1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   default:
103     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
104                        Twine(AmdhsaCodeObjectVersion));
105   }
106 }
107 
108 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
109   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
110     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
111   return false;
112 }
113 
114 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
115   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
116     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
117   return false;
118 }
119 
120 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
121   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
122     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
123   return false;
124 }
125 
126 bool isHsaAbiVersion3Or4(const MCSubtargetInfo *STI) {
127   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI);
128 }
129 
130 #define GET_MIMGBaseOpcodesTable_IMPL
131 #define GET_MIMGDimInfoTable_IMPL
132 #define GET_MIMGInfoTable_IMPL
133 #define GET_MIMGLZMappingTable_IMPL
134 #define GET_MIMGMIPMappingTable_IMPL
135 #define GET_MIMGBiasMappingTable_IMPL
136 #define GET_MIMGOffsetMappingTable_IMPL
137 #define GET_MIMGG16MappingTable_IMPL
138 #include "AMDGPUGenSearchableTables.inc"
139 
140 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
141                   unsigned VDataDwords, unsigned VAddrDwords) {
142   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
143                                              VDataDwords, VAddrDwords);
144   return Info ? Info->Opcode : -1;
145 }
146 
147 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
148   const MIMGInfo *Info = getMIMGInfo(Opc);
149   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
150 }
151 
152 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
153   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
154   const MIMGInfo *NewInfo =
155       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
156                           NewChannels, OrigInfo->VAddrDwords);
157   return NewInfo ? NewInfo->Opcode : -1;
158 }
159 
160 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
161                            const MIMGDimInfo *Dim, bool IsA16,
162                            bool IsG16Supported) {
163   unsigned AddrWords = BaseOpcode->NumExtraArgs;
164   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
165                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
166   if (IsA16)
167     AddrWords += divideCeil(AddrComponents, 2);
168   else
169     AddrWords += AddrComponents;
170 
171   // Note: For subtargets that support A16 but not G16, enabling A16 also
172   // enables 16 bit gradients.
173   // For subtargets that support A16 (operand) and G16 (done with a different
174   // instruction encoding), they are independent.
175 
176   if (BaseOpcode->Gradients) {
177     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
178       // There are two gradients per coordinate, we pack them separately.
179       // For the 3d case,
180       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
181       AddrWords += alignTo<2>(Dim->NumGradients / 2);
182     else
183       AddrWords += Dim->NumGradients;
184   }
185   return AddrWords;
186 }
187 
188 struct MUBUFInfo {
189   uint16_t Opcode;
190   uint16_t BaseOpcode;
191   uint8_t elements;
192   bool has_vaddr;
193   bool has_srsrc;
194   bool has_soffset;
195   bool IsBufferInv;
196 };
197 
198 struct MTBUFInfo {
199   uint16_t Opcode;
200   uint16_t BaseOpcode;
201   uint8_t elements;
202   bool has_vaddr;
203   bool has_srsrc;
204   bool has_soffset;
205 };
206 
207 struct SMInfo {
208   uint16_t Opcode;
209   bool IsBuffer;
210 };
211 
212 struct VOPInfo {
213   uint16_t Opcode;
214   bool IsSingle;
215 };
216 
217 #define GET_MTBUFInfoTable_DECL
218 #define GET_MTBUFInfoTable_IMPL
219 #define GET_MUBUFInfoTable_DECL
220 #define GET_MUBUFInfoTable_IMPL
221 #define GET_SMInfoTable_DECL
222 #define GET_SMInfoTable_IMPL
223 #define GET_VOP1InfoTable_DECL
224 #define GET_VOP1InfoTable_IMPL
225 #define GET_VOP2InfoTable_DECL
226 #define GET_VOP2InfoTable_IMPL
227 #define GET_VOP3InfoTable_DECL
228 #define GET_VOP3InfoTable_IMPL
229 #include "AMDGPUGenSearchableTables.inc"
230 
231 int getMTBUFBaseOpcode(unsigned Opc) {
232   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
233   return Info ? Info->BaseOpcode : -1;
234 }
235 
236 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
237   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
238   return Info ? Info->Opcode : -1;
239 }
240 
241 int getMTBUFElements(unsigned Opc) {
242   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
243   return Info ? Info->elements : 0;
244 }
245 
246 bool getMTBUFHasVAddr(unsigned Opc) {
247   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
248   return Info ? Info->has_vaddr : false;
249 }
250 
251 bool getMTBUFHasSrsrc(unsigned Opc) {
252   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
253   return Info ? Info->has_srsrc : false;
254 }
255 
256 bool getMTBUFHasSoffset(unsigned Opc) {
257   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
258   return Info ? Info->has_soffset : false;
259 }
260 
261 int getMUBUFBaseOpcode(unsigned Opc) {
262   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
263   return Info ? Info->BaseOpcode : -1;
264 }
265 
266 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
267   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
268   return Info ? Info->Opcode : -1;
269 }
270 
271 int getMUBUFElements(unsigned Opc) {
272   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
273   return Info ? Info->elements : 0;
274 }
275 
276 bool getMUBUFHasVAddr(unsigned Opc) {
277   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
278   return Info ? Info->has_vaddr : false;
279 }
280 
281 bool getMUBUFHasSrsrc(unsigned Opc) {
282   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
283   return Info ? Info->has_srsrc : false;
284 }
285 
286 bool getMUBUFHasSoffset(unsigned Opc) {
287   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
288   return Info ? Info->has_soffset : false;
289 }
290 
291 bool getMUBUFIsBufferInv(unsigned Opc) {
292   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
293   return Info ? Info->IsBufferInv : false;
294 }
295 
296 bool getSMEMIsBuffer(unsigned Opc) {
297   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
298   return Info ? Info->IsBuffer : false;
299 }
300 
301 bool getVOP1IsSingle(unsigned Opc) {
302   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
303   return Info ? Info->IsSingle : false;
304 }
305 
306 bool getVOP2IsSingle(unsigned Opc) {
307   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
308   return Info ? Info->IsSingle : false;
309 }
310 
311 bool getVOP3IsSingle(unsigned Opc) {
312   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
313   return Info ? Info->IsSingle : false;
314 }
315 
316 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
317 // header files, so we need to wrap it in a function that takes unsigned
318 // instead.
319 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
320   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
321 }
322 
323 namespace IsaInfo {
324 
325 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
326     : STI(STI), XnackSetting(TargetIDSetting::Any),
327       SramEccSetting(TargetIDSetting::Any) {
328   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
329     XnackSetting = TargetIDSetting::Unsupported;
330   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
331     SramEccSetting = TargetIDSetting::Unsupported;
332 }
333 
334 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
335   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
336   // absence of the target features we assume we must generate code that can run
337   // in any environment.
338   SubtargetFeatures Features(FS);
339   Optional<bool> XnackRequested;
340   Optional<bool> SramEccRequested;
341 
342   for (const std::string &Feature : Features.getFeatures()) {
343     if (Feature == "+xnack")
344       XnackRequested = true;
345     else if (Feature == "-xnack")
346       XnackRequested = false;
347     else if (Feature == "+sramecc")
348       SramEccRequested = true;
349     else if (Feature == "-sramecc")
350       SramEccRequested = false;
351   }
352 
353   bool XnackSupported = isXnackSupported();
354   bool SramEccSupported = isSramEccSupported();
355 
356   if (XnackRequested) {
357     if (XnackSupported) {
358       XnackSetting =
359           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
360     } else {
361       // If a specific xnack setting was requested and this GPU does not support
362       // xnack emit a warning. Setting will remain set to "Unsupported".
363       if (*XnackRequested) {
364         errs() << "warning: xnack 'On' was requested for a processor that does "
365                   "not support it!\n";
366       } else {
367         errs() << "warning: xnack 'Off' was requested for a processor that "
368                   "does not support it!\n";
369       }
370     }
371   }
372 
373   if (SramEccRequested) {
374     if (SramEccSupported) {
375       SramEccSetting =
376           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
377     } else {
378       // If a specific sramecc setting was requested and this GPU does not
379       // support sramecc emit a warning. Setting will remain set to
380       // "Unsupported".
381       if (*SramEccRequested) {
382         errs() << "warning: sramecc 'On' was requested for a processor that "
383                   "does not support it!\n";
384       } else {
385         errs() << "warning: sramecc 'Off' was requested for a processor that "
386                   "does not support it!\n";
387       }
388     }
389   }
390 }
391 
392 static TargetIDSetting
393 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
394   if (FeatureString.endswith("-"))
395     return TargetIDSetting::Off;
396   if (FeatureString.endswith("+"))
397     return TargetIDSetting::On;
398 
399   llvm_unreachable("Malformed feature string");
400 }
401 
402 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
403   SmallVector<StringRef, 3> TargetIDSplit;
404   TargetID.split(TargetIDSplit, ':');
405 
406   for (const auto &FeatureString : TargetIDSplit) {
407     if (FeatureString.startswith("xnack"))
408       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
409     if (FeatureString.startswith("sramecc"))
410       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
411   }
412 }
413 
414 std::string AMDGPUTargetID::toString() const {
415   std::string StringRep;
416   raw_string_ostream StreamRep(StringRep);
417 
418   auto TargetTriple = STI.getTargetTriple();
419   auto Version = getIsaVersion(STI.getCPU());
420 
421   StreamRep << TargetTriple.getArchName() << '-'
422             << TargetTriple.getVendorName() << '-'
423             << TargetTriple.getOSName() << '-'
424             << TargetTriple.getEnvironmentName() << '-';
425 
426   std::string Processor;
427   // TODO: Following else statement is present here because we used various
428   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
429   // Remove once all aliases are removed from GCNProcessors.td.
430   if (Version.Major >= 9)
431     Processor = STI.getCPU().str();
432   else
433     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
434                  Twine(Version.Stepping))
435                     .str();
436 
437   std::string Features;
438   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
439     switch (*HsaAbiVersion) {
440     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
441       // Code object V2 only supported specific processors and had fixed
442       // settings for the XNACK.
443       if (Processor == "gfx600") {
444       } else if (Processor == "gfx601") {
445       } else if (Processor == "gfx602") {
446       } else if (Processor == "gfx700") {
447       } else if (Processor == "gfx701") {
448       } else if (Processor == "gfx702") {
449       } else if (Processor == "gfx703") {
450       } else if (Processor == "gfx704") {
451       } else if (Processor == "gfx705") {
452       } else if (Processor == "gfx801") {
453         if (!isXnackOnOrAny())
454           report_fatal_error(
455               "AMD GPU code object V2 does not support processor " +
456               Twine(Processor) + " without XNACK");
457       } else if (Processor == "gfx802") {
458       } else if (Processor == "gfx803") {
459       } else if (Processor == "gfx805") {
460       } else if (Processor == "gfx810") {
461         if (!isXnackOnOrAny())
462           report_fatal_error(
463               "AMD GPU code object V2 does not support processor " +
464               Twine(Processor) + " without XNACK");
465       } else if (Processor == "gfx900") {
466         if (isXnackOnOrAny())
467           Processor = "gfx901";
468       } else if (Processor == "gfx902") {
469         if (isXnackOnOrAny())
470           Processor = "gfx903";
471       } else if (Processor == "gfx904") {
472         if (isXnackOnOrAny())
473           Processor = "gfx905";
474       } else if (Processor == "gfx906") {
475         if (isXnackOnOrAny())
476           Processor = "gfx907";
477       } else if (Processor == "gfx90c") {
478         if (isXnackOnOrAny())
479           report_fatal_error(
480               "AMD GPU code object V2 does not support processor " +
481               Twine(Processor) + " with XNACK being ON or ANY");
482       } else {
483         report_fatal_error(
484             "AMD GPU code object V2 does not support processor " +
485             Twine(Processor));
486       }
487       break;
488     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
489       // xnack.
490       if (isXnackOnOrAny())
491         Features += "+xnack";
492       // In code object v2 and v3, "sramecc" feature was spelled with a
493       // hyphen ("sram-ecc").
494       if (isSramEccOnOrAny())
495         Features += "+sram-ecc";
496       break;
497     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
498       // sramecc.
499       if (getSramEccSetting() == TargetIDSetting::Off)
500         Features += ":sramecc-";
501       else if (getSramEccSetting() == TargetIDSetting::On)
502         Features += ":sramecc+";
503       // xnack.
504       if (getXnackSetting() == TargetIDSetting::Off)
505         Features += ":xnack-";
506       else if (getXnackSetting() == TargetIDSetting::On)
507         Features += ":xnack+";
508       break;
509     default:
510       break;
511     }
512   }
513 
514   StreamRep << Processor << Features;
515 
516   StreamRep.flush();
517   return StringRep;
518 }
519 
520 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
521   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
522     return 16;
523   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
524     return 32;
525 
526   return 64;
527 }
528 
529 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
530   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
531     return 32768;
532   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
533     return 65536;
534 
535   return 0;
536 }
537 
538 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
539   // "Per CU" really means "per whatever functional block the waves of a
540   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
541   // two SIMDs.
542   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
543     return 2;
544   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
545   // two CUs, so a total of four SIMDs.
546   return 4;
547 }
548 
549 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
550                                unsigned FlatWorkGroupSize) {
551   assert(FlatWorkGroupSize != 0);
552   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
553     return 8;
554   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
555   if (N == 1)
556     return 40;
557   N = 40 / N;
558   return std::min(N, 16u);
559 }
560 
561 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
562   return 1;
563 }
564 
565 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
566   // FIXME: Need to take scratch memory into account.
567   if (isGFX90A(*STI))
568     return 8;
569   if (!isGFX10Plus(*STI))
570     return 10;
571   return hasGFX10_3Insts(*STI) ? 16 : 20;
572 }
573 
574 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
575                                    unsigned FlatWorkGroupSize) {
576   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
577                     getEUsPerCU(STI));
578 }
579 
580 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
581   return 1;
582 }
583 
584 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
585   // Some subtargets allow encoding 2048, but this isn't tested or supported.
586   return 1024;
587 }
588 
589 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
590                               unsigned FlatWorkGroupSize) {
591   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
592 }
593 
594 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
595   IsaVersion Version = getIsaVersion(STI->getCPU());
596   if (Version.Major >= 10)
597     return getAddressableNumSGPRs(STI);
598   if (Version.Major >= 8)
599     return 16;
600   return 8;
601 }
602 
603 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
604   return 8;
605 }
606 
607 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
608   IsaVersion Version = getIsaVersion(STI->getCPU());
609   if (Version.Major >= 8)
610     return 800;
611   return 512;
612 }
613 
614 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
615   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
616     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
617 
618   IsaVersion Version = getIsaVersion(STI->getCPU());
619   if (Version.Major >= 10)
620     return 106;
621   if (Version.Major >= 8)
622     return 102;
623   return 104;
624 }
625 
626 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
627   assert(WavesPerEU != 0);
628 
629   IsaVersion Version = getIsaVersion(STI->getCPU());
630   if (Version.Major >= 10)
631     return 0;
632 
633   if (WavesPerEU >= getMaxWavesPerEU(STI))
634     return 0;
635 
636   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
637   if (STI->getFeatureBits().test(FeatureTrapHandler))
638     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
639   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
640   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
641 }
642 
643 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
644                         bool Addressable) {
645   assert(WavesPerEU != 0);
646 
647   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
648   IsaVersion Version = getIsaVersion(STI->getCPU());
649   if (Version.Major >= 10)
650     return Addressable ? AddressableNumSGPRs : 108;
651   if (Version.Major >= 8 && !Addressable)
652     AddressableNumSGPRs = 112;
653   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
654   if (STI->getFeatureBits().test(FeatureTrapHandler))
655     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
656   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
657   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
658 }
659 
660 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
661                           bool FlatScrUsed, bool XNACKUsed) {
662   unsigned ExtraSGPRs = 0;
663   if (VCCUsed)
664     ExtraSGPRs = 2;
665 
666   IsaVersion Version = getIsaVersion(STI->getCPU());
667   if (Version.Major >= 10)
668     return ExtraSGPRs;
669 
670   if (Version.Major < 8) {
671     if (FlatScrUsed)
672       ExtraSGPRs = 4;
673   } else {
674     if (XNACKUsed)
675       ExtraSGPRs = 4;
676 
677     if (FlatScrUsed ||
678         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
679       ExtraSGPRs = 6;
680   }
681 
682   return ExtraSGPRs;
683 }
684 
685 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
686                           bool FlatScrUsed) {
687   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
688                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
689 }
690 
691 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
692   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
693   // SGPRBlocks is actual number of SGPR blocks minus 1.
694   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
695 }
696 
697 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
698                              Optional<bool> EnableWavefrontSize32) {
699   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
700     return 8;
701 
702   bool IsWave32 = EnableWavefrontSize32 ?
703       *EnableWavefrontSize32 :
704       STI->getFeatureBits().test(FeatureWavefrontSize32);
705 
706   if (hasGFX10_3Insts(*STI))
707     return IsWave32 ? 16 : 8;
708 
709   return IsWave32 ? 8 : 4;
710 }
711 
712 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
713                                 Optional<bool> EnableWavefrontSize32) {
714   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
715     return 8;
716 
717   bool IsWave32 = EnableWavefrontSize32 ?
718       *EnableWavefrontSize32 :
719       STI->getFeatureBits().test(FeatureWavefrontSize32);
720 
721   return IsWave32 ? 8 : 4;
722 }
723 
724 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
725   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
726     return 512;
727   if (!isGFX10Plus(*STI))
728     return 256;
729   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
730 }
731 
732 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
733   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
734     return 512;
735   return 256;
736 }
737 
738 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
739   assert(WavesPerEU != 0);
740 
741   if (WavesPerEU >= getMaxWavesPerEU(STI))
742     return 0;
743   unsigned MinNumVGPRs =
744       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
745                 getVGPRAllocGranule(STI)) + 1;
746   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
747 }
748 
749 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
750   assert(WavesPerEU != 0);
751 
752   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
753                                    getVGPRAllocGranule(STI));
754   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
755   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
756 }
757 
758 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
759                           Optional<bool> EnableWavefrontSize32) {
760   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
761                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
762   // VGPRBlocks is actual number of VGPR blocks minus 1.
763   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
764 }
765 
766 } // end namespace IsaInfo
767 
768 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
769                                const MCSubtargetInfo *STI) {
770   IsaVersion Version = getIsaVersion(STI->getCPU());
771 
772   memset(&Header, 0, sizeof(Header));
773 
774   Header.amd_kernel_code_version_major = 1;
775   Header.amd_kernel_code_version_minor = 2;
776   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
777   Header.amd_machine_version_major = Version.Major;
778   Header.amd_machine_version_minor = Version.Minor;
779   Header.amd_machine_version_stepping = Version.Stepping;
780   Header.kernel_code_entry_byte_offset = sizeof(Header);
781   Header.wavefront_size = 6;
782 
783   // If the code object does not support indirect functions, then the value must
784   // be 0xffffffff.
785   Header.call_convention = -1;
786 
787   // These alignment values are specified in powers of two, so alignment =
788   // 2^n.  The minimum alignment is 2^4 = 16.
789   Header.kernarg_segment_alignment = 4;
790   Header.group_segment_alignment = 4;
791   Header.private_segment_alignment = 4;
792 
793   if (Version.Major >= 10) {
794     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
795       Header.wavefront_size = 5;
796       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
797     }
798     Header.compute_pgm_resource_registers |=
799       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
800       S_00B848_MEM_ORDERED(1);
801   }
802 }
803 
804 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
805     const MCSubtargetInfo *STI) {
806   IsaVersion Version = getIsaVersion(STI->getCPU());
807 
808   amdhsa::kernel_descriptor_t KD;
809   memset(&KD, 0, sizeof(KD));
810 
811   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
812                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
813                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
814   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
815                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
816   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
817                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
818   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
819                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
820   if (Version.Major >= 10) {
821     AMDHSA_BITS_SET(KD.kernel_code_properties,
822                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
823                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
824     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
825                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
826                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
827     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
828                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
829   }
830   if (AMDGPU::isGFX90A(*STI)) {
831     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
832                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
833                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
834   }
835   return KD;
836 }
837 
838 bool isGroupSegment(const GlobalValue *GV) {
839   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
840 }
841 
842 bool isGlobalSegment(const GlobalValue *GV) {
843   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
844 }
845 
846 bool isReadOnlySegment(const GlobalValue *GV) {
847   unsigned AS = GV->getAddressSpace();
848   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
849          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
850 }
851 
852 bool shouldEmitConstantsToTextSection(const Triple &TT) {
853   return TT.getArch() == Triple::r600;
854 }
855 
856 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
857   Attribute A = F.getFnAttribute(Name);
858   int Result = Default;
859 
860   if (A.isStringAttribute()) {
861     StringRef Str = A.getValueAsString();
862     if (Str.getAsInteger(0, Result)) {
863       LLVMContext &Ctx = F.getContext();
864       Ctx.emitError("can't parse integer attribute " + Name);
865     }
866   }
867 
868   return Result;
869 }
870 
871 std::pair<int, int> getIntegerPairAttribute(const Function &F,
872                                             StringRef Name,
873                                             std::pair<int, int> Default,
874                                             bool OnlyFirstRequired) {
875   Attribute A = F.getFnAttribute(Name);
876   if (!A.isStringAttribute())
877     return Default;
878 
879   LLVMContext &Ctx = F.getContext();
880   std::pair<int, int> Ints = Default;
881   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
882   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
883     Ctx.emitError("can't parse first integer attribute " + Name);
884     return Default;
885   }
886   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
887     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
888       Ctx.emitError("can't parse second integer attribute " + Name);
889       return Default;
890     }
891   }
892 
893   return Ints;
894 }
895 
896 unsigned getVmcntBitMask(const IsaVersion &Version) {
897   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
898   if (Version.Major < 9)
899     return VmcntLo;
900 
901   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
902   return VmcntLo | VmcntHi;
903 }
904 
905 unsigned getExpcntBitMask(const IsaVersion &Version) {
906   return (1 << getExpcntBitWidth()) - 1;
907 }
908 
909 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
910   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
911 }
912 
913 unsigned getWaitcntBitMask(const IsaVersion &Version) {
914   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
915   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
916   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
917                                 getLgkmcntBitWidth(Version.Major));
918   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
919   if (Version.Major < 9)
920     return Waitcnt;
921 
922   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
923   return Waitcnt | VmcntHi;
924 }
925 
926 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
927   unsigned VmcntLo =
928       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
929   if (Version.Major < 9)
930     return VmcntLo;
931 
932   unsigned VmcntHi =
933       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
934   VmcntHi <<= getVmcntBitWidthLo();
935   return VmcntLo | VmcntHi;
936 }
937 
938 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
939   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
940 }
941 
942 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
943   return unpackBits(Waitcnt, getLgkmcntBitShift(),
944                     getLgkmcntBitWidth(Version.Major));
945 }
946 
947 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
948                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
949   Vmcnt = decodeVmcnt(Version, Waitcnt);
950   Expcnt = decodeExpcnt(Version, Waitcnt);
951   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
952 }
953 
954 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
955   Waitcnt Decoded;
956   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
957   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
958   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
959   return Decoded;
960 }
961 
962 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
963                      unsigned Vmcnt) {
964   Waitcnt =
965       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
966   if (Version.Major < 9)
967     return Waitcnt;
968 
969   Vmcnt >>= getVmcntBitWidthLo();
970   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
971 }
972 
973 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
974                       unsigned Expcnt) {
975   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
976 }
977 
978 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
979                        unsigned Lgkmcnt) {
980   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
981                                     getLgkmcntBitWidth(Version.Major));
982 }
983 
984 unsigned encodeWaitcnt(const IsaVersion &Version,
985                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
986   unsigned Waitcnt = getWaitcntBitMask(Version);
987   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
988   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
989   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
990   return Waitcnt;
991 }
992 
993 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
994   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
995 }
996 
997 //===----------------------------------------------------------------------===//
998 // hwreg
999 //===----------------------------------------------------------------------===//
1000 
1001 namespace Hwreg {
1002 
1003 int64_t getHwregId(const StringRef Name) {
1004   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
1005     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
1006       return Id;
1007   }
1008   return ID_UNKNOWN_;
1009 }
1010 
1011 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
1012   if (isSI(STI) || isCI(STI) || isVI(STI))
1013     return ID_SYMBOLIC_FIRST_GFX9_;
1014   else if (isGFX9(STI))
1015     return ID_SYMBOLIC_FIRST_GFX10_;
1016   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
1017     return ID_SYMBOLIC_FIRST_GFX1030_;
1018   else
1019     return ID_SYMBOLIC_LAST_;
1020 }
1021 
1022 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
1023   switch (Id) {
1024   case ID_HW_ID:
1025     return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1026   case ID_HW_ID1:
1027   case ID_HW_ID2:
1028     return isGFX10Plus(STI);
1029   case ID_XNACK_MASK:
1030     return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1031   default:
1032     return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
1033            IdSymbolic[Id];
1034   }
1035 }
1036 
1037 bool isValidHwreg(int64_t Id) {
1038   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1039 }
1040 
1041 bool isValidHwregOffset(int64_t Offset) {
1042   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1043 }
1044 
1045 bool isValidHwregWidth(int64_t Width) {
1046   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1047 }
1048 
1049 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1050   return (Id << ID_SHIFT_) |
1051          (Offset << OFFSET_SHIFT_) |
1052          ((Width - 1) << WIDTH_M1_SHIFT_);
1053 }
1054 
1055 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1056   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
1057 }
1058 
1059 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1060   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1061   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1062   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1063 }
1064 
1065 } // namespace Hwreg
1066 
1067 //===----------------------------------------------------------------------===//
1068 // exp tgt
1069 //===----------------------------------------------------------------------===//
1070 
1071 namespace Exp {
1072 
1073 struct ExpTgt {
1074   StringLiteral Name;
1075   unsigned Tgt;
1076   unsigned MaxIndex;
1077 };
1078 
1079 static constexpr ExpTgt ExpTgtInfo[] = {
1080   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1081   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1082   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1083   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1084   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1085   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1086 };
1087 
1088 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1089   for (const ExpTgt &Val : ExpTgtInfo) {
1090     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1091       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1092       Name = Val.Name;
1093       return true;
1094     }
1095   }
1096   return false;
1097 }
1098 
1099 unsigned getTgtId(const StringRef Name) {
1100 
1101   for (const ExpTgt &Val : ExpTgtInfo) {
1102     if (Val.MaxIndex == 0 && Name == Val.Name)
1103       return Val.Tgt;
1104 
1105     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1106       StringRef Suffix = Name.drop_front(Val.Name.size());
1107 
1108       unsigned Id;
1109       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1110         return ET_INVALID;
1111 
1112       // Disable leading zeroes
1113       if (Suffix.size() > 1 && Suffix[0] == '0')
1114         return ET_INVALID;
1115 
1116       return Val.Tgt + Id;
1117     }
1118   }
1119   return ET_INVALID;
1120 }
1121 
1122 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1123   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1124 }
1125 
1126 } // namespace Exp
1127 
1128 //===----------------------------------------------------------------------===//
1129 // MTBUF Format
1130 //===----------------------------------------------------------------------===//
1131 
1132 namespace MTBUFFormat {
1133 
1134 int64_t getDfmt(const StringRef Name) {
1135   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1136     if (Name == DfmtSymbolic[Id])
1137       return Id;
1138   }
1139   return DFMT_UNDEF;
1140 }
1141 
1142 StringRef getDfmtName(unsigned Id) {
1143   assert(Id <= DFMT_MAX);
1144   return DfmtSymbolic[Id];
1145 }
1146 
1147 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1148   if (isSI(STI) || isCI(STI))
1149     return NfmtSymbolicSICI;
1150   if (isVI(STI) || isGFX9(STI))
1151     return NfmtSymbolicVI;
1152   return NfmtSymbolicGFX10;
1153 }
1154 
1155 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1156   auto lookupTable = getNfmtLookupTable(STI);
1157   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1158     if (Name == lookupTable[Id])
1159       return Id;
1160   }
1161   return NFMT_UNDEF;
1162 }
1163 
1164 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1165   assert(Id <= NFMT_MAX);
1166   return getNfmtLookupTable(STI)[Id];
1167 }
1168 
1169 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1170   unsigned Dfmt;
1171   unsigned Nfmt;
1172   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1173   return isValidNfmt(Nfmt, STI);
1174 }
1175 
1176 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1177   return !getNfmtName(Id, STI).empty();
1178 }
1179 
1180 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1181   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1182 }
1183 
1184 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1185   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1186   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1187 }
1188 
1189 int64_t getUnifiedFormat(const StringRef Name) {
1190   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1191     if (Name == UfmtSymbolic[Id])
1192       return Id;
1193   }
1194   return UFMT_UNDEF;
1195 }
1196 
1197 StringRef getUnifiedFormatName(unsigned Id) {
1198   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1199 }
1200 
1201 bool isValidUnifiedFormat(unsigned Id) {
1202   return Id <= UFMT_LAST;
1203 }
1204 
1205 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1206   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1207   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1208     if (Fmt == DfmtNfmt2UFmt[Id])
1209       return Id;
1210   }
1211   return UFMT_UNDEF;
1212 }
1213 
1214 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1215   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1216 }
1217 
1218 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1219   if (isGFX10Plus(STI))
1220     return UFMT_DEFAULT;
1221   return DFMT_NFMT_DEFAULT;
1222 }
1223 
1224 } // namespace MTBUFFormat
1225 
1226 //===----------------------------------------------------------------------===//
1227 // SendMsg
1228 //===----------------------------------------------------------------------===//
1229 
1230 namespace SendMsg {
1231 
1232 int64_t getMsgId(const StringRef Name) {
1233   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1234     if (IdSymbolic[i] && Name == IdSymbolic[i])
1235       return i;
1236   }
1237   return ID_UNKNOWN_;
1238 }
1239 
1240 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1241   if (Strict) {
1242     switch (MsgId) {
1243     case ID_SAVEWAVE:
1244       return isVI(STI) || isGFX9Plus(STI);
1245     case ID_STALL_WAVE_GEN:
1246     case ID_HALT_WAVES:
1247     case ID_ORDERED_PS_DONE:
1248     case ID_GS_ALLOC_REQ:
1249     case ID_GET_DOORBELL:
1250       return isGFX9Plus(STI);
1251     case ID_EARLY_PRIM_DEALLOC:
1252       return isGFX9(STI);
1253     case ID_GET_DDID:
1254       return isGFX10Plus(STI);
1255     default:
1256       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1257     }
1258   } else {
1259     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1260   }
1261 }
1262 
1263 StringRef getMsgName(int64_t MsgId) {
1264   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1265   return IdSymbolic[MsgId];
1266 }
1267 
1268 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1269   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1270   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1271   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1272   for (int i = F; i < L; ++i) {
1273     if (Name == S[i]) {
1274       return i;
1275     }
1276   }
1277   return OP_UNKNOWN_;
1278 }
1279 
1280 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1281                   bool Strict) {
1282   assert(isValidMsgId(MsgId, STI, Strict));
1283 
1284   if (!Strict)
1285     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1286 
1287   switch(MsgId)
1288   {
1289   case ID_GS:
1290     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1291   case ID_GS_DONE:
1292     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1293   case ID_SYSMSG:
1294     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1295   default:
1296     return OpId == OP_NONE_;
1297   }
1298 }
1299 
1300 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1301   assert(msgRequiresOp(MsgId));
1302   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1303 }
1304 
1305 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1306                       const MCSubtargetInfo &STI, bool Strict) {
1307   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1308 
1309   if (!Strict)
1310     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1311 
1312   switch(MsgId)
1313   {
1314   case ID_GS:
1315     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1316   case ID_GS_DONE:
1317     return (OpId == OP_GS_NOP)?
1318            (StreamId == STREAM_ID_NONE_) :
1319            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1320   default:
1321     return StreamId == STREAM_ID_NONE_;
1322   }
1323 }
1324 
1325 bool msgRequiresOp(int64_t MsgId) {
1326   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1327 }
1328 
1329 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1330   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1331 }
1332 
1333 void decodeMsg(unsigned Val,
1334                uint16_t &MsgId,
1335                uint16_t &OpId,
1336                uint16_t &StreamId) {
1337   MsgId = Val & ID_MASK_;
1338   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1339   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1340 }
1341 
1342 uint64_t encodeMsg(uint64_t MsgId,
1343                    uint64_t OpId,
1344                    uint64_t StreamId) {
1345   return (MsgId << ID_SHIFT_) |
1346          (OpId << OP_SHIFT_) |
1347          (StreamId << STREAM_ID_SHIFT_);
1348 }
1349 
1350 } // namespace SendMsg
1351 
1352 //===----------------------------------------------------------------------===//
1353 //
1354 //===----------------------------------------------------------------------===//
1355 
1356 unsigned getInitialPSInputAddr(const Function &F) {
1357   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1358 }
1359 
1360 bool getHasColorExport(const Function &F) {
1361   // As a safe default always respond as if PS has color exports.
1362   return getIntegerAttribute(
1363              F, "amdgpu-color-export",
1364              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1365 }
1366 
1367 bool getHasDepthExport(const Function &F) {
1368   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1369 }
1370 
1371 bool isShader(CallingConv::ID cc) {
1372   switch(cc) {
1373     case CallingConv::AMDGPU_VS:
1374     case CallingConv::AMDGPU_LS:
1375     case CallingConv::AMDGPU_HS:
1376     case CallingConv::AMDGPU_ES:
1377     case CallingConv::AMDGPU_GS:
1378     case CallingConv::AMDGPU_PS:
1379     case CallingConv::AMDGPU_CS:
1380       return true;
1381     default:
1382       return false;
1383   }
1384 }
1385 
1386 bool isGraphics(CallingConv::ID cc) {
1387   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1388 }
1389 
1390 bool isCompute(CallingConv::ID cc) {
1391   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1392 }
1393 
1394 bool isEntryFunctionCC(CallingConv::ID CC) {
1395   switch (CC) {
1396   case CallingConv::AMDGPU_KERNEL:
1397   case CallingConv::SPIR_KERNEL:
1398   case CallingConv::AMDGPU_VS:
1399   case CallingConv::AMDGPU_GS:
1400   case CallingConv::AMDGPU_PS:
1401   case CallingConv::AMDGPU_CS:
1402   case CallingConv::AMDGPU_ES:
1403   case CallingConv::AMDGPU_HS:
1404   case CallingConv::AMDGPU_LS:
1405     return true;
1406   default:
1407     return false;
1408   }
1409 }
1410 
1411 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1412   switch (CC) {
1413   case CallingConv::AMDGPU_Gfx:
1414     return true;
1415   default:
1416     return isEntryFunctionCC(CC);
1417   }
1418 }
1419 
1420 bool hasXNACK(const MCSubtargetInfo &STI) {
1421   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1422 }
1423 
1424 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1425   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1426 }
1427 
1428 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1429   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1430 }
1431 
1432 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1433   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1434 }
1435 
1436 bool hasG16(const MCSubtargetInfo &STI) {
1437   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1438 }
1439 
1440 bool hasPackedD16(const MCSubtargetInfo &STI) {
1441   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1442 }
1443 
1444 bool isSI(const MCSubtargetInfo &STI) {
1445   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1446 }
1447 
1448 bool isCI(const MCSubtargetInfo &STI) {
1449   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1450 }
1451 
1452 bool isVI(const MCSubtargetInfo &STI) {
1453   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1454 }
1455 
1456 bool isGFX9(const MCSubtargetInfo &STI) {
1457   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1458 }
1459 
1460 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1461   return isGFX9(STI) || isGFX10Plus(STI);
1462 }
1463 
1464 bool isGFX10(const MCSubtargetInfo &STI) {
1465   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1466 }
1467 
1468 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1469 
1470 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1471   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1472 }
1473 
1474 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1475   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1476 }
1477 
1478 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1479   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1480 }
1481 
1482 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1483   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1484 }
1485 
1486 bool isGFX90A(const MCSubtargetInfo &STI) {
1487   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1488 }
1489 
1490 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1491   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1492 }
1493 
1494 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1495   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1496   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1497   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1498     Reg == AMDGPU::SCC;
1499 }
1500 
1501 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1502   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1503     if (*R == Reg1) return true;
1504   }
1505   return false;
1506 }
1507 
1508 #define MAP_REG2REG \
1509   using namespace AMDGPU; \
1510   switch(Reg) { \
1511   default: return Reg; \
1512   CASE_CI_VI(FLAT_SCR) \
1513   CASE_CI_VI(FLAT_SCR_LO) \
1514   CASE_CI_VI(FLAT_SCR_HI) \
1515   CASE_VI_GFX9PLUS(TTMP0) \
1516   CASE_VI_GFX9PLUS(TTMP1) \
1517   CASE_VI_GFX9PLUS(TTMP2) \
1518   CASE_VI_GFX9PLUS(TTMP3) \
1519   CASE_VI_GFX9PLUS(TTMP4) \
1520   CASE_VI_GFX9PLUS(TTMP5) \
1521   CASE_VI_GFX9PLUS(TTMP6) \
1522   CASE_VI_GFX9PLUS(TTMP7) \
1523   CASE_VI_GFX9PLUS(TTMP8) \
1524   CASE_VI_GFX9PLUS(TTMP9) \
1525   CASE_VI_GFX9PLUS(TTMP10) \
1526   CASE_VI_GFX9PLUS(TTMP11) \
1527   CASE_VI_GFX9PLUS(TTMP12) \
1528   CASE_VI_GFX9PLUS(TTMP13) \
1529   CASE_VI_GFX9PLUS(TTMP14) \
1530   CASE_VI_GFX9PLUS(TTMP15) \
1531   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1532   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1533   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1534   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1535   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1536   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1537   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1538   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1539   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1540   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1541   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1542   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1543   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1544   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1545   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1546   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1547   }
1548 
1549 #define CASE_CI_VI(node) \
1550   assert(!isSI(STI)); \
1551   case node: return isCI(STI) ? node##_ci : node##_vi;
1552 
1553 #define CASE_VI_GFX9PLUS(node) \
1554   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1555 
1556 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1557   if (STI.getTargetTriple().getArch() == Triple::r600)
1558     return Reg;
1559   MAP_REG2REG
1560 }
1561 
1562 #undef CASE_CI_VI
1563 #undef CASE_VI_GFX9PLUS
1564 
1565 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1566 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1567 
1568 unsigned mc2PseudoReg(unsigned Reg) {
1569   MAP_REG2REG
1570 }
1571 
1572 #undef CASE_CI_VI
1573 #undef CASE_VI_GFX9PLUS
1574 #undef MAP_REG2REG
1575 
1576 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1577   assert(OpNo < Desc.NumOperands);
1578   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1579   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1580          OpType <= AMDGPU::OPERAND_SRC_LAST;
1581 }
1582 
1583 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1584   assert(OpNo < Desc.NumOperands);
1585   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1586   switch (OpType) {
1587   case AMDGPU::OPERAND_REG_IMM_FP32:
1588   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1589   case AMDGPU::OPERAND_REG_IMM_FP64:
1590   case AMDGPU::OPERAND_REG_IMM_FP16:
1591   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1592   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1593   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1594   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1595   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1596   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1597   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1598   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1599   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1600   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1601   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1602   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1603   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1604   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1605   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1606     return true;
1607   default:
1608     return false;
1609   }
1610 }
1611 
1612 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1613   assert(OpNo < Desc.NumOperands);
1614   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1615   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1616          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1617 }
1618 
1619 // Avoid using MCRegisterClass::getSize, since that function will go away
1620 // (move from MC* level to Target* level). Return size in bits.
1621 unsigned getRegBitWidth(unsigned RCID) {
1622   switch (RCID) {
1623   case AMDGPU::VGPR_LO16RegClassID:
1624   case AMDGPU::VGPR_HI16RegClassID:
1625   case AMDGPU::SGPR_LO16RegClassID:
1626   case AMDGPU::AGPR_LO16RegClassID:
1627     return 16;
1628   case AMDGPU::SGPR_32RegClassID:
1629   case AMDGPU::VGPR_32RegClassID:
1630   case AMDGPU::VRegOrLds_32RegClassID:
1631   case AMDGPU::AGPR_32RegClassID:
1632   case AMDGPU::VS_32RegClassID:
1633   case AMDGPU::AV_32RegClassID:
1634   case AMDGPU::SReg_32RegClassID:
1635   case AMDGPU::SReg_32_XM0RegClassID:
1636   case AMDGPU::SRegOrLds_32RegClassID:
1637     return 32;
1638   case AMDGPU::SGPR_64RegClassID:
1639   case AMDGPU::VS_64RegClassID:
1640   case AMDGPU::SReg_64RegClassID:
1641   case AMDGPU::VReg_64RegClassID:
1642   case AMDGPU::AReg_64RegClassID:
1643   case AMDGPU::SReg_64_XEXECRegClassID:
1644   case AMDGPU::VReg_64_Align2RegClassID:
1645   case AMDGPU::AReg_64_Align2RegClassID:
1646   case AMDGPU::AV_64RegClassID:
1647   case AMDGPU::AV_64_Align2RegClassID:
1648     return 64;
1649   case AMDGPU::SGPR_96RegClassID:
1650   case AMDGPU::SReg_96RegClassID:
1651   case AMDGPU::VReg_96RegClassID:
1652   case AMDGPU::AReg_96RegClassID:
1653   case AMDGPU::VReg_96_Align2RegClassID:
1654   case AMDGPU::AReg_96_Align2RegClassID:
1655   case AMDGPU::AV_96RegClassID:
1656   case AMDGPU::AV_96_Align2RegClassID:
1657     return 96;
1658   case AMDGPU::SGPR_128RegClassID:
1659   case AMDGPU::SReg_128RegClassID:
1660   case AMDGPU::VReg_128RegClassID:
1661   case AMDGPU::AReg_128RegClassID:
1662   case AMDGPU::VReg_128_Align2RegClassID:
1663   case AMDGPU::AReg_128_Align2RegClassID:
1664   case AMDGPU::AV_128RegClassID:
1665   case AMDGPU::AV_128_Align2RegClassID:
1666     return 128;
1667   case AMDGPU::SGPR_160RegClassID:
1668   case AMDGPU::SReg_160RegClassID:
1669   case AMDGPU::VReg_160RegClassID:
1670   case AMDGPU::AReg_160RegClassID:
1671   case AMDGPU::VReg_160_Align2RegClassID:
1672   case AMDGPU::AReg_160_Align2RegClassID:
1673   case AMDGPU::AV_160RegClassID:
1674   case AMDGPU::AV_160_Align2RegClassID:
1675     return 160;
1676   case AMDGPU::SGPR_192RegClassID:
1677   case AMDGPU::SReg_192RegClassID:
1678   case AMDGPU::VReg_192RegClassID:
1679   case AMDGPU::AReg_192RegClassID:
1680   case AMDGPU::VReg_192_Align2RegClassID:
1681   case AMDGPU::AReg_192_Align2RegClassID:
1682   case AMDGPU::AV_192RegClassID:
1683   case AMDGPU::AV_192_Align2RegClassID:
1684     return 192;
1685   case AMDGPU::SGPR_224RegClassID:
1686   case AMDGPU::SReg_224RegClassID:
1687   case AMDGPU::VReg_224RegClassID:
1688   case AMDGPU::AReg_224RegClassID:
1689   case AMDGPU::VReg_224_Align2RegClassID:
1690   case AMDGPU::AReg_224_Align2RegClassID:
1691   case AMDGPU::AV_224RegClassID:
1692   case AMDGPU::AV_224_Align2RegClassID:
1693     return 224;
1694   case AMDGPU::SGPR_256RegClassID:
1695   case AMDGPU::SReg_256RegClassID:
1696   case AMDGPU::VReg_256RegClassID:
1697   case AMDGPU::AReg_256RegClassID:
1698   case AMDGPU::VReg_256_Align2RegClassID:
1699   case AMDGPU::AReg_256_Align2RegClassID:
1700   case AMDGPU::AV_256RegClassID:
1701   case AMDGPU::AV_256_Align2RegClassID:
1702     return 256;
1703   case AMDGPU::SGPR_512RegClassID:
1704   case AMDGPU::SReg_512RegClassID:
1705   case AMDGPU::VReg_512RegClassID:
1706   case AMDGPU::AReg_512RegClassID:
1707   case AMDGPU::VReg_512_Align2RegClassID:
1708   case AMDGPU::AReg_512_Align2RegClassID:
1709   case AMDGPU::AV_512RegClassID:
1710   case AMDGPU::AV_512_Align2RegClassID:
1711     return 512;
1712   case AMDGPU::SGPR_1024RegClassID:
1713   case AMDGPU::SReg_1024RegClassID:
1714   case AMDGPU::VReg_1024RegClassID:
1715   case AMDGPU::AReg_1024RegClassID:
1716   case AMDGPU::VReg_1024_Align2RegClassID:
1717   case AMDGPU::AReg_1024_Align2RegClassID:
1718   case AMDGPU::AV_1024RegClassID:
1719   case AMDGPU::AV_1024_Align2RegClassID:
1720     return 1024;
1721   default:
1722     llvm_unreachable("Unexpected register class");
1723   }
1724 }
1725 
1726 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1727   return getRegBitWidth(RC.getID());
1728 }
1729 
1730 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1731                            unsigned OpNo) {
1732   assert(OpNo < Desc.NumOperands);
1733   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1734   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1735 }
1736 
1737 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1738   if (isInlinableIntLiteral(Literal))
1739     return true;
1740 
1741   uint64_t Val = static_cast<uint64_t>(Literal);
1742   return (Val == DoubleToBits(0.0)) ||
1743          (Val == DoubleToBits(1.0)) ||
1744          (Val == DoubleToBits(-1.0)) ||
1745          (Val == DoubleToBits(0.5)) ||
1746          (Val == DoubleToBits(-0.5)) ||
1747          (Val == DoubleToBits(2.0)) ||
1748          (Val == DoubleToBits(-2.0)) ||
1749          (Val == DoubleToBits(4.0)) ||
1750          (Val == DoubleToBits(-4.0)) ||
1751          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1752 }
1753 
1754 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1755   if (isInlinableIntLiteral(Literal))
1756     return true;
1757 
1758   // The actual type of the operand does not seem to matter as long
1759   // as the bits match one of the inline immediate values.  For example:
1760   //
1761   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1762   // so it is a legal inline immediate.
1763   //
1764   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1765   // floating-point, so it is a legal inline immediate.
1766 
1767   uint32_t Val = static_cast<uint32_t>(Literal);
1768   return (Val == FloatToBits(0.0f)) ||
1769          (Val == FloatToBits(1.0f)) ||
1770          (Val == FloatToBits(-1.0f)) ||
1771          (Val == FloatToBits(0.5f)) ||
1772          (Val == FloatToBits(-0.5f)) ||
1773          (Val == FloatToBits(2.0f)) ||
1774          (Val == FloatToBits(-2.0f)) ||
1775          (Val == FloatToBits(4.0f)) ||
1776          (Val == FloatToBits(-4.0f)) ||
1777          (Val == 0x3e22f983 && HasInv2Pi);
1778 }
1779 
1780 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1781   if (!HasInv2Pi)
1782     return false;
1783 
1784   if (isInlinableIntLiteral(Literal))
1785     return true;
1786 
1787   uint16_t Val = static_cast<uint16_t>(Literal);
1788   return Val == 0x3C00 || // 1.0
1789          Val == 0xBC00 || // -1.0
1790          Val == 0x3800 || // 0.5
1791          Val == 0xB800 || // -0.5
1792          Val == 0x4000 || // 2.0
1793          Val == 0xC000 || // -2.0
1794          Val == 0x4400 || // 4.0
1795          Val == 0xC400 || // -4.0
1796          Val == 0x3118;   // 1/2pi
1797 }
1798 
1799 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1800   assert(HasInv2Pi);
1801 
1802   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1803     int16_t Trunc = static_cast<int16_t>(Literal);
1804     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1805   }
1806   if (!(Literal & 0xffff))
1807     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1808 
1809   int16_t Lo16 = static_cast<int16_t>(Literal);
1810   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1811   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1812 }
1813 
1814 bool isInlinableIntLiteralV216(int32_t Literal) {
1815   int16_t Lo16 = static_cast<int16_t>(Literal);
1816   if (isInt<16>(Literal) || isUInt<16>(Literal))
1817     return isInlinableIntLiteral(Lo16);
1818 
1819   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1820   if (!(Literal & 0xffff))
1821     return isInlinableIntLiteral(Hi16);
1822   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1823 }
1824 
1825 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1826   assert(HasInv2Pi);
1827 
1828   int16_t Lo16 = static_cast<int16_t>(Literal);
1829   if (isInt<16>(Literal) || isUInt<16>(Literal))
1830     return true;
1831 
1832   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1833   if (!(Literal & 0xffff))
1834     return true;
1835   return Lo16 == Hi16;
1836 }
1837 
1838 bool isArgPassedInSGPR(const Argument *A) {
1839   const Function *F = A->getParent();
1840 
1841   // Arguments to compute shaders are never a source of divergence.
1842   CallingConv::ID CC = F->getCallingConv();
1843   switch (CC) {
1844   case CallingConv::AMDGPU_KERNEL:
1845   case CallingConv::SPIR_KERNEL:
1846     return true;
1847   case CallingConv::AMDGPU_VS:
1848   case CallingConv::AMDGPU_LS:
1849   case CallingConv::AMDGPU_HS:
1850   case CallingConv::AMDGPU_ES:
1851   case CallingConv::AMDGPU_GS:
1852   case CallingConv::AMDGPU_PS:
1853   case CallingConv::AMDGPU_CS:
1854   case CallingConv::AMDGPU_Gfx:
1855     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1856     // Everything else is in VGPRs.
1857     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
1858            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
1859   default:
1860     // TODO: Should calls support inreg for SGPR inputs?
1861     return false;
1862   }
1863 }
1864 
1865 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1866   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1867 }
1868 
1869 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1870   return isGFX9Plus(ST);
1871 }
1872 
1873 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1874                                       int64_t EncodedOffset) {
1875   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1876                                : isUInt<8>(EncodedOffset);
1877 }
1878 
1879 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1880                                     int64_t EncodedOffset,
1881                                     bool IsBuffer) {
1882   return !IsBuffer &&
1883          hasSMRDSignedImmOffset(ST) &&
1884          isInt<21>(EncodedOffset);
1885 }
1886 
1887 static bool isDwordAligned(uint64_t ByteOffset) {
1888   return (ByteOffset & 3) == 0;
1889 }
1890 
1891 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1892                                 uint64_t ByteOffset) {
1893   if (hasSMEMByteOffset(ST))
1894     return ByteOffset;
1895 
1896   assert(isDwordAligned(ByteOffset));
1897   return ByteOffset >> 2;
1898 }
1899 
1900 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1901                                        int64_t ByteOffset, bool IsBuffer) {
1902   // The signed version is always a byte offset.
1903   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1904     assert(hasSMEMByteOffset(ST));
1905     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1906   }
1907 
1908   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1909     return None;
1910 
1911   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1912   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1913              ? Optional<int64_t>(EncodedOffset)
1914              : None;
1915 }
1916 
1917 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1918                                                 int64_t ByteOffset) {
1919   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1920     return None;
1921 
1922   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1923   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1924 }
1925 
1926 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1927   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1928   if (AMDGPU::isGFX10(ST))
1929     return Signed ? 12 : 11;
1930 
1931   return Signed ? 13 : 12;
1932 }
1933 
1934 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1935 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1936 // hardware bug needing a workaround).
1937 //
1938 // The required alignment ensures that individual address components remain
1939 // aligned if they are aligned to begin with. It also ensures that additional
1940 // offsets within the given alignment can be added to the resulting ImmOffset.
1941 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1942                       const GCNSubtarget *Subtarget, Align Alignment) {
1943   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1944   uint32_t Overflow = 0;
1945 
1946   if (Imm > MaxImm) {
1947     if (Imm <= MaxImm + 64) {
1948       // Use an SOffset inline constant for 4..64
1949       Overflow = Imm - MaxImm;
1950       Imm = MaxImm;
1951     } else {
1952       // Try to keep the same value in SOffset for adjacent loads, so that
1953       // the corresponding register contents can be re-used.
1954       //
1955       // Load values with all low-bits (except for alignment bits) set into
1956       // SOffset, so that a larger range of values can be covered using
1957       // s_movk_i32.
1958       //
1959       // Atomic operations fail to work correctly when individual address
1960       // components are unaligned, even if their sum is aligned.
1961       uint32_t High = (Imm + Alignment.value()) & ~4095;
1962       uint32_t Low = (Imm + Alignment.value()) & 4095;
1963       Imm = Low;
1964       Overflow = High - Alignment.value();
1965     }
1966   }
1967 
1968   // There is a hardware bug in SI and CI which prevents address clamping in
1969   // MUBUF instructions from working correctly with SOffsets. The immediate
1970   // offset is unaffected.
1971   if (Overflow > 0 &&
1972       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1973     return false;
1974 
1975   ImmOffset = Imm;
1976   SOffset = Overflow;
1977   return true;
1978 }
1979 
1980 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1981   *this = getDefaultForCallingConv(F.getCallingConv());
1982 
1983   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1984   if (!IEEEAttr.empty())
1985     IEEE = IEEEAttr == "true";
1986 
1987   StringRef DX10ClampAttr
1988     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1989   if (!DX10ClampAttr.empty())
1990     DX10Clamp = DX10ClampAttr == "true";
1991 
1992   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1993   if (!DenormF32Attr.empty()) {
1994     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1995     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1996     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1997   }
1998 
1999   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
2000   if (!DenormAttr.empty()) {
2001     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2002 
2003     if (DenormF32Attr.empty()) {
2004       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2005       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2006     }
2007 
2008     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2009     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2010   }
2011 }
2012 
2013 namespace {
2014 
2015 struct SourceOfDivergence {
2016   unsigned Intr;
2017 };
2018 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2019 
2020 #define GET_SourcesOfDivergence_IMPL
2021 #define GET_Gfx9BufferFormat_IMPL
2022 #define GET_Gfx10PlusBufferFormat_IMPL
2023 #include "AMDGPUGenSearchableTables.inc"
2024 
2025 } // end anonymous namespace
2026 
2027 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2028   return lookupSourceOfDivergence(IntrID);
2029 }
2030 
2031 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2032                                                   uint8_t NumComponents,
2033                                                   uint8_t NumFormat,
2034                                                   const MCSubtargetInfo &STI) {
2035   return isGFX10Plus(STI)
2036              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
2037                                             NumFormat)
2038              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
2039 }
2040 
2041 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2042                                                   const MCSubtargetInfo &STI) {
2043   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
2044                           : getGfx9BufferFormatInfo(Format);
2045 }
2046 
2047 } // namespace AMDGPU
2048 
2049 raw_ostream &operator<<(raw_ostream &OS,
2050                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2051   switch (S) {
2052   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2053     OS << "Unsupported";
2054     break;
2055   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2056     OS << "Any";
2057     break;
2058   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2059     OS << "Off";
2060     break;
2061   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2062     OS << "On";
2063     break;
2064   }
2065   return OS;
2066 }
2067 
2068 } // namespace llvm
2069