1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   case 5:
103     return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
104   default:
105     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
106                        Twine(AmdhsaCodeObjectVersion));
107   }
108 }
109 
110 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
111   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
112     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
113   return false;
114 }
115 
116 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
117   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
118     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
119   return false;
120 }
121 
122 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
123   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
124     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
125   return false;
126 }
127 
128 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) {
129   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
130     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5;
131   return false;
132 }
133 
134 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) {
135   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) ||
136          isHsaAbiVersion5(STI);
137 }
138 
139 unsigned getAmdhsaCodeObjectVersion() {
140   return AmdhsaCodeObjectVersion;
141 }
142 
143 // FIXME: All such magic numbers about the ABI should be in a
144 // central TD file.
145 unsigned getHostcallImplicitArgPosition() {
146   switch (AmdhsaCodeObjectVersion) {
147   case 2:
148   case 3:
149   case 4:
150     return 24;
151   case 5:
152     return 80;
153   default:
154     llvm_unreachable("Unexpected code object version");
155     return 0;
156   }
157 }
158 
159 unsigned getHeapPtrImplicitArgPosition() {
160   if (AmdhsaCodeObjectVersion == 5)
161     return 96;
162   llvm_unreachable("hidden_heap is supported only by code object version 5");
163   return 0;
164 }
165 
166 unsigned getQueuePtrImplicitArgPosition() {
167   if (AmdhsaCodeObjectVersion == 5)
168     return 200;
169   llvm_unreachable("queue_ptr is supported only by code object version 5");
170   return 0;
171 }
172 
173 #define GET_MIMGBaseOpcodesTable_IMPL
174 #define GET_MIMGDimInfoTable_IMPL
175 #define GET_MIMGInfoTable_IMPL
176 #define GET_MIMGLZMappingTable_IMPL
177 #define GET_MIMGMIPMappingTable_IMPL
178 #define GET_MIMGBiasMappingTable_IMPL
179 #define GET_MIMGOffsetMappingTable_IMPL
180 #define GET_MIMGG16MappingTable_IMPL
181 #include "AMDGPUGenSearchableTables.inc"
182 
183 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
184                   unsigned VDataDwords, unsigned VAddrDwords) {
185   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
186                                              VDataDwords, VAddrDwords);
187   return Info ? Info->Opcode : -1;
188 }
189 
190 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
191   const MIMGInfo *Info = getMIMGInfo(Opc);
192   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
193 }
194 
195 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
196   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
197   const MIMGInfo *NewInfo =
198       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
199                           NewChannels, OrigInfo->VAddrDwords);
200   return NewInfo ? NewInfo->Opcode : -1;
201 }
202 
203 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
204                            const MIMGDimInfo *Dim, bool IsA16,
205                            bool IsG16Supported) {
206   unsigned AddrWords = BaseOpcode->NumExtraArgs;
207   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
208                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
209   if (IsA16)
210     AddrWords += divideCeil(AddrComponents, 2);
211   else
212     AddrWords += AddrComponents;
213 
214   // Note: For subtargets that support A16 but not G16, enabling A16 also
215   // enables 16 bit gradients.
216   // For subtargets that support A16 (operand) and G16 (done with a different
217   // instruction encoding), they are independent.
218 
219   if (BaseOpcode->Gradients) {
220     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
221       // There are two gradients per coordinate, we pack them separately.
222       // For the 3d case,
223       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
224       AddrWords += alignTo<2>(Dim->NumGradients / 2);
225     else
226       AddrWords += Dim->NumGradients;
227   }
228   return AddrWords;
229 }
230 
231 struct MUBUFInfo {
232   uint16_t Opcode;
233   uint16_t BaseOpcode;
234   uint8_t elements;
235   bool has_vaddr;
236   bool has_srsrc;
237   bool has_soffset;
238   bool IsBufferInv;
239 };
240 
241 struct MTBUFInfo {
242   uint16_t Opcode;
243   uint16_t BaseOpcode;
244   uint8_t elements;
245   bool has_vaddr;
246   bool has_srsrc;
247   bool has_soffset;
248 };
249 
250 struct SMInfo {
251   uint16_t Opcode;
252   bool IsBuffer;
253 };
254 
255 struct VOPInfo {
256   uint16_t Opcode;
257   bool IsSingle;
258 };
259 
260 #define GET_MTBUFInfoTable_DECL
261 #define GET_MTBUFInfoTable_IMPL
262 #define GET_MUBUFInfoTable_DECL
263 #define GET_MUBUFInfoTable_IMPL
264 #define GET_SMInfoTable_DECL
265 #define GET_SMInfoTable_IMPL
266 #define GET_VOP1InfoTable_DECL
267 #define GET_VOP1InfoTable_IMPL
268 #define GET_VOP2InfoTable_DECL
269 #define GET_VOP2InfoTable_IMPL
270 #define GET_VOP3InfoTable_DECL
271 #define GET_VOP3InfoTable_IMPL
272 #include "AMDGPUGenSearchableTables.inc"
273 
274 int getMTBUFBaseOpcode(unsigned Opc) {
275   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
276   return Info ? Info->BaseOpcode : -1;
277 }
278 
279 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
280   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
281   return Info ? Info->Opcode : -1;
282 }
283 
284 int getMTBUFElements(unsigned Opc) {
285   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
286   return Info ? Info->elements : 0;
287 }
288 
289 bool getMTBUFHasVAddr(unsigned Opc) {
290   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
291   return Info ? Info->has_vaddr : false;
292 }
293 
294 bool getMTBUFHasSrsrc(unsigned Opc) {
295   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
296   return Info ? Info->has_srsrc : false;
297 }
298 
299 bool getMTBUFHasSoffset(unsigned Opc) {
300   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
301   return Info ? Info->has_soffset : false;
302 }
303 
304 int getMUBUFBaseOpcode(unsigned Opc) {
305   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
306   return Info ? Info->BaseOpcode : -1;
307 }
308 
309 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
310   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
311   return Info ? Info->Opcode : -1;
312 }
313 
314 int getMUBUFElements(unsigned Opc) {
315   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
316   return Info ? Info->elements : 0;
317 }
318 
319 bool getMUBUFHasVAddr(unsigned Opc) {
320   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
321   return Info ? Info->has_vaddr : false;
322 }
323 
324 bool getMUBUFHasSrsrc(unsigned Opc) {
325   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
326   return Info ? Info->has_srsrc : false;
327 }
328 
329 bool getMUBUFHasSoffset(unsigned Opc) {
330   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
331   return Info ? Info->has_soffset : false;
332 }
333 
334 bool getMUBUFIsBufferInv(unsigned Opc) {
335   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
336   return Info ? Info->IsBufferInv : false;
337 }
338 
339 bool getSMEMIsBuffer(unsigned Opc) {
340   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
341   return Info ? Info->IsBuffer : false;
342 }
343 
344 bool getVOP1IsSingle(unsigned Opc) {
345   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
346   return Info ? Info->IsSingle : false;
347 }
348 
349 bool getVOP2IsSingle(unsigned Opc) {
350   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
351   return Info ? Info->IsSingle : false;
352 }
353 
354 bool getVOP3IsSingle(unsigned Opc) {
355   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
356   return Info ? Info->IsSingle : false;
357 }
358 
359 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
360 // header files, so we need to wrap it in a function that takes unsigned
361 // instead.
362 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
363   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
364 }
365 
366 namespace IsaInfo {
367 
368 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
369     : STI(STI), XnackSetting(TargetIDSetting::Any),
370       SramEccSetting(TargetIDSetting::Any) {
371   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
372     XnackSetting = TargetIDSetting::Unsupported;
373   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
374     SramEccSetting = TargetIDSetting::Unsupported;
375 }
376 
377 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
378   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
379   // absence of the target features we assume we must generate code that can run
380   // in any environment.
381   SubtargetFeatures Features(FS);
382   Optional<bool> XnackRequested;
383   Optional<bool> SramEccRequested;
384 
385   for (const std::string &Feature : Features.getFeatures()) {
386     if (Feature == "+xnack")
387       XnackRequested = true;
388     else if (Feature == "-xnack")
389       XnackRequested = false;
390     else if (Feature == "+sramecc")
391       SramEccRequested = true;
392     else if (Feature == "-sramecc")
393       SramEccRequested = false;
394   }
395 
396   bool XnackSupported = isXnackSupported();
397   bool SramEccSupported = isSramEccSupported();
398 
399   if (XnackRequested) {
400     if (XnackSupported) {
401       XnackSetting =
402           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
403     } else {
404       // If a specific xnack setting was requested and this GPU does not support
405       // xnack emit a warning. Setting will remain set to "Unsupported".
406       if (*XnackRequested) {
407         errs() << "warning: xnack 'On' was requested for a processor that does "
408                   "not support it!\n";
409       } else {
410         errs() << "warning: xnack 'Off' was requested for a processor that "
411                   "does not support it!\n";
412       }
413     }
414   }
415 
416   if (SramEccRequested) {
417     if (SramEccSupported) {
418       SramEccSetting =
419           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
420     } else {
421       // If a specific sramecc setting was requested and this GPU does not
422       // support sramecc emit a warning. Setting will remain set to
423       // "Unsupported".
424       if (*SramEccRequested) {
425         errs() << "warning: sramecc 'On' was requested for a processor that "
426                   "does not support it!\n";
427       } else {
428         errs() << "warning: sramecc 'Off' was requested for a processor that "
429                   "does not support it!\n";
430       }
431     }
432   }
433 }
434 
435 static TargetIDSetting
436 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
437   if (FeatureString.endswith("-"))
438     return TargetIDSetting::Off;
439   if (FeatureString.endswith("+"))
440     return TargetIDSetting::On;
441 
442   llvm_unreachable("Malformed feature string");
443 }
444 
445 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
446   SmallVector<StringRef, 3> TargetIDSplit;
447   TargetID.split(TargetIDSplit, ':');
448 
449   for (const auto &FeatureString : TargetIDSplit) {
450     if (FeatureString.startswith("xnack"))
451       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
452     if (FeatureString.startswith("sramecc"))
453       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
454   }
455 }
456 
457 std::string AMDGPUTargetID::toString() const {
458   std::string StringRep;
459   raw_string_ostream StreamRep(StringRep);
460 
461   auto TargetTriple = STI.getTargetTriple();
462   auto Version = getIsaVersion(STI.getCPU());
463 
464   StreamRep << TargetTriple.getArchName() << '-'
465             << TargetTriple.getVendorName() << '-'
466             << TargetTriple.getOSName() << '-'
467             << TargetTriple.getEnvironmentName() << '-';
468 
469   std::string Processor;
470   // TODO: Following else statement is present here because we used various
471   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
472   // Remove once all aliases are removed from GCNProcessors.td.
473   if (Version.Major >= 9)
474     Processor = STI.getCPU().str();
475   else
476     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
477                  Twine(Version.Stepping))
478                     .str();
479 
480   std::string Features;
481   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
482     switch (*HsaAbiVersion) {
483     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
484       // Code object V2 only supported specific processors and had fixed
485       // settings for the XNACK.
486       if (Processor == "gfx600") {
487       } else if (Processor == "gfx601") {
488       } else if (Processor == "gfx602") {
489       } else if (Processor == "gfx700") {
490       } else if (Processor == "gfx701") {
491       } else if (Processor == "gfx702") {
492       } else if (Processor == "gfx703") {
493       } else if (Processor == "gfx704") {
494       } else if (Processor == "gfx705") {
495       } else if (Processor == "gfx801") {
496         if (!isXnackOnOrAny())
497           report_fatal_error(
498               "AMD GPU code object V2 does not support processor " +
499               Twine(Processor) + " without XNACK");
500       } else if (Processor == "gfx802") {
501       } else if (Processor == "gfx803") {
502       } else if (Processor == "gfx805") {
503       } else if (Processor == "gfx810") {
504         if (!isXnackOnOrAny())
505           report_fatal_error(
506               "AMD GPU code object V2 does not support processor " +
507               Twine(Processor) + " without XNACK");
508       } else if (Processor == "gfx900") {
509         if (isXnackOnOrAny())
510           Processor = "gfx901";
511       } else if (Processor == "gfx902") {
512         if (isXnackOnOrAny())
513           Processor = "gfx903";
514       } else if (Processor == "gfx904") {
515         if (isXnackOnOrAny())
516           Processor = "gfx905";
517       } else if (Processor == "gfx906") {
518         if (isXnackOnOrAny())
519           Processor = "gfx907";
520       } else if (Processor == "gfx90c") {
521         if (isXnackOnOrAny())
522           report_fatal_error(
523               "AMD GPU code object V2 does not support processor " +
524               Twine(Processor) + " with XNACK being ON or ANY");
525       } else {
526         report_fatal_error(
527             "AMD GPU code object V2 does not support processor " +
528             Twine(Processor));
529       }
530       break;
531     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
532       // xnack.
533       if (isXnackOnOrAny())
534         Features += "+xnack";
535       // In code object v2 and v3, "sramecc" feature was spelled with a
536       // hyphen ("sram-ecc").
537       if (isSramEccOnOrAny())
538         Features += "+sram-ecc";
539       break;
540     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
541     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
542       // sramecc.
543       if (getSramEccSetting() == TargetIDSetting::Off)
544         Features += ":sramecc-";
545       else if (getSramEccSetting() == TargetIDSetting::On)
546         Features += ":sramecc+";
547       // xnack.
548       if (getXnackSetting() == TargetIDSetting::Off)
549         Features += ":xnack-";
550       else if (getXnackSetting() == TargetIDSetting::On)
551         Features += ":xnack+";
552       break;
553     default:
554       break;
555     }
556   }
557 
558   StreamRep << Processor << Features;
559 
560   StreamRep.flush();
561   return StringRep;
562 }
563 
564 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
565   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
566     return 16;
567   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
568     return 32;
569 
570   return 64;
571 }
572 
573 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
574   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
575     return 32768;
576   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
577     return 65536;
578 
579   return 0;
580 }
581 
582 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
583   // "Per CU" really means "per whatever functional block the waves of a
584   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
585   // two SIMDs.
586   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
587     return 2;
588   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
589   // two CUs, so a total of four SIMDs.
590   return 4;
591 }
592 
593 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
594                                unsigned FlatWorkGroupSize) {
595   assert(FlatWorkGroupSize != 0);
596   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
597     return 8;
598   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
599   if (N == 1)
600     return 40;
601   N = 40 / N;
602   return std::min(N, 16u);
603 }
604 
605 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
606   return 1;
607 }
608 
609 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
610   // FIXME: Need to take scratch memory into account.
611   if (isGFX90A(*STI))
612     return 8;
613   if (!isGFX10Plus(*STI))
614     return 10;
615   return hasGFX10_3Insts(*STI) ? 16 : 20;
616 }
617 
618 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
619                                    unsigned FlatWorkGroupSize) {
620   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
621                     getEUsPerCU(STI));
622 }
623 
624 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
625   return 1;
626 }
627 
628 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
629   // Some subtargets allow encoding 2048, but this isn't tested or supported.
630   return 1024;
631 }
632 
633 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
634                               unsigned FlatWorkGroupSize) {
635   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
636 }
637 
638 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
639   IsaVersion Version = getIsaVersion(STI->getCPU());
640   if (Version.Major >= 10)
641     return getAddressableNumSGPRs(STI);
642   if (Version.Major >= 8)
643     return 16;
644   return 8;
645 }
646 
647 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
648   return 8;
649 }
650 
651 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
652   IsaVersion Version = getIsaVersion(STI->getCPU());
653   if (Version.Major >= 8)
654     return 800;
655   return 512;
656 }
657 
658 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
659   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
660     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
661 
662   IsaVersion Version = getIsaVersion(STI->getCPU());
663   if (Version.Major >= 10)
664     return 106;
665   if (Version.Major >= 8)
666     return 102;
667   return 104;
668 }
669 
670 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
671   assert(WavesPerEU != 0);
672 
673   IsaVersion Version = getIsaVersion(STI->getCPU());
674   if (Version.Major >= 10)
675     return 0;
676 
677   if (WavesPerEU >= getMaxWavesPerEU(STI))
678     return 0;
679 
680   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
681   if (STI->getFeatureBits().test(FeatureTrapHandler))
682     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
683   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
684   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
685 }
686 
687 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
688                         bool Addressable) {
689   assert(WavesPerEU != 0);
690 
691   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
692   IsaVersion Version = getIsaVersion(STI->getCPU());
693   if (Version.Major >= 10)
694     return Addressable ? AddressableNumSGPRs : 108;
695   if (Version.Major >= 8 && !Addressable)
696     AddressableNumSGPRs = 112;
697   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
698   if (STI->getFeatureBits().test(FeatureTrapHandler))
699     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
700   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
701   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
702 }
703 
704 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
705                           bool FlatScrUsed, bool XNACKUsed) {
706   unsigned ExtraSGPRs = 0;
707   if (VCCUsed)
708     ExtraSGPRs = 2;
709 
710   IsaVersion Version = getIsaVersion(STI->getCPU());
711   if (Version.Major >= 10)
712     return ExtraSGPRs;
713 
714   if (Version.Major < 8) {
715     if (FlatScrUsed)
716       ExtraSGPRs = 4;
717   } else {
718     if (XNACKUsed)
719       ExtraSGPRs = 4;
720 
721     if (FlatScrUsed ||
722         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
723       ExtraSGPRs = 6;
724   }
725 
726   return ExtraSGPRs;
727 }
728 
729 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
730                           bool FlatScrUsed) {
731   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
732                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
733 }
734 
735 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
736   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
737   // SGPRBlocks is actual number of SGPR blocks minus 1.
738   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
739 }
740 
741 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
742                              Optional<bool> EnableWavefrontSize32) {
743   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
744     return 8;
745 
746   bool IsWave32 = EnableWavefrontSize32 ?
747       *EnableWavefrontSize32 :
748       STI->getFeatureBits().test(FeatureWavefrontSize32);
749 
750   if (hasGFX10_3Insts(*STI))
751     return IsWave32 ? 16 : 8;
752 
753   return IsWave32 ? 8 : 4;
754 }
755 
756 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
757                                 Optional<bool> EnableWavefrontSize32) {
758   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
759     return 8;
760 
761   bool IsWave32 = EnableWavefrontSize32 ?
762       *EnableWavefrontSize32 :
763       STI->getFeatureBits().test(FeatureWavefrontSize32);
764 
765   return IsWave32 ? 8 : 4;
766 }
767 
768 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
769   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
770     return 512;
771   if (!isGFX10Plus(*STI))
772     return 256;
773   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
774 }
775 
776 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
777   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
778     return 512;
779   return 256;
780 }
781 
782 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
783   assert(WavesPerEU != 0);
784 
785   if (WavesPerEU >= getMaxWavesPerEU(STI))
786     return 0;
787   unsigned MinNumVGPRs =
788       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
789                 getVGPRAllocGranule(STI)) + 1;
790   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
791 }
792 
793 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
794   assert(WavesPerEU != 0);
795 
796   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
797                                    getVGPRAllocGranule(STI));
798   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
799   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
800 }
801 
802 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
803                           Optional<bool> EnableWavefrontSize32) {
804   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
805                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
806   // VGPRBlocks is actual number of VGPR blocks minus 1.
807   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
808 }
809 
810 } // end namespace IsaInfo
811 
812 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
813                                const MCSubtargetInfo *STI) {
814   IsaVersion Version = getIsaVersion(STI->getCPU());
815 
816   memset(&Header, 0, sizeof(Header));
817 
818   Header.amd_kernel_code_version_major = 1;
819   Header.amd_kernel_code_version_minor = 2;
820   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
821   Header.amd_machine_version_major = Version.Major;
822   Header.amd_machine_version_minor = Version.Minor;
823   Header.amd_machine_version_stepping = Version.Stepping;
824   Header.kernel_code_entry_byte_offset = sizeof(Header);
825   Header.wavefront_size = 6;
826 
827   // If the code object does not support indirect functions, then the value must
828   // be 0xffffffff.
829   Header.call_convention = -1;
830 
831   // These alignment values are specified in powers of two, so alignment =
832   // 2^n.  The minimum alignment is 2^4 = 16.
833   Header.kernarg_segment_alignment = 4;
834   Header.group_segment_alignment = 4;
835   Header.private_segment_alignment = 4;
836 
837   if (Version.Major >= 10) {
838     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
839       Header.wavefront_size = 5;
840       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
841     }
842     Header.compute_pgm_resource_registers |=
843       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
844       S_00B848_MEM_ORDERED(1);
845   }
846 }
847 
848 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
849     const MCSubtargetInfo *STI) {
850   IsaVersion Version = getIsaVersion(STI->getCPU());
851 
852   amdhsa::kernel_descriptor_t KD;
853   memset(&KD, 0, sizeof(KD));
854 
855   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
856                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
857                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
858   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
859                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
860   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
861                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
862   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
863                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
864   if (Version.Major >= 10) {
865     AMDHSA_BITS_SET(KD.kernel_code_properties,
866                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
867                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
868     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
869                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
870                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
871     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
872                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
873   }
874   if (AMDGPU::isGFX90A(*STI)) {
875     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
876                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
877                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
878   }
879   return KD;
880 }
881 
882 bool isGroupSegment(const GlobalValue *GV) {
883   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
884 }
885 
886 bool isGlobalSegment(const GlobalValue *GV) {
887   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
888 }
889 
890 bool isReadOnlySegment(const GlobalValue *GV) {
891   unsigned AS = GV->getAddressSpace();
892   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
893          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
894 }
895 
896 bool shouldEmitConstantsToTextSection(const Triple &TT) {
897   return TT.getArch() == Triple::r600;
898 }
899 
900 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
901   Attribute A = F.getFnAttribute(Name);
902   int Result = Default;
903 
904   if (A.isStringAttribute()) {
905     StringRef Str = A.getValueAsString();
906     if (Str.getAsInteger(0, Result)) {
907       LLVMContext &Ctx = F.getContext();
908       Ctx.emitError("can't parse integer attribute " + Name);
909     }
910   }
911 
912   return Result;
913 }
914 
915 std::pair<int, int> getIntegerPairAttribute(const Function &F,
916                                             StringRef Name,
917                                             std::pair<int, int> Default,
918                                             bool OnlyFirstRequired) {
919   Attribute A = F.getFnAttribute(Name);
920   if (!A.isStringAttribute())
921     return Default;
922 
923   LLVMContext &Ctx = F.getContext();
924   std::pair<int, int> Ints = Default;
925   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
926   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
927     Ctx.emitError("can't parse first integer attribute " + Name);
928     return Default;
929   }
930   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
931     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
932       Ctx.emitError("can't parse second integer attribute " + Name);
933       return Default;
934     }
935   }
936 
937   return Ints;
938 }
939 
940 unsigned getVmcntBitMask(const IsaVersion &Version) {
941   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
942   if (Version.Major < 9)
943     return VmcntLo;
944 
945   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
946   return VmcntLo | VmcntHi;
947 }
948 
949 unsigned getExpcntBitMask(const IsaVersion &Version) {
950   return (1 << getExpcntBitWidth()) - 1;
951 }
952 
953 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
954   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
955 }
956 
957 unsigned getWaitcntBitMask(const IsaVersion &Version) {
958   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
959   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
960   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
961                                 getLgkmcntBitWidth(Version.Major));
962   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
963   if (Version.Major < 9)
964     return Waitcnt;
965 
966   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
967   return Waitcnt | VmcntHi;
968 }
969 
970 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
971   unsigned VmcntLo =
972       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
973   if (Version.Major < 9)
974     return VmcntLo;
975 
976   unsigned VmcntHi =
977       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
978   VmcntHi <<= getVmcntBitWidthLo();
979   return VmcntLo | VmcntHi;
980 }
981 
982 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
983   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
984 }
985 
986 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
987   return unpackBits(Waitcnt, getLgkmcntBitShift(),
988                     getLgkmcntBitWidth(Version.Major));
989 }
990 
991 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
992                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
993   Vmcnt = decodeVmcnt(Version, Waitcnt);
994   Expcnt = decodeExpcnt(Version, Waitcnt);
995   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
996 }
997 
998 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
999   Waitcnt Decoded;
1000   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
1001   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
1002   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
1003   return Decoded;
1004 }
1005 
1006 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
1007                      unsigned Vmcnt) {
1008   Waitcnt =
1009       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
1010   if (Version.Major < 9)
1011     return Waitcnt;
1012 
1013   Vmcnt >>= getVmcntBitWidthLo();
1014   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
1015 }
1016 
1017 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1018                       unsigned Expcnt) {
1019   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
1020 }
1021 
1022 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1023                        unsigned Lgkmcnt) {
1024   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
1025                                     getLgkmcntBitWidth(Version.Major));
1026 }
1027 
1028 unsigned encodeWaitcnt(const IsaVersion &Version,
1029                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
1030   unsigned Waitcnt = getWaitcntBitMask(Version);
1031   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
1032   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1033   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1034   return Waitcnt;
1035 }
1036 
1037 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1038   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
1039 }
1040 
1041 //===----------------------------------------------------------------------===//
1042 // hwreg
1043 //===----------------------------------------------------------------------===//
1044 
1045 namespace Hwreg {
1046 
1047 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) {
1048   if (isGFX10(STI) && Name == "HW_REG_HW_ID") // An alias
1049     return ID_HW_ID1;
1050   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
1051     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
1052       return Id;
1053   }
1054   return ID_UNKNOWN_;
1055 }
1056 
1057 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
1058   if (isSI(STI) || isCI(STI) || isVI(STI))
1059     return ID_SYMBOLIC_FIRST_GFX9_;
1060   else if (isGFX9(STI))
1061     return ID_SYMBOLIC_FIRST_GFX10_;
1062   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
1063     return ID_SYMBOLIC_FIRST_GFX1030_;
1064   else
1065     return ID_SYMBOLIC_LAST_;
1066 }
1067 
1068 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
1069   switch (Id) {
1070   case ID_HW_ID:
1071     return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1072   case ID_HW_ID1:
1073   case ID_HW_ID2:
1074     return isGFX10Plus(STI);
1075   case ID_XNACK_MASK:
1076     return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1077   default:
1078     return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
1079            IdSymbolic[Id];
1080   }
1081 }
1082 
1083 bool isValidHwreg(int64_t Id) {
1084   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1085 }
1086 
1087 bool isValidHwregOffset(int64_t Offset) {
1088   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1089 }
1090 
1091 bool isValidHwregWidth(int64_t Width) {
1092   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1093 }
1094 
1095 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1096   return (Id << ID_SHIFT_) |
1097          (Offset << OFFSET_SHIFT_) |
1098          ((Width - 1) << WIDTH_M1_SHIFT_);
1099 }
1100 
1101 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1102   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
1103 }
1104 
1105 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1106   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1107   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1108   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1109 }
1110 
1111 } // namespace Hwreg
1112 
1113 //===----------------------------------------------------------------------===//
1114 // exp tgt
1115 //===----------------------------------------------------------------------===//
1116 
1117 namespace Exp {
1118 
1119 struct ExpTgt {
1120   StringLiteral Name;
1121   unsigned Tgt;
1122   unsigned MaxIndex;
1123 };
1124 
1125 static constexpr ExpTgt ExpTgtInfo[] = {
1126   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1127   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1128   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1129   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1130   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1131   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1132 };
1133 
1134 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1135   for (const ExpTgt &Val : ExpTgtInfo) {
1136     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1137       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1138       Name = Val.Name;
1139       return true;
1140     }
1141   }
1142   return false;
1143 }
1144 
1145 unsigned getTgtId(const StringRef Name) {
1146 
1147   for (const ExpTgt &Val : ExpTgtInfo) {
1148     if (Val.MaxIndex == 0 && Name == Val.Name)
1149       return Val.Tgt;
1150 
1151     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1152       StringRef Suffix = Name.drop_front(Val.Name.size());
1153 
1154       unsigned Id;
1155       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1156         return ET_INVALID;
1157 
1158       // Disable leading zeroes
1159       if (Suffix.size() > 1 && Suffix[0] == '0')
1160         return ET_INVALID;
1161 
1162       return Val.Tgt + Id;
1163     }
1164   }
1165   return ET_INVALID;
1166 }
1167 
1168 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1169   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1170 }
1171 
1172 } // namespace Exp
1173 
1174 //===----------------------------------------------------------------------===//
1175 // MTBUF Format
1176 //===----------------------------------------------------------------------===//
1177 
1178 namespace MTBUFFormat {
1179 
1180 int64_t getDfmt(const StringRef Name) {
1181   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1182     if (Name == DfmtSymbolic[Id])
1183       return Id;
1184   }
1185   return DFMT_UNDEF;
1186 }
1187 
1188 StringRef getDfmtName(unsigned Id) {
1189   assert(Id <= DFMT_MAX);
1190   return DfmtSymbolic[Id];
1191 }
1192 
1193 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1194   if (isSI(STI) || isCI(STI))
1195     return NfmtSymbolicSICI;
1196   if (isVI(STI) || isGFX9(STI))
1197     return NfmtSymbolicVI;
1198   return NfmtSymbolicGFX10;
1199 }
1200 
1201 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1202   auto lookupTable = getNfmtLookupTable(STI);
1203   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1204     if (Name == lookupTable[Id])
1205       return Id;
1206   }
1207   return NFMT_UNDEF;
1208 }
1209 
1210 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1211   assert(Id <= NFMT_MAX);
1212   return getNfmtLookupTable(STI)[Id];
1213 }
1214 
1215 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1216   unsigned Dfmt;
1217   unsigned Nfmt;
1218   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1219   return isValidNfmt(Nfmt, STI);
1220 }
1221 
1222 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1223   return !getNfmtName(Id, STI).empty();
1224 }
1225 
1226 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1227   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1228 }
1229 
1230 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1231   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1232   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1233 }
1234 
1235 int64_t getUnifiedFormat(const StringRef Name) {
1236   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1237     if (Name == UfmtSymbolic[Id])
1238       return Id;
1239   }
1240   return UFMT_UNDEF;
1241 }
1242 
1243 StringRef getUnifiedFormatName(unsigned Id) {
1244   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1245 }
1246 
1247 bool isValidUnifiedFormat(unsigned Id) {
1248   return Id <= UFMT_LAST;
1249 }
1250 
1251 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1252   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1253   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1254     if (Fmt == DfmtNfmt2UFmt[Id])
1255       return Id;
1256   }
1257   return UFMT_UNDEF;
1258 }
1259 
1260 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1261   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1262 }
1263 
1264 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1265   if (isGFX10Plus(STI))
1266     return UFMT_DEFAULT;
1267   return DFMT_NFMT_DEFAULT;
1268 }
1269 
1270 } // namespace MTBUFFormat
1271 
1272 //===----------------------------------------------------------------------===//
1273 // SendMsg
1274 //===----------------------------------------------------------------------===//
1275 
1276 namespace SendMsg {
1277 
1278 int64_t getMsgId(const StringRef Name) {
1279   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1280     if (IdSymbolic[i] && Name == IdSymbolic[i])
1281       return i;
1282   }
1283   return ID_UNKNOWN_;
1284 }
1285 
1286 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1287   if (Strict) {
1288     switch (MsgId) {
1289     case ID_SAVEWAVE:
1290       return isVI(STI) || isGFX9Plus(STI);
1291     case ID_STALL_WAVE_GEN:
1292     case ID_HALT_WAVES:
1293     case ID_ORDERED_PS_DONE:
1294     case ID_GS_ALLOC_REQ:
1295     case ID_GET_DOORBELL:
1296       return isGFX9Plus(STI);
1297     case ID_EARLY_PRIM_DEALLOC:
1298       return isGFX9(STI);
1299     case ID_GET_DDID:
1300       return isGFX10Plus(STI);
1301     default:
1302       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1303     }
1304   } else {
1305     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1306   }
1307 }
1308 
1309 StringRef getMsgName(int64_t MsgId) {
1310   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1311   return IdSymbolic[MsgId];
1312 }
1313 
1314 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1315   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1316   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1317   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1318   for (int i = F; i < L; ++i) {
1319     if (Name == S[i]) {
1320       return i;
1321     }
1322   }
1323   return OP_UNKNOWN_;
1324 }
1325 
1326 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1327                   bool Strict) {
1328   assert(isValidMsgId(MsgId, STI, Strict));
1329 
1330   if (!Strict)
1331     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1332 
1333   switch(MsgId)
1334   {
1335   case ID_GS:
1336     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1337   case ID_GS_DONE:
1338     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1339   case ID_SYSMSG:
1340     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1341   default:
1342     return OpId == OP_NONE_;
1343   }
1344 }
1345 
1346 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1347   assert(msgRequiresOp(MsgId));
1348   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1349 }
1350 
1351 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1352                       const MCSubtargetInfo &STI, bool Strict) {
1353   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1354 
1355   if (!Strict)
1356     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1357 
1358   switch(MsgId)
1359   {
1360   case ID_GS:
1361     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1362   case ID_GS_DONE:
1363     return (OpId == OP_GS_NOP)?
1364            (StreamId == STREAM_ID_NONE_) :
1365            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1366   default:
1367     return StreamId == STREAM_ID_NONE_;
1368   }
1369 }
1370 
1371 bool msgRequiresOp(int64_t MsgId) {
1372   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1373 }
1374 
1375 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1376   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1377 }
1378 
1379 void decodeMsg(unsigned Val,
1380                uint16_t &MsgId,
1381                uint16_t &OpId,
1382                uint16_t &StreamId) {
1383   MsgId = Val & ID_MASK_;
1384   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1385   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1386 }
1387 
1388 uint64_t encodeMsg(uint64_t MsgId,
1389                    uint64_t OpId,
1390                    uint64_t StreamId) {
1391   return (MsgId << ID_SHIFT_) |
1392          (OpId << OP_SHIFT_) |
1393          (StreamId << STREAM_ID_SHIFT_);
1394 }
1395 
1396 } // namespace SendMsg
1397 
1398 //===----------------------------------------------------------------------===//
1399 //
1400 //===----------------------------------------------------------------------===//
1401 
1402 unsigned getInitialPSInputAddr(const Function &F) {
1403   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1404 }
1405 
1406 bool getHasColorExport(const Function &F) {
1407   // As a safe default always respond as if PS has color exports.
1408   return getIntegerAttribute(
1409              F, "amdgpu-color-export",
1410              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1411 }
1412 
1413 bool getHasDepthExport(const Function &F) {
1414   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1415 }
1416 
1417 bool isShader(CallingConv::ID cc) {
1418   switch(cc) {
1419     case CallingConv::AMDGPU_VS:
1420     case CallingConv::AMDGPU_LS:
1421     case CallingConv::AMDGPU_HS:
1422     case CallingConv::AMDGPU_ES:
1423     case CallingConv::AMDGPU_GS:
1424     case CallingConv::AMDGPU_PS:
1425     case CallingConv::AMDGPU_CS:
1426       return true;
1427     default:
1428       return false;
1429   }
1430 }
1431 
1432 bool isGraphics(CallingConv::ID cc) {
1433   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1434 }
1435 
1436 bool isCompute(CallingConv::ID cc) {
1437   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1438 }
1439 
1440 bool isEntryFunctionCC(CallingConv::ID CC) {
1441   switch (CC) {
1442   case CallingConv::AMDGPU_KERNEL:
1443   case CallingConv::SPIR_KERNEL:
1444   case CallingConv::AMDGPU_VS:
1445   case CallingConv::AMDGPU_GS:
1446   case CallingConv::AMDGPU_PS:
1447   case CallingConv::AMDGPU_CS:
1448   case CallingConv::AMDGPU_ES:
1449   case CallingConv::AMDGPU_HS:
1450   case CallingConv::AMDGPU_LS:
1451     return true;
1452   default:
1453     return false;
1454   }
1455 }
1456 
1457 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1458   switch (CC) {
1459   case CallingConv::AMDGPU_Gfx:
1460     return true;
1461   default:
1462     return isEntryFunctionCC(CC);
1463   }
1464 }
1465 
1466 bool isKernelCC(const Function *Func) {
1467   return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
1468 }
1469 
1470 bool hasXNACK(const MCSubtargetInfo &STI) {
1471   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1472 }
1473 
1474 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1475   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1476 }
1477 
1478 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1479   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1480 }
1481 
1482 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1483   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1484 }
1485 
1486 bool hasG16(const MCSubtargetInfo &STI) {
1487   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1488 }
1489 
1490 bool hasPackedD16(const MCSubtargetInfo &STI) {
1491   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1492 }
1493 
1494 bool isSI(const MCSubtargetInfo &STI) {
1495   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1496 }
1497 
1498 bool isCI(const MCSubtargetInfo &STI) {
1499   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1500 }
1501 
1502 bool isVI(const MCSubtargetInfo &STI) {
1503   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1504 }
1505 
1506 bool isGFX9(const MCSubtargetInfo &STI) {
1507   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1508 }
1509 
1510 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1511   return isGFX9(STI) || isGFX10Plus(STI);
1512 }
1513 
1514 bool isGFX10(const MCSubtargetInfo &STI) {
1515   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1516 }
1517 
1518 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1519 
1520 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1521   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1522 }
1523 
1524 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1525   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1526 }
1527 
1528 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1529   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1530 }
1531 
1532 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1533   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1534 }
1535 
1536 bool isGFX90A(const MCSubtargetInfo &STI) {
1537   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1538 }
1539 
1540 bool isGFX940(const MCSubtargetInfo &STI) {
1541   return STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts];
1542 }
1543 
1544 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1545   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1546 }
1547 
1548 bool hasMAIInsts(const MCSubtargetInfo &STI) {
1549   return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts];
1550 }
1551 
1552 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
1553                          int32_t ArgNumVGPR) {
1554   if (has90AInsts && ArgNumAGPR)
1555     return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
1556   return std::max(ArgNumVGPR, ArgNumAGPR);
1557 }
1558 
1559 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1560   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1561   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1562   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1563     Reg == AMDGPU::SCC;
1564 }
1565 
1566 #define MAP_REG2REG \
1567   using namespace AMDGPU; \
1568   switch(Reg) { \
1569   default: return Reg; \
1570   CASE_CI_VI(FLAT_SCR) \
1571   CASE_CI_VI(FLAT_SCR_LO) \
1572   CASE_CI_VI(FLAT_SCR_HI) \
1573   CASE_VI_GFX9PLUS(TTMP0) \
1574   CASE_VI_GFX9PLUS(TTMP1) \
1575   CASE_VI_GFX9PLUS(TTMP2) \
1576   CASE_VI_GFX9PLUS(TTMP3) \
1577   CASE_VI_GFX9PLUS(TTMP4) \
1578   CASE_VI_GFX9PLUS(TTMP5) \
1579   CASE_VI_GFX9PLUS(TTMP6) \
1580   CASE_VI_GFX9PLUS(TTMP7) \
1581   CASE_VI_GFX9PLUS(TTMP8) \
1582   CASE_VI_GFX9PLUS(TTMP9) \
1583   CASE_VI_GFX9PLUS(TTMP10) \
1584   CASE_VI_GFX9PLUS(TTMP11) \
1585   CASE_VI_GFX9PLUS(TTMP12) \
1586   CASE_VI_GFX9PLUS(TTMP13) \
1587   CASE_VI_GFX9PLUS(TTMP14) \
1588   CASE_VI_GFX9PLUS(TTMP15) \
1589   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1590   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1591   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1592   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1593   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1594   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1595   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1596   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1597   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1598   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1599   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1600   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1601   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1602   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1603   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1604   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1605   }
1606 
1607 #define CASE_CI_VI(node) \
1608   assert(!isSI(STI)); \
1609   case node: return isCI(STI) ? node##_ci : node##_vi;
1610 
1611 #define CASE_VI_GFX9PLUS(node) \
1612   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1613 
1614 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1615   if (STI.getTargetTriple().getArch() == Triple::r600)
1616     return Reg;
1617   MAP_REG2REG
1618 }
1619 
1620 #undef CASE_CI_VI
1621 #undef CASE_VI_GFX9PLUS
1622 
1623 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1624 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1625 
1626 unsigned mc2PseudoReg(unsigned Reg) {
1627   MAP_REG2REG
1628 }
1629 
1630 #undef CASE_CI_VI
1631 #undef CASE_VI_GFX9PLUS
1632 #undef MAP_REG2REG
1633 
1634 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1635   assert(OpNo < Desc.NumOperands);
1636   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1637   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1638          OpType <= AMDGPU::OPERAND_SRC_LAST;
1639 }
1640 
1641 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1642   assert(OpNo < Desc.NumOperands);
1643   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1644   switch (OpType) {
1645   case AMDGPU::OPERAND_REG_IMM_FP32:
1646   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1647   case AMDGPU::OPERAND_REG_IMM_FP64:
1648   case AMDGPU::OPERAND_REG_IMM_FP16:
1649   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1650   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1651   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1652   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1653   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1654   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1655   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1656   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1657   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1658   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1659   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1660   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1661   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1662   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1663   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1664     return true;
1665   default:
1666     return false;
1667   }
1668 }
1669 
1670 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1671   assert(OpNo < Desc.NumOperands);
1672   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1673   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1674          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1675 }
1676 
1677 // Avoid using MCRegisterClass::getSize, since that function will go away
1678 // (move from MC* level to Target* level). Return size in bits.
1679 unsigned getRegBitWidth(unsigned RCID) {
1680   switch (RCID) {
1681   case AMDGPU::VGPR_LO16RegClassID:
1682   case AMDGPU::VGPR_HI16RegClassID:
1683   case AMDGPU::SGPR_LO16RegClassID:
1684   case AMDGPU::AGPR_LO16RegClassID:
1685     return 16;
1686   case AMDGPU::SGPR_32RegClassID:
1687   case AMDGPU::VGPR_32RegClassID:
1688   case AMDGPU::VRegOrLds_32RegClassID:
1689   case AMDGPU::AGPR_32RegClassID:
1690   case AMDGPU::VS_32RegClassID:
1691   case AMDGPU::AV_32RegClassID:
1692   case AMDGPU::SReg_32RegClassID:
1693   case AMDGPU::SReg_32_XM0RegClassID:
1694   case AMDGPU::SRegOrLds_32RegClassID:
1695     return 32;
1696   case AMDGPU::SGPR_64RegClassID:
1697   case AMDGPU::VS_64RegClassID:
1698   case AMDGPU::SReg_64RegClassID:
1699   case AMDGPU::VReg_64RegClassID:
1700   case AMDGPU::AReg_64RegClassID:
1701   case AMDGPU::SReg_64_XEXECRegClassID:
1702   case AMDGPU::VReg_64_Align2RegClassID:
1703   case AMDGPU::AReg_64_Align2RegClassID:
1704   case AMDGPU::AV_64RegClassID:
1705   case AMDGPU::AV_64_Align2RegClassID:
1706     return 64;
1707   case AMDGPU::SGPR_96RegClassID:
1708   case AMDGPU::SReg_96RegClassID:
1709   case AMDGPU::VReg_96RegClassID:
1710   case AMDGPU::AReg_96RegClassID:
1711   case AMDGPU::VReg_96_Align2RegClassID:
1712   case AMDGPU::AReg_96_Align2RegClassID:
1713   case AMDGPU::AV_96RegClassID:
1714   case AMDGPU::AV_96_Align2RegClassID:
1715     return 96;
1716   case AMDGPU::SGPR_128RegClassID:
1717   case AMDGPU::SReg_128RegClassID:
1718   case AMDGPU::VReg_128RegClassID:
1719   case AMDGPU::AReg_128RegClassID:
1720   case AMDGPU::VReg_128_Align2RegClassID:
1721   case AMDGPU::AReg_128_Align2RegClassID:
1722   case AMDGPU::AV_128RegClassID:
1723   case AMDGPU::AV_128_Align2RegClassID:
1724     return 128;
1725   case AMDGPU::SGPR_160RegClassID:
1726   case AMDGPU::SReg_160RegClassID:
1727   case AMDGPU::VReg_160RegClassID:
1728   case AMDGPU::AReg_160RegClassID:
1729   case AMDGPU::VReg_160_Align2RegClassID:
1730   case AMDGPU::AReg_160_Align2RegClassID:
1731   case AMDGPU::AV_160RegClassID:
1732   case AMDGPU::AV_160_Align2RegClassID:
1733     return 160;
1734   case AMDGPU::SGPR_192RegClassID:
1735   case AMDGPU::SReg_192RegClassID:
1736   case AMDGPU::VReg_192RegClassID:
1737   case AMDGPU::AReg_192RegClassID:
1738   case AMDGPU::VReg_192_Align2RegClassID:
1739   case AMDGPU::AReg_192_Align2RegClassID:
1740   case AMDGPU::AV_192RegClassID:
1741   case AMDGPU::AV_192_Align2RegClassID:
1742     return 192;
1743   case AMDGPU::SGPR_224RegClassID:
1744   case AMDGPU::SReg_224RegClassID:
1745   case AMDGPU::VReg_224RegClassID:
1746   case AMDGPU::AReg_224RegClassID:
1747   case AMDGPU::VReg_224_Align2RegClassID:
1748   case AMDGPU::AReg_224_Align2RegClassID:
1749   case AMDGPU::AV_224RegClassID:
1750   case AMDGPU::AV_224_Align2RegClassID:
1751     return 224;
1752   case AMDGPU::SGPR_256RegClassID:
1753   case AMDGPU::SReg_256RegClassID:
1754   case AMDGPU::VReg_256RegClassID:
1755   case AMDGPU::AReg_256RegClassID:
1756   case AMDGPU::VReg_256_Align2RegClassID:
1757   case AMDGPU::AReg_256_Align2RegClassID:
1758   case AMDGPU::AV_256RegClassID:
1759   case AMDGPU::AV_256_Align2RegClassID:
1760     return 256;
1761   case AMDGPU::SGPR_512RegClassID:
1762   case AMDGPU::SReg_512RegClassID:
1763   case AMDGPU::VReg_512RegClassID:
1764   case AMDGPU::AReg_512RegClassID:
1765   case AMDGPU::VReg_512_Align2RegClassID:
1766   case AMDGPU::AReg_512_Align2RegClassID:
1767   case AMDGPU::AV_512RegClassID:
1768   case AMDGPU::AV_512_Align2RegClassID:
1769     return 512;
1770   case AMDGPU::SGPR_1024RegClassID:
1771   case AMDGPU::SReg_1024RegClassID:
1772   case AMDGPU::VReg_1024RegClassID:
1773   case AMDGPU::AReg_1024RegClassID:
1774   case AMDGPU::VReg_1024_Align2RegClassID:
1775   case AMDGPU::AReg_1024_Align2RegClassID:
1776   case AMDGPU::AV_1024RegClassID:
1777   case AMDGPU::AV_1024_Align2RegClassID:
1778     return 1024;
1779   default:
1780     llvm_unreachable("Unexpected register class");
1781   }
1782 }
1783 
1784 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1785   return getRegBitWidth(RC.getID());
1786 }
1787 
1788 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1789                            unsigned OpNo) {
1790   assert(OpNo < Desc.NumOperands);
1791   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1792   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1793 }
1794 
1795 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1796   if (isInlinableIntLiteral(Literal))
1797     return true;
1798 
1799   uint64_t Val = static_cast<uint64_t>(Literal);
1800   return (Val == DoubleToBits(0.0)) ||
1801          (Val == DoubleToBits(1.0)) ||
1802          (Val == DoubleToBits(-1.0)) ||
1803          (Val == DoubleToBits(0.5)) ||
1804          (Val == DoubleToBits(-0.5)) ||
1805          (Val == DoubleToBits(2.0)) ||
1806          (Val == DoubleToBits(-2.0)) ||
1807          (Val == DoubleToBits(4.0)) ||
1808          (Val == DoubleToBits(-4.0)) ||
1809          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1810 }
1811 
1812 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1813   if (isInlinableIntLiteral(Literal))
1814     return true;
1815 
1816   // The actual type of the operand does not seem to matter as long
1817   // as the bits match one of the inline immediate values.  For example:
1818   //
1819   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1820   // so it is a legal inline immediate.
1821   //
1822   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1823   // floating-point, so it is a legal inline immediate.
1824 
1825   uint32_t Val = static_cast<uint32_t>(Literal);
1826   return (Val == FloatToBits(0.0f)) ||
1827          (Val == FloatToBits(1.0f)) ||
1828          (Val == FloatToBits(-1.0f)) ||
1829          (Val == FloatToBits(0.5f)) ||
1830          (Val == FloatToBits(-0.5f)) ||
1831          (Val == FloatToBits(2.0f)) ||
1832          (Val == FloatToBits(-2.0f)) ||
1833          (Val == FloatToBits(4.0f)) ||
1834          (Val == FloatToBits(-4.0f)) ||
1835          (Val == 0x3e22f983 && HasInv2Pi);
1836 }
1837 
1838 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1839   if (!HasInv2Pi)
1840     return false;
1841 
1842   if (isInlinableIntLiteral(Literal))
1843     return true;
1844 
1845   uint16_t Val = static_cast<uint16_t>(Literal);
1846   return Val == 0x3C00 || // 1.0
1847          Val == 0xBC00 || // -1.0
1848          Val == 0x3800 || // 0.5
1849          Val == 0xB800 || // -0.5
1850          Val == 0x4000 || // 2.0
1851          Val == 0xC000 || // -2.0
1852          Val == 0x4400 || // 4.0
1853          Val == 0xC400 || // -4.0
1854          Val == 0x3118;   // 1/2pi
1855 }
1856 
1857 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1858   assert(HasInv2Pi);
1859 
1860   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1861     int16_t Trunc = static_cast<int16_t>(Literal);
1862     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1863   }
1864   if (!(Literal & 0xffff))
1865     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1866 
1867   int16_t Lo16 = static_cast<int16_t>(Literal);
1868   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1869   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1870 }
1871 
1872 bool isInlinableIntLiteralV216(int32_t Literal) {
1873   int16_t Lo16 = static_cast<int16_t>(Literal);
1874   if (isInt<16>(Literal) || isUInt<16>(Literal))
1875     return isInlinableIntLiteral(Lo16);
1876 
1877   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1878   if (!(Literal & 0xffff))
1879     return isInlinableIntLiteral(Hi16);
1880   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1881 }
1882 
1883 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1884   assert(HasInv2Pi);
1885 
1886   int16_t Lo16 = static_cast<int16_t>(Literal);
1887   if (isInt<16>(Literal) || isUInt<16>(Literal))
1888     return true;
1889 
1890   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1891   if (!(Literal & 0xffff))
1892     return true;
1893   return Lo16 == Hi16;
1894 }
1895 
1896 bool isArgPassedInSGPR(const Argument *A) {
1897   const Function *F = A->getParent();
1898 
1899   // Arguments to compute shaders are never a source of divergence.
1900   CallingConv::ID CC = F->getCallingConv();
1901   switch (CC) {
1902   case CallingConv::AMDGPU_KERNEL:
1903   case CallingConv::SPIR_KERNEL:
1904     return true;
1905   case CallingConv::AMDGPU_VS:
1906   case CallingConv::AMDGPU_LS:
1907   case CallingConv::AMDGPU_HS:
1908   case CallingConv::AMDGPU_ES:
1909   case CallingConv::AMDGPU_GS:
1910   case CallingConv::AMDGPU_PS:
1911   case CallingConv::AMDGPU_CS:
1912   case CallingConv::AMDGPU_Gfx:
1913     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1914     // Everything else is in VGPRs.
1915     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
1916            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
1917   default:
1918     // TODO: Should calls support inreg for SGPR inputs?
1919     return false;
1920   }
1921 }
1922 
1923 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1924   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1925 }
1926 
1927 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1928   return isGFX9Plus(ST);
1929 }
1930 
1931 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1932                                       int64_t EncodedOffset) {
1933   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1934                                : isUInt<8>(EncodedOffset);
1935 }
1936 
1937 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1938                                     int64_t EncodedOffset,
1939                                     bool IsBuffer) {
1940   return !IsBuffer &&
1941          hasSMRDSignedImmOffset(ST) &&
1942          isInt<21>(EncodedOffset);
1943 }
1944 
1945 static bool isDwordAligned(uint64_t ByteOffset) {
1946   return (ByteOffset & 3) == 0;
1947 }
1948 
1949 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1950                                 uint64_t ByteOffset) {
1951   if (hasSMEMByteOffset(ST))
1952     return ByteOffset;
1953 
1954   assert(isDwordAligned(ByteOffset));
1955   return ByteOffset >> 2;
1956 }
1957 
1958 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1959                                        int64_t ByteOffset, bool IsBuffer) {
1960   // The signed version is always a byte offset.
1961   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1962     assert(hasSMEMByteOffset(ST));
1963     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1964   }
1965 
1966   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1967     return None;
1968 
1969   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1970   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1971              ? Optional<int64_t>(EncodedOffset)
1972              : None;
1973 }
1974 
1975 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1976                                                 int64_t ByteOffset) {
1977   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1978     return None;
1979 
1980   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1981   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1982 }
1983 
1984 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1985   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1986   if (AMDGPU::isGFX10(ST))
1987     return Signed ? 12 : 11;
1988 
1989   return Signed ? 13 : 12;
1990 }
1991 
1992 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1993 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1994 // hardware bug needing a workaround).
1995 //
1996 // The required alignment ensures that individual address components remain
1997 // aligned if they are aligned to begin with. It also ensures that additional
1998 // offsets within the given alignment can be added to the resulting ImmOffset.
1999 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
2000                       const GCNSubtarget *Subtarget, Align Alignment) {
2001   const uint32_t MaxImm = alignDown(4095, Alignment.value());
2002   uint32_t Overflow = 0;
2003 
2004   if (Imm > MaxImm) {
2005     if (Imm <= MaxImm + 64) {
2006       // Use an SOffset inline constant for 4..64
2007       Overflow = Imm - MaxImm;
2008       Imm = MaxImm;
2009     } else {
2010       // Try to keep the same value in SOffset for adjacent loads, so that
2011       // the corresponding register contents can be re-used.
2012       //
2013       // Load values with all low-bits (except for alignment bits) set into
2014       // SOffset, so that a larger range of values can be covered using
2015       // s_movk_i32.
2016       //
2017       // Atomic operations fail to work correctly when individual address
2018       // components are unaligned, even if their sum is aligned.
2019       uint32_t High = (Imm + Alignment.value()) & ~4095;
2020       uint32_t Low = (Imm + Alignment.value()) & 4095;
2021       Imm = Low;
2022       Overflow = High - Alignment.value();
2023     }
2024   }
2025 
2026   // There is a hardware bug in SI and CI which prevents address clamping in
2027   // MUBUF instructions from working correctly with SOffsets. The immediate
2028   // offset is unaffected.
2029   if (Overflow > 0 &&
2030       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
2031     return false;
2032 
2033   ImmOffset = Imm;
2034   SOffset = Overflow;
2035   return true;
2036 }
2037 
2038 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
2039   *this = getDefaultForCallingConv(F.getCallingConv());
2040 
2041   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
2042   if (!IEEEAttr.empty())
2043     IEEE = IEEEAttr == "true";
2044 
2045   StringRef DX10ClampAttr
2046     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
2047   if (!DX10ClampAttr.empty())
2048     DX10Clamp = DX10ClampAttr == "true";
2049 
2050   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
2051   if (!DenormF32Attr.empty()) {
2052     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
2053     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2054     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2055   }
2056 
2057   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
2058   if (!DenormAttr.empty()) {
2059     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2060 
2061     if (DenormF32Attr.empty()) {
2062       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2063       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2064     }
2065 
2066     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2067     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2068   }
2069 }
2070 
2071 namespace {
2072 
2073 struct SourceOfDivergence {
2074   unsigned Intr;
2075 };
2076 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2077 
2078 #define GET_SourcesOfDivergence_IMPL
2079 #define GET_Gfx9BufferFormat_IMPL
2080 #define GET_Gfx10PlusBufferFormat_IMPL
2081 #include "AMDGPUGenSearchableTables.inc"
2082 
2083 } // end anonymous namespace
2084 
2085 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2086   return lookupSourceOfDivergence(IntrID);
2087 }
2088 
2089 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2090                                                   uint8_t NumComponents,
2091                                                   uint8_t NumFormat,
2092                                                   const MCSubtargetInfo &STI) {
2093   return isGFX10Plus(STI)
2094              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
2095                                             NumFormat)
2096              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
2097 }
2098 
2099 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2100                                                   const MCSubtargetInfo &STI) {
2101   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
2102                           : getGfx9BufferFormatInfo(Format);
2103 }
2104 
2105 } // namespace AMDGPU
2106 
2107 raw_ostream &operator<<(raw_ostream &OS,
2108                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2109   switch (S) {
2110   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2111     OS << "Unsupported";
2112     break;
2113   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2114     OS << "Any";
2115     break;
2116   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2117     OS << "Off";
2118     break;
2119   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2120     OS << "On";
2121     break;
2122   }
2123   return OS;
2124 }
2125 
2126 } // namespace llvm
2127