1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDGPUTargetTransformInfo.h"
13 #include "SIDefines.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/IntrinsicsR600.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSectionELF.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include "llvm/MC/SubtargetFeature.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <cstring>
41 #include <utility>
42 
43 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
44 
45 #define GET_INSTRINFO_NAMED_OPS
46 #define GET_INSTRMAP_INFO
47 #include "AMDGPUGenInstrInfo.inc"
48 #undef GET_INSTRMAP_INFO
49 #undef GET_INSTRINFO_NAMED_OPS
50 
51 namespace {
52 
53 /// \returns Bit mask for given bit \p Shift and bit \p Width.
54 unsigned getBitMask(unsigned Shift, unsigned Width) {
55   return ((1 << Width) - 1) << Shift;
56 }
57 
58 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
59 ///
60 /// \returns Packed \p Dst.
61 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
62   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
63   Dst |= (Src << Shift) & getBitMask(Shift, Width);
64   return Dst;
65 }
66 
67 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
68 ///
69 /// \returns Unpacked bits.
70 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
71   return (Src & getBitMask(Shift, Width)) >> Shift;
72 }
73 
74 /// \returns Vmcnt bit shift (lower bits).
75 unsigned getVmcntBitShiftLo() { return 0; }
76 
77 /// \returns Vmcnt bit width (lower bits).
78 unsigned getVmcntBitWidthLo() { return 4; }
79 
80 /// \returns Expcnt bit shift.
81 unsigned getExpcntBitShift() { return 4; }
82 
83 /// \returns Expcnt bit width.
84 unsigned getExpcntBitWidth() { return 3; }
85 
86 /// \returns Lgkmcnt bit shift.
87 unsigned getLgkmcntBitShift() { return 8; }
88 
89 /// \returns Lgkmcnt bit width.
90 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
91   return (VersionMajor >= 10) ? 6 : 4;
92 }
93 
94 /// \returns Vmcnt bit shift (higher bits).
95 unsigned getVmcntBitShiftHi() { return 14; }
96 
97 /// \returns Vmcnt bit width (higher bits).
98 unsigned getVmcntBitWidthHi() { return 2; }
99 
100 } // end namespace anonymous
101 
102 namespace llvm {
103 
104 namespace AMDGPU {
105 
106 #define GET_MIMGBaseOpcodesTable_IMPL
107 #define GET_MIMGDimInfoTable_IMPL
108 #define GET_MIMGInfoTable_IMPL
109 #define GET_MIMGLZMappingTable_IMPL
110 #define GET_MIMGMIPMappingTable_IMPL
111 #include "AMDGPUGenSearchableTables.inc"
112 
113 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
114                   unsigned VDataDwords, unsigned VAddrDwords) {
115   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
116                                              VDataDwords, VAddrDwords);
117   return Info ? Info->Opcode : -1;
118 }
119 
120 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
121   const MIMGInfo *Info = getMIMGInfo(Opc);
122   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
123 }
124 
125 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
126   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
127   const MIMGInfo *NewInfo =
128       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
129                           NewChannels, OrigInfo->VAddrDwords);
130   return NewInfo ? NewInfo->Opcode : -1;
131 }
132 
133 struct MUBUFInfo {
134   uint16_t Opcode;
135   uint16_t BaseOpcode;
136   uint8_t elements;
137   bool has_vaddr;
138   bool has_srsrc;
139   bool has_soffset;
140 };
141 
142 struct MTBUFInfo {
143   uint16_t Opcode;
144   uint16_t BaseOpcode;
145   uint8_t elements;
146   bool has_vaddr;
147   bool has_srsrc;
148   bool has_soffset;
149 };
150 
151 #define GET_MTBUFInfoTable_DECL
152 #define GET_MTBUFInfoTable_IMPL
153 #define GET_MUBUFInfoTable_DECL
154 #define GET_MUBUFInfoTable_IMPL
155 #include "AMDGPUGenSearchableTables.inc"
156 
157 int getMTBUFBaseOpcode(unsigned Opc) {
158   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
159   return Info ? Info->BaseOpcode : -1;
160 }
161 
162 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
163   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
164   return Info ? Info->Opcode : -1;
165 }
166 
167 int getMTBUFElements(unsigned Opc) {
168   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
169   return Info ? Info->elements : 0;
170 }
171 
172 bool getMTBUFHasVAddr(unsigned Opc) {
173   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
174   return Info ? Info->has_vaddr : false;
175 }
176 
177 bool getMTBUFHasSrsrc(unsigned Opc) {
178   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
179   return Info ? Info->has_srsrc : false;
180 }
181 
182 bool getMTBUFHasSoffset(unsigned Opc) {
183   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
184   return Info ? Info->has_soffset : false;
185 }
186 
187 int getMUBUFBaseOpcode(unsigned Opc) {
188   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
189   return Info ? Info->BaseOpcode : -1;
190 }
191 
192 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
193   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
194   return Info ? Info->Opcode : -1;
195 }
196 
197 int getMUBUFElements(unsigned Opc) {
198   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
199   return Info ? Info->elements : 0;
200 }
201 
202 bool getMUBUFHasVAddr(unsigned Opc) {
203   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
204   return Info ? Info->has_vaddr : false;
205 }
206 
207 bool getMUBUFHasSrsrc(unsigned Opc) {
208   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
209   return Info ? Info->has_srsrc : false;
210 }
211 
212 bool getMUBUFHasSoffset(unsigned Opc) {
213   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
214   return Info ? Info->has_soffset : false;
215 }
216 
217 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
218 // header files, so we need to wrap it in a function that takes unsigned
219 // instead.
220 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
221   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
222 }
223 
224 namespace IsaInfo {
225 
226 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
227   auto TargetTriple = STI->getTargetTriple();
228   auto Version = getIsaVersion(STI->getCPU());
229 
230   Stream << TargetTriple.getArchName() << '-'
231          << TargetTriple.getVendorName() << '-'
232          << TargetTriple.getOSName() << '-'
233          << TargetTriple.getEnvironmentName() << '-'
234          << "gfx"
235          << Version.Major
236          << Version.Minor
237          << Version.Stepping;
238 
239   if (hasXNACK(*STI))
240     Stream << "+xnack";
241   if (hasSRAMECC(*STI))
242     Stream << "+sram-ecc";
243 
244   Stream.flush();
245 }
246 
247 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
248   return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
249              STI->getFeatureBits().test(FeatureCodeObjectV3);
250 }
251 
252 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
253   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
254     return 16;
255   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
256     return 32;
257 
258   return 64;
259 }
260 
261 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
262   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
263     return 32768;
264   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
265     return 65536;
266 
267   return 0;
268 }
269 
270 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
271   // "Per CU" really means "per whatever functional block the waves of a
272   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
273   // two SIMDs.
274   if (isGFX10(*STI) && STI->getFeatureBits().test(FeatureCuMode))
275     return 2;
276   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
277   // two CUs, so a total of four SIMDs.
278   return 4;
279 }
280 
281 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
282                                unsigned FlatWorkGroupSize) {
283   assert(FlatWorkGroupSize != 0);
284   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
285     return 8;
286   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
287   if (N == 1)
288     return 40;
289   N = 40 / N;
290   return std::min(N, 16u);
291 }
292 
293 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
294   return 1;
295 }
296 
297 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
298   // FIXME: Need to take scratch memory into account.
299   if (!isGFX10(*STI))
300     return 10;
301   return 20;
302 }
303 
304 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
305                                    unsigned FlatWorkGroupSize) {
306   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
307                     getEUsPerCU(STI));
308 }
309 
310 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
311   return 1;
312 }
313 
314 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
315   // Some subtargets allow encoding 2048, but this isn't tested or supported.
316   return 1024;
317 }
318 
319 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
320                               unsigned FlatWorkGroupSize) {
321   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
322 }
323 
324 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
325   IsaVersion Version = getIsaVersion(STI->getCPU());
326   if (Version.Major >= 10)
327     return getAddressableNumSGPRs(STI);
328   if (Version.Major >= 8)
329     return 16;
330   return 8;
331 }
332 
333 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
334   return 8;
335 }
336 
337 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
338   IsaVersion Version = getIsaVersion(STI->getCPU());
339   if (Version.Major >= 8)
340     return 800;
341   return 512;
342 }
343 
344 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
345   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
346     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
347 
348   IsaVersion Version = getIsaVersion(STI->getCPU());
349   if (Version.Major >= 10)
350     return 106;
351   if (Version.Major >= 8)
352     return 102;
353   return 104;
354 }
355 
356 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
357   assert(WavesPerEU != 0);
358 
359   IsaVersion Version = getIsaVersion(STI->getCPU());
360   if (Version.Major >= 10)
361     return 0;
362 
363   if (WavesPerEU >= getMaxWavesPerEU(STI))
364     return 0;
365 
366   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
367   if (STI->getFeatureBits().test(FeatureTrapHandler))
368     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
369   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
370   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
371 }
372 
373 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
374                         bool Addressable) {
375   assert(WavesPerEU != 0);
376 
377   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
378   IsaVersion Version = getIsaVersion(STI->getCPU());
379   if (Version.Major >= 10)
380     return Addressable ? AddressableNumSGPRs : 108;
381   if (Version.Major >= 8 && !Addressable)
382     AddressableNumSGPRs = 112;
383   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
384   if (STI->getFeatureBits().test(FeatureTrapHandler))
385     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
386   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
387   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
388 }
389 
390 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
391                           bool FlatScrUsed, bool XNACKUsed) {
392   unsigned ExtraSGPRs = 0;
393   if (VCCUsed)
394     ExtraSGPRs = 2;
395 
396   IsaVersion Version = getIsaVersion(STI->getCPU());
397   if (Version.Major >= 10)
398     return ExtraSGPRs;
399 
400   if (Version.Major < 8) {
401     if (FlatScrUsed)
402       ExtraSGPRs = 4;
403   } else {
404     if (XNACKUsed)
405       ExtraSGPRs = 4;
406 
407     if (FlatScrUsed)
408       ExtraSGPRs = 6;
409   }
410 
411   return ExtraSGPRs;
412 }
413 
414 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
415                           bool FlatScrUsed) {
416   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
417                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
418 }
419 
420 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
421   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
422   // SGPRBlocks is actual number of SGPR blocks minus 1.
423   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
424 }
425 
426 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
427                              Optional<bool> EnableWavefrontSize32) {
428   bool IsWave32 = EnableWavefrontSize32 ?
429       *EnableWavefrontSize32 :
430       STI->getFeatureBits().test(FeatureWavefrontSize32);
431   return IsWave32 ? 8 : 4;
432 }
433 
434 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
435                                 Optional<bool> EnableWavefrontSize32) {
436   return getVGPRAllocGranule(STI, EnableWavefrontSize32);
437 }
438 
439 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
440   if (!isGFX10(*STI))
441     return 256;
442   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
443 }
444 
445 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
446   return 256;
447 }
448 
449 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
450   assert(WavesPerEU != 0);
451 
452   if (WavesPerEU >= getMaxWavesPerEU(STI))
453     return 0;
454   unsigned MinNumVGPRs =
455       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
456                 getVGPRAllocGranule(STI)) + 1;
457   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
458 }
459 
460 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
461   assert(WavesPerEU != 0);
462 
463   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
464                                    getVGPRAllocGranule(STI));
465   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
466   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
467 }
468 
469 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
470                           Optional<bool> EnableWavefrontSize32) {
471   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
472                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
473   // VGPRBlocks is actual number of VGPR blocks minus 1.
474   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
475 }
476 
477 } // end namespace IsaInfo
478 
479 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
480                                const MCSubtargetInfo *STI) {
481   IsaVersion Version = getIsaVersion(STI->getCPU());
482 
483   memset(&Header, 0, sizeof(Header));
484 
485   Header.amd_kernel_code_version_major = 1;
486   Header.amd_kernel_code_version_minor = 2;
487   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
488   Header.amd_machine_version_major = Version.Major;
489   Header.amd_machine_version_minor = Version.Minor;
490   Header.amd_machine_version_stepping = Version.Stepping;
491   Header.kernel_code_entry_byte_offset = sizeof(Header);
492   Header.wavefront_size = 6;
493 
494   // If the code object does not support indirect functions, then the value must
495   // be 0xffffffff.
496   Header.call_convention = -1;
497 
498   // These alignment values are specified in powers of two, so alignment =
499   // 2^n.  The minimum alignment is 2^4 = 16.
500   Header.kernarg_segment_alignment = 4;
501   Header.group_segment_alignment = 4;
502   Header.private_segment_alignment = 4;
503 
504   if (Version.Major >= 10) {
505     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
506       Header.wavefront_size = 5;
507       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
508     }
509     Header.compute_pgm_resource_registers |=
510       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
511       S_00B848_MEM_ORDERED(1);
512   }
513 }
514 
515 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
516     const MCSubtargetInfo *STI) {
517   IsaVersion Version = getIsaVersion(STI->getCPU());
518 
519   amdhsa::kernel_descriptor_t KD;
520   memset(&KD, 0, sizeof(KD));
521 
522   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
523                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
524                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
525   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
526                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
527   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
528                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
529   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
530                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
531   if (Version.Major >= 10) {
532     AMDHSA_BITS_SET(KD.kernel_code_properties,
533                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
534                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
535     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
536                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
537                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
538     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
539                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
540   }
541   return KD;
542 }
543 
544 bool isGroupSegment(const GlobalValue *GV) {
545   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
546 }
547 
548 bool isGlobalSegment(const GlobalValue *GV) {
549   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
550 }
551 
552 bool isReadOnlySegment(const GlobalValue *GV) {
553   unsigned AS = GV->getAddressSpace();
554   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
555          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
556 }
557 
558 bool shouldEmitConstantsToTextSection(const Triple &TT) {
559   return TT.getOS() == Triple::AMDPAL || TT.getArch() == Triple::r600;
560 }
561 
562 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
563   Attribute A = F.getFnAttribute(Name);
564   int Result = Default;
565 
566   if (A.isStringAttribute()) {
567     StringRef Str = A.getValueAsString();
568     if (Str.getAsInteger(0, Result)) {
569       LLVMContext &Ctx = F.getContext();
570       Ctx.emitError("can't parse integer attribute " + Name);
571     }
572   }
573 
574   return Result;
575 }
576 
577 std::pair<int, int> getIntegerPairAttribute(const Function &F,
578                                             StringRef Name,
579                                             std::pair<int, int> Default,
580                                             bool OnlyFirstRequired) {
581   Attribute A = F.getFnAttribute(Name);
582   if (!A.isStringAttribute())
583     return Default;
584 
585   LLVMContext &Ctx = F.getContext();
586   std::pair<int, int> Ints = Default;
587   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
588   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
589     Ctx.emitError("can't parse first integer attribute " + Name);
590     return Default;
591   }
592   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
593     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
594       Ctx.emitError("can't parse second integer attribute " + Name);
595       return Default;
596     }
597   }
598 
599   return Ints;
600 }
601 
602 unsigned getVmcntBitMask(const IsaVersion &Version) {
603   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
604   if (Version.Major < 9)
605     return VmcntLo;
606 
607   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
608   return VmcntLo | VmcntHi;
609 }
610 
611 unsigned getExpcntBitMask(const IsaVersion &Version) {
612   return (1 << getExpcntBitWidth()) - 1;
613 }
614 
615 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
616   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
617 }
618 
619 unsigned getWaitcntBitMask(const IsaVersion &Version) {
620   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
621   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
622   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
623                                 getLgkmcntBitWidth(Version.Major));
624   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
625   if (Version.Major < 9)
626     return Waitcnt;
627 
628   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
629   return Waitcnt | VmcntHi;
630 }
631 
632 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
633   unsigned VmcntLo =
634       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
635   if (Version.Major < 9)
636     return VmcntLo;
637 
638   unsigned VmcntHi =
639       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
640   VmcntHi <<= getVmcntBitWidthLo();
641   return VmcntLo | VmcntHi;
642 }
643 
644 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
645   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
646 }
647 
648 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
649   return unpackBits(Waitcnt, getLgkmcntBitShift(),
650                     getLgkmcntBitWidth(Version.Major));
651 }
652 
653 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
654                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
655   Vmcnt = decodeVmcnt(Version, Waitcnt);
656   Expcnt = decodeExpcnt(Version, Waitcnt);
657   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
658 }
659 
660 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
661   Waitcnt Decoded;
662   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
663   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
664   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
665   return Decoded;
666 }
667 
668 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
669                      unsigned Vmcnt) {
670   Waitcnt =
671       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
672   if (Version.Major < 9)
673     return Waitcnt;
674 
675   Vmcnt >>= getVmcntBitWidthLo();
676   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
677 }
678 
679 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
680                       unsigned Expcnt) {
681   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
682 }
683 
684 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
685                        unsigned Lgkmcnt) {
686   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
687                                     getLgkmcntBitWidth(Version.Major));
688 }
689 
690 unsigned encodeWaitcnt(const IsaVersion &Version,
691                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
692   unsigned Waitcnt = getWaitcntBitMask(Version);
693   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
694   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
695   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
696   return Waitcnt;
697 }
698 
699 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
700   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
701 }
702 
703 //===----------------------------------------------------------------------===//
704 // hwreg
705 //===----------------------------------------------------------------------===//
706 
707 namespace Hwreg {
708 
709 int64_t getHwregId(const StringRef Name) {
710   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
711     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
712       return Id;
713   }
714   return ID_UNKNOWN_;
715 }
716 
717 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
718   if (isSI(STI) || isCI(STI) || isVI(STI))
719     return ID_SYMBOLIC_FIRST_GFX9_;
720   else if (isGFX9(STI))
721     return ID_SYMBOLIC_FIRST_GFX10_;
722   else
723     return ID_SYMBOLIC_LAST_;
724 }
725 
726 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
727   return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
728          IdSymbolic[Id];
729 }
730 
731 bool isValidHwreg(int64_t Id) {
732   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
733 }
734 
735 bool isValidHwregOffset(int64_t Offset) {
736   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
737 }
738 
739 bool isValidHwregWidth(int64_t Width) {
740   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
741 }
742 
743 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
744   return (Id << ID_SHIFT_) |
745          (Offset << OFFSET_SHIFT_) |
746          ((Width - 1) << WIDTH_M1_SHIFT_);
747 }
748 
749 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
750   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
751 }
752 
753 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
754   Id = (Val & ID_MASK_) >> ID_SHIFT_;
755   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
756   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
757 }
758 
759 } // namespace Hwreg
760 
761 //===----------------------------------------------------------------------===//
762 // SendMsg
763 //===----------------------------------------------------------------------===//
764 
765 namespace SendMsg {
766 
767 int64_t getMsgId(const StringRef Name) {
768   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
769     if (IdSymbolic[i] && Name == IdSymbolic[i])
770       return i;
771   }
772   return ID_UNKNOWN_;
773 }
774 
775 static bool isValidMsgId(int64_t MsgId) {
776   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
777 }
778 
779 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
780   if (Strict) {
781     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
782       return isGFX9(STI) || isGFX10(STI);
783     else
784       return isValidMsgId(MsgId);
785   } else {
786     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
787   }
788 }
789 
790 StringRef getMsgName(int64_t MsgId) {
791   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
792 }
793 
794 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
795   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
796   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
797   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
798   for (int i = F; i < L; ++i) {
799     if (Name == S[i]) {
800       return i;
801     }
802   }
803   return OP_UNKNOWN_;
804 }
805 
806 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
807 
808   if (!Strict)
809     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
810 
811   switch(MsgId)
812   {
813   case ID_GS:
814     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
815   case ID_GS_DONE:
816     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
817   case ID_SYSMSG:
818     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
819   default:
820     return OpId == OP_NONE_;
821   }
822 }
823 
824 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
825   assert(msgRequiresOp(MsgId));
826   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
827 }
828 
829 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
830 
831   if (!Strict)
832     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
833 
834   switch(MsgId)
835   {
836   case ID_GS:
837     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
838   case ID_GS_DONE:
839     return (OpId == OP_GS_NOP)?
840            (StreamId == STREAM_ID_NONE_) :
841            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
842   default:
843     return StreamId == STREAM_ID_NONE_;
844   }
845 }
846 
847 bool msgRequiresOp(int64_t MsgId) {
848   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
849 }
850 
851 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
852   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
853 }
854 
855 void decodeMsg(unsigned Val,
856                uint16_t &MsgId,
857                uint16_t &OpId,
858                uint16_t &StreamId) {
859   MsgId = Val & ID_MASK_;
860   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
861   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
862 }
863 
864 uint64_t encodeMsg(uint64_t MsgId,
865                    uint64_t OpId,
866                    uint64_t StreamId) {
867   return (MsgId << ID_SHIFT_) |
868          (OpId << OP_SHIFT_) |
869          (StreamId << STREAM_ID_SHIFT_);
870 }
871 
872 } // namespace SendMsg
873 
874 //===----------------------------------------------------------------------===//
875 //
876 //===----------------------------------------------------------------------===//
877 
878 unsigned getInitialPSInputAddr(const Function &F) {
879   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
880 }
881 
882 bool isShader(CallingConv::ID cc) {
883   switch(cc) {
884     case CallingConv::AMDGPU_VS:
885     case CallingConv::AMDGPU_LS:
886     case CallingConv::AMDGPU_HS:
887     case CallingConv::AMDGPU_ES:
888     case CallingConv::AMDGPU_GS:
889     case CallingConv::AMDGPU_PS:
890     case CallingConv::AMDGPU_CS:
891       return true;
892     default:
893       return false;
894   }
895 }
896 
897 bool isCompute(CallingConv::ID cc) {
898   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
899 }
900 
901 bool isEntryFunctionCC(CallingConv::ID CC) {
902   switch (CC) {
903   case CallingConv::AMDGPU_KERNEL:
904   case CallingConv::SPIR_KERNEL:
905   case CallingConv::AMDGPU_VS:
906   case CallingConv::AMDGPU_GS:
907   case CallingConv::AMDGPU_PS:
908   case CallingConv::AMDGPU_CS:
909   case CallingConv::AMDGPU_ES:
910   case CallingConv::AMDGPU_HS:
911   case CallingConv::AMDGPU_LS:
912     return true;
913   default:
914     return false;
915   }
916 }
917 
918 bool hasXNACK(const MCSubtargetInfo &STI) {
919   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
920 }
921 
922 bool hasSRAMECC(const MCSubtargetInfo &STI) {
923   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
924 }
925 
926 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
927   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
928 }
929 
930 bool hasGFX10A16(const MCSubtargetInfo &STI) {
931   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
932 }
933 
934 bool hasPackedD16(const MCSubtargetInfo &STI) {
935   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
936 }
937 
938 bool isSI(const MCSubtargetInfo &STI) {
939   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
940 }
941 
942 bool isCI(const MCSubtargetInfo &STI) {
943   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
944 }
945 
946 bool isVI(const MCSubtargetInfo &STI) {
947   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
948 }
949 
950 bool isGFX9(const MCSubtargetInfo &STI) {
951   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
952 }
953 
954 bool isGFX10(const MCSubtargetInfo &STI) {
955   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
956 }
957 
958 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
959   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
960 }
961 
962 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
963   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
964   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
965   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
966     Reg == AMDGPU::SCC;
967 }
968 
969 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
970   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
971     if (*R == Reg1) return true;
972   }
973   return false;
974 }
975 
976 #define MAP_REG2REG \
977   using namespace AMDGPU; \
978   switch(Reg) { \
979   default: return Reg; \
980   CASE_CI_VI(FLAT_SCR) \
981   CASE_CI_VI(FLAT_SCR_LO) \
982   CASE_CI_VI(FLAT_SCR_HI) \
983   CASE_VI_GFX9_GFX10(TTMP0) \
984   CASE_VI_GFX9_GFX10(TTMP1) \
985   CASE_VI_GFX9_GFX10(TTMP2) \
986   CASE_VI_GFX9_GFX10(TTMP3) \
987   CASE_VI_GFX9_GFX10(TTMP4) \
988   CASE_VI_GFX9_GFX10(TTMP5) \
989   CASE_VI_GFX9_GFX10(TTMP6) \
990   CASE_VI_GFX9_GFX10(TTMP7) \
991   CASE_VI_GFX9_GFX10(TTMP8) \
992   CASE_VI_GFX9_GFX10(TTMP9) \
993   CASE_VI_GFX9_GFX10(TTMP10) \
994   CASE_VI_GFX9_GFX10(TTMP11) \
995   CASE_VI_GFX9_GFX10(TTMP12) \
996   CASE_VI_GFX9_GFX10(TTMP13) \
997   CASE_VI_GFX9_GFX10(TTMP14) \
998   CASE_VI_GFX9_GFX10(TTMP15) \
999   CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
1000   CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
1001   CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
1002   CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
1003   CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
1004   CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
1005   CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
1006   CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
1007   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
1008   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
1009   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
1010   CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
1011   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1012   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1013   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1014   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1015   }
1016 
1017 #define CASE_CI_VI(node) \
1018   assert(!isSI(STI)); \
1019   case node: return isCI(STI) ? node##_ci : node##_vi;
1020 
1021 #define CASE_VI_GFX9_GFX10(node) \
1022   case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
1023 
1024 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1025   if (STI.getTargetTriple().getArch() == Triple::r600)
1026     return Reg;
1027   MAP_REG2REG
1028 }
1029 
1030 #undef CASE_CI_VI
1031 #undef CASE_VI_GFX9_GFX10
1032 
1033 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1034 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
1035 
1036 unsigned mc2PseudoReg(unsigned Reg) {
1037   MAP_REG2REG
1038 }
1039 
1040 #undef CASE_CI_VI
1041 #undef CASE_VI_GFX9_GFX10
1042 #undef MAP_REG2REG
1043 
1044 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1045   assert(OpNo < Desc.NumOperands);
1046   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1047   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1048          OpType <= AMDGPU::OPERAND_SRC_LAST;
1049 }
1050 
1051 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1052   assert(OpNo < Desc.NumOperands);
1053   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1054   switch (OpType) {
1055   case AMDGPU::OPERAND_REG_IMM_FP32:
1056   case AMDGPU::OPERAND_REG_IMM_FP64:
1057   case AMDGPU::OPERAND_REG_IMM_FP16:
1058   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1059   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1060   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1061   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1062   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1063   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1064   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1065   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1066   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1067   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1068   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1069     return true;
1070   default:
1071     return false;
1072   }
1073 }
1074 
1075 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1076   assert(OpNo < Desc.NumOperands);
1077   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1078   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1079          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1080 }
1081 
1082 // Avoid using MCRegisterClass::getSize, since that function will go away
1083 // (move from MC* level to Target* level). Return size in bits.
1084 unsigned getRegBitWidth(unsigned RCID) {
1085   switch (RCID) {
1086   case AMDGPU::VGPR_LO16RegClassID:
1087   case AMDGPU::VGPR_HI16RegClassID:
1088   case AMDGPU::SGPR_LO16RegClassID:
1089   case AMDGPU::AGPR_LO16RegClassID:
1090     return 16;
1091   case AMDGPU::SGPR_32RegClassID:
1092   case AMDGPU::VGPR_32RegClassID:
1093   case AMDGPU::VRegOrLds_32RegClassID:
1094   case AMDGPU::AGPR_32RegClassID:
1095   case AMDGPU::VS_32RegClassID:
1096   case AMDGPU::AV_32RegClassID:
1097   case AMDGPU::SReg_32RegClassID:
1098   case AMDGPU::SReg_32_XM0RegClassID:
1099   case AMDGPU::SRegOrLds_32RegClassID:
1100     return 32;
1101   case AMDGPU::SGPR_64RegClassID:
1102   case AMDGPU::VS_64RegClassID:
1103   case AMDGPU::AV_64RegClassID:
1104   case AMDGPU::SReg_64RegClassID:
1105   case AMDGPU::VReg_64RegClassID:
1106   case AMDGPU::AReg_64RegClassID:
1107   case AMDGPU::SReg_64_XEXECRegClassID:
1108     return 64;
1109   case AMDGPU::SGPR_96RegClassID:
1110   case AMDGPU::SReg_96RegClassID:
1111   case AMDGPU::VReg_96RegClassID:
1112   case AMDGPU::AReg_96RegClassID:
1113     return 96;
1114   case AMDGPU::SGPR_128RegClassID:
1115   case AMDGPU::SReg_128RegClassID:
1116   case AMDGPU::VReg_128RegClassID:
1117   case AMDGPU::AReg_128RegClassID:
1118     return 128;
1119   case AMDGPU::SGPR_160RegClassID:
1120   case AMDGPU::SReg_160RegClassID:
1121   case AMDGPU::VReg_160RegClassID:
1122   case AMDGPU::AReg_160RegClassID:
1123     return 160;
1124   case AMDGPU::SGPR_192RegClassID:
1125   case AMDGPU::SReg_192RegClassID:
1126   case AMDGPU::VReg_192RegClassID:
1127   case AMDGPU::AReg_192RegClassID:
1128     return 192;
1129   case AMDGPU::SGPR_256RegClassID:
1130   case AMDGPU::SReg_256RegClassID:
1131   case AMDGPU::VReg_256RegClassID:
1132   case AMDGPU::AReg_256RegClassID:
1133     return 256;
1134   case AMDGPU::SGPR_512RegClassID:
1135   case AMDGPU::SReg_512RegClassID:
1136   case AMDGPU::VReg_512RegClassID:
1137   case AMDGPU::AReg_512RegClassID:
1138     return 512;
1139   case AMDGPU::SGPR_1024RegClassID:
1140   case AMDGPU::SReg_1024RegClassID:
1141   case AMDGPU::VReg_1024RegClassID:
1142   case AMDGPU::AReg_1024RegClassID:
1143     return 1024;
1144   default:
1145     llvm_unreachable("Unexpected register class");
1146   }
1147 }
1148 
1149 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1150   return getRegBitWidth(RC.getID());
1151 }
1152 
1153 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1154                            unsigned OpNo) {
1155   assert(OpNo < Desc.NumOperands);
1156   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1157   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1158 }
1159 
1160 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1161   if (Literal >= -16 && Literal <= 64)
1162     return true;
1163 
1164   uint64_t Val = static_cast<uint64_t>(Literal);
1165   return (Val == DoubleToBits(0.0)) ||
1166          (Val == DoubleToBits(1.0)) ||
1167          (Val == DoubleToBits(-1.0)) ||
1168          (Val == DoubleToBits(0.5)) ||
1169          (Val == DoubleToBits(-0.5)) ||
1170          (Val == DoubleToBits(2.0)) ||
1171          (Val == DoubleToBits(-2.0)) ||
1172          (Val == DoubleToBits(4.0)) ||
1173          (Val == DoubleToBits(-4.0)) ||
1174          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1175 }
1176 
1177 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1178   if (Literal >= -16 && Literal <= 64)
1179     return true;
1180 
1181   // The actual type of the operand does not seem to matter as long
1182   // as the bits match one of the inline immediate values.  For example:
1183   //
1184   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1185   // so it is a legal inline immediate.
1186   //
1187   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1188   // floating-point, so it is a legal inline immediate.
1189 
1190   uint32_t Val = static_cast<uint32_t>(Literal);
1191   return (Val == FloatToBits(0.0f)) ||
1192          (Val == FloatToBits(1.0f)) ||
1193          (Val == FloatToBits(-1.0f)) ||
1194          (Val == FloatToBits(0.5f)) ||
1195          (Val == FloatToBits(-0.5f)) ||
1196          (Val == FloatToBits(2.0f)) ||
1197          (Val == FloatToBits(-2.0f)) ||
1198          (Val == FloatToBits(4.0f)) ||
1199          (Val == FloatToBits(-4.0f)) ||
1200          (Val == 0x3e22f983 && HasInv2Pi);
1201 }
1202 
1203 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1204   if (!HasInv2Pi)
1205     return false;
1206 
1207   if (Literal >= -16 && Literal <= 64)
1208     return true;
1209 
1210   uint16_t Val = static_cast<uint16_t>(Literal);
1211   return Val == 0x3C00 || // 1.0
1212          Val == 0xBC00 || // -1.0
1213          Val == 0x3800 || // 0.5
1214          Val == 0xB800 || // -0.5
1215          Val == 0x4000 || // 2.0
1216          Val == 0xC000 || // -2.0
1217          Val == 0x4400 || // 4.0
1218          Val == 0xC400 || // -4.0
1219          Val == 0x3118;   // 1/2pi
1220 }
1221 
1222 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1223   assert(HasInv2Pi);
1224 
1225   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1226     int16_t Trunc = static_cast<int16_t>(Literal);
1227     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1228   }
1229   if (!(Literal & 0xffff))
1230     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1231 
1232   int16_t Lo16 = static_cast<int16_t>(Literal);
1233   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1234   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1235 }
1236 
1237 bool isArgPassedInSGPR(const Argument *A) {
1238   const Function *F = A->getParent();
1239 
1240   // Arguments to compute shaders are never a source of divergence.
1241   CallingConv::ID CC = F->getCallingConv();
1242   switch (CC) {
1243   case CallingConv::AMDGPU_KERNEL:
1244   case CallingConv::SPIR_KERNEL:
1245     return true;
1246   case CallingConv::AMDGPU_VS:
1247   case CallingConv::AMDGPU_LS:
1248   case CallingConv::AMDGPU_HS:
1249   case CallingConv::AMDGPU_ES:
1250   case CallingConv::AMDGPU_GS:
1251   case CallingConv::AMDGPU_PS:
1252   case CallingConv::AMDGPU_CS:
1253     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1254     // Everything else is in VGPRs.
1255     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1256            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1257   default:
1258     // TODO: Should calls support inreg for SGPR inputs?
1259     return false;
1260   }
1261 }
1262 
1263 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1264   return isGCN3Encoding(ST) || isGFX10(ST);
1265 }
1266 
1267 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1268   return isGFX9(ST) || isGFX10(ST);
1269 }
1270 
1271 static bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1272                                              int64_t EncodedOffset) {
1273   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1274                                : isUInt<8>(EncodedOffset);
1275 }
1276 
1277 static bool isDwordAligned(uint64_t ByteOffset) {
1278   return (ByteOffset & 3) == 0;
1279 }
1280 
1281 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1282                                 uint64_t ByteOffset) {
1283   if (hasSMEMByteOffset(ST))
1284     return ByteOffset;
1285 
1286   assert(isDwordAligned(ByteOffset));
1287   return ByteOffset >> 2;
1288 }
1289 
1290 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1291                                        int64_t ByteOffset, bool IsBuffer) {
1292   // The signed version is always a byte offset.
1293   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1294     assert(hasSMEMByteOffset(ST));
1295     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1296   }
1297 
1298   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1299     return None;
1300 
1301   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1302   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1303              ? Optional<int64_t>(EncodedOffset)
1304              : None;
1305 }
1306 
1307 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1308                                                 int64_t ByteOffset) {
1309   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1310     return None;
1311 
1312   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1313   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1314 }
1315 
1316 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1317 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1318 // hardware bug needing a workaround).
1319 //
1320 // The required alignment ensures that individual address components remain
1321 // aligned if they are aligned to begin with. It also ensures that additional
1322 // offsets within the given alignment can be added to the resulting ImmOffset.
1323 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1324                       const GCNSubtarget *Subtarget, uint32_t Align) {
1325   const uint32_t MaxImm = alignDown(4095, Align);
1326   uint32_t Overflow = 0;
1327 
1328   if (Imm > MaxImm) {
1329     if (Imm <= MaxImm + 64) {
1330       // Use an SOffset inline constant for 4..64
1331       Overflow = Imm - MaxImm;
1332       Imm = MaxImm;
1333     } else {
1334       // Try to keep the same value in SOffset for adjacent loads, so that
1335       // the corresponding register contents can be re-used.
1336       //
1337       // Load values with all low-bits (except for alignment bits) set into
1338       // SOffset, so that a larger range of values can be covered using
1339       // s_movk_i32.
1340       //
1341       // Atomic operations fail to work correctly when individual address
1342       // components are unaligned, even if their sum is aligned.
1343       uint32_t High = (Imm + Align) & ~4095;
1344       uint32_t Low = (Imm + Align) & 4095;
1345       Imm = Low;
1346       Overflow = High - Align;
1347     }
1348   }
1349 
1350   // There is a hardware bug in SI and CI which prevents address clamping in
1351   // MUBUF instructions from working correctly with SOffsets. The immediate
1352   // offset is unaffected.
1353   if (Overflow > 0 &&
1354       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1355     return false;
1356 
1357   ImmOffset = Imm;
1358   SOffset = Overflow;
1359   return true;
1360 }
1361 
1362 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1363   *this = getDefaultForCallingConv(F.getCallingConv());
1364 
1365   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1366   if (!IEEEAttr.empty())
1367     IEEE = IEEEAttr == "true";
1368 
1369   StringRef DX10ClampAttr
1370     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1371   if (!DX10ClampAttr.empty())
1372     DX10Clamp = DX10ClampAttr == "true";
1373 
1374   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1375   if (!DenormF32Attr.empty()) {
1376     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1377     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1378     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1379   }
1380 
1381   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1382   if (!DenormAttr.empty()) {
1383     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1384 
1385     if (DenormF32Attr.empty()) {
1386       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1387       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1388     }
1389 
1390     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1391     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1392   }
1393 }
1394 
1395 namespace {
1396 
1397 struct SourceOfDivergence {
1398   unsigned Intr;
1399 };
1400 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1401 
1402 #define GET_SourcesOfDivergence_IMPL
1403 #define GET_Gfx9BufferFormat_IMPL
1404 #define GET_Gfx10PlusBufferFormat_IMPL
1405 #include "AMDGPUGenSearchableTables.inc"
1406 
1407 } // end anonymous namespace
1408 
1409 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1410   return lookupSourceOfDivergence(IntrID);
1411 }
1412 
1413 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1414                                                   uint8_t NumComponents,
1415                                                   uint8_t NumFormat,
1416                                                   const MCSubtargetInfo &STI) {
1417   return isGFX10(STI)
1418              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1419                                             NumFormat)
1420              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1421 }
1422 
1423 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1424                                                   const MCSubtargetInfo &STI) {
1425   return isGFX10(STI) ? getGfx10PlusBufferFormatInfo(Format)
1426                       : getGfx9BufferFormatInfo(Format);
1427 }
1428 
1429 } // namespace AMDGPU
1430 } // namespace llvm
1431