_Align2RegClassID: 1749 case AMDGPU::AV_224RegClassID: 1750 case AMDGPU::AV_224_Align2RegClassID: 1751 return 224; 1752 case AMDGPU::SGPR_256RegClassID: 1753 case AMDGPU::SReg_256RegClassID: 1754 case AMDGPU::VReg_256RegClassID: 1755 case AMDGPU::AReg_256RegClassID: 1756 case AMDGPU::VReg_256_Align2RegClassID: 1757 case AMDGPU::AReg_256_Align2RegClassID: 1758 case AMDGPU::AV_256RegClassID: 1759 case AMDGPU::AV_256_Align2RegClassID: 1760 return 256; 1761 case AMDGPU::SGPR_512RegClassID: 1762 case AMDGPU::SReg_512RegClassID: 1763 case AMDGPU::VReg_512RegClassID: 1764 case AMDGPU::AReg_512RegClassID: 1765 case AMDGPU::VReg_512_Align2RegClassID: 1766 case AMDGPU::AReg_512_Align2RegClassID: 1767 case AMDGPU::AV_512RegClassID: 1768 case AMDGPU::AV_512_Align2RegClassID: 1769 return 512; 1770 case AMDGPU::SGPR_1024RegClassID: 1771 case AMDGPU::SReg_1024RegClassID: 1772 case AMDGPU::VReg_1024RegClassID: 1773 case AMDGPU::AReg_1024RegClassID: 1774 case AMDGPU::VReg_1024_Align2RegClassID: 1775 case AMDGPU::AReg_1024_Align2RegClassID: 1776 case AMDGPU::AV_1024RegClassID: 1777 case AMDGPU::AV_1024_Align2RegClassID: 1778 return 1024; 1779 default: 1780 llvm_unreachable("Unexpected register class"); 1781 } 1782 } 1783 1784 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1785 return getRegBitWidth(RC.getID()); 1786 } 1787 1788 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1789 unsigned OpNo) { 1790 assert(OpNo < Desc.NumOperands); 1791 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1792 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1793 } 1794 1795 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1796 if (isInlinableIntLiteral(Literal)) 1797 return true; 1798 1799 uint64_t Val = static_cast<uint64_t>(Literal); 1800 return (Val == DoubleToBits(0.0)) || 1801 (Val == DoubleToBits(1.0)) || 1802 (Val == DoubleToBits(-1.0)) || 1803 (Val == DoubleToBits(0.5)) || 1804 (Val == DoubleToBits(-0.5)) || 1805 (Val == DoubleToBits(2.0)) || 1806 (Val == DoubleToBits(-2.0)) || 1807 (Val == DoubleToBits(4.0)) || 1808 (Val == DoubleToBits(-4.0)) || 1809 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1810 } 1811 1812 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1813 if (isInlinableIntLiteral(Literal)) 1814 return true; 1815 1816 // The actual type of the operand does not seem to matter as long 1817 // as the bits match one of the inline immediate values. For example: 1818 // 1819 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1820 // so it is a legal inline immediate. 1821 // 1822 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1823 // floating-point, so it is a legal inline immediate. 1824 1825 uint32_t Val = static_cast<uint32_t>(Literal); 1826 return (Val == FloatToBits(0.0f)) || 1827 (Val == FloatToBits(1.0f)) || 1828 (Val == FloatToBits(-1.0f)) || 1829 (Val == FloatToBits(0.5f)) || 1830 (Val == FloatToBits(-0.5f)) || 1831 (Val == FloatToBits(2.0f)) || 1832 (Val == FloatToBits(-2.0f)) || 1833 (Val == FloatToBits(4.0f)) || 1834 (Val == FloatToBits(-4.0f)) || 1835 (Val == 0x3e22f983 && HasInv2Pi); 1836 } 1837 1838 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1839 if (!HasInv2Pi) 1840 return false; 1841 1842 if (isInlinableIntLiteral(Literal)) 1843 return true; 1844 1845 uint16_t Val = static_cast<uint16_t>(Literal); 1846 return Val == 0x3C00 || // 1.0 1847 Val == 0xBC00 || // -1.0 1848 Val == 0x3800 || // 0.5 1849 Val == 0xB800 || // -0.5 1850 Val == 0x4000 || // 2.0 1851 Val == 0xC000 || // -2.0 1852 Val == 0x4400 || // 4.0 1853 Val == 0xC400 || // -4.0 1854 Val == 0x3118; // 1/2pi 1855 } 1856 1857 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1858 assert(HasInv2Pi); 1859 1860 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1861 int16_t Trunc = static_cast<int16_t>(Literal); 1862 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1863 } 1864 if (!(Literal & 0xffff)) 1865 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1866 1867 int16_t Lo16 = static_cast<int16_t>(Literal); 1868 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1869 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1870 } 1871 1872 bool isInlinableIntLiteralV216(int32_t Literal) { 1873 int16_t Lo16 = static_cast<int16_t>(Literal); 1874 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1875 return isInlinableIntLiteral(Lo16); 1876 1877 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1878 if (!(Literal & 0xffff)) 1879 return isInlinableIntLiteral(Hi16); 1880 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1881 } 1882 1883 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1884 assert(HasInv2Pi); 1885 1886 int16_t Lo16 = static_cast<int16_t>(Literal); 1887 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1888 return true; 1889 1890 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1891 if (!(Literal & 0xffff)) 1892 return true; 1893 return Lo16 == Hi16; 1894 } 1895 1896 bool isArgPassedInSGPR(const Argument *A) { 1897 const Function *F = A->getParent(); 1898 1899 // Arguments to compute shaders are never a source of divergence. 1900 CallingConv::ID CC = F->getCallingConv(); 1901 switch (CC) { 1902 case CallingConv::AMDGPU_KERNEL: 1903 case CallingConv::SPIR_KERNEL: 1904 return true; 1905 case CallingConv::AMDGPU_VS: 1906 case CallingConv::AMDGPU_LS: 1907 case CallingConv::AMDGPU_HS: 1908 case CallingConv::AMDGPU_ES: 1909 case CallingConv::AMDGPU_GS: 1910 case CallingConv::AMDGPU_PS: 1911 case CallingConv::AMDGPU_CS: 1912 case CallingConv::AMDGPU_Gfx: 1913 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1914 // Everything else is in VGPRs. 1915 return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) || 1916 F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal); 1917 default: 1918 // TODO: Should calls support inreg for SGPR inputs? 1919 return false; 1920 } 1921 } 1922 1923 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1924 return isGCN3Encoding(ST) || isGFX10Plus(ST); 1925 } 1926 1927 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1928 return isGFX9Plus(ST); 1929 } 1930 1931 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1932 int64_t EncodedOffset) { 1933 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1934 : isUInt<8>(EncodedOffset); 1935 } 1936 1937 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1938 int64_t EncodedOffset, 1939 bool IsBuffer) { 1940 return !IsBuffer && 1941 hasSMRDSignedImmOffset(ST) && 1942 isInt<21>(EncodedOffset); 1943 } 1944 1945 static bool isDwordAligned(uint64_t ByteOffset) { 1946 return (ByteOffset & 3) == 0; 1947 } 1948 1949 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1950 uint64_t ByteOffset) { 1951 if (hasSMEMByteOffset(ST)) 1952 return ByteOffset; 1953 1954 assert(isDwordAligned(ByteOffset)); 1955 return ByteOffset >> 2; 1956 } 1957 1958 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1959 int64_t ByteOffset, bool IsBuffer) { 1960 // The signed version is always a byte offset. 1961 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1962 assert(hasSMEMByteOffset(ST)); 1963 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1964 } 1965 1966 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1967 return None; 1968 1969 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1970 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1971 ? Optional<int64_t>(EncodedOffset) 1972 : None; 1973 } 1974 1975 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1976 int64_t ByteOffset) { 1977 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1978 return None; 1979 1980 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1981 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1982 } 1983 1984 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { 1985 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. 1986 if (AMDGPU::isGFX10(ST)) 1987 return Signed ? 12 : 11; 1988 1989 return Signed ? 13 : 12; 1990 } 1991 1992 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1993 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1994 // hardware bug needing a workaround). 1995 // 1996 // The required alignment ensures that individual address components remain 1997 // aligned if they are aligned to begin with. It also ensures that additional 1998 // offsets within the given alignment can be added to the resulting ImmOffset. 1999 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 2000 const GCNSubtarget *Subtarget, Align Alignment) { 2001 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 2002 uint32_t Overflow = 0; 2003 2004 if (Imm > MaxImm) { 2005 if (Imm <= MaxImm + 64) { 2006 // Use an SOffset inline constant for 4..64 2007 Overflow = Imm - MaxImm; 2008 Imm = MaxImm; 2009 } else { 2010 // Try to keep the same value in SOffset for adjacent loads, so that 2011 // the corresponding register contents can be re-used. 2012 // 2013 // Load values with all low-bits (except for alignment bits) set into 2014 // SOffset, so that a larger range of values can be covered using 2015 // s_movk_i32. 2016 // 2017 // Atomic operations fail to work correctly when individual address 2018 // components are unaligned, even if their sum is aligned. 2019 uint32_t High = (Imm + Alignment.value()) & ~4095; 2020 uint32_t Low = (Imm + Alignment.value()) & 4095; 2021 Imm = Low; 2022 Overflow = High - Alignment.value(); 2023 } 2024 } 2025 2026 // There is a hardware bug in SI and CI which prevents address clamping in 2027 // MUBUF instructions from working correctly with SOffsets. The immediate 2028 // offset is unaffected. 2029 if (Overflow > 0 && 2030 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 2031 return false; 2032 2033 ImmOffset = Imm; 2034 SOffset = Overflow; 2035 return true; 2036 } 2037 2038 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 2039 *this = getDefaultForCallingConv(F.getCallingConv()); 2040 2041 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 2042 if (!IEEEAttr.empty()) 2043 IEEE = IEEEAttr == "true"; 2044 2045 StringRef DX10ClampAttr 2046 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 2047 if (!DX10ClampAttr.empty()) 2048 DX10Clamp = DX10ClampAttr == "true"; 2049 2050 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 2051 if (!DenormF32Attr.empty()) { 2052 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 2053 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2054 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2055 } 2056 2057 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 2058 if (!DenormAttr.empty()) { 2059 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 2060 2061 if (DenormF32Attr.empty()) { 2062 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2063 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2064 } 2065 2066 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2067 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2068 } 2069 } 2070 2071 namespace { 2072 2073 struct SourceOfDivergence { 2074 unsigned Intr; 2075 }; 2076 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 2077 2078 #define GET_SourcesOfDivergence_IMPL 2079 #define GET_Gfx9BufferFormat_IMPL 2080 #define GET_Gfx10PlusBufferFormat_IMPL 2081 #include "AMDGPUGenSearchableTables.inc" 2082 2083 } // end anonymous namespace 2084 2085 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 2086 return lookupSourceOfDivergence(IntrID); 2087 } 2088 2089 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 2090 uint8_t NumComponents, 2091 uint8_t NumFormat, 2092 const MCSubtargetInfo &STI) { 2093 return isGFX10Plus(STI) 2094 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 2095 NumFormat) 2096 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 2097 } 2098 2099 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 2100 const MCSubtargetInfo &STI) { 2101 return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) 2102 : getGfx9BufferFormatInfo(Format); 2103 } 2104 2105 } // namespace AMDGPU 2106 2107 raw_ostream &operator<<(raw_ostream &OS, 2108 const AMDGPU::IsaInfo::TargetIDSetting S) { 2109 switch (S) { 2110 case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported): 2111 OS << "Unsupported"; 2112 break; 2113 case (AMDGPU::IsaInfo::TargetIDSetting::Any): 2114 OS << "Any"; 2115 break; 2116 case (AMDGPU::IsaInfo::TargetIDSetting::Off): 2117 OS << "Off"; 2118 break; 2119 case (AMDGPU::IsaInfo::TargetIDSetting::On): 2120 OS << "On"; 2121 break; 2122 } 2123 return OS; 2124 } 2125 2126 } // namespace llvm 2127